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Abstract

In this thesis, we study the S-duality for the four-dimensional N = 2, SU(2)

superconformal field theories coupled to the (A1, DN ) type Argyres-Douglas theories.

These superconformal theories cannot be engineered by compactifying the 6d N =

(2, 0) superconformal field theory of type A1 on Riemann surface. We propose that

the Nekrasov formula for the Argyres-Douglas theories by extending the generalized

AGT correspondence to the case of U(2) gauge group, which is induced by defining

the irregular state of the direct sum of Virasoro algebra and Heisenberg algebra. This

formula is regarded as the contribution from the (A1, DN ) theory to the instanton

part of the Nekrasov partition function. As we apply this Nekrasov formula to these

four-dimensional superconformal field theories, we evaluate the Nekrasov partition

function of these theories and find that the prepotential is related to that of the SU(2)

superconformal QCD by the non-trivial replacement of the UV gauge coupling. From

the relation of the prepotentials, we read off the action of the S-duality group on the

UV gauge coupling of these theories via that of the SU(2) superconformal QCD.
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1 Introduction

Supersymmetry imposes strong constraints on the quantum field theories. The four-

dimensional maximally supersymmetric gauge theories are N = 4 and are known as the

superconformal field theories. The N = 4 supersymmetric Yang-Mills theories have quan-

tum corrections; the gauge couplings in UV and IR region are equivalent, τ = τIR. Seiberg

and Witten have uncovered that the prepotential of the low-energy effective theory for the

N = 2 theories is explicitly determined by the Seiberg-Witten (SW) curve and the SW

1-form [1,2]. This means that one can understand the behavior of the quantum correction

of the low-energy effective theory for the N = 2 theories by only geometrical properties.

The S-duality of the N = 4 SU(N) SYMs, called the Montonen-Olive duality, implies

that the theory with the weak coupling τIR is equivalent to that with the strong coupling

−1/τIR, where τIR = θ
2π + 4πi

g2 , and then we exchange the minimal magnetic monopole with

the W-boson of the two theories [3–6]. These SYMs also have the symmetry of the theta

angle, τIR → τIR + 1, so-called the T -transformation. On the other hand, for the N = 2,

SU(2) with four flavors, the S-duality called the Seiberg-Witten duality is the exchanging

of the minimal magnetic monopole with the quark whose electric charge is 1/2 of that of

the W-boson, where the convention of the complex gauge coupling is τIR = θ
π + 8πi

g2 . The

T-transformation τIR → τIR + 1 means that the shift of the theta angle θIR → θIR + π [1].

The fundamental domain in the space of the gauge couplings show in Figure 1.

Although it is difficult to evaluate the path integral, including the non-perturbative

contribution for general quantum field theories because of an infinite dimensional integral,

the N = 2 theories with Lagrangian description have been evaluated by the supersym-

metric localization technique [7]. Then this path integral reduces to a sum over the fixed

points, described by a set of Young diagrams, of the torus action on the instanton moduli

space, which has been discovered by [8, 9], the so-called “Nekrasov partition function”.

The Nekrasov partition function is the partition function on the spacetime R4 deformed

by Ω-background, whose parameters are denoted (ε1, ε2) and related to the rotations on

spacetime. The Nekrasov partition function rederives the prepotential in the classical limit

as εi → 0 [9–11].

F ≡ lim
εi→0

(−ε1ε2 logZNek) . (1.1)

The instanton part of the Nekrasov partition function is known to be wirtten as a simple

product of the contributions from the “matter sectors” and the “gauge sectors”. For in-

stance, we consider the U(2) gauge theory with four flavors, and then the Nekrasov partition

3
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Figure 1: The fundamental domain in τIR

function of this theory is written as

ZNf=4
U(2) = Zpert

∑

Y1,Y2

q|Y1|+|Y2|Zvec
Y1,Y2

(a)
4∏

i=1

Z fund
Y1,Y2

(a,mi) , (1.2)

where q is the exponential of the gauge coupling, and the parameters a and mi are the VEV

of the scalar in the SU(2) vector multiplet and the mass parameters in the fundamental

hypermultiplets. The factors Zvec
Y1,Y2

and Z fund
Y1,Y2

express the contributions from the gauge

sector and the fundamental hypermultiplet in the matter sector.

Compactifying the 6d superconformal field theories (SCFTs) on a two-dimensional sur-

face, a class of the four-dimensional N = 2 theories can be obtained [12–17]. In particular,

so-called the class S theories are obtained by compactifying the 6d N = (2, 0) SCFTs of

the type of the simply-laced Lie algebra g on a punctured Riemann surface [12–14,18, 19].

The main advantage of the class S construction for type g = A1 is to be available a 2d/4d

correspondence, called the AGT correspondence [20, 21].

For instance, there is an exciting series of strongly-coupled SCFTs in the class S theories,

called Argyres-Douglas (AD) theories. These theories have the relevant operators and their

corresponding relevant couplings, whose scaling dimensions are fractional [14,22–26]. Since

the AD theories have no Lagrangian description, the Nekrasov partition function of the AD

theories cannot be directly evaluated by the supersymmetric localization technique, while

this can be indirectly evaluated via the (generalized) AGT correspondence [21,26,27]. These

developments were studied by [28–33].

There is an interesting series of the four-dimensional N = 2 SCFTs including the AD

theories in their matter sector, which is described by the quiver diagram in Figure 2. We

call such SCFTs “conformally gauged AD theories”. The supersymmetric localization

4



(A1, Dq) 2 (A1, Dr)

(A1, Dp)

Figure 2: The quiver diagram for the four-dimensional superconformal SU(2) gauge theories

coupled to three AD theories with (p, q, r) = (2, 4, 4), (2, 3, 6), or (3, 3, 3). The middle circle

stands for SU(2) gauge group and each boxes stand for the AD theories. SU(2) sub-group

of the flavor symmetry of each of the AD theories is diagonally gauged by the SU(2) vector

multiplet.

technique cannot directly evaluate the Nekrasov partition function of these theories due to

the AD theories in the matter sectors. Moreover, we cannot also evaluate this partition

function via the AGT correspondence since these theories have no engineering by com-

pactifying the 6d N = (2, 0) SCFT of type A1 on a punctured Riemann surface. Since

these theories have a vanishing one-loop beta function of the gauge coupling, we expect

that these theories will provide a new S-duality. [34–41] In particular, for the conformally

gauged AD theory for (p, q, r) = (2, 4, 4) in Figure 2, the S-duality represents the minimal

generalization of the Seiberg-Witten duality, which is studied by [34].

This thesis proposes a way to compute the Nekrasov partition function of the confor-

mally gauged AD theories. Using the proposal, we study the S-duality for these theories

based on our works [42,43]. Our strategy is to introduce the Nekrasov formula for the AD

sectors, say Z(A1,D2n)
Y1,Y2

, via the generalized AGT correspondence. To that end, we consider

the “non-conformally gauged AD theory” described in Figure 3, where the subgroup SU(2)

of the flavor symmetry of the AD theories is gauged by the SU(2) vector multiplet. This

theory is constructed by compactifying the 6d N = (2, 0) SCFT of type A1 on the Rie-

mann surface with two irregular punctures, and therefore we can apply this theory to the

AGT correspondence. Since the AGT correspondence is for SU(2) gauge group while the

Nekrasov partition function is obtained from U(2) gauge theory, we need a U(2) version

of the generalized AGT correspondence so that the resulting partition function follows the

same form of (1.2) decomposed as a sum over the two Young diagrams (Y1, Y2). Accord-

ing to the U(2) version of the original AGT correspondence, the extension to the U(2)

is obtained by defining the primary vertex operator of the direct sum of Virasoro and

Heisenberg algebras (V ir⊕H) instead of only the Virasoro algebra on the two-dimensional

CFT [44,45].
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(A1, DN) 2 (A1, DN)

Figure 3: Asymptotically free theory with SU(2) gauge group coupled to the two (A1, DN)

theories, where N is a positive integer.

This thesis is organized as follows; in section 2, we will review the four-dimensional

N = 2 theories and the AGT correspondence. In the review part of the AGT correspon-

dence, we first discuss the original AGT correspondence based on [20] and extend it to

the U(2) version. Furthermore, we give a brief review of the generalization of the AGT

correspondence.

In section 3, we provide the U(2)-version of the generalized AGT correspondence. In

particular, for the case of the (A1, DN) theories for even N , we discuss that an irregular

state of V ir⊕H is characterized by an extension of the colliding limit construction in [27].

At the same time, we provide an irregular state for odd N by considering the classical limit

εi → 0 and turning off the relevant couplings and the VEV of the relevant operators. We

then introduce the Nekrasov formula for the (A1, DN) theories.

In sections 4 and 5, we apply our formula to the conformally gauged AD theories for

(p, q, r) = (2, 4, 4) and (2, 3, 6) in Figure 2, which are called the (A3, A3) theory and the

(A2, A5) theory [46]. These include two AD theories and a fundamental hypermultiplet in

their matter sector. We show that when we turn off all of the dimensionful parameters

except for the VEV the scalar in the SU(2) vector multiplet a and the Ω-background

parameters (ε1, ε2), the prepotentials of these theories are related to that of the SU(2)

SQCD with four flavors FNf=4 as follows:

2F(A3,A3)(q; a) = FNf=4(q
2; a) , (1.3)

3F(A2,A5)(q; a) = FNf=4(q
3; a) . (1.4)

where F(A3,A3) and F(A2,A5) are the prepotentials of the (A3, A3) theory and the (A2, A5)

theory, and q is the exponential of the gauge coupling. Moreover, we discuss the S-duality of

these theories via that of the SU(2) SQCD with four flavors, and we check the consistency

of the above from the SW curve. In section 6, we conclude by presenting several future

directions.
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2 Review of AGT correspondence

This section will review the AGT correspondence discovered by Alday, Gaiotto, and Tachikawa

[20, 21]. This is a strong correspondence between the four-dimensional N = 2 theory and

the two-dimensional Liouville CFT. In particular, this implies that the instanton part of

the Nekrasov partition function is equivalent to the conformal block, and this consistency

has been checked by [45, 47–52]. The AGT correspondence was generalized for the AD

theories [26, 27].

In subsection 2.1, we briefly review the four-dimensional N = 2 theories. In subsection

2.2, we review the original AGT correspondence based on [20] and give the U(2)-version of

this correspondence. In subsection 2.3, we explain to be generalized for the AD theories.

2.1 Four dimensional N = 2 theories

The low energy effective theory of N = 2 theories is characterized by the moduli space of

vacua called the Coulomb branch. This is parametrized the VEV of the scalr field in N = 2

vector multiplet. For instance, we consider N = 2, SU(2) gauge theory. Then the moduli

parameter is u = tr〈φ2〉, where φ is the scalar field. As is well known, the spontaneous

symmetry breaking reduces this theory to the U(1) gauge theory when u '= 0, while the

gauge group is unbreakable when u = 0. However, the Coulomb branch has a non-trivial

structure by the quantum corrections. The low energy effective action of this theory is

determined by the prepotential F as

Leff =
1

4π
Im

∫
d4θ

[
Φ†∂F

∂Φ
+

∂2F
∂Φ2

WαW
α

]
, (2.1)

where Φ is the N = 1 chiral multiplet, including the scalar field, and Wα is the N = 1

vector multiplet, including the vector field, in both the adjoint of the gauge group. Since the

N = 2 theories are constrained by the supersymmetry, the prepotential is a holomorphic

function of Φ and this has only quantum corrections:

F = Fclassical + Fone-loop + Finstanton . (2.2)

The relation between this and the gauge coupling τIR of the resulting theory is given as

τIR = ∂2F/∂Φ2. The problem of the global structure of the Coulomb branch reduces to

the prepotential, which is explicitly determined by the SW curve and the SW 1-form [1].

The SW curve stands for the algebraic curve, which is identical to the fibration over the

Coulomb branch, while the SW 1-form relates to the masses of the BPS particles. For
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−Λ Λ

m
u

Figure 4: The Coulomb branch for the SU(2) theory with one flavor. The black dots stand

for the singular points. The massless particles are the dyon, the monopole, and the quark

at u = −Λ,Λ, and m, respectively.

SU(2) SQCD with one flavor, the SW curve stands for the torus, which degenerate at

the three singular points on the Coulomb branch. The low energy effective theories at the

singular points reduce to the U(1) gauge theory with a massless particle, which is monopole,

dyon, or quark, see Figure 4. Let us consider the colliding of these singular points. Then

we obtain the Argyres-Douglas theory at this singular point, called the Argyres-Douglas

point [22–24]. For instance, we start with the SU(2) gauge theory with one flavor. the

AD theory arises in the low energy region when the mass parameter m is related to the

dynamical scale Λ as m ∼ Λ. This AD theory is the U(1) gauge theory with a massless

monopole and a massless quark. This theory has no Lagrangian description and is believed

the strongly coupled superconformal field theory. We review the generalize AD theories in

the following.

String theory, M-theory, and F-theory can obtain the four-dimensional N = 2 theories

[53–60]. In this subsection, we discuss a series of the N = 2 theories. In the last of

this subsection, we denote the Nekrasov partition function of the four-dimensional N = 2

theories with Lagrangian description. In particular, we focus on the SU(2) SQCD with

four flavors and briefly review the S-duality for this theory.

2.1.1 N = 2 theories of class S

Compactifying 6d N = (2, 0) SCFTs of type A1 on a punctured Riemann surface C obtains

a class of the four-dimensional N = 2 theories [12–14, 18, 19]. We here denote by TC the

four-dimensional N = 2 SCFT. In particular, It is known that the punctures on C can be

classified into two types: “regular puncture” and “irregular puncture” [13, 14, 18]. These

punctures are characterized by the behavior of the Hitchin field Φ(z) in the Hitchin system

corresponding to the 4d theory TC. Φ(z) has a simple pole at the regular puncture in

the neighborhood of z = 0, while it has a heigher pole at the irregular puncture. In the

following sub-section, we will see that for more details of the irregular punctures. The

8



2 2 2 · · · 2 2

Figure 5: The quiver diagram of TC compactifying by sphere C with (n+ 2) regular punc-

tures. There are (n− 1) circles, each of which stands for an SU(2) gauge group.

spectral curve of the Hitchin system identifies the SW curve of the 4d theory TC as [14,61]

det(x− Φ(z)) = 0 , (2.3)

where the SW 1-form is λ ≡ xdz.

For instance, let us consider C as the sphere with (n+ 2) regular punctures. Then one

obtains the linear-quiver gauge theory [13, 62–64], which has SU(2)n−1 gauge group, see

Figure 5. The beta function of all of the gauge couplings is 0. Hence we see that this theory

is superconformal.

2.1.2 General Argyres-Douglas theories

The AD theories are a series of strongly coupled four-dimensional SCFTs with Coulomb

branch operators and relevant couplings whose scaling dimensions are fractional. Hence

these theories have no Lagrangian description. The AD theories cannot apply to the super-

symmetric localization technique, which differs from the Lagrangian theories. The original

AD theories were discovered as an IR SCFT at a special point on the Coulomb branch of

the SU(3) SYM [22] and the SU(2) SQCD with various flavors: Nf = 1, 2, 3 [23].1 It is

further generalized to N = 2 theory with a general gauge group and fundamental hyper-

multiplet [24]. The AD theories are generally constructed by compactifying 6d N = (2, 0)

SCFTs of type A1 on a punctured sphere C [13, 14, 25, 26, 65–67] and by type IIB string

theory on Calabi-Yau singularities [46, 68].

As shown in [25], the four-dimensional theory TC is conformal theory only if the Riemann

surface C, whose genus is zero, has an irregular puncture and one or zero regular puncture.

In the neighborhood of the origin, The irregular punctures behave as Φ(z) ∼ 1/z
N
2 +1

for integer N , it is called rank N/2 irregular puncture. These AD theories are called the

(A1, DN) and (A1, AN−3) theory, respectively. Here An andDn stand for the type of isolated

singularity of the SW curve [46,68]. The UV theories for these AD theories are the quiver

diagrams described in Figure 6.2 In particular, for the (A1, Deven) theories, the UV theory

1The AD theory from SU(2) SQCD with Nf = 1 coincides with that from SU(3) SYM.
2The AD theories obtained from SU(2) SQCD with Nf = 1, 2, 3 flavors are called the (A1, A2), (A1, A3)

9



0 2 · · · 2 1

(a)

1 2 · · · 2 1

(b)

0 2 · · · 2 2

(c)

Figure 6: The quiver diagrams (a), (b) and (c) are of the UV theories for The (A1, A2n−2)

theory, The (A1, A2n−1) theory and The (A1, D2n−1) theory, respectively for integer n.

There are (n − 1) circles for each of the diagrams. The boxes stand for fundamental

hypermultiplets of SU(2).

is the superconformal SU(2) linear quiver diagram described in Figure 5 for n = N/2 [25].

Note that the (A1, D2) theory is identified with a free fundamental hypermultiplet in the

doublet of U(2). This thesis focuses on the (A1, DN) theories. The (A1, DN) theory has

flavor symmetry SU(2)× U(1). For N = 4, this flavor symmetry is enhanced to SU(3).

2.1.3 Nekrasov partition function

The Nekrasov partition function is known as the partition function on R4 deformed by

the Ω-background, which was first studied by [8, 9]. Ω-background parameters (ε1, ε2) are

associated with the rotation SO(4), and therefore the Nekrasov partition function is a

function of (ε1, ε2). This consists of the perturbative part Zpert and the instanton part Zinst

as

ZNek(ε1, ε2; a; · · · ) = ZpertZinst , (2.4)

where a stands for the VEV of the scalar field in the vector multiplet, and “ · · · ” stands for

the other parameters in this theory. the Nekrasov partition function of four-dimensional

and (A1, D4) theories, respectively. In particular, since A3 and D3 have the same Dynkin diagram, we see

that the (A1, D3) theory is equivalent to the (A1, A3) theory.

10



N = 2 U(N) theory with Lagrangian description can be evaluated by using the supersym-

metric localization technique. Then the instanton part is given by a sum over the fixed

points of the torus action on the U(N) instanton moduli space.3 These fixed points are

labeled by a set of N Young diagrams {Yk}, i.e., we combinatorially evaluate the partition

function.

Below, let us consider that the gauge group is U(2). For the U(2) gauge theory with

Nf flavors, the fixed points of the torus action on the U(2) instanton moduli space are

described by two Young diagrams (Y1, Y2). The instanton part of this theory is given by a

simple product expression as [69–71]

Zinst =
∑

Y1,Y2

Λb0(|Y1|+|Y2|)Zvec
Y1,Y2

(a)

Nf∏

i=1

Z fund
Y1,Y2

(a,mi) , (2.5)

where b0 ≡ 4−Nf is the coefficient of the beta function, Λ and a are respectively dynamical

scale and the VEV of the scalar field in the SU(2) vector multiplet, and mi are the mass

parameters of the fundamental hypermultiplets. When Nf = 4, Λ is replaced by the

exponential of the marginal gauge coupling q. Z fund
Y1,Y2

stands for the contribution from the

fundamental hypermultiplet and is written as4

Z fund
Y1,Y2

(a,m) ≡
2∏

i=1

∏

s∈Yi

(φ(ai, s)−m+ ε1 + ε2) , (2.7)

where a1 = −a2 = a and

φ(a, s) ≡ a+ ε1(i− 1) + ε2(j − 1) . (2.8)

Zvec
Y1,Y2

stands for the contribution from the vector multiplet and is written as

Zvec
Y1,Y2

(a) ≡
2∏

i,j=1

∏

s∈Yi

1

−EYi,Yj
(ai − aj, s) + ε1 + ε2

∏

t∈Yj

1

EYj ,Yi
(aj − ai, t)

, (2.9)

where the factor EY1,Y2 is defined as

EY1,Y2(a, s) ≡ a− ε1LY2(s) + ε2(AY1(s) + 1) . (2.10)

3The torus action is related to the maximal torus of U(N) and SO(4).
4The contribution from the anti-fundamental hypermultiplet related to Z fund

Y1,Y2
(a,m):

Zanti-fund
Y1,Y2

(a,m) = Z fund
Y1,Y2

(a, ε1 + ε2 −m) (2.6)

11
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• • • •s

Figure 7: For s = (2, 1), the leg-length is the number of black dots and the arm-length is

the number of white dots.

Let us denote Young diagram by Y = {λ1 ≥ λ2 ≥ · · · }, where λi is the height of i-th

column, and denote its transpose by Y T = {λ′

1 ≥ λ
′

2 ≥ · · · }, where λi is the length of i-th

width. For a box s = (i, j), the leg-length LY and the arm-length AY are defined as (see

Figure 7)

LY (s) = λ
′

j − i , AY (s) = λi − j . (2.11)

The contribution from the bi-fundamental hypermultiplet of U(2)× U(2) is defined as

Zbifund
Y1,Y2;W1,W2

(a, b,α) ≡
2∏

i,j=1

∏

s∈Yi

(E(ai − bj, Yi,Wj , s)− α)

×
∏

t∈Wj

(ε1 + ε2 − E(bj − ai,Wj , Yi, t)− α) , (2.12)

where a and b stand for the VEVs of the scalar field in each vector multiplets, and α is

a mass parameter of the bi-fundamental hypermultiplet. Note that this is related to the

contribution from the vector multiplet as

Zbifund
Y1,Y2;Y1,Y2

(a, a, 0) = 1/Zvec
Y1,Y2

(a) . (2.13)

2.1.4 S-duality for the SU(2) SQCD with four flavors

Here, we review S-duality for the SU(2) SQCD with four flavors. This theory is known to

be self-dual. The Nekrasov partition function of this theory is given as

ZNf=4
U(2) = Zpert

∑

Y1,Y2

q|Y1|+|Y2|Zvec
Y1,Y2

(a)
4∏

i=1

Z fund
Y1,Y2

(a,mi) , (2.14)
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where we replaced SU(2) gauge group with U(2). The exponential of the gauge coupling is

defined as q = eiπτ .5 When the mass parameters are turned off, from (1.1), the prepotential

is obtained as the sum of the perturbative part (log q − log 16)a2 and instanton part:

FNf=4
inst (q; a) =

(
1

2
q +

13

64
q2 +

23

192
q3 +

2701

32768
q4 + · · ·

)
a2 . (2.15)

On the other hand, in terms of qIR, the prepotential is defined as

FNf=4 = (log qIR)a
2 , (2.16)

where qIR is the exponential of IR gauge coupling and is defined as qIR = e
i
θIR
π

− 8π2

g2
IR . This

implies that the relation between q and qIR is [72]

q =
θ2(qIR)4

θ3(qIR)4
, (2.17)

where θ2(q) =
∑

n∈Z q
(n− 1

2 )
2
and θ3(q) =

∑
n∈Z q

n2
. This relation means that

τIR ≡ 1

πi
log qIR =

θIR
π

+
8πi

g2IR
(2.18)

is the modulus of the elliptic curve, which corresponds to the double cover of a sphere with

four punctures whose cross ratio is q. This elliptic curve is known to be invariant under

PSL(2,Z). The action of PSL(2,Z) on the IR gauge coupling generated by

T : τIR → τIR + 1 , S : τIR → − 1

τIR
. (2.19)

This implies that the theory is invariant under T and S transformations on the UV gauge

coupling as follows:

T : q → q

q − 1
, S : q → 1− q . (2.20)

Let us now turn on all the mass parameters. then the instanton part of the prepotential

is modified as

FNf=4
inst (q; a,mi)

=
1

2
(a2 +m1m2m3m4a

−2)q

+
1

64

(
13a2 + (16m1m2m3m4 +m2

3m
2
4 +m2

2(m
2
3 +m2

4) +m2
1(m

2
2 +m2

3 +m2
4))a

−2

− 3(m2
2m

2
3m

2
4 +m2

1(m
2
3m

2
4 +m2

2(m
2
3 +m2

4)))a
−4 + 5m2

1m
2
2m

2
3m

2
4a

−6
)
q2 + · · · .

(2.21)

5We use the convention τ = θ
π + 8πi

g2

13



In this case, the theory is invariant under the transformations (2.20) combined with the

exchanging the mass parameters by the action of PSL(2,Z).

2.2 AGT correspondence

In this subsection, we review the original AGT correspondence [20] and discuss to extension

to U(2)-version [44].

2.2.1 Original AGT correspondence

The original AGT correspondence is a relation between the four-dimensional N = 2 theory

TC and two-dimensional Liouville CFT [20]. Let us consider the case of TC for C being a

sphere with (n + 2) regular punctures. Recall that this theory is described in the quiver

diagram Figure 5. This theory is a linear-quiver gauge theory that has SU(2)n−1 gauge

group. The original AGT correspondence implies that the instanton part of the Nekrasov

partition function of this theory is identified by the (n + 2)-point conformal block of the

Virasoro primary vertex operator Vα ≡ e2αφ(z) with the conformal weight ∆α ≡ α(Q − α)

of the Liouville CFT as

Zinst()a;m0, · · · ,mn+1) = Fα0
α1

β1
α2

β2
α3 · · · βn−1

αn
αn+1 , (2.22)

where )a = (a1, · · · , an−1) and mi are respectively the VEV of Coulomb branch operators

and the mass parameters in the four-dimensional theory; αi and βi are the external and

intermediate momenta in the Liouville theory, respectively. The relations between The 4d

and 2d parameters are of

ai√
ε1ε2

= βi −
Q

2
,

mi√
ε1ε2

= αi −
Q

2
, (2.23)

where εi is the Ω-background parameters that correspond to the Liouville charge by Q =

(ε1+ ε2)/
√
ε1ε2. In this paper, we rescale the Ω-background parameters by

√
ε1ε2 = 1. The

SW curve of TC (2.3) is also identified as the insertion of the energy-momentum tensor into

the n+ 2-points function in the classical limit εi → 0 as

x2 = −〈α0|T (z)Vα1(z1) · · ·Vαn(zn)|αn+1〉
〈α0|Vα1(z1) · · ·Vαn(zn)|αn+1〉

, (2.24)

where the Virasoro primary state is defined by the state-operator map as |α〉 ≡ limz→0 Vα(z)|0〉.
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The AGT correspondence can be extended to SU(N) gauge theory [73]. Then the

algebra on two-dimensional theory is of WN algebra.6

2.2.2 U(2)-version of original AGT correspondence

In [20], the Nekrasov partition function of a U(2) gauge theory ZU(2) is generally decom-

posed into that of the SU(2) gauge theory ZSU(2) and U(1) factor ZU(1), by

ZU(2) = ZSU(2)ZU(1) , (2.25)

where the instanton part of ZSU(2) is identical to a conformal block of the two-dimensional

Liouville CFT as reviewed in subsection 2.2, and ZU(1) is interpreted to the contribution

of the U(1) part of the gauge theory. On the 2d side, the U(1) factor corresponds to the

n-points function of chiral vertex operators for an extra Heisenberg algebra, which was

studied in [45].

Suppose the linear quiver gauge theory described by the quiver diagram Figure 5, ZSU(2)

is identical to the (n + 2)-points function of the Liouville CFT, while the U(1) factor is

identified as [44]

ZU(1) = 〈V H
α0
(z0) · · ·V H

αn+1
(zn+1)〉 , (2.26)

where V H
α (z) ≡ exp

(
2(α−Q)i

∑
k<0

ak
k z

−k
)
exp

(
2αi

∑
k>0

ak
k z

−k
)
is of the chiral vertex

operator for Heisenberg algebra, and each of the coordinates zk of these operators coincides

with those of the Virasoro primary vertex operators in (2.22). Thus, we see that the

Nekrasov partition function ZU(2) is identified with the (n + 2)-points function of chiral

vertex operators of the form

V̂α(z) ≡ Vα(z)⊗ V H
α (z) . (2.27)

Therefore we note that the original AGT correspondence is extended U(2)-version in case

of the direct sum of Virasoro and Heisenberg algebra which we denote V ir⊕H. Note that

Virasoro generators Lk and Heisenberg generators ak are commutative since we defined

these algebras as the direct sum of the two algebras. Thus, our convention for the algebra

V ir ⊕H is such that

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 , (2.28)

[an, am] =
n

2
δn+m,0 , [Ln, am] = 0 , (2.29)

6In particular, for N = 3, it has been checked by [74,75].
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and the action of V ir ⊕H on V̂α(z) is characterized by7

[Ln, V̂α(z)] = (zn+1 + (n+ 1)α(Q− α)zn)V̂α(z) , (2.31)

[an, V̂α(z)] =

{
−iαznV̂α(z) (n < 0)

i(Q− α)znV̂α(z) (n > 0)
. (2.32)

2.3 Generalized AGT correspondence

In this subsection, we will discuss the generalized AGT correspondence. The same argument

as reviewed in subsection 2.2, the generalized AGT correspondence relates the instanton

part of the Nekrasov partition function of the AD theories with an “irregular” conformal

block of the Liouville theory. Moreover, we review the construction of the irregular state

corresponding to the (A1, DN) theory for even N .

2.3.1 Generalization of AGT correspondence

According to the generalized AGT correspondence [21,26,27], the regular puncture and the

irregular puncture correspond to a primary state |a〉 and irregular state |I(N/2)〉 of Virasoro
algebra, respectively. The irregular state is a simultaneous eigenstate of Lk for k ≥ .N/2/
as follows:8

Lk|I(N/2)〉 =





0 for N < k

λk|I(N/2)〉 for
⌊
N
2

⌋
≤ k ≤ N

. (2.33)

The generalized AGT correspondence implies that the Nekrasov partition function of the

(A1, DN) theory is identified with the inner product of the regular state |a〉 and the irregular

state |I(N/2)〉 as

Z(A1,DN ) = 〈a|I(N/2)〉 , (2.34)

and SW curve of the theory is also identified as the classical limit of the insertion of the

energy-momentum tensor into the inner product

x2 = −〈a|T (z)|I(N/2)〉
〈a|I(N/2)〉 . (2.35)

7From the state-operator map, one obtains the highest weight state |a〉 of V ir ⊕H as

|a〉 = |aV 〉 ⊗ |aH〉 , (2.30)

where |aV 〉 is the highest weight state of Virasoro algebra, and |aH〉 is that of Heisenberg algebra.
8.s/ is the integer part of s.
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⇒

Figure 8: LHS: The Riemann surface of the theory described in Figure 3 being sphere with

two irregular punctures. RHS: The surface stands for a weak coupling limit of the LHS

theory.

Since the Virasoro generators define the energy-momentum tensor as T (z) ≡
∑

y−k−2Lk,

we see that (2.35) is evaluated from (2.33) as

x2 = − λN

zN+2
− λN−1

zN+1
− · · ·− ∆a

z2
. (2.36)

Let us now consider that C has two irregular punctures of rank N/2. In this case, the

four-dimensional theory TC is asymptotically free, namely non-conformal field theory, and

then the quiver diagram for this theory is described in Figure 3; we now call this “non-

conformally gauged AD theory”. Here, the flavor symmetry SU(2) ⊂ SU(2)× U(1) of the

(A1, DN) theories are gauged by the SU(2) vector multiplet.9 This theory is engineered

by compactifying on a surface C with two irregular punctures, which is represented by

connecting the regular punctures of each of the punctured Riemann surfaces corresponding

to the AD sectors, see Figure 8. The generalized AGT correspondence implies that the

Nekrasov partition function of this theory is written as

Z2×(A1,D2n)
SU(2) = 〈I(n)|I(n)〉 , (2.37)

where 〈I(N/2)| and |I(N/2)〉 correspond to each of the AD sectors.

2.3.2 Colliding-limit construction

Here, we show the construction of |I(N/2)〉 for even N , based on [27]. The irregular state

|I(N/2)〉 for even N can be constructed by colliding (N2 +1) Virasoro primary operators, see

Figure 9. To see that, we define the state

|φN
2
(z1, . . . , zN

2
)〉 ≡ :




N/2∏

i=1

V L
αi
(zi)



V L
α0
(0) : |0〉 , (2.38)

9When N is equal to 4, the flavor symmetry is enhanced to SU(3).
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colliding limit

Figure 9: Left: There are (N2 + 1) black dots, each of wihch stand for Virasoro primary

vertex operators. Right: Blue dot stand for a rank n irregular state constructed by colliding

limit.

where : AB : is the normal-orderd product of A and B. The action of the encoding singular

behavior of the stress tensor T>(y) ≡
∑

k≥−1 y
−k−2Lk on this state is given by

T>(y)|φN
2
(z1, . . . , zN

2
)〉 =

N/2∑

i=0

(
αi(Q− αi)

y − zi
+

1

y − zi

∂

∂zi

)
|φN

2
(z1, . . . , zN

2
)〉 , (2.39)

where zo is zero. Note that we consider the limit zi → 0 and αi → ∞ with ck ≡
∑N/2

i=0 αizki
kept finite for k = 0, · · · , N2 , and then the action (2.39) is reduced to

T>(y)|I(N/2)〉 =




N∑

k=N/2

λk

yk+2
+

N/2−1∑

k=0

λk +
∑N/2−k

(=1 ,c(+k
∂
∂c#

yk+2
+

L−1

y



 |I(N/2)〉 , (2.40)

where the irregular state and λk are defined as

|I(N/2)〉 ≡ lim
colliding limit

|φN
2
(z1, · · · , zN

2
)〉 , (2.41)

and

λk =





−
∑N/2

(=k−N/2 c(ck−( for N
2 < k ≤ N

−
∑k

(=0 c(ck−( + (k + 1)Qck for k ≤ N
2

. (2.42)

Thus, Lk concretely acts on this state

Lk|I(N/2)〉 =






0 for N < k

λk|I(N/2)〉 for N
2 ≤ k ≤ N

(
λk +

∑N/2−k
(=1 , c(+k

∂
∂c#

)
|I(N/2)〉 for 0 ≤ k < N

2

. (2.43)

Note that |I(N/2)〉 is a simultaneous eigenstate of LN/2, · · · , LN−1 and LNwith fixed by

c0, · · · , cN/2−1 and cN/2. On the other hand, since (2.43) contains differential equations, it
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is not an eigenstate of L0 · · ·LN/2−2 and LN/2−1 but depends on the boundary condition

or the asymptotic behavior. As discussed in [27], |I(N/2)〉 is completely fixed by N/2

extra parameters characterized the asymptotic behavior of |I(N/2)〉 in the small ck limit for

k = 1, · · · , N/2, in addition to c0, · · · , cN/2−1 and cN/2.

Next, we show how the 2d parameters are related to the 4d parameters. Note that the 4d

theory has N parameters while the two-dimensional theory depends on (N +1) parameters

characterized by ck for k = 0, · · · , N/2 and N/2 extra parameters. Therefore, there is a

discrepancy between the number of parameters of the 4d and 2d theories. To explain this

discrepancy, we start with the SW curve of the (A1, DN) theory for even N [26, 27]

x2 =
a2

z2
+

N
2 −1∑

k=1

uk

z
N
2 +2−k

+
m

z
N
2 +2

+

N
2 −1∑

k=1

dk
zN+2−k

+
1

zN+2
, (2.44)

where uk, dk, and m are respectively the VEVs of Coulomb branch operators, the relevant

couplings and, a mass parameter. On the other hand, by inserting (2.43) into (2.35), the

SW curve on the 2d theory is identified as the classical limit of the following

x2 = −〈a|T (z)|I(N/2)〉
〈a|I(N/2)〉 = −∆a

z2
+ · · ·+

2cN
2
cN

2 −1

zN+1
+

c2N
2

zN+2
. (2.45)

Here, we make the change of variables as z → (cN/2)
2
N z and x → (cN/2)−

2
N x in (2.45) so

that the coefficient of 1/zN+2 is 1, then the SW curve (2.45) corresponds to (2.44). To be

easy to understand this relation, we define new parameters by

γk ≡
ck

(cN
2
)
2k
N

for 0 ≤ k <
N

2
. (2.46)

Then, the relation between the 2d and 4d parameters is given by

dk =

N
2∑

(=N
2 −k

c(cN−k−(

(cN
2
)2−

2k
N

=

N
2∑

(=N
2 −k

γ(γN−k−( , m =

N
2∑

(=0

c(cN
2 −(

cN
2

=

N
2∑

(=0

γ(γN
2 −( , (2.47)

uk =

N
2 −k∑

(=0

c(cN
2 −k−(

(cN
2
)1−

2k
N

−
k∑

(=1

,
cN

2 +(−k

(cN
2
)1−

2k
N

∂F(A1,DN )

∂c(
=

N
2 −k∑

(=0

γ(γN
2 −k−( −

k∑

(=1

,γ(+N
2 −k

∂

∂γ(
F(A1,DN ) ,

(2.48)

where F(A1,DN ) is the prepotential of the (A1, DN) theory as following

F(A1,DN ) ≡ lim
εi→0

(
−ε1ε2 logZ(A1,DN )

)
. (2.49)
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Note that all the 4d parameters is independent of cN/2 when we take )γ ≡ (γ0, · · · , γN/2−1)

and cN/2 as independent variables, but we need to prove the cN/2 independence of
∂
∂γ#

F(A1,DN ).

We will explain this in subsection 3.1.

Recall that we consider the case of even N . The colliding limit construction is not

known for odd N on this state, and therefore the actions of L0, · · · , LN−1
2

have not been

specified by the parameters ck. We will discuss the action of Virasoro and Heisenberg

generators on |I(N/2)〉 for odd N in subsection 3.2.
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3 U(2)-version of the generalized AGT correspondence

In this section, we will show the extension of the generalized AGT correspondence as

reviewed in subsection 2.3 to U(2)-version. Then one obtains the Nekrasov-type formula for

the (A1, DN ) theory coupled to the U(2) gauge group. In subsection 2.2, the U(2)-version

of the original AGT correspondence has been obtained by the direct sum of the Virasoro

primary vertex operator and the chiral vertex operator for extra Heisenberg algebra in

(2.27). Our strategy is to introduce an irregular state of V ir⊕H and to find the Nekrasov-

type formula for the (A1, DN ) theory as a sum over a pair of two Young diagrams.

In the next subsection 3.1, we introduce the irregular state of V ir⊕H for rank even N

and construct this by the colliding limit construction. Moreover, We will discuss the case

of odd N in subsection 3.2.

3.1 In the case of (A1, Deven)

We first show that an irregular state corresponding to the U(2)-version of the generalized

AGT can be constructed by the colliding limit construction when N is even. Application to

this state, we then propose the Nekrasov-type formula for the (A1, Deven) theories labeled

a pair of two Young diagrams.

3.1.1 Irregular state of V ir ⊕H

Recall that the original AGT correspondence is extended to the U(2)-version when the

algebra in the 2d theory is V ir⊕H. Here, We extend the generalized AGT correspondence

to the U(2)-version. The same argument as in subsection 2.3, an irregular state |Î(N/2)〉
is a state in the highest module of V ir ⊕H. In particular, the irregular state for even N

is constructed by colliding limit construction of the regular states (2.27). To see that, we

start with the state

|φH
N
2
(z1, · · · , zN

2
)〉 ≡ :




N
2∏

i=1

V H
αi
(zi)



V H
α0
(0) : |0〉 . (3.1)

The action of J>(y) ≡
∑

k≥1 y
−k−1ak on it is given by

J>(y)|φH
N
2
(z1, · · · , zN

2
)〉 = −

N
2∑

i=0

i(Q− αi)zi
y(y − zi)

|φH
N
2
(z1, · · · , zN

2
)〉 . (3.2)
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Similarly to (2.41), we take the colliding limit zi → 0 and αi → ∞ with ck kept fixed, and

then we define the irregular state of Heisenberg algebra as

|I(N/2)
H 〉 ≡ lim

colliding limit
|φH

N
2
(z1, · · · , zN

2
)〉 . (3.3)

We see that the irregular state of Heisenberg algebra is characterized by

ak|I(N/2)
H 〉 =





0 for N

2 < k

−ick|I(N/2)
H 〉 for 1 ≤ k ≤ N

2

. (3.4)

Since we now consider the direct sum of Viraso and Heisenberg algebras, the irregular state

|Î(N/2)〉 is decomposed as

|Î(N/2)〉 = |I(N/2)〉 ⊗ |I(N/2)
H 〉 , (3.5)

where |I(N/2)〉 is satisfied with (2.43). Hence the new irregular state is defined as follows:

Lk|Î(N/2)〉 =






0 for N < k

λk|Î(N/2)〉 for N
2 ≤ k ≤ N

(
λk +

∑N
2 −k
(=1 , c(+k

∂
∂c#

)
|Î(N/2)〉 for 0 ≤ k < N

2

, (3.6)

ak|Î(N/2)〉 =





0 for N

2 < k

−ick|Î(N/2)〉 for 1 ≤ k ≤ N
2

, (3.7)

where we again denote λ as

λk =





−
∑N/2

(=k−N/2 c(ck−( for N
2 < k ≤ N

−
∑k

(=0 c(ck−( + (k + 1)Qck for 0 ≤ k ≤ N
2

. (3.8)

3.1.2 Nekrasov-type formula

According to (2.5), the instanton part of the Nekrasov partition function is decomposed

as the contributions from the gauge sector and the matter sector. Let us start with the

non-conformally gauged AD theory described in Figure 3 for even N . Recall that the flavor

symmetry SU(2) ⊂ SU(2)× U(1) of the (A1, DN) theories is gauged by the SU(2) vector

multiplet, and this theory is constructed by compactifying 6d N = 2 A1 type SCFT on a

sphere C with two irregular punctures. Since the theory involved the (A1, DN) theories in

the matter sector, the Nekrasov partition function of the theory cannot be evaluated by
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the supersymmetric localization technique. However, we can read off the contribution from

the (A1, DN) theory at the fixed point labeled by (Y1, Y2) on the U(2) instanton moduli

space via U(2)-version of the generalized AGT correspondence.

To see that, similarly to the case of Lagrangian description, we first propose that the

instanton part of the Nekrasov partition function can be decomposed as

Z2×(A1,DN )
U(2) = Zpert

∑

Y1,Y2

Λb0(|Y1|+|Y2|)Zvec
Y1,Y2

(a)Z(A1,DN )
Y1,Y2

(a,m,ddd,uuu)Z̃(A1,DN )
Y1,Y2

(a, m̃, d̃dd, ũuu) , (3.9)

where b0 = 4/N , and we regard Z(A1,DN )
Y1,Y2

and Z̃(A1,DN )
Y1,Y2

as the contributions from two

different (A1, DN) sectors, and m, ddd = (d1, · · · , dN
2 −1), and uuu = (u1, · · · , uN

2 −1) (or m̃,

d̃dd = (d̃1, · · · , d̃N
2 −1), and ũuu = (ũ1, · · · , ũN

2 −1)) respectively the mass parameter, the relevant

couplings, and the VEVs of Coulomb branch operators in the (A1, DN) theory. The same is

true of the parameters with a tilde. Since the two (A1, DN) theories have different couplings

to the U(1) subgroup of the gauge group, Z̃(A1,DN )
Y1,Y2

and Z(A1,DN )
Y1,Y2

are not identical.

On the 2d side, the Nekrasov partition function of the theory is given by

Z2×(A1,DN )
U(2) = 〈Î(N/2)|Î(N/2)〉 . (3.10)

As shown in [44], there exists a unique orthogonal basis |a;Y1, Y2〉, which is a linear com-

bination of descendants of |a〉 at level (|Y1|+ |Y2|)10 such that

〈a;Y1, Y2|V̂α(1)|b;W1,W2〉
〈a|V̂α(1)|b〉

= Zbifund
Y1,Y2;W1,W2

(a, b,α) , (3.11)

where the RHS is the contribution from the bi-fundamental hypermultiplet shown in (2.12),

V̂α(1) is the vertex operator reviewed in subsection 2.2, and Yk and Wk are Young diagrams.

In particular, |a; ∅, ∅〉 ≡ |a〉 is the highest weight state satisfying 〈a|a〉=1, L0|a〉 = ∆(a)|a〉
and Ln|a〉 = an|a〉 = 0 for n > 0, and we denote a few examples of |a;Y1, Y2〉 in Appendix

A. Here, the conjugate 〈a;Y1, Y2| is not the usual hermitian conjugate of |a;Y1, Y2〉, i.e.,
for |a;Y1, Y2〉 given by a linear combination of Lm1

−k1
· · ·Lmp

−kp
an1
−(1

· · · anq

−(q
|a〉. The conjugate

〈a;Y1, Y2| is obtained by replacing each of these states with 〈a|anq

(q
· · · an1

(1
Lmp

kp
· · ·Lm1

k1
without

changing the coefficients of the linear combination as discussed in [44]. And also, recall

that Zvec
Y1,Y2

(a) = 1/Zbifund
Y1,Y2;Y1,Y2

(a, a, 0), the orthogonal basis is satisfied with an equation as

1 =
∑

Y1,Y2

Zvec
Y1,Y2

(a) |a;Y1, Y2〉〈a;Y1, Y2| . (3.12)

10The “level” is the sum of the levels of Virasoro and Heisenberg algebras. For instance,

Lm1

−k1
· · ·Lmp

−kp
an1

−#1
· · · anq

−#q
|a〉 has level

∑p
i=1 miki +

∑q
i=1 ni#i.
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Then inserting (3.12) into the RHS of (3.10), one is given by

Z2×(A1,DN )
U(2) =

∑

Y1,Y2

Zvec
Y1,Y2

(a) 〈Î(N/2)|a;Y1, Y2〉〈a;Y1, Y2|Î(N/2)〉 . (3.13)

Comparing (3.9) with (3.13), we can interpret the expression (3.13) as a sum over the

fixed points of torus action on the U(2) instanton moduli space. Recall that |Î(N/2)〉 and

〈Î(N/2)| correspond to each of the AD theories. Therefore, we regard the factor Z(A1,DN )
Y1,Y2

and Z̃(A1,DN )
Y1,Y2

as respectively

Z(A1,DN )
Y1,Y2

∼ 〈a;Y1, Y2|Î(N/2)〉
〈a|Î(N/2)〉

, Z̃(A1,DN )
Y1,Y2

∼ 〈Î(N/2)|a;Y1, Y2〉
〈Î(N/2)|a〉

, (3.14)

where we define the perturbative part as Zpert ≡ 〈Î(N/2)|a〉〈a|Î(N/2)〉 since the perturbative
part makes the power series in Λ start with 1.

