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Abstract

The present thesis consists of four parts. The first part, Chapter 2, is on repre-
senting Brownian martingales. We gave a necessary and sufficient condition for a
Brownian martingale to be expanded to an integration of more simple processes
in a certain setting. This can be new tool to analyze Brownian martingales. The
second part, Chapter 3, is on derivatives of expectations of some kind of affine
processes with respect to the initial value of the process. We showed that the
derivative can be written by the expectations of the process and another affine
process whose parameter is different from the original one. This result is obtained
by solving a certain ordinal differential equation associated with the process. The
third part, Chapter 4, is on stochastic equation of negative integer-indexed process.
We define a new class of such equation, Tanaka–Yor equation, and showed the ex-
istence of its weak solution. This can be applied to justify the “symmetrization”
of stochastic differential equation (SDE) with C2-class boundary. The fourth part,
Chapter 5, is on periods of quantum walks on cycle graphs and relation between
absolute zeta functions and them. We focused on Hadamard walks and Grover
walks with 3 states on cycle graphs. We gave a unified proof for their periods.
This method can be applied to other cases. Moreover, we calculated absolute zeta
functions of zeta functions of them explicitly when the walk has finite period.
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Chapter 1

Introduction

First of all, we use the following notations throughout this thesis: (Ω,F , P ) is a
fixed probability space equipped with standard Brownian motion W . Depending
on the section, it may be 1-dimensional or may be multidimensional.

1.1 On a certain martingale representation and

the related infinite dimensional moment prob-

lem

On this topic, W is considered to be 1-dimensional. Let FW = (FW
t )t∈[0,1] be the

filtration generated by W . That is,

FW
t := σ(Ws; 0 ≤ s ≤ t), t ∈ [0, 1].

Furthermore, letM2
1 be defined as

M2
1 := {(Xt)t∈[0,1] | X0 = 1, Xt is in L

2 for all t ∈ [0, 1], and X is FW -martingale}.

In this case, for g ∈ L2[0, 1], we can say that

Sg
t := exp

(∫ t

0

g(s) dWs −
1

2

∫ t

0

g2(s) ds

)
is a typical element of M2

1. In this thesis, we refer to such a martingale as the
exponential martingale with respect to g.

The celebrated Itô’s martingale representation theorem states that for every
X ∈M2

1 there exists an FW -adapted process f with ∥f∥L2[0,1]×Ω) <∞ such that

Xt = 1 +

∫ t

0

f(s) dWs, t ∈ [0, 1].

The proof of the martingale representation theorem often uses the fact that the
set {Sg | g ∈ L2[0, 1]} is total inM2

1 (see e.g. [1]); for a given X ∈M2
1 and ε > 0,
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we can choose g1, · · · , gn and c1, · · · , cn ∈ R such that∥∥∥X − n∑
i=1

ciS
gi

∥∥∥
L2(Ω×[0,1])

< ε

Now, the question arises whether it is possible to express any element ofM2
1

as an equality using an infinite number of exponential martingales with respect to
g, and when such expression is possible. Precisely, the problem setting could be
given as follows:

For an element X ofM2
1, find a necessary and sufficient condition for the exis-

tence of a probability space (Θ,G, Q) and a family of L2[0, 1]-functions (g(·, θ))θ∈Θ
such that the following equation hold:

Xt =

∫
Θ

S
g(·,θ)
t Q(dθ), t ∈ [0, 1]. (1.1)

This thesis partially answers to this question using results from an infinite-
dimensional version of the so-called moment problem.

Now, let us briefly review the history of the moment problem. The most
classical moment problem is the one concerning measures on the real line, which
was proposed by Stieltjes in 1894–1895: For a given sequence of real numbers
(µi)

∞
i=0, find an necessary and sufficient condition for the existence of a Borel

measure λ such that for all i, ∫ ∞

0

xiλ(dx) = µi.

This problem was posed and simultaneously answered by Stieltjes [2, 3].
The case where we replace [0,∞) with (−∞,∞) is known as Hamburger’s mo-

ment problem, and the case where we replace it with [0, 1] is known as Hausdorff’s
moment problem. These problems were solved by Hamburger and Hausdorff, re-
spectively [4, 5, 6]. Then, in 1935–1936, Haviland considered the problem in a
multidimensional setting and gave a necessary and sufficient condition that can
be applied for the problem in which the support of the measure is restricted to
any closed set [7, 8]. Especially, this is a representation that can also describe the
solution of the three aforementioned problems in a unified manner.

The above history is described, for example, in the book [9].
Subsequently, in 2015, the problem was extended to countably infinite dimen-

sions by Alpay et al. [10]. The result is that Haviland’s conditions can be directly
applied to the countably infinite dimensional case. This will be discussed in detail
in Section 2.1, where we also explain the necessary details, including ω-dimensional
moment problems, for the proof of our results. In Section 2.2, we present the main
result and its proof, which is based on the results by Alpay et al. In Section 2.3, we
provide some illustrative examples. Here, ω represents the smallest limit ordinal,
not an element of the sample space.

This chapter is based on the author’s paper [11].
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1.2 Derivatives of expectations of diffusion affine

processes

Affine process is a class of continuous-time stochastic processes. This is an impor-
tant class and includes the Cox–Ingersoll–Ross (CIR) model, which is a cerebrated
model of interest rate. In this thesis, we derived some formulas concerning such
processes. For example, for a certain type of affine processes whose initial value is
x Xx, t > 0, and a function f : [0,∞) → R with suitable integrability, we repre-
sent ∂xE[f(X

x
t )] by E[f(X

x
t )] and the expectation of another affine process whose

parameter is different from that of the original process.
Here, “the derivative of an expectation of stochastic process with respect to its

initial value” is called delta in mathematical finance, and it plays an important
role in both theory and practice. In such area, our formulas could help to speed
up numerical computations. (Although this is not discussed in this thesis.)

Furthermore, although our results are mainly for 1-dimensional processes, we
introduce an extension for a very simple multidimensional case.

1.3 Tanaka–Yor equation

Let Z≤0 be the set of all nonpositive integers. This study is on an equation of
stochastic process indexed by Z≤0. In 1975, Tsirelson introduced a special case of
such processes to show that an example of SDE which has no strong solution [12].
Then, Yor generalized this equation and classify them by existence and uniqueness
of its solution [13]. Moreover, Akahori et al. generalized this equation more and
showed that it can be classified in the same way in the generalized setting [14].
We studied a modified version of the equation in [14] motivated to prove the law-
uniqueness of a type of SDE. This is related to a problem in mathematical finance
area, and the connection is explained in subsubsection 4.1.1.

1.4 Absolute zeta functions and periodicity of

quantum walks on cycles

This subsection is partly taken from a previous research paper [15] by Konno.
This work is a continuation of [15, 16]. Quantum walks are considered to be

the corresponding model for random walks in quantum systems. Quantum walks
play important roles in various fields such as mathematics, quantum physics, and
quantum information processing. Concerning Quantum walks, see [17, 18, 19, 20,
21], and as for RW, see [22, 23], for instance. On the other hand, absolute zeta
functions are zeta functions over F1, where F1 can be viewed as a kind of limit of Fp

as p → 1. Here Fp = Z/pZ stands for the field of p elements for a prime number
p. This thesis presents a connection between quantum walks and absolute zeta
functions. Concerning absolute zeta functions, see [24, 25, 26, 27, 28, 29, 30, 31].
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In this thesis, first we deal with periods of quantum walks on cycles, especially
Hadamard walks and Grover walks with 3 state, which are well-studied models
among quantum walks. Afterwards, we consider a zeta function ζUG

(u) determined
by UG which is a time evolution matrix of such a quantum walk on G, where G.
Then we prove that ζUG

(u) is an absolute automorphic form of weight −2m. Also,
we consider an absolute zeta function ζζUG

(s) for our zeta function ζUG
(u). As an

example, we calculate ζζUG
(s) for the cycle graph Cn with n vertices and n edges,

and show that it is expressed as the multiple gamma function of order 2 via the
multiple Hurwitz zeta function of order 2. Finally, we obtained the functional
equation for ζζUCn

(s) with the multiple sine function of order 2. The present thesis

is the first step of the study on a relation between quantum walks and absolute
zeta functions.
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Chapter 2

On a certain martingale
representation and the related
infinite dimensional moment
problem

2.1 Preliminaries

Consider countably many indeterminate X0, X1, . . . . We call a product of a real
number and these indeterminates

c
N∏
k=0

Xmk
k (c ∈ R, N ∈ Z≥0,mk ∈ Z≥0, k = 0, . . . , N)

an ω-variate monomial. Furthermore, we call a sum of finitely many ω-variate
monomials an ω-variate polynomial. Here, ω represents the smallest limit ordinal,
not an element of the sample space.

Let (µi ∈ R | i : ω → Z≥0,
∑

i(j) < ∞) be a family of real numbers. Here,
we call such i an index and define len i := max{k ∈ Z≥0 | i(k) ̸= 0} < ∞ for
i ̸= (0, 0, . . . ) and len (0, 0, . . . ) := −1. For such a family, we can consider a
mapping µ whose domain is all ω-variate polynomials. Firstly, define the value for
ω-variate monomials by the following:

µ

(
c

N∏
k=0

Xmk
k

)
:= cµ(m0,m1,...,mN ,0,0,... )

and then the domain is extended to the entire ω-variate polynomials so that the
mapping is additive.

Next, we define the property K-positivity for such a family. Let K be a subset
of Rω, the whole of real sequences. We call such a family of numbers is K-positive
if µ(p) ≥ 0 as long as ω-variate polynomial p satisfies for all θ ∈ K, p(θ) ≥ 0.

11



Theorem 2.1 (ω-dimensional moment problem [10]). Let K ⊂ Rω be closed and
(µi ∈ R | i : ω → Z≥0,

∑
i(j) < ∞) be a given family of real numbers so that

µ(0,0,... ) = 1. There exists a Borel measure λ on Rω such that, for all i,

∫
Rω

len i∏
j=0

x
i(j)
j λ(dx) = µi

holds and supp(λ) ⊂ K is satisfied if and only if the family is K-positive.

2.2 Main theorem

To state the main theorem, we explain its settings in order.
First of all, we use λ instead of Q for the measure we seek just for visual

convenience.
For each natural number n, let ∆n := {(s1, . . . , sn) ∈ [0, 1]n | s1 ≤ · · · ≤ sn}.

For simplicity, we consider only a measure λ which satisfies

λ

({
θ ∈ Rω

∣∣∣∣∣
∞∑
j=0

θ2j =∞

})
= 0.

