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Abstract 
The research and application of computer vision and artificial intelligence (AI) in the 

direction of industrial automation is a hot topic in the current scientific and 

technological circles. Because it is of great theoretical and practical significance to 

flexibly apply this technology to further improve the intelligence of manufacturing 

automation. Based on the basic principles of computer vision, combined with motion 

estimation technologies and AI algorithms, this study implements the methods for the 

inclination angle measurement of the bearing assembly platforms in manufacturing 

industry. The main works of this study are as follows. 

 

For the motion estimation of the assembly platform, we illustrated and determined the 

mathematic expression of motion, that is, the motion of the camera coordinate system 

relative to the world coordinate system is expressed from the two dimensions of rotation 

and translation. Then, we demonstrated the coordinate transformation model from the 

pixel coordinate system to the world coordinate system. Afterward, considering that the 

camera will introduce distortions and influence the performance of the vision 

algorithms, we calibrated the industrial camera, and then obtained the camera's intrinsic 

parameter matrix. 

 

Considering that the current project has high requirements on the accuracy and 

processing speed of the algorithm, as well as the computing power of the computing 

platform, we conducted many comparative experiments and selected the algorithm 

combinations of image features and feature matching approaches which are suitable for 

the project. To further reduce the false matching rate of feature point pairs, we applied 

a screening strategy based on the non-maximum suppression method. By adding the 

screening conditions, only a certain number of best matching point pairs are retained, 

which saves the computing resources and shortens the overall running time of the 

algorithm, and at the same time improves the accuracy of the algorithm towards motion 

estimation. In specific, in the evaluation experiments, 6.7% of the total matched point 

pairs have been eliminated when applying the screening strategy. Under the 

circumstance that without adding the screening conditions, the maximum good match 

ratio could only reach 80%, while the evaluation experiments show that the ratio of the 

good match reaches 92% in the case of applying the non-maximum suppression strategy 

with the tuned parameters. 

 

For the motion estimation-based algorithm, we compared several mainstream motion 

estimation algorithms including feature matching-based, and feature tracking-based 

methods, etc. In specific, we implemented the perspective-n-point (PnP) method to 

realize the inclination measurement. In addition, we have tuned the parameters of the 
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optimization algorithm and obtained the optimal parameters through a large number of 

experiments, making it more suitable for the current research project. The optimized 

PnP algorithm minimizes the estimation error of the inclination measurements. 

Evaluation results show that the time efficiency of the proposed system achieves 7.3% 

higher than the conventional epipolar-constraints-based ones. On the other hand, the 

implemented system significantly reduces the measurement error by 90% compared 

with the conventional epipolar constraints-based methods. 

 

Regarding the machine learning-based algorithms for inclination angle classification, 

we designed a shallow neural network model based on a multilayer perceptron and 

determined the optimal structure of the model through extensive experiments. In 

addition, we have also implemented and verified the performance of other machine 

learning algorithms and deep learning algorithms as the baseline for this project. 

Through many comparative experiments, we verified the effectiveness and reliability 

of the designed lightweight neural network, as well as its advantages in the field of 

industrial automation, especially in this research project. In contrast to those traditional 

methods, validation experiments certificate that the proposed method achieves the best 

performance while reducing computational complexity by 45.31%. In addition, the 

validation accuracy of the designed neural network with tuned parameters reaches up 

to 98%, which outperforms other baseline models. 
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Chapter 1 Introduction  

1.1 Research Background and Motivation 

Machine vision has a history of more than 50 years from its appearance to the present. 

Currently, machine vision is widely used in the electronics manufacturing industry. 

Such as the assembly of printed circuit board. In addition, machine vision systems have 

also been widely used in many aspects of quality inspection and occupy a very 

important position in the field of intelligent manufacturing. Machine vision is an 

important link to improve the level of industrial automation. The software products and 

hardware products of machine vision are gradually becoming the core systems in all 

stages of the industrial processing and manufacturing process. Both users and vision 

system hardware suppliers are paying more and more attention to machine vision 

system, and hope that machine vision products use more "standardized technology", 

that is, more compatibility and openness, and can be developed multiple times 

according to customer requirements. 