Let us focus on the left relation of (3.14). As discussed in subsection 2.3, the LHS

of (3.14) is independent of cN/2, and then the cN/2 dependence of the RHS needs to be

canceled by a constant of proportionality. To see that dependence, let us consider the form

〈a;Y1, Y2|(L0 −∆c0)|Î(N/2)〉 = (∆a −∆c0 + |Y1|+ |Y2|) 〈a;Y1, Y2|Î(N/2)〉 . (3.15)

On the other hand, from (2.43), the above expression is identified in terms of )γ and cN/2 as

NcN
2

2

∂

∂cN
2

∣∣∣∣∣
+γ

〈a;Y1, Y2|Î(N/2)〉+ · · · , (3.16)

where “· · · ” stands for the derivative with respect to )γ. The equivalence between the above

two equations implies that

〈a;Y1, Y2|Î(N/2)〉 = (cN
2
)2

∆a−∆c0+|Y1|+|Y2|

N fY1,Y2()γ) , (3.17)

where fY1,Y2()γ) is independent of cN/2. To see that all 4d parameters are indeed indepen-

dent of cN/2, as discussed in subsection 2.3, let us consider a function

log〈a|Î(N/2)〉 = 2(∆a −∆c0)

N
log cN

2
+ log f∅,∅()γ) , (3.18)

where we set Y1 = Y2 = ∅ in (3.17). This implies that ∂
∂γ#

log〈a|Î(N/2)〉 = ∂
∂γ#

log f∅,∅()γ) is

independent of cN/2. Note that the cN/2-independence of all the 4d parameters follows from

that of ∂
∂γ#

log〈a|Î(N/2)〉.

24



The above results imply that the cN/2 dependence of the RHS of (3.14) is canceled by

the factor c
−2

|Y1|+|Y2|
N

N/2 , and therefore the left relation of (3.14) is explicitly given by

Z(A1,DN )
Y1,Y2

= (ζcN/2)
−2

|Y1|+|Y2|
N

〈a;Y1, Y2|Î(N/2)〉
〈a|Î(N/2)〉

, (3.19)

where ζ is a possible numerical constant independent of all variables.

The same argument as the above, we can also show the right relation of (3.14). Recall

that the conjugate 〈a;Y1, Y2| is not the usual hermitian conjugate of |a;Y1, Y2〉. Note that

the factor Z̃(A1,DN )
Y1,Y2

is obtained from Z(A1,DN )
Y1,Y2

by replacement as follows:

ck −→ −c̃∗k , Q → −Q∗ (3.20)

Therefore the right relation of (3.14) is given by

Z̃(A1,DN )
Y1,Y2

= (−ζ c̃ ∗N/2)
−2

|Y1|+|Y2|
N

〈Î(N/2)|a;Y1, Y2〉
〈Î(N/2)|a〉

. (3.21)

3.1.3 Identification of a dynamical scale

Here, we show how the 4d dynamical scale Λ is identified with the 2d parameters. Inserting

(3.19) and (3.21) into (3.13), one is given as

Z2×(A1,DN )
Y1,Y2

= Zpert

∑

Y1,Y2

(−ζ2cN/2c̃
∗
N/2)

2
|Y1|+|Y2|

N Zvec
Y1,Y2

(a)Z(A1,DN )
Y1,Y2

(a,m,ddd,uuu)Z̃(A1,DN )
Y1,Y2

(a, m̃, d̃dd, ũuu) ,

(3.22)

where Zpert ≡ 〈Î(N/2)|a〉〈a|Î(N/2)〉. Comparing (3.9) with (3.22), the 4d dynamical scale is

identified with

Λ2 = −ζ2cN/2c̃
∗
N/2 . (3.23)

Recall that the cN/2 (or c̃∗N/2) independence of the (A1, DN) theory is related to conformal

invariance. Since the U(2) gauge coupling breaks the conformal symmetry of the two

(A1, DN) theories via the dynamical scale, it is natural that Λ depends on cN/2 and c̃∗N/2.

We show that the above proposals (3.19) and (3.21) are consistent with the SW curve.

The SW curve of the theory is written as [26]

x2 = Λ̃2zN−2 + · · ·+ Λ̃2

zN+2
, (3.24)
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where Λ̃ is equivalent to the dynamical scale Λ up to a numerical factor. While on the 2d

theory, one can be evaluated as follows:

x2 = −〈Î(N/2)|T (z)|Î(N/2)〉
〈Î(N/2)|Î(N/2)〉

= (c̃ ∗N/2)
2zN−2 + · · ·+

(cN/2)2

zN+2
. (3.25)

We here change the variables in (3.25) as z → z (−cN/2/c̃ ∗N/2)
1
N and x → x (−cN/2/c̃ ∗N/2)

− 1
N

so that the coefficient of zN−2 is equivalent to that of 1/zN+2, then these coefficients are

(−cN/2c̃∗N/2). Comparing this with (3.24), we see that Λ̃2 = −cN/2c̃ ∗N/2. This relation is

consistent with (3.23) up to a numerical factor ζ.

3.1.4 Consistency with a free fundamental hypermultiplet

Here, we show that our proposals are consistent. Recall that the (A1, D2) theory is a theory

of a free hypermultiplet in the doublet of U(2). Therefore, we can check the consistency

of our proposals to compare the Nekrasov formula for the (A1, D2) theory with that for

(anti-)fundamental hypermultiplet.

We first consider (3.19). When N is two, the irregular state |Î(1)〉 is characterized by

Lk|Î(1)〉 = 0 for k > 2 , (3.26)

L2|Î(1)〉 = −c21|Î(1)〉 , (3.27)

L1|Î(1)〉 = 2(Q− c0)c1|Î(1)〉 , (3.28)

L0|Î(1)〉 =
(
∆c0 + c1

∂

∂c1

)
|Î(1)〉 , (3.29)

and

ak|Î(1)〉 = 0 for k > 1 , (3.30)

a1|Î(1)〉 = −ic1|Î(1)〉 . (3.31)

By computing the ratio 〈a;Y1, Y2|Î(1)〉/〈a|Î(1)〉, we then find that 11

(
−c1

2

)−|Y1|−|Y2| 〈a;Y1, Y2|Î(1)〉
〈a|Î(1)〉

= Z fund
Y1,Y2

(a,m) , (3.32)

where Z fund
Y1,Y2

is the contribution of a fundamental hypermultiplet as appeared in subsection

2.1, We see that (3.32) is entirely consistent with (3.19) for ζ = −1/2. The mass parameter

11We checked this statement for |Y1|+ |Y2| ≥ 6
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m is related by

m = c0 −
Q

2
. (3.33)

The above relation is also consistent with (2.47) up to a numerical factor.

The same argument as the above, we can check the consistency of an anti-fundamental

hypermultiplet. Let us consider (3.21); we then find that
(
c̃ ∗1
2

)−|Y1|−|Y2| 〈Î(1)|a;Y1, Y2〉
〈Î(1)|a〉

= Zanti-fund
Y1,Y2

(a, m̃) , (3.34)

and the mass parameter m̃ is also relate to c̃0 by

m̃ =

(
c̃0 −

Q

2

)∗

. (3.35)

This is also consistent with our proposal for ζ = −1/2.

3.2 In the case of (A1, Dodd)

In this subsection, we extend the U(2)-version generalized AGT correspondence to the

case of the (A1, DN) theories for odd N . Recall that these theories are also obtained by

compactifying 6d N = (2, 0) SCFT of type A1, therefore, similar to the case of even N , we

assume that the Nekrasov formula for the (A1, DN) theories for odd N is identified with

Z(A1,DN )
Y1,Y2

∼ 〈a;Y1, Y2|Î(N/2)〉
〈a|Î(N/2)〉

. (3.36)

Here, the irregular state |Î(N/2)〉 for odd N is decomposed as |Î(N/2)〉 = |I(N/2)〉 ⊗ |I(N/2)
H 〉,

where |I(N/2)〉 is the irregular state of Virasoro algebra satisfied with (2.33), and |I(N/2)
H 〉 is

that of Heisenberg algebra. For odd N , the irregular state |I(N/2)〉 cannot be obtained by

the colliding limit construction, hence an explicit expression for the action of L1, · · · , LN−1
2

on |I(N/2)〉 has not been identified. Moreover, it is difficult to find the action of a1, · · · , aN−1
2

on |I(N/2)
H 〉, and therefore one cannot compute

〈a|aq#m#
· · · aq11 Lpk

nk
· · ·Lp1

n1
|Î(N/2)〉

〈a|Î(N/2)〉
, (3.37)

for ni > 0 and mi > 0 without understanding these actions. This means that computation

of (3.36) looks hard since 〈a;Y1, Y2| is a linear combination of 〈a|aq#m#
· · · aq11 Lpk

nk
· · ·Lp1

n1
.

However, we will discuss that (3.37) can be computed if we focus on the classical limit

εi → 0 and turn off the relevant couplings and the VEV of the Coulomb branch operators

in the (A1, DN) theory below.

27



3.2.1 Matrix elements in the classical lmit

Here, we show that subalgebra {Ln>0} reduces to the commutative algebra in the classical

limit εi → 0. Then we propose the conjecture that the matrix elements can be evaluated

by the product of follows:

am ≡ 〈a|am|Î(N/2)〉
〈a|Î(N/2)〉

, bn ≡ 〈a|Ln|Î(N/2)〉
〈a|Î(N/2)〉

, (3.38)

for n,m > 0.

To see that, we focus on the four-dimensional scaling dimension. Recall that the SW

curve of the (A1, DN) theory is written as (2.35). Since the SW 1-form xdz has four-

dimensional scaling dimension 1, we see that the stress-energy tensor and the coordinates

(z, x) in (2.35) have four-dimensional scaling dimension ∆4d(z) = −2/N and ∆4d(T (z)) =

∆4d(x2) = 2(1 + 2/N), and therefore Virasoro generators associated with four-dimensional

scaling dimension

∆4d(Ln) = 2
(
1− n

N

)
. (3.39)

Recall that we set ε1ε2. When we need to recover the full εi-dependence, we rescale all

quantity of dimension∆4d in two-dimensional theory by (ε1ε2)∆4d/2. Therefore, the Virasoro

generators Ln are replaced by (ε1ε2)1−
n
N , and one can rewrite Virasoro algebra (2.28) as

following:

[Ln, Lm] = (n−m)(ε1ε2)Ln+m , (3.40)

for m,n > 0. This implies that the subalgebra {Ln>0} reduces to the commutative algebra

in the classical limit. Therefore, in the classical limit, we can regard {Ln>0} and {an>0} as

commutative, and then they have a simultaneous eigenstate. We propose that the irregular

state is asymptotically equivalent to a simultaneous eigenstate in the classical limit.12 Then

the matrix elements (3.37) are evaluated by (3.38) as

〈a|aq#m#
· · · aq1m1

Lpk
nk

· · ·Lp1
n1
|Î(N/2)〉

〈a|Î(N/2)〉
=

(
(∏

i=1

(ami
)qi

)(
k∏

j=1

(bnj
)pj

)

. (3.41)

where bn for
⌊
N
2

⌋
≤ n ≤ N are eigenvalues λn in (2.33).

12When N = 4, despite the action of L1 on the irregular state |Î(2)〉 involves c2 ∂
∂c1

, |Î(2)〉 approaches to
a simultaneous eigenstate in the classical limit, and then the eigenvalue of L1 regarded as the VEV of the

Coulomb branch operator u1 in section 4.
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3.2.2 Nekrasov-type formula for (A1, Dodd)

Similarly to the case of even N , we must remove an unphysical degree of freedom from the

RHS in (3.36). To see that, let us first consider evaluating the four-dimensional scaling

dimensions of {am} and {bn}. From (3.39), we see that

∆4d (bn) = 2
(
1− n

N

)
, (3.42)

Note that bn for n > N have negative scaling dimensions; therefore, we see that these pa-

rameters stand for irrelevant couplings. However, the prepotential related to the Nekrasov

partition function in (1.1) is defined in the infrared, so such irrelevant couplings must be

zero. Indeed, this is consistent with (2.33).

The 4d scaling dimension of {am} are evaluated by the highest module |a;Y1, Y2〉 of

V ir ⊕ H as shown in Appendix A [45]. For instance, Z(A1,DN )
,∅ is evaluated by (A.2) and

(3.38) as

Z(A1,DN )
,∅ ∼ −i(ε1 + ε2 + 2a)a1 − b1 . (3.43)

Here, the 4d scaling dimensions of two terms in (3.43) must be equivalent. Recall that

the highest weight a of |a〉 is the VEV of the scalar in SU(2) vector multiplet in the four-

dimensional theory, which has 4d scaling dimension one. Also, we see that Ω-background

parameters have 4d scaling dimension one, i.e. ∆4d(a) = ∆4d(ε1) = ∆4d(ε2) = 1. Thus, one

obtains

∆4d(a1) = ∆4d(b1)− 1 = 1− 2

N
. (3.44)

Similarly, one obtains for Z(A1,DN )
,∅ and Z(A1,DN )

,∅ follows:

∆4d(a2) = 2∆4d(b1)− 3 = 1− 4

N
, (3.45)

∆4d(a3) = 3∆4d(b1)− 5 = 1− 6

N
. (3.46)

We can find the 4d scaling dimension of am for all m by the same analysis for Z(A1,DN )
Y1,∅ with

Y1 = [1, · · · , 1]. The basis |a;Y1, ∅〉 are written as

|a; Y1 = [1, · · · , 1], ∅〉 =
(

N (Y1) ε
|Y1|−1
1




|Y1|∏

j=1

(2a+ jε1 + ε2)



 a−|Y1|

+ (−L−1)
|Y1| + · · ·

)

|a〉 , (3.47)
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where a numerical factor N (Y1) is independent of ε1 and ε2.13 We then obtain the factor

Z[1,··· ,1],∅ as

Z(A1,DN )
Y1=[1,··· ,1],∅ ∼ N (Y1) ε

|Y1|−1
1

|Y1|∏

j=1

(2a+ jε1 + ε2)a|Y1| + (−b1)
|Y1| + · · · . (3.51)

This implies that {am} have 4d scaling dimension:

∆4d(am) = m∆4d(b1)− 2m+ 1 = 1− 2m

N
. (3.52)

Note that the SW curve of the (A1, DN) theory is described by (3.38) as

x2 =
1

zN+2
−
(

bN−1

(−bN)
N−1
N

1

zN+1
+

bN−2

(−bN)
N−2
N

1

zN
+ · · ·

+
bN+1

2

(−bN)
N+1
2N

1

z
N+5

2

+ · · ·+ b1

(−bN)
1
N

1

z3

)

+
a2

z2
, (3.53)

where we made the change of variables as x → (−bN)−
1
N x and z → (−bN)

1
N z in (3.53)

so that the coefficient of 1/zN+2 is 1. Since the (A1, DN) theory has no exactly marginal

coupling and ∆4d(L0) = ∆4d(bN) = 0, the parameter bN has no counterpart in four-

dimensional theory. This means that bN is an unphysical degree of freedom in the four-

dimensional theory. Since the VEVs of the Coulomb branch operators have 4d scaling

dimension larger than one, we see that b1, · · · , bN−1
2

are identified with the VEVs of the

Coulomb branch operators. On the other hand, the relevant couplings have 4d scaling

dimension smaller than one, and therefore bN+1
2
, · · · , bN−1 are identified with the relevant

couplings.

13As shown in [45], The Virasoro generators Ln>0 are rewritten by the free boson representation as

Ln =
∑

k "=0,n

ckck−n + i(nQ− 2a)cn , (3.48)

where [cn, cm]n2 δn+m,0. Then the orthogonal basis |a;Y1, ∅〉 are obtained as

|a;Y1, ∅〉 = ΩY1
(a)J

(−ε2
2
)

Y1
(x)|a〉 , (3.49)

where ΩY1
(a) ≡ (−ε1)|Y1|

∏
(j,k)∈Y1

(2a+ jε1 + kε2), and J
(−ε2

2
)

Y1
(x) is the normalized Jack polynomial. We

here recovered the full εi-dependence. The variables x ≡ (x1, x2, · · · ) are related to

a−n − c−n = −iε1pn(x) , (3.50)

where pn(x) ≡
∑|Y1|

i=1 x
n
i .
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Let us now turn off all the relevant couplings and the VEVs of the Coulomb branch

operators in the (A1, DN) theory. This means that

bn = 0 , for n '= N , (3.54)

and this is equivalent to the condition that bn = 0 unless ∆4d(bn) = 0. We assume that am
is independent of a; therefore, am is equal to zero unless ∆4d(am) = 0. According to (3.52),

∆4d(am) '= 0 for odd N , and therefore one obtains

am = 0 , (3.55)

for all m. We conclude that the matrix elements (3.37) reduce to

〈a|aq#m#
· · · aq1m1

Lpk
nk

· · ·Lp1
n1
|Î(N/2)〉

〈a|Î(N/2)〉
=






1 for , = k = 0

δn1,N(bN)
p1 for , = 0, k = 1

0 for the others

, (3.56)

when all the relevant couplings and the VEVs of the Coulomb branch operators in the

(A1, DN) theory are turned off. To compute the Nekrasov partition function of the (A2, A5)

theory, we will use this statement in section (5).