Consider a one-dimensional L2-martingale X. We can find a sequence of functions
(fn) for X, fn : ∆n → R for each n, such that

Xt = 1 +
∞∑
n=1

∫ t

0

· · ·
∫ sn−1

0

fn(s1, . . . , sn) dWsn · · · dWs1 , t ∈ [0, 1]

(see e.g. [1]). This kind of expression is what is known as chaos expansion.
Moreover, the process Sg for g ∈ L2[0, 1], which is defined in section 1 can be
expressed as bellow:

Sg
t = 1 +

∞∑
n=1

∫ t

0

· · ·
∫ s2

0

g(s1) · · · g(sn)dWs1 · · · dWsn , t ∈ [0, 1].

Now, let (ej)j∈Z≥0
be a Complete Orthonormal System (CONS) of L2[0, 1]. Then

((s1, . . . , sn) 7→ ej(1)(s1) . . . ej(n)(sn) | j : {1, . . . , n} → Z≥0) is a CONS of L2([0, 1]n)
for each n. To expand fn with respect to this CONS, we extend the domain of
fn to [0, 1]n by symmetric way. Then the extended function f̂n is expanded into a
sum:

f̂n(s1, . . . , sn) =
∑

j : {1,...,n}→Z≥0

fj ej(1)(s1) · · · ej(n)(sn).

Here, thanks to the symmetry, fj = fj◦σ for all σ ∈ Sn (symmetric group of degree
n).
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Take Rω as Θ and assume that the form of g is

g(s, θ) =
∞∑
j=0

θjej(s).

Then it holds that∫
Θ

∫ t

0

· · ·
∫ sn−1

0

g(s1, θ) . . . g(sn, θ) dWsn · · · dWs1λ(dθ)

=

∫
Θ

∫ t

0

· · ·
∫ sn−1

0

∞∑
j=0

θjej(s1) · · ·
∞∑
j=0

θjej(sn) dWsn · · · dWs1λ(dθ)

=

∫
Θ

∫ t

0

· · ·
∫ sn−1

0

∑
j : {1,...,n}→Z≥0

θj(1) · · · θj(n)ej(1)(s1) · · · ej(n)(sn) dWsn · · · dWs1λ(dθ)

=

∫ t

0

· · ·
∫ sn−1

0

∑
j : {1,...,n}→Z≥0

∫
Θ

θj(1) · · · θj(n)λ(dθ) ej(1)(s1) · · · ej(n)(sn) dWsn · · · dWs1 .

Now, in Theorem 2.1, take fj as µn(j) and we get a measure λ which satisfies

∫
Θ

θj(1) · · · θj(n)λ(dθ) =
∫
Θ

lenn(j)∏
k=0

θ
n(j)(k)
k λ(dθ) = µn(j) = fj .

Thus, we got necessary and sufficient condition for the moment problem for
the Wiener spaces in the case Θ = Rω and g(s, θ) =

∑
θjej(s) for some CONS of

L2[0, 1] (ej)j.

Theorem 2.2. Let (Xt)t∈[0,1] be a square integrable martingale with X0 = 1 and
(ej)

∞
j=1 be a CONS of L2[0, 1]. Then the necessary and sufficient condition to exist

a Borel measure λ on Rω which satisfies

λ

({
θ ∈ Rω

∣∣∣∣∣
∞∑
j=0

θ2j =∞

})
= 0

such that

Xt =

∫
Rω

S
g(·,θ)
t λ(dθ), t ∈ [0, 1],

where g(s, θ) =
∑∞

j=0 θjej(s) is that the map µ defined as above is Rω-positive.

2.3 Example

Example 2.3. If the number of terms in the chaos expansion is finite except 0 and
1, then there is no λ as stated in Theorem 2.2.
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Proof. Suppose there exists a measure λ as described in Theorem 2.2 for X with
a finite number of chaos expansion terms. We aim to show that in such a case, λ
would be equal to δ(0,0,... ) (where δa denotes the Dirac measure with mass at a).

Firstly, if the number of chaos expansion terms of X is finite, then there exists
a sufficiently large N such that f2N ≡ 0. Consequently, all coefficients obtained
from the expansion, such as f(0,0,...,0) (with 0 appearing 2N times), f(1,1,...,1) (with
1 appearing 2N times), and so on, are all equal to zero. Therefore, the desired
measure λ must satisfy ∫

Rω

θ2Nj λ(dθ) = 0

for all j ∈ Z≥0.
Now, let us assume λ ̸= δ(0,0,... ) and seek a contradiction. First, we divide Rω

into subsets as follows:{ ∞∏
j=0

[aj/2
n, (aj + 1)/2n] | aj ∈ Z, j ∈ Z≥0

}
If λ ̸= δ(0,0,... ), then for at least one

∏∞
j=0[aj/2

n, (aj + 1)/2n], the measure of∏∞
j=0[aj/2

n, (aj +1)/2n]\{(0, 0, . . . )} should not be zero. Let us denote this set as
A. Furthermore, by choosing a sufficiently large n, we can ensure that A does not
contain (0, 0, . . . ). Also, for each j, of aj/2

n and (aj + 1)/2n of A, let mj be the
one whose absolute value is smaller. Then, with such a choice of A, at least one
mj must be nonzero. Let B(A) denote the collection of all Borel sets contained in
A, and define m := (m0,m1, . . . ).

Now, consider the measure

λ′ := λ− λ(A)λ↾B(A) +λ(A)δm

For j′ such that mj′ ̸= 0, we have∫
Rω

θ2Nj′ λ(dθ) ≥
∫
Rω

θ2Nj′ λ
′(dθ) ≥ λ(A)m2N

j′ > 0

and this leads to a contradiction.

14



Chapter 3

Derivatives of expectations of
diffusion affine processes

3.1 Preliminaries and previous results

First of all, the Bessel processes of dimension n is a 1-dimensional process of
distance between the origin and an n-dimensional Brownian motion. Formally,
the process can be defined as follows:

R :=

√√√√ n∑
k=1

(B(k))2

where B = (B(1), . . . , B(n)) is an n-dimensional Brownian motion. Then, R2 sat-
isfies the following SDE:

d(R2
t ) = 2Rt dWt + n dt,

Where dWt := (1/Rt)
∑n

k=1B
(k) dB(k) is a 1-dimensional Brownian motion. In-

spired this equation, consider the following SDE for real parameter δ ≥ 0:

dXt = 2
√
|Xt| dWt + δ dt. (3.1)

By a well-known theorem, it is easily seen that this SDE has unique strong solution
for each initial value x ∈ [0,∞) and the solution satisfies X ≥ 0 a.s. Thus,
hereafter we write

dXt = 2
√
Xt dWt + δ dt

instead of (3.1). This solution is called the squared Bessel process of dimension δ
and we write Xδ,x for such a process with initial value x.

Then, we obtained the following formulas on the derivative of its expectation
with respect to the initial value and a kind of integration by parts. Before to state
the results, we introduce a condition for decreasing property of functions.

15



Condition 3.1. For t > 0 and measurable f : [0,∞) → R, we write “f satisfies
DC(t)” if there exist positive real numbers M and C and ε ∈ (0, 1/(2t)) such that
if y > M , then |f(y)| < Ceεy.

Remark 3.2. If f satisfies DC(t), f(Xδ,x
t ) is integrable for any δ > 0 and x > 0.

This can be checked easily by considering the explicit form of the transition density
of Xδ,x

t .

Theorem 3.3. Let δ > 0 and t > 0. For a continuous function f , suppose f
satisfies DC(t). Then the following formula holds:

∂xE
[
f(Xδ,x

t )] =
1

2t

(
E
[
f(Xδ+2,x

t )
]
− E

[
f(Xδ,x

t )
])
.

Theorem 3.4. Let δ > 2, x ≥ 0, and t > 0. For f ∈ C1, suppose f and f ′ satisfy
DC(t). Then the following formula holds:

E
[
f ′(Xδ,x

t )] =
1

2t

(
E
[
f(Xδ,x

t )
]
− E

[
f(Xδ−2,x

t )
])
.

Furthermore, combining these two formulas, we got the following interesting
corollary.

Corollary 3.5. Let δ > 0 and t > 0. For f ∈ C1, suppose f and f ′ satisfy DC(t).
Then the following formula holds:

∂xE
[
f(Xδ,x

t )] = E
[
f ′(Xδ+2,x

t )].

Note that Altman obtained a formula similar to the one in Theorem 3.3 in 2018
[33].

Here, squared Bessel processes can be considered as a special kind of affine
processes. It can be defined as follows:

Definition 3.6. A d-dimensional Markov process (X, (Px)x) is called affine, if for
evry t > 0, the characteristic function Ex[exp(i⟨·, Xt⟩)] : Rd → C has exponential-
affine dependence on x. That is, there exist functions g, h : [0,∞)×Rd → C such
that Ex[exp(i⟨·, Xt⟩)] has the following form:

Ex[exp(i⟨θ,Xt⟩)] = exp(g(t, θ) + xh(t, θ)).

Here, ⟨θ, x⟩ :=
∑d

k=1 θkxk.

Note that this definition can be more generalized. See [34] for example.
Now, for parameters α > 0 and β, b ∈ R, consider the following 1-dimensional

SDE:
Xx

t =
√
α|Xx

t | dWt + (βXx
t + b)dt, Xx

0 = x (3.2)

This has unique strong solution for each x > 0 and by the same argument as in
the case of squared Bessel process, the solution is nonnegative almost surely. So
we write

Xx
t =

√
αXx

t dWt + (βXx
t + b)dt, Xx

0 = x (3.3)
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instead of (3.2). It is known that the family (Xx)x is affine process (See e.g. [34]).
Thus we call the solutions of SDE (3.3) diffusion affine process with parameter
(α, β, b). Also, this is an extension of squared Bessel processes, that is, squared
Bessel process of dimension δ is the diffusion affine process with parameter (4, 0, δ).
In the following sections, we extend the formulas such as in Theorem 3.3 and so
on for diffusion affine processes.

3.2 Derivatives of expectations of diffusion affine

processes

In this section, we consider 1-dimensional diffusion affine processes. It is known
that the function h in the characteristic function exp(g(t, θ) + xh(t, θ)) correspond-
ing to the SDE (3.3) satisfies the following ordinary differential equation (See [34]
for example):

∂th(t, θ) = αh(t, θ)2 + βh(t, θ), h(0, θ) = iθ, (3.4)

and g is given by the integral of h:

g(t, θ) =

∫ t

0

bh(s, θ) ds.