 

At present, with the increasing progress of science and technology, industrial robots 

have been widely used, and are developing in the direction of high speed, high precision, 

high flexibility, and high reliability. In industrial production, robots have been widely 

used in painting, welding, disassembly, palletizing, handling, packaging, and other 

operations [1]. As an automation system solution with low cost and simple system 

structure, industrial robots can be used in common industrial fields such as assembly, 

sorting, packaging, and handling while replacing labor and improving production 

efficiency [2]. Thus, the intelligent automation systems have significant application 

value. Besides, relying on its simple structure, low cost, fast running speed, suitable for 

mass production and other advantages, it occupies many processing and manufacturing 

markets [3]. With the continuous improvement of the quality of automobiles and the 

expansion of production scale, while on the other hand the production processes require 

fast processing speed and relatively high production efficiency, industrial robots have 

almost become the most important part of such product manufacturers [4, 5]. Because 

industrial robots can quickly and efficiently realize automatic grasping and installation 

of workpieces such as bearings, long shafts, and metal plates [6, 7]. However, we found 

that at present, there are still many areas that need to be improved in the production 

process of industrial robots. 

 

There is an automobile gearbox manufacturing plant, which is mainly responsible for 

the manufacture of truck gearbox assembly modules, that is, assembling various parts 
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and completing the assembly of the gearbox. The gearbox consists of an aluminum 

housing, many gears and bearings. As mentioned earlier, nearly a hundred different 

parts are installed one by one in the metal housing. Nowadays, the factory mainly uses 

industrial robots to assemble truck transmissions. The use of industrial robots not only 

improves the efficiency of assembly process, but also reduces the labor intensity of 

engineers while improving the quality of products. 

 

Although the product quality has been improved a lot, there are still some problems in 

the manufacturing process [8, 9]. One of the most notable problems is: A small number 

of products were found to be excessively worn [91, 92]. Through analysis, engineers 

eventually found that the inclination between the assembly platform and the ground 

was the cause of the problem. During the bearing assembly process, since the robot 

does not have the ability to detect whether the assembly platform is inclined, when the 

assembly platform has some inclination due to mechanical vibration, it will affect the 

accuracy of the robot to install the workpiece to the designated position. In the case of 

a more serious inclination angle, there will even be mechanical collisions, which will 

reduce the yield in the assembly process. Even if the inclination angle is small, it is easy 

to cause some damages to the products during the installation process and reduce the 

service life of the bearings. One of the solutions is to analyze and judge the inclination 

of the assembly platforms by employing the machine vision system, so as to eliminate 

the possible damages to the products during the bearing assembly process as much as 

possible, prolong the service life of the product and improve the yield rate [10]. 

Therefore, before adjusting the pose of the assembly platforms, the inclination angle 

must be measured. As mentioned above, our research group proposes a few methods to 

solve the problem of inclination measurement. 

1.2 Main Contributions of the Study 

The main contributions of this study are as follows. 

(1) The Overall Design of the Inclination Angle Measurement System for the Assembly 

Platforms 

One of the main works of this research is to design and develop an inclination angle 

measurement system that suitable for the assembly platforms, hereinafter referred to as 

the measurement system. The basic workflow of the measurement system is as follows: 

First, the image of the assembly platform is captured by the camera and sent to a 

dedicated image processing system. After that, the image processing system performs 

preprocessing, target recognition, feature extraction, and other operations on the 

collected image information to obtain the spatial pose information/inclination angle 

parameters of the assembly platforms. Finally, the image processing system converts 

the obtained inclination information into control signals and sends them to the lower 
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controller such as Programmable Logic Controller (PLC). The controller controls the 

industrial robot system to complete the corresponding adjustment according to the 

received control parameters. 

 

(2) Research on the motion estimation algorithms for the assembly platforms based on 

simultaneous localization and mapping technologies 

The working principle of machine vision and the corresponding coordinate system 

transformation relationships are analyzed and studied. Besides, several motion 

estimation algorithms based on simultaneous localization and mapping (SLAM) 

technologies for the assembly platforms are implemented.  

 

(3) Research on the inclination angle classification algorithms for the assembly 

platforms based on machine learning 

The current mainstream machine learning algorithms and neural network structures are 

analyzed and studied, and a neural network structure for the inclination angle 

classification for the assembly platforms is proposed and validated. 

 

(4) Analysis of the experimental results of the proposed algorithms 

According to the performance of different algorithms in the verification experiments 

utilizing the image dataset created by our group, the advantages and disadvantages of 

the implemented algorithms are analyzed and discussed, so as to provide a reference 

direction for the future research. 

1.3 Organizations of the Thesis 

The organization of this study is as follows. In Chapter 2, we demonstrated the overall 

design of the inclination measurement system. Besides, we demonstrated the dataset 

created for this study. In Chapter 3, we illustrated the mathematical expressions of 

motion as we as calibration methods to deal with the distortion problem of the industrial 

camera. In Chapter 4, we illustrated the proposed motion estimation-based method for 

the project of inclination measurement. In Chapter 5, we explained the proposed neural 

network for the project of inclination measurement. In Chapter 6, we made a summary 

of this study and discussed some future directions of our research. 
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1.4 Chapter Summary 

In this chapter, we firstly introduced the research background and motivation of the 

measurement system for the assembly platform. Secondly, we briefly illustrated the 

design ideas of the measurement system as well as its workflow. Finally, we 

summarized the main works in this study and illustrated the overall organizations of the 

thesis. 
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Chapter 2 Inclination Measurement and 

Industrial Assembly Platforms  

2.1 Introduction 

The inclination angle measurement system for the industrial assembly platform 

developed in this research, hereinafter referred to as the measurement system, is to first 

transmit the image captured by the industrial camera to the industrial computer, and 

then use the powerful computing power of industrial computer to analyze the image. 

After that, the inclination angle information of the assembly platform is converted into 

control signals and transmitted to PLC for controlling the actuators. Finally, the actuator 

arrives at the designated position and accomplish the production operation according to 

the guidance of the control signals. 

 

In this study, the measurement system is divided into two parts: hardware system and 

software system. The hardware system part is responsible for real-time image 

acquisition and communication with the lower controller/actuator, and the software 

system part is responsible for the core image processing and analysis, and then transfer 

the results, such as inclination angle information of the platform, to the control signals. 

In this chapter, the structure and functions of the measurement system will be designed 

and implemented in accordance with the project requirements. 

2.2 Overall Design of the Measurement System 

Basically, the computer vision system designed for inclination measurement of the 

industrial assembly platform will be provided with the functions of image acquisition, 

image analyzing and communication towards the lower controller. Besides, it has 

several main technical requirements considered in the design of general vision systems. 

For one thing, the design must have reliability. Because the measurement system is 

mainly used in various industrial scenarios, it must withstand external disturbances 

under various non-ideal conditions and run stably. Second, the design should consider 

the processing speed of the system, to ensure that the production efficiency is improved 

in the case of replacing labor. Third, universality. At present, most industrial vision 

systems on the market can only meet a single or a few scenarios, and the ability of 

secondary development is insufficient. Thus, it is particularly important to develop a 

vision system that meets the needs of a variety of industrial scenarios. In this way, 
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according to the above requirements, the overall structure of the measurement system 

designed in this project is shown in Figure 2-1. The system consists of the upper 

computer and the lower controller. In specific, the upper computer includes the image 

acquisition unit, the image processing unit, and the communication unit according to 

the required functions. Among them, hardware of the system mainly includes an 

industrial camera used for image acquisition, an industrial computer for data analyzing, 

and peripheral interfaces that support communications between devices. The software 

system mainly includes the proposed algorithms for data analyzing. Furthermore, 

realization and running of the proposed algorithms leave without the following 

environments: Windows10 operating system running on the industrial computer 

platform, the integrated development environment (IDE) Anaconda, the open-source 

computer vision library (OpenCV), and the general machine learning libraries of 

TensorFlow, Keras, and scikit- learn. When the system is working, the industrial camera 

continuously captures images of the assembly platform and transmits the image data 

into the image processing unit (PC) through the USB interface. By employing the 

proposed algorithm, analyzing results such as information about inclination angle can 

be obtained. Then, the system will convert the analyzing results into corresponding 

control signals and transmit them to the lower controller. The lower controller will make 

controls and drive the servo motors (actuators) to adjust the pose of the assembly 

platform in accordance with the control signals. Finally, the assembly platform will be 

guided to the optimal working position. 

 

Image 

Processing Unit

Image 

Acquisition Unit

Communication 

Interface

Actuators
Assembly 

Platform
 

Figure 2-1. Overall design of the measurement system 

 

The main purpose of the measurement system is to use the computer vision techniques 

to monitor the inclination status of the industrial assembly platform in real-time, so as 

to avoid slight tilting of the assembly platform due to the on-site mechanical vibration, 

which causes slight damage to the product during the assembly process and therefore 

affects the service life of the product. There are many types of visual systems. For 

example, the camera and the robot arm form a hand-eye system. The hand-eye system 

includes two main types: eye-in-hand and eye-to-hand. For the former configuration, 

camera is mounted at the end of the robot arm (end-effector) and moves with the robot 

during the robot’s operations, as shown in Figure 2-2(a). As for the configuration of the 

latter type, camera of the eye-to-hand system is mounted in a fixed position outside the 
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robot’s body and does not move with the robot during operations, while it able to clearly 

record the assembly process at the same time. In this study, considering the camera must 

be able to watch the overall statues of the assembly platform, the eye-to-hand 

configuration will make it easy to capture the images of assembly platform at any time. 

Thus, we consider the settings of the assembly platform, robot arm, and camera as a 

standard eye-to-hand configuration, refers to Figure 2-2(b) below. 

 

 

Figure 2-2. Eye-in-hand and eye-to-hand configuration [23] 

2.3 Hardware System Design and Implementation 

2.3.1 Design of Image Acquisition Module 

The image acquisition module mainly includes camera lens, photosensitive component 

(Sensor) and communication interface. Its working principle is: the light reflected from 

the surface of the external object is transmitted to the photosensitive components 

through the camera lens, and the photosensitive components generate corresponding 

charges according to the intensity of the light, and after processing, the image 

information is output to the display device through the communication interface. 

(1) Selection of lens 

The lens of camera is mainly divided into two types. One is Fixed Focus lens; the other 

is Zoom Focus lens. Fixed Focus lens means that the focal length f of the lens has been 

fixed at the time of manufacturing. According to the size of the focal length, it can be 

divided into standard lens, wide-angle lens, fisheye lens and so on. Zoom Focus lens 

achieves zoom by actively or passively adjusting the distances among multiple optical 

lenses in the lens module by a mechanical device around the lens. In addition, there is 

a special camera lens called the focusing lens. The working principle of the focusing 

lens is to adjust the distance manually or automatically between the optical center of 

Fixed Focus lens and the photosensitive plane of the sensor, so that the optical center 

of the incident light accurately falls on the photosensitive plane. As a result, we could 

obtain the clearest imaging picture. According to the principle of maximizing the pixel 
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gradient of images, the automatic focusing lens is adjusted in a closed-loop manner by 

employing an image processing chip (such as DSP, etc.) to control the VCM voice coil 

motor to drive the lens and achieve focusing. This kind of lens is widely used in digital 

cameras and smart phones. 

(2) Selection of photosensitive components 

A photosensitive component is a kind sensor that able to converts optical signals into 

electrical signals. It is mainly divided into two categories, CCD, and CMOS. The 

difference between the two is mainly reflected in several aspects such as sensitivity, 

cost performance, noise, and power consumption. First, in terms of sensitivity, since 

each pixel of CMOS contains an amplifier and an A/D conversion circuit, the acceptable 

light area per pixel per unit area is lower than that of CCD. Second, in terms of 

manufacturing price, CMOS adopts the MOS process, which has been improved in the 

semiconductor industry for many years and has become the mainstream process in the 

industry. The quality failure rate and manufacturing cost of CMOS are far lower than 

CCD. CCD transfers all the generated charges to the external amplifier circuit by setting 

up a separate charge transfer channel. Once the photosensitive pixel unit is damaged, a 

large amount of charge in the channel will not be output, making the product quality 

requirements of CCD higher than that of CMOS. Besides, the additional ADC and 

transmission channel make the cost of CCD higher than that of CMOS. Third, in terms 

of noise, since each CMOS pixel unit is equipped with an ADC amplifier, if there are 

millions, it is difficult to ensure that there is no difference between all amplifiers, which 

leads to a worse effect of amplification and synchronization than the CCD with a single 

amplifier. Therefore, the noise generated when using CMOS will be relatively high. 

Finally, in terms of power consumption, the charge generated by each photosensitive 

element of CMOS is directly amplified and output by the amplifier around the pixel, 

and the power consumption is low; for CCD, a higher voltage (12V) must be generated 

by setting the voltage circuit, so that the charge of each pixel can be transferred to the 

transfer channel under the guidance of potential energy. Thus, the power consumption 

of CCD will be higher than that of CMOS due to the additional voltage applied. 
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Figure 2-3. Industrial camera with USB3.0 cable 

 

(3) Selection of communication interface 

There are some commonly used communication interfaces for the industrial cameras, 

including Gigabit Ethernet, USB, Thunderbolt, and Camera Link. Besides, the Gigabit 

Ethernet and USB are widely adopted in the manufacturing industry due to its high 

compatibility as well as the long transmitting distance. 

 

Table 2-1. Mainstream communication interfaces for transmitting image signals 

 

 

According to Table 2-1, comprehensively considering with the needs of the project and 

the peripheral interface information of the PC, USB3.0 interface standard that supports 

USB Video Class (UVC) protocol is selected as the communication interface for the 

industrial camera and the upper computer. UVC protocol is currently supported by most 

operating systems. Its biggest feature is that it can be plug-and-play in a computer or 

an embedded device with an operating system without installing any driver, which 

greatly improves the versatility of the embedded device. In terms of the above analysis, 
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as well as considering the cost and performance, we finally choose the autofocus 

industrial camera UC60 manufactured by MOKOSE company, which contains an 8-

megapixel CMOS sensor, and supports USB3.0 communication interface, as shown in 

Figure 2-3. 

2.3.2 Selection of PC 

To implement and evaluate the proposed measurement system, the prototype work is 

implemented on PC, which serves as the computing and processing unit. Moreover, 

configurations of the hardware employed in the evaluation experiments is as follows: 

Mother Board with Z490 Chipset, CPU(i7-10700K), GPU(GTX1080Ti), and 

memory(64GB). One of the main reasons that we choose Z490 Chipset is that it 

provides enough USB ports, including USB2.0 and USB3.0 ports. Since the industrial 

camera support USB3.0, while USB ports as well as RJ45 ports are commonly used to 

transmit the control signals to PLC, sufficient resources of USB/RJ45 ports will benefit 

the overall design of the hardware system. On the other hand, considering that the data 

analyzing tasks require a relatively high computing power, we finally decided to choose 

the combination of CPU(i7-10700K) and GPU(GTX1080Ti) to fulfill the requirements 

while keep the system with sufficient redundant resources to a certain extent. 

2.3.3 Communication System Design of the Control System 

A PROFINET communication port is integrated on the S71200CPU body, which 

supports Ethernet and communication standards based on TCP/IP and UDP [27-28]. 

The communication port can realize the communication between the S7-1200CPU and 

the upper computer which is responsible for image processing and analysis) through a 

standard Ethernet cable. 

 

Modbus is an industrial field bus standard, while ModbusTCP protocol is based on 

Ethernet communication. In specific, through running on TCP/IP, ModbusTCP can 

achieve message transmission between upper computer and PLC. Furthermore, the 

ModbusTCP library file is integrated in S7-1200CPU. Therefore, the library 

instructions "MB_CLIENT" and "MB_SERVER" of ModbusTCP could be directly 

called to realize the Modbus communication function in real applications. In this case, 

our study utilizes ModbusTCP to realize the communication among PLC, the upper 

computer, and actuators (servo motors). 
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2.4 Software Implementation of the Measurement 

System 

All algorithms in this study are implemented by using Python. Anaconda is an open-

source Python language distribution for data science, machine learning, and predictive 

analytics. It is dedicated to simplifying the package management system and 

deployment. Furthermore, Anaconda utilize the package management system named 

Conda. Conda is an open-source and cross-platform package/environment management 

system. Developers not only can use Conda to install and upgrade package 

dependencies, but also can easily install different versions of package environments and 

quickly switch between different environments. In addition, Anaconda Navigator is an 

user-friendly graphical interface of Anaconda, and it includes the following applications: 

Jupyter Notebook, Spyder, QtConsole, Glueviz, Orange, Rstudio, and Visual Studio 

Code. Among them, Spyder is an open-source integrated development environment 

(IDE) using Python language for scientific computing. Due to it integrates NumPy, 

SciPy, Matplotlib and IPython and is very convenient to use, this study uses Spyder as 

the IDE. In summary, we utilize Anaconda and its accompanying tools to configure the 

software development environment.  

 

The configuration process of the software development environment is as follows. On 

the selected PC as mentioned before, we install the Windows10 operating system at the 

beginning. Then we install Anaconda and utilize Conda to create the environments for 

developing the dedicated algorithms of this study. In specific, we need to install the 

OpenCV library for image processing, as well as the dependent libraries for 

implementing neural networks and machine learning algorithms, including TensorFlow, 

Keras and the general machine learning library scikit-learn. 

 

In this study, the overall design of the software system consists of three main partitions, 

including “Loading image data”, “Image anlysis”, and “Generating control signal”. In 

specific, after loading the input image data, it will conduct data preprocessing at the 

beginning, including feature extraction etc. Second, the pre-processed data will be used 

for analyzing and determine the inclination angle of assembly platform by applying the 

proposed algorithms. Finally, the analysis results will be converted as control signals 

and then sent to the industrial actuators. Whenever the control signals are received by 

PLC, it will immediately make controls for actuators such as servo motors, to adjust the 

pose of the assembly platform. In this way, the assembly platform could sustain an 

optimal working position. Furthermore, for the “Image analysis” part, it will apply 

different algorithms to achieve the aim of analyzing. In details, SLAM-based method 

and Artificial Intelligence-based method are separately implemented to accomplish the 
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analyzing tasks. Workflow of the software system is demonstrated in Figure 2-4. 

  

 

Figure 2-4. Workflow of the software system 

2.5 Establishment of the Image Dataset 

In this study, the image data used for the validation experiments were all taken at 

the industrial site. Specifically, pictures of the assembly platform at different 

inclination angles are taken by an industrial camera. It is worth noting that in the 

Assembly Platform Dataset, only some simple scenes are currently included. 

Specifically, the cases when assembly platform inclines by 1°-10° along the 

horizontal direction (x-axis) have a total of 10 categories. In addition, we captured 

100 images for each category. When assembly platform inclines by 1°-10° along 

the vertical direction (y-axis), there are also 10 categories in total, and 100 images 

are taken for each category. In the case when no inclination occurs (inclination 

angle is 0°), we still capture 100 images for this category. Thus, these 2100 images 

constitute the “Assembly Platform Dataset” named by our group members. 

Although the current dataset only contains some simple scenarios, its capacity is 

sufficient to verify the validity and reliability of the models and algorithms 

proposed in this study. In our future works, we will take more industrial scenarios 

into account, especially some complex cases. 

Load Image Data

Image Analysis

Transfer Analysis 

Results to Control 

Signals

Output Control 

Signals to Industrial 

Actuators

RJ45 Port
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Figure 2-5. Image examples of Assembly Platform Dataset 

2.6 Chapter Summary 

This chapter designs the overall structure of the measurement system. First, in terms of 

the computing power and the convenience of experimental verification, the appropriate 

parameters of the hardware processing platform are selected, and through the 

comparison of various interfaces and photosensitive elements, an autofocus industrial 

camera supporting the USB3.0 interface is adopted. Second, the software framework of 

the measurement system is designed based on the platform, and the specific software 

and algorithm implementations will be deeply researched and analyzed in chapters 3-6. 

Finally, we created the specialized image dataset for the validation experiments of our 

proposed algorithms. 
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Chapter 3 Cameras and Coordinate 

Transformation 

3.1 Introduction 

To estimation the motion of the assembly platform, firstly, it is essential to introduce 

some mathematics fundamental to express the motion. In this chapter, Euclidean 

transformation between different coordinates systems has been illustrated. In addition, 

the other ways to describe rotation, such as rotation vector as well as Euler angle have 

also been demonstrated. 

3.2 Mathematics Fundamental about Expression of 

Rotation 

3.2.1 Euclidean Transformation between Coordinate Systems 

Similar to the rotation between vectors, we can also describe the rotation and translation 

relationship between two coordinate systems, collectively referred to as the 

transformation relationship between coordinate systems [16]-[20]. In describing the 

motion of the industrial camera adopted in the inclination measurement system, we at 

first establish a world coordinate system defined by xW , yW  and z W  as shown in 

Figure 3-1. Second, we establish a camera coordinate system defined by xC, yC and 

zC.  Besides, assuming there is a vector 𝒑  with coordinates 𝑝𝑐  and 𝑝𝑤 , which 

describing its positions in the pre-established camera and world coordinate system, 

respectively. To describe the transformation between 𝑝𝑐 and 𝑝𝑤, we define the matrix 

𝑇, as shown in Figure 3-1. 
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Figure 3-1. Transformation relationship between world and camera coordinate system 

 

Camera motion is a rigid body motion that guarantees that the length and angle of the 

same vector will not change in each coordinate system. This transformation is called 

the Euclidean transformation, which consists of two parts, the rotation and translation. 

Firstly, the rotation is considered. Hypothesize that a unit orthogonal base (e1, e2, e3) 

to changes to (e′1, e′2, e′3) after rotation transformation. Similarly, the coordinates of 

a vector will be [a1, a2, a3]
T and [a′1,  a′ 2, a′3]

𝑇 in the camera and world coordinate 

systems, respectively. According to the definition of coordinates, there are: 

[𝑒1 𝑒2 𝑒3] [

𝑎1
𝑎2
𝑎3
] = [𝑒′1 𝑒′2 𝑒′3] [

𝑎′1
𝑎′2
𝑎′3

]                                 (3 − 1) 

Through applying some mathematic tricks, easily we can obtain the formula below:  

[

𝑎1
𝑎2
𝑎3
] = [

𝑒1
𝑇𝑒′1 𝑒1

𝑇𝑒′2 𝑒1
𝑇𝑒′3

𝑒2
𝑇𝑒′1 𝑒2

𝑇𝑒′2 𝑒2
𝑇𝑒′3

𝑒3
𝑇𝑒′1 𝑒3

𝑇𝑒′2 𝑒3
𝑇𝑒′3

] [

𝑎′1
𝑎′2
𝑎′3

] ≜ 𝑹𝒂′                            (3 − 2) 

We define the middle array as the rotation matrix 𝑹 since it mathematically describes 

the rotation transformation between the two coordinated systems. Matrix 𝑹  is an 

orthogonal matrix which determinant is of 1. Thus, the set of rotation matrices as can 

be given as: 

𝑆𝑂(𝑛) = {𝑹 ∈ ℝ𝑛×𝑛 𝑹𝑹𝑇 = 𝑰, 𝑑𝑒𝑡(𝑹) = 1}                              (3 − 3) 

𝑆𝑂(𝑛) represents the Special Orthogonal Group. It contains the rotation matrices of a 

n-dimensional space. In other words, the rotation matrices can describe the rotation of 

the camera, as well as the rotation of the industrial assembly platform, since the 

inverse/transpose of the orthogonal matrix 𝑹  represents an inverse motion in 

kinematics, expressed by: 

𝒂′ = 𝑹−1𝒂 = 𝑹𝑇𝒂                                                          (3 − 4) 

Where 𝑹𝑇 portrays an inverse motion. Except for the rotation matrix 𝑹, translation 

vector 𝒕  is essential to describe the transformation. Hypothesize in the established 

Xw
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world coordinate system, there is a vector 𝒂 . Thus, we could apply the above-

mentioned rotation matrix 𝑹 and translation vector 𝒕, a 3 × 1 vector to describe the 

motion from vector 𝒂 to 𝒂′ as the following:  

𝒂′ = 𝑹𝒂 + 𝒕                                                                (3 − 5) 

In summary, through applying the rotation and translation matrix, we could describe 

the inclination motion of the industrial assembly platforms. In specific, whenever we 

estimated the motion of our industrial camera, the inclination motion of the assembly 

platforms can be obtained based on the inverse kinematics.  

3.2.2 Transformation Matrix and Homogeneous Coordinates 

Although Equation (3-5) can describe the motion in a mathematical way, it still have 

some shortcomings. In practice, no less than one time of motion needs to be described. 

For example, assuming that there are two transformations: 𝑅1 ,  𝑡1  and 𝑅2 , 𝑡2 , 

satisfying: 

𝒃 = 𝑹1𝒂 + 𝒕1, 𝒄 = 𝑹2𝒃 + 𝒕2                                                (3 − 6) 

But the transformation from a to c is: 

𝒄 = 𝑹2(𝑹1𝒂 + 𝒕1) + 𝒕2                                                      (3 − 7) 

 

Such a form would become too complicated when making several times of 

transformations. In this case, homogeneous coordinates will be helpful to solve this 

problem and to rewrite (3 − 5): 

[𝒂′
1
] = [

𝑹 𝑡
0𝑇 1

] [
𝒂
1
] ≜ 𝑻 [

𝒂
1
]                                                 (3 − 8) 

By adding the last dimension, we describe a three-dimensional vector with four real 

numbers, which obviously has one more degree of freedom, but allows us to write the 

transformation in a linear form. In homogeneous coordinates, each component of a 

point x is multiplied by a non-zero constant k and still represents the same point. 

Therefore, the specific coordinate values of a point are not unique. For example, 

[1, 1, 1, 1] Tand [3, 3, 3, 3]T are the same point. But when the last item is not zero, we 

can always divide all the coordinates by the last item, and force the last item to be 1, to 

get a unique coordinate representation. That is, convert it to non-homogeneous 

coordinates: 

�̃� = [𝑥, 𝑦, 𝑧, 𝑤]𝑇 = [
𝑥

𝑤
,
𝑦

𝑤
,
𝑧

𝑤
, 1]𝑇                                            (3 − 9) 

At this point, the last item is ignored, and the coordinates of this point are the same as 

in the 3-dimentional space. Therefore, by applying the homogeneous coordinates, as 

well as introducing the matrix 𝑻, we could describe the motion in a more intuitive way: 

�̃� = 𝑻1�̃�, �̃� = 𝑻2�̃�  ⇒  �̃� = 𝑻2𝑻1�̃�                                    (3 − 10)  

Hereafter, the formulations will utilize the homogeneous coordinates such as 𝒃 =

 𝑻𝒂, by default. 
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Regarding the introduced matrix T, it is the so called Special Euclidean Group 𝑆𝐸(3).  

𝑆𝐸(3) = {𝑇 = [
𝑹 𝒕
𝟎𝑇 1

] ∈ ℝ4×4| 𝐑 ∈ 𝑆𝑂(3), 𝒕 ∈ ℝ3}                   (3 − 11) 

As with SO(3), by solving the inverse of T, we can obtain an inverse motion: 

𝑻−1 = [𝑹
𝑇 −𝑹𝑇𝒕
𝟎𝑇 1

]                                                       (3 − 12) 

Finally, in order to keep the symbol concise, without ambiguity, we will not distinguish 

the homogeneous coordinates from the non-homogeneous coordinates hereafter. By 

default, we use the one that conforms to the algorithm. For instance, in the formula 𝒃 =

 𝑻𝒂 , homogeneous coordinates will be utilized, while in the case of 𝒂′ = 𝑹𝒂, non-

homogeneous coordinates will be adopted. 

3.2.3 Rotation Vector and Euler Angle 

3.2.3.1 Rotation Vector 

Although it is clear to use the transformation matrix to describe the inclination motion 

of the industrial assembly platforms, it still has some disadvantages:  

 

(1) The 𝑆𝑂(3) contains nine elements, but only three-degree-of-freedom describe the 

rotation. In this way, it seems somehow redundant.  

(2) The rotation matrix 𝑹 must be orthogonal and therefore its determinant must equal 

to 1. The constrained conditions will introduce additional difficulties in motion 

estimation and optimization. 

 

To this end, we desire a much simpler method to solve the problem of describing motion. 

For the rotation of the coordinate system, the so-called rotation vector will be another 

choice. In this way, the rotation will be expressed by a 3 × 1 vector. Thus, we can 

express the motion by using a rotation vector combined with a translation vector. 

 

In fact, the method mentioned above is the Lie algebra that we are going to use in the 

following chapters. Assuming we have a rotation described by the two parameters 

𝑛 𝑎𝑛𝑑 𝜃 , thus we can easily obtain 𝜃𝑛 . Besides, the Rodrigues's Formula can be 

utilized to calculate the corresponding rotation matrix of an arbitrary rotation vector, 

vice versa: 

𝑹 = cos 𝜃 𝑰 + (1 − cos 𝜃)𝒏𝒏𝑇 + sin 𝜃 𝒏∧                               (3 − 13) 

Where the symbol " ∧ " represents the anti-symmetric conversion of a vector. 

                           𝑡𝑟(𝑹) = 𝑐𝑜𝑠 𝜃 𝑡𝑟(𝑰) