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Abstract

Soft actuators are compliant structures that are generally made of elastomers and generate
large deformations. Finite deformation is the principal actuation basis of elastomer-based
pneumatic soft actuators. Desired deformation behavior is the key design requirement for
such actuators. The behavior of these structures is complex due to the presence of both
geometric and material nonlinearities. The objective of soft robotics applications is the
controlled large deformation of these structures. This dissertation is focused on studying the
behavior of two such pneumatic soft actuators: 1) flat shell actuator and 2) pneu-net actuator.
Analytical models of the actuators are developed for various states.

The objective of flat shell actuator model is to optimize its design and investigate its
interaction with a cylindrical object. The cylindrical object grasp is a case of partial contact,
and such interactions need special consideration on object geometry, especially in case
of inflatable actuators. Here, the grasping operation is governed by the deformed shape
of actuator, and is highly dependent on object geometry. The model is based on finite-
strain membrane theory and neo-Hookean material. The developed model considers contact
interaction of the actuator with both flat and cylindrical rigid substrates. The model is
developed for three different states of the actuator: 1) free-space; 2) contact with a flat
substrate; and 3) contact with a cylindrical substrate. In application, the model is used to
predict the relative position and air pressure required to grasp a cylindrical object using a
parallel two-finger shell gripper.

The pneu-net actuator model is based on the Euler—Bernoulli finite-strain hyperelastic
thin cantilever beam theory. The deformation of actuator air chambers is modeled using
finite-strain membrane theory. The analytical model is developed for two different states of
the actuator: 1) free space and 2) when the actuator is subjected to tip contact. The theoretical
formulation of the developed model is different from previously developed infinitesimal-
strain models of the actuator, since it considers axial stretch and forces applied to the actuator.
In addition, it can be theoretically implemented on similar structured actuators for various
applications.

The developed analytical models predict deformation and force characteristics of the
actuators. The models involve solving nonlinear algebraic and differential equations and are



iv

computationally efficient. The analytical model predicted deformation and force characteris-
tics of the pneu-net actuator are compared with the finite element (FE) model. The results
suggest that the developed model can predict deformation and force characteristics of the
actuator as accurately as the FE model, but the computation time of the developed model is
less than 1% that of the FE model.

The analytical model predicted deformation behavior of the actuators is validated experi-
mentally via free-space deformation, force measurement, and grasping tests. The frictional
properties of the actuators are investigated for contact scenarios similar to the grasping state.
In application, the developed models are used to predict the air pressure required to attain a
successful grasp. The predicted pressure is validated experimentally on two-finger flat shell

and three-finger pneu-net grippers for grasping different objects.
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Chapter 1

Introduction

1.1 Pneumatic Soft Robots

Soft robots are compliant structures. The compliance is provided either by the integration
of a few soft parts in the structure or the structure is made entirely of soft materials, usually
elastomers. The operating principle of these robots is their large deformation behavior. The
field of soft robotics is evolving in multiple directions, such as fabrication process, actuation
mechanism, sensory feedback, and application specific designs. The applications of soft
robots are endless, ranging from collaborative robots to space exploration [1]. Soft robots are
often categorized on the basis of their actuation mechanisms [2]. Fluid-driven soft actuators
(also referred as fluidic elastomer actuators) are mainly operated by the pressure differential
of working or driving fluid. Pneumatic soft actuators is one category of such actuators that
uses air pressure as the power source. Pneumatic soft actuators are among the oldest and most
widespread actuation technologies for soft robots. These actuators are popular because of
their compliance inheritance, robustness, easy fabrication, and low cost elastomer materials
[3]. The deformation or working operation of such actuators is usually governed by their
geometric structure and fabrication material [4].

1.2 Pneumatic Soft Grippers

Soft actuators have the potential to serve as a versatile gripper for grasping variety of objects
with moderate precision. These actuators have the ability to address challenges of soft body
interactions, especially during handling soft objects [5]. Such interactions are generally
encountered while handling products in food and agriculture industries [6—8], living creatures

during oceanographic exploration [9, 10], and in healthcare applications [11].



2 Introduction

The early soft grippers as presented by Suzumori et al. [12] were also developed
using pneumatic soft actuators. Fluidic elastomer actuators were also used to develop an
anthropomorphic hand that was capable of dexterous grasping [13]. Pneumatic soft grippers
made of elastomers have recently gained extensive attention among researchers because
of their low fabrication cost, maintenance cost, and wide application domain [2]. There
are numerous architectures for pneumatic soft actuators, such as bellows-like structures,
elongated elastomeric chambers with the addition of reinforcing fibers and layers, and tube-
like tentacles [3]. These actuators can generate high forces due to the large strain behavior of
fabricating material. The forces are proportional to fluid pressure and the surface area where
active pressure is applied. The reaction time of pneumatically powered bending actuators is
quite low, ranging from ~0.05 to 1.0 s [14]. Casting or molding process is generally followed
for the fabrication of these actuators. The molding process deals with the material in liquid
form, and offers the flexibility of incorporating functional elements in the actuator such as
inextensible layers [15], strain sensors [6, 16, 17], fibers [18, 19], variable stiffness elements
[20, 21], origamis, porous materials [22, 23], and adhesion [24]. Recent advancement in
3D printing technology also enables the fabrication of these actuators as a single entity.
Researchers demonstrated rapid fabrication of pneumatic soft grippers through printing. A
hand made of pneumatic pouch motors and a flexible structure can be printed in 15 min [25].
MacCurdy et al. [26] developed a two-finger gripper by inkjet printing of a soft elastomer.
A 3D printed gripper can handle different types of food filled in paper containers [7, 27].
Patel et al. [28] and Thrasher et al. [29] demonstrated 3-finger grippers made of UV curable
elastomers that are 3D printed via digital light processing.

These grippers are best suited for grasping objects with highly irregular geometry, fragile
properties, and objects in an unknown environment [5]. When actuated, elastomeric soft
actuators deform in a designed geometric shape [4]. However, the design of these actuators
is challenging because of their large deformation behavior. Many of these grippers have
membrane-based design [14, 30-34]. Membrane-based structures generate large deforma-
tions even at low actuation pressure and thus well suited for such actuators. Choi et al. [35]
conducted a study on the design and feasibility of a flexible gripper made of inflatable rubber
pockets. Wang et al. [31, 36] presented circular and parallel shell grippers for handling food
products. A membrane-based needle gripper for grasping and piercing food materials was
presented in [37]. Based on soft membrane, a bistable valve for the autonomous control
of a soft actuator was presented in [38]. A soft-bubble gripper for robust and perceptive
manipulation was presented in [39]. Membrane-based jamming and self-sealing grippers
were presented in [40, 41].
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Recently, pneu-net soft actuators have gained significant attention owing to their fast
actuation in bending [14, 42]. These actuators have numerous applications [43—45]. Low
et al. [46] used two fingers to manipulate a surgical wire. Galloway et al. [9] showed the
manipulation of delicate deep reefs and Zhou et al. [47] reported picking up of various food
items, such as a banana, a pear, a piece of tofu, and an egg. Manipulation of objects in an
amphibious environment was demonstrated by Hao ef al [48].

To improve the design and performance of these actuators, various approaches have been
presented [1, 49-55]. Researchers have integrated functional elements in their structure,
exploiting the versatility offered by the molding process. Curvature sensing was implemented
using resistive strain sensors made of stretchable or flexible electrodes [56], stretchable opti-
cal waveguides [16], as well as force sensing using a piezoresistive fabric component [57].
The integration of variable stiffness elements can offer increased holding weight. The pro-
posed solutions include particle jamming [20], shape memory polymers [58], thermoplastic
ligaments [59], and low melting point alloys [60]. Hao et al. [61] manually added a nylon
wire around the fingers of the gripper to change their functional length and handle objects of
different sizes, such as a screw, a pen, a chain of keys, and a cactus.

Recently, materials that are highly unconventional for robotics have been used for soft
grippers. Yuk et al. [62] developed hydraulic hydrogel actuators and robots that are optically
and sonically camouflaged in water. Walker et al. [63] developed an environmentally safe
device using a biodegradable elastomer, i.e., poly(glycerol sebacate) with calcium carbonate.
Shintake et al. [44] developed an edible gripper using a gelatin—glycerol material. Terryn et
al. [64] developed self-healing soft pneumatic gripper using thermo-reversible Diels—Alder
polymers.

1.3 Modeling of Soft Robots

The operating principle of soft robots is their controlled large deformation. To design and
manufacture soft actuators, accurately and efficiently, their physics needs to be explored
[65]. For the efficient design of these actuators, accurate models are needed to examine their
deformation behavior [5]. To understand the deformation behavior, the modeling of these
actuators, which involves both geometric and material nonlinearities, has attracted significant
attention [66—72]. The existing models of pneumatic soft actuators are Euler—Bernoulli
beam-based constant curvature [73—77], piecewise constant curvature [78, 79], Cosserat rod
approach [80], lumped parameter [81], and finite element (FE) models [48, 82, 83]. FE-
based simulations are widely used for the structural optimization of these actuators [84—88].
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Coevoet et al. [86] presented a FE-based unified software framework for the modeling,
simulation, and control of soft robots.

Additionally, analytical models for soft actuators have been developed [70, 72, 83, 89].
Polygerinos et al. [83] presented a quasi-static analytical and FE model for a fiber-reinforced
actuator. Sadati et al. [79] presented geometric deformation-based constant and variable
curvature models for a braided continuum manipulator. Paoletti et al. [70] presented an
analytical model of a soft actuator to grasp soft and stiff objects. A recent study by Casanovas
et al. [72] discussed a general approach for analytical modeling and design of soft extending
and contracting devices. Connolly et al. [71] presented an analytical model of a soft actuator
for trajectory tracking.

To model membrane-based actuators, both infinitesimal and finite-strain membrane
models from the literature on finite elasticity and continuum mechanics can be adopted.
To model a pneumatically driven membrane with clamped edge conditions, various finite-
strain-based modeling approaches have been presented [90, 91]. Finite-strain models for
membrane-based soft actuators were presented in [30, 92].

Analytical models of pneu-net actuators were presented in [30, 92-96]. Alici et al. [74]
and Zhong et al. [77] presented Euler—Bernoulli beam-based models for a pneu-net actuator.
Cao et al. [94] developed a constant-curvature model of a pneu-net actuator for model-based
control of the actuator. Based on the constant curvature assumption, Liu ef al. [92] calculated
the bending angle and the tip forces of a pneu-net actuator by considering the deformation of
air chambers. Based on the principles of elasticity and friction, Majidi et al. [93] presented
an analytical model for a locomotion soft robot. Wang et al. [30] presented an analytical
model of a pneu-net actuator based on the deformation of air chambers and serial robot
assumption. Fang et al. [95] presented a geometry-based framework for computing the
deformation of a pneu-net actuator within the range of linear elasticity. Xu et al. [96]
developed a mathematical model of a pneu-net actuator based on the multiple point contact
approach for contact between air chambers. Based on Euler’s elastica theory, Payrebrune et
al. [97] presented a rod-based model for pneu-net actuator. Gu et al. [98] presented a rod
theory-based analytical model for a pneu-net actuator with oblique chambers. Wang et al.
[99] presented a simplified line-segment model for a pneu-net actuator using an optimization-
based parameter identification method. Zhou et al. [100] presented an analytical model for a
pneumatic soft actuator made of symmetrical chambers that was part of a bionic robotic fish.
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1.4 Aim of Present Work

The analytical modeling of soft actuators is in its developmental phase and is still not
sufficiently mature. Despite the aforementioned developments, well-understood analytical
models of these actuators are yet to be developed because their intrinsic deformation is
continuous, complex, and highly compliant. The behavior of these structures is complex due
to the presence of geometric and material nonlinearities, and hence, is difficult to capture
accurately using infinitesimal-strain theories. This study is focused on the development of
analytical and computationally less expensive model for pneumatic soft actuators. In this
work, we focused on analytical modeling of two actuators: 1) flat shell actuator; and 2)
pneu-net actuator. The photo snapshots of these actuators are shown in Fig. 1.1.

The flat shell gripper is primarily developed to grasp agriculture products, such as
cucumbers. The design of this actuator is relatively simple and is basically a replica of one
of the standard geometric structures, i.e., a flat rectangular membrane. Various approaches
to model the behavior of a flat shell membrane are reported in literature, but the contact
interaction of the membrane is not well investigated yet. The flat shell actuator model is
based on the finite-strain membrane theory. The contact interaction of the actuator with flat
and cylindrical substrates is investigated [101].

(@) (b)

Fig. 1.1 Snapshots of pneumatic soft actuators. (a) Flat shell actuator, (b) two-finger flat shell gripper,
(c) pneu-net actuator, and (d) three-finger pneu-net gripper.

A brief analysis of the features of existing analytical models of pneu-net actuators is
presented in Table 1.1. From the analysis, as an outcome, the modeling of air chambers
is not much explored. Most pneu-net actuator analytical models considered the free-space
deformation but did not account for external contact. The actuators contain many passive
degrees of freedom, and when driven at a low input pressure, the available pneumatic power
cannot compensate for gravity loading [67]. FE-based simulations have been widely used to
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model and simulate the behavior of a pneu-net actuator and they work well for reproducing
the deformation and stress of the actuator. However, for real time applications or applications
requiring fast calculations, computationally efficient models are required. Therefore, it is
necessary to develop methods to account for these factors. The pneu-net actuator model is
based on finite-strain membrane and Euler—Bernoulli beam theories [102]. The air chambers
of the pneu-net actuator are modeled using membrane theory, and the actuator cover is
modeled using beam theory. The incompressible neo-Hookean material model is considered
to account for the hyperelastic behavior of actuator material.