In this case, we can solve the differential equation (3.4) explicitly, and the solution
is

h(t, θ) =
2iθ

2− αiθt
for β = 0 and

h(t, θ) =
2βeβtiθ

2β − (eβt − 1)αiθ

for β ̸= 0. Moreover,

g(t, θ) =
2b

α
Log

2

2− αiθt
for β = 0 and

g(t, θ) =
2b

α
Log

2β

2β − (eβt − 1)αiθ

for β ̸= 0.
Now, our first theorem is on the derivative of E[f(Xx

t )] with respect to the
initial value x.

Theorem 3.7. Suppose 2b > α. Let t > 0 be a fixed real number and let Xx

and X̃x be diffusion affine processes with parameters (α, β, b) and (α, β, b + α/2)
respectively, and their initial values are x > 0. Then, for f ∈ L1[0,∞) such that
f(Xx

t ) and f(X̃
x
t ) are integrable, it holds that

∂xE[f(X
x
t )] =


2

αt

(
E[f(X̃x

t )]− E[f(Xx
t )]

)
, β = 0,

2βeβt

α(eβt − 1)

(
E[f(X̃x

t )]− E[f(Xx
t )]

)
, β ̸= 0.
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Proof. First, consider the case where β = 0. We will use Lévy’s inversion formula,
so we check the integrability of the characteristic functions. Now φx,t and φ̃x,t

denote the characteristic functions of Xx
t and X̃x

t respectively. Then we have the
following inequality:

|φx,t(θ)| = | exp(g(t, θ) + xh(t, θ))|

=

∣∣∣∣exp(2b

α
Log

2

2− αiθt
+ x

2iθ

2− αiθt

)∣∣∣∣
≤

(
2

|2− αiθt|

)2b/α

exp

(
2|θ|x
|2− αiθt|

)
=

(
2√

4 + (αtθ)2

)2b/α

exp

(
2|θ|x√

4 + (αtθ)2

)
≤ 22b/α

(αt|θ|)2b/α
exp

(
2x

αt

)
In addition to this, the integral of |φx,t| on any compact subset is finite since |φx,t|
isR-valued continuous function. Therefore, if the parameter (α, b) satisfies 2b > α,
we have

∫
R
|φx,t(θ)|dθ <∞. Now, we are assuming 2b > α and (α, b+α/2) satisfies

2(b + α/2) > α since b, which is grater than α/2, is positive. Thus φx,t and φ̃x,t

are both integrable, and by Lévy’s inversion formula, Xx
t and X̃x

t has continuous
density function qx,t and q̃x,t (say). Now, we can start calculation. One hand,
for the left hand side of the formula, rewrite the expectation using the densitiy
function:

∂xE[f(X
x
t )] = ∂x

∫
R

f(y)qx,t(y) dy

= ∂x

∫
R

f(y)

(
1

2π

∫
R

φx,t(θ)e
−iθy dθ

)
dy.

Here, we can focus on the differential coefficient at x = ξ. In this case, we have∣∣∣∣f(y)( 1

2π

∫
R

φx,t(θ)e
−iθy dθ

)∣∣∣∣ ≤ 1

2π
|f(y)|

∫
R

22b/α

(αtθ)2b/α
dθ exp

(
2

αt
(ξ + 1)

)
on a certain neighborhood of ξ and f is integrable, we can interchange the deriva-
tive and the integral. Then we can continue to calculate as follows:

∂x

∫
R

f(y)

(
1

2π

∫
R

φx,t(θ)e
−iθy dθ

)
dy =

1

2π

∫
R

f(y)

(
∂x

∫
R

φx,t(θ)e
−iθy dθ

)
dy

Again, we know

|φx,t(θ)e
−iθy| ≤ 22b/α

(αtθ)2b/α
exp

(
2

αt
(ξ + 1)

)
18



and we can interchange the derivative and the integral. Therefore, we have

1

2π

∫
R

f(y)

(
∂x

∫
R

φx,t(θ)e
−iθy dθ

)
dy

=
1

2π

∫
R

f(y)

(∫
R

∂xφx,t(θ)e
−iθy dθ

)
dy

=
1

2π

∫
R

f(y)

∫
R

∂x exp(g(t, θ) + xh(t, θ))e−iθy dθdy

=
1

2π

∫
R

f(y)

∫
R

h(t, θ) exp(g(t, θ) + xh(t, θ))e−iθy dθdy.

On the other hand, we can calculate the right hand side of the formula as follows:

E[f(X̃x
t )]− E[f(Xx

t )] =

∫
R

f(y)q̃x,t(y) dy −
∫
R

f(y)qx,t(y) dy

=

∫
R

f(y)

(
1

2π

∫
R

φ̃x,t(θ)e
−iθy dθ

)
dy −

∫
R

f(y)

(
1

2π

∫
R

φx,t(θ)

)
e−iθy dθdy

=
1

2π

∫
R

f(y)

∫
R

(φ̃x,t(θ)− φx,t(θ))e
−iθy dθdy

=
1

2π

∫
R

f(y)

∫
R

(exp
(
g̃(t, θ) + xh̃(t, θ)

)
− exp(g(t, θ) + xh(t, θ)))e−iθy dθdy

Thus, our aim is to show the following identity:

h(t, θ) exp(g(t, θ) + xh(t, θ)) =
2

αt
(exp

(
g̃(t, θ) + xh̃(t, θ)

)
−exp(g(t, θ) + xh(t, θ))).

(⋆)
Now, since we have the explicit form of g and h, we know the left hand side is
equal to

2iθ

2− αiθt

(
2

2− αiθt

)2b/α

exp

(
x

2iθ

2− αiθt

)
,

and the right hand side can be deform as follows:

2

αt
(exp

(
g̃(t, θ) + xh̃(t, θ)

)
− exp(g(t, θ) + xh(t, θ)))

=
2

αt

[(
2

2− αiθt

)2(b+α/2)/α

exp

(
x

2iθ

2− αiθt

)
−
(

2

2− αiθt

)2b/α

exp

(
x

2iθ

2− αiθt

)]
=

2

αt

[(
2

2− αiθt

)2(b+α/2)/α

−
(

2

2− αiθt

)2b/α]
exp

(
x

2iθ

2− αiθt

)
.
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Also, we see that(
2

2− αiθt

)2(b+α/2)/α

−
(

2

2− αiθt

)2b/α

=

(
2

2− αiθt

)2b/α+1

−
(

2

2− αiθt

)2b/α

=

(
2

2− αiθt

)2b/α(
2

2− αiθt
− 1

)
=

(
2

2− αiθt

)2b/α
αiθt

2− αiθt
Combining these calculation, we have the desired identity (⋆).

For the case where β ̸= 0, we can show that the formula holds by similar way,
so we only check the different points. First, the integrability of φx,t can be checked
as follows:

|φx,t(θ)| = | exp(g(t, θ) + xh(t, θ))|

=

∣∣∣∣exp(2b

α
Log

2β

2β − (eβt − 1)αiθ
+ x

2βeβtiθ

2β − (eβt − 1)αiθ

)∣∣∣∣
≤

(
2β

|2β − (eβt − 1)αiθ|

)2b/α

exp

(
2βeβt|θ|x

|2β − (eβt − 1)αiθ|

)
=

(
2√

4β2 + ((eβt − 1)αθ)2

)2b/α

exp

(
2βeβt|θ|x√

4β2 + ((eβt − 1)αθ)2

)
≤ 22b/α

(|eβt − 1|α|θ|)2b/α
exp

(
2x

|eβt − 1|α

)
.

Therefore, also in this case, |φx,t| and |φ̃x,t| are integrable on R. Moreover, what
we have to check is that the following identity holds:(

2β

2β − (eβt − 1)αiθ

)2(b+α/2)/α

−
(

2β

2β − (eβt − 1)αiθ

)2b/α

=
α(eβt − 1)

2βeβt
2βeβtiθ

2β − (eβt − 1)αiθ

(
2β

2β − (eβt − 1)αiθ

)2b/α

.

This can be checked as follows:(
2β

2β − (eβt − 1)αiθ

)2(b+α/2)/α

−
(

2β

2β − (eβt − 1)αiθ

)2b/α

=

(
2β

2β − (eβt − 1)αiθ

)2b/α+1

−
(

2β

2β − (eβt − 1)αiθ

)2b/α

=

(
2β

2β − (eβt − 1)αiθ

)2b/α(
2β

2β − (eβt − 1)αiθ
− 1

)
=

(
2β

2β − (eβt − 1)αiθ

)2b/α
(eβt − 1)αiθ

2β − (eβt − 1)αiθ
.

This completes all of the proof.
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Moreover, corresponding to Theorem 3.4 can also be obtained.

Theorem 3.8. Suppose b > α. Let t > 0 be a fixed real number and let Xx

and X̃x be diffusion affine processes with parameters (α, β, b) and (α, β, b − α/2)
respectively, and their initial values are x > 0. Then, for f ∈ C1[0,∞) such that
f and f ′ are in L1[0,∞) and f ′(Xx

t ), f(X
x
t ), and f(X̃

x
t ) are integrable, it holds

that

E[f ′(Xx
t )] =


2

αt

(
E[f(Xx

t )]− E[f(X̃x
t )]

)
, β = 0,

2β

α(eβt − 1)

(
E[f(Xx

t )]− E[f(X̃x
t )]

)
, β ̸= 0.

Proof. We checked integrability of some functions, so we can interchange the order
of integration in the following deformation. Also, we use the following property of
Fourier transform: ∫

R

f ′(y)e−iθydy = iθ

∫
R

f(y)e−iθydy.

