防災広場としてみたちびっこひろばの地理的条件による分類に関する研究

Classification of Chibikko－Hiroba as Small Openspaces for Disaster Mitigation by Geographical Conditions

水谷可南子 1 •武田史朗 $2 \cdot$ 及川清昭 3
Kanako Mizutani，Shiro Takeda，Kiyoaki Oikawa
${ }^{1}$ 名鉄不動産株式会社（〒451－6008 愛知県名古屋市西区牛島町6番1号名古屋ルーセントタワー8階）
Meitestu Real Estate Development Co．Ltd
2立命館大学准教授 理工学部建築都市デザイン学科（〒525－8577 滋賀県草津市野路東1－1－1）
Associate Professor，Ritsumeikan University，Dept．of Architecture and Urban Design
3 立命館大学教授 理工学部建築都市デザイン学科（〒525－8577滋賀県草津市野路東1－1－1）
Professor，Ritsumeikan University，Dept．of Architecture and Urban Design

Abstract

In this research，for Chibikko－Hiobas，in order to obtain basic information of their applicability as small openspaces for disaster mitigation，they are classified by geographical conditions including morphology and situation in surrounding，and the pattern from which maintenance concerning disaster prevention is requested by priority are extracted from each pattern．Through the classification of Chibikko－Hirobas，it is comfirmed that 62 Chibikko－Hirobas in Kamigyo Ward，Nakagyo Ward，Shimogyo Ward，Higashiyama Ward and Nishikyo Ward are classified into six patterns from the viewpoint of the surrounding overcrowdedness，the surrounding disaster prevention ability and their effectiveness as openspaces．It also turned out that for Chibikko－Hirobas included in two patterns in residential quarter that are high overcrowdedness and low disaster prevention ability，a prior and disaster prevention maintenance is preferable．

Key Words ：Chibikko－Hiobas，disaster mitigation，geographical conditions

1．はじめに

本研究で対象とした「ちびっこひろば」は京都市独自の制度によって，1967年より地域に身近な子供向け の遊び場を確保するために設置されてきた自主管理型広場である。他の都市内の空地と比較すると，地域で用地を確保し，地域の手で管理運営されることを前提としていることに特徴がある。この点で，地域住民に身近に認識し利用されやすく，また地域住民の手によって改修•改善される可能性を持ち合わせている。

しかし，ちびっこひろばは最盛期には市内に400か所以上存在し ていたものの，現在では，施設の老朽化，管理者の高齢化，自治組織の弱体化，少子化などの影響からその利用率は低下し，荒廃 が進んでいる。一方，京都市では木造密集市街地における災害時 の大火の危険性や避難•消防活動の困難性が指摘 ${ }^{1}$ されており，特に中心市街地においては空地も比較的少ないことから危険性が より高いと考えられる。

これらのことから，ちびっこひろばが小規模防災広場として整備されることは，初期消火や一時的避難の場など防災的な能力を発揮するとともに，それら設備に対する住民による自主管理によ

図 1 ちびっこひろば（上京区）

つて，日常的な利用の活性化やコミュニティの形成にもつながると考えられる。
そこで，本研究ではちびっこひろばを対象に，その形態的特性や防災的観点を含めた周辺状況など地理的条件から評価し，類型化を行らことで，都市防災機能を補完するものとしてのちびっこひろばの利用可能性 に関する基礎的情報を得ることを目的とする。また，各類型に対する考察から，特に優先的に防災に関する整備が求められる類型を抽出し，今後の再整備の方向性を示唆する。

なお，今後，現状のちびっこひろばの自主整備•運営の課題抽出や住民による管理運営に関するワークシ ョップ（簡易な貯水設備や備蓄倉庫等の整備など）を行うことにより，ちびっこひろばの改修•再整備にお ける計画手法を確立していくための資料を形成していく予定である。

2．ちびっこひろばの概況

ちびっこひろばは，「ちびっこひろば助成要綱」に基づき，幼児の遊び場の設置要望に対して住民による自主的な運営管理を前提に設置され，主に遊具やベンチ等の新設や修繕に対する助成が行われている。その面積は平均約 $220 \mathrm{~m}^{2}$ と街区公園の標準面積 $2500 \mathrm{~m}^{2}$ と比べても非常に小規模なものである。また，子供の減少，管理者の高齢化等の地域社会の変化や遊具等施設の老朽化の問題などへの対策として，1998年からの3年間 に，住民参加により改修を行う地域コミュニティひろば整備事業がすすめられた。事業の対象とされた13箇所では，子供の遊び場に限らず，地域のニーズに応じて様々な整備が行われており，事業以降のテーマ型コ ミュニティを創出する活用方法にもつながっている。こうしたコミュニティの形成は災害時の対応にも大き く影響してくると考えられる。
しかし，設置当初から増加を続け1971年には471箇所設置されていたちびっこひろばも，特に都心部におけ る土地の高騰や新設予算の減少等の原因からそれ以降減少の一途をたどり，現在では237箇所となっている。 このように全体的に減少の方向に進んでいる。

3．研究のフロー

ちびっこひろばに関する既往研究では，佐藤ら（2000 年）$)^{2)}$ による小広場整備における管理運営への住民の意向とデザインの関係についての考察や吉田（2000 年）${ }^{3}$ による 76 か所のちびっこひろばの利用•運営に関 する現況調査がなされている。しかし，ちびっこひろばを対象とし，地理的条件から防災的観点を含めた分類を行っている研究はない。

そこで，本研究では，まず調査項目の選定を行い，それらの項目について調査を行った。次に，それらの調査結果をもとに，主成分分析およびクラスター分析によって，本研究の目的であるちびっこひろばの類型化を行った。また，防災公園における整備手法や地域住民による防災活動，防災に関する事業制度について の文献調査から，分析結果の考察に資する知見を整理した。

これらをもとに，本稿の最後では防災整備に関する文献調査により得られた知見をもとに，類型ごとにち びっこひろばの特徴を整理したらえで，優先的に整備することが望ましいと考えられるちびっこひろばを抽出する。

4．調査対象項目の抽出

身近にある小規模な街区公園等は身近な防災活動拠点の機能を有する都市公園（以下身近な防災公園と略 す）に含まれ，阪神淡路大震災において日常的なコミュニティを基盤にした初期活動の拠点となり，これら が被害軽減及び拡大防止に大きく貢献した事例がみられたことから，近年防災に配慮した整備事例が数多く みられている。身近な防災公園は街区公園の誘致圏と同じ 250 m を避難圏域と設定し，D I D 地区で $300 \mathrm{~m}^{2}$以上の規模を望まれている。

一方，ちびっこひろばは $300 \mathrm{~m}^{2}$ 以上のものは 237 か所中 58 か所と半分にも満たない数しか存在しない。 しかしながら，第1章でも述べたように京都市においては古い木造密集市街地も多いため，一時的な避難ス ペースや初期消火の拠点としてのちびっこひろばの有用性は無視できないものと考える。

そこで，ちびっこひろばを身近な防災公園に求められる機能と照らし合わせ，ちびっこひろばを防災の利用に供すると仮定した場合の有効性と必要性の観点から設定した調査対象項目によって選定を行うこととす る。防災公園計画•設計ガイドライン4）では，身近な防災公園の防災面での調査および調整対象となる事項 を，避難圏域の状況に関して避難圏域及び圏域人口や避難施設等の分布，輸送路や避難路の状況，敷地の状

況に関しては施設条件や管理運営条件，地形地質条件，植生条件を掲げている。

これを踏まえ，本研究ではちびっこひろばの避難圏域を 250 m 圏と設定し，マクロな地理的観点から の項目に絞り，調査対象項目を表1 のように設定し た。

特に，避難施設等の分布に関しては，ちびっこひ ろばが開放された場合に開放•利用が見込まれる公共的性格を持つ空地であることを条件に調査を行う。 それらは，災害時において有効に機能することを考慮し $300 \mathrm{~m}^{2}$ 以上の規模を持つ空地に限ることとし，公共緑地•自然緑地•公共施設空地•民間施設空地の4 つに区分した。市街地の危険度は，京都市における木造密集地域における大火の危険性や人口集中地区 であることを考慮し，建物密度及び建物棟数による建物状況と耐火率について調査を行う。また，輸送路や避難路の状況は，円滑な避難と救援活動に関わ るため，平均道路幅員を調査することとした。

表1 調査対象項目一覧

調査対象項目			内容
$\begin{array}{\|l\|} \hline \text { 状敷 } \\ \text { 況地 } \\ \hline \end{array}$	条施件設	（1）面積	面積
		（2）接道条件	接道長
			最大前面道路幅員
	人圏口域	（3）人口	避難圏内の昼間人口密度
			避難圏内の夜間人口密度
	$\begin{gathered} \text { 避輸 } \\ \text { 状難送 } \\ \text { 況路路中 } \\ \text { の や } \end{gathered}$	（4）平均道路幅員	平均道路幅員
	$\begin{aligned} & \text { 危市 } \\ & \text { 険街 } \\ & \text { 度地 } \end{aligned}$	⑤建物状況	避難圏内の建物密度
			避難圏内の建物棟数
		（6）耐火率	耐火率
	避 難 施 設 等 の 分 布	（7）公共緑地	避難圈内の公共緑地の合計面積
			公共緑地へのアクセシビリティ
		（8）自然緑地	避難圏内の自然緑地の合計面積
			自然緑地へのアクセシビリティ
		（9）公共施設空地	避難圏内の公共施設空地の合計面積
			公共施設空地へのアクセシビリティ
		（10）民間施設空地	避難圏内の民間施設空地の合計面積
			民間施設空地へのアクセシビリティ

5．調査対象項目のデータ作成

（1）施設状況に関する項目
施設状況に関する項目には，面積，接道条件である接道長•最大前面道路幅員がある。
まず，京都市提供による全ちびっこひろばの住所をもとに，住宅地図（京都吉田地図株式会社発行）にお いて敷地形状を確認し，京都市内の建築物ポリゴンデータ ${ }^{(1)}$ 上に，ちびっこひろばのポリゴン（図 2）を作成した。また地図データ上に含まれないちびっこひろばに関しては，独自に地図データを作成した。上記の作業は全 237 か所について行った。さらにそのデータをもとに面積，接道長，最大前面道路幅員を算出した。
（2）避難圏域人口
町丁目別の人口データとして，夜間人口密度の算出に関しては平成 17年国勢調査小地域男女別人口及び世帯数及び平成 17 年国勢調査小地域年齢 5 歳階級•男女別人口の 2 つのデータを使用した。また，昼間人口密度の算出に関しては平成 17 年国勢調査を基にして作成された 2005 年推計昼間人ロデータ（株式会社日本統計センター）を基にした。町丁目 ポリゴンを含む地図データは，平成 17 年国勢調査町丁•字等別地図デ ータ（株式会社日本統計センター）を利用した。それをちびっこひろば分布図上にオーバーレイすることによって，各ちびっこひろばに含まれ る町丁目を把握した。算出方法としては，ちびっこひろばを中心として避難圏域に含まれる各町丁目の人口に，避難圏域に含まれる各町丁目の面積の割合をそれぞれ乗じたものを合計し，各ちびっこひろばの昼間人口•夜間人口を算出したのち， $1 \mathrm{k} \mathrm{m} \mathrm{m}^{2}$ あたりの人口密度を算出した。

（3）輸送路や避難路の状況

図2 ちびっこひろば分布図

輸送路や避難路の状況に関しては，平均道路幅員を算出する。平均道路幅員は，避難圏域の道路面積を同 じく避難圏域内の道路長で除したものであり，道路のデータとしては建築物ポリゴンデータを使用したが，道路長のデータとしては「MAPPLE DIGITAL DATA－MAPPLE10000－」（昭文社）を使用し，算出した。また，敷地構内の道路に関しては，災害時の緊急的な利用が難しいと考えられるため除外した。
（4）市街地の危険性
京都市内の建築物ポリゴンデータ及び耐火•非耐火建築物のポリゴンデータ（2）を基に，避難圏内の建物密度，建物棟数，耐火率を算出した。建物密度については，避難圏域に占める建築面積を避難圏域面積（250m円面積）で除したものである。また，耐火率は，避難圏域内の耐火建築物の面積の合計を同じく避難圏域内

の全建築面積で除したものである。なお，耐火•非耐火建築物の ポリゴンデータは，京都市都市計画局の $1 / 2500$ 都市計画図におけ る「堅牢建物」，「高層建物」として分類されている建物として耐火建築物，それ以外を非耐火建築物と捉えている。また，堅牢建物とは，階高が 2 階以上の RC 造または耐火鉄骨造の建物のこと である。しかし，この分類では，RC 造または耐火鉄骨造の平屋が非耐火構造としてみなされるが，本研究においては，その数は無視できるほど少ないものとして扱う。
（5）避難施設等の分布
表1 における 4 区分の避難施設等について，住宅地図において それぞれ確認し，図 3 のように，ちびっこひろば分布図上にポリ ゴンを作成し，合計面積を計測した。さらに各アクセシビリティ を算出した。ポリゴン作成対象地と対象外とした空地については，表2に示す。また，通常，避難場所指定されるのは一定規模以上 の空地を持った施設であり，学校であればグランド等動線となら ない空地を主に指定しているが，京都市では一部京都競馬場の駐車場も含まれていることを考慮して，建物敷地内の空地（公共施設空地•民間施設空地）に関しては，敷地より建物を差し引いた分の面積を計測した。

ここで，アクセシビリティAiは以下のように表わされる。空地 ポリゴンは同面積の場合，集塊で存在しているよりも均等に分散 している方が数値が高くなる。

$$
A i=\sum_{j} S j / D i j^{2}(i \neq j, D i j \leq 250)
$$

Sj：空地ポリゴン j の面積

> Dij : ちびっこひろばポリゴンi と空地ポリゴンj の重心距離

○：避難圏域

（ちびっこひろばを中心とする 250 m 圏内）
－公共施設空地
公共緑地
図 3 ちびっこひろばと空地状況の例

表2 調査対象•対象外項目一覧

調査項目	対象	対象外
（7）公共緑地	公園	
	広場	
8）自然緑地	緑地	陵墓
（9）公共施設空地	公開園地	病院•自衛隊駐屯地消防署•警察局
	学校内空地	郵便局
		共同住宅付属園地
（10）間施設空地	指定避難場所で ある寺社	その他指定避難場所 （民営）

6．主成分分析とクラスター分析による類型化

（1）分析対象ちびっこひろば及び対象項目の選定
主成分分析においては，全調査項目のうち，面積，接道長，最大前面道路幅員，夜間及び昼間人口密度，平均道路幅員，建物密度，建物棟数，耐火率の 9 項目を選定した。また，避難施設等の分布を示す公共緑地，自然緑地，公共施設空地，民間施設空地の 4 項目に関しては，集計の結果，各ちびっこ ひろばにおいてイレギュラーなばらつきがみられ，分析の対象指標とすると主成分数が非常に大きくなってしまうことが予想されるため，除外した。

また，京都市は木造密集市街地が多いことや人口集中地区 であることを踏まえ，災害時における避難を考慮し，行政区 ごとにちびっこひろばの避難圏域の夜間及び昼間人口密度の平均値を算出し，これらのどちらかが，平成 17 年の国勢調査 をもとにした京都市の人口密度平均以上となる行政区に含ま れるちびっこひろばを対象とした。 ${ }^{(3)}$

その結果，上京区•中京区•下京区•西京区•東山区の計 62 か所のちびっこひろばを分析対象とした。

表3 各主成分負荷量及び固有値，寄与率

変数名	第1主成分	第2主成分	第3主成分
建物棟数	0.87756	0.124972	0.313359
夜間人口密度	0.851408	0.104891	0.32466
建物密度	0.773299	0.406785	0.250789
耐火率	-0.06739	0.821476	-0.37318
昼間人口密度	0.330891	0.767955	-0.28108
平均道路幅員	-0.35618	0.760907	-0.16718
前面道路幅員	-0.3225	0.615319	0.233718
接道長	-0.51114	0.356687	0.703607
面積	-0.47913	0.1263	0.630334
固有値	2.93	2.56	1.46
寄与率	32.54%	28.42%	16.22%
累積寄与率	32.54%	60.96%	77.18%

※ \square は，各主成分において寄与率の高い指標を示している。
（2）主成分分析の結果
選定された 62 か所のちびっこひろばに対して，上記の指標で主成分分析を行ったものが表 3 である。同表に主成分負荷量及び固有値，寄与率を示す。以下，第 3 主成分までの解釈を行う。

第1主成分は，建物棟数，夜間人口密度，建物密度などが高い寄与を示し，「周辺密集性」を表す軸といえる。第2主成分は耐火率，昼間人口密度，平均道路幅員などが高い寄与 を示し，「周辺防災性」の軸を表す軸と考え られる。第3主成分は接道長，面積などが強 く寄与し，「空地有効性」の軸と理解できる。
（3）ちびっこひろばの類型化
主成分分析により得られた各ちびっこひろ ばの主成分得点をもとに，第1～第3主成分平面上にちびっこひろばを布置したものが，図4，図5である。この第1～第3主成分得点 により構成される3次元空間にちびっこひろ ばが位置するものと考え，クラスター分析
（ウォード法）を行い，ちびっこひろば間の ユークリッド距離から同図に示すように I～ VIの 6 類型とした。

類型別の各指標の値のほかに，主成分分析 の指標としては用いなかった年齢属性別昼間人口割合や調査対象空地面積及びアクセシビ リティ，周辺状況も加えて考察し，類型の検討を行った。表4は類型別に分析対象項目の平均値を示し，表5は調査対象空地の状況，各類型別の年齢属性別人口平均，世帯数平均を示 したものである。

以下，各類型の特徴について述べる。
【類型I：郊外住宅地型】
特に建物密度，建物棟数，夜間及び昼間人口密度の値が小さく，周辺密集性，周辺防災

図4 第1，第2主成分によるちびっこひろばの布置

図5 第1，第3主成分によるちびっこひろばの布置性，空地有効性すべてにおいて低い値を示し ている。山際や川近くに位置し，避難圏内には主に住宅地で，他に農地，山地，寺社が多く占めている。
【類型II：団地•自然緑地型】
面積がすべて $300 \mathrm{~m}^{2}$ 以上で，さらに接道長，前面道路幅員の値が大きく，空地有効性が一番高い値を示す一方，周辺密集性，周辺防災性は比較的低い値を示している。周辺には河川や山等の自然緑地や工場地や駐屯地などの大規模なまとまった団地が存在している。
【類型III：混在市街地型】
周辺密集性，周辺防災性，空地有効性すべて中程度の値である。周辺は，住宅と学校，ビル，寺社，工場 などの用途が混在する市街地である。
【類型IV：広幅員道路中心市街地型】
6 類型の中でも平均道路幅員，耐火率の値が大きく，周辺防災性は最も高い値を示し，周辺密集性は中程度，空地有効性は比較的低い値である。周辺は，広幅員の道路整備がなされ，大規模建物が多い地域となっ ているものが多い。さらに調査対象空地状況については，大規模な公共施設空地を含むものが多く，合計面積・アクセシビリティともに最も高い。昼間人口割合については生産年齢人口が最も高く，逆に，年少人口 と老年人口の人口割合は最も低い。

【類型V：密集住宅地型】

6 類型の中でも建物密度，建物棟数，夜間人口密度が大きく周辺密集性は最も高い。また，面積，接道長，前面道路幅員がマイナスに大きく振れており周辺防災性は比較的低い値であり，空地有効性は中程度である。周辺は町家を含めた戸建住宅やマンションがほとんどを占めており，世帯数平均も最も高い。昼間人口割合

は老年人口の割合が最も高い。
【類型VI：一般低層住宅地型】
夜間人口密度が大きく周辺密集性は中程度，耐火性が マイナスに大きく振れており周辺防災性は低く，空地有効性は中程度の値である。周辺は，戸建住宅やアパート など低層の住宅が半分程度を占め，その他それぞれ田畑 や寺社等が多く占めていた。昼間人口割合については， 6 類型の中でも年少人口が最も高く，老年人口や女性の占める割合も比較的高い。

以上，ちびっこひろばを防災空地として見た場合の観点から，6 つの分類についての特徴が明らかとなった。 それぞれの分類で見られる特性は，ちびっこ広場を防災空地として利用する場合に，平常時の利用者や管理主体， また非常時の防災活動に関して異なった計画と運用が適切であることを示唆しているが，特に，類型V，類型VI は，周辺密集性が比較的高く，周辺防災性が比較的低い ため，延焼危険度が高いと考えられ，さらに空地有効性 は中程度で，ともに住宅地であるため地域住民による日常の利用もされやすいと考えられる。類型V，類型VIの 2 類型においては優先的に防災に関する整備が行われる ことが望ましいと考えられる。

7．まとめ

本研究では，上京区•中京区•下京区，及び東山区•西京区の計62か所のちびっこひろばを，「周辺密集性」，
「周辺防災性」，「空地有効性」の3軸により，「郊外住宅地型」「団地•自然緑地型」「混在市街地型」「広

表 4 類型別分析対象項目の平均値

類型	I	II	III	IV	V	VI
面積 $\left(\mathrm{m}^{2}\right)$	128.4	524.8	197.4	113.1	90.3	118.3
接道長 (m)	14.0	72.4	38.1	22.7	9.1	18.0
前面道路幅員 (m)	5.0	13.2	8.4	9.7	4.0	4.5
夜間人口密度 （人／km2）	5012	8074	11388	8945	17220	11879
昼間人口密度 （人／km2）	4557	6916	11452	20618	13280	7658
平均道路幅員 (m)	6.1	7.3	7.0	8.3	5.5	5.2
建物棟数 $($ 棟）	316	529	789	659	1041	789
建物密度 $(\%)$	14.7	28.4	38.9	36.0	49.1	31.7
耐火率 $(\%)$	15.8	17.5	24.3	37.0	20.0	12.4

表 5 類型別分析対象外項目の平均値

類型	I	II	III	IV	V	VI
公共緑地合計面積 $\left(\mathrm{m}^{2}\right)$	1575	1406	2032	501	565	1744
公共緑地 アクセシビリティ	0.27	0.20	0.15	0.01	0.04	0.07
$\begin{gathered} \text { 自然緑地 } \\ \text { 合計面積 }\left(\mathrm{m}^{2}\right) \\ \hline \end{gathered}$	970	2589	218	2174	0	978
$\begin{gathered} \text { 自然緑地 } \\ \text { アクセシビリティ } \end{gathered}$	0.02	0.34	0.01	0.87	0.00	0.03
公共施設空地合計面積（ m^{2} ）	4355	933	8528	23832	6685	2171
公共施設空地 アクセシビリティ	0.23	0.03	0.38	1.82	0.39	0.23
昼 男	37.2	47.8	47.6	51.3	44.9	41.5
間 女	62.8	52.2	52.4	48.7	55.1	58.5
口 年少人口	15.2	8.0	11.1	7.2	11.5	16.0
\％生産年齢人口	63.5	68.5	65.7	82.2	60.7	56.2
－老年人口	21.3	23.6	23.2	10.6	27.8	27.8
世帯数（世帯）	395	774	1093	857	1608	992

※民間施設空地については，含まれないちびっこひろ ばが半数以上占めていたため省略した。幅員道路中心市街地型」「密集住宅地型」「一般低層住宅地型」の6類型に分類することができた。特に，住宅地において，密集性が高く，周辺の防災性の比較的低い「密集住宅地型」「一般低層住宅地型」に含まれるちびっこひろばの優先的な防災的整備が望ましいこ とがわかった。

注

（1）立命館大学文学部地理学教室提供によるものである。
（2）参考文献5）の京都市における文化財周辺の延焼防災に関する研究において，作成された耐火•非耐火別の建物ポ リゴンデータを使用し，算定した。
（3）平成17年国勢調査における京都市の人口密度平均は約 10600 人である。また，防災公園技術ハンドブックにおける防災公園計画上の防災面での調査においては昼間人口密度•夜間人口密度のうち多いほうを採用することとなって いる。

参考文献

1）京都市：京都市防災都市づくり計画，京都市，2004
2）佐藤正吾，吉田鉄也：小広場整備における管理運営への住民の意向とデザインの関係についての考察，日本建築学会学術講演梗概集，pp273－274，2000
3）吉田一絵：京都ちびっこひろばの現況にみる今後の公園空間の可能性に関する研究，立命館大学修士論文，2000
4）財団法人都市緑化技術開発機構：防災公園計画•設計ガイドライン，pp．68－74，1999
5）京都市における文化財周辺の延焼危険性に関する幾何学的分析，及川清昭，日本建築学会大会学術講演梗概集 F 1， pp．759－760，2007