1.5 Dissertation Organization

In Chapter 2, a brief introduction to the membrane and beam theories is presented. These
theories are part of existing literature on elasticity and continuum mechanics. We followed
these theories to formulate analytical models of the actuators.

In Chapter 3, modeling approach for the flat shell gripper is discussed. The models are
developed for four different states of the actuator: 1) free-space; 2) contact with flat substrate;
3) contact with cylindrical substrate; and 4) grasping cylindrical objects. The analytical
models consist of nonlinear algebraic equations as the final governing equations.

In Chapter 4, modeling approach for the pneu-net actuator is discussed. The models
are developed for two different states of the actuator: 1) free-space; and 2) grasping state.
The models consist of nonlinear algebraic and differential equations as the final governing
equations.

In Chapter 5, numerical solution procedure for the formulated equations and applications
of the presented modeling approaches are discussed.

In Chapter 6, experimental validation of the developed models is presented. Different
sets of experiments were performed to test the validity of developed models. Experiments
were also conducted to extract mechanical properties of the actuators.

Chapter 7 concludes the dissertation and suggested applications and future perspective of

the presented work.






Chapter 2
Theoretical Background

A brief introduction to the membrane and beam theories followed for the modeling of soft
actuators is discussed in this chapter. The membrane theory is followed for modeling the
inflatable part of the actuators, and the beam theory is followed for modeling the pneu-net

actuator. The analytical results presented here are based on existing literature.

2.1 Infinitesimal-Strain Membrane Theory

The analytical analysis for small deflections of membranes having different contours was
presented by Storakers [103]. The midplane extension of a rectangular membrane subjected
to lateral pressure as derived by Storakers has the following form

_ CE1,,8°
=

p 2.1

where p is pressure applied on the membrane, E is modulus of elasticity of membrane
material, #,, is membrane thickness, 0 is membrane midplane extension, 2a is membrane
width or smaller dimension, and C is a constant that depends on the Poisson’s ratio and major
dimensions of the membrane.

The infinitesimal-strain membrane model is followed for the modeling of pneu-net
actuator air chambers.

2.2 Finite-Strain Membrane Theory

The analytical analysis for finite deformation of thin membranes was presented in [90, 104].

For an isotropic and incompressible membrane, the principal stretches can be defined as
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N
|

(a) (b)

Fig. 2.1 (a) Flat shell actuator prototype. (b) Schematic of free-space deformation of flat shell
actuator (rectangular membrane). A; and A, are stretches defined along membrane width and length,
respectively.

M, Ay, and A3 = (/lllz)_l (see Fig. 2.1). For hyperelastic membranes [90, 104], the stress
resultants or line tensions 7; in principal directions are defined as

T, =2t, A3 (112 — 132) (U1 —l—)Lzz U2>
Ty =2t M3 (122 _ /132) <U1 R Uz) 2.2)

U
where U is strain energy density function and U; denotes —-. The strain energy density

al;

U(I,1,) is a function of strain invariants /; and I,. The strain invariants are defined as
Lh=2"+2"+2" s and L=A 2+, 2+2;2. (2.3)
The equilibrium equation for the membrane is defined as [104]
KiTi+xh=rp (2.4)

where k; is the principal curvature. The strain energy density function U for a neo-Hookean
material [105] is defined by

U="=(I,-3) (2.5)
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where u is shear modulus. After substituting (2.5) into (2.2), the line tensions become

T=uty, 13 (112 - 7L32>
T = H ity 13 (122 — )L'52> . (2.6)

Next, based on the deformed geometry, we defined stretches A; and curvatures k; for each
actuator, separately. The finite-strain membrane model is followed for the modeling of flat
shell gripper and for the air chambers of pneu-net actuator.

2.3 Finite-Strain Beam Theory

The analytical analysis of plane-strain hyperelastic thin beams with thickness stretching effect
was presented by He et al. [106]. A schematic of deformed and undeformed geometries of a
thin beam is shown in Fig. 2.2. The rotation angle 6 and stretch A are defined as

/
0
1 +u,

A=/ (1 4 +vi)2 2.8)

0 = arctan

2.7

where ug, vy are displacement components of the material line and (.)" represents the
derivative with respect to coordinate X. The curvature k of the deformed midplane of the
beam is defined as

o _do o
ds AdX A

(2.9)

where ds is the deformed length of line element dX that lies on the geometric midplane. The
beam is made of incompressible neo-Hookean material.
He et al. [106] developed the following Euler-Lagrange equations for hyperelastic beams

M '

<Tcos@+ ;msine) +g,=0 (2.10)
M '

(Tsin@— ;mcose) +gy =0 @.11)

where T is axial stress resultant, M is bending moment, m is distributed bending moment per
unit length, and g,, g, are distributed forces per unit length acting along X and Y-directions,
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Adx '
dUO
e

dx + duyg

Material Line

Fig. 2.2 Geometry of deformed and undeformed configurations of a plain-strain hyperelastic beam [©
2022 IEEE].

respectively. The axial stress resultant 7" and bending moment M are defined as

T 1 «’H?
—— == —— 2.12
WBH PR 2.12)
M K
- 2.13
UBH3 36 2.13)
The boundary conditions associated with these equations are derived as
P=Pxorduy=0,atX=0and X =L
Q=0Q0xordvy=0,atX=0and X =L
M=Mxord6y=0,atX=0and X =L (2.14)

where P, O are components of stress resultant vector along X and Y-directions, respectively.
The components are defined as

!

M
P=Tcos0+ ;—m

sin O (2.15)

!

Q:TsinO—M ™ cos@ . (2.16)

+
A
The finite-strain beam model was followed for modeling the pneu-net actuator cover. We

reformulated these equations to capture the deformation of the actuator and developed the
governing equations for its different states.



Chapter 3

Analytical Modeling of Flat Shell Gripper

Pneumatic soft actuators are usually designed to attain a predefined geometry upon actuation.
The deformed geometry attained by the flat shell gripper is one of the fundamental geometries,
i.e., inflation of a rectangular membrane. In this chapter, the formulation of governing
equations for the membrane part of flat shell gripper is presented. The flow of modeling is

presented in Fig. 3.1.

Geometric relations
based on deformed shape

+
Assumptions Membrane theory » Geometric variables |
on deformZd shape + \ * Slope §
. Stretch relations |::> Other parameters MATLAB . Mldplane inflation
« Circular curve « Geometric » Contact region
+ Dimensions * Force

* Material
* Shear modulus
« Poisson's ratio
* Pressure

Fig. 3.1 Flow of modeling for the flat shell actuator made of rectangular membrane.

3.1 Actuator Design

The actuator comprised a rigid shell and a soft thin membrane. The rigid shell (see Fig. 3.2),
which 1s typically fabricated using a 3D printer with PLA or PETG materials, serves not only
the mold for casting the thin membrane, but also as a component of the actuator for providing
support to the membrane. The fabrication method is relatively simple and it requires only
a one-time casting procedure that does not involve demolding. The detailed design and
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Assembled mold
or
Flat shell

Fig. 3.2 Rigid shell or mold for the flat shell gripper. The mold is comprised of an outer casing and an
inner support.

fabrication of a similar actuator was presented in [36]. The actuator is pneumatically driven
and can generate a relatively large force because of the rigid shell. To reduce modeling

Undeformed membrane

|
| a
i I\
| H
: — Frictionless / Clamp edge
R Friction / :,-'
Contact : — — Adhesion j:
initiation : "
\A I
| ™
i Contact edges Substrate
(a)
A Contact initiation = Contact edge Clamp edge
S| 1 T
B | e L —————
75} L -

Deformed length
(b)

Fig. 3.3 (a) Schematic of deformed membrane profile in contact with a flat substrate in friction-less,
friction, and adhesion modes. (b) The variation of stretch along deformed membrane profile in
different contact modes.
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complexity, certain assumptions were made on the design and behavior of the actuator. The
actuator is assumed to be a rectangular membrane with clamped end condition. The pressure
is assumed to be uniformly distributed on the membrane surface and at the contact region.
The deformed profile of the membrane is considered continuous and smooth. The free
portion of deformed membrane is assumed to follow a circular shape. The contact between
membrane and substrate is assumed to be friction-less [see Fig. 3.3(a)], and the stretch
variation along the deformed curve is assumed to be uniform [see Fig. 3.3(b)]. In Fig. 3.3,
the contact is initiated at the middle of membrane and due to symmetry, only one half is
shown. Here, the contact edges are shown at an identical location for all contact modes. This
is shown only for better comparative analysis of stretch variation. However, physically the
contact edges do not lie at the same location. Also, the slope of stretch curves for friction
and adhesion cases are not related with other. The slopes are arbitrary.

The formulation of governing equations for free-space deformation of the actuator is
presented in the next section.

3.2 Free-Space Deformation

For a rectangular membrane, the change in dimensions along the principal directions is
assumed to be Aa = Ab [see Fig. 3.4(a)]. Using this assumption, the principal stretches 4,

(@) (b)

b-a
D I

iy

(c) (d)

Fig. 3.4 Schematic illustration of free deformation of a rectangular membrane. (a) Isometric view,
(b) section view along actuator width, (c) section view along actuator length, and (d) experimental
snapshot of inflated actuator [© 2022 IEEE].

a
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and A, can be expressed as
A=A ; and /12=1+g(7t—1). 3.1)

The membrane material is assumed to be isotropic and incompressible. For an incompressible
material, the principal stretch A3 can then be written as

A= (A )" (3.2)

The deformed profile along actuator width is assumed to exhibit a circular shape with

curvature K; = R [see Fig. 3.4(b)]. The average curvature [107] along actuator length can be
written as [due to symmetry, only one-half is considered; see Fig. 3.4(c)]

Om

" RO+ (—a) o

K

where 6, is arc or clamp angle of deformed membrane surface. Based on deformed geometry
of the membrane, we can express the radius of curvature R as

rR=—2 (3.4)
sin 6,
From deformed geometry, the stretch A along actuator width can be written as
9}7’[
= : 3.5
'™ sin O 3-5)

The maximum inflation § of the membrane is derived from the deformed geometry as

0 = atan (%) . (3.6)

After substituting the curvatures into membrane equilibrium equation (2.4), it can be written
as

T +

STt =), 7
R ROpy+(b-a) >~ 7 G-7)

Equation (3.7) is the final governing equation for free-space deformation of the membrane.
After substituting (2.6), (3.1), (3.2), (3.4), and (3.5) into (3.7), it reduced to a nonlinear
algebraic equation, having 6,, as the only variable.
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Rigid Substrate Cp
. E—

Fig. 3.5 Schematic illustration of a rectangular membrane in contact with a flat rigid substrate. (a)
Section view along actuator length, (b) section view along actuator width, (c) assumed shape of
contact region, (d) experimental setup to determine actual shape of contact region, and (e) actual
contact region. In (e), the dotted red curve represents an oval shape [© 2022 IEEE].

3.3 Full Contact with Flat Substrate

The formulation of governing equations for predicting the contact force and deformed
geometry of the actuator in full contact with a parallel flat substrate is presented in this
section. From the deformed geometry [see Fig. 3.5(a)], the radius of curvature R can be

written as

d

= 3.8
1—cos6, (3.8)

where d is the offset between membrane and substrate. The contact width ¢, along actuator
width [see Fig. 3.5(b)] can be written as

O

cqa=a—dcot (7) 3.9

The contact width ¢, along actuator length can be expressed in terms of ¢, as

cpb=Mb—A atc,. (3.10)
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The stretch A; along actuator width can be expressed as

1 O 2 (O (Om
7Ll—1—|—al2c:sc<2) cot(z)l. (3.11)

After substituting (2.6), (3.1), (3.2), (3.8), and (3.11) into equilibrium equation (3.7), it gets
reduced to a nonlinear algebraic equation, having 6,, as the only variable. The contact region
exhibits an oval shape, as validated experimentally in Fig. 3.5(d) and (e). The contact area
A for an oval-shaped region [see Fig. 3.5(c)] can then be calculated as

A, =2c¢, (261,—2Ca)+77.7€a2. (3.12)
The normal contact force F. can be calculated as

Fe=pAc. (3.13)

3.4 Contact with Cylindrical Substrate

In this section, we formulate the model of membrane actuator in contact with a cylindrical
substrate for applications in grasping agricultural products, such as cucumbers [36]. Here,
we consider the axis of substrate to be parallel to the width of actuator, as shown in Fig. 3.6.

3.4.1 Contact Along Actuator Length

Based on deformed geometry of the membrane [see Fig. 3.6(a)], stretch A, can be expressed

as (due to symmetry, only one-half is considered)

_r8:+R6.+e+RO,
N b

Ao (3.14)

where 0, is contact angle and e is portion of deformed membrane with zero curvature. The
undeformed length b can be expressed as

b=rsin6.+Rsinb.+ e+ Rsin6,, . (3.15)
The object offset d can be expressed as

d=rcosB.+Rcos6.—RcosB, . (3.16)
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(d) (f)

Fig. 3.6 Schematic illustration of a rectangular membrane in contact with a rigid cylindrical substrate.
(a) Section view of contact along actuator length, (b) free deformation along actuator width (section
7p—77), (c) deformation at contact edge (section z; —2z;), (d) contact at the mid-plane (section zg—zg),
(e) photo snapshot of experimental setup for force measurement, and (f) experimentally validated
assumed shape of elliptical contact region [© 2022 IEEE].

The contact width ¢, along actuator length can be written as

c,=16,. (3.17)

3.4.2 Contact Along Actuator Width

The deformed profile of the membrane is assumed to be spherical at the ends [see Fig. 3.4(a)].
From the deformed geometry for section z;—z,, as shown in Fig. 3.6(b), the undeformed
width a can be expressed as

a=Rsin6,, . (3.18)
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The stretch A; along actuator width can be expressed as
AMa=Rb,. (3.19)

From the deformed geometry for section zg—zg as shown in Fig. 3.6(d), the object offset can
be expressed as

d—r=R;—R,cos0,, (3.20)

where R, is radius of curvature and 6,,, is arc angle. The undeformed width a of the

membrane can be expressed as
a=cq+Rysin6,, . (3.21)

Along actuator width, the stretch is assumed to be constant throughout the contact region, i.e.,
the stretch at section zg—zp and z; —z; are equal [see Fig. 3.6(c) and (d)]. From deformed
geometry, the stretch MO at section z; —z1 can be calculated as

On,

=T 3.22
Sin 6,,, (3:22)

1o

The inflation height 6, at contact edge (section z; —z;) can be calculated from the deformed
geometry along actuator width as

0, =R, —R,c0s6,, . (3.23)
It can also be calculated from the deformed geometry along actuator length as
0, = RcosB. —RcosH,, . (3.24)
The undeformed membrane width a can be expressed as
a=R,sin6,, . (3.25)

The arc angle 6,,, for section z;—z; can be calculated from (3.23), (3.24), and (3.25) as

R(cos 6. —cos6y,)
a

6, =2 tan~! (3.26)
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The stretch A4;, can be expressed as
Mya=ca+Ry O, . (3.27)

The contact region is assumed to be elliptical and is validated experimentally, as shown in
Fig. 3.6(f). In this case, the contact area can be calculated as

Ac=Tcacy. (3.28)

In force-measuring experiment (for force data see Section-6.2.3), the sensor recorded force
data corresponding to the Z-direction, as shown in Fig. 3.6(e). The component F;, of the
contact force along the Z-direction can be calculated by projecting the contact area normal to
the Z-direction as

F. = p mc, rsin®, . (3.29)

3.4.3 Curvature

Along actuator width, the stretch is maximum at section z,—z,. The curvature at this section

. 1 . .
18: K1 = R The average curvature of free portion of the membrane along actuator length is
defined as

O + 6,

= 3.30
RO, + e+ RO, ( )

K
We now have sufficient number of equations for the number of unknown variables. Therefore,
by solving (2.4), (3.15), (3.16), (3.18), and (3.27) as a set of nonlinear algebraic equations,
we can obtain all the unknown variables.

3.4.4 Axial Offset State (offset along actuator length)

The vertical offset between the membrane and cylindrical object is defined by b — h, as shown
in Fig. 3.7(a). Based on the assumed deformed profile of the membrane, a limit exists on
h, below which the membrane cannot grasp the object. The restriction on 4 is imposed by
parameter ep. A successful grasp can only be achieved if e; > 0. For e, < 0, the object
does not get a stable enclosure because the net resultant grasping force is in the downward
direction [see Fig. 3.7(b) and (c)]. For e; > 0, the contact along actuator width remains the
same as that for b = h. Here, the deformed profile along actuator length becomes asymmetric,
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F
CNet

(a) (b) (c)
Fig. 3.7 Schematic illustration of a rectangular membrane in contact with a rigid cylindrical substrate.

(a) Offset state (ep > 0), (b) offset state & < (r+a) or e, < 0, and (c) a two-finger shell gripper [©
2022 IEEE].

as shown in Fig. 3.7(a). For this case, the stretch A, can be defined as

_2r60.+2R6.+e;+2R 6+ e

A b (3.31)
The undeformed length b can be expressed as
2b—h=rsinO,.+ Rsin O, + ey +Rsin b, . (3.32)
The vertical offset /4 can be expressed as
h=rsin6,4+ RsinO,.+ ey + Rsin 6, . (3.33)

The horizontal object offset d can be expressed as

d=rcos6.+Rcos6. —Rcos0, . (3.34)
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For such configurations, the contact along actuator width and the remaining equations are the
same as those for b = h (Section-3.4.2).

Offset Height / for Successful Grasp

The minimum value of offset height & for a successful grasp can be calculated corresponding
to e = 0. We can calculate & by substituting e; = 0 into (3.31) and (3.33) and then solving
the system of nonlinear equations for 4. Vertical offset is a critical parameter for achieving a
grasp with the gripper.

(a) (b)

Fig. 3.8 Schematic of flat shell gripper showing grasp dependency on object size.

We can also define the grasping capabilities of flat shell actuator in terms of the minimum
size of object that it can grasp. Based on deformed membrane profile, the minimum size of
object that can be grasped by the gripper can be predicted using the smaller dimension a of
the membrane. The actuator is assumed to have spherical deformed geometry at the ends
[see Fig. 3.4(a) and (d)], and based on this assumption, it will not be able to grasp an object
having height iy < a, as shown in Fig. 3.8. This kind of relationship between the deformed

profile of actuator and the size of grasping object is usually absent in grippers made of rigid
finger-tips but for membrane based grippers, it is important to consider this behavior.
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3.4.5 Eccentric Grasp (offset along actuator width)

The objective of this section is to account the eccentricity of the center of mass of the
cylindrical object, as shown in Fig. 3.9. Such conditions are encountered while grasping
objects within a limited space. Physically, this condition was encountered while grasping
multiple cucumbers using a gripper made of multiple flat shell actuators [36].

The center of mass of the cylinder is at a distance x, from the center of the actuator. The
eccentric mass applied a turning moment 7 at the contact region as

T, =mg x, . (3.35)

The effect of turning moment 7. is counter acted by a resisting turning moment 7 , as shown
in Fig. 3.9(c). The resisting turning moment 7 can be calculated from the contact region
and traction force as

m:/aw' (3.36)

where « is the distance of any arbitrary point from the center and d f is differential traction
force element. The differential force element can be expressed in terms of pressure and area
as

TR:/adf
:/a Ur p dA (3.37)

where p is pressure, [y is coefficient of friction, and dA is differential area element. In
Cartesian coordinates, the distance o can be written as

o= /x2+y2. (3.38)

The area of elliptical contact region can be calculated by taking the integral over the boundary
as

ch
A:4/ xdy
0

1
el Y] 2
LGB o



3.4 Contact with Cylindrical Substrate 25
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Cylindrical

2c, object
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Fig. 3.9 Schematic of eccentric grasp of a cylindrical object. (a) Position of object with respect to
actuator and shape of contact region, (b) free-body diagram, and (c) detailed free-body diagram. The
center of mass is at a distance x, from the center of contact region.

Substituting (3.38) and (3.39) into (3.37), we get the resisting turning moment as

1 1
Z 2 2 ’\12
TR:4[.pr/ [caz (1—y—2> —|—y21 {cf (1—y—2>] dy . (3.40)
0 Ch Cp

To resist the tilting effect, the resisting turning moment must be

T. < Tk

1
e 2 5 2
ie. mgx, < 4uy p/ {caz <1—y—2> +y2]2 {caz (1—y—2>] dy. (3.41)
’ 0 Cp Ch

Physically, the contact force required to resist the tilting will be greater than the lifting

SR

force. We can calculate the pressure required to resist the tilting motion of the cylindrical
object using (3.41).






Chapter 4
Analytical Modeling of Pneu-net Actuator

The desired deformation behavior of pneu-net actuator is bending motion, like human fingers.
However, the actuator experiences both stretching and bending. Air chambers are the
principal driving element of the actuator. An overview of the modeling approach for the
pneu-net actuator is presented in Fig. 4.1. In order to capture the deformation behavior of the
actuator, it is important for us to first understand the deformation behavior of air chambers.

Air chambers — Membrane model

Membrane

1

1

Air pressure —> — Bending moment E
1

____________________________________________________

Bending moment .
Deformation

Force

' Distributed forces — Beam Theory —
i Point forces

Fig. 4.1 Flow of modeling approach for pneu-net actuator.

4.1 Actuator Design and Theoretical Assumptions

The soft actuator design is based on the pneu-net morphology of elastomer robot. A detailed
discussion on actuator design was presented in [108]. The casting process was employed to
fabricate the actuator using silicone rubber. Certain assumptions were made while modeling
the actuator. The pressure is assumed to be uniform throughout the actuator, and the friction



28 Analytical Modeling of Pneu-net Actuator

Air chamber

] i |

) L

Fig. 4.2 Design of pneu-net actuator. (a) An isometric view and (b) section view along actuator length
[© 2022 IEEE].

at the contact between adjacent chambers is not considered. As shown in Fig. 4.2, the cover
pad at the base of actuator is modeled as a hyperelastic cantilever beam with a rectangular
cross-section. The air chambers are modeled as independent elements that apply a distributed
as well as an eccentric axial force on the cover. The distributed force is due to the weight
of air chambers. The eccentric axial force is induced by the air pressure, and it is predicted
using the deformation of the side walls of air chambers. The bending stiffness of the air
chambers is not considered. The model assumes that the applied air pressure is adequate
and all air chambers are in contact. The modeling approach considers only flat geometry
chambers as the initial undeformed state.

4.2 Infinitesimal-Strain Air Chamber Model

The pneu-net soft actuator consists of several serially connected air chambers. In the geomet-
ric design of air chambers, the thickness of chamber walls facing the adjacent chambers (in
YZ plane, see Fig. 4.2) is lower than that of the remaining walls. When inflated in free-space
state, the actuator attains the deformed shape shown in Fig. 4.3(a). A schematic of adjacent
chambers in contact is shown in Fig. 4.3(b). The eccentric axial force applied to the actuator
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2a
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(b) (c)

Fig. 4.3 Geometry of air chambers. (a) Snapshot of a soft pneu-net actuator subjected to air pressure
in free-space deformation state, (b) enlarged sketch of deformed air chambers, and (c) section view of
air chamber along YZ plane, representing undeformed side wall. In (c) the solid boundary represents
air chambers side walls (membrane) and dotted boundary represents actuator cover (beam) [© 2022
IEEE].

cover is calculated from the deformation of air chambers using the membrane theory. The
adjacent side walls (in YZ plane) of the chambers are modeled as initially flat membranes
with clamped edge condition, subjected to lateral pressure. The deformation of the remaining
walls is not considered. A schematic of an undeformed membrane with sides 2a and 2b is
shown in Fig. 4.3(c). When subjected to air pressure, the membranes get inflated and come
into contact with the adjacent membranes. A detailed schematic of deformed air chambers is
shown in Fig. 4.4.

The work done by internal pressure W on the membrane can be calculated using the
displaced volume V as

p1
W= / Vdp. (4.1)
0
The membrane is assumed to displace a volume equal to
V=nas. (4.2)

The midplane extension & of the membrane is calculated from (2.1) as

pat \
5— <CEt ) . 4.3)
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Fig. 4.4 Schematic of air chambers geometry. (a) Undeformed state, (b) deformed state, (c) section
view along actuator width showing contact region by dotted curve, and (d) section view along actuator
length showing deformed and undeformed geometry [© 2021 IEEE].

After substituting V (4.2) and 6 (4.3) into (4.1) and solving the integral, we get

:377:5125;71

w
4

4.4)

The contact force F), generated at the contact region is calculated from the work done as

W =F,(0+hy)
_3mad* 6 p,
P48 +m) +3)

The eccentric axial force F), induced a bending moment M7 on the cover, acting along the
Z-axis as

Mr=F,ey. (4.6)

The developed air chamber model was followed for modeling the free-space and blocked
force states of a uniform air chamber geometry actuator [89].
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4.3 Finite-Strain Air Chamber Model

The finite-strain modeling of air chambers as an initially flat membrane is presented in this
section.

4.3.1 Deformation of Air Chambers

For thin films or membranes, the bending stiffness is negligible. In this study, the inflated
membrane is assumed to have a circular geometry, as shown in Fig. 4.3(b). A detailed
schematic for the deformation of adjacent air chambers in contact is shown in Fig. 4.5.

Fig. 4.5 Schematic of deformed geometry of air chambers. The solid aquamarine color lines represents
the deformed profile of membranes and dashed lines represent air chambers and actuator cover [©
2022 IEEE].
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The derivation of various geometric parameters mentioned in the schematic is presented in
subsequent sections.

The deformation of the membranes is assumed to be symmetric about contact plane YyZg.
Initially, in undeformed state, the contact plane is parallel to the membranes (i.e., 6, = 0),
but once the actuator deforms, it becomes inclined to the membranes (i.e., 8y # 0). Towards
the interior of deformed air chambers, the membrane is at a distance d from the contact plane
(initially, d = hy) that is inclined to the undeformed membrane surface at an angle 6;, as
shown in Fig. 4.6(a). In later derivations, the contact plane is assumed to be a rigid substrate.
The deformed profile of an initially flat membrane in contact with an inclined substrate is
shown in Fig. 4.6(b). We refer the deformation to cartesian coordinates that are defined along
the undeformed membrane surface. We define the surface of the deformed membrane that
is not in contact with the substrate as free surface, and it has a circular geometry [91]. The
dotted curve in Fig. 4.6(b) denotes the deformed profile of the membrane at contact initiation.
The contact begins at point C,(x*,y*) and its location is dependent on parameters d and 6;.
The contact width, unlike that in contact with parallel substrate is not symmetric about the
point of contact initiation and is defined by ¢; and ¢, from the point of contact initiation
along the substrate. The next subsection discussed the constitutive relations for a square
membrane. The deformation of rectangular membrane is predicted from the deformation of
square membrane using stretch mapping.