E[f ′(Xt)] =

∫
R

f ′(y)qx,t(y) dy

=

∫
R

f ′(y)
1

2π

(∫
R

φx,t(θ)e
−iθy dθ

)
dy

=
1

2π

∫
R

f ′(y)

∫
R

exp(g(t, θ) + xh(t, θ))e−iθy dθdy

=
1

2π

∫
R

∫
R

f ′(y)e−iθy dy exp(g(t, θ) + xh(t, θ)) dθ

=
1

2π

∫
R

iθ

∫
R

f(y)e−iθy dy exp(g(t, θ) + xh(t, θ)) dθ

=
1

2π

∫
R

f(y)

∫
R

iθ exp(g(t, θ) + xh(t, θ))e−iθy dθdy

In addition to this, we have already obtained the following identity:

E[f(Xx
t )]− E[f(X̃x

t )]

=
1

2π

∫
R

f(y)

∫
R

(exp(g(t, θ) + xh(t, θ))− exp
(
g̃(t, θ) + xh̃(t, θ)

)
)e−iθy dθdy

Note that the parameters should satisfy the conditon 2(b− α/2)/α > 1. However
this is equivalent to b > α, so this condition holds under our assumption. Then,
combining the above two deformation, the remainder we have to show is that the
following identities hold:

iθ exp(g(t, θ) + xh(t, θ)) =
2

αt
(exp(g(t, θ) + xh(t, θ))− exp

(
g̃(t, θ) + xh̃(t, θ)

)
)
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for β = 0, and

iθ exp(g(t, θ) + xh(t, θ)) =
2β

α(eβt − 1)
(exp(g(t, θ) + xh(t, θ))−exp

(
g̃(t, θ) + xh̃(t, θ)

)
)

for β ̸= 0.
Moreover, since h̃ is equal to h in our assumption, the identities we have to

derive is the following:

iθ exp(g(t, θ)) =
2

αt
(exp(g(t, θ))− exp(g̃(t, θ)))

for β = 0, and

iθ exp(g(t, θ)) =
2β

α(eβt − 1)
(exp(g(t, θ))− exp(g̃(t, θ)))

For the case where β = 0, we have the following deformation:

exp(g(t, θ))− exp(g̃(t, θ)) =

(
2

2− αiθt

)2b/α

−
(

2

2− αiθt

)2(b−α/2)/α

=

(
2

2− αiθt

)2b/α

−
(

2

2− αiθt

)2b/α−1

=

(
2

2− αiθt

)2b/α(
1−

(
2

2− αiθt

)−1)
=

(
2

2− αiθt

)2b/α(
1− 2− αiθt

2

)
=

(
2

2− αiθt

)2b/α
αiθt

2
.

For the case where β = 0, we have the following deformation:

exp(g(t, θ))− exp(g̃(t, θ)) =

(
2β

2β − (eβt − 1)αiθ

)2b/α

−
(

2β

2β − (eβt − 1)αiθ

)2(b−α/2)/α

=

(
2β

2β − (eβt − 1)αiθ

)2b/α

−
(

2β

2β − (eβt − 1)αiθ

)2b/α−1

=

(
2β

2β − (eβt − 1)αiθ

)2b/α(
1−

(
2β

2β − (eβt − 1)αiθ

)−1)
=

(
2β

2β − (eβt − 1)αiθ

)2b/α(
1− 2β − (eβt − 1)αiθ

2β

)
=

(
2β

2β − (eβt − 1)αiθ

)2b/α
(eβt − 1)αiθ

2β
.

This completes all of the proof.
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Also, combining these two theorems, we have corresponding to Corollary 3.5.

Corollary 3.9. Suppose 2b > α. Let t > 0 be a fixed real number and let Xx

and X̃x be diffusion affine processes with parameters (α, β, b) and (α, β, b + α/2)
respectively, and their initial values are x > 0. Then, for f ∈ C1[0,∞) such that
f and f ′ are in L1[0,∞) and f ′(X̃x

t ), f(X
x
t ), and f(X̃

x
t ) are integrable, it holds

that

∂xE[f(X
x
t )] = eβtE[f ′(X̃x

t )].

Proof. Apply Theorem 3.3 directly, and Theorem 3.4 for processes with param-
eters (α, β, b + α/2) and (α, β, b). Here, we have to check the condition for the
parameters, 2(b + α/2) > α, but this is equivalent to 2b > α and this is exactly
our current assumption.

Remark 3.10. The class Diffusion affine process contains CIR model, which is a
cereblated model of interest rate. The model is given by the following SDE:

drt = k(θ − rt) dt+ σ
√
rt dWt.

Here, k, θ ≥ 0, and σ > 0 are parameters, which correspond to the speed of
adjustment to the mean, the mean, and the volatility. In view of its importance
in application, we rewrite the above results using the symbols of the CIR model.

Corollary 3.11. Suppose 2kθ > σ2. Let t > 0 be a fixed real number and let r
and r̃ be CIR processes whose parameters are (σ2,−k, θ) and (σ2,−k, θ+σ2/(2k))
respectively, and their initial values are the same positive number. Then, for f ∈
L1[0,∞) such that f(rt) and f(r̃t) are integrable, it holds that

∂r0E[f(rt)] =
−2ke−kt

σ2(e−kt − 1)

(
E[f(r̃t)]− E[f(rt)]

)
.

Corollary 3.12. Suppose kθ > σ2. Let t > 0 be a fixed real number and let r and
r̃ be CIR whose parameters are (σ2,−k, θ) and (σ2,−k, kθ−σ2/(2k)) respectively,
and their initial values are the same positive number. Then, for f ∈ C1[0,∞) such
that f and f ′ are in L1[0,∞) and f ′(rt), f(rt), and f(r̃t) are integrable, it holds
that

E[f ′(rt)] =
−2ke−kt

σ2(e−kt − 1)

(
E[f(rt)]− E[f(r̃t)]

)
.

Corollary 3.13. Suppose 2kθ > σ2. Let t > 0 be a fixed real number and let r
and r̃ be CIR processes whose parameters are (σ2,−k, θ) and (σ2,−k, θ+σ2/(2k))
respectively, and their initial values are the same positive number. Then, for
f ∈ C1[0,∞) such that f and f ′ are in L1[0,∞) and f ′(r̃t), f(rt), and f(r̃t)
are integrable, it holds that

∂xE[f(rt)] = e−ktE[f ′(r̃t)].
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3.3 An extension to very easy multidimensional

case

Consider the following d-dimensional SDE:

dXx
t = α(Xx

t )dWt + (βXx
t + b)dt, Xx

0 = x,

where W is a d-dimensional standard Brownian motion and α : Rd → Rd ×Rd is
defined by

α((xk)k=1,...,d)i,j = δi,j
√
αi|xi|, 1 ≤ i, j ≤ d, (∗)

with αi > 0, i = 1, . . . , d, β is a diagonal matrix of order d, and b = (bi)i=1,...,d ∈ Rd.
Also, we assume the initial value x = (xi)i=1,...,d satisfies xi ≥ 0, i = 1, . . . , d. In this
case, all of components ((Xx)1, . . . , (X

x)d) are independent, so Xx is essentially
a combination of 1-dimensional diffusion affine processes. Therefore, this SDE
admits a strong solution whose conponents are all nonnegative almost surely, and
we obtain the following theorems and corollary as a consequence of the theorem
in the previous section. Note that we write ei for the i-th vector of the standard
basis of Rn.

Theorem 3.14. Let k be in {1, . . . , d}. Suppose 2bk > αk. Let t > 0 be a fixed
real number and let Xx and X̃x are the solutions of SDE (∗) whose parameters
are ((αi)i=1,...,d, β, b) and ((αi)i=1,...,d, β, b+ (αk/2)ek) respectively, and their initial
values are x ∈ (0,∞)d. Then, for f ∈ L1([0,∞)d) such that f(Xx

t ) and f(X̃
x
t ) are

integrable, it holds that

∂xk
E[f(Xx

t )] =


2

αkt

(
E[f(X̃x

t )]− E[f(Xx
t )]

)
, βk,k = 0,

2βk,k
αk(eβk,kt − 1)

(
E[f(X̃x

t )]− E[f(Xx
t )]

)
, βk,k ̸= 0.

Theorem 3.15. Let k be in {1, . . . , d}. Suppose bk > αk. Let t > 0 be a fixed
real number and let Xx and X̃x are the solutions of SDE (∗) whose parameters are
((αi)i=1,...,d, β, b) and ((αi)i=1,...,d, β, b− (αk/2)ek) respectively, and their initial val-
ues are x ∈ (0,∞)d. Then, for f ∈ L1([0,∞)d) such that f(y1, . . . , yk−1, ·, yk+1, . . . , yd) ∈
C1[0,∞) for each y1, . . . , yk−1, yk+1, . . . , yd ∈ [0,∞) and ∂ykf ∈ L1([0,∞)d), and
∂ykf(X

x
t ), f(X

x
t ), and f(X̃

x
t ) are integrable, it holds that

E[(∂ykf)(X
x
t )] =


2

αkt

(
E[f(Xx

t )]− E[f(X̃x
t )]

)
, βk,k = 0,

2βk,ke
βk,kt

αk(eβk,kt − 1)

(
E[f(Xx

t )]− E[f(X̃x
t )]

)
, βk,k ̸= 0.

Corollary 3.16. Let k be in {1, . . . , d}. Suppose 2bi > αi, i = 1, . . . , d. Let
t > 0 be a fixed real number and let Xx and X̃x are the solutions of SDE (∗)
whose parameters are ((αi)i=1,...,d, β, b) and ((αi)i=1,...,d, β, b − (αk/2)ek) respec-
tively, and their initial values are x ∈ (0,∞)d. Then, for f ∈ L1([0,∞)d) such
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that f(y1, . . . , yk−1, ·, yk+1, . . . , yd) ∈ C1[0,∞) for each y1, . . . , yk−1, yk+1, . . . , yd ∈
[0,∞) and ∂ykf ∈ L1([0,∞)d), and ∂ykf(X

x
t ), f(X

x
t ), and f(X̃

x
t ) are integrable, it

holds that

E[(∂ykf)(X
x
t )] =


2

αkt

(
E[f(Xx

t )]− E[f(X̃x
t )]

)
, βk,k = 0,

2βk,ke
βk,kt

αk(eβk,kt − 1)

(
E[f(Xx

t )]− E[f(X̃x
t )]

)
, βk,k ̸= 0.

Proof of Theorem 3.14. We will prove for the case where βk,k = 0. The proof for
the other case is almost the same so we omit it.

For simplicity, consider only the case where k = 1. First of all, writing LZ for
the law of random variable Z, we can deform the left hand side as follows because
(Xx

t )1 and ((Xx
t )2, . . . , (X

x
t )d) are independent:

∂x1E[f(X
x
t )] = ∂x1

∫
Rd

f(y)LXx
t
(dy)

= ∂x1

∫
Rd−1

∫
R

f(y)L(Xx
t )1

(dy1)L((Xx
t )2,...,(X

x
t )d)

(d(y2, . . . , yd))

= ∂x1

∫
Rd−1

∫
R

f(y)qx1,t(y1)dy1L((Xx
t )2,...,(X

x
t )d)

(d(y2, . . . , yd))

= ∂x1

∫
Rd−1

∫
R

f(y)

(
1

2π

∫
R

e−iθy1φx1,t(θ)dθ

)
dy1L((Xx

t )2,...,(X
x
t )d)

(d(y2, . . . , yd))

Here, considering the differential coefficient at x1 = ξ1, it holds that∣∣∣∣∫
R

f(y)

∫
R

e−iθy1φx1,t(θ)dθdy1

∣∣∣∣ ≤ ∫
R

|f(y)|dy1
∫
R

22b/α

(αtθ)2b/α
dθ exp

(
2

αt
(ξ1 + 1)

)
on a certain neighborhood of x1 and the right hand side

(y2, . . . , yd) 7→
∫
R

|f(y)|dy1
∫
R

22b/α

(αtθ)2b/α
dθ exp

(
2

αt
(ξ1 + 1)

)
is integrable. Thus we can interchange the order of derivative and integral. Then
we have

∂x1

∫
Rd−1

∫
R

f(y)

(
1

2π

∫
R

e−iθy1φx1,t(θ)dθ

)
dy1L((Xx

t )2,...,(X
x
t )d)

(d(y2, . . . , yd))

=

∫
Rd−1

∂x1

∫
R

f(y)

(
1

2π

∫
R

e−iθy1φx1,t(θ)dθ

)
dy1L((Xx

t )2,...,(X
x
t )d)

(d(y2, . . . , yd))

=

∫
Rd−1

∂x1E[f((X
x
t )1, y2, . . . , yd)]L((Xx

t )2,...,(X
x
t )d)

(d(y2, . . . , yd))

Here, (Xx
t )1 is a one-dimensional diffusion affine process with parameter (α1, β1,1, b1)

and initial value x1. Therefore, we get

∂x1E[f((X
x
t )1, y2, . . . , yd)] =

1

α1t
(E[f((Xx

t )1, y2, . . . , yd)]− E[f((X̃x
t )1, y2, . . . , yd)])
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by Theorem 3.7, where (X̃x
t )1 is a diffusion affine process with parameter (α1, β1,1, b1+

α1/2). Furthermore, combining the fact that

L((X̃x
t )2,...,(X̃

x
t )d)

= L((Xx
t )2,...,(X

x
t )d)

(because ((Xx)2, . . . , (X
x)d) and ((X̃x)2, . . . , (X̃

x)d) are solutions of the same SDE),
we obtain the desied result.

We can prove Theorem 3.15 in the same way as above and can prove Corollary
3.16 in the same way as in the proof of Corollary 3.9, so we omit the proofs.
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Chapter 4

Tanaka–Yor equations

4.1 Previous researches

4.1.1 Symmetrization of SDEs

Consider pricing of options. Let X be the price of underlying asset, T > 0 be the
maturity, and f be the payoff function. Then the price of knock-in barrier option
with lower barrier K can be expressed by the following expectation:

E[XT1(τ>T )], τ := inf{t > 0: Xt ≤ K}.

This expectation includes the difficulty that it is path-dependent. To address this
difficulty, Imamura et al. proposed a method called symmetrization [35]. First of
all, they assumed that X satisfies the following SDE:

dXt = σ(Xt)dWt + µ(Xt)dt, (4.1)

where W is one-dimensional Brownian motion and they imposed appropriate con-
ditions on σ and µ. Then they defined the new coefficients σ̃ and µ̃ as follows:

σ̃(x) :=

{
σ(x), x > K,

σ(2K − x), x ≤ K,

µ̃(x) :=

{
µ(x), x > K,

−µ(2K − x), x ≤ K.

Moreover, they consider the following SDE:

dX̃t = σ̃(X̃t)dWt + µ̃(X̃t)dt.

They named this SDE the symmetrization of the SDE (4.1). In this setting, they
proved the following formula [35]:

Theorem 4.1. Under appropriate conditions regarding to σ and µ, it holds that

E[f(XT )1(τ>T )] = E[f(X̃T )1(X̃T>K)]− E[f(2K −XT )1(X̃T<K)].
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They pointed out that the right-hand side is a combination of the prices of plain
vanilla options and claimed that this formula makes it much easier to calculate
the price of barrier options. This is because the expected value on the right-hand
side is not path-dependent. In fact, the numerical experiments in their paper
suggest that their method can be used to calculate the prices of barrier options
very efficiently.

Moreover, Akahori et al. extended this method to the multidimensional case
[36]. In this case, the barrier is a hyperplane in the Euclidean space. This is
straightforward extension of one-dimensional case.

Furthermore, Hishida et al. extended it one more step in [37]. They considered
it in Euclidean space, but assumed the boundary to be a C2-class surface. We will
explain this in a little more detail. Let W be a d′-dimensional Brownian motion
and consider a d-dimensional SDE

dXt = σ(Xt)dWt + µ(Xt)dt. (4.2)

Now, the barrier is {x ∈ Rd : g(x) = 0} where g : Rd → R is a C2-class function.
Then the price of the barrier option whose payoff function is f can be expressed
as follows:

E[f(XT )1(τ>T )], τ := inf{t > 0: g(Xt) < 0}.
Then, they focused on the process Z = g(X). By applying Itô’s formula and
combine it with the original SDE (4.2), we can get a (d+ 1)-dimensional SDE. If
we consider that (X(1), . . . , X(d), g(X)) is the price of new underlying asset, the
barrier is hyperplain {x ∈ R : xd+1 = 0}. Thus we can apply multidimensional
symmetrization of Akahori et al. Here, the symmetrized SDE can be discribed as
follows:

dX̃t = σ(X̃t)dWt + µ(X̃t)dt,

dZ̃t = sgn(Z̃t)dZt.

Therefore, we obtain an expression of the price of the barrier option in terms of
expectations that are not path-dependent:

E[f(Xt)1(τ>T )] = E[f(X̃T )1(Z̃T≥0)]− E[f(X̃t)1(Z̃T<0)].

They also showed the results of their numerical calculations in their paper, and
the results suggested that their method was more efficient than the conventional
method.

This is a great theorem, but currently we need to assume that Z̃ and −Z̃ have
the same distribution for any weak solution Z̃ of the last SDE. We believe that
this theorem would be much more useful if we could remove this assumption, and
it is our goal to show this. To restate what needs to be shown is as follows.

Question 4.2. Let Z be a continuous semimartingale and consider the following
SDE:

dYt = sgn(Yt)dZt.
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Prove that Y and −Y have the same distribution for any weak solution Y of the
SDE.

Obviously, it is enough to show the law-uniqueness of the SDE. This chapter
is the first step toward this goal.

4.1.2 Tsirelson–Yor equations

Yor investigated the following R-valued and Z≤0-indexed stochastic equation in
[13]:

ηk = ξk + {ηk−1}, k ∈ Z≤0, (4.3)

where ξ is a known independent noise and {x} represents the fractional part of
x. We assume that the distribution of the noise ξk is µk. This equation has it
origin in Tsirelson’s paper [12]. In the paper, Tsirelson showed an example of
SDE which has no strong solution using such a discrete-time stochastic equation.
For this equation, the notion of solution is defined as follows:

Definition 4.3. Let Ω be RZ≤0 and P be a Borel probability measure on Ω. If P
satisfies the following conditions, P is called a solution of the equation (4.3):
Let ηk((ωl)l) := ωk, ξk := ηk − {ηk−1}, Fη

k := σ(ηl, l ≤ k), F ξ
k := σ(ξl, l ≤ k), and

write µk for the given law (of ξk).

• The law of ξk is µk for all k ∈ Z≤0.

• ξk is independent of Fη
k−1 for all k ∈ Z≤0.

Moreover, if Fη
k = F ξ

k up to P -null set for all k ∈ Z≤0, the solution P is called
strong.

First, Yor proved that equation (4.3) always has at least one solution. Further-
more, they classified the equation depends on µ = (µk)k in the view point of its
solutions. More precisely, he showed the following trichotomy:

1. The equation has only one solution and it is non-strong.

2. The equation has at least two solutions and has at least one strong solution.

3. The equation has at least two solutions and has no strong solution.

In [14], Akahori et al. generalized Yor’s study. Their setting is as follows:
(S,S) is a Polish space. (G, ∗,G) is a compact group acting to S and write g(·) for
the action. θ : S → G is a measurable map. (ξk)k∈Z≤0

is an independent known
noise. Also, they assume two conditions.

Assumption 4.4.

1. g(·) is an automorphism on S for each g ∈ G.

2. g ∗ θ(s) = θ(g(s)) for all s ∈ S, g ∈ G.
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In this setting, they studied the following equation and they called this equation
a Tsirelson–Yor equation:

ηk = θ(ηk−1)(ξk), k ∈ Z≤0. (4.4)

Of courese, this includes Yor’s equation (4.3). Then, the notion of a solution to
such a equation is defined by the same way as in Yor’s case. In this case, Akahori
et al. proved that Tsirelson–Yor equation (4.4) always has at least one solution,
first. Furthermore, they showed that the same trichotomy as in Yor’s study [13]
holds in their generalized setting:

1. The equation has only one solution and it is non-strong.

2. The equation has at least two solutions and has at least one strong solution.

3. The equation has at least two solutions and has no strong solution.

We want to mimic this result and to utilize the result to justify the multidi-
mensional symmetrization with C2-class boundary.

4.2 Main result

In our setting, (S, ·,S) is a Polish topological group, (G, ∗,G) is a compact group,
ψ : S ×G→ S is a group action such that

ψ(·, g) : S → S are group-automorphism for all g ∈ G, (4.5)

and θ : S → G is a measurable map. We may write g(s) instead of ψ(s, g) for
g ∈ G and s ∈ S and also may write ab instead of a · b for a, b ∈ S. Moreover, we
assume “g and θ are commute” for all g ∈ G, in the following sense:

g ∗ θ(s) = θ(g(s))

for all s ∈ S and g ∈ G.
Now t 7→ f(s, t) := ψ(t, θ(s)) · s is bijective for each s ∈ S thanks to (4.5), and

we can define a map f−1 : S × S → S by f−1 := π2 ◦ (π1, f)−1, where πi is the
projection to the i-th component of the Cartesian product. Here, f−1(s, f(s, u)) =
u holds for all s, u ∈ S and g ∈ G.

In this thesis, we consider the following equation and we call it Tanaka–Yor
equation.

ηk = f(ηk−1, ξk), k ∈ Z≤0. (4.6)

We call this equation Tanaka–Yor equation. Note that this is not a generalization of
Tsirelson–Yor equations but an analogue. That is, the class Tanaka–Yor equations
dose not include the class Tsirelson–Yor equations. Then, the solution to the
equation (4.6) is defined in the same way as for Tsirelson–Yor equations. Moreover,
for consistency, we assume the following two conditions:
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Assumption 4.5. 1. For each k, µk is “G-invariant”:∫
S

h(g(s))µk(ds) =

∫
S

h(s)µk(ds)

for all g ∈ G and arbitrary bounded measurable function h : S → R.

2. If the joint distribution of (ζk)k∈Zk≤0
is
⊗

k∈Z≤0
µk, then the law of ζjζj−1 · · · ζN

converges to some probability law νj for each j ∈ Z≤0.

Lemma 4.6. Let Y be a random variable whose law is G-invariant, ϕ : S → S be
a map which is “commuting” with ψ in the following sense:

g(ϕ(x)) = ϕ(g(x))

for all g ∈ G, LY -a.a. x. Then ϕ(Y ) is also G-invariant.

Proof. Let h : S → R be a bounded measurable function. Then

E[h(g(ϕ(Y )))] = E[h(ϕ(g(Y )))] (4.7)

= E[h(ϕ(Y ))] (4.8)

holds for all g ∈ G.

Theorem 4.7. For any Tanaka–Yor equation, at least one solution exists. More-
over, under any solution P , θ(ηk) is independent of (ξj)j∈Z≤0

for any k ∈ Z≤0. In
particular, P is not strong.

Proof. To begin with, we construct probability measure Pk on S{k,k+1,...,0} for each
k ∈ Z≤0. To construct the measure Pk, let η

k
k be a random variable valued in S

whose law is νk and ξk, ξk+1, . . . ξ0 be random variables valued in S whose joint law
is µk⊗µk+1⊗· · ·⊗µ0. Then define a finite sequence of random variables (ηkj )k≤j≤0

inductively by

ηkj+1 := f(ηkj , ξj+1). (4.9)

Now set Pk the joint law of (ηkk , η
k
k−1, . . . , η

k
0).

Then the solution P we want is the Kolmogorov extension of the probability
measures (Pk)k∈Z≤0

. Here, we have to verify the consistency to guarantee that we
can extend the measures. That is, we have to verify the equality

Pk(S ×B) = Pk+1(B)

for all B ∈ B(S{k+1,...,0}) for each k. This is equivalent to the equality of the laws
of (ηkk+1, . . . η

k
0) and (ηk+1

k+1, . . . η
k+1
0 ). Furthermore, it is enough to show that the

law of ηkk+1 is equal to that of ηk+1
k+1. This is because both sequences (ηkj )k+2≤j≤0

and (ηk+1
j )k+2≤j≤0 are defined by the same inductive formula (4.9), and ηkk+1 and

ηk+1
k+1 are independent of ξk+2, . . . , ξ0 respectively.
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Then let us check the equality of the laws of ηkk+1 and ηk+1
k+1. For arbitrary

bounded measurable function hi : S → R; i = 1, 2, we have

E[h1(θ(η
k
k)(ξk+1))h2(η

k
k)] = E[E[h1(θ(η

k
k)(ξk+1))|ηkk ]h2(ηkk)]

= E[E[h1(ξk+1)|ηkk ]h2(ηkk)]
= E[h1(ξk+1)h2(η

k
k)]

= E[h1(ξk+1)]E[h2(η
k
k)]

= E[h1(θ(η
k
k)(ξk+1))]E[h2(η

k
k)].

This shows θ(ηkk)(ξk+1) is independent of ηkk and distributed as µk+1. Thus, the
law of ηkk+1 is νk+1, which is the same as that of ηk+1

k+1.

Next, let us confirm the independence of θ(ηk) and {ξj}j∈Z≤0
for any k ∈ Z≤0.

First, notice that the map ϕx : y 7→ f(y, x) is “commuting with ψ ” in the sense in
Lemma 4.6 not depending on x. In fact, we have

g(ϕx(y)) = g(f(y, x))

= g(θ(y)(x) · y)
= g(θ(y)(x)) · g(y)
= (g ∗ θ(y))(x) · g(y)
= θ(g(y))(x) · g(y)
= f(g(y), x)

= ϕx(g(y)),

and if Y is G-invariant, then ϕx(Y ) is also G-invariant by Lemma 4.6. Thus, for
arbitrary bounded measurable functions h1 : G→ R and h2 : S → R, letting U be
a uniform random variable which is independent of ξk,

E[h1(θ(ηk))h2(ξk)] = E[h1(θ(ϕξk(ηk−1)))h2(ξk)]

= E[E[h1(θ(ϕξk(ηk−1))) | ξk]h2(ξk)]
= E[h1(U)h2(ξk)]

= E[h1(U)]E[h2(ξk)]

= E[h1(θ(ηk))]E[h2(ξk)].

Therefore, θ(ηk) is independent of ξk for all k ∈ Z≤0. This argument can be applied
for

ϕ2
x1,x2

:= ϕx2 ◦ ϕx1

and further

ϕl
x1,...,xl

:= ϕxl
◦ · · · ◦ ϕx1

for any l as well, since they are all G-invariant. Consequently, θ(ηk) is independent
of {ξl : l ≤ k}. This proves what we desired.
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Remark 4.8. Recall that the SDE in Question 4.2 in subsection 4.1 is as follows:

dYt = sgn(Yt)dZt.

Now, take a sequence of real numbers (tk)k∈Z≤0
which satisfies 0 < · · · < t−1 < t0

and limk→−∞ tk = 0, and discretize the above SDE:

Xtk = sgn(Xtk−1
)(Ytk − Ytk−1

) +Xtk−1
, k ∈ Z≤0.

Then, this is a Tanaka–Yor equation where S = R, G = {±1} ∼= Z/2Z, θ = sgn,
ηk = Xsk , ξk = Ytk − Ytk−1

, and the action of the group is ordinal multiplication.
Although we showed only existence of solutions of Tanaka–Yor equation, if we can
show the uniqueness of solutions of the equation, it could be applied to the proof
of law-uniqueness of the original SDE.
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Chapter 5

Absolute zeta functions and
periodicity of quantum walks on
cycles

5.1 Preliminaries

5.1.1 Absolute Zeta Functions

This section is taken from a previous research paper [16] by Akahori et al.
In this section, we briefly review the framework on the absolute zeta functions,

which can be considered as zeta function over F1, and absolute automorphic forms
(see [26, 27, 28, 29, 30] and references therein, for example).

Let f(x) be a function f : R → C ∪ {∞}. We say that f is an absolute
automorphic form of weight D if f satisfies

f

(
1

x

)
= Cx−Df(x)

with C ∈ {−1, 1} and D ∈ Z. The absolute Hurwitz zeta function Zf (w, s) is
defined by

Zf (w, s) =
1

Γ(w)

∫ ∞

1

f(x) x−s−1 (log x)w−1 dx,

where Γ(x) is the gamma function (see [38], for instance). Then taking u = et, we
see that Zf (w, s) can be rewritten as the Mellin transform:

Zf (w, s) =
1

Γ(w)

∫ ∞

0

f(et) e−st tw−1dt. (5.1)

Moreover, the absolute zeta function ζf (s) is defined by

ζf (s) = exp

(
∂

∂w
Zf (w, s)

∣∣∣
w=0

)
.
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Here we introduce themultiple Hurwitz zeta function of order r, ζr(s, x, (ω1, . . . , ωr)),
the multiple gamma function of order r, Γr(x, (ω1, . . . , ωr)), and the multiple sine
function of order r, Sr(x, (ω1, . . . , ωr)), respectively (see [26, 27, 29], for example):

ζr(s, x, (ω1, . . . , ωr)) =
∞∑

n1=0

· · ·
∞∑

nr=0

(n1ω1 + · · ·+ nrωr + x)−s , (5.2)

Γr(x, (ω1, . . . , ωr)) = exp

(
∂

∂s
ζr(s, x, (ω1, . . . , ωr))

∣∣∣
s=0

)
, (5.3)

Sr(x, (ω1, . . . , ωr)) = Γr(x, (ω1, . . . , ωr))
−1 Γr(ω1 + · · ·+ ωr − x, (ω1, . . . , ωr))

(−1)r .
(5.4)

Now we present the following key result derived from Theorem 4.2 and its proof
in Korokawa [27] (see also Theorem 1 in Kurokawa and Tanaka [29]):

Theorem 5.1. If f has the form

f(x) = xl/2
(xm(1) − 1) · · · (xm(a) − 1)

(xn(1) − 1) · · · (xn(b) − 1)
(⋆)

for some l ∈ Z, a, b ∈ Z>0, m(i), n(j) ∈ Z>0 (i = 1, . . . , a, j = 1, . . . , b), then the
following holds:

Zf (w, s) =
∑

I⊂{1,...,a}

(−1)|I|ζb(w, s− deg(f) +m(I),n),

ζf (s) =
∏

I⊂{1,...,a}

Γb(s− deg(f) +m(I),n)(−1)|I| ,

ζf (D − s)C = εf (s)ζf (s),

where

deg(f) = l/2 +
a∑

i=1

m(i)−
b∑

j=1

n(j), m(I) =
∑
i∈I

m(i),

n = (n(1), . . . , n(j)), D = l +
a∑

i=1

m(i)−
b∑

j=1

n(j),

C = (−1)a−b, εf =
∏

I⊂{1,...,a}

Sb(s− deg(f) +m(I), n )

5.1.2 Cycle graphs and Quantum walks on it

For N ≥ 2, undirected cycle graph with N vertices is an undirected graph which
have N vertices and every vertices have exactly 2 edges. We write this graph by
CN . Formally, CN is defined as follows:

Definition 5.2. The set of vertices of CN is {0, 1, . . . , N − 1} and the set of edges
of CN is {{k, k + 1} | k = 0, . . . , N − 1} with identifying N and 0.
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We write V (CN) for the set of vertices of CN .
A quantum walk is the time-evolving sequence of states consisting of position

and chirality. Formally, a state is a vector which is an element of a tensor product
of two Hilbert spaces over C, HP and HC . In this thesis, HP is span{|x⟩ | x ∈
V (CN)} and HC is span{|←⟩ , |→⟩} for Hadamard walks, and span{|←⟩ , |·⟩ , |→⟩}
for Grover walks with 3 states. Note that the elements of “span” are considered
to be the orthonormal basis of each space. Then, each state can be represented as
follows: ∑

x∈V (Cn)

|x⟩ ⊗ s, s ∈ HC .

Usually, we assume that the initial state Ψ0 satisfies ∥Ψ0∥ = 1. Moreover, we
consider the case where the time evolution operator U is decomposed as U = SC.
Here, S is called shift operator and defined by the following formulas:

S(|x⟩ ⊗ |←⟩) := |x− 1⟩ ⊗ |←⟩ ,
S(|x⟩ ⊗ |→⟩) := |x+ 1⟩ ⊗ |→⟩ ,
S(|x⟩ ⊗ |·⟩) := |x⟩ ⊗ |·⟩ .

Furthermore, C is called coin operator and defined by the following:

C :=
∑

x∈V (CN )

|x⟩⟨x| ⊗ A

for some unitary operator A onHC . We call this operator A the local coin operator.
In this case, S and C are both unitary, and then U is also unitary. Now, the time
evolution is defined as usual:

Ψn+1 := UΨn.

Of course, we have Ψn = UnΨ0. We are interested in this time-evolution operator
U . In each of the following subsections, matrix representations of U are shown.

Moreover, we introduce the term period of quantum walk.

Definition 5.3. For a quantum walk whose time-evolution operater is U , the
period of the quantum walk is defined the following minimum:

min{n ≥ 1 | Un = 1}.

If the set in the above formula is empty, then the period is defined to be ∞.

Of course, if T is the period of a quantum walk, it hold that

ΨT = Ψ0

for any initial state Ψ0.
Also, we define the zeta function of a quantum walk on a cycle graph:
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Definition 5.4. For a quantum walk on a cycle graph whose time-evolution op-
erator is U , the zeta function of the quantum walk ζ is defined as follows:

ζ(u) := det(I − uU)−1,

where I is the identity operator.

This definition can be seen in Konno–Sato theorem and this is suggested by
graph zeta functions. [39]

5.1.3 Cyclotomic polynomials

Also, we treat polynomial rings and cyclotomic polynomials in this chapter.

Definition 5.5. Z[x],Q[x],R[x],C[x] denote the polynomial rings with integer
coefficients, rational coefficients, real coefficients, and complex coefficients respec-
tively.

Then cyclotomic polynomials are defined as follows:

Definition 5.6. For n ∈ Z>0, cyclotonomic polynomial Φn(x) is defined as follows:

Φn(x) :=
∏

1≤k≤n−1
gcd(k,n)=1

(
x− exp

(
2πik

n

))
.

Note that Φn(x) ∈ Z[x] for all n.

Now, the following proposition is the key of this chapter.

Proposition 5.7 (See e.g. [40]). If all of the roots of a monic polynomial with
rational coefficients f(x) are roots of unity, then f(x) ∈ Z[x].

Here, monic means “the nonzero coefficient of highest degree is equal to 1,”
and root of unity means a complex number z which satisfies

zn = 1

for some n ∈ Z>0. This proposition is a consequence of the fact that the minimal
polynomial over Q of any root of unity is cyclotonomic polynomial, in particular,
integer coefficient polynomial.

In this thesis, this proposition is used as follows. First, note that for any square
matrix A and positive integer n, if λ is an eigenvalue of A, then λn is an eigenvalue
of An. Therefore, if A has a complex number which is not root of unity as its
eigenvalue, then every An has a complex number which is not equal to 1 as its
eigenvalue. This implies that An is not the identity matrix.
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5.2 Hadmard walks

Hadamard walks are a well-studied class of quantum walks. There are two types
of Hadamard walks: M type and F type. They are characterized by local coin
operators as usual. The definition of these walks by coin operators are as follows:

Definition 5.8. An M-type Hadamard walk and an F-type Hadamard walk on CN

is an quantum walk whose local coin operators are as follows respectively:

AH,M =
1√
2

[⟨←| ⟨→|
⟨←| 1 1
⟨→| 1 −1

]
, AH,F =

1√
2

[⟨←| ⟨→|
⟨←| 1 1
⟨→| 1 −1

]
,

In this thesis, we focus on Hadamard walks of F type. UH,F
N denotes the time-

evolution operator of an F-type Hadamard walk on CN . With respect to the
ordered basis of HP ⊗ HC (⟨0| ⊗ ⟨←| , ⟨0| ⊗ ⟨→| , ⟨1| ⊗ ⟨←| , . . . , ⟨N − 1| ⊗ ⟨→|),
the matrix representation of UH,F

N is as follows:

UH,F
2 =

[
O AH,F

AH,F O

]
and

UH,F
N =



O L O · · · O R
R O L O O O

O R O
. . . O O

... O
. . . . . . . . . O

O O O
. . . O L

L O O O R O


for N ≥ 3, where O represents the zero matrix and R and L are defined as follows:

L :=
1√
2

[
1 1
0 0

]
, R :=

1√
2

[
0 0
1 −1

]
.

Note that L and R can be represented as

L =

[
1 0
0 0

]
AH,F and R =

[
0 0
0 1

]
AH,F .

Furthermore, let fH,F
N be the characteristic polynomial of UH,F

N , that is,

fH,F
N (x) := det

(
xI2N − UH,F

N

)
.

By definition, the factorization of fH,F
N (x) is obtained as follows.

Proposition 5.9. For N ≥ 2, it holds that

fH,F
N (x) =

N−1∏
k=0

(x2 −
√
2 cos(2πk/N)x+ 1).
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5.2.1 Periods of F-type Hadamard walks

The periods of M-type Hadamard walks are already known by Dukes and Konno
et al. [41, 42] The result is as follows:

Theorem 5.10. Let TH,M
N be the period of M-type Hadamard walk on CN(N ≥ 2).

Then the following holds:

TH,M
N =


2, (N = 2),

8, (N = 4),

24, (N = 8),

∞, (otherwise).

In this thesis, we point out that the same approach as for M type is effective for
F type and give the proof below. Now, let TH,F

N be the period of F-type Hadamard
walk on CN (N ≥ 2).

Theorem 5.11. The periods of F-type Hadamard walk on CN (N ≥ 2) are as
follows:

TH,F
N =


8, (N = 2),

8, (N = 4),

24, (N = 8),

∞, (otherwise).

Proof. First, by Proposition 5.9, we know that

fH,F
2 (x) = Φ8(x), (5.5)

fH,F
4 (x) = Φ4(x)

2Φ8(x), (5.6)

fH,F
8 (x) = Φ3(x)

2Φ4(x)
2Φ6(2)

2Φ8(x) (5.7)

hold. Thus, TH,F
2 = 8, TH,F

4 = 8, and TH,F
8 = 24 hold.

Then, if N has odd prime as its factor, the same argument in [42] can be
applied. Therefore, the remainder is the case where N is a power of 2 which is
greater than 24.

Let N = 2n. First, we consider the case where n = 4. We know

fH,F
24 (x) = x32 + 8x30 + 34x28 + 100x26 +

901

4
x24 + 409x22 +

2465

4
x20 +

1567

2
x18

+ 848x16 +
1567

2
x14 +

2465

4
x12 + 409x10 +

901

4
x8 + 100x6 + 34x4 + 8x2 + 1

holds. Thus fH,F
24 (x) is monic and in Q[x] but not in Z[x]. Then, by Proposition

5.7, fH,F
24 (x) have a root which is not a root of unity. Therefore, we get TH,F

24 =∞.
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For n > 4, fH,F
2n (x) has fH,F

24 (x) as a factor. More explicitly, by Proposition
5.9,

fH,F
2n (x) =

2n−1∏
k=0

(x2 −
√
2 cos(2πk/2n)x+ 1)

=
∏

0≤k≤2n−1
2n−4|k

(x2 −
√
2 cos(2πk/2n)x+ 1)

∏
0≤k≤2n−1

2n−4∤k

(x2 −
√
2 cos(2πk/2n)x+ 1)

=
24−1∏
l=0

(x2 −
√
2 cos

(
2π · 2n−4l/2n

)
x+ 1)

∏
0≤k≤2n−1

2n−4∤k

(x2 −
√
2 cos(2πk/2n)x+ 1)

= fH,F
24 (x)

∏
0≤k≤2n−1

2n−4∤k

(x2 −
√
2 cos(2πk/2n)x+ 1).

Therefore, also fH,F
2n (x) has a root which is not a root of unity, and then, we know

that TH,F
2n =∞ holds.

5.2.2 Absolute zeta functions of zeta functions of Hadamard
walks

Denote the zata functions of M-type and F-type Hadamard walk on CN by ζH,M
CN

, ζH,F
CN

respectively (N ≥ 2). From the discussion so far, we can conclude the following
about these functions. Especially, we can get an explicit expression of absolute
zeta functions of these zeta functions.

Theorem 5.12. We have the following explicit expression of absolute zeta func-
tions and their functional equation.

M type: N = 2

ZζH,M
C2

(w, s) = ζ2 (w, s+ 4, (2, 2)) ,

ζζH,M
C2

(s) = Γ2 (s+ 4, (2, 2)) ,

ζζH,M
C2

(−4− s) = S2 (s+ 4, (2, 2)) ζζH,M
C2

(s).

N = 4

ZζH,M
C4

(w, s) =
∑
I⊂{1}

(−1)|I| ζ3 (w, s+ 8 + 4|I|), (2, 2, 8)) ,

ζζH,M
C4

(s) =
∏

I⊂{1}

Γ3 (s+ 8 + 4|I|, (2, 2, 8))(−1)|I| ,

ζζH,M
C4

(−8− s) =
( ∏
I⊂{1}

S3 (s+ 8 + 4|I|, (2, 2, 8))(−1)|I|
)
ζζH,M

C4

(s).
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N = 8

ZζH,M
C8

(w, s) =
∑

I⊂{1,...,5}

(−1)|I| ζ7 (w, s+ 16 +m(I), (2, 2, 2, 2, 8, 12, 12)) ,

ζζH,M
C8

(s) =
∏

I⊂{1,...,5}

Γ7 (s+ 16 +m(I), (2, 2, 2, 2, 8, 12, 12))(−1)|I| ,

ζζH,M
C8

(−16− s) =
( ∏
I⊂{1,...,5}

S7 (s+ 16 +m(I), (2, 2, 2, 2, 8, 12, 12))(−1)|I|
)
ζζH,M

C8

(s).

F type: N = 2

ZζH,F
C2

(w, s) = ζ1 (w, s+ 4, (8))− ζ1 (w, s+ 8, (8)) ,

ζζH,F
C2

(s) =
Γ
(
s+4
8

)
Γ
(
s+8
8

) · n− 1
2 ,

ζζH,F
C2

(−4− s) = − cot
(sπ
8

)
ζζH,F

C2

(s).

N = 4

ZζH,F
C4

(w, s) =
∑

I⊂{1,2}

(−1)|I| ζ2 (w, s+ 8 + 2|I|), (4, 8)) ,

ζζH,F
C4

(s) =
∏

I⊂{1,2}

Γ2 (s+ 8 + 2|I|, (4, 8))(−1)|I| ,

ζζH,F
C4

(−8− s) =
( ∏
I⊂{1,2}

S2 (s+ 8 + 2|I|, (4, 8))(−1)|I|
)
ζζH,F

C4

(s).

N = 8

ZζH,F
C8

(w, s) =
∑

I⊂{1,...,4}

(−1)|I| ζ4 (w, s+ 16 +m(I), (4, 6, 6, 8)) ,

ζζH,F
C8

(s) =
∏

I⊂{1,...,4}

Γ4 (s+ 16 +m(I), (4, 6, 6, 8))(−1)|I| ,

ζζH,F
C8

(−16− s) =
∏

I⊂{1,...,4}

S4 (s+ 16 +m(I), (4, 6, 6, 8))(−1)|I| ζζH,F
C8

(s).

Proof. The proofs are almost the same for each ζH,M
CN

and ζH,F
CN

. Thus we check

only for ζH,M
C4

. First, by the definition,

ζH,M
C4

(u) = det
(
I8 − uUH,M

4

)−1

.

Now, by Proposition 5.9, we know

det
(
xI8 − UH,M

4

)
=

(x2 − 1)2(x8 − 1)

x4 − 1
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By substituting x = 1/u, we get

det
(1
u
I8 − UH,M

4

)
=

((1/u)2 − 1)2((1/u)8 − 1)

(1/u)4 − 1
,

det
(
I8 − uUH,M

4

)
=

(u2 − 1)2(u8 − 1)

u4 − 1
.

Therefore, we conclude

ζH,M
C4

(u) =
u4 − 1

(u2 − 1)2(u8 − 1)
.

Here, we know that ζH,M
C4

is an absolute automorphic form of weight −8. Then,
by Theorem 5.1, we obtain the desired result.

Note that the explicit forms of the zeta functions are as follows:

ζH,M
C2

(u) =
1

(1− u2)2
,

ζH,M
C4

(u) =
u4 − 1

(u2 − 1)2(u8 − 1)
,

ζH,M
C8

(u) =
(u4 − 1)3(u6 − 1)2

(u2 − 1)4(u8 − 1)(u12 − 1)2
,

ζH,F
C2

(u) =
u4 − 1

u8 − 1
,

ζH,F
C4

(u) =
(u2 − 1)2

(u4 − 1)(u8 − 1)
,

ζH,F
C8

(u) =
(u2 − 1)4

(u4 − 1)(u6 − 1)2(u8 − 1)
.

Moreover, all of them are absolute automorphic forms of weight −4, −8, −16, −4,
−8, and −16 respectively.

5.3 Grover walks

Grover walks are another well-studied class of quantum walks. There are two
types of Grover walks as in the case of Hadamard walks: M type and F type.
They are characterized by local coin operators as usual. In this thesis we focus
on the 3-states model. The definition of these walks by local coin operators are as
follows:

Definition 5.13. An M-type Grover walk with 3 states and an F-type Grover
walk with 3 states on CN are quantum walks whose coin operators are as follows
respectively:

AG3,M =
1

3


⟨←| ⟨·| ⟨→|

⟨←| −1 2 2
⟨·| 2 −1 2
⟨→| 2 2 −1

, AG3,F =
1

3


⟨←| ⟨·| ⟨→|

⟨←| 2 2 −1
⟨·| 2 −1 2
⟨→| −1 2 2

.
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UG3,M
N and UG3,F

N denote the time-evolution opeartors of M-type and F-type
Grover walk on CN , respectively. With respect to the ordered basis ofH (⟨0|⊗⟨←| ,
⟨0| ⊗ ⟨·| , ⟨0| ⊗ ⟨→| , ⟨1| ⊗ ⟨←| , . . . , ⟨N − 1| ⊗ ⟨→|), the matrix representation of
UG3,M
N and UG3,F

N is as follows:

UG3,X
2 =

[
S L(X) +R(X)

L(X) +R(X) S

]
, X =M,F

and

UG3,X
N =



S L(X) O · · · O R(X)

R(X) S L(X) O O O

O R(X) S
. . . O O

... O
. . . . . . . . . O

O O O
. . . S L(X)

L(X) O O O R(X) S


, X =M,F

for N ≥ 3, where O represents the zero matrix and S, L(X), and R(X) are defined
as follows:

S :=

0 0 0
0 1 0
0 0 0

AG3,M =

0 0 0
0 1 0
0 0 0

AG3,F ,

L(X) :=

1 0 0
0 0 0
0 0 0

AG3,X , R(X) :=

0 0 0
0 0 0
0 0 1

AG3,X , X =M,F.

Furthermore, let fG3,M
N and fG3,F

N be the characteristic polynomials of UG3,M
N

and UG3,F
N , that is,

fG3,M
N (x) := det

(
xI3N − UG3,M

N

)
, fG3,F

N (x) := det
(
xI3N − UG3,F

N

)
.

Here, the following factorization is known. See [43] for example.

Proposition 5.14. For N ≥ 2, it holds that

fG3,M
N (x) = (x− 1)N

N−1∏
k=0

(
x2 +

2

3

(
2 + cos

(
2πk

N

))
x+ 1

)
,

fG3,F
N (x) = (x− 1)N

N−1∏
k=0

(
x2 − 2

3

(
2 + cos

(
2πk

N

))
x+ 1

)
.

5.3.1 Periods of Grover walks with 3 states

The periods of Grover walks with 3 states ware clarified by Kajiwara et al. in [44]
as follows:
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Theorem 5.15. Let TG3,M
N be the period of M-type Grover walk with 3 states on

CN (N ≥ 2). Then

TG3,M
N =

{
6, (N = 3),

∞, (otherwise)

holds.
Furthermore, Let TG3,F

N be the period of F-type Grover walk with 3 states on
CN (N ≥ 2). Then

TG3,F
N =

{
4, (N = 3),

∞, (otherwise)

holds.

In this thesis, we point out that the same approach as in the proof in the
previous subsection works for this theorem. The proof of this approach is given
below.

Proof. First, we show it for M type.
For N = 3, we know it holds that

fG3,M
3 (x) = Φ1(x)

3Φ2(x)
2Φ3(x)

2

by Proposition 5.14. The result is a direct consequence of this factorization.
For N = 2, by Proposition 5.14 again, we know it holds that

fG3,M
2 (x) = x6 +

2

3
x5 − x4 − 4

3
− x2 + 2

3
+ 1.

Thus, fG3,M
2 (x) is monic and in Q[x] but not in Z[x]. Therefore, by Proposition

5.7, fG3,M
N (x) has a root which is not a root of unity, and this implies TG3,M

2 =∞
holds.

For the case where N ≥ 4 is not a multiple of 3, we know it holds that

fG3,M
N (x) =

N−1∏
k=0

(
x3 +

1

3

(
1 + 2 cos

(2πk
N

))
x2 − 1

3

(
1 + 2 cos

(2πk
N

))
x− 1

)
by Proposition 5.14 again. Then the coefficient of x3N−1 can be calculated as
follows:

N−1∑
k=0

1

3

(
1 + 2 cos

(2πk
N

))
=
N

3
+

N−1∑
k=0

cos
(2πk
N

)
=
N

3
.

Therefore, fG3,M
N (x) is not in Z[x], and fG3,M

N (x) is monic and inQ[x] by definition.
Thus, by Proposition 5.7, we know TG3,M

N =∞.
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For the case where N ≥ 4 is a multiple of 3 but is not a power of 3, we can take
a prime factor p of N such that p ̸= 3. Then like the above-mentioned proof in the
previous subsection, we can show that fG3,M

N (x) has fG3,M
p (x) as its factor. Here,

we already know that fG3,M
p (x) has a root which is not a root of unity. Thus, also

fG3,M
N (x) has a root which is not a root of unity, and we get TG3,M

N =∞.
Finally, for the case where N ≥ 4 is a power of 3, it is enough to examine

fG3,M
9 (x) because fG3,M

N (x) has fG3,M
9 (x) as its factor. By Proposition 5.14, we

have

fG,M
9 (x) = x27 + 3x26 − 128

9
x24 − 214

9
x23 +

62

9
x22 +

5752

81
x21 +

6376

81
x20

− 3331

81
x19 − 15059

81
x18 − 11686

81
x17 +

8728

81
x16 +

23752

81
x15 +

4316

27
x14

− 4316

27
x13 − 23752

81
x12 − 8728

81
x11 +

11686

81
x10 +

15059

81
x9 +

3331

81
x8

− 6376

81
x7 − 5752

81
x6 − 62

9
x5 +

214

9
x4 +

128

9
x3 − 3x− 1

Thus, fG3,M
9 (x) is monic and in Q[x] but not in Z[x]. Therefore, by Proposition

5.7, fG3,M
N (x) has a root which is not a root of unity, and this implies TG3,M

N =∞.
Then the same method can be used to prove the case of F type. Note that we

can obtain the following expansion of fG3,F
9 (x):

fG3,F
9 (x) = x27 + 3x26 + 3x25 +

25

9
x24 +

26

9
x23 − 2

9
x22 +

46

81
x21

+
106

81
x20 − 59

27
x19 +

125

81
x18 − 1

27
x17 − 353

81
x16 − 116

81
x15 − 212

27
x14

− 212

27
x13 − 116

81
x12 − 353

81
x11 − 1

27
x10 +

125

81
x9 − 59

27
x8

+
106

81
x7 +

46

81
x6 − 2

9
x5 +

26

9
x4 +

25

9
x3 + 3x2 + 3x+ 1.

5.3.2 Absolute zeta functions of zeta functions of Grover
walks with 3 states

Theorem 5.16. We have the following explicit expression of absolute zeta func-
tions and their functional equation.

M type:

Z
ζ
G3,M
C3

(w, s) = −
∑
I⊂{1}

(−1)|I| ζ4 (w, s+ 9 + |I|, (2, 2, 3, 3)) ,

ζζG,M
C3

(s) =
∏

I⊂{1}

Γ4 (s+ 9 + |I|, (2, 2, 3, 3))(−1)|I|+1

,

ζζG,M
C3

(−9− s)−1 =
( ∏
I⊂{1}

S4 (s+ 9 + |I|, (2, 2, 3, 3))(−1)|I|+1
)
ζζG,M

C3

(s).
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F type:

Z
ζ
G3,F
C3

(w, s) = −
∑
I⊂{1}

(−1)|I| ζ3 (w, s+ 9 + |I|, (2, 4, 4)) ,

ζ
ζ
G3,F
C3

(s) =
∏

I⊂{1}

Γ3 (s+ 9 + |I|, (2, 4, 4))(−1)|I|+1

,

ζ
ζ
G3,F
C3

(−9− s) =
( ∏
I⊂{1}

S3 (s+ 9 + |I|, (2, 4, 4))(−1)|I|+1
)
ζ
ζ
G3,F
C3

(s).

Proof. The proof is almost the same as that of Theorem 5.12. Note that the
explicit forms of the zeta functions are as follows:

ζG3,M
C3

(u) =
u− 1

(u2 − 1)2(u3 − 1)2
,

ζG3,F
C3

(u) =
u− 1

(u2 − 1)(u4 − 1)2
.

Moreover, both of them are absolute automorphic forms of weight −9.
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