In the remaining part, we explicitly identified the Nekrasov formula Z(A1,DN )
Y1,Y2

. Recall

that bN is the unphysical degree of freedom in the four-dimensional theory. Hence, the

unphysical parameter bN must be removed from the RHS on (3.36). The result (3.56) is

implies that 〈a;Y1, Y2|Î(N/2)〉/〈a|Î(N/2)〉 is proportional to (bN)
|Y1|+|Y2|

N , and therefore the

Nekrasov formula for the (A1, DN) theory for odd N is identified with

Z(A1,DN )
Y1,Y2

(a) = (ξbN)
− |Y1|+|Y2|

N
〈a;Y1, Y2|Î(N/2)〉

〈a|Î(N/2)〉
, (3.57)

where ξ is a possible numerical factor related to the rescaling of the dynamical scale.

3.2.3 The a independence of am

Here, we give supporting evidence for the a-independence of am. Let us consider the

theory described in Figure 3. According to the U(2)-version of the generalized AGT

correspondence, the Nekrasov partition function for the U(2) gauge group is given as

ZU(2)(a) = 〈Î(N/2)|Î(N/2)〉, and by inserting (3.12) into this, one obtains

ZU(2)(a) =
∑

Y1,Y2

Λb0(|Y1|+|Y2|)Zvec
Y1,Y2

(a)〈Î(N/2)|a;Y1, Y2〉〈a;Y1, Y2|Î(N/2)〉 . (3.58)
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where 〈Î(N/2)| and |Î(N/2)〉 correspond to two (A1, DN) sectors. On the other hand, the

relation between the partition functions for U(2) and SU(2) gauge group is

ZU(2)(a) = ZU(1) ZSU(2)(a) , (3.59)

where the U(1)-factor ZU(1) is independent of a since the VEV of the scalar field in the

SU(2) vector multiplet and a is neutral under the U(1) gauge group. the SU(2)-version

of the generalized AGT correspondence implies ZSU(2)(a) = 〈I(N/2)|I(N/2)〉. Furthermore,

in analogy with [44], the U(1)-factor is identified with ZU(1) = 〈I(N/2)
H |I(N/2)

H 〉. Below, we

set all the parameters in two AD theories to be equal since 〈Î(N/2)| is the conjugate of the

state |Î(N/2)〉. Then ZU(2)(a) is written as

ZU(2)(a) =
∣∣∣|Î(N/2)〉

∣∣∣
2

=
∣∣∣|I(N/2)〉

∣∣∣
2 ∣∣∣|I(N/2)

H 〉
∣∣∣
2

, (3.60)

Note that ZSU(2) and ZU(1) can be expanded in power of the dynamical scale Λ as

ZSU(2)(a) =
∑

k=0

Λb0kZSU(2)
k (a) , ZU(1) =

∑

(=0

Λb0(ZU(1)
( , (3.61)

where b0 ≡ 4/N is the cofficient of the one-loop beta function. Since the identification

ZU(1) =
∣∣∣|I(N/2)

H 〉
∣∣∣
2

implies that the expansion coefficients ZU(1)
( are related to the state

|I(N/2)
H 〉, we claim that ZU(1)

( are provided by 〈aH |I(N/2)
H 〉 and

am ≡ 〈a|am|Î(N/2)〉
〈a|Î(N/2)〉

=
〈aH |am|I(N/2)

H 〉
〈aH |I(N/2)

H 〉
, (3.62)

where |aH〉 is the highest weight state of Heisenberg algebra that we have used in (2.30).

Using (3.61) and (3.59), one can obtain

ZU(2)(a) =
∑

k,(=0

Λb0(k+()ZSU(2)
k (a) ZU(1)

( . (3.63)

By comparing this with (3.58) order by order, we can read off ZSU(2)
k (a) and ZU(1)

k . Let us

perform this comparison at O(Λ0), O(Λb0), and O(Λ2b0) below.

We first compare the terms of O(Λ0), then we will find

ZSU(2)
0 (a)ZU(1)

0 = |〈aV |I(N/2)〉|2 |〈aH |I(N/2)
H 〉|2 , (3.64)

where we used (2.30) and (3.5). Since the identification ZSU(2)
0 (a) = |〈aV |I(N/2)〉|2 has been

already discussed by [26,27], we see that the identification

ZU(1)
0 = |〈aH |I(N/2)

H 〉|2 . (3.65)
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Note that the a-independence of |〈aH |I(N/2)
H 〉| follows from that of ZU(1)

0 .

We compare the terms of higher orders of Λ. To simplify this comparison, we set

ε1 = 1/ε2 = i below. For the terms of O(Λb0), the equation of this comparison is written as

ZSU(2)
1 (a)ZU(1)

0 + ZSU(2)
0 (a)ZU(1)

1

= Zvec
,∅〈Î(N/2)|a; , ∅〉〈a; , ∅|Î(N/2)〉+ Zvec

∅, 〈Î(N/2)|a; ∅, 〉〈a; ∅, |Î(N/2)〉 . (3.66)

Using the identification of ZSU(2)
0 , (3.65) and the orthogonal basis |a;Y1, Y2〉 shown in [44],

one can obtain the RHS as

− 1

2a2
∣∣〈aV |L1|I(N/2)〉

∣∣2ZU(1)
0 + 2ZSU(2)

0 (a)
∣∣〈aH |a1|I(N/2)

H 〉
∣∣2 . (3.67)

If we identify ZSU(2)
1 and ZU(1)

1 as

ZSU(2)
1 (a) = − 1

2a2
|〈aV |L1|I(N/2)〉|2 , ZU(1)

1 = 2|〈aH |a1|I(N/2)
H 〉|2 , (3.68)

it is a solution of the equation (3.66). Hence, under the identification, we see that the

a-independence of |〈aH |a1|I(N/2)
H 〉| follows from that of ZU(1)

0 .

For the terms of O(Λ2b0), one obtains

ZSU(2)
2 (a)ZU(1)

0 + ZSU(2)
1 (a)ZU(1)

1 + ZSU(2)
0 (a)ZU(2)

2

= Zvec
,∅|〈a; , ∅|Î(N/2)〉|2 + Zvec

,∅
|〈a; , ∅|Î(N/2)〉|2 + Zvec

, |〈a; , |Î(N/2)〉|2

+ Zvec
∅, |〈a; ∅, |Î(N/2)〉|2 + Zvec

∅,
|〈a; ∅, |Î(N/2)〉|2 . (3.69)

Using the above identifications, we see that natural identification

ZSU(2)
2 =

1

(1 + 4a2)2

[

4(−1 + 2a2)2 |〈aV |L2|I(N/2)〉|2 + −1 + 8a2

4a4
|〈aV |L1|I(N/2)〉|4

|〈aV |I(N/2)〉|4

− 3

(
〈I(N/2)|L−2|aV 〉〈aV |L1|I(N/2)〉2

〈aV |I(N/2)〉 +
〈I(N/2)|(L−1)2|aV 〉〈aV |L(N/2)

2 〉
〈I(N/2)|aV 〉

)]

(3.70)

ZU(1)
2 = |〈aH |a2|I(N/2)

H 〉|2 + 2
|〈aH |a1|I(N/2)

H 〉|4

|〈aH |I(N/2)
H 〉|2

. (3.71)

solves the equation (3.69). Under the above identifications, since ZU(2)
2 , |〈aH |a1|I(N/2)

H 〉|,
and |〈aH |I(N/2)

H 〉| are independent of a, |〈aH |a2|I(N/2)
H 〉| is also independent of a. Using the

same procedure for the higher order, one can argue that

|am| =

∣∣∣∣∣
〈aH |am|I(N/2)

H 〉
〈aH |I(N/2)

H 〉

∣∣∣∣∣ (3.72)
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is independent of a for all m. Indeed, we have checked this argument up to m = 4. The

above discussion is only about |am|; however, it helps to explain the a-independence of am
for all m.
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4 The (A3, A3) theory

In this section, we evaluate the instanton part of the Nekrasov partition function of the

(A3, A3) theory by application to our proposals as discussed in subsection 3.1 and study

S-duality for this theory. This theory cannot be engineered by compactifying 6d N = (2, 0)

theory of type A1, while it is known to be constructed by “type A3”. The (A3, A3) theory is

known to be the SU(2) superconformal theory with two copies of the (A1, D4) theory and

a fundamental hypermultiplet described by the quiver diagram in Figure 2 for (p, q, r) =

(2, 4, 4).

In the following subsection, we apply (3.19) to this theory. And then, by using the

result of this computation, we study the S-duality of this theory in subsection 4.2.

4.1 Application to the (A3, A3) theory

In this subsection, we apply our proposal, as discussed in subsection 3.1, to the (A3, A3)

theory to compute the instanton part of the Nekrasov partition function of this theory.

4.1.1 Partition function

To apply our proposals to the theory, let us replace SU(2) gauge group in Figure 10 with

U(2). There is a difference between Z(A1,DN )
Y1,Y2

and Z̃(A1,DN )
Y1,Y2

which is how these theories

couple to the U(1)-part of the gauge group, but there give the same contribution to the

partition function of SU(2) gauge theory. Therefore we here focus on the case of two AD

theories corresponding to Z(A1,D4)
Y1,Y2

. Then the Nekrasov partition function of the theory is

evaluated as

ZU(2) = ZU(2)
pert

∑

Y1,Y2

q|Y1|+|Y2|Zvec
Y1,Y2

(a)Z fund
Y1,Y2

(a,M)
2∏

i=1

Z(A1,D4)
Y1,Y2

(a,mi, di, ui) , (4.1)

where Zvec
Y1,Y2

and Z fund
Y1,Y2

are regarded as the contributions of the vector multiplet and funda-

mental hypermultiplet, as reviewed in subsection 2.1. The factor Z(A1,D4)
Y1,Y2

can be regarded

as the contribution from the (A1, D4) sector, and and ZU(2)
pert is a perturbative part that

makes series in q start with 1. Since the (A3, A3) theory has a vanishing beta function,

this theory is superconformal, and the instanton expansion is denoted by an exponential of

marginal gauge coupling q instead of a dynamical scale. The parameters mi, di, and ui are

respectively a mass, relevant coupling with dimension 1/2 and the VEV of Coulomb branch

operator with dimension 3/2 of each of the (A1, D4) theories. As discussed in subsection

35



(A1, D4) 2 (A1, D4)

1

Figure 10: The quiver diagram of the (A3, A3) theory, where (p, q, r) = (2, 4, 4) in Figure

2.

3.1, Z(A1,D4)
Y1,Y2

is represented by inner product 〈a;Y1, Y2|Î(2)〉 as

Z(A1,D4)
Y1,Y2

(a,m, d, u) = (ζc2)
− |Y1|+|Y2|

2
〈a;Y1, Y2|Î(2)〉

〈a|Î(2)〉
. (4.2)

Here, we set the numerical factor as ζ = −1/2 to be the straightforward expression below.

The variable of the numerical factor ζ is related to the rescaling of the marginal coupling

q. The action of Lk and ak on the irregular state |Î(2)〉 is given as

Lk|Î(2)〉 = 0 for k > 4 , (4.3)

L4|Î(2)〉 = −c22|Î(2)〉 , (4.4)

L3|Î(2)〉 = −2c1c2|Î(2)〉 , (4.5)

L2|Î(2)〉 = −(c21 + c2(2c0 − 3Q))|Î(2)〉 , (4.6)

L1|Î(2)〉 =
(
c2

∂

∂c1
− 2c1(c0 −Q)

)
|Î(2)〉 , (4.7)

L0|Î(2)〉 =
(
∆c0 + c1

∂

∂c1
+ 2c2

∂

∂c2

)
|Î(2)〉 , (4.8)

and

ak|Î(2)〉 =





−ick|Î(2)〉 for k = 1, 2

0 for k > 2
. (4.9)

According to (2.47) and (2.48), the 4d parameters are identified by the 2d parameters as

follows:

m = 2c0 +
c21
c2

, d =
2c1√
c2

, u =
2c0c1√

c2
−

√
c2
∂F(A1,D4)

∂c1
, (4.10)

where F(A1,D4) ≡ limεi→∞(−ε1ε2 logZ(A1,D4)) is the prepotential of the (A1, D4) theory.
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4.1.2 Prepotential

The prepotential of this theory is defined by the classical limit of the Nekrasov partition

function as

FU(2) ≡ lim
εi→0

(
−ε1ε2 logZU(2)

)
, (4.11)

and ZU(2) is decomposed into the contributions of SU(2) gauge theory and U(1) factor.

We see that the Nekrasov partition function of the (A3, A3) theory is obtained by

Z(A3,A3) =
ZU(2)

ZU(1)
, (4.12)

and the prepotential is also defined as

F(A3,A3) ≡ lim
εi→0

(
−ε1ε2 logZ(A3,A3)

)
. (4.13)

The prepotential further splits into the perturbative part and instanton part as

F(A3,A3) = F (A3,A3)
pert + F (A3,A3)

inst , (4.14)

and the instanton part is generally expanded by the exponential of marginal coupling q as

F (A3,A3)
inst =

∞∑

k=1

Fkq
k . (4.15)

Below, we will evaluate the expansion coefficients of the above expression Fk.

Note that (4.15) is identical to the instanton part of (4.11) as

FU(2)
inst ≡ lim

εi→0

(

−ε1ε2 log
ZU(2)

ZU(2)
pert

)

, (4.16)

up to U(1) factor. The problem of computing the coefficients Fk is eventually equivalent

to that of calculating the matrix elements as

〈a|Lmp

kp
· · ·Lm1

k1
anq

(q
· · · an1

(1
|Î(2)〉 . (4.17)

Using (4.3)–(4.9), this further reduces to computing

〈a|Lk
1|Î(2)〉 =

(
c2

∂

∂c1
− 2c1(c0 −Q)

)k

〈a|Î(2)〉 , (4.18)
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where 〈a|Î(2)〉 is the Nekrasov partition function of (A1, D4) theory, whose SU(2) flavor sym-

metry is not gauged. The above equation means that we need to know the c1-dependence

of 〈a|Î(2)〉 to compute (4.1). The c1 expansion of 〈a|Î(2)〉 is studied in [33]. However, in the

classical limit, we do not need to know it. Indeed, we here recover the full εi-dependence

by ck → ck/
√
ε1ε2, then we see that (4.18) is eventually given as

〈a|Lk
1|Î(2)〉 = (c2)

k
2 (−u)k〈a|Î(2)〉 . (4.19)

We can evaluate F (A3,A3)
inst by eliminating the a-independence and the perturbative part from

ZU(2) and using the result in (4.19).

4.2 S-duality

Here, we will evaluate the instanton part of the prepotential of this theory. Then we show

that this instanton part is related to the instanton part of the SU(2 SQCD with four flavors,

and we study the S-duality of the (A3, A3) theory via that of the SU(2) SQCD with four

flavors by using discovered a prepotential relation.

4.2.1 On the UV gauge coupling

To study the S-duality of the theory, let us first focus on the case in which all the dimen-

sionful 4d parameters are turned off except for a (and Ω-background parameters εi). Since

FU(1) ≡ limεi→0

(
−ε1ε2 logZU(1)

)
has scaling dimension 2, it must be proportional to a2 in

this case. Since the VEV of the scalar field in the SU(2) vector multiplet a is neutral under

the U(1), the U(1)-factor ZU(1) is independent of a. Therefore, this implies that FU(1) = 0.

By using the above discussions, the prepotential of the (A3, A3) theory, in this case, is given

as

F (A3,A3)
inst (q; a) =

(
1

4
q2 +

13

128
q4 +

23

384
q6 + · · ·

)
a2 . (4.20)

Remarkably, this expression is similar to the instanton part of the prepotential of the SU(2)

gauge theory with four flavors whose all mass parameters are turned off (2.15). We find

the following relation between (4.20) and (2.15):14

2F (A3,A3)
inst (q; a) = FNf=4

inst (q2, a) . (4.21)

14We checked this statement up to order O(q8).
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We assume that the perturbative part also satisfies with 2F (A3,A3)
pert (q; a) = FNf=4

pert (q2; a),

then one can extend the relation (4.21) to the “full” prepotential:

2F(A3,A3)(q; a) = FNf=4(q
2; a) . (4.22)

The perturbative part is generally written as

Fpert = (log q +X)a2 , (4.23)

where X is a constant and is related to the one-loop part. Therefore we need to prove a

relation 2X(A3,A3) = XNf=4 so that we obtain (4.22), but we leave for future work. The

relation (4.22) means that one can study the S-duality of the (A3, A3) theory via that of

the SU(2) gauge theory with four flavors. To see that, let us first denote the prepotentials

of two theories by the IR gauge coupling as

F(A3,A3)(q; a) = (log qIR) a
2 , FNf=4(q; a) = (log q̃IR) a

2 , (4.24)

where qIR and q̃IR are a function of the UV gauge coupling q. As discussed in subsection

2.1, the SU(2) gauge theory with four flavors is invariant under PSL(2,Z). Its actions on

the IR and UV gauge coupling are written as (2.19) and (2.20). Similarly, the (A3, A3)

theory is known to be invariant under PSL(2,Z) [34, 35, 37]. However, unlike the SU(2)

gauge theory with four flavors, PSL(2,Z)-action has only been studied in the IR language.

Below, by using the surprising relation (4.22), we will discuss the action of PSL(2,Z) on

the UV gauge coupling via the SU(2) gauge theory with four flavors.

The relation (4.22) implies that the prepotential F(A3,A3)(q; a) is obtained from FNf=4(q; a)

by the non-trivial replacement

q −→ q2 , q̃IR −→ q2IR . (4.25)

Hence the IR gauge coupling qIR is related to q by

q2 =
θ2(q2IR)

4

θ3(q2IR)
4
, (4.26)

this means that

τIR ≡ 2

πi
log qIR =

2θIR
π

+
16πi

g2IR
(4.27)

is the modulus of the elliptic curve, which corresponds to the double cover of a sphere with

four punctures whose cross ratio is q2, and then the elliptic curve is identified as the SW

39



curve of the theory. The curve has the T and S transformations of the S-duality group

identified as

T : τIR → τIR + 1 , S : τIR → − 1

τIR
. (4.28)

Recall that the S-transformation for the N = 4, SU(2) SYM and the N = 2 SU(2) SQCD

represented the exchanging the minimal magnetic monopole with the W-boson and the

quark, with 1/2 of the electric charge of the W-boson, while the T -transformation for

the two theories exchanges this monopole with the dyonic particle whose electric charge

is equivalent to the quark. Therefore, (4.27) means that the S and T -transformation

exchanges the minimal magnetic monopole with the electric particle and dyonic particle

whose electric charge is 1/4 of that of the W-boson, respectively.

From (4.26), we see that the action of PSL(2,Z) on the UV gauge coupling is given as

T : q2 → q2

q2 − 1
, S : q2 → 1− q2 . (4.29)

We have checked that (4.20) combined with the classical part F (A3,A3)
cl = (log q)a2 is indeed

invariant under the T -transformation up to O(q8).

Let us now turn on all the mass parameters. Then the instanton part of the prepotential

is a function of three mass parameters in addition to q and a; one obtains

F (A3,A3)
inst (q; a,M,m1,m2)

∼ 1

4

(
a2 +M2m1m2a

−2
)
q2

+
1

128

[
13a2 + (M4 + 2M2(m2

1 + 8m1m2 +m2
2) +m2

1m
2
2)a

−2

− (3M4(m2
1 +m2

2) + 6M2m2
1m

2
2)a

−4 + 5M4m2
1m

2
2a

−6
]
q4 + · · · , (4.30)

where “∼” means that the LHS in (4.30) is equivalent to the RHS up to a-independent

terms. Comparing this with (2.21), we find the relation with massive deformations as

2F (A3,A3)
inst (q; a,M,m1,m2) = FNf=4

inst (q2, a,−M,−M,m1,m2) . (4.31)

Note that two of the four mass parameters of the SU(2) SQCD with four flavors are

identified with each of the mass parameters of two (A1, D4) sectors in the (A3, A3) theory,

and the other two mass parameters of the former are identified with the mass parameter

of a fundamental hypermultiplet in the latter.
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4.2.2 On all the parameters

In the previous section, we found the S-duality transformations (4.29) when we turned off

all dimensionful parameters except for a and εi. Here, let us turn on all the parameters in

this theory, and we extend (4.29) to the S-duality transformation for all the parameters.

However, since S-transformation is a strong-weak transformation, it looks hard to find by

using order-by-order computations. Thus, we here focus on the T -transformation. We

computed the prepotential for generic values of all the parameters, and then we found that

this prepotential is invariant under the T -transformation in (4.29) follows:15

q → iq√
1− q2

, d1 →
d1 + qd2√
1− q2

, d2 → id2 , m2 → −m2 , u2 → −iu2 , (4.33)

where m1 and m2 are kept fixed. Note that the above transformations can be interpreted as

the extension of the T -transformation in (4.29) for all the parameters. This transformation

is consistent with a symmetry of the SW curve.

The SW curve of this theory is written as [34]

0 = x4 + qx2z2 + z4 + c3,0x
3 + c0,3z

3 + c2,0x
2 +mxz + c0,2z

2 + c1,0x+ c0,1z + c0,0 , (4.34)

where q is a non-trivial function of qIR, and the SW 1-form is λ = xdz. As shown in [34],

in the weak coupling limit q → ∞, the parameters m and cij in (4.34) are identified by ui,

di, mi, M and u as16

c3,0 = q
1
4d1 , c0,3 = q

1
4d2 , c2,0 = q

1
2m1 , c0,2 = q

1
2m2 ,

m = qM , c1,0 = q
3
4u1 , c0,1 = q

3
4u2 , c0,0 = qu . (4.35)

Note that the curve (4.34) is invariant under the transformation q → −q combined with

the follows:

c3,0 → −e
3πi
4 c3,0 , c0,3 → −e−

3πi
4 c0,3 , c2,0 → −ic2,0 , c0,2 → ic0,2 ,

m → −m , c1,0 → −e
πi
4 c1,0 , c0,1 → −e−

πi
4 c0,1 , c0,0 → −c0,0 . (4.36)

15The instanton part of the prepotential is a function of all the parameters in this theory, and is expand

in power of a as

F (A3,A3)
inst =

∞∑

k=−1

F2k(q,M, {mi}, {ui}, {di})a−2k . (4.32)

In appendix B, we show the first few terms F−2,F2 and F4. We find that the expansion coefficients F2k

except for k '= 0 are invariant under (4.33). Since we here removed the U(1)-factor that is independent of

a and do not explicitly know it, F0 cannot be evaluated without it.
16
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Below, we show that this transformation is identical to the T -transformation. To see

that, we consider the case that the hypermultiplet in the (A3, A3) theory is decoupled,

i.e.M → ∞. Then the theory reduces to the non-conformally gauged AD theory described

in Figure 3, for N = 4. one needs to keep

Λ ≡ M
√
q

(4.37)

finite so that all the periods of the curve are finite in this limit, where Λ is identified with

the dynamical scale of the resulting theory.17 Note that, by standard argument, the gauge

coupling of the CFT and the dynamical scale mass-deformed theory are related by

Λ

M
= e

iθIR− 8π2

g2
IR . (4.40)

This implies that

q = e
−2iθIR+ 16π2

g2
IR , (4.41)

and therefore “q → −q” is interpreted as the T -transformation in (4.29).

Note that in terms of ui, di, mi, M , and u, (4.35) reduces to

d2 → id2 , m2 → −m2 , u2 → −iu2 , (4.42)

where d1, u1, m1, M , and u are kept fixed. We see that the above expression is identical

to (4.33) at the leading order of q. Thus, (4.33) is consistent at the level of the SW curve,

and (4.35) is interpreted as a weak coupling limit of the T -transformation.

17In this limit q,M → ∞, the curve reduces to

X2 = Λ̃2Z2 + Λ̃
3

2C0,3Z + Λ̃C0,2 +
Λ̃

1

2C0,1

Z
+

U

Z2
+

Λ̃
1

2C1,0

Z3
+

Λ̃C2,0

Z4
+

Λ̃
3

2C3,0

Z5
+

Λ̃2

Z6
, (4.38)

where we take the new variables as

X ≡ i(
√
zx

3

2 +
1

2

√
qΛ
√
x/z), Z ≡

√
z/x , (4.39)

and Λ̃ ≡ −Λ/2. The SW 1-form is written as 3
2iXdZ up to exact terms. Indeed, this curve is identical to

(3.24) for N = 4.
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5 The (A2, A5) theory

This section will discuss the (A2, A5) theory. This theory cannot be engineered by com-

pactifying 6d N = (2, 0) theory of type A1, but it is known to be constructed by “type

A2” [76]. The (A2, A5) theory is a superconformal theory with SU(2) gauge group coupled

to a fundamental hypermultiplet, one (A1, D3) theory, and one (A1, D6) theory described

in Figure 2 for (p, q, r) = (2, 3, 6). By applying our method to the theory, we compute the

instanton part of the Nekrasov partition function, and study the S-duality of the theory

via a prepotential relation.

In the next subsection, we apply our method to this theory to compute the partition

function of this theory and study the S-duality of this theory. This theory consists of

the three matter sectors: the (A1, D6) sector, the (A1, D3) sector, and a fundamental

hypermultiplet. In subsection 5.2, we show that the SW curve of the (A2, A5) theory splits

into the SW curve of each of the three sectors in the weak coupling limit. In subsection

5.3, we will discuss the S-duality from the SW curve of this theory.

5.1 Application to the (A2, A5) theory

In this subsection, we apply our method to the (A2, A5) theory described in Figure 11 and

study the S-duality of this theory. We first consider the gauge group U(2) instead of SU(2)

to apply our proposals to this theory. The same argument as discussed in section 4, we

focus on the case of the AD theory corresponding to Z(A1,D6)
Y1,Y2

.

5.1.1 Computation of prepotential

The Nekrasov partition function of the theory is evaluated as

ZU(2) = ZU(2)
pert

∑

Y1,Y2

q|Y1|+|Y2|Zvec
Y1,Y2

(a)Z fund
Y1,Y2

(a,M)Z(A1,D3)
Y1,Y2

(a, d, u)Z(A1,D6)
Y1,Y2

(a,m,ddd,uuu) , (5.1)

where Z(A1,D3)
Y1,Y2

and Z(A1,D6)
Y1,Y2

can be respectively regarded as the contribution from the

(A1, D3) sector and the (A1, D6) sector, and ZU(2)
pert is a perturbative part that makes series

in q start with 1. q and a are the exponential of marginal gauge coupling and the VEV of

the scalar in SU(2) vector multiplet. The parameters d and u are respectively the relevant

coupling and the VEV of the Coulomb branch operator in the (A1, D3) theory, and m,

ddd = (d1, d2) and uuu = (u1, u2) are respectively a mass, the relevant couplings and, the

VEV of Coulomb branch operators in the (A1, D6) theory. These parameters have a scale
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(A1, D6) 2 (A1, D3)

1

Figure 11: The quiver diagram of the (A2, A5) theory, where p = 2, 3, 6 in Figure 2.

dimension as

[q] = 0, [d1] =
1

3
, [d] = [d2] =

2

3
, [u] = [u1] =

4

3
, [u2] =

5

3
. (5.2)

According to our proposal, as discussed in subsection 3.1, Z(A1,D6)
Y1,Y2

is represented by

inner product 〈a;Y1, Y2|Î(3)〉 as

Z(A1,D6)
Y1,Y2

(a,m,ddd,uuu) = (ζc3)
− |Y1|+|Y2|

3
〈a;Y1, Y2|Î(3)〉

〈a|Î(3)〉
. (5.3)

The action of Lk and ak on the irregular state |Î(3)〉 is given as

Lk|I(3)〉 = 0 for k ≥ 7 , (5.4)

L6|Î(3)〉 = −c23|Î(3)〉 , (5.5)

L5|Î(3)〉 = −2c2c3|Î(3)〉 , (5.6)

L4|Î(3)〉 = −
(
c22 + 2c3c1

)
|Î(3)〉 , (5.7)

L3|Î(3)〉 = −2 (c1c2 + c3(c0 − 2Q)) |Î(3)〉 , (5.8)

L2|Î(3)〉 =
(
c3

∂

∂c1
− c2(2c0 − 3Q)− c21

)
|Î(3)〉 , (5.9)

L1|Î(3)〉 =
(
2c3

∂

∂c2
+ c2

∂

∂c1
− 2c1(c0 −Q)

)
|Î(3)〉 , (5.10)

and

ak|Î(3)〉 =





−ick|Î(3)〉 for k = 1, 2, 3

0 for k > 3
. (5.11)

Here from (2.47) and (2.48), the 4d parameters are identified by the 2d parameters as

follows:

m = 2

(
c0 +

c1c2
c3

)
, d1 =

2c2

c2/33

, d2 = c−1/3
3

(
2c1 +

c22
c3

)
,
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u1 = c1/33

(
2c0c2 + c21

c3
−

∂F(A1,D6)

∂c1

)
, u2 = c−1/3

3

(

2c0c1 −
2∑

k=1

kck+1
∂F(A1,D6)

∂ck

)

,

(5.12)

where F(A1,D6) is the prepotential of the (A1, D6) theory, which is defined by a classical

limit of the Nekrasov partition function of the theory.

On the other hand, the contribution of the (A1, D3) sector can be evaluated in subsection

3.2, when the parameters d and u in the (A1, D3) theory are turned off. In this case Z(A1,D3)
Y1,Y2

is identified as

Z(A1,D3)
Y1,Y2

(a) = (ξb3)
− |Y1|+|Y2|

3
〈a;Y1, Y2|Î(3/2)〉

〈a|Î(3/2)〉
. (5.13)

Below, we consider this case so that we study the S-duality of the (A2, A5) theory via the

Nekrasov partition function of the theory, and we set the numerical factor as ζ = 2ξ to be a

simple expression in the following. Similar to the case of the (A3, A3) theory, the variables

of the numerical factors ζ and ξ are related to the rescaling of the marginal coupling q.

Recall that we have considered the gauge group U(2) instead of SU(2). The partition

function of the (A2, A5) theory is obtained by removing U(1)-factor from ZU(2) as

Z(A2,A5) =
ZU(2)

ZU(1)
. (5.14)

The prepotential is given by this partition function Z(A2,A5) as

F(A2,A5) ≡ lim
εi→0

(
−ε1ε2 logZ(A2,A5)

)
, (5.15)

and this further splits into the perturbative part and the instanton part as F(A2,A5) =

F (A2,A5)
pert + F (A2,A5)

inst . Recall that since the VEV of the scalar field in the SU(2) vector

multiplet a is neutral under the U(1), the U(1)-factor is independent of a, and therefore

the instanton part is evaluated by removing the a-independent terms.

To study the S-duality of the (A2, A5) theory, let us turn off the couplings and the

VEV of the Coulomb operators in the (A1, D6) sector, in addition to d = u = 0. Then the

prepotential is a function of q, a, and the mass parameters. One obtains

F (A2,A5)
inst (q; a,m,M) ∼ 1

6

(
a2 +

mM3

2
a−2

)
q3

+
1

192

[

13a2 +

(
3

4
m2M2 + 8mM3 + 3M4

)
a−2

−
(
9

4
m2M4 + 3M6

)
a−4 +

5

4
m2M6a−6

]

q6 +O(q9) , (5.16)
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where “∼” is means that the LHS and the RHS are equivalent up to the a-independent

terms. Remarkably, this expression is similar to the instanton part of the prepotential of

the SU(2) SQCD with four flavors. This similarity has also appeared in the case of the

(A3, A3) theory. Indeed, this instanton part corresponds to that of the SU(2) SQCD with

four flavors as following:18

3F (A2,A5)
inst (q; a,m,M) = FNf=4

inst

(
q3; a,

m

2
,M,M,M

)
. (5.17)

Note that one of the four mass parameters of the SU(2) SQCD with four flavors is identified

with the mass parameter of the (A1, D6) sector, and the other three are identified with the

mass parameter of a fundamental hypermultiplet.

In subsection 5.3, we will show that this relation of the mass parameters is consistent

with the SW curve of the (A2, A5) theory. The same argument as discussed in section 4,

we assume that the relation (5.17) can be extended to the full prepotential as19

3F(A2,A5)(q; a,m,M) = FNf=4

(
q3, a,

m

2
,M,M,M

)
. (5.19)

5.1.2 S-duality

Here, we study the S-duality for the (A2, A5) theory. Let us turn off the mass parameters,

i.e., m = M = 0. We then denote the prepotential of this theory as

F(A2,A5)(q; a) = (log qIR) a
2 , (5.20)

where qIR is a non-trivial function of the marginal UV gauge coupling q. The prepotential

relation implies that the prepotential F(A2,A5)(q; a) is obtained from FNf=4(q; a) by the

replacement q → q3.

Recall here that the prepotential of the SU(2) SQCD with four flavors is written as

FNf=4(q; a) = (log q̃IR) a2, where we again used q̃IR instead of qIR in (2.16) to distinguish

qIR in (5.20). Hence, in terms of the IR gauge coupling, the replacement is identical to

q̃IR → q3IR, and therefore the IR gauge coupling qIR is related to q by

q3 =
θ2(q3IR)

4

θ3(q3IR)
4
. (5.21)

18We have checked this statement up to O(q9).
19This means that we expect to satisfy the relation as

3F (A2,A5)
pert (q; a,m,M) = FNf=4

pert (q3; a,
m

2
,M,M,M) (5.18)

46



This means that

τIR ≡ 3

πi
log qIR =

3θIR
π

+
24πi

g2IR
(5.22)

is the modulus of the elliptic curve, which corresponds to the double cover of a sphere with

four punctures whose cross ratio is q3, and this curve has the PSL(2,Z)-action on the IR

gauge coupling τIR generated by

T : τIR → τIR + 1 , S : τIR → − 1

τIR
. (5.23)

As the same argument, (4.27) means that the S and T -transformation exchanges the mini-

mal magnetic monopole with the electric particle and dyonic particle whose electric charge

is 1/6 of that of the W-boson, respectively. The S-duality transformation (5.23) means,

in terms of the UV gauge coupling q, that the PSL(2,Z)-action on the (A2, A5) theory is

generated by

T : q3 → q3

q3 − 1
, S : q3 → 1− q3 . (5.24)

Let us now turn on the mass parameters and the VEV of the Coulomb branch operators

u1 and u2. Then the prepotential F(A2,A5) is a function of u1 and u2, in addition to q, a,

and the mass parameters. We find that F(A2,A5) is invariant under the follows:

q → e
πi
3 q

(1− q3)
1
3

, m → −m , u1 → e
2πi
3 u1 , u2 → e

πi
3 u2 , (5.25)

withM kept fixed. This transformation is interpreted as an extension of the T -transformation

in (5.24). This consistency check will be shown in subsection 5.3

We expect this transformation to be further extended to non-vanishing all the pa-

rameters. The same argument as discussed in subsection 4.2, we expect that the T -

transformation on the relevant couplings d, d1, and d2 involve a non-trivial q-dependence.

In particular, we assume that the T -transformation on d and d2 mix these parameters since

these parameters have the same scale dimension.

However, Z(A1,DN )
Y1,Y2

for odd N discussed in subsection 3.2 can be evaluated only if all the

dimensionful parameters in the (A1, DN) theory are turned off. Hence, we cannot explicitly

check the case of the non-vanishing d and u for our method.

5.2 Three matter sectors

In the remaining section, we show that the surprising relation (5.19) is consistent with the

SW curve of the theory. To see that, in this sub-section, we first discuss how the parameters
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of the (A2, A5) theory correspond to these of the three matter sectors in the (A2, A5) theory.

The SW curve of the (A2, A5) theory is written as [25, 46]

0 = x3 + z6 − 1

q
x2z2 − qxz4 + c20x

2 + x(c11z + c10)

+ c05z
5 + c04z

4 + c03z
3 + c02z

2 + c01z − c00 , (5.26)

where the SW 1-form is λ = xdz and q is a non-trivial function of qIR. We show the scaling

dimension of these parameters in (5.26). Since the period
∮
λ is the mass of a BPS state,

the SW 1-from λ has the scaling dimension one. Thus, these parameters in (5.26) have the

scaling dimension as

[x] =
2

3
, [z] =

1

3
, [cij] = 2− 2i+ j

3
, [q] = 0 . (5.27)

This means that cij with 0 < [cij] < 1 are the relevant couplings, cij with [cij] > 1 are the

VEV of Coulomb branch operators, and c11 and c03 are the mass parameters. In particular,

c00 corresponds to the VEV of the scalar in SU(2) vector multiplet. The same argument

as discussed in [34], these parameters are renormalized so that the periods must be kept

finite in the weak coupling limit q → 0. We can find the renormalized parameters as

Cij ≡ q
[cij ]

2 cij for i '= j , C11 ≡ qc11 , C00 ≡ qc00 . (5.28)

In terms of these parameters, the curve (5.26) reduces to

0 = x3 + z6 − 1

q
x2z2 − qxz4 + q

− 1
3C20x

2 + x(q−1C11z + q
− 2

3C10)

+ q
− 1

6C05z
5 + q

− 1
3C04z

4 + q
− 1

2C03z
3 + q

− 2
3C02z

2 + q
− 5

6C01z
1 − q

−1C00 . (5.29)

Below, we show how cij are related to the parameters of the three matter sectors in (A2, A5)

theory. To see that, let us consider the curve (5.29) splits into the three sectors in the weak

coupling limit q → 0 with Cij kept finite.

5.2.1 (A1, D3) sector

In the region |z/x| ∼ q
2/3, in terms of new set of variables x̃ = q

− 1
3x and z̃ = q

1
3 z, the

curve is described as

0 = x̃3 − x̃2z̃2 + C20x̃
2 + x̃(C11z̃ + C10)− C00 . (5.30)
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By shifting and rescaling the variables, the curve further reduces to

0 = X2 + Z4 + 2
1
3C20Z

2 + 4

√
C00 −

C2
11

4
Z − 2

2
3

(
C10 −

C2
20

4

)
, (5.31)

where we defined X ≡ 2
1
3 i
(
x̃ + 1

2(z̃
2 − C20)

)
and Z ≡ −2−

1
3 iz̃. Note that the above

expression coincides with the curve of (A1, D3) theory.20 Here, we see that C20 and (C10 −
C2

20/4) correspond to the relevant coupling and the VEV of the Coulomb branch operator

in the (A1, D3) theory, respectively. In particular,
√
C00 − C2

11/4 is a mass parameter

associated with an SU(2) subgroup of the SU(3) flavor symmetry gauged by the SU(2)

vector multiplet.

5.2.2 (A1, D6) sector

In the region |z/x| ∼ q
−1/3, the SW curve reduces to

0 = −x̃2z̃2 + z̃6 + C11x̃z̃ + C05z̃
5 + C04z̃

4 + C03z̃
3 + C02z̃

2 + C01z̃ − C00 , (5.33)

where we defined x̃ = q
− 1

6x and z̃ = q
1
6 z. By shifting x̃ → x̃ + C11/(2z̃), the curve is

written as

x̃2 = z̃4 + C05z̃
3 + C04z̃

2 + C03z̃ + C02 +
C01

z̃
−

C00 − C2
11
4

z̃2
, (5.34)

where the SW curve is invariant under the above shift up to exact terms. Note that the

above expression coincides with the curve of the (A1, D6) theory.21 Hence we see that C05

and C04 are the relevant couplings, C02 and C01 are the VEVs of Coulomb branch operators,

and C03 and
√

C00 − C2
11/4 are mass parameters in the (A1, D6) theory. In particular,√

C00 − C2
11/4 is associated with an SU(2) subgroup of the SU(3) flavor symmetry gauged

by the SU(2) vector multiplet.

20The known expression of the curve of the (A1, D3) theory is written as [25, 26]

x2 = z4 + dz2 +mz + u , (5.32)

where the SW curve is λ = xdz, and d, m, and u are respectively the relevant coupling of dimension 2/3,

a mass parameter and the VEV of a Coulomb branch operator of dimension 4/3 in the (A1, D3) theory.
21From (2.44), the (A1, D6) theory is written as

x2 =
a2

z2
+

u2

z3
+

u1

z4
+

m

z5
+

d2
z6

+
d1
z7

+
1

z8
. (5.35)

In terms of w = 1/z, the curve reduces to the expression of (5.34).
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5.2.3 A fundamental hypermultiplet

In the region |z/x| ∼ 1, the curve reduces to

0 = −x2z2 + C11xz − C00 . (5.36)

This curve describes the SU(2) superconformal QCD in the weak coupling limit, as dis-

cussed in [34]. Here, C11 is the mass parameter of a fundamental hypermultiplet.

From the above discussions, we see that the curve of the (A2, A5) theory splits into the

curves for three sectors, and then the parameters Cij are identified by the parameters of

the three sectors in the (A2, A5) theory as

d1 = C05 , d2 = C04 , m = −C03

6
, u1 = C02 , u2 = C01 ,

d = C20 , u = C10 −
C2

20

4
, M = −C11

12
. (5.37)

5.3 Consistency with the SW curve

We have found a surprising relation between the prepotential of the (A2, A5) theory and

that of the SU(2) SQCD with four flavors in subsection 5.1. In particular, one of the mass

parameters of the latter is identified with the mass of a fundamental hypermultiplet in the

(A2, A5) theory and the other mass parameters of the latter are identified with the mass of

the (A1, D6) sector.

In this subsection, we show that the T -transformation (5.25) coincides with a symmetry

of the curve. We rederive the relation of the mass parameters in (5.19) from the curve at

the end of this subsection.

5.3.1 T -transformation

Here, we show that the SW curve of the (A2, A5) theory can be represented by that for

the SU(2) superconformal QCD, and a symmetry of the SW curve can be interpreted as a

weak coupling limit of the T -transformation for all the parameters.

We see that the curve (5.26) is invariant under the following transformation:

q → e
2πi
3 q , c10 → e−

4πi
9 c10 , c11 → e−

2πi
3 c11 , c20 → e−

2πi
9 c20 ,

c01 → −e
πi
9 c01 , c02 → −e−

πi
9 c02 , c03 → e

2πi
3 c03 ,

c04 → e
4πi
9 c04 , c05 → e

2πi
9 c05 , c00 → −e

πi
3 c00 , (5.38)
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and at the same time, we take the change of variables as x → e−
2πi
9 x and z → e

2πi
9 z. In

the weak coupling limit q → 0, this transformation reduces to a transformation of the

parameters in the three matter sectors as

q → e
2πi
3 q , d1 → −e

2πi
3 d1 , d2 → −e

πi
3 d2 , m → −m ,

u1 → e
2πi
3 u1 , u2 → e

πi
3 u2 , (5.39)

with the other parameters kept fixed. We can interpret this as the T -transformation for

all the parameters. To see that, let us turn off cij except for c00. Then the curve (5.26) is

written as

0 = (x−√
qz2)(x+

√
qz2)

(
x− z2

q

)
− c00 . (5.40)

In terms of w = x/z2 and v = z3, the curve can further reduce to

v2 =
c00

(w2 − q)
(
w − 1

q

) . (5.41)

Changing the variables preserved the SW 1-form up to exact term,22 we find that the above

expression is equivalent to the following curve:

y2 = (x̃2 − ũ)2 − fx̃4 , (5.44)

where we defined f ≡ 1 − q and ũ ≡ 2(1−f)
1
3√

1+
√
f
c00, and the coordinates are defined by

x̃ ≡ i
√
ũw and y ≡ ũ

3
2/v. Here, the SW 1-form is now written as iũ

3
dx̃
y up to exact terms.

The curve (5.44) is a known expression of the SU(2) SQCD with four flavors. Since ũ is

the VEV of the scalar in the SU(2) vector multiplet, we note that c00 is indeed identified

with it. The equivalence of the SW curves of the two theories, in this case, means that the

22Here, we consider the change of variables:

w →
wq

1

2

√
1 +

√
f + q

1

2

√
1−

√
f

1+
√
f

w
√
1−

√
f + 1

, v →
√
1 +

√
f

2q
1

2

√
f

v

(
w
√

1−
√

f + 1

)2

. (5.42)

Then the curve is reduces to

v2 =
ũ

(w2 + 1)− fw4
, (5.43)

and the SW curve is now written as 1
3wdv up to the exact term.
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(A1, D6) 2 (A1, D3)

Figure 12: Decoupling a fundamental hypermultiplet from the (A2, A5) theory

(A2, A5) theory is indeed the SU(2) superconformal theory.23 This curve has an S-duality

transformation [1, 77]:

√
1− f → −

√
1− f , ũ → ũ . (5.45)

In terms of q and c00, this means that

q → e
2πi
3 q , c00 → −e

πi
3 c00 . (5.46)

Note that (5.38) is an S-duality transformation since this coincides with the action of

(5.38) on q and c00. In particular, we show that this transformation is regarded as the

T -transformation below.

We consider that the hypermultiplet in the (A2, A5) theory is decoupled, i.e., C11 → ∞,

and then the resulting theory is the non-conformally gauged AD theory described in Figure

12. To be finite periods, one needs to keep

Λ ≡ −1

2

√
qC11 (5.47)

finite in this limit C11 → ∞ combined with weak coupling limit q → 0, where Λ is identical

to the dynamical scale of the resulting theory.24 Similarly to (4.40), the gauge coupling of

23The same argument of the (A3, A3) theory was discussed by [34].
24In the limit C11 → ∞ and q → 0, the curve (5.26) reduces to

X2 = Λ5/3C05Z
3 + Λ4/3C04Z

2 + ΛC03Z + Λ2/3C02 +
Λ1/3C01

Z

− C00 + 2Λ2

Z2
+

Λ2/3C10

Z3
+

Λ4/3C20

Z4
+

Λ2

Z5
, (5.48)

where we take the new variables as

X ≡ − Λ
√
q

( x

z2

) 1

3

+ z3
( x

z2

) 2

3

, Z ≡
(
z2

x

) 1

3

, (5.49)

and the SW 1-form is written as λ = XdZ up to exact terms. Indeed, this curve is identical to that of the

resulting theory

x2 = −〈Î(3)|T (z)|Î(3/2)〉
〈Î(3)|Î(3/2)〉

. (5.50)
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the (A2, A5) theory and the dynamical scale of the mass-deformed theory are related by

Λ

C11
= exp

(
iθIR − 8π2

g2IR

)
. (5.51)

This implies from (5.47) that

q ∝ exp

(
2iθIR − 16π2

g2IR

)
. (5.52)

This means that the action of (5.39) on q coincides with the T -transformation in (5.23).

Therefore, (5.25) is interpreted as a weak coupling limit of the T -transformation of generic

values of all parameters.

5.3.2 Relation of mass parameters

Here, we rederive the relation between the mass parameters in (5.17). Let us turn on the

two mass parameters. Then the SW curve (5.40) is modified as

0 = v2 (w −√
q) (w +

√
q)

(
w − 1

q

)
+ v (c03 + c11w)− c00 . (5.53)

By shifting v as v → v − (c03 + c11w)/(2P3(w)), the curve reduces to

v2 =
c00

P3(w)
+

(c03 + c11w)
2

4P3(w)2
, (5.54)

where we defined P3(w) ≡ (w−√
q)(w+

√
q)(w−1/q), and the SW 1-form is now λ = −1

3vdw

up to exact terms. Note that (5.54) is an expression of the mass-deformed curve of the

SU(2) SQCD with four flavors.

Recall that the mass-deformed curve of the SU(2) SQCD with four flavors is given

as [13]

v2 =
U

P3(w)
+

M4(w)

P3(w)2
, (5.55)

where the SW curve is now λ = vdw. Here U is the VEV of the scalar in SU(2) vector

multiplet, and M4(w) is a fourth-order polynomial of w and related to the mass param-

eters. Since there is a constraint on M4(w) coefficients, the polynomial M4(w) has four

independent coefficients.

Comparing (5.54) with (5.55), we see that (c03+c11w)2/4 is identified withM4(w). Thus

two mass parameters of the former are identified with the mass parameters of the latter.
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To see this identification, let us focus on the residues of the SW 1-form. The residues

of the SW 1-form are known to be identified with the linear combinations of the mass

parameters. For SU(2) SQCD with four flavors, these residues are obtained by m1, · · · ,m4

of fundamental hypermultiplets as

m1 ±m2 , m3 ±m4 . (5.56)

We see that the SW 1-form has four simple poles at w = ±√
q, 1/q, and ∞. Thus the

residues of the SW 1-form at these simple poles are obtained as

−
c03 ± c11

√
q

12(q− 1/
√
q)

, −
c03 +

c11
q

6
(

1
q
−√

q

)(
1
q
+
√
q

) , 0 , (5.57)

In the weak coupling limit q → 0, one reduces to

m± 2M

2
, 2M , 0 . (5.58)

Note that if two mass parameters of the former are identified as

m1 =
m

2
, m2 = m3 = m4 = M , (5.59)

(5.58) coincides with (5.56). This means that the mass-deformed SW curve of the (A2, A5)

theory is identified with that of the SU(2) SQCD with four flavors when the mass param-

eters of the two theories are related by (5.59). The relation of mass parameters completely

coincides with that for the prepotential (5.17). Therefore this is a non-trivial consistency

check of our method.
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6 Conclusion

In this thesis, we have proposed the Nekrasov formula for (A1, DN) theory as given in

(3.19) and (3.57) by extending the generalized AGT correspondence to the case of U(2)

gauge group. This Nekrasov formula Z(A1,DN )
Y1,Y2

has been regarded as the contribution from

the (A1, DN) theory to each fixed point on the U(2) instanton moduli space. To that end,

we have first defined the irregular state of Virasoro and Heisenberg algebras (V ir ⊕H) in

section 3. we have shown that the action of V ir⊕H on the irregular state for integer-rank

has been completely determined as (3.6) and (3.7) by the extension of Gaiotto-Teschner’s

colliding limit construction [27]. For half-integer-rank, we have guessed that the sub-

algebra {Ln>0} reduces to the commutative algebra in the classical limit εi → 0, and

then the matrix elements have been evaluated by (3.38). In particular, in the case of

the dimensionful parameters in the (A1, DN) theory turned off, we have shown that the

non-vanishing eigenvalue in (3.38) was only bN .

As we apply our formula to the (A3, A3) theory, which is the SU(2) superconformal

field theory coupled to two copies (A1, D4) theories and one fundamental hypermultiplet

described in Figure 10, we can evaluate the Nekrasov partition function. In section 4,

when we turned off some parameters, we found that the prepotential relates to that of the

SU(2) superconformal QCD in (4.20) or (4.31). From this relation, we have read off how

the S-duality group acts on the UV gauge coupling via replacing of the gauge coupling of

SU(2) SQCD with four flavors as q → q2. And also, we have found the action of S-duality

group on all parameters. That replacement is consistent with the replacement of the Schur

index of the two theories as q → q2, however, q in the Schur index is different from the

gauge coupling q and is a non-trivial function of q [38].

In section 5, we have applied our formula to the (A2, A5) theory, which is the SU(2)

superconformal field theory, including one each of (A1, D3), (A1, D6), and fundamental

hypermultiplet in matter sector described in Figure 11. When all the relevant parameters

and the VEVs of the Coulomb branch operators in this theory are turned off, we can

evaluate the Nekrasov partition function of this theory, and then we found an analogous

relation in the case of the (A3, A3) theory. From this relation, we have also read off the

action of the S-duality group on the parameters, including the UV gauge coupling. Also,

we have shown how the T -transformation acts on all the parameters at the level of the

Seiberg-Witten curve,

The existence of the prepotential relation between the two conformally gauged AD

theories and the SU(2) with four flavors provide the non-trivial consistency check for our

55



fourmula (3.19) and (3.57), since the curves of these theories have the same form.

The T -transformations of the (A3, A3) theory and the (A2, A5) theory correspond to

(A3, A3) : θIR → θIR +
2

π
,

(A2, A5) : θIR → θIR +
3

π
.

The T -transformation of the N = 4 SYMs exchanges the minimal magnetic monopole with

the W-boson, while that of the N = 2, SU(2) with four flavors exchanges the monopole

with the quark, of which electric charge is 1/2 of the W-boson [1, 3–6]. This means that

the T -transformations exchange the monopole of minimal magnetic charge with the dyon

whose electric charges are respectively half and 1/3 of that of fundamental quark for the

(A3, A3) theory and the (A2, A5) theory, which are consistent with [35].

We have also applied our formula to the SU(2) superconformal field, including three

(A1, D3) theories in the matter sector, of which all the relevant couplings and the VEVs

of the Coulomb branch operators were turned off. We have found that the prepotential of

this theory vanishes. This is the same situation in the case of N = 4 super Yang-Mills

theories. Indeed, the Schur index of this superconformal theory is related to that of the

N = 4 SU(2) SYM by changing variables, which has been studied in [78].

There are natural future directions. The most important direction is understanding the

origin of the relations of the prepotentials (4.20) and (5.16). It would also be important

to generalize our works to SU(N) gauge theories coupled to Argyres-Douglas theories. To

that end, we need a U(N)-version of the generalized AGT correspondence. The SU(3)-

version of that has already been studied in [29]. The other important direction is the study

of the Nekrasov-Shatashvili limit [79] of (A3, A3) and (A2, A5) deformed by Ω background,

which combines our formula with the results [80–83]. It is also interesting to study the

uplift of our formula to five dimensions. The AGT correspondence of five dimensions has

been studied in [84–93].
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A Special orthogonal Basis

The orthogonal basis |a;Y1, Y2〉 that have been used in section 3, is defined as the solutions

to (3.11), which were first found in [44]. When we recovered the full εi-dependence, the

first few examples of the orthogonal basis are written as follows:

|a; ∅, ∅〉 = |a〉 , (A.1)

|a; , ∅〉 = (−i(ε1 + ε2 + 2a)a−1 − L−1) |a〉 , (A.2)

|a; , ∅〉 =
(
− iε2(ε1 + ε2 + 2a)(ε1 + 2ε2 + 2a)a−2

− (ε1 + ε2 + 2a) (ε1 + 2ε2 + 2a) a2−1

+ 2i(ε1 + 2ε2 + 2a)a−1L−1 − ε2(ε1 + ε2 + 2a)L−2 + L2
−1

)
|a〉 , (A.3)

|a; , ∅〉 =
(
− iε1(ε1 + ε2 + 2a)(2ε1 + ε2 + 2a)a−2

− (ε1 + ε2 + 2a)(2ε1 + ε2 + 2a)a2−1

+ 2i(2ε1 + ε2 + 2a)a−1L−1 − ε1(ε1 + ε2 + 2a)L−2 + L2
−1

)
|a〉 , (A.4)

|a; , 〉 =
(
− iε1ε2(ε1 + ε2)a−2 − (ε21 + ε22 + ε1ε2 − 4a2)a2−1

+ 2i(ε1 + ε2)a−1L−1 − ε1ε2L−2 + L2
−1

)
|a〉 , (A.5)

|a; , ∅〉 =
(
− 2iε22(ε1 + ε2 + 2a)(ε1 + 2ε2 + 2a)(ε1 + 3ε2 + 2a)a−3

− 3ε2(ε1 + ε2 + 2a)(ε1 + 2ε2 + 2a)(ε1 + 3ε2 + 2a)a−2a−1

+ i(ε1 + ε2 + 2a)(ε1 + 2ε2 + 2a)(ε1 + 3ε2 + 2a)a3−1

+ 3iε2(ε1 + 2ε2 + 2a)(ε1 + 3ε2 + 2a)a−2L−1

+ 3(ε1 + 2ε2 + 2a)(ε1 + 3ε2 + 2a)a2−1L−1

+ 3iε2(ε1 + ε2 + 2a)(ε1 + 3ε2 + 2a)a−1L−2

− 3i(ε1 + 3ε2 + 2a)a−1L
2
−1 − ε22(ε1 + 4ε2 + 4a)(ε1 + ε2 + 2a)L−3

+ ε2(3ε1 + 5ε2 + 6a)L−2L−1 − L3
−1

)
|a〉 , (A.6)

58



|a; , ∅〉 =
(
− iε1ε2(ε1 + ε2 + 2a)(ε1 + 2ε2 + 2a)(2ε1 + ε2 + 2a)a−3

− (ε1 + ε2)(ε1 + ε2 + 2a)(ε1 + 2ε2 + 2a)(2ε1 + ε2 + 2a)a−2a−1

+ i(ε1 + ε2 + 2a)(ε1 + 2ε2 + 2a)(2ε1 + ε2 + 2a)a3−1

+ i(ε1 + ε2)(ε1 + 2ε2 + 2a)(2ε1 + ε2 + 2a)a−2L−1

+ 3(ε1 + 2ε2 + 2a)(2ε1 + ε2 + 2a)a2−1L−1

+ i(ε1 + ε2 + 2a)(ε21 + 5ε1ε2 + ε22 + 2(ε1 + ε2)a)a−1L−2

− i(5ε1 + 5ε2 + 6a)a−1L
2
−1 − ε1ε2(ε1 + ε2 + 2a)2L−3

+ (ε21 + 3ε1ε2 + ε22 + 2(ε1 + ε2)a)L−2L−1 − L3
−1

)
|a〉 , (A.7)

|a; , ∅〉 =
(
− 2iε21(ε1 + ε2 + 2a)(3ε1 + ε2 + 2a)(2ε1 + ε2 + 2a)a−3

− 3ε1(ε1 + ε2 + 2a)(3ε1 + ε2 + 2a)(2ε1 + ε2 + 2a)a−2a−1

+ i(ε1 + ε2 + 2a)(3ε1 + ε2 + 2a)(2ε1 + ε2 + 2a)a3−1

+ 3iε1(3ε1 + ε2 + 2a)(2ε1 + ε2 + 2a)a−2L−1

+ 3(3ε1 + ε2 + 2a)(2ε1 + ε2 + 2a)a2−1L−1

+ 3iε1(ε1 + ε2 + 2a)(3ε1 + ε2 + 2a)a−1L−2

− 3i(3ε1 + ε2 + 2a)a−1L
2
−1 − ε21(ε1 + ε2 + 2a)(4ε1 + ε2 + 4a)L−3

+ ε1(5ε1 + 3ε2 + 6a)L−2L−1 − L3
−1

)
|a〉 , (A.8)

|a; , 〉 =
(
− 2iε1ε

2
2(ε1 + ε2)(ε1 + ε2 + 2a)a−3

− ε2(ε1 + ε2 + 2a)(3ε21 + 3ε1ε2 + 2ε22 − 2ε2a− 4a2)a−2a−1

+ i(ε1 + ε2 + 2a)(ε21 + ε1ε2 + 2ε22 − 2ε2a− 4a2)a3−1

+ iε2(3ε
2
1 + 7ε1ε2 + 2ε22 + (4ε1 + 6ε2)a+ 4a2)a−2L−1

+ (3ε21 + 7ε1ε2 + 6ε22 + (4ε1 + 2ε2)a− 4a2)a2−1L−1

+ iε2(3ε1 + ε2 − 2a)(ε1 + ε2 + 2a)a−1L−2

− i(3ε1 + 5ε2 + 2a)a−1L
2
−1 − ε1ε

2
2(ε1 + ε2 + 2a)L−3

+ ε2(3ε1 + ε2 + 2a)L−2L−1 − L3
−1

)
|a〉 , (A.9)

59



|a; , 〉 =
(
− 2iε21ε2(ε1 + ε2)(ε1 + ε2 + 2a)a−3

− ε1(ε1 + ε2 + 2a)(2ε21 + 3ε1ε2 + 3ε22 − 2ε1a− 4a2)a−2a−1

+ i(ε1 + ε2 + 2a)(2ε21 + ε1ε2 + ε22 − 2ε1a− 4a2)a3−1

+ iε1(2ε
2
1 + 7ε1ε2 + 3ε22 + (6ε1 + 4ε2)a+ 4a2)a−2L−1

+ (6ε21 + 7ε1ε2 + 3ε22 + (2ε1 + 4ε2)a− 4a2)a2−1L−1

+ iε1(ε1 + 3ε2 − 2a)(ε1 + ε2 + 2a)a−1L−2

− i(5ε1 + 3ε2 + 2a)a−1L
2
−1 − ε21ε2(ε1 + ε2 + 2a)L−3

+ ε1(ε1 + 3ε2 + 2a)L−2L−1 − L3
−1

)
|a〉 . (A.10)

It is straightforward to obtain |a;Y2, Y1〉 by using the relation |P ;Y2, Y1〉 = |− P ;Y1, Y2〉.

B Deformed prepotential

Here, we list the first terms of instanton part of the prepotential in (4.32):

F−2 = q2 +
13

8
q4 +

23

6
q6 +

2701

256
q8 +O(q10) , (B.1)

F2 =
q

2
Mu1u2 +

q2

16

(
− 4d21d

2
2M

2 − 8d21M
2m2 − d21u

2
2

− 8d22M
2m1 − d22u

2
1 − 16M2m1m2 − 2m1u

2
2 − 2m2u

2
1

)

+
q3

24

(
12d31d2M

2 − 6d12d2Mu1 + 12d1d
3
2M

2 − 6d1d
2
2Mu2 + 16d1d2M

3

+ 24d1d2M
2m1 + 24d1d2M

2m2 + 3d1d2u
2
1 + 3d1d2u

2
2

− 12d1Mm2u2 − 12d2Mm1u1 + 12Mu1u2

)
+O(q4) , (B.2)

F4 =
3q2

64

(
4d21M

2u2
2 + 4d22M

2u2
1 + 8M2m1u

2
2 + 8M2m2u

2
1 + u2

1u
2
2

)

+
q3

48

(
− 12d21d

2
2Mu1u2 + 20d21d2M

3u1 − 24d21Mm2u1u2 + 20d1d
2
2M

3u2

− 18d1d2M
2u2

1 − 18d1d2M
2u2

2 + 40d1M
3m2u2 + 5d1Mu3

2 − 24d22Mm1u1u2

+ 40d2M
3m1u1 + 5d2Mu3

1 − 48Mm1m2u1u2

)
+O(q4) . (B.3)

It is straightforward to check that there are invariant under (4.33).
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