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Abstract

This work develops a rapid and movement efficient 3D mapping method using

multiple aerial robots. The method used for 3D reconstruction is flexible configu-

ration stereo vision. In contrast to traditional stereo vision where the two cameras

of the stereo camera are fixed in a predefined position, flexible configuration stereo

distributes the viewpoints of the stereo camera independently. The distribution of

viewpoints allows the adjustment of stereo vision configuration, including baseline

distance, horizontal or vertical axis, and adjustment of inward tilt angle. The view-

points of the flexible configuration stereo in the proposed system are distributed on

separate multirotor aerial robots. The mobility of the multirotor platform facilitates

the adjustment of stereo configuration. In this work, three prototype implementations

are developed using different tracking methods. The first prototype utilizes two visi-

ble range monocular cameras on gimbals for pose tracking of each aerial robot. The

second prototype utilizes the infrared range stereo camera in combination with odom-

etry for pose tracking. The final system utilizes custom made prototype aerial robots

and inside-out tracking and sensors for relative pose measurement. Additionally, this

work proposed two configuration point cloud fusion algorithms, their performance

has been verified on both simulation and physical experiments. The work has been

shown to create an accurate long-range map creation of the range up to 400 meters

with the movement of only 10 meters in the simulation with the total operation time

of less than two minutes. In an outdoor experiment, the system has been shown to

create a map of the range of up to 100 meters with 20 meters of movement and less

than three minutes of the total operation time.
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Chapter 1

Introduction

1.1 Research background

The development of radio-controlled aircraft opens the possibility of flights without

the risk to the human pilot otherwise needed onboard. Unmanned aerial vehicles

(UAVs) have their origin in the 20th century and began their emergence in the US

military as the radio-controlled munition platforms [1]. Several years later in the

United Kingdom, one of the first pilotless aircraft modified from the airframe of De

Havilland DH 82 Tiger Mouth named the Queen Bee, later nicknamed Drone became

the beginning of the name used today to refer to the UAVs [2]. The development of

UAVs for various functions in military use has continued into the 21st century. In

recent years, the effectiveness of UAVs for reconnaissance tasks has become increas-

ingly apparent. In the civilian sector, the use of UAV has been increasingly surging.

Various industries have been using the UAV platform for a wide range of applications,

including remote sensing [3], agriculture [4], aerial manipulation [5], and the newly

emerging race to commercialize air mobility platform [6].

In the field of remote sensing multiple platforms are used for different scales and

types of applications. In 3D mapping tasks, UAVs are used for high complexity scenes

with the scene size of a few meters up to a few kilometers [3]. The types of UAV

include fixed-wing traditional takeoff and landing UAVs, vertical take-off and landing

(VTOL) UAVs, and the hybrid fixed-wing VTOL utilizing the advantage of both [7].
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Among the categories, multirotor UAVs are one of the most popular platforms among

industries, researchers, and consumers alike [8]. The mobility of the multirotor to be

able to move in 6-DOF without the need to bank in order to turn, the small size which

allows them to operate in small to medium sized areas, and the cost-effectiveness of

such platforms allows them to be suitable for various kinds of remote sensing tasks.

Various kinds of sensors have been utilized onboard multirotors for 3D mapping

tasks, such as visible spectrum cameras, infrared cameras, light detection and ranging

(LiDAR), or depth cameras. The resultant 3D maps are obtained from the fusion of

aforementioned sensors with the localization data from the multirotor, such as GNSS,

inertial measurement unit (IMU), or external localization devices. The following

mapping methods used in such tasks includes:

• photogrammetry and structure from motion (SfM) based methods utilizing

monocular camera [9] [10] [11] [12]

• light detection and ranging (LiDAR) based method [13] [14][15]

• visual or visual-inertial simultaneous localization mapping (SLAM) [16] [17] [18]

1.2 Motivation and objectives

Using flexible configuration stereo vision as the mapping methods provides multiple

advantages over the use of methods mentioned in chapter 1. The characteristic and

limitations of the mentioned methods are as follows:

• SfM based method produces medium to high resolution 3D maps from the large

number of geo-tagged images retrieved from each checkpoint from careful path

planning [9]. In photogrammetry, a down-facing camera is often used meaning

that the multirotor needs to be at a considerable altitude over the object being

mapped.

• LiDAR based method produces high accuracy and high resolution 3D maps.

Sensors capable of far range (more than 100 m) are often large and heavy,
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being a limiting factor of the types of multirotor used and their flight time.

Additionally, LiDAR sensors are usually acquirable at high cost [19].

• Visual SLAM based method provides low to medium density map while also

providing localization data [20]. SLAM is extremely effective in an indoor or

closed environment. The robustness of SLAM methods relies heavily on the

frame rate of the camera used, especially in a high vibration system such as a

multirotor. Furthermore, the range limitation of SLAM is based on the range

of the sensor used, for example the range of the depth camera used.

• Additionally, the common limitations of mentioned methods include the need

to fly over the whole area of interest in order to map in order to cover the area,

the computation of the final map being processed after the flight meaning lack

of real-time capability, and their limited range.

The first limitation of mentioned methods is the range of the system compared

to the amount of movement needed to achieve it. The range of the system is limited

by the range of the sensor utilized in each method. For example, a visual inertial

SLAM based on depth camera method is limited by the range and accuracy of the

depth camera. The commonly used depth cameras such as Intel Realsense D435

depth cameras have their estimated effective range of 10 meters and their maximum

field of view of 90 degrees. With this limiting factor, in order to cover an area with

a wide range, the system needs to move a significant distance to cover the whole

area. Additionally, the UAV with the depth camera has to enter and get close to the

area in order to map it. This may cause safety problems when used in a dynamically

active environment such as in a bustling city with many vehicles, or in a disaster-

stricken area where the situation is actively developing. On the other hand, SfM

based methods such as photogrammetry can cover a wide area when high altitude is

used, but in turn the resolution of 3D mapping would decrease proportionate to the

altitude used. However, the limitation of down-facing a camera is the mapping of

tall structures which requires significant altitude. For multirotor UAVs which have

limited flight time, the amount of movement per area covered is extremely crucial.
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Our proposed system has been shown to map an area with a distance up to 400 meters

with only 10 meters of movement in simulation at the altitude of 20 meters.

The second limitation the proposed system aims to overcome is the real-time

capability. SfM based methods lack the ability to provide sustained depth information

in real-time, since depth is estimated from the movement of the UAV. For Visual

SLAM and LiDAR based methods, real-time depth estimation is only provided within

the range of the sensor used. The advantage of using stereo vision is the ability to

provide sustained depth information in real-time. By changing the baseline distance,

the depth estimation range can be extended such that a large area can be monitored

in real-time. Additionally, if more than two viewpoints are used, multiple ranges can

be monitored at the same time [21]. For instance, a short baseline can be used to

monitor near field objects while a large baseline can be used for far field objects.

1.3 Outline

The concept of the main 3D reconstruction method, flexible configuration stereo

vision, as well as its advantages in comparison to traditional stereo vision and other

existing methods is described in Chapter 2. In Chapter 3, the simulation showing the

characteristic of flexible configuration stereo vision is shown along with the conclusion

drawn from the simulation result as a foundation to construct the proposed point

cloud fusion algorithm and horizontal and vertical setup fusion algorithm. Chapter

4, Chapter 5, and Chapter 6 describe the implementation of the proposed system

physically, based on three different tracking approaches and the lesson learned from

each implementation used for the succeeding implementation. Finally, in Chapter 7,

the summary of the thesis as well as the future work and improvement proposals are

discussed.
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Chapter 2

Concept of flexible configuration

stereo vision

2.1 Introduction to stereo vision

The 3D mapping system utilizing stereo vision as the 3D reconstruction method

is proposed. According to Bradski [22], stereo vision is the use of two viewpoints

from a pair of often identical cameras, traditionally visible spectrum cameras. Each

camera is placed next to each other horizontally at a specified distance, the distance

between the two cameras is called baseline distance. The left and right cameras

are faced in the same direction such that the image plane of the cameras are in a

parallel plane. In the two images of the scene obtained from the same instance taken

by both cameras are called image pairs. Objects reflected in the image of the left

camera seem to dispace compared to the same object reflected in the right camera.

Objects that are close to the camera appear to displace further than far objects.

This displacement is called disparity. The disparity of each pixel is calculated by

stereo matching algorithms, which match the features from each frame and calculate

their disparity. The resulting disparity of all pixels are represented in the form of a

disparity image, with each pixel containing the amount of disparity in pixels. The

disparity image is then reprojected into a 3D point cloud using the information such

as the relative position of the camera, and intrinsic parameters of the camera such as
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focal length to calculate the 3D position of each pixel in the real 3D space. Figure 2.1

shows the geometry of the depth estimation using stereo vision and Figure 2.2 shows

the overall process of stereo vision depth estimation.

Figure 2.1: Geometry of stereo vision depth estimation

In traditional stereo cameras, the position and orientation of the left and right

cameras are fixed, such that the geometry transformation of the cameras are always

constant and known. Camera parameters are acquired from the camera calibration

process [23]. Normally, a pattern such as a checker board or similar pattern with

known physical dimensions is shown in front of the two cameras. The stereo cam-

era parameters are then calculated from the appearance of the pattern in the image

. The important parameters in stereo vision that need to be acquired before use

are called intrinsic parameters, and extrinsic parameters. Intrinsic parameters de-

scribe the optical characteristic of an individual camera. Equation 2.1 shows the two

intrinsic matrices, K camera matrix, and Equation 2.2 shows D distortion matrix.

Camera matrix is composed of focal length f in pixels, horizontal center of image

cx in pixels, and vertical center of the image cy in pixels. To simplify, focal length

6



Figure 2.2: Flowchart representing processes in stereo vision depth estimation

of both horizontal and vertical axis of the image plane are assumed to be the same.

Distortion D matrices used in this case are composed of tangential distortion dpn and

radial distortion coefficients dkn describing the distortion of the image appearing in

the camera. Each set of intrinsic matrices exists for each camera, therefore the final

intrinsic matrices are K1, K2, D1, and D2.

K1 =


f1 0 cx1

0 f1 cy1

0 0 1



K2 =


f2 0 cx2

0 f2 cy2

0 0 1


(2.1)

D1 =
[
dk11 dk21 dp11 dp21 dk31

]
D2 =

[
dk12 dk22 dp12 dp22 dk32

]
(2.2)

Extrinsic matrices are described in equation 2.3 composing of a reprojection ma-

trix Q and rectification matrices R1, R2. Extrinsic matrices describe the physical
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relationship between the two cameras, including relative position and orientation. Q

is used for reprojection of disparity images into a 3D point cloud. The calculation

of reprojection matrices are information from the intrinsic matrices from the main

camera (typically left camera) and the baseline distance b in meters. Rectification

matrices R1 and R2 are used to fix the unparalleled orientation of the camera by

rotating the image virtually to match the relative orientation of the camera in reality.

Q =


1 0 0 −cx

0 1 0 −cy

0 0 0 f

0 0 −1/b 0



R1 =


r111 r112 r113

r121 r122 r123

r131 r132 r133



R2 =


r211 r212 r213

r221 r222 r223

r231 r232 r233



(2.3)

The pixel position of each feature u, v is projected to the image plane in the 3D

space using: 
xL

yL

1

 = K1
−1


uL

vL

1



xR

yR

1

 = K2
−1


uR

vR

1


(2.4)
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3D position of each pixel can be estimated by solving geometry calculation using:

x =
b(xL + xR)

2d

y =
byL
d

z =
bf

d

(2.5)

where b is baseline distance, f is focal length, and d is disparity calculated using

stereo matching algorithms and represented in the form of disparity image with the

same dimension as the image from the left camera.

The Bouguet’s algorithm [24] to calculate the rectification matrices for both cam-

eras are as follows:

1. Compose e1 using normalized translation vector from camera 1 to camera 2

using:

e1 =
T

|T |
(2.6)

where T is the 3D translation vector from camera 1 to camera 2

T =


Tx

Ty

Tz

 (2.7)

2. Compose e2 using the following equation:

e2 =

[
−Ty Tx 0

]T
√

T 2
x + T 2

y

(2.8)

3. Compose e3 using the following equation:

e3 = e1 × e2 (2.9)
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4. Compose a shard rectification matrix Rrect using the following equation:

Rrect =


eT1

eT2

eT3

 (2.10)

5. Calculate each individual camera’s rectification matrix using:

R1 = Rrect r1

R2 = Rrect r2
(2.11)

where r1 and r2 is the relative orientation of each camera w.r.t. an origin frame.

2.2 Limitations of stereo vision

The principle limitations of stereo vision have challenged the use of stereo vision

as a 3D reconstruction method for 3D mapping. A fixed viewpoint system where

two cameras of the stereo vision system are fixed at a specific baseline and axis is

referred to as traditional stereo vision [25]. In traditional stereo vision, the principal

limitation is the depth estimation error that increases quadratically to the target

distance. Depth estimation error is estimated using the following equation from [26]:

ϵz =
z2

bf
· ϵd (2.12)

Where ϵz is the depth estimation error in meters, z is the target distance in meters,

b is the baseline distance in meters, f is the focal length in pixels, and ϵd is the

disparity error in pixels. Estimation error ϵz is observed to increase at the power of

two of the target distance z when other variables are constant. Figure 2.3 illustrates

the estimation error of a stereo vision system with different baseline distances. The

error of the depth estimation is estimated to be less than or equal to the colored lines

plotted from equation 2.12. The error of the stereo vision system with wider baseline
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can be seen to be smaller than narrower baselines. A conferred effect from another

viewpoint is that, the confidence of the depth estimation of a given distance is higher

when larger baseline is used. Therefore, with this information, logically using a large

baseline is more effective since the estimation error can be kept lower.

Figure 2.3: Depth estimation error (x) vs target depth (y) using three different base-

lines.

Having said that, in practice a larger baseline, even though it reduces the esti-

mation error, it promotes occlusion [27]. When the distance of baseline used is too

wide, occlusion occurs to areas close to the camera such that stereo matching becomes

difficult. The completeness and correctness of disparity images produced from stereo

matching with said baseline is significantly reduced. This phenomenon is called by

this work as an excessive baseline. Figure 2.4 shows the effects of using excessive

baseline. Noise is generated in the disparity image as false matches are computed by

the stereo matching algorithm. When projected into a point cloud, the noise directly

creates fuzziness in the point cloud resulting in an incorrect point cloud.

Finally, another limitation of stereo vision is occlusion as an effect from the ge-

ometry of viewpoints. Several kinds of occlusions are considered including:

1. Occlusion from non-overlapped field of view (FOV) area.
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Figure 2.4: Image of (a) reference frame and disparity images of (b) 2 meters baseline,

(c) 6 meters baseline, and (d) 12 meters baseline.

2. Occlusion behind objects.

Figure 2.5 shows the geometries of the cameras that create non-overlapped areas. In

traditional stereo vision, stereo matching of objects that are closer than the closest

intersection of the two cameras’ field of view is difficult [28]. Therefore, the closer

range cannot be reconstructed, especially when a wide baseline or narrow field cameras

are used and such non-overlapped area becomes larger. Figure 2.6 shows the effects

of occlusion from non-overlapped areas in disparity images. In horizontal stereo, the

non-overlapped area can be observed in the left side of the disparity images. The

area grows larger as a larger baseline is used. This phenomenon limits the FOV of

the stereo cameras with large baseline or narrow FOV. On the other hand, if an

extremely wide FOV lens is used, the non-overlapped area can be reduced. However,

the accuracy of depth estimation is also reduced due to the distortion of the lenses.

Additionally, since the pixel-per-angle ratio increases in wide FOV lenses compared to

narrow FOV lenses, the depth estimation becomes much more inaccurate [29]. Figure

2.7 shows the effects of using wide FOV where pixel-per-angle becomes a problem.

Occlusion behind objects is also a major issue in stereo vision. Since the camera

cannot see behind the object [30], depth estimation by stereo vision alone cannot

cover these areas [31]. Figure 2.8 shows the geometric illustration of the area behind

objects. The shadow projected from the object by the camera shows the blind area in

disparity images, the disparity values of these areas cannot be calculated. Usually, in

order to cover these blind spots, depth estimation from stereo vision is combined in a

fusion algorithm like visual SLAM such as [18] while the whole stereo system moves

around the object in order to cover all the area around it. Alternatively, multiple
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Figure 2.5: Geometry of overlapped area in stereo cameras.

viewpoints [32] can be used in the system such that all the viewpoints cover the

whole area around the object.

2.3 Advantages of flexible configuration stereo

In this work, the main concept of the system is to overcome the limitations of tra-

ditional stereo vision. The method to achieve this is called by this work as flexible

configuration stereo vision [33]. In contrast to traditional stereo vision where two

viewpoints of the stereo vision system are fixed in place, in flexible configuration

stereo the viewpoints are distributed. The two viewpoints can be freely moved in

6-DOF such that the relative pose of the two viewpoints, namely the configuration

of the stereo vision, can be flexibly adjusted. In this work, the adjustment of three

parameters of the stereo configuration are explored including, baseline distance, hor-

izontal or vertical setup, and inward tilt angle.

The adjustment of baseline length, called variable baseline stereo [25], provides a

means to overcome the principal limitation of stereo vision, the estimation error per

target distance limitation described in section 2.2. The baseline of the stereo vision

system can be adjusted to fit the scale and distance of the mapping area in order to
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Figure 2.6: Effects of non-overlapped area in computed disparity.

minimize error. Additionally, the baseline can be reduced to an optimal baseline to

balance the minimum estimation error while keeping the baseline distance from being

too excessive. Furthermore, multiple baseline distances can be used to map a single

area [34]. The use of multiple baselines can extend the range of the mapping system

to cover a wider range of distance.

Selectability between horizontal stereo and vertical stereo is essential for complete-

ness of the resultant map. Since horizontal and vertical stereo has its own effectiveness

in each situation, such as in terms of occlusion axis and shapes of objects. By being

able to switch between the two setups, an ideal setup can be chosen for different

kinds of scenes. Furthermore, a combination of depth estimation from horizontal and

vertical stereo has shown improvement in depth estimation completeness as well as

accuracy [35]. In a simulation experiment in chapter 3 has proven the advantages in

using each configuration as well as the combination of both.

The inward tilt angle of the cameras, namely the inward tilt of the yaw angle

of the horizontal setup, or the inward tilt of the pitch angle of the vertical setup
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Figure 2.7: Ray projection from the center of the camera to each of its pixels and

their estimated depth.

can be adjusted in this work. The advantage of being able to adjust the inward tilt

angle is the reduction of the non-overlapped area of the two cameras’ field of view

[36]. The non-overlapped area on the movement axis of the camera can be reduced.

Furthermore, when a large baseline is used, inward tilt can be applied in order to

improve the completeness of depth estimation of near field objects. In chapter 3, the

simulation experiment result has shown that by applying inward tilt, stereo matching

of near field objects can be seen improving. By applying this, the range of a large

baseline can be extended to include near field objects as well, and reduce the effects

of noise generated by excessive baseline.

Finally, in order to realize flexible configuration stereo vision, the viewpoints are

distributed on each different UAV. In a two viewpoints system, two multirotor UAVs

are used with left and right viewpoints on two different drones. The movement of

viewpoints is greatly facilitated by the multirotor UAVs, due to their ability to move

in 6-DOF and ability to hover at a fixed position and level orientation, contrast to
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Figure 2.8: Occlusion ray projected from the two cameras caused by an object.

fixed-wing UAVs which need to maintain airspeed. This especially holds true when

large baselines, such as more than 3 meters, where otherwise the difficulty persists

in positioning of the viewpoints that has to be done by unmanned ground vehicles

(UGVs) [37] or manually moved by human operators. Additionally, by increasing

the number of viewpoints, for example three UAVs are used as three viewpoints,

multiple configurations can be utilized simultaneously. The 3D reconstruction from

each configuration can be combined into a more accurate and higher completeness

3D map, as explored by [38]. In chapter 3, the utilization of multiple configurations

and its advantage is discussed.

2.4 Challenges in the design

Although stereo vision provides several advantages over existing methods, several

challenges are to be addressed in order to achieve effective depth estimation. The

first and likely the most crucial point in the design is the means to accurately obtain
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relative pose of all the cameras in real-time, including both position and orientation.

The accuracy relative pose of the cameras directly affects the efficacy of stereo match-

ing as well as the accuracy of depth estimation. Relative orientation of the cameras

is used in the image rectification process in order to align the images obtained from

non-parallel cameras to align in the same plane. Since stereo matching methods look

for the features mainly in the same epipolar line, the accuracy of ratification to align

the features on the same plane is crucial for the stereo matching in order to find a

matching feature on both frames. Furthermore, even if the features are matched, the

error in rectification results in the error computed disparity values, therefore the accu-

racy of depth estimation. Especially, for long range depth estimation where the error

of only one pixel could mean a large proportion of error in depth estimation. Relative

position of the cameras are used in the point cloud reprojection process where the

disparity image is projected into a point cloud. The measurement of relative position

to align the two cameras such that they align on the same axis affects the efficacy

of the stereo matching where rectification cannot fix. Furthermore, the accuracy of

baseline distance affects the calculation of depth estimation directly. Hence, the ac-

curacy of relative pose measurement is extremely crucial for the overall success of the

system.

The second challenge is tracking and localization of each individual UAV. In or-

der to achieve high accuracy and high frequency relative pose, each of the UAVs’

own localization is used to aid the calculation of relative pose. The pose odometry

obtained from localization is coupled to the images obtained from the cameras are

coupled based on timestamp. Furthermore, pose obtained from localization is used

to control the UAVs to position itself at the correct desired position and orientation.

The position of the drones to be correct at the time of image acquisition is extremely

important because error is extremely difficult to fix using software algorithms after-

ward. Additionally, when multiple baselines are used and the point cloud projected

from each baseline is fused into a resultant point cloud, an external point of reference

outside of the drone is required. The points needs to be rotated and translated such

that all point clouds are in the same coordinate system. In contrast, if only the rela-
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tive position of the two drones are used, if the reference drone moves between taking

of the images at each baselines, the movement and the relative position at each base-

line would be unknown without a localization method. The merging of point clouds

without the external reference point would result in the point clouds being in different

coordinates. Therefore, an accurate, high frequency, and low latency tracking method

is required.

The third challenge is the robustness of the stereo matching algorithm in case of

not perfectly rectified images. In the case of the proposed system, the chance is very

unlikely that stereo image pairs obtained from the UAV are perfectly rectified. Sev-

eral unpredictable factors, such as tracking drift, error in pose calculation, or camera

vibration can cause the image to be slightly misaligned. Therefore, a stereo match-

ing algorithm that can effectively match the features even if the images are perfectly

rectified is needed. In case of this work, three stereo matching algorithms, Block

Matching (BM), Semi-global Block Matching (SGBM) [39] and Quasi-Dense Stereo

Matching [40] are evaluated. Figure 2.9 shows the performance of each stereo match-

ing algorithm processing the same non-parallel image pairs. Quasi-dense matching

algorithm shows significantly better performance than the other two with the cost

of much more processing time. Since the completeness of the depth estimation is

prioritized in this work, Quasi-Dense stereo matching algorithm is used in this work

as the primary matching algorithm.

Figure 2.9: Comparison of Block Matching (BM), Semi-global Block Matching

(SGBM) and Quasi-Dense Stereo Matching

The last challenge is the effective simultaneous use of multiple baseline distances.
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As mentioned in section 2.2, the range that a baseline distance is capable of reliably

providing depth information is limited. When too small a baseline is used, the esti-

mation error grows, on the other hand, if an excessive baseline is used stereo matching

would result in a noisy image. Therefore, a baseline fusion algorithm is developed to

determine the estimated effective range of a baseline distance. The baseline fusion

algorithm is described in detail in section 3.2.

2.5 System applications

An example use case is using the system as a reconnaissance and guidance system

for another robot. The UAVs in the system act as the mapping agent, creating a

rough map of an area of operation. After getting an approximate idea of the area of

operation’s 3D map, another robot such as an AGV or another UAV can navigate the

area without the need to map the area by itself. Figure 2.10 shows the illustrated use

of the idea. A ground robot can navigate a maze using the proposed system to create

a map of the maze that is not in the line-of-sight of the ground robot. Furthermore,

Figure 2.11 shows the utilization of the real-time mapping capability of the proposed

system. The real-time mapping capability can aid a ground robot in a dynamically

changing environment by determining the obstacles in the path. An obstacle can be

detected from the map, and a new path can be promptly plotted in such a case.

The real-world scenario application is the use of the system to map a disaster-

stricken area where the situation is unpredictable and time is of essence, but directly

sending in a rescue robot is deemed risky. The proposed system can create an approx-

imate map of the area to determine a safe path and continue to guide the rescue robot

from a distance to the target. Another use case is the map creation of a metropolis

where there are a large number of vehicles and pedestrians in the area such that

sending in a UAV into the area would be dangerous. The proposed system can create

a long range map from a distance without the need to get into the city and without

the need to fly at high altitude which would disrupt the operation of aircrafts.

19



Figure 2.10: Two UAVs as mapping agents guiding a ground robot through a maze.

Figure 2.11: Use case idea of real-time path planning with the real-time map creation

capability.
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Chapter 3

Algorithm and simulations

3.1 Characteristic of variable baseline

In order to explore and build understanding on the characteristics of flexible con-

figuration stereo, various simulation scenarios are conducted. The simulations are

conducted in a realistic Unreal Engine based simulation software AirSim [41].

The first simulation involves the evaluation of depth estimation for increasing

baseline distance. The images are taken in several image pairs each with different

baseline distance, and their corresponding disparity image and point clouds are eval-

uated. In Airsim, the camera is moved to 6 different baseline distances from 3 to

8 meters in a mater increment step. Their corresponding image pairs are retrieved.

Figure 3.1 shows the retrieved images. The obtained images from the simulation have

no distortion and since the image pairs are perfectly parallel, the undistortion and

rectification steps can be skipped.

Figure 3.2 shows the disparity image calculated by Quasi-Dense stereo matching

algorithm corresponding to each baseline. The disparity has been filtered to be in the

range of 11 to 256 pixels. The effects of increasing baseline can be seen in the disparity

images. The first point that can be noticed in the disparity is the non-overlap area

on the right side of the disparity image that increases as the baseline increases. The

second point that can be noticed is the deterioration of disparity image of the near

field objects as the baseline increases, but the improvement can be seen for far field
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Figure 3.1: Color image obtained from AirSim of 6 different baseline distances.

objects.

Figure 3.2: Disparity image obtained from AirSim of 6 different baseline distances.

Figure 3.3 shows the point cloud projected from each baseline. The first effect of

baseline increment, from the top-down view, the range of depth estimation can be

seen extending as the baseline increases. For larger baselines, buildings that are far

away can be seen. The second effect that can be seen is the distance between each

row of depth estimation. The distance between the rows at smaller baselines at any

given range is much larger than the larger baselines. The distance between each row

is the estimation error per pixel given by equation 2.12. This is the visualization

of the depth estimation error which falls in the range of equation 2.12 as the upper

bound. In our published work [42], this effect has been proven with the data. The

third effect is the accuracy and precision of the depth estimation. For close objects
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with small baselines, the object’s depth estimation can be seen larger than the ground

truth. Their depth estimation approaches the correct value as the baseline increases.

Figure 3.3: Point cloud projected from each corresponding baselines from a top-down

view (below) and 60 degrees pitch down view (above).

The estimation error evaluation has been shown in [42]. This is the visualization

of the depth estimation error which falls in the range of equation 2.12 as the upper

bound. The evaluation scene is shown in Figure 3.4 where depth estimation of a

house is evaluated. Point clouds projected from this experiment are shown in Figure

3.5, and their estimation error compared to ground truth is shown in figure 3.6. The

estimation error can be seen mostly below the theoretical value given by equation

2.12 plotted in red dashed line.

The conclusion that can be concluded in this simulation is that each baseline

distance has their own effective range. The use of small baseline has their range

limited and error of far objects being high. On the other hand, the use of excessive

baseline results in the deterioration of depth estimation for near field objects.
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Figure 3.4: Reference frame house.

Figure 3.5: Point cloud of the house from (a) 1 meter baseline, (b) 2 meter baseline,

(c) 3 meter baseline.

3.2 Baseline fusion algorithm

Based on the conclusion drawn from section 3.1, the baseline distance has their own ef-

fective range. Therefore when multiple baseline distances are used, in order to extract

only useful depth estimation from their effective range, a baseline fusion algorithm is

developed and proposed in this work as well as the published work [42].

The baseline algorithm estimates the usable range of the point cloud of a specific
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Figure 3.6: Estimation error of the point cloud vs ground truth (blue dot), compared

to the theoretical error value (red dashed line) with 1 meter baseline (top), 2 meter

baseline (middle) and 3 meter baseline (bottom).

baseline such that only the accurate part is used and the noise is excluded as much

as possible. The algorithm is developed based on the estimation error upper bound

equation 2.12. The foremost information that is used to construct the algorithm is the
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prediction of maximum range that can be used for a baseline distance. The maximum

range of a baseline distance can be given by the following equation:

zc =

√
ϵc b f

ϵd
(3.1)

Where zc is the maximum distance, ϵc is the desired error threshold. Given a thresh-

old, the maximum distance that the threshold will hold for this specific baseline can

be calculated. In case of using only a single baseline, this equation can estimate the

maximum distance that this baseline is deemed effective, meaning that the estimation

error ϵz is below or equal to the error threshold ϵc.

However, even though the maximum effective distance can be calculated, the min-

imum effective distance cannot be calculated. Obviously, as discussed in section 2.2,

the minimum distance can be calculated from the non-overlapped area of the FOV

using simple trigonometry. Still, the minimum distance that the depth estimation of

near field objects becomes noise as the result of excessive baseline cannot be calcu-

lated. The factors that affect the determination of the minimum distance, in addition

to the baseline distance and the object distance, is the shape, size, texture quality,

planar position of the object. In the current state, it is impossible to obtain such

information using existing methods, therefore the only sign that indicates that the

baseline distance is too large is when the quality of disparity image of the object of

interest starts to deteriorate. Which can only be observed in the real scene when the

system is actually used.

The next step is when multiple baseline is used. In order to determine the distance

of the baseline used as well as their effective range, the user needs to specify the

following parameters:

• nB: The number of baselines to be used.

• ϵc: The maximum error threshold.

• zmax: The maximum distance that the ϵc should hold.

• (optional) zmin: The minimum distance of the area of interest.
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Figure 3.7: Example case of the baseline fusion algorithm where the given conditions

are nB = 3, ϵc = 0.5 m, zmax = 40 m, and zmin = 0 m.

From the parameters provided, a set of baseline distances that should be used to sat-

isfy the condition of the parameters, as well as their effective range can be calculated.

Figure3.7 shows an example case that provides the steps of the proposed algorithm:

1. Calculate the largest baseline needed to satisfy the condition with the following

equation:

bmax =
z2max

ϵcf
ϵd (3.2)

2. The range between zmax and zmin is divided into equal segments. The number

of segments corresponds to nB. The size of each segments is calculated by:

zseg =
zmax − zmin

nB

(3.3)

3. After getting the size of the segment, the range of each segment can be given

by an equal distance, for example, in the example case in Figure3.7, the range

of each corresponding segment is, segment 1 s1, [0, 13.33], segment 2 s2, [13.33,

26.66] and segment 3 s3, [26.66, 40.0].
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4. At each intersection point between the maximum range of each segment and

ϵc, baseline distance used for each segment can be calculated using equation

3.2 where zmax is replaced by the maximum range of each segment and bmax is

replaced by the baseline distance that will be used for each sector.

5. In total, one segment has its own baseline distance. The effective range of each

obtained baseline is equal to the range of each segment. For example, baseline

b1 is used for range 0 to 13.33 meters, baseline b2 is used for 13.33 to 26.66

meters and baseline b3 is used for 26.66 to 40.0 meters.

6. The system obtains image pairs at each calculated baseline and point cloud of

each baseline is reprojected into each corresponding point cloud.

7. The depth axis of the point cloud is trimmed to the range of each segment

specified in step 5.

8. The trimmed point clouds are fused into a resultant point cloud

Using the developed algorithm, we can get the baseline distances that need to be

used and their effective range. Then the resultant point cloud can be obtained from

fusion of the point clouds. In this fashion, the estimation error ϵz is limited to the

specified error threshold ϵc.

In order to confirm the effectiveness of the algorithm, a large area mapping exper-

iment is carried out and the effects of the proposed system in a large area mapping is

discussed. A cityscape of an area up to 400 meters is used for the experiment. Figure

3.8 shows the used area, and Figure 3.9 shows the ground truth of the area, while the

previously shown Figure 3.3 shows the point clouds projected from each baseline.

Figure 3.10 shows the disparity image produced from each baseline. Noise can be

observed in excessive baseline cases where closer objects become noise. For simplicity,

the size of baseline is decided beforehand to be of whole numbers such that it is easier

to understand and easier to verify. Using the fusion algorithm, the error threshold

is set to be 10 percent of the estimated distance, and the trimming point for each
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Figure 3.8: Reference frame with area of interests marked in color

Figure 3.9: Ground truth of the experiment area viewed from (a) 45 degrees pitch,

and (b) directly above with each area of interest marked in colored lines.

baseline is 120, 240, 360, 480 m respectively, where the depth limit is set to be between

0 and 400 m.

Figure 3.11 shows the combination of all point clouds from all baselines. Image

(b) shows the resultant point cloud generated from the baseline fusion algorithm,
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Figure 3.10: Image frame from baseline (a) 2.0 m, (b) 4.0 m, (c) 6.0 m and (d) 8.0

m, and their respective disparity image.

Figure 3.11: Resultant point cloud maps of (a) ground truth, (b) trimmed point

cloud, and (c) non-trimmed pointcloud.

while image (c) shows the resultant point cloud from the direct combination without

trimming. Noise in image (b) can be seen much lower than image (c). This can be

concluded that the baseline fusion algorithm greatly limits the amount of noise by

filtering the non-proportionate baseline distance to depth range. Furthermore, the

algorithm reduces the amount of redundant points. For example, the points of near-
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field objects which reflect in many baselines, if the baseline fusion algorithm is not

used, the points from all baselines are used. Resulting in the near-field points to be

abnormally and redundantly dense. By cutting these points from other baselines, this

problem can be countered.

3.3 Characteristic of horizontal and vertical setup

The effects of using horizontal setup and vertical setup stereo varies. In the simulation,

the characteristic of each setup is explored and evaluated. Figure 3.12 shows the

disparity image from the same scene from a horizontal setup and vertical setup.

Figure 3.12: Comparison of disparity image obtained from vertical stereo and hori-

zontal stereo of a house scene.

The first noticeable difference is the non-overlap area axis. In horizontal setup,

the occlusion from non-overlap area begins on the left side of the disparity image

and increases as the baseline increases. This is because the primary frame is the left

frame, and the right frame is the secondary frame. The area that can be seen on the

primary frame but cannot be seen in the secondary frame then appears as the void

in the disparity image. On the other hand, in the vertical case, the primary frame

is the camera below and the secondary frame is the camera above. Therefore, the

non-overlap area begins from below the disparity image.
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The second difference is the object occlusion axis. As described in section 2.1, the

occlusion of the area behind the objects cannot be seen by both cameras, therefore

appears as occlusion. The axis of those occlusions depends on the axis of the setup.

In horizontal setup, the occlusion usually occurs at the area to the left of the object,

on the other hand, in vertical setup the occlusion occurs below the object. The size of

occlusion depends on the distance and position of the object. The closer the object,

the larger the occlusion.

The third difference is the robustness against different shapes of the object. Since

the stereo matching algorithm works well on recognizing distinct features, therefore

some of the easiest features to detect are the edges of the objects. At the edges of

the object, distinct features can be easily detected from the contrast in color for color

images, and the brightness in grayscale images. Therefore, horizontal setup usually

works better with vertical shaped objects such as light poles or pillars, whereas vertical

stereo works better with horizontal shaped objects such as bridges.

The final difference is the types of scenes for each case. In the horizontal case,

an open scene where the area is wide open is fitted. The reason is the movement

space for the UAVs which has to move sideways, therefore an open area is required

for such movement. Furthermore, the sideward movement can cause the object near

the camera to become occlusion for farther objects, so a scene with no obstacles and

open area such as a field or a far view of a village is more effective for horizontal

setup. On the other hand, vertical setup is more fitted for scenes with limited line of

sight, such as an alleyway with buildings on two sides, or a city scene. The movement

axis of the mapping process is vertically, meaning upward, therefore not much space

sideways is required. Additionally, by translating the camera vertically, the objects

close to the camera will not become occlusion in such a case, because the object does

not translate horizontally like in a horizontal case.
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3.4 Fusion of horizontal and vertical stereo

As reported by [35], the combination of horizontal and vertical stereo yields improve-

ment in depth estimation. In the proposed system, a simple and comprehensive

horizontal and vertical stereo fusion algorithm is proposed. The algorithm can be

described by the following steps:

1. Two image pairs are obtained from horizontal and vertical setup of the same

baseline. The two pairs can be obtained either simultaneously or sequentially.

Different baseline can also be used but the same baseline is recommended so

the effective range of the disparity matches between two setups. Otherwise, the

baseline fusion algorithm may need to be used.

2. All four images from two image pairs are rectified such that all the images are

level to the horizontal ground and the same yaw. The yaw of the primary frame

of the vertical setup is recommended to be used as the reference yaw.

3. Stereo matching each image pair separately. Resulting in horizontal disparity

and vertical disparity.

4. Project the disparity image to 3D point clouds, resulting in horizontal point

clouds PH and vertical point clouds PV . Combine two point clouds using this

condition:

PR(u, v) =



null if PH(u, v) = null and PV (u, v) = null

PH(u, v) if PV (u, v) = null

PV (u, v) if PH(u, v) = null

average(PH(u, v), PV (u, v)) otherwise

Where PR is the resulting point cloud and (u, v) represent the pixel coordinate

of each pixel in the primary image.

5. The resulting point cloud PR is obtained.
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Figure 3.13 shows the implementation of the proposed algorithm. The occlusion

axis differences can be noticed in the depth image as voids around the objects. The

combination of horizontal and vertical stereo fills up many of the voids as they are

filled with points from the other setup. This results in a more complete point cloud

compared to using only one setup.

Figure 3.13: Comparison of depth image obtained from horizontal stereo (a) and

depth image obtained from vertical stereo (b) and the fused image between both (c).

3.5 Characteristic of tilting stereo

The issues of excessive baseline has been observed in section 3.1. As the baseline

increases, the stereo matching of near field objects becomes more difficult. At the

point where baseline is excessive, the stereo matching of these objects fails resulting

in noises. The utilization of tilt angle has been explored by [43] for wide baseline

stereo. In the proposed system, the utilization of tilting cameras inward towards each

other is further explored in a flexible configuration system.

Figure 3.14 shows the images obtained from an experiment. In the experiment,

an increasing baseline is used from 2 meters, 4 meters, 6 meters, and 8 meters.

Horizontal setup is used. In the experiment, the first case is a parallel stereo with

both cameras facing parallel at all baselines. In the second case, the secondary camera

is tilted inward toward the primary camera 1 degree for every 1 meter of baseline.

The disparity image of the same baseline both cases are compared.
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Figure 3.14: Disparity image from baseline (a) 2.0 m, (b) 4.0 m, (c) 6.0 m and (d)

8.0 m. The row above is computed from non-tilting stereo pairs and the row below

is tilting stereo pairs.

At large baselines, improvement in the completeness of the near-field objects can

be observed in the disparity images. By tilting the stereo cameras inward, the depth

estimation of near field objects can be retained even in excessive baselines. The

disadvantage of using the tilt is the depth estimation of the sky. In the parallel case,

most of the sky can be seen excluded from the disparity images due to the minimum

disparity limit at 32 pixels. However, in the tilted case, the disparity of the sky

is included even with the filter. This effect is caused by the sky being rectified to

match the parallel axis. Therefore, in the view of the stereo matching algorithm, the

sky seems to have such that it has disparity in the image. If the tilt is too large,

that disparity exceeds the minimum disparity and therefore included in the disparity

image. This problem happens for very far objects, far exceeding the range of the

baseline such as the. Therefore, in most cases, this problem can be countered by

excluding the sky from depth estimation by either masking or color filtering.
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3.6 Simultaneous use of multiple configuration

The advantage and effectiveness evaluation of using more than two UAVs has always

been a focus in the proposed work. The possibility of using multiple configurations

simultaneously is explored in this simulation experiment. In the aforementioned cases,

two UAVs are used to collect images. However, when only two UAVs are used, only

a single stereo configuration can be used in an instance. Though the two drones can

sequentially acquire images from a set of configurations and fuse them later, the issues

remain in the real-time capability of the system.

By using more than two UAVs, the advantages of a multiple viewpoints system is

the ability to use multiple configurations simultaneously. Firstly, multiple setup, both

horizontal and vertical setups can be used at the same time. The images acquired

from both setups can be processed with the proposed fusion algorithm for horizontal

and vertical stereo. Therefore, the effectiveness of depth estimation can be increased.

The second possible use is the use of multiple baseline simultaneously. By having

multiple baseline at a time, multiple depth ranges can be monitored at a time. Figure

3.15 shows the use of a two baseline system to monitor an area with large depth

variability. In use with the baseline fusion algorithm proposed in section 3.2, an

effective range of a baseline can be determined. Therefore, the depth estimation of

a baseline can be trimmed to a specific range as seen in the figure. By keeping the

UAVs at this configuration, real-time depth monitoring of the area is possible. This

extends the range of the monitoring which is the unique advantage in the proposed

system.

The final possible use is the use of mixed configurations. For example, in an area

with different kinds of scenes, the appropriate setup can be used for a specific part

of the area, and another in other areas. As discussed in section 3.3, each specific

setup has their own scene which is matched for their characteristic. A combination

of different setup at different baseline can be used to map a specific part of the area

with an appropriate configuration.
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Figure 3.15: Normalized depth image of a two configurations and two baselines sys-

tem with (a) horizontal setup 2 m baseline, (b) vertical setup 4 m baseline, and (c)

combined depth image of both configurations.
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Chapter 4

Implementation with monocular

camera based tracking

4.1 System overview

Physical system prototypes have been developed. In total, separated by major

changes, three system prototypes have been developed. The latter is the improve-

ment of the earlier using the advantages and flaws from the previous system. The

major change of the system is the tracking method, such that chapter 4, chapter 5,

and chapter 6 are separated by the tracking method. In this chapter, the first system

implementation is discussed.

In the first system design, the first consideration is the type of UAVs used in the

system. In this implementation, small UAVs are chosen since the size of the UAV

means the smaller the size of the minimum baseline that can be used without the

UAVs crashing into each other or having their thrust interfere with each other. Two

small-sized UAV, DJI Tello, are used in this implementation. Figure 4.1 shows the

DJI Tello used for the implementation. Table 4.1 shows the general specification of

DJI Tello.

Figure 4.2 shows the overview of the system design. A ground robot is used
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Figure 4.1: DJI Tello used in the first implementation mounted with two AR markers.

Table 4.1: General characteristic of DJI Tello.

Camera Resolution: 960 × 720 pixel

Dimensions: 98 × 92 × 41 mm

FOV: 82.5 deg

Weight: 80 g

Payload (centered): 80 g

as a reference point on the ground. On the ground robot, two sets of gimbals and

a monocular camera are mounted on the ground robot. These cameras are used for

tracking the UAVs. The method of tracking is AR marker pose estimation. A number

of AR marker [44] is attached on each side of the UAV such that it can be seen from

the camera from various different angles.

The design goal of this implementation is to use the proposed system for a ground

robot guidance system similar to [45] and [46] where the UAVs creates the map of

the area around the ground robot. The ground robot can localize itself based on the

UAVs tracking position such that the ground robot does not need additional sensors

for localization.

39



Figure 4.2: System overview of the first implementation.

4.2 Tracking method

The tracking method for this implementation relies mainly on the camera mounted on

the gimbal on the ground robot. The camera and the gimbal will follow the UAVs as

the UAVs move around. Pose of the UAV can be calculated with AR markers attached

on several sides of the UAVs. The specific type of AR marker used is AprilTag 2 [47].

Figure 4.3 shows the used gimbal and camera. The gimbal is a 2-DOF gimbal,

where yaw and pitch of the camera is controlled. The servo motors used in the

implementation are Robotis MX-12W, a 360 degree continuous servo with the torque

of 0.2 N·m and the resolution of 0.09 degrees. A high resolution servo is chosen in this

case to maximize the accuracy of tracking by reducing error from the servo command.

The camera used in this implementation is the ELP Webcam camera. Table 4.2 shows

the specification of the camera.

A specific lens of the camera is chosen to use a very narrow field of view camera.

The reason for the narrow field of view is to maximize the range of the AR marker
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Figure 4.3: Camera and gimbal used in the tracking system of the implementation.

Table 4.2: General characteristic of Monocular Camera used for Tracking.

Camera Resolution: 1920 × 1080 pixel

FPS: 60 FPS

FOV: 21.5 deg

pose estimation. Since the resolution that can be used is limited, and the increase in

resolution would worsen the performance of the image processing algorithm used for

the marker pose estimation, a narrow field of view camera is the viable choice. The

achieved maximum detection range using the proposed setup with the maker size of

8 centimeters is around 4 meters away from the camera when the marker is exactly

perpendicular to the camera. Therefore, according to the system setup, two cameras

are used for the tracking, each having 4 meters tolerance, the maximum of 8 meters

baseline can be used.

In this implementation, the gimbal of the camera needs to see the UAVs at all

times, keeping the UAVs in their field of view. In order for the gimbal to be able to

track the UAVs at all times, the gimbal needs to be controlled such that the UAV
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is always in the frame. However, the solution is not as straightforward as just to

rotate the gimbal such that it keeps the UAV at the dead center of the camera.

Since the image acquisition has a time delay, the same goes for the servo command.

When the camera is actively trying to keep the drones at the center, the delay makes

it impossible. Furthermore, as the gimbal moves the camera, the frame becomes

blurred due to motion blur. Such that it is proven difficult to implement a system to

keep the drone at the dead center of the frame.

Therefore, a simpler gimbal control algorithm is implemented in this system. Fig-

ure 4.4 shows the illustration of the algorithm. The red area shown in the figure is a

deadzone set in the image frame, and the green dot represents the UAVs position in

the image frame. In image (a), the UAV’s position is within the deadzone. Therefore,

in this zone the UAV is guaranteed to be visible in the camera therefore no gimbal

movement is needed as long as it stays in the deadzone. In image (b), the image shows

the position of the UAV leaving the deadzone. In this case means that the UAV will

soon leave the FOV of the camera. The last known distance of the UAV, indicated in

image (c) as d, and the angle of the UAV θ can be obtained from its position in the

image frame. From this information, the angle needed for the gimbal to rotate such

that the UAV remains at the center of the camera again can be calculated. Finally,

in image (d), the gimbal rotates such that the UAV is again at the deadcenter of the

camera and within the deadzone. The steps repeat. In this fashion, the movement of

the camera can be minimized and theUAV can be kept within the FOV of the camera.

4.3 Control method

In order to control the setpoints and pose of the UAVs, a user interface program

is implemented in Unity. Using the concept of augmented reality to facilitate the

control of the UAV, the position of the UAV and the ground robot is embedded in

the software real-time virtual projection of the scene. A similar approach has been

explored by [48]. In this control method, the user can directly move the virtual UAVs

in the software and the software sends the setpoint to the UAV controller, which then
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Figure 4.4: Figure showing gimbal control algorithm.

follows the position of the virtual UAV in real-time.

The control of the UAV is implemented inside the Unity program using Tello SDK,

a DJI official control API for controlling DJI Tello via Wifi. DJI Tello is connected to

the PC using Wifi protocol where each Tello hosts their own access point (AP). On

the PC side, two Wifi USB devices are used, each connected to each AP of each Tello.

Tello SDK allows the control of the UAV using the attitude thrust command. The

control packet includes roll, pitch, yaw and throttle. In this case, throttle refers to

the altitude control where Tello would hold their altitude on its own if the throttle is

idle. Roll pitch and yaw is used for controlling the position of the UAV. The position

control is implemented in the software as a PID controller with the position and

rotation from the AR marker as the feedback and the output is the roll, pitch and

yaw and throttle. Note that in the Tello SDK, position control is also available but

with extremely limited resolution at 10 cm, therefore it is not usable in this system.
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4.4 Image Processing

The image processing method in this implementation varis from the algorithm de-

scribed in chapter 2 and chapter 3, since this is the first experimental system. This

implementation utilizes the standard stereo image processing procedure. Each of the

cameras are calibrated on the ground pre-flight using [23] checkerboard calibration

method. Intrinsic matrices K1, K2, D1 and D2 are obtained. The two intrinsic

matrices are used for undistortion of the images.

Next, extrinsic matrices are calculated based on the steps explained in section 2.1.

The information needed for the calculation includes relative translation from camera

1 to camera 2 T1→2, and relative orientation from camera 1 to camera 2 R1→2. Figure

4.5 shows the diagram of the translation and rotation vectors. The two information

can be calculated from the following equations:

T1→2 = RD1(TC1→C2 +RC2TA2 −RC1TA1)

R1→2 = RT
D1 RT

C1 RC2 RD2

(4.1)

Figure 4.5: Notation of coordinate frames in the system.
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Using R1→2 and T1→2, the extrinsic parameters can be calculated as follows:

b = |T1→2| (4.2)

Q =


1 0 0 −cx

0 1 0 −cy

0 0 0 f

0 0 −1/b 0

 (4.3)

Where f , cx, cy are obtained from the intrinsic matrices. Consequently, Rrect can be

calculated using Bouguet’s algorithm procedure in section 2.1 resulting in rectification

matrices R1 and R2.

The obtained rectification matrices are then used for rectification of the image

pairs obtained from the UAVs. After rectification, the rectified image pairs are then

stereo matched using SGBM matching algorithm. The obtained disparity image are

then reprojected into a point cloud using the projection matrix. In this implemen-

tation, the reprojected point cloud is projected from the camera frame of camera 1.

Therefore, in order for the ground robot to use the point cloud in its own coordinate

system, the point cloud can be translated back to the ground robot using the tracking

information.

4.5 Lesson learned and issues of the system

Several issues exist in this implementation such that the system is not fully opera-

tional due to several issues faced during the development. Therefore, further devel-

opment of the system is halted considering that the process to fully finish this system

would result in a incompetent system. However, the process of developing this imple-

mentation gives valuable insight into what the system needs to be in the succeeding

implementation.

The first issue of the system is the limitation for the camera that needs to follow

the drones at all times in order to track the drone as well as using the position

feedback to control the movement of the drone. The loss of tracking may result in
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faulty command and may risk safety of the system. Therefore, this issue is a major

issue that leads to the use of other alternative tracking systems for the drones that

prevents this issue from happening in the next implementation.

The second issue is the computational power used for the AR marker pose es-

timation. Since the cameras need to see the drones at all times and the position

tracking is used for the control, the AR marker needs to be able to be calculated at

high frequency. In this implementation, the calculation of one AR marker obtains

around 25-30 Hz of pose data. The process of two AR markers reduces the frequency

to around 18-20 HZ. The frequency is slightly too low for the stable control of the

drones, especially in the fact that image processing is not yet put into account for

further frame rate reduction. Therefore, this issue raised a concern that another

alternative tracking system needs to be implemented.

The third issue is the problem with the rectification algorithm. In Bouguet’s

algorithm, joint rectification matrices Rrect is computed from both R1→2 and T1→2.

In the first step of the algorithm, e1 was constructed from the normalized T1→2. The

problem in this step is that, if translation in T1→2 in the y-axis and z-axis is used to

rotate the image, even though the two cameras are perfectly parallel. This caused

the image to rotate in the axis that it is not supposed to, causing the stereo matching

to be much more difficult. This algorithm is more fitted for a perfectly aligned stereo

camera, which in the case of the proposed work is almost impossible to align the two

cameras perfectly. Therefore, a rectification algorithm that is used specifically for

this application needs to be revised.

The fourth issue is the control software implemented in Unity. In this implemen-

tation, all the software are implemented in C# in Unity. Even though the software

greatly facilitates the control and visualization, running Unity on the control PC is

resource intensive. The processing resource is better used in the processing part than

the visualization part. Furthermore, Unity integration with ROS at the time was

extremely limited. In order to scale up the system and organize the software, ROS is

necessary for the system. Therefore, the control software needs to be reimplemented

in Ubuntu ROS.
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The last issue is the availability of the stereo processing algorithm in Unity. In

order to use OpenCV in Unity, OpenCV for Unity package is used. In this package,

the implementation of the stereo processing algorithm was limited to the early versions

of OpenCV 3. The available stereo matching algorithm was only BM and SGBM.

However, in the newer OpenCV version, a new stereo matching algorithm is added,

Quasi-Dense stereo matching algorithm that has better performance than SGBM.

This is another issue to move the system to be fully operational in Unity to use the

Quasi-Dense matching algorithm.
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Chapter 5

Implementation with stereo

camera based tracking

5.1 System Overview

In this implementation, several major improvements are introduced as a counter-

measures for the issues faced in the previous implementation. This implementation

corresponds to the implementation in the publication [42]. The major improvement

is the major hardware changes in the system. Figure 5.1 shows the equipment used

in this implementation.

The UAVs used are changed from normal DJI Tello to DJI Tello EDU. The reason

for the hardware change is the more availability in the control protocol which allows

more control over the UAVs’ movement. An unofficial Tello control library Tellopy

by hanyazou is used in this implementation.

The tracking hardware used in this implementation is the stereo infrared camera

motion capture (mocap) Optitrack V120 Duo camera. The specification of the camera

is shown in Table 5.1. The camera used along with Motif software, provides 6-DOF

tracking information. Motif software can be set to broadcast the tracking data of

the selected object via multicast protocol. A ROS package mocap optitrack is used

for the message relay from the multicast and relay the tracking information to ROS

topics. The rate of publication is 200 Hz, which is almost ten times faster than the
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Figure 5.1: (a) DJI Tello EDU micro UAVs with motion capture markers attached.

(b) Portable dual-lenses motion capture device Optitrack V120 Duo.

previous implementation. In contrast to the normal motion capture system where

each individual camera is placed separately, the V120 Duo has a fixed position to

the two motion capture cameras. Therefore, the process such as wanding and ground

plane calibration that is required in the normal mocap system is not required in this

camera. The camera can be used directly without the calibration since the factory

calibration parameters are saved within the camera itself.

Table 5.1: General characteristic of Optitrack V120 Duo.

Resolution: 640 × 480 pixel (×2)

Dimensions: 41 × 279 × 51 mm

FOV (HxV): 47 × 43 deg

Frame Rate: 120 fps

The control software as well as all the processes are moved to a python imple-

mentation in Ubuntu 20.04 using ROS Noetic. In this version of ROS and Ubuntu,

The use of Python 3 as well as the latest version of OpenCV 4 can be used. Newer

algorithms and optimization, as well as future algorithms can be updated in this
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implementation.

The main focus of the system is largely changed from a ground robot guidance to

a general purpose rapid 3D reconstruction algorithm. The development of this system

aims to develop a system that can rapidly create 3D maps of a large area beyond the

range of normal stereo cameras or depth cameras. Furthermore, another aim of the

system is to maximize the movement distance of the UAV per distance mapped. The

focus becomes the development of algorithms to realize the goal mentioned.

5.2 Tracking Method

The tracking method in this implementation uses the mocap camera to acquire the

pose of the UAVs. On the UAVs in Figure 5.1, the mocap markers are placed on the

top of each UAV in a non-uniform pattern. These patterns are used for tracking of

the UAVs via the motion capture camera. Figure 5.2 shows the configuration of the

mocap and the UAVs.

Figure 5.2: Illustrated overview of the system implementation.

However, the field of view of the mocap is fairly narrow. The two UAVs can hardly
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stay in the frame simultaneously or remain in the frame as it operates. Therefore,

the use of UAVs’ own odometry in the tracking process is introduced.

In the new control protocol, TelloPy, a larger set of information can be obtained

from the Tello. The data includes the state of the UAV, the raw IMU data, as well

as the odometry value of the UAV. These data were not available in the official Tello

SDK in the previous implementation. Even though the flight control software of the

DJI Tello remains a black box, these data provide the information that in some way,

the DJI Tello is producing its own odometry data. The method of odometry remains

unknown, but below the Tello, there is an infrared-emitting LED, as well as a dual-

lense camera-like component. These sensors are thought to be responsible for the

height measurement as well as the odometry of the Tello, working in a similar way as

a combination of a range sensor and an optical flow sensor.

The accuracy of the odometry of the Tello is evaluated. The evaluation method is

comparing the trajectory of the odometry of the UAV with the trajectory measured by

a 4-camera full sized mocap system. Figure 5.3 shows the compared odometry. The

unit of measurement is in millimeters. The drones are moved manually in a random

trajectory until the accumulated distance of movement measured by the odometry

reaches 20 meters. At the final point of movement, the pose from the odometry

and the pose from the mocap is compared. The final drift calculation indicates the

odometry to be drifted by 0.374 meters. This can roughly be calculated as the

error rate of less than 2% by the distance traveled. At this error rate, the error is

considered low enough for the system implementation. Since the movement required

for the mapping process is less than 5 meters, the final odometry drift is around 0.1

meter, which is considered neglectible error. Furthermore, the position is corrected

by the measurement from the mocap ground tracking station as well, therefore the

final drift would be less than that.

Therefore, the tracking system in this implementation is developed based on the

combination of both the UAVs’ odometry, IMU, and the tracking information from

the mocap camera.Figure 5.4 shows the tracking flowchart. The case of the tracking,

an Extended Kalman Filter (EKF) is used to combine the tracking information and
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Figure 5.3: Evaluation of odometry data from DJI Tello where blue line is the ground

truth trajectory from mocap and red line is the odometry trajectory.

the IMU. Using this tracking scheme, the UAV has to appear in the FOV of the mocap

at least once for the tracking to be operational. During the UAV’s stay in the FOV,

the UAV’s odometry pose and the tracking pose from the mocap is compared. The

offset of the UAV’s pose and the mocap pose is then saved in the software. This pose

offset translates the pose of the UAV odometry to match with the pose of the UAV

in the mocap coordinate system. The pose that is used for the control in this case

is the pose from the mocap itself. When the UAV leaves the FOV, the mocap pose

becomes unavailable. Therefore, during this time, the UAV’s own odometry is used

for tracking. The UAV’s odometry is offset by the offset pose saved in the software

such that its relative pose to the last known pose can be calculated. Therefore, the

pose of the UAV can be kept track even when outside of the FOV of the mocap.

Another advantage of using the UAV’s odometry is the ability to extrapolate the

UAV’s odometry’s orientation for a level horizon plane. Since the UAV’s odometry

pitch and roll value always based on the level horizon, when the level horizon is

compared with the orientation measured by mocap, the level horizon can be calculated
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Figure 5.4: Data flow chart of the tracking method.

with the following equation:

RM→W1 = RD1 RM→D1
′

RM→W2 = RD2 RM→D2
′

RM→W = average(RM→W1 , RM→W2)

(5.1)

Where RM→W is the rotation matrix from the mocap coordinate system to the level

horizon. RD1 and RD2 are the orientation of the UAVs in their own odometry frame.

RM→D1 and RM→D2 are the orientation of each UAV measured by mocap. Supposed

that the two UAVs’ odometry starts at the same axis, the yaw orientation of the two

UAVs are roughly equal, the yaw of the level horizon also represents the average yaw

of the two UAVs. Consequently, the pose offset of each drone can be calculated using

equation 5.2.
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TO1 = TM→D1 −RW→M TD1

TO2 = TM→D2 −RW→M TD2

(5.2)

During the time both of the UAVs are in the mocap frame, the relative pose

calculation of the two UAVs in the mocap frame can simply be calculated using the

following equation:

RD1→D2 = RM→D2 RM→D1
′

TD1→D2 = TM→D2 −RD1→D2 TM→D1

(5.3)

When one or more of the UAVs are not present in the mocap frame, the relative

pose can be calculated using the IMU based odometry of the UAV with the following

equation:

RD1→D2 = RD2 RD1
′

TD1→D2 = TD2 − TO2 −RW→M RD1→D2 (TW→D1 − TO1)
(5.4)

5.3 Control method

The control method in this implementation is designed to be lightweight, but still

keep the user interface function which aids the ease of control and the monitoring

of the overall system. All of the nodes including control nodes and process nodes

are implemented in ROS using Python. Figure 5.5 shows the overall nodes and

communication in the system.

The control node for each drone is implemented in Python using TelloPy. The

control nodes are implemented independently of the UI node and the image processing

node such that the control nodes always keep running even if there are errors or

crashes in other nodes. The function of control nodes is to receive goal position

commands from the UI node, send the goal position command to the PID controlling

velocity of the UAV in north-east-down (NED) axis as well as the yaw angular velocity.

The feedback of the position is the position calculated from the previous section.

Additionally, the control nodes receives the pose information from mocap in order
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Figure 5.5: Flowchart of nodes and devices in the system.

to use them to calculate the pose offset TO1 and TO2, as well as doing all the pose

calculation such that the pose control of the UAV is possible. Each individual node

sends the command to the UAV via a dedicated WiFi USB device, one for each UAV.

Another control element is the UI node that is used for monitoring the position

of the UAVs as well as issuing commands. The control UI includes (1) the position

control panel. While operational, the position of the UAV is marked with a colored

circle with a line projecting from the center to its current forward facing yaw. The

control panel also marks the FOV of the mocap camera. The height of the UAV is

indicated at the bar gauge on the right most side of the panel. Furthermore, height can

be controlled using the middle mouse wheel. (2) and (4) are the position monitoring

gauge. While operational, a middle gray line representing the planar goal position is

indicated in the middle, and the current UAV’s planar position is represented in a

colored line. (3) is the yaw monitoring and setting wheel. The gray line indicates the

yaw goal. While operational, the current yaw of the UAV is indicated by a colored

line. The goal yaw can be set by clicking on the wheel and dragging the goal yaw line

to the desired position. (5) is the general information panel indicating battery level,

WiFi strength, connection status in red or green rectangle, and the current status of
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the UAV such as landed, or armed. Additionally, this node relays the message from

the UAV, such as state, odometry, and IMU, to the control UI node, and relays the

image from the front camera to the image processing node.

Figure 5.6: The control node user interface.

5.4 Image acquisition and delay handling

Image acquisition is done via the drone control nodes. Since the image from the cam-

era is received along with the odometry data and the IMU data, the rough estimate

can be made that those messages are time-synced to a degree. The delay between

these information is small such that it is neglectable. However, the delay of the mes-

sage received from the UAV and the delay of the mocap pose message exists. There is

a certain amount of delay. Therefore, in order to compensate for this delay, a buffer is

implemented. In this system, the images acquired from the UAVs are not processed

in real-time, but processed later after the image acquisition process for simplicity to
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implement the delay countermeasure algorithm.

During the image acquisition process, the UAVs are set to go to each check point,

corresponding to each baseline needed for the mapping process. Once both of the

UAV is within the vicinity of the checkpoint, the image buffering node saves the

image from both UAVs, along with their tracking pose as files in the control PC.

The image buffering node keeps the images as well as the pose for 5 seconds after

the UAVs enter the vicinity for the first time, or until at least 30 images are taken

before stopping. Repeat these steps until all the checkpoints are reached and the

image acquisition process ends.

The purpose of saving multiple images and multiple poses is to compensate for

the delay. Since the delay between the pose and the image is unknown or a vibration

could happen such that the pose is not accurate, multiple images obtained are all

computed. After the image acquisition, during the image processing process, the

image of camera 1 and the relative pose at the middle of the 3 seconds time saved

is selected. After that, the images from camera 2 in the -0.5 and 0.5 second bracket

around this selected image are all fed to the stereo matching algorithm to be processed

into disparity images. After the process, the success match percentage of all the

images are calculated from the non-null disparity value. The disparity image with

the highest match percentage is then used for the point cloud reprojection. This

method is a roundabout way of solving the delay issue, however with the current

implementation this is the most effective way to counter the delay issue.

5.5 Rectification algorithm

As stated in the previous chapter, the Bouguet’s rectification algorithm has its dis-

advantage when used with a non-perfectly aligned stereo system because of the rec-

tification matrix that depends on the relative translation vector. In this work, we

propose a rectification algorithm specifically made for the case of this system.

The proposed rectification matrix calculation method decouple the relative trans-

lation vector completely from the rectification matrix such that the rectification ma-
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Figure 5.7: Flowchat of the overall image processing processes in this implementation.

trix only considers the relative orientation of the two cameras. By using the rotation

of camera 1 as the reference point. Therefore, the image frame of camera 1 is used as

is without any rectification. Rectification matrix of camera 1 can be easily indicated

as follows:

R1 = I (5.5)

Consequently, the rectification matrix of camera 2 is computed such that the image

is aligned in parallel with camera 1. Therefore, the relative orientation RD1→D2 is

directly used as the rectification matrix as:

R2 = RD1→D2 (5.6)
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Additionally, the calculation of baseline distance for use in the Q projection matrix is

purely calculated from only the relative translation in the baseline axis, namely the

x-axis, in contrast to the standard algorithm which uses the magnitude of the relative

translation vector using equation 5.7. This, too, is done in an assumption that the

translation in non-baseline axes are small enough to be neglectable.

b = TD1→D2X (5.7)

5.6 Stereo matching, point cloud projection and

baseline fusion

The use of SGBM stereo matching algorithm has been proposed in the earlier imple-

mentation. However, as stated in section 2.4, the robustness of SGM in non-perfectly

parallel images is limited. In this implementation, the system has been implemented

in a Ubuntu 20.04 OS and enables the use of the latest OpenCV 4 with Python 3. An

additional stereo processing algorithm, Quasi-Dense Stereo becomes available. In this

implementation, the stereo matching algorithm used is then changed to Quasi-Dense

Stereo, which gives much better results compared to SGBM. Quasi-Dense stereo de-

tects matches in a 2-D axis, meaning that the matches are searched throughout the

image. This of course results in more false matches generated, however, this also en-

ables the algorithm to match more points in non-perfectly parallel image pairs, such

as the case of this work.

The point cloud projection in this implementation is implemented in a different

mindset compared to the previous implementation. In the previous implementation,

the point clouds are projected from the image frame of camera 1, namely UAV 1.

Therefore, the origin of the points are at the image origin of camera 1. Since Bouguet’s

rectification algorithm cause the image rectification to rotate in roll axis as the result

of using relative translation vector, the rectified images can be seen largely rotated

sometimes. In such cases, the disparity image resulting from these rectified images

are also rotated. This makes the monitoring of the quality of disparity becomes
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extremely difficult without rotating the disparity image back to the original position.

Additionally, the point cloud projected from the said disparity would also be rotated

and needs to be rotated back to the level horizon using the rectification matrix of

camera 1. In the current implementation, the images are projected from camera 1, but

the points are translated and rotated such that the origin is level to the level horizon

and the yaw zero is facing the same way as the yaw zero of the ground tracking

station. In this fashion, the point clouds acquired from different configurations are

translated to the same point of reference on the ground, namely the ground tracking

station. The combination of point clouds from many different configurations becomes

possible.

In this implementation, the baseline fusion algorithm is proposed and utilized for

the first time, as described in the publication [42]. Since the point cloud projection of

this implementation are translated and rotated to the origin point of the ground level.

The advantage of this system is, even if the UAV 1 moves to some other place during

the image acquisition process, the point clouds generated from those positions can

still be combined with other point clouds by translating them to the same coordinate

system.

5.7 Mapping Experiment

Using the proposed system in this implementation, an outdoor mapping experiment

is carried out. The area of interest that is used in this experiment is shown in Figure

5.8. The area has several buildings on both sides and has a depth range of around 10

to 60 meters. In this experiment a set of three baselines are used, 1, 2, and 3 meters

baselines. The setup used in this experiment is the vertical setup since it would

include the area of interest without losing the left side of the area to the occlusion.

Furthermore, the axis of occlusion in vertical setup is from below of the image. In this

specific area of interest, the area on the below side of the image is the area close to the

camera. Therefore, in a larger baseline, the area that disappears due to the occlusion

is the area closer to the camera which will later be trimmed by the baseline fusion
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algorithm anyway. This reduces the loss of information due to occlusion compared

to horizontal setup. The last reason for using the vertical setup is that there is less

space on the side of the area since it is a small alleyway, making it hard to move

the UAVs on the horizontal axis. In this experiment, the ground tracking station is

placed static on the ground facing 45 degrees upward.

Figure 5.8: The image of the area of interest.

The images obtained from the experiment are shown in Figure 5.9. The rectified

image pairs show the movement of the UAV 2 on the vertical axis holding position at

baseline 1, 2, and 3 meters. At each baseline the images are taken and saved on the

disk. After the experiment, the images are processed and the selected disparity images

are shown in the figure. In this experiment, a total of 3 baselines are used. However,

judging from the quality of the disparity image, disparity from 3 meters baseline

shows the sign of the excessive baseline. Most of the area of interest becomes noise.

Therefore, the disparity from 3 meters baseline is excluded from further process.

Figure 5.10 shows the point cloud projected from the two remaining baseline from

top-down view. The high error of the white warehouse in the point cloud generated

from the 1 m baseline can be observed. On the other hand, the lack of the details

on the road closer to the camera can be seen in the 2 m baseline. Therefore, both
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Figure 5.9: Rectified color image from each baseline and their corresponding disparity

images.

baselines are fused using a trimming point at 20 m, the middle point of the range

of the area of interest. The baseline fusion algorithm is used for trimming the point

cloud.

The resultant point cloud can be seen in Figure 5.11. The trimming point can

be clearly seen at 20 meters where the depth resolution of the point cloud changes.

Figure 5.12 shows the comparison of the resultant point cloud to the ground truth

obtained from Google Maps [49]. Red lines are drawn on the key points in both

maps to compare the position. The position of the key points can be seen to fairly

match the ground truth. Although, the range estimation of the proposed system of

20 meters is slightly closer than the ground truth. This phenomenon is seen in the

simulation as well, that the depth estimation error tends to estimate the object to be
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Figure 5.10: Point cloud projected from each baseline distance.

closer than reality.

5.8 Lesson learned and issues of the system

The first point of consideration in this system is the limitation of the ground tracking

station using mocap. The known problem with the mocap is the vulnerability in sun-

lit outdoor use. The device’s infrared cameras are easily affected by sunlight and their

reflection. Therefore, outdoor use, which is the main focus of the system, becomes

difficult and the system only works in an ideal condition. For example, in the case

of the outdoor experiment the system is operated inside the shade of buildings. In

the operational area, there is no direct sunlight or reflection of sunlight in the scene,

so the mocap could detect the marker. Another issue with the ground station is the

limitation in the area of operation. The area of operation needs to be close to the

ground tracking station such that the system can calibrate anytime by returning to

the ground tracking station as needed. In this work, the ground tracking station is

only used for calculation of relative pose, and acting as a fixed reference point on

the ground. In the next implementation, the main goal is to remove the need for the
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Figure 5.11: Resultant point cloud as a result of baseline fusion.

ground tracking station and implement the whole system using inside-out sensors.

The second point of consideration is the use of DJI Tello EDU UAVs. Tello is

a very small UAV, such that the tested successful maximum payload is less than

100 grams, considering that this load is directly in the same vertical axis as the

center of mass. This limited payload makes the additional mounting of equipment or

sensors extremely difficult. Additionally, even though odometry data from the UAV is

accessible, the method of odometry is unknown. No information is provided from the

official side, but the speculation is that the Tello utilize optical flow tracking method

from the sensors mounted below the chassis. If the speculation is correct, there is

presumably no loop-closure detection in the algorithm. Figure 5.3, the odometry data

shows no loop-closure adjustment. Compared to other tracking devices utilizing visual

SLAM, the loop-closure detection adjustment can be clearly seen in the odometry data

as a small jump in the pose data to compensate for the odometry drift. Therefore,

further evaluation and utilization is difficult.

The third consideration is the test in an arguably small area. In this implemen-

tation, the system is intended to be the proof of concept. Therefore, the design of
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Figure 5.12: Resultant point cloud compared to the ground truth 2D map obtained

from Google Maps.

the system is meant for a small area of a distance up to 50 meters. Therefore, a

verification of the system in a much larger area, as the original intent of the research,

is needed. To that end, a system revision of the system’s hardwares is needed. A

custom-made UAV platform to realize the scaled-up system is required.
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Chapter 6

Implementation with inside-out

sensors tracking

6.1 System overview

In this implementation, a final major change to the system is made in order to over-

come the limitations of the earlier implementation. A prototype UAV platform is

built purposely for the system. Figure 6.1 shows the components of the UAV. Table

6.1 shows the general specifications of the UAV.

Figure 6.1: Prototype UAV components overview from the front (left) and from

behind (right).
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Table 6.1: Developed prototype UAV specification

Dimensions: 35.9 × 30.5 × 19 cm Rotor Span: 25 cm

Flight Controller: Pixhawk 6C Firmware: Ardupilot

Weight w. battery: 1.5 kg Motor: ARRIS 2205 (2300KV)

Propeller: Inverted Tri-wing 5045 Total Thrust: 4 kg

ESC: Holybro Tekko32 F4 Battery: 3S/4S

The prototype UAV is built based on the QAV250 frame, a small quadrotor frame

intended for FPV flight. The reason for choosing the small frame is the same as the

previous implementation, to make the smallest baseline as narrow as possible. The

QAV250 frame parts are assembled upside down in order to fit more components on

the top, and use the lower part to attach the battery. The landing gear, propeller

guards, onboard PC mount, and camera mounts are designed and 3D printed to fit

the frame. The screws of the frames are changed so that there is as little vibration

as possible in the UAV that is caused by loose parts.

The UAV is controlled by a Pixhawk 6C flight controller with Ardupilot flight

stack. The version of the flight stack used is Ardupilot 4.3.2. The reason for choos-

ing Pixhawk firmware is their compatibility with ROS protocol having a MAVROS

package that can reliably relay information from and to the flight controller out of

the box. Another advantage of Ardupilot is the open source and compatibility for

multiple kinds of sensors out of the box. For example, the PWM pins of the flight

controller can be used as a normal GPIO pin to read data from an ultrasonic range

finder. Finally, Pixhawk flight stacks support position control of the UAV using exter-

nal position feedback. The internal EKF of the flight stack is already implemented to

follow position commands. Therefore, the additional implementation of PID position

controllers in earlier implementation is no longer required.

The external sensors used in this prototype are Realsense D435F depth camera,

and Realsense T265 Tracking camera. The D435F is mounted front-facing and is
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mainly used for image acquisition, and can be used for depth acquisition for near

field objects of up to 10 meters if needed. The F variant of the D435 is the variant

that uses a IR strobe to project an IR pattern, and uses a single IR camera to

estimate the depth based on the projected pattern. This variant is optimized for

outdoor uses even in the presence of sunlight. The settings for the D435F camera

used in this implementation can be seen in Table 6.1. The down-facing T265 camera

is a tracking camera with an IMU, which provides accurate odometry data with 1%

error per movement distance. The T265 is used for localization of the UAV. The

reason for choosing the down-facing orientation for the camera is that the UAVs

are planned to be flown in the middle of an open space with no immediate features

in the radius of more than 20 meters in any horizontal direction of the UAV. In

this case, if the tracking camera is mounted horizontally, the tracking camera may

struggle to estimate the depth of the features that are far away in the horizontal

direction, and therefore the difficulty may affect the accuracy and robustness of the

tracking odometry. Therefore, the T265 is attached to face downward, because the

predicted altitude of the UAV will not exceed 20 meters. In this fashion, the features

on the ground can be seen by the cameras, closer than other features in the horizontal

direction, therefore aids the effectiveness of tracking for the camera.

Table 6.2: Realsense D435F settings and specification

Resolution: 640 × 480 pixels Field of view: 56 degrees

Frame rate: 30 FPS Exposure: Automatic

An onboard PC, Intel UP 4000, is used as the processing unit. The UP 4000 is

running Ubuntu 20.04 OS implemented with ROS Noetic. The reason for choosing UP

4000 as the onboard PC is its Intel x64 architecture processor, which provides powerful

computational power with software compatibility with libraries and softwares that

are implemented in the x64 architecture. The UP 4000 is connected to a USB WiFi

device for communication with the control PC of the human operator. Furthermore,

the sensors and the flight controllers are connected to the UP 4000. The UP 4000
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acts as the data relay unit and onboard processing unit to process all the information

needed for the flight of the UAV to be operational.

Furthermore, this implementation has the scalability in mind as the main function-

ality. The system is designed such that the number of UAVs can easily be increased

and the system can operate beyond two UAVs with ease. Compared to the earlier

implementation, this implementation uses a modular design such that the number of

UAV can be increased with the same set of sensors, but not limited to the same frame

size or hardware. As long as the main functionality is realized through the hardware,

the system can be easily extended.

6.2 Communication and data flow

Figure 6.2 shows the block diagram of all the components in the system and their

data flow. The main three parts of the system are, the control PC, the UAV, and the

Operator. The control PC is operated by an operator on the ground. The control PC

used in this case is a laptop Asus GL522VW. The control PC utilizes AMD Ryzen

7 6800H, 4.7 GHz, 16 logical core processor, and 16 GB of RAM. The control PC is

used for sending commands as well as status monitoring of the UAVs. The control

PC is hosting a network time protocol (NTP) server [50] so the UAVs can sync their

time with the NTP server. The onboard PC on the UAV is used for communication

between components on the UAV as well as relaying the data to the control PC via

WiFi. The WiFi protocol used in this case is IEEE 113 802.11ac 5.0GHz connected

to a 5.0GHz gigabit router. The operator part is the control using a radio transmitter

to control the UAV manually, when the UAV is not in the automatic mode.

The control PC runs the control UI software that is used for command and mon-

itoring of the UAVs in the system. Figure 6.3 shows the interface of the control

software. The software is implemented in the PyGame library. The control UI for

setpoint control and monitoring are shown in the figure. The first component (1) is

the stereo configuration list table, and (3) is the list of all configuration files, each

obtaining a set of stereo configurations. When the button in (3) is clicked, the con-
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Figure 6.2: Block diagram of the communication and data processing nodes.

figuration file is loaded and the configurations in the file are reflected in (1). Each

component of the configuration represents, setup axis, baseline, tilt angle, and image

recording time. Component (2) is the configuration selection control. The up and

down arrow selects the configuration in the list, when the middle “Execute” button is

pressed, the UAV will execute the configuration. Component (4) is the FPS counter

of the UI. Component (5) is the connection and general status display. The display

includes the callback rate of the pose message from each UAV’s T265 camera, arming

status, and flight mode. Component (6) is the set home button, used for setting the

stereo vision origin point. The detailed use will be described in the next section.

Component (7) is the record and calibrate button. The calibrate button is used for

initiating pose calibration which is described in detail in the next section. The record

button is to start the recording of images and poses retrieved from the UAVs. The

record duration is set in the configuration file. Component (8) is the pose data dis-

play, which displays the pose of each UAV in different reference frames. This is used

for monitoring the pose tracking of the UAV, both individually and w.r.t. to other

UAVs in the system. Component (9) shows the image from the front-facing camera

and its FPS. Used for monitoring the images taken.
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Figure 6.3: Control UI node implemented in this implmentation.

The point of consideration in the system is the ROS master which at each PC in

the system runs its own ROS master. In each UAV, the onboard PC runs its own

ROS master to relay information between sensors and the flight controller. Likewise,

the control PC runs its own ROS master. The crucial reason for each component to

have their own ROS master instead of a shared master is safety. Even though it might

complicate the overall information communication between the UAVs and the control

PC, this implementation ensures that pose data from the T265 tracking camera is

always relayed to the flight controller through the local ROS master on the onboard

PC. Such that the UAVs can continue to fly manually using a transmitter even if it

does not receive commands from the control PC, or the WiFi communication to the

control PC is unstable. Each ROS master on each different machine is communicated

to each other through a multi master data synchronization package [51]. Only a

selection of necessary topics is communicated to reduce the limited bandwidth of

data being transferred over WiFi.
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6.3 Tracking method

In this implementation, the tracking method aims to rely only on the inside-out

sensors on each individual UAVs for tracking and relative pose measurement. This

implementation completely removes the need for a ground station and utilizes the

tracking scheme based on AR markers and localization odometry of the T265 camera.

The localization of each individual UAV is, in the similar fashion to the previous

implementation, based solely on the tracking odometry data from its own T265 track-

ing camera. The odometry data from the T265 camera is relayed inside the onboard

PC through MAVROS to the flight controller, which enables the flight controller to

obtain the pose feedback and allows the flight controller to operate in position control

modes. This odometry is used for localization of each UAV in their own localization

origin. This origin is referred to as On, where n is the number of the UAV, such as

in a two UAV system, O1 and O2 exists for UAV D1 and D2.

In order to calculate the relative pose of the UAVs in the system, the AR marker

pose estimation is once again utilized. From Figure 6.1, at the back of the UAV, an

AR marker can be seen mounted facing backward. A unique AR marker is used for

each of the UAV in the system. In order to measure the relative pose of each UAV,

the UAVs are commanded to perform a pose calibration process at least once per

operation. Pose calibration is performed at least once after take-off using the AR

marker attached on the UAV directly in front of it. At the beginning, the UAVs are

taken-off manually. The UAVs are then controlled manually to form a column and

hold their position, such that the AR marker of the UAV in front is visible in the

front-facing camera of the UAV behind. Pose of the AR marker of the UAV in front

is acquired by marker pose estimation. The pose obtained is used for the relative

pose calibration of the UAVs by calculating the offset of the localization pose origin

of the UAVs based on the AR marker pose. The following equation is used for the

calculation:

ROn−1→On = RDn RA RT
Dn−1

TOn−1→On = TDn + RDn (TCn −RA (TA + TDn−1))
(6.1)
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Where TDn and RDn is the position and orientation of the drones obtained from the

T265 tracking camera, and Figure 6.4 shows the notation of each coordinate frame.

Figure 6.4: Coordinate frames of each UAV in the calibration process.

In this fashion, the ROn−1→On and TOn−1→On can be used to calculate the current

pose of each UAV in their preceding UAV’s localization frame. This step is carried

out for all the UAVs and at the end, the localization origin of UAV 1 is used as the

tracking reference point of the UAVs, and thus the pose discussed after this is in the

coordinate frame of O1.

6.4 Control method

The control method of this implementation is divided into multiple stages. The first

stage of control is the manual takeoff by the operator. In this case, the operator

needed to control the UAVs are equal to the number of the UAV used, for safety

reasons each individual is responsible for controlling the UAV until they enter the

autonomous flight phase. The UAVs are taken off in Altitude mode. The reason

for taking off in Altitude mode instead of Loiter mode is the safety concern. Since

the tracking camera is facing downward, there is a chance that when the Loiter
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mode is used, the position feedback largely jumps as the UAV lifts off the ground

and the altitude measurement from the tracking camera may be incorrect. In our

experience, the altitude drift during takeoff has been observed at a maximum of 30

meters, meaning that the measurement of the altitude of the UAV is 30 meters below

the actual altitude in the real world. At which point, the UAV would quickly try to

climb 30 meters into the air, causing a safety concern.

After the takeoff, the UAVs are then put into Loiter mode. In Loiter mode, the

UAV uses the position feedback to hold a position and the orientation feedback to

hold the yaw, and the operator uses the transmitter to control the position setpoint in

3-DOF and the yaw setpoint. When the control sticks are centered, the UAV holds its

position even if there is an external force such as wind gusts. In contrast to normal

Altitude Hold mode, which the UAV only holds its altitude and yaw, but not the

planar position. When the control sticks are centered, the UAV holds its attitude at

roll and pitch zero. The UAV can still move if there is an external force acting on it

or if the balance of the UAV causes the thrust in each motor to be unequal and the

thrust pushes the UAV to a direction.

After switching to Loiter mode, the UAVs are controlled manually to as near as

possible to the starting point of the image acquisition position. The UAVs are then

aligned into a column for pose calibration as discussed in the earlier section. After

the alignment, the operator confirms in the screen of the control PC that the AR

marker of the UAVs in front is reflected in the image from the frontal camera of all

UAVs then the operator initiates the pose calibration process. After calibration, all

the UAVs relative pose are known.

After the calibration, UAV 1, the reference UAV is moved to a starting point

for image acquisition by the operator. After reaching the starting point where the

intended area of interest fully reflects in the image of the UAV 1. The operator

then set this position of the UAV 1 as the home position, or the stereo vision origin

position. All the movements of the other UAVs in each configuration are then based

on this position as the origin point. After that, the image acquisition phase starts.

All the UAVs are then put to Guided mode, the UAV holds the position and yaw
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based on the pose feedback like Loiter mode. But in guided mode, the UAV cannot be

controlled by the transmitter. The setpoint, in this case position setpoint, is sent to

the UAV via MAVROS protocol and the UAV would follow the setpoint and hold at

the command setpoint. The setpoint loaded in the control software is executed so the

UAVs would move to the image acquisition positions and hold at that position. The

images are then acquired in the control software and processed in the image processing

node. Furthermore, the images that fit the positional requirement and their respective

raw odometry and their position wr.t. to the home point are published in ROS topics.

To reduce the processing load during the flight which may cause errors and safety

concerns, these data are saved in a ROS bag to be post-processed after the flight.

6.5 Rectification method

The rectification method in this implementation is revised to fit the characteristics of

the system. The rectification methods in the earlier implementation are modified. In

this implementation, instead of rectifying all the images from the other UAVs to be in

the same parallel plane as the camera of UAV 1 at all times, the images are rectified

such that it is parallel with the position and yaw of the home point and the roll and

pitch of the level horizon. The main reason for this change is the change in camera

characteristics in-flight. In this implementation, the front-facing camera used for the

image acquisition is largely affected by the vibration of the UAV such that the image

frame is always vibrating. It is redundant for the images from other UAVs to be

rectified to match the vibration of this camera. Therefore, another given fixed point,

which is the home position, is selected as the reference point of the rectification.

With that in consideration, the rectification matrix can be easily calculated using:

Rrectn = RnROh→On (6.2)

Where ROh→On is the rotation from home pose h to the localization origin On of UAV

n. This can be calculated using the following equation:

ROh→On = ROn−1→On ROn−2→On−1 ... RO1
O2

ROh
O1

(6.3)
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Using the calculated rectification matrix, the images are then rectified to match the

home position. The vibration of all the cameras can be measured from the IMU of the

T265 camera such that most of the vibration is included in the tracking localization

data. The rectification based on the tracking data can mostly compensate for the vi-

bration. In contrast to the earlier implementation, the images obtained from the Tello

are already stabilized such that the vibration from the UAV is already eliminated, so

in the earlier implementation the rectification method is different.

6.6 Stereo matching and point cloud projection

Similar to the previous implementation, the stereo matching algorithm used in this

implementation is Quasi-Dense matching algorithm. Most of the image processing

processes are the same up until the point cloud processing. The main difference in

this implementation is the coordinate system chosen for the point cloud projection.

Point clouds, instead of combining at a reference point on the ground, which does

not exist in this case, the point clouds are rotated and translated such that they are

in the coordinate system of the home position. Alternatively, they can be translated

to O1 if needed, in an ideal case this O1 is the takeoff point of the UAV 1. However,

in reality, as discussed in earlier sections, there is a chance that the odometry of

the UAVs drifts when they take off so the origin is not the takeoff point anymore.

Therefore, the most effective point that the point clouds are translated to is the only

known and confirmable position in the odometry, the home position.

Another change in the image processing part is the baseline fusion algorithm. The

baseline fusion algorithm proposed in section 3.2 is the algorithm that determines the

length of baseline used as well as determining the cutting point for each baseline. In

this implementation, the baseline fusion algorithm is modified such that the baseline

size used are whole numbers. The reason for change is to be able to easily monitor

the movement of the UAV during their operation compared to a decimal number.

Furthermore, the cutting point in this implementation is not limited only to the error

threshold, but also depends on the objects in the scene. Since the scene mapped in
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this implementation is very big, therefore many objects are included in the scene.

If the trimming point for each baseline cuts in the middle of the object of interest,

there is a possibility that a discontinuity may arise in the resultant map for that

specific object. Therefore, the cutting point in this implementation focuses on the

organization to fit each object of interest in the range of one baseline if possible.

6.7 Mapping experiment

In order to verify the usability of the proposed system, the outdoor experiment is car-

ried out to map a large outdoor area using the proposed system. In this experiment,

two prototype UAVs are used. Figure 6.5 shows the time lapse of the movement of

the UAVs in the experiment. The UAVs are taken off manually and controlled to

near the home position. The calibration is carried out mid-air. After the calibration,

the home position is set and the Guided mode for both UAVs are activated.

Figure 6.5: A time lapse of mapping process including (a) UAVs moving to a starting

point manually, (b) pose calibration using AR marker, and (c) stereo images collection

process.

The first UAV holds its position at the home position, the second UAV moves to

each configuration pre-defined. The configuration set points include, 2, 4, 6, 8 and 10
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meters for horizontal setup, and 5, 7, and 10 meters for vertical setup. UAV 2 holds at

each position and collects the images. The images collected and their corresponding

disparity image are shown in Figure 6.6 and Figure 6.7.

Figure 6.6: Disparity images and their image pairs from each corresponding baseline

using horizontal configuration.

Due to the high amount of occlusion and noises in disparity acquired from hori-

zontal setup using 10 m baseline caused by excessive baseline distance, data collected

from the configuration is excluded from the result. The shown disparity images are

filtered in the range of 16 to 256 pixels. From each disparity, the point clouds are

projected.

In order to evaluate the depth estimation accuracy of the algorithm, several points

of interest (POIs) are defined in the area of interest as shown in Figure 6.8. At each

POI, a square of the size of 160×30 pixels is drawn and its z-axis depth is extracted.

Their depth estimations are then statistically evaluated.

Figure 6.9 shows the evaluation result of the POIs. Two parameters are used for

the evaluation. The first parameter is the depth estimation of each pixel in the POI,

and the second parameter is the number of non-null, namely the successfully matched

points, in each sampling area of the POIs from each configuration.
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Figure 6.7: Disparity images and their image pairs from each corresponding baseline

using vertical configuration.

Starting from the POI A, the red colored graph shows the depth estimation of

the building. In horizontal setup, the depth estimation from 2 m and 4 m baseline

are excluded due to the building being below the disparity threshold of 16 pixels due

to the building being too far. The depth estimation of the remaining configurations

can be seen approaching 100 meters, which is corresponding to the ground truth

seen in Figure 6.10 obtained from [52]. The successfully matched area is considered

high, with all exceeding 90%. POI A can be an example of a good match where the

distribution of depth estimation error is narrow and the match percentage is high.

POI B is the green color in the graphs, the depth evaluation of a tree line. The

ground truth distance of the tree line is about 50 meters. The depth estimation of

the POI B can be seen as slightly more varied compared to POI A. The match

rate also varies. This is caused by the non-uniform and the shape of the trees that

are full of dimples and dents. This made the depth estimation more varied and the

successful match rate lower. Another phenomenon in this POI is the match rate

that decreases as the baseline increases. This is caused by excessive baseline. As the
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Figure 6.8: Rectangles denoting depth sampling area of three areas of interest in the

mapping process, POI A (red), POI B (green), and POI C (blue).

baseline gets too large, the match rate reduces. This POI is a good example of the

effects of excessive baseline.

POI C is the blue colored graphs. The match rate is extremely low and varies

and the depth estimation is even more largely distributed. This is caused by the POI

having very low texture. Therefore, depth estimation is extremely difficult. This is

an example of an object with low texture and is difficult to process.

In the statistics of all the POIs, the accuracy of the depth estimation can be

seen approaching the ground truth value when the baseline distance used is not too

wide or too narrow. When the baseline used is too narrow or too wide, the depth

estimation can be seen notably lower or higher than the actual ground truth value.

With this information, the appropriate point cloud from an appropriate baseline can

be estimated for use in the point cloud fusion.

Finally, the point cloud from each baseline and setup are merged together into a

resultant point cloud. The trimming distance is based on the estimated distance of

the POI. For the horizontal setup of baseline 2, 4, 6, and 8 m, the point cloud of each

baseline is trimmed at the distance of 30, 60, 90, and 120 m respectively. For vertical
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Figure 6.9: Depth estimation and their corresponding match percentage of area of

interest POI A (red), POI B (green), and POI C (blue) and their ground truth value

in dashed black line.

distance, point clouds of 5, 7 and 10 m baseline are trimmed at the distance of 40, 80,

and 120 m respectively. The reason for choosing the specific distance is the distance

of POIs. The closest POI is the field, which has the distance of roughly up to 40

m, POI B which has the distance of roughly 50 m, POI C building which has the

distance of roughly 65 m, and the POI A of the distance of roughly 100 m. In this

experiment, the operator tries to use each baseline for each POI, by specifying the

trimming point as shown, the distance of the POIs will fall in the range of different

baselines, and not in between.

The resultant point cloud is shown in Figure 6.11. Though the point cloud rep-

resented using 2D image is difficult to evaluate, the 3D view of point cloud data is

provided in the supplementary video. The evaluation of the resultant point cloud
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Figure 6.10: Ground truth acquired from Google Maps of the area of mapping fitted

with a distance grid.

against the ground truth planar data acquired from Google Maps is shown in Figure

6.12. Colored lines are drawn on the POIs to compare the POIs in ground truth and

the resultant point cloud. Depth estimation is observed to be relatively accurate,

where there are some positional errors due to the imperfection in the rectification

process caused by camera vibration.

6.8 Issues of the system and future work

In the prototype system, one of the most noticeable issues is the communication

issue. In this implementation, the communication device used on the onboard PC is

the WiFi USB device with the 802.11ac 5.0GHz standard, which has the theoretical

speed of 1.3 Gbps. In the testing environment where the onboard PC is next to a
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Figure 6.11: Resultant point cloud seeing from pitch minus 60 degrees (left) and

directly above (right).

Figure 6.12: Ground truth acquired from Google Maps (left) and resultant point

cloud from point cloud fusion (left)

router, the maximum speed obtained from this specific setup is less than 500 Mbps

with neglectable packet loss. On the field during the mapping process, the actual

speed when the UAVs are operating is less than 300 Mbps with high packet loss such

that some data is lost in the communication. Compared to the data being transferred

to the control PC, the largest part of the data bandwidth is the raw image data from

the front-facing camera, which takes up to about 222 Mbps of bandwidth. The rest
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of the communication adds up to less than 5 Mbps. Due to the large bandwidth of

the image data and the packet loss, there are moments where image messages are not

reaching the control PC in a duration of a few seconds. This problem caused the image

display in the control software sometimes unavailable. The future improvement that

will potentially aid this problem is either to reduce the amount of data or the change

to a better hardware capable of more bandwidth. One approach to reduce the amount

of data is to compress the image data into a specific encoding, and the encoding can

greatly reduce the bandwidth needed to transfer image data to an estimate of less

than 10 Mbps. However, this would add an amount of delay to the data transfer

due to the encoding process, and furthermore the image has to be transferred over

a protocol other than ROS such as a media streaming protocol such as Real-Time

Messaging Protocol (RTMP) . Alternatively, the change in hardware is another option

to fix the instability of the communication. However, the alternative hardware for

such bandwidth is not common. A dedicated communication module may be needed.

The second issue is the camera vibration caused by the vibration in the UAV.

In contrast to DJI Tello, the custom made prototype UAV produces much more

vibration due to much higher thrust and much more components attached to the

UAV [53]. In the current implementation, most of the vibration is detectable by the

T265 camera which contains an IMU and a high frequency odometry. Therefore, the

vibration detected by the T265 is used to rectify the images which quite effectively

eliminate most of the major vibration. However, some small vibration still exists in

the image. In order to completely eliminate vibration, in addition to the odometry

data, a software stabilization method can be used for the purpose.

The final future improvement is the use of depth information from the front-facing

depth camera. In the current implementation, the depth information of the D435F is

not used at all. In the future work, the depth information can be used in combination

with a visual inertial SLAM [18] or similar technique to create the map of the near

field objects that’s closer than the range of the proposed system. For example, the

outdoor experiment carried out in this implementation has the minimum range of

around 30 meters as observed in the resultant point cloud. The area closer than
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that can be mapped using SLAM method and the depth camera during the UAV

movement during image acquisition process or after all the images are acquired. The

map created from SLAM can be easily integrated into the resultant point cloud using

the localization information of the UAV doing the mapping’s T265 camera.
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Chapter 7

Conclusion

7.1 Summary

This work proposed a rapid and movement efficient 3D mapping and monitoring

method using flexible configuration stereo vision with multiple UAVs. The proposed

work includes the analysis of using a variable baseline stereo vision system and the

use of horizontal and vertical setup, as well as exploring the merit of inward tilting in

large baseline stereo vision. This work proposed a baseline fusion algorithm which is

effectively used to evaluate the point clouds generated from different baselines, choose

the effective range of each baseline, and combine the depth generated from each

baselines into a high accuracy and low noise resultant map. An algorithm for depth

image fusion of vertical horizontal stereo is proposed, along with the guidelines for

obtaining and rectification of the image pairs specifically for the flexible configuration

stereo vision system. The simulation result has shown an effective use of inward tilting

angle to reduce the occlusion from excessive baseline. Additionally, the simulation

has shown a highly accurate long-range map creation of the range up to 400 meters

with the movement of only 10 meters and the image acquisition and depth processing

time of 1 minutes 46 seconds.

The prototype of the system has been developed in three implementations. The

first implementation as a proof of concept of using the proposed system for ground

robot guidance application. Two DJI Tello UAVs are used in the implementation.
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The tracking system of the first implementation uses two monocular cameras on

gimbals to track the UAVs with AR markers. The system opens the perspective of

the issues and lessons for further developing the proposed system.

The second implementation utilizes the motion capture camera as the tracking

device and the use of UAVs’ odometry in combination with the tracking device for

relative pose tracking, enables the real-time tracking of the UAVs even when they are

out of the field of view of the tracking camera. The second implementation is used for

an outdoor mapping experiment which proves the usability of the system in a small

area of a range up to 60 meters.

The prototype custom made UAVs are developed for the third implementation.

The tracking system is revised to utilize only the inside-out sensors, completely elim-

inating the requirement for a ground tracking station. The tracking method is based

on the odometry of the tracking camera, in combination with calculation of relative

pose using AR marker pose estimation. The larger frame used in this prototype

enables a larger scale outdoor mapping experiment conduction in Ground 1 in the

Ritsumeikan University BKC campus. The outdoor mapping experiment achieved

the depth estimation of a range of up to 100 meters with the movement distance of

20 meters and the total process time of 2 minutes and 30 seconds. The final im-

plementation opens the possibility of increasing the number of UAVs and the use of

more than two UAVs by the implementation of a modular design.

7.2 Discussions and future work

In the future work, in addition to problem solving mentioned in section 6.8, further

use of the flexible configuration stereo vision can be explored. The first possibility

of future work is the estimation of excessive baseline. An algorithm for estimating

the largest baseline that can be used to map an object at a specific distance is one of

the key pieces of information that is unable to be achieved in this work. An attempt

to estimate such information has been made by utilizing the inverse function of the

estimation error equation 2.12 has been unsuccessful. Another approach such as the
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use of neural networks to determine the parameters to calculate for the maximum

baseline distance is envisioned.

The implementation of the baseline fusion algorithm is one of the key achieve-

ments in the proposed work due to its ability to selectively choose the effective part

of the point clouds from different baseline distances. However, the issue of the pro-

posed baseline fusion algorithm is the hard-trimming and discrete fusion property of

the algorithm. Each point cloud is cleanly trimmed at the trimming point and the

point beyond the trimming point is not at all utilized for the resultant point cloud.

Only the selected range is combined into the resultant point cloud which may create

a discontinuity. In order to improve the baseline fusion algorithm, a non-discrete

method that fuses the point cloud, with some degree a utilization of some part of

the previous or the next point cloud. For example, a confidence based method where

each data point or depth range is given a confidence value of how accurate this depth

estimation is. Based on the confidence value, the points are then combined based

on the weight of the confidence value. Although, the missing parameter to imple-

ment the confidence based fusion algorithm is the estimation of the excessive baseline

mentioned previously. The upper bound of the effective depth range can already be

estimated by the proposed baseline fusion algorithm but the lower bound cannot yet

be estimated. The proposed baseline fusion algorithm works on an assumption that

the upper bound of the previous baseline’s effective range is more than or equal to

the practical lower bound of the next baseline.

The final future development is the adaptation of the flexible configuration in a

micro scale. A prototype of a tilting stereo camera is proposed and shown in Figure

7.1. In contrast to normal fixed stereo cameras, a tilting 1-DOF stereo camera is

proposed. The proposed system utilizes the use of inward tilt in order to reduce the

minimum depth estimation distance of small objects. The system can potentially be

used for small objects detection at close distance utilizing the tilting property that

increases the effectiveness of stereo matching of near field objects. The potential

application of the proposed prototype is the use for depth estimation of power lines

or values. At long range, the stereo camera can operate at a normal configuration
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with the two cameras parallel. As the object of interest moves closer to the camera,

at one point the object will be occluded due to excessive baseline. At which point, the

camera tilts inward and the occlusion reduces, such that depth can be estimated. The

advantage of this system is the use of only one camera for depth estimation of both

far distance and close distance without the reduction of depth estimation accuracy.

Furthermore, instead of changing the baseline which needs to translate the camera,

the proposed prototype only needs to rotate the camera on one axis which reduces

the moving part in the system.

Figure 7.1: Prototype tilting mechanism in a small baseline stereo camera.
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