Constitutive Relations for Membrane

The free deformation of the membrane is symmetric about X-axis and two of the principal
stretches at the center of the membrane are assumed to be equal (square membrane assump-
tion). The membrane is assumed to be isotropic, incompressible, and hyperelastic. The
principal stretches are defined as A; = A, = A, and from the incompressibility condition
A3 = A, 2. From the assumption on the deformation state or the principal stretches defined
above, the tensions and curvatures become 71 = 7> = T, and K] = K» = K, respectively.
The equilibrium equation (2.4) for the membrane can then be written as

_ P
2Km

4.7)

m

The equilibrium equations are independent of membrane material. We considered the
membrane material to be neo-Hookean. For the stretches defined above, the tension 7,,, for a
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neo-Hookean membrane can be written using (2.6) as

1
u ( A ) (4.8)
From (4.7) and (4.8), we get the final equilibrium equation as
p 1
= ut,(1——|. 4.9

Now, curvature K, is the only unknown parameter and it is defined from the deformed
geometry of the membrane.

4.3.2 Free Inflation of Membrane

The membrane experiences free inflation before contact initiation. Before contact, the
membrane is symmetric about X-axis and makes an angle 6,,,, at the clamped edge, as shown
in Fig. 4.6(a). The stretch in the deformed membrane is uniform and from geometry, it can
be calculated as

A (4.10)
a
From the deformed geometry, the radius of curvature Ry can be calculated as
Rj=—2 (4.11)
: sin 6, y
From (4.10) and (4.11), the stretch A,, can be written as
0
Aog = —T— . (4.12)
sin Gm, ;

The maximum inflation § of the deformed membrane can be calculated as

O,
8 =Ry (1 —cos6,,) =atan - ) (4.13)



34 Analytical Modeling of Pneu-net Actuator

YN b

Deformed membrane

Substrate (contact plane)

(b)

Fig. 4.6 Deformed geometry of an initially flat membrane, (a) before contact and (b) in contact with
an inclined substrate. The dotted curve indicates free deformation [© 2022 IEEE].

1
For deformed circular membrane, the curvature is k;,, = R Substituting (4.11) and (4.12)

into (4.9), we get the relation between 6,,, and applied pressure p as

sin9,,71f _ap

sin 6, — (4.14)

= :
05 ; 2Uty,



4.3 Finite-Strain Air Chamber Model 35

Equation (4.14) has a upper limit for pressure p. After a certain value of pressure, the
equation has no solution. However, for membrane in contact, the stretch A4, and R r are
defined using different expressions. In that case, the upper bound on pressure is imposed by
0,,, with an upper limit 7.

For the pneu-net actuator, we can define the minimum pressure p;, required to initiate the
contact between adjacent air chambers using (4.14). The minimum inflation of air chambers
required to make contact with adjacent chambers is 8 = h,. By substituting & = A, into
(4.13) and solving it for 6y, we get

h
O, = 2tan”" <—x> . (4.15)
’ a

By rearranging (4.14), we get the expression for pressure as

2ut sin@’
Pin = —i = (sinemf— o ) . (4.16)

I?’lf

Contact Initiation

The geometry of the membrane in contact with an inclined substrate is shown in Fig. 4.6(b).
The contact begins from point C,(x*,y*). From deformed geometry, the location of point C,
can be calculated as

x" = —R;(cosBs—cos6;) ;and y* =R,sinb; . 4.17)
The slope 6; can be calculated as
g =cscO; —cosO;,cotB; —sin 6; . (4.18)
The undeformated location (0, p*) of contact initiation point C,(x*,y*) can be written as
pr=a2. (4.19)

The contact initiation point is assumed to be stationary and the contact widths are defined
with respect to this point.
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4.3.3 Inclined Contact Between Membrane and Substrate

First, the left side (exterior) of contact initiation point is investigated and an expression for
contact width ¢, is obtained; then from the deformed geometry, the correlation between ¢
and c; is developed. If the contact between the membrane and substrate is assumed to be
frictionless, then the stretch in the membrane is going to be uniform, i.e., same stretch in
free and contact surface. The stretch at the contact edge can be defined either from the free
membrane A,,; or from the membrane in contact A;,. For frictionless contact, the stretches
Ain and A,y are equal. From the deformed geometry, the stretch at the contact edge can be

written as
(&)
A = 4.20
"= (4.20)
and
RO
Ay = —12 4.21
o= o (4.21)

The undeformed location p; of the contact edge can be obtained by equating (4.20) and
(4.21) as

RO, p* —ac
=—= 4.22
p2 RO, + 02 (4.22)
The radius of curvature R can be obtained from the deformed geometry as
g atp)cosbi—cr (4.23)

sin 6y,

The undeformed contact width p, can be expressed in terms of 6,,, by substituting (4.23)
into (4.22) as

Om,p* ((a+p*)cos Oy —c2) —ac, sin By,
Om, ((a+p*)cosOs—cr) —ca8inby,

p2 = (4.24)

From the deformed geometry, the relation between radius of curvature R and offset d can be

written as

d =R(1 —cos6y,,) —2asinb; . (4.25)
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The contact width ¢ can be expressed in terms of 6,,, by substituting (4.23) into (4.25) as

¢ = (a+p*)cos B — (d + 2asin O5) cot (%) : (4.26)

The radius of curvature R can be expressed in terms of 6,,, by substituting (4.26) into (4.23)
or from (4.25) as

R_ d + 2asin 6
=\
2si 2 ni

e (%)

The stretch A, can be calculated by substituting (4.24) and (4.26) into (4.20) as

(4.27)

d + 2asin 6 O,

6
Ay = cos O, + —2cot <ﬂ) ) 4.28
m S 2((l+p*) Sin2 <%) 2 ( )

2
The tension 7;, can be obtained by substituting (4.27) into (4.7) as
p d—+2asin 6
2 6, '
2sin? [ 22
(%)

By substituting (4.27) and (4.28) into (4.9) we get the final equilibrium equation as

T = (4.29)

|46 p(d+2asin6;)

A= T
4L t,,sin? <%>

Equation (4.30) is a nonlinear algebraic equation with 6, as variable. We can obtain 6,,,

(4.30)

by solving (4.30) and ¢, and A,, by substituting it into (4.26) and (4.28), respectively. Now,
c1 and the contact width ¢, along Zy-direction are the unknown parameters.

Contact Widths

The free-standing portions of the membrane have a uniform radius of curvature. Using

this argument, we can define the correlation between c1, 6,,,, and R. From the deformed



38 Analytical Modeling of Pneu-net Actuator

geometry, the clamp angle 6,,, can be expressed in terms of radius R as

d

6., = cos ™! <1 - E) : (4.31)

The contact width c¢; on the right half (interior) can be calculated from stretch as
c1 =2aAyn —R (O, + Om,) —C2 . (4.32)
The contact width ¢, along Yy-axis can be written as
cy=c1+c. (4.33)

The maximum contact width along Zy-direction exists along the point of contact initiation and
it can be calculated by equating the deformed and undeformed lengths along the Zy-direction;
in final form, it can be written as
b(a—p*
c;=(c1+¢) % . (4.34)
In the equations derived above, if the substrate inclination angle 6 is set to zero then, we get
the parallel contact model, and in that case, 6,,, = 6,,, and ¢ = c;.
Finally, we can get the deformed profile of the membrane from (4.27), (4.30), and (4.31).
And, from (4.26), (4.32), and (4.34), we can calculate the contact widths to predict the

contact force. The developed square membrane model for contact with an inclined substrate
is tested on a flat shell actuator. The results are presented in Appendix-B.

4.3.4 Bending Moment for Uniformly Distributed Air Chambers

The contact region between air chambers is assumed to be elliptical and the minor and major
axes are defined as ¢, and ¢, (along Y and Z, respectively, see Fig. 4.5). The contact area
A, for the elliptical region can be written as

A, = gcycz . (4.35)

The contact force F), generated by the air chambers can then be calculated as

F, = pA. . (4.36)
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The force F), induced a bending moment M,, on the segment 24, (initially, d = h,) and it can
be calculated as

My =F,e, (4.37)

where ey is the eccentricity and from the deformed geometry (see Fig. 4.5), it is defined as

H
ey = (5 +a—p*> cos 6; . (4.38)

The bending moment M,,, induced on segment 2/, is one of the driving forces that causes
the bending deformation of the cover pad. The gross effect of this driving force is also
dependent on other design parameters, i.e., density and length of the air chambers /;. For
segment X;, the bending deformation caused by M,,, is equivalent to the bending deformation
caused by an unknown moment M), which is applied on the span of X;,, as represented in
schematics Fig. 4.7(a) and (b). The unknown moment M), can be calculated by equating
the change in strain energy caused by M,, and M,,, and in final form it has the following

expression

1
20y M2\ 2
M, =[==>"m ) 4.39
pi (th+hL> (4.39)

For a uniform geometry actuator, the bending moment M, is uniform throughout actuator
length, and in later derivations, it is represented as M), = Mr. The actuator has a pneu-
net geometry and the application point of force F), is at an offset of e, from the actuator
cover. Thus, the bending moment M), is the primary component of F),. The effect of axial
component of F), is not significant when compared with the effect of bending moment; hence,
it is not considered in further discussion.

4.3.5 Bending Moment for Nonuniformly Distributed Air Chambers

For a nonuniform geometry actuator, the deformation and force characteristics of each
beam segment are evaluated separately. The free body diagram of a beam segment in the
undeformed state is represented in Fig. 4.7(c). At the free end, the bending moments M,
and MF; are introduced by the distributed and tip forces, and can be written as
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Fig. 4.7 Schematic of (a) beam segments, (b) free body diagram of actuator cover in undeformed state,
and (c) free body diagram of a beam segment in undeformed state [© 2022 IEEE].

2

Xy
My, =2 (4.40)
My, = Fou X, . (4.41)

For free-space deformation state, the equivalent bending moment My at the free end is
considered as

In the presence of tip forces, the equivalent bending moment M7y is considered as
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The expressions for My are different for the free-space and tip contact states because the
application of bending moment M), is dependent on other forces. The beam segments
are serially connected to each other. The final deformation of the actuator is derived by
transforming the individual beam segment deformation to a common inertial frame.

Now, the developed air chamber models are integrated with the actuator cover model to
formulate the final governing equations of the actuator. The modeling of the actuator cover

as a thin beam with a rectangular cross-section is discussed in the next section.

4.4 Modeling of Actuator Cover

The modeling of actuator cover followed the plane-strain hyperelastic thin beam model
developed by He et al. [106] (see Section-2.3). We reformulated these equations to capture
the deformation of the actuator and developed governing equations for the free-space and tip
contact states of the actuator.

4.4.1 Free-Space State

In this state, the actuator is subjected to gravitational force and internal pressure. As a
general case, an initially inclined state of the actuator is considered for study, as shown in
Fig. 4.8. From Section-2.3, for this state, the boundary conditions of the Euler-Lagrange

Undeformed

Deformed

Fig. 4.8 Schematic of free-space deformation state of the actuator [© 2022 IEEE].
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beam equations are defined as

upy=0,v9=0,and 6p =0, at X =0
P=0,0=0 and M =My, at X = L. (4.44)

Integrating the Euler-Lagrange beam equations (2.10) and (2.11) with respect to X yields the
following equations

/

M

T cos6 + ;m sinf = —g, X +C, (4.45)
M/

T'sin6 — ; " 058 = —g,X+Cp . (4.46)

The constants of integration C; and C; are evaluated by substituting the boundary conditions
(4.44) into (4.45) and (4.46). Here, g, and g, are components of the gravitational force per
unit length along X and Y-directions, respectively, and m = 0, as the distributed moment is
not applied. After substituting the values of C;, Cp, T (2.12) and M (2.13) into (4.45) and
(4.46), the equations get reduced to the following governing equations

1 (Hx\'  gL—X) . = g(L—X)
I (3},6> = ILLBH sin 6 — WCOS@ (447)
1 kH?  g(L-X) g(L—X) .

A— ﬁ — 27 = I,LBH cos 0 + W sin 6. (448)

The third boundary condition M = My at X = L (4.44) is modified using (2.13) as

o — 3M A7

= B (4.49)

To consider terminal forces in the free-space state, modify the boundary conditions at
X =Las: P=H,; and Q = F,y.

4.4.2 Grasping State

In this state, the actuator is subjected to gravitational force, internal pressure, and constraints
at the tip. As a general case, the state of the actuator while grasping an object in pinching
mode is considered for study. A grasp between a three-finger gripper and a hexagonal
cylinder, as shown in Fig. 4.9(a) is considered. The local coordinates for each finger are
attached to the fixed end, and the global coordinates for the gripper are attached to the center
of the gripper base. To grasp the object, the actuator has to apply a defined amount of force
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Fig. 4.9 Schematic of (a) deformed state of a three-finger gripper holding a hexagonal cylinder and (b)
free body diagram of single finger during the grasp [© 2022 IEEE].

and maintain a specific posture with respect to the object. The amount of force applied by the
actuator depends on the weight of the object and contact conditions (static case). The posture
depends on the geometry and position of the object with respect to the actuator. As shown in
Fig. 4.9(a) and (b), the actuator applied a lifting force H,,; along X-direction and maintained
an offset y, at the tip along Y-direction during the grasp. The boundary conditions for this
state are defined as

up=0,v9=0,and p =0, at X =0
P=H,s, vo=yc, and M =My, at X = L. (4.50)

The boundary condition at X = L along Y-direction is defined by a functional-type constraint

as
L L
/ G(ug,vg)dX—yC:/ A sin6dX —y.=0. .51)
0 0

The effect of the integral functional constraint G(uj,, v;,) is incorporated into the Euler-Lagrange
equations (2.10) and (2.11) using the Lagrange multiplier A. The modified governing equa-
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tions can then be written as

M/ !/ a !/
Teos0+ ™ gno) — (A29) 44.=0 (4.52)
A duy,
M ' G\’
(T sin @ — ;m cos 9> — (Aa—\i) +gy,=0. (4.53)

The partial differentials of functional G(u(,v;,) have the values

G G
a—%—O,and a—%_y (4.54)

From variational calculus, the natural boundary condition at X = L, along Y-direction is
defined as

/

M +
T'sinB —
sin N

M osO—A=0. (4.55)

From (2.16) and (4.55), it is concluded that for this state, the Lagrange multiplier A
represents component Q of stress resultant vector along Y-direction. The stress resultant
component Q for this state is the reaction force generated by the actuator at the tip (X = L)
along Y-direction. If the coefficient of friction (COF) s at the contact region is known,
then from boundary condition P = H,; at X = L, the value of Lagrange multiplier should be
A > H,: /Uy, using Coulomb’s law of friction. Integrating (4.52) and (4.53) with respect to
X yields the following equations

/

M
T cosO + o

A

;mCOSQ—Az—gyX+C2. (4.57)

sin@ = —g,X +C (4.56)

/

M
Tsinf —

The constants of integration C; and C; are evaluated by substituting the boundary conditions
(4.50) into (4.56) and (4.57) as

Ci=He+8: L
=g L. (4.58)

Substituting the values of Cy, C>, T (2.12), and M (2.13) into (4.56) and (4.57) yields the

following governing equations

M' = A (Hpxs + gx(L—X))sin0 — A (A+ gy(L—X))cos 6 (4.59)



4.4 Modeling of Actuator Cover 45

A —

1 K’H?  He+g:(L—X) cosg 4 AT &L =X)

eI LBH LBH sin Q. (4.60)

Equation (4.49) is also part of the set of governing differential equations, when expressed in
first order form. The local material line coordinates of actuator cover in the deformed state
are determined using the following equations

L
X:/ AcosB dX (4.61)
0

L
Yy — / Asin® dx . (4.62)
0

Equation (4.62) also adds an equation to the set of first order differential equations as

Y
Y = jll_X = Asin® . (4.63)

For the grasping state shown in Fig. 4.9(a), it is assumed that the deformations of all
fingers are identical. The global material line coordinates of the fingers are determined by
transforming the coordinates from local to global frame.

Finally, by solving the governing differential [(4.49), (4.59), and (4.63)] and algebraic
(4.60) equations, we can calculate the axial stretch and slope at the material line coordinates
of the actuator cover in the deformed state. The material line coordinates of the actuator
cover in the deformed state can be calculated from (4.61) and (4.62) by substituting the
values of the axial stretch and slope.






Chapter 5

Numerical Solution and Applications of
the Modeling Approach

5.1 Numerical Solution for Flat Shell Gripper

The governing equations for the shell gripper are nonlinear algebraic equations. The equations
were solved numerically using “fsolve, MATLAB R2019b” nonlinear algebraic equation
solver. The computations were performed on a desktop computer [Dell Optiplex; Windows
10 Pro; Intel® Core™ i7-9700 CPU @3.00 GHz x 64-based processor; 8 GB RAM]. The
average computation time was 1.57 s. The numerical solution of a nonlinear equation depends
on the initial guess. In simulations, the initial guesses were chosen on the basis of practically
feasible solution range. The simulations were performed for four different states of the
actuator: 1) free-space; 2) contact with a flat substrate; 3) contact with a cylindrical substrate;
and 4) grasping cylindrical objects. The geometric dimensions of the membrane are: 2a = 32
mm; 2b = 86 mm; and #,, = 1.1 mm. The Poisson’s ratio v was taken as 0.50.
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5.1.1 Free-Space Deformation Simulations

The pseudocode to predict the free-space deformation of the actuator is presented in Algo-

rithm 1. Here, the desired output variable is membrane midplane inflation 8. The predicted

deformed geometry of the actuator is shown in Fig. 5.1 (MATLAB figure).

Algorithm 1 Free-Space Deformation

Input: a, b, t,,, U, p

Output: 6

1 6,, < Solve (3.7) after substituting (2.6),
(3.1), (3.2), (3.4), and (3.5) into it

2 0 < Solve (3.6)

Section plane along width

10

0,
>
10 U

-20 1
-40 -20 0 20 40
Z
Section plane along length
101
0
=
A0t
20
40 -20 0 20 40

X

Fig. 5.1 Free-space deformation of the membrane
at 15 kPa. The thick black color line represents
the undeformed state and the red curve represents
the deformed geometry. The predicted midplane
inflation & is 13.38 mm.
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5.1.2 Full Contact with Flat Substrate

The pseudocode for the membrane in contact with flat substrate is presented in Algorithm
2. Here, the desired output variable is the normal contact force F,. The predicted deformed

geometry of the membrane is shown in Fig. 5.2.

Section plane along width

- 0  —

Algorithm 2 Contact with Flat Substrate . ; : . ‘
-40 -20 0 20 40
Input: a, b, t,,,d, 1, p .
Output: F,
1 6,, < Solve (3.7) after substituting (2.6),
(3.1), (3.2), (3.8), and (3.11) into it

Section plane along length

101

2 A, < Solve (3.12) s 9
3 F. < Solve (3.13) 101
-20 1
40 20 0 20 40

X

Fig. 5.2 Deformation of the membrane in contact
with a flat substrate having 5 mm offset at 15 kPa.
The predicted force was 18.33 N.
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5.1.3 Contact with Cylindrical Substrate

The pseudocode for the membrane in contact with cylindrical substrate is presented in

Algorithm 3. Here, the desired output variable is component F; of the normal contact force

F, in Z-direction. The predicted deformed geometry of the membrane for symmetric contact

case is shown in Fig. 5.3.

Algorithm 3 Contact with Cylindrical Sub-
strate

Imput: a, b, t,,,d, r, U, p

Output: F,

1 6, Op,, R, 8y, e < Solve (2.4), (3.15),
(3.16), (3.18), and (3.27) as a set of non-
linear algebraic equations

2 F, < Solve (3.29)

Section plane along width

10

- 0 —

-20 ¢
-40 -20 0 20 40
Z
Section plane along length
10
0
=
_10 =
20+
40 -20 0 20 40

X

Fig. 5.3 Deformation of the membrane in contact
with a cylindrical substrate having 20 mm radius
and 5 mm offset at 15 kPa. The predicted force
was 5.74 N.
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5.1.4 Grasping Simulations

The simulations were performed to predict the air pressure and vertical offset /4 required
to grasp cylindrical objects. The pseudocode of our solution algorithm for grasping state
is presented in Algorithm 4. Here, the output variables are offset height 4 and pressure
p that can warrant a successful grasp. The pressure value p;, for the initial guess is the
pressure required for contact initiation (see Appendix-A, for calculation of pressure required
for contact initiation). The cut-off condition or the acceptable force error £¢ was set to 1076
N. The predicted deformed geometry and relative position of the membrane while grasping a
circular cylinder is shown in Fig. 5.4.

Section plane along width
101
- 0 p—
_10 L
-20
Algorithm 4 Grasping Cylindrical Objects 40 = ; = +
Input: F,\v,a,b,d, r, ty, U
Output: &, p F '\ ' S:
I p < pin {initial guess pressure }
2 repeat %1 <
c N
3 O, O, R, On, e, h + Solve (2.4), ﬁ
(3.18), (3.27), (3.32), (3.33), and s
(3.34) as a set of nonlinear algebraic ef ke
8
equations 2
4 F.+ Solve (3.13) and (3.28) gl S
5 p<p+Ap @
s
e ° 2 =8
A
Fig. 5.4 Deformed state of the membrane while
grasping a circular cylinder weighing 137 g and
having radius 20 mm at 5 mm offset. The pre-
dicted pressure and offset /2 are 5.5 kPa and 28.1
mm, respectively.
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5.2 Numerical Solution for Pneu-net Actuator

The governing equations form a set of nonlinear differential and algebraic equations with 6
and A as variables. These equations were solved using an iterative approach. The governing
equations for free-space state are (4.47) and (4.48). If we consider A as a constant parameter,
then (4.47) becomes a second-order differential equation, with 0 as the variable. Similarly, if
0 is considered as a constant parameter, then (4.48) becomes a nonlinear algebraic equation,
with A as the variable. The solution procedure involves the following steps:

1. Solve (4.47) for A = 1.

2. Solve (4.48) for 0 and 6’ obtained from the solution of (4.47).

3. Solve (4.47) for A obtained from the solution of (4.48).

4. Repeat the above procedure until it meets a specific tolerance for 6.

The differential equations were solved using “bvp5c, boundary value problem solver” while
the algebraic equations were solved using “fsolve, nonlinear equation solver”. The integral
equations (4.61) and (4.62) were solved using “cumtrapz, cumulative trapezoidal numerical
integration”. The analytical computations were performed for three different states of
the actuator: 1) free-space; 2) blocked force; and 3) grasping state. The simulations were

Table 5.1 Pneu-net Actuator Material and Geometric Parameters [© 2022 IEEE]

Actuator Type A B C D
Shore A Hardness 20 30 20 30
Color Green Aquamarine | White Yellow
E (kPa) 409 595 409 595
u (kPa) 136 198 136 198
2h, (mm) 1.8 1.5
t, (mm) 1.1 1.5
hy (mm) 4.2 4.5
2a (mm) 10 10
2b (mm) 16 16
H (mm) 5 5
B (mm) 20 20
L (mm) 77 77
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performed for four actuators, made of different geometries and materials of different hardness.

The geometric and material parameters of the actuators are listed in Table 5.1.

5.2.1 Free-Space Deformation Simulations

The undeformed state of the actuator was considered horizontal during the simulation. Here,

gravity was considered as: distributed forces g, = 0 N/mm and g, = —0.002 N/mm. The

pseudocode of our solution algorithm is presented in Algorithm 5. Here, the desired output

variables are the material line coordinates (X, Y) of the actuator cover. The predicted

deformed shape of actuator cover is shown in Fig. 5.5.

Algorithm 5 Free-Space Deformation

Input: Parameters listed in Table 5.1,
p, membrane equations (ME), differential
(DE) and algebraic (AE) beam equations,
and boundary conditions

QOutput: Material line coordinates X, Y

1 repeat

2 6; < 0 {initial inclination}

3 M7 <+ Solve ME, nonlinear algebraic

equations
4 A; < 1 {initial stretch}
5 6;, 6/ < Solve DE (4.47)
6  Air1 < Solve AE (4.48)
7  repeat
8 641, 6/, < Solve DE (4.47)
9

Aii2 < Solve AE (4.48)

10 until |6;1;—6;] < g

1 6,
geometry of beam

12 until |st+1 — 05| < ¢

13 X,Y < Solve (4.61) and (4.62)

< update 6; from the deformed

0 10 20 30 40 50 60 70

Fig. 5.5 Free-space deformation of type A actua-
tor at 31 kPa.
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5.2.2 Blocked Force Simulations

Simulations for the blocked force state were performed to predict the tip force generated
by the actuator. The governing equations for the tip contact state were considered, and
the boundary conditions were modified as follows: P =0 and vg =y, =0, at X = L. The
objective of this simulation is to calculate the Lagrange multiplier A, which is the force
generated at the tip along Y-direction. The pseudocode for our solution algorithm is presented
in Algorithm 6. The predicted deformed shape of the actuator cover for zero tip offset in

vertical direction is shown in Fig. 5.6.

Algorithm 6 Blocked Force State
Input: Parameters listed in Table 5.1, p,
ME, DE, AE, and boundary conditions 40t
Output: Force A and material line coordi-
nates X, Y

30}

. . . . 20
1 6, < 0 {here, inclination is assumed to

be ﬁxed} N 10 -/\
2 M7t < Solve ME 0

3 A; < 1 {initial stretch}
4 6;, 6/, A<« Solve DE (4.49), (4.59), and

A0t

(4.63) 201
5 )vl-’-l < SO]Ve AE (460) 30 F . ' ‘ ‘ . ‘ ,
6 l’epeat 0 10 20 30 40 50 60 70
X

7 O, Gi’+1, A < Solve DE (4.49),| .
Fig. 5.6 Blocked force deformation of type A ac-
(4.59), and (4.63) tuator at 31 kPa. The predicted tip force was 0.12
8  Aii2 < Solve AE (4.60) N.
9 until |9,'+1 — 9i| <&
10 X.,Y < Solve (4.61) and (4.62)
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5.2.3 Grasping Simulations

Simulations for grasping state were performed to predict the air pressure required to hold an
object (static case). These simulations were performed on a three-finger gripper to grasp a
hexagonal cylinder (side 15 mm and height 80 mm), circular cylinder (radius 18 mm and
height 80 mm), 3-face cone (base side 50 mm and height 80 mm), and right circular cone
(radius 30 mm and height 80 mm). The pinching mode was considered for grasping in the
simulations. The undeformed state of the actuator was considered to be vertical during the
simulation. Here, gravity was considered as: distributed forces g, = 0.002 N/mm and g, =0
N/mm. The boundary condition at X = L was modified as follows: P = H,,, = m;g/3. The
force value vertical to the actuator (tip force) required for a stable grasp was obtained using
Coulomb’s law of friction as Foy; > Hey /1L r. For 3-face and circular cones it was obtained
as: For > Hoxt /(f sin’ B), where f3 is the base angle of the 3-face and circular cones.

Algorithm 7 Grasping State

Input: Parameters listed in Table 5.1, F,,
ME, DE, AE, and boundary conditions, y,
Output: Pressure p and material line coor-

dinates X, Y 20
1 pj < pin {initial guess pressure }
2 repeat N 20
3 Oy <+ 0 {here, inclination is assumed
to be fixed} "
4 My <+ Solve ME
A; < 1 {initial stretch} 2
6 6, 6/, A< Solve DE (4.49), (4.59),
and (463) -20
7 Air1 < Solve AE (4.60) X w0 2
Y
8  repeat
9 0it1, 9,~/+1, A < Solve DE (4.49), | Fig. 5.7 Grasping state deformation of a 3-finger
(4.59), and (4.63) gripper made of type A actuators while grasp-
T ’ ing a circular cylinder weighing 26 g and having
10 Ait2 < Solve AE (4.60) diameter 36 mm . Here, y. was —1.61 mm and
11 until |6;1;—6;] < g the predicted air pressure was 28 kPa.

12 pj<pj+Ap
14 X,Y < Solve (4.61) and (4.62)
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The pseudocode for our solution algorithm is presented in Algorithm 7. Here, the pressure
value for the initial guess is the minimum pressure required for contact initiation between
adjacent air chambers [see Section-4.3.2, equation (4.15) and (4.16)]. If the solution does not
converge within a defined number of iterations, then an upper limit on pressure p,,,, can be
set to abort the solution. The predicted deformed shape of a 3-finger gripper while grasping
the circular cylinder is shown in Fig. 5.7.

The differential equations were solved for 120 discrete node points. The error tolerances
£y, €1, and & were set to 1073, 107>, and 1072, respectively. For the prescribed error
tolerances, the solver usually requires three to ten iterations to determine a solution. The
accuracy of the solution improves with an increase in the number of nodes, but after 30
nodes, the variation in solution was very small (less than 1% of solution value). The
computation time for the solution was usually less than 60 s. Approximately 60-90% of
the computation time was consumed by the “bvp5c” solver. To calculate the deformation of
actuator, the solvers have to solve the two governing equations. This is the main reason for
lower computation time requirement of the model when compared with the FE-based model,
which requires several hours to predict the deformation of the actuator subjected to similar
loading conditions. The governing algebraic equation calculates the axial stretch induced in
the actuator. The maximum recorded axial stretch was less than 10%. The variation in tip
coordinates of the actuator was less than 5% when calculated without considering the axial
stretch. In finger-based grippers, bending deformation is the primary objective; hence, the
axial stretching effect is optional.

The computation time depends on the number of iterations. For large deformation
gradients, the “bvp5c” solver required more iterations to converge. Large deformation
gradients occur when the actuator is subjected to forces and moments of higher magnitude.
At a higher number of nodes, the solution does not satisfy the solver’s internal function
tolerances, which results in premature termination of the solver. The numerical solution of a
differential equation depends on the initial guess of the solution. For the first iteration, the
initial guess was set to & = 0 and 6’ = 0, and from the second iteration, the solution of the

previous iteration was considered as the initial guess.
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5.3 Finite Element Simulations for Pneu-net Actuator

FE models for simulating the free-space and block force states were constructed using
Abaqus, 2017 (Dassault Systemes, MA). The CAD designs of the actuators were input
into Abaqus and meshed with 10-node quadratic tetrahedron elements (C3D10) and the
global mesh seed was set to 1 mm. Gravity was included in the simulations and the material
densities were set to 1,080 kg/m? for DS 20 and DS 30 according to the material datasheet.
The same Young’s modulus given in Table 5.1 was used in the material property settings. In
the block force state, a force sensor was modeled as a cubic part and meshed with 8-node
linear hexahedron elements (C3D8R). The contact interactions between the air chambers and
between the actuator and the force sensor were modeled using the penalty method with the
measured COF. The geometrical nonlinearity was included in the model to account for large
deformation. Standard/static simulations were conducted. The reaction force in the vertical
direction on the sensor was recorded as the block force and compared with the experimental

0 kPa

5

51 kPa | 61 kPa

“

[okPa |-

Fig. 5.8 FE simulated free-space deformation of (a) type A, (b) type B, (c) type C, and (d) type D
actuators [© 2022 IEEE].
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31 kPa 71 kPa

Fig. 5.9 FE simulated block force deformation of (a) type A, (b) type B, (c) type C, and (d) type D
actuators [© 2022 IEEE].

measurements. The free-space and blocked force deformations of the actuators as predicted
by FE model are shown in Fig. 5.8 and 5.9, respectively.
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5.4

Applications of Modeling Approach

The modeling approach discussed in Chapter 3 and 4 is based on the deformed geometric

shape assumptions. The assumed geometric shape can be expressed in terms of mathematical

equations, thus resulting in simplified governing equations for the actuators. The applications

of the presented modeling approach are:

It is abstract and only requires the geometric and material parameters value, so it can
be used at the initial design stage over a large design space as it does not need a CAD

file for simulation.

It provides nonlinear algebraic and differential equations as the final governing equa-
tions. From the equations, we can easily see the variation in deformation behavior of

the actuators with respect to individual parameters.

The governing equations can be solved using nonlinear algebraic and differential
equation solver using a mathematics software package, like MATLAB or Scilab.

It is computationally less expensive.
It can be used to predict the pressure required to grasp objects of known geometry.

For flat shell gripper, it can also be used to predict the optimum or required relative
position of the actuator with respect to the object, i.e., offset 4. We can also define the
minimum dimension of flat objects (i.e., limit on object height) that the gripper can
pick.

The pneu-net actuator model can be used for other applications as well by modifying
the boundary conditions of the governing equation.

The developed models simultaneously predict the deformation and force characteristics
of the actuators.

The material properties of elastomers are not fixed and in the developed models we
can easily tune them to best fit the experimental deformation behavior. As an example,
we can tune the material parameters for free space deformation and then use them to
predict the force behavior.






Chapter 6

Experiments and Validation of Analytical
Models

6.1 Experiments

To capture actual deformation and force characteristics of the actuators, experiments were
performed for free-space deformation, force measurement, and grasping states. Air pressure
was generated using an off-board compressor (ANEST IWATA SLP-15EFD) and controlled
using a digital pressure regulator (SMC ITV2030). The deformation of actuators was captured
using a camera (Canon Inc.). The camera images were processed for lens distortion using the
“MATLAB R2019b Single Camera Calibrator App”. The nodal coordinates of the actuator
in the deformed state were extracted using the ImageJ software!. The force was measured
using a 3-axis force sensor (USL0O6-HS5 Force Sensor, Tech Gihan). The force measurement
setup for the shell actuator is shown in Fig. 6.5. Grasping tests for the shell gripper were
performed to grasp cylindrical objects using parallel two-finger shell grippers. The objective
of grasping tests is to validate analytical model predicted air pressure and vertical offset 4
required to attain a grasp.

In blocked force state, the pneu-net actuator was initially horizontal and the free end
of the actuator was resting on the force sensor, which was rigidly attached to the base, as
shown in Fig. 6.18(c). Grasping tests were performed on three-finger grippers to grasp a
hexagonal cylinder, circular cylinder, 3-face cone, and right circular cone. The experiments
were performed to validate the air pressures predicted by the developed model to attain
successful grasps.

![Online]. Available: https://imagej.nih.gov/ij/
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6.1.1 Material Properties

The analytical models are based on incompressible neo-Hookean material and they require
material shear modulus as an input parameter. Tension tests were performed for Dragon Skin
(DS) 20 and DS 30 silicone rubbers (Smooth-On, Inc., PA) using a tensile tester (EMX-275,
IMADA, Japan). The test setup is shown in the inset of Fig. 6.1(a) and the dog bone sample
used in the tests is shown in the inset of Fig. 6.1(b). Four test samples with a thickness of
2.25 mm were fabricated using casting process. The tests were conducted at a speed of 100
mm/min. The Young’s modulus E is obtained from a linear fit to the stress strain data and
the shear modulus u is calculated using the relation

E

‘LL:

The calculated shear modulus is presented in Table 5.1.

4 - = = = Sample 1 4 = = = = Sample 1
----- Sample 2 - .= =Sample 2 /
— — = Sample 3 — — = Sample 3 ya
’53 — . — Sample 4 ~3 | —-— Sample 4 -4
% — .- — Sample 5 g — .. — Sample 5
,_lé s
o 3 o 25 cm
4 D 4 A
Dragon Skin /// Dragon Skin
0 20 0 i 30
0 2 4 6 8 -2 0 2 4 6
Strain Strain
(a) (b)

Fig. 6.1 Stress versus Strain curves for (a) DS 20 and (b) DS 30 silicone rubbers [© 2022 IEEE].

6.1.2 Frictional Properties

The frictional properties of actuator material are required for both the analytical and FE
simulations. The COF was obtained by conducting experiments on a friction measuring
machine (TL201 Tt, Trinity-Lab. Inc., Japan). For the shell gripper, the frictional properties
of actuator material are needed for grasping state simulations. To replicate the grasping test
conditions, cylindrical shaped test specimens were fabricated using DS silicone rubber and
PLA materials. The test specimens are shown in Fig. 6.2(a) and (b). The COF was measured
for the contact between DS and PLA materials and the test data is presented in Fig. 6.2(c).
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——se— PLAVs DS 20
— o~ —DS20vsPLA

§1'5 I\I\I\\
1 }~§{

No of sample = 2
Trial per sample = 2

0 1 2 3 4

Normal Force [N]

()

Fig. 6.2 COF measurement experiment for shell gripper. (a) Setup for PLA versus DS 20 (interaction
of hard specimen on soft surface), (b) setup for DS 20 versus PLA (soft specimen on hard surface),
and (c) test data [© 2022 IEEE].

- +- DS 30vsPLA
—X—DS 20 vs PLA
—A—DS 30 vs DS 30

- ~
Bottom Pad s ~. ?.'f ? -: —
Vertical Force T=+
Dragon Skin* . 0.8 1.2 1.6
I
Dragon Skin or PLAY Force [N]
(a) (b)

Fig. 6.3 COF measurement experiment for pneu-net actuator. (a) Experimental setup and schematic
of friction tester tip and (b) friction test data for DS 30 versus PLA, DS 20 versus PLA, and DS 30
versus DS 30 [© 2022 IEEE].

The test setup for the pneu-net actuator specimen is shown in Fig. 6.3(a). A V-shaped test
specimen fabricated using DS material was used to replicate the tip contact conditions. The
COF was measured for the contact between DS versus DS silicone rubber and DS versus PLA
materials. The friction test data is presented in Fig. 6.3(b). In pneu-net actuator simulations,
we considered the COF value corresponding to 0 — 0.5 N since the force magnitude in the
grasping simulations was in this range.
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6.2 Flat Shell Gripper Results

For the experiments, we fabricated shell grippers using DS 20 silicone rubber. The exper-
imental shear modulus was 136 kPa; however, in simulations, it was assumed to be 175
kPa. The shear modulus was tuned to best fit the theoretical free-space deformation with

experimental deformation.

6.2.1 Free-Space Deformation

The snapshots of free-space deformation of the actuators are shown in Fig. 6.4(a). The
theoretical and experimental mid-plane inflation § of the membrane is presented in Fig.
6.4(b). The root mean square error (RMSE) for mid-plane extension is 0.56 mm. The
experimental deformed profiles differ slightly from the theoretical profiles. This happens due
to the boundary conditions of the membrane. In the analytical model, the membrane was
assumed to be rigidly clamped at the ends; however, in experiments, the boundaries have
little flexibility. In addition, due to manual fabrication, the experimental deformed profiles

vary slightly among different actuators [see standard deviations in Fig. 6.4(b)].

—x— Experiment  No of sample = 4

- =+ - Analytical Trial per sample= 1

-
N

Free inflation & [mm]

7 12 17
Pressure [kPa]

(b)

Fig. 6.4 Free-space deformation of the actuators. (a) Experimental snapshots at 15 kPa and (b) plot
of mid-plane inflation & versus air pressure. Dotted red curve in (a) represents theoretical deformed
profile of the membrane at 15 kPa [© 2022 IEEE].

6.2.2 Full Contact with Flat Substrate

The theoretical and experimental deformed profiles and contact forces for the actuators
in contact with a rigid flat substrate are presented in Fig. 6.5(a) and 6.6, respectively. In
experiments, the force was measured for 5 mm and 10 mm offsets. The contact width
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predicted by the analytical model [see Fig. 6.5(a)] matches well with the experimental
contact width. The force behavior predicted by the analytical model is also similar to the
experimental behavior. The RMSE’s for 5 mm and 10 mm offsets are 1.32 N and 2.44 N,
respectively.

~ Sensor

Force
Sensor

Fig. 6.5 Theoretical (dotted red curve) and experimental deformed profile of the actuators for 5 mm
offset. (a) Full contact with flat substrate and (b) contact with cylindrical substrate at 15 kPa [© 2022
IEEE].

50 —>— Experiment  No of sample = 4 40 —>— Experiment  No of sample = 4
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40 30
Z 30 Z 20
[0 Q
o o
£ 20 S 10
10 0
0 d=5mm -10 d=10 mm
5 10 15 20 25 30 5 10 15 20 25 30
Pressure [kPa] Pressure [kPa]

(a) (b)

Fig. 6.6 Theoretical and experimental force plots for actuator in contact with rigid flat substrate. (a) 5
mm offset and (b) 10 mm offset [© 2022 IEEE].

6.2.3 Contact with Cylindrical Substrate

The theoretical and experimental deformed profiles and contact forces for the actuators in
contact with a cylindrical substrate are presented in Fig. 6.5(b) and 6.7, respectively. The
experimental force was measured for four offsets, i.e., 3, 5, 8, and 10 mm. The theoretical
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Fig. 6.7 Theoretical and experimental force plots for actuators in contact with cylindrical substrate at
different offsets d — r [© 2022 IEEE].

deformation of the actuators [see Fig. 6.5(b)] is slightly smaller than the actual deformation.
The force behavior predicted by the analytical model also varies slightly among the offsets.
This occurs due to boundary conditions of the membrane and resultant direction of the normal
contact force. The boundary gets stretched a little with the deformation of the membrane and
this results in contact area increment and thus additional force. At the same magnitude of air
pressure, the membrane deforms more at lower offset. At 20 kPa, the discrepancy for 3 mm
offset is the highest. In experiments, we measured the force generated by the actuator along
the Z-direction [see Fig. 3.6(e) and 6.6(b)]; however, in simulations, we predicted the normal
force at the contact region. The contact region exhibits a curved shape, so we calculated the
force in Z-direction by projecting the contact area to a plane normal to Z-direction (3.29).
For grasping, we used the normal force directly to predict the lifting force. The RMSE’s for
the above-mentioned offsets are 1.33, 1.59, 2.36, and 0.63 N, respectively.



6.2 Flat Shell Gripper Results

67

0.5

¢ [rad]

\

5 10 15 20
Pressure [kPa]

(a)

/

0, [rad]

\

5 10 15 20
Pressure [kPa]

(c)

/

5 10 15 20
Pressure [kPa]

(e)

em [rad]

\

Force [N]
OD (¢}

5 10 15 20
Pressure [kPa]

(b)

5 10 15 20
Pressure [kPa]

(d)

\

5 10 15 20
Pressure [kPa]

()

Fig. 6.8 Parameter variation with pressure for 5 mm offset cylindrical contact [© 2022 IEEE].
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For controlling a parallel gripper, the only adjustable parameters are air pressure and

the offset d — r. The lifting force required to grasp an object can be achieved by different

combinations of pressure and offset. In order to understand the deformation behavior of the

actuator with respect to pressure and offset, we investigated the variation of output variables

involved in the solution of nonlinear algebraic equations via simulations. The variation with
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air pressure is presented in Fig. 6.8. Here, the contact angle 6, represents the contact area and
it increases with increase in pressure. The parameter e represents the portion of membrane
with zero curvature and it decreases with increase in pressure. Practically, this variation
seems appropriate. The variation with object offset d — r is presented in Fig. 6.9. The contact
angle in this case decreases with increase in d — r. The portion of membrane with zero

curvature increases with increase in d — r. This variation also coincides with experience.

6.2.4 Grasping

The COF at the contact region is needed to calculate the normal force required to hold the
objects. To determine the COF, friction tests were performed with two different setups,

Fig. 6.10 Experimental photo snapshots of two parallel flat shell grippers grasping circular cylinders
in horizontal and vertical postures [© 2022 IEEE].



6.2 Flat Shell Gripper Results 69

Table 6.1 Analytical Model Predicted Grasping Test Data and Experimental Test Results [© 2022
IEEE]

Cylinder Offset (d —r) 5 mm Offset (d — r) 10 mm

Diameter Weight | & p Grasp Status | & p Grasp Status

(mm) (¢ | (mm) (kPa) VP HP | (mm) (kPa) VP  HP
40 137 | 281 55 G G 264 130 G G
40 263 | 303 72 G G 279 145 G G
40 563 | 337 109 G G 321 175 G G

VP — vertical posture of cylinder; HP — horizontal posture of cylinder;
G — grasp.

having contact conditions similar to the grasping experiments, as shown in Fig. 6.2(a) and
(b). For worst case scenario, the test data for DS 20 versus PLA was used in the simulations
to determine the normal force. The experimental COF varies with normal force; therefore,
the COF taken in the simulations was different for each object. The COF was decided on the
basis of required lifting force. We defined the lifting force Fy, as the force required to hold
the object which is applied tangentially to the contact surface (for static case, the lifting force
is assumed to be equal to gravity force). The required normal force Fy; is then calculated
from the lifting force F;, using Coulomb’s law of friction as

Foy=——=——". (6.2)
u

Here, we are using a parallel two-finger shell gripper, so we divided the lifting force per
finger. Based on the required normal force, air pressure and vertical offset # were calculated
using the analytical model for 5 and 10 mm object offsets. The predicted test data is presented
in Table 6.1.

The grasping tests were performed with three 3D printed circular cylinders (PLA material)
and two parallel grippers, as shown in Fig. 6.10. The experiments were performed for both
horizontal and vertical postures of the cylinders. In experiments, the objects were first
grasped at the predicted vertical offset, and a pressure slightly higher than the predicted value.
Then, the pressure was reduced to see if the object slips or not at the predicted value. The
grippers were able to grasp the objects at the predicted pressure and offset.
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6.2.5 Eccentric Grasp of Cylindrical Object

The experiments for eccentric grasp of cylindrical objects were performed to validate the
analytical model predicted air pressure required to resist the tilting behavior. The analytical
model predicted test data is presented in Table 6.2. The photo snapshots of the eccentric grasp
are shown in Fig. 6.11. At the predicted pressure, the gripper almost gets a horizontal grasp;
however, some tilting effect still remains. This occurs due to stretching of the membrane.
The membrane is made of silicone rubber and it gets stretched in the tilting direction due to

eccentric force.

Table 6.2 Analytical Model Predicted Air Pressure for Eccentric Grasp of Cylindrical Objects

Diameter 40 mm; Weight 263 g; offset 5 mm | Diameter 40 mm; Weight 563 g; offset 5 mm

Eccentricity x, (mm)
Traction Force F; (N) Pressure p (kPa) Traction Force F; (N) Pressure p (kPa)

0 0.68 5.34 1.83 79

5 2.18 8.58 4.12 11.62
10 3.38 10.55 6.95 15.09
15 4.46 12.08 10.32 18.38

c . 5mm ¢ 10 mm L‘IS mm
(a)

Fig. 6.11 Experimental photo snapshot of eccentric grasp of circular cylinders weighing (a) 263 g and
(b) 563 g.
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6.3 Pneu-net Actuator Results

For the experiments, we fabricated four sets of pneu-net actuators with uniform air chamber
geometry, with DS 20 and 30 silicone rubbers. The geometric and material parameters of
the actuators are presented in Table 5.1. Here, finite-strain air chamber model-based results
for the pneu-net actuator are presented. For infinitesimal-strain air chamber model based
pneu-net actuator results, refer [89].

6.3.1 Free-Space Deformation
Uniform Air Chamber Geometry Actuators

The experimental snapshots of free-space deformation at different air pressures are shown in

Fig. 6.12. The experimental, analytical and FE simulated free-space deformation plots of

Fig. 6.12 Experimental snapshots of free-space deformation of (a) type A, (b) type B, (¢) type C, and
(d) type D actuators [© 2022 IEEE].
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Fig. 6.13 Theoretical, FEM, and experimental free-space deformation plots of (a) type A, (b) type B,
(c) type C, and (d) type D actuators. Error bars indicate the standard deviation among 9 trials [© 2022
IEEE].

the actuators at different air pressures are shown in Fig. 6.13. The deformation predicted
by the analytical model is close to the experimental deformation of the actuators, while
the FE simulations overestimate the deformation. The upper limit of air pressure for the
analytical model is the same as that of the FE model for type A [see Fig. 6.13(a)] and C [see
Fig. 6.13(c)] actuators, but higher for type B [see Fig. 6.13(b)] and D [see Fig. 6.13(d)]
actuators. The FE model did not predict the deformation of type B and D actuators beyond
51 and 61 kPa, respectively, whereas the analytical model predicts up to 61 and 71 kPa for
type B and D actuators, respectively. The accuracy of the analytical model for estimating
the free-space deformation is better than that of the FE model. Near the clamped end of the
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actuators, the deformation predicted by the analytical model is greater than the experimental
and FE deformations. This occurs because of the additional stiffness provided by the air
chambers to the actuator cover.

Uniform Air Chamber Geometry Actuators Having Different Length (different number
of chambers)

In order to see how accurately the analytical model predicts the deformation behavior of
actuators having different number of air chambers and having different length, we designed
three actuators having different number of air chambers and different length, and carried
out FE and analytical simulations. The actuators have 9, 11, and 13 chambers of identical
geometry and have length 66 mm, 78 mm, and 90 mm, respectively. The free-space deforma-
tion simulation results are presented in Fig. 6.14, Fig. 6.15, and Fig. 6.16. Type C and D
actuators were made of DS 20 and 30 silicone rubbers, respectively. In comparison to FE

simulations, the analytical simulations have the same tendency as they have in Fig. 6.13.
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Fig. 6.14 Theoretical and FEM free-space deformation plots of 66 mm length actuator [© 2022 IEEE].
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Fig. 6.15 Theoretical and FEM free-space deformation plots of 78 mm length actuator [© 2022 IEEE].
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Fig. 6.16 Theoretical and FEM free-space deformation plots of 90 mm length actuator [© 2022 IEEE].
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Nonuniform Air Chamber Geometry Actuator

The nonuniform geometry model was tested on an actuator made with a nonuniform air
chamber distribution. Experimental snapshots of free-space deformation of the actuator are
shown in Fig. 6.17(a). The actuator has denser chambers towards the tip. The experimental
and analytical model simulated free-space deformation plots of the actuator are shown in Fig.
6.17(b). The deformation behavior predicted by the analytical model matches well with the
experimental behavior.
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Fig. 6.17 Free-space deformation of a nonuniform geometry actuator. (a) Snapshots of experimental
deformation and (b) plots of experimental and analytical model predicted deformation [© 2022 IEEE].

6.3.2 Blocked Force

Uniform Air Chamber Geometry Actuators (parallel contact or zero vertical offset at
tip)

The experimental snapshots of blocked force deformation of the actuators are shown in Fig.
6.18. The experimental, analytical, and FE simulated blocked force plots of the actuators
are shown in Fig. 6.19. The force results are presented for 30 kPa to 70 kPa air pressure.
For air pressure below 30 kPa, the force generated by the actuators is very low in magnitude
(i.e., less than 0.1 N) and it was hard to measure using our force sensor. The analytical and
FE models can predict the blocked force up to 41 and 30 kPa, respectively, for type A [see
Fig. 6.19(a)], and up to 51 kPa for type C actuator [see Fig. 6.19(c)]. The analytical and
FE models predict the blocked force up to 71 kPa for type B [see Fig. 6.19(b)] and 61 and
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30 kPa 41 kPa 51 kPa

Fig. 6.18 Experimental snapshots of blocked force deformation of (a) type A, (b) type C, (c) type C,
(d) type B, and (e) type D actuators. The experimental setup for force measurement is shown in (c) [©
2022 IEEE].

71 kPa, respectively, for type D [see Fig. 6.19(d)] actuator. The material of type A and C
actuators was less stiff than type B and D actuators. Owing to the large deformation gradient
value of air chambers, the solvers stopped prematurely at pressure magnitudes beyond this
limit.

Uniform Air Chamber Geometry Actuators (non-zero vertical offset at tip)

The analytical computations and experiments were performed for different contact offsets
at the tip. The experiments were performed for four different offsets, i.e., 10, 20, -10, and
-20 mm. A schematic of the experimental setup is shown in Fig. 6.20. The force results are
presented in Fig. 6.21. The force values predicted by the analytical model are close to the
experimental force values. However, the analytical model model cannot predict the force
value for negative offset after a certain air pressure magnitude. This happens due to the solver.
The solver gives a solution that satisfies the boundary conditions but is practically infeasible.
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Fig. 6.20 Schematic of force measuring experiment for non-zero vertical offset at tip [© 2022 IEEE].
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Fig. 6.21 Theoretical and experimental blocked force plots of (a) type A, (b) type B, (¢) type C, and
(d) type D actuators, at different offset heights y, [© 2022 IEEE].
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Uniform Air Chamber Geometry Actuators Having Different Length (parallel contact)

The blocked force simulation results for actuators having different lengths (see Subsection-
6.3.1 for details on actuator lengths) for O mm tip offset are presented in Fig. 6.22. Based on
the observed behavior, we can conclude that the developed model can be applied to actuators
having different lengths.
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Fig. 6.22 Theoretical and FEM blocked force plots of (a) type C 66 mm, (b) type D 66 mm, (c¢) type C
78 mm, (d) type D 78 mm, (e) type C 90 mm, and (f) type D 90 mm actuators [© 2022 IEEE].

Blocked Force Deformation of Uniform Air Chamber Geometry Actuators (parallel
contact)

The experimental, theoretical, and FE simulated blocked force deformation plots of the
actuators are presented in Fig. 6.23. The analytical model overestimates the deformation,
whereas the FE simulated deformation is closer to the experimental deformation. This occurs
because of the additional stiffness provided by the air chambers to the actuator cover. In
analytical model, this bending stiffness is not considered. This is a limitation of the current
model.



Experiments and Validation of Analytical Models

—&— Experiment
——o— Theoretical
—o— FEM

Y [mm]

—&— Experiment
——o— Theoretical
—o— FEM

10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
X [mm] X [mm]
(a) (c)
B —e— Experiment D —e— Experiment
20 ——o— Theoretical 20 ——e— Theoretical
= = 30 kP:
E 30 kPa FEM E a —o—FEM
> > 10
0 v =~
0 10 20 30 40 50 60 70 80
X [mm] X [mm]
B ——— Experiment D —=8— Experiment
=20 |41 kPa ——o— Theoretical =20 |41 kPa =—o— Theoretical
E —o—FEM £ —s—FEM
; ; i /\
0 ¢
0

X [mm]

B
20 |51 kPa

—8— Experiment
—=8— Theoretical

10 20 30 40
X [mm]

(b)

50

E
g A
> 10
0 ¢
0

60 70 80

Y [mm]

10

20

30

40 50 60 70 80
X [mm]

D
51 kPa

10

—=e— Experiment
—e— Theoretical

20

;—o— FEM
0

30

40 50 60 70 80
X [mm]

(d)

Fig. 6.23 Blocked force deformation plots of (a) type A, (b) type B, (c) type C, and (d) type D actuators
[© 2022 IEEE].

6.3.3 Grasping

The analytical model predicted air pressure required to grasp the objects is presented in
Table 6.3. The COF between the grasping objects (PLA) and actuators was taken as 0.96.
Snapshots of the grasping experiment for type A actuator are shown in Fig. 6.24. The gripper
was able to lift the circular cylinder and 3-face cone at the predicted pressure. The type B
gripper (see Fig. 6.25) was able to lift the hexagonal and circular cylinders. The type C
gripper (see Fig. 6.26) was able to lift the hexagonal cylinder, circular cylinder, and 3-face
cone. The type D gripper (see Fig. 6.27) was able to lift the hexagonal and circular cylinders.
However, the grasps were unstable. The predicted pressure is the minimum pressure required
for grasping. In experiments, we did not consider any factor of safety on the predicted
pressure. If a certain magnitude factor of safety would be considered, then successful grasps
can be attained by the grippers. In addition, the air pressure is predicted for static case, and
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Table 6.3 Analytical Model Predicted Air Pressure for Three-Finger Pneu-net Grippers [© 2022 IEEE]

Pressure required by actuators p (kPa)

Grasping Objects Mass my,(g)

A B C D

Hexagonal Cylinder 35 — 42 37 43
Circular Cylinder 26 28 32 28 32
3-Face Cone 19 28 33 29 33
Circular Cone 20 25 29 25 29

in experiments, we moved the gripper vertically to lift the objects. This dynamic effect is
also a factor contributing to the unsuccessful grasps.

The 3-face and right circular cones have a tapered geometry, which was considered while
estimating the pressure, but the grippers failed to lift the circular cone. This occurs because
of the contact condition at the cone surface and actuator tip. A full edge contact occurred at
the surface of 3-face cone, while it did not occur for the circular cone. Moreover, the COF
for an inclined surface might be different from that of a planar surface.

=

Fig. 6.24 Photo snapshots of grasping experiment for type A actuator. The experiments were performed
to grasp a circular cylinder (a, b, and c), 3-face cone (d, e, and f), and circular cone (g, h) [© 2022
IEEE].
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Fig. 6.25 Photo snapshots of grasping experiment for type B actuator. The experiments were performed
to grasp a hexagonal cylinder (a, b, ¢, and d), circular cylinder (e, f, g, and h), 3-face cone (i, j), and
circular cone (k, 1) [© 2022 IEEE].

Fig. 6.26 Photo snapshots of grasping experiment for type C actuator. The experiments were performed
to grasp a hexagonal cylinder (a, b, and c), circular cylinder (d, e, and f), 3-face cone (g, h, i, and j),
and circular cone (k, 1) [© 2022 IEEE].
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Fig. 6.27 Photo snapshots of grasping experiment for type D actuator. The experiments were performed
to grasp a hexagonal cylinder (a, b, c, and d), circular cylinder (e, f, g, and h), 3-face cone (i, j), and
circular cone (k, 1) [© 2022 IEEE].






Chapter 7

Conclusion and Future Work

7.1 Conclusion

The work presented in this dissertation is focused on the modeling of pneumatic soft actuators.
An analytical modeling approach for a flat shell and a pneu-net actuator is presented. The
main contributions of our current work are as follows:

* The developed models predict deformation and force characteristics of the actuators.
The force characteristics are important for defining the weight-lifting capabilities of
actuators.

* The model for the flat shell gripper considers both full and cylindrical contact sce-
narios. The grasp dependency of cylindrical object on vertical offset parameter # is
investigated. The vertical offset is a crucial parameter for the gripper to pick objects.
The model provides a relationship between the vertical offset & and other parameters.
For cylindrical objects, this parameter can be used to effectively place the gripper with
respect to the object. The grasping test provides insight into the effect of 4 on the
grasps. The modeling approach can be further extended to investigate the interaction
of the actuator with other surfaces.

* The model can also be used to define the grasping capabilities of flat shell gripper
in terms of the minimum size of object that it can grasp. Based on the deformed
membrane profile, the minimum size of object being grasped by the gripper can be
predicted using the smaller dimension a of the membrane. This kind of relationship
between deformed profile of actuator and size of grasping object is usually absent in
grippers made of rigid finger-tips but for membrane based grippers it is important to
consider this behavior.
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* The eccentric contact model of the flat shell gripper is applied to predict pressure

required to resist tilting behavior of the object.

The pneu-net actuator model considers axial stretch, which is generally not considered
in bending actuators in other studies; however, it is an important aspect for gait-type
soft robots. A brief survey on the features of existing models of pneu-net actuators is
presented in Table 1.1.

The modeling of pneu-net actuator air chambers is based on finite-strain membrane
theory and contact mechanics approach. The developed model considers geometric
variations in the design of air chambers. Apart from air chamber geometry, the pneu-
net actuators used for grasping applications usually have a flat base. Hence, the
presented rectangular cross-section beam-based model can be applied to the majority
of such actuators. Theoretically, a similar modeling approach can be implemented for
actuators having geometric design other than the pneu-net actuator, such as cylindrical
and ribbed-type actuators [1]. By modifying the air chamber model, the actuators can
be modeled using a similar approach. In contrast to constant curvature models of the
actuator that predict either deformation or force characteristics, the developed model
predicts the deformation and force characteristics simultaneously for the grasping state.

In grasping experiments, we used two-finger shell and three-finger pneu-net grippers;
however, the same modeling approach can be used for other configurations as well,
i.e., modular design. In grasping experiments for the pneu-net gripper, we considered
standard geometry objects, but the model can be applied to grasp arbitrarily shaped
objects if the outer boundary and weight of the objects are known.

The developed models are efficient in terms of computation time because they consist
of nonlinear algebraic and differential equations as the final governing equations. The
presented solution strategy is effective for solving the equations numerically, using a
boundary value problem and a nonlinear algebraic equation solver.

The presented models are abstract and do not require a CAD file for simulations. They
only require geometric and material parameter values. They can be used with other
optimization techniques to find the best-fit design parameters from a large design space
(i.e., initial design) as they are more than a hundred times faster than FE models and
do not need a new CAD file for each iteration.

The material properties of elastomers are not fixed and in the developed models we

can easily tune them to best fit the experimental deformation behavior. As an example,
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we can tune the material parameters for free space deformation and then use them to
predict the force behavior, as we did for the flat shell gripper. For the pneu-net actuator
simulations, we used the experimentally calculated material parameters. But if we
tune the deformation behavior by varying the material parameters then we can further
reduce the model prediction error.

* The presented work also provides an insight on frictional properties of the actuators.
The frictional properties vary with contact interface between the actuators and grasping

objects.

* In applications, the developed models can be used to predict the air pressure required
to attain a successful grasp.

As a limitation, the presented models do not consider gripper misalignment and asym-
metric object grasp; however, in practice, such grasping conditions are also encountered. For
the pneu-net actuator, in the presence of large deformation gradient, the solver terminated
prematurely. This occurs because of the solver’s internal function tolerances, which results
in an unexpected solution. The model fails to predict the air pressure required for grasping
circular cone even after considering the tapered geometry at contact. This is due to the lesser
edge contact of the actuator tip at circular cone surface when compared with the contact at
3-face cone surface. The pneu-net actuator model does not consider the stiffness associated
with air chambers.

From soft robotics perspective, the presented work enriches the modeling of soft robots
and provides another way to model soft actuators. With the help of a modeling tool we can
explore a larger design space. The presented work highlights the application of large strain
beam and large strain membrane theories to soft robots. The presented design approach can
be extended to facilitate the design of other soft robots.
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7.2 Future Work

Future work could involve the optimization of flat shell actuator geometry for force and
vertical offset 4. The contact with the cylindrical substrate model can be further extended
to study the manipulation of a cylindrical object by reducing the pressure for an eccentric
grasp. In the pneu-net actuator model, we developed the finite-strain air chamber model
using square membrane assumption and then used stretch mapping to predict the behavior
of rectangular membrane. In future, as a scope for improvement, the air chambers could be
modeled using the rectangular membrane model developed for the flat shell actuator. The
models could also be further extended to study the interaction of the actuators with soft
objects and dynamic behavior of the actuators.
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Appendix A

Initial Pressure p;, in Algorithm 4

The initial guess pressure pj, is defined as the pressure needed to initiate the contact between
the gripper and object. Based on the deformed geometry and relative position of the object,
the guess pressure can be calculated from the equations for free space state. To initiate contact,
the maximum inflation & of the membrane should be equal to object offset 6 = d — r. Now,
from membrane inflation 8, the initial arc angle 6;, at contact initiation can be calculated
from (3.6) as

6;, = 2tan~" - (A.1)

a

The initial stretch A, along actuator width can be calculated using (3.5) as

ein

= . A2
lm Slﬂ ein ( )
The stretch A, along actuator length can be calculated using (3.1) as
a
Ay, = 14— (A'lin — 1) . (A.3)

in b
The stretch along the third principal direction can be calculated using (3.2). The radius of

curvature R;, can be calculated using (3.4) as

a
Rin = — ) (A.4)
sin 6;;,

We can then calculate the pressure required to initiate the contact by substituting equation
(A.1), (A.2), (A.3), and (A.4) into (3.7) and solving it for p.






Appendix B

Inclined Contact of Square Membrane

The finite-strain model developed in Section-4.3 for the air chambers was tested on a flat
shell actuator made of a square membrane. The photo snapshots of the actuator are shown in
Fig. B.1. The membrane is made of DS 20 silicone rubber and has a thickness of 1.1 mm
and side length 15 mm.

Fig. B.1 Flat shell actuator made of square membrane. (a) Undeformed state and (b) free-space
inflation.

B.1 Contact Widths

The maximum contact width along Zy-direction exists along the point of contact initiation
and it can be calculated by equating the deformed and undeformed length along Zy-direction;
in final form, it can be written as

*

¢ = (c1+¢2) (B.1)
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B.2 Contact Force

The contact region between the membrane and substrate is assumed to be elliptical. The area
of the elliptical contact region is calculated from the contact widths as

Ac=—(c1+e2)e; (B.2)

-N:I

The contact force is calculated as

Fy=pA.. (B.3)

B.3 Results

B.3.1 Deformed Profile

The deformed profiles of the membrane for d =5 mm and 6; = 10° are shown in Fig. B.2
(b) and (c). The dotted black color curve represents the analytical model predicted deformed
profile of the membrane and it matches well with the actual profile.

d =5mm; ,=10°; p =30 kPa

osomasenerare ' ' |

(b)
d =5mm; 6,=10°; p=41kPa |

r“‘_‘\

S

(a) (c)

Force Sensor Substrate

Fig. B.2 (a) Experimental setup for force measurement. Actual and theoretical (dashed curve)
deformed profile of square membrane in contact with a 10° inclined substrate at (b) 30 kPa and (c) 41
kPa .

B.3.2 Force

The force characteristics of the membrane in contact with parallel and inclined substrates are
shown in Fig. B.3. In simulations, the material properties were chosen from the best fit with
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experimental force data. The shear modulus ¢ of membrane material was taken as 111 kPa.
The force results are presented for d = 5 mm at 8; = 0° and 10° inclinations.

18 12

—+— Experiment —+— Experiment
---%--- Theoretical ---%--- Theoretical
15 (frictionless contact) 10 (frictionless contact) x
12 8
z z
3 9 g 6
5 5
[ [V
6 4
3 2 g
)i(// d=5mm
6,.=10°
0 s 0 =
15 20 25 30 35 40 45 15 20 25 30 35 40 45
Pressure [kPa] Pressure [kPa]
(a) (b)

Fig. B.3 Theoretical and experimental force plots for square membrane in contact with a rigid substrate

at d = 5 mm and inclination angles 6; (a) 0° and (b) 10°. The error bars are variation among three
actuators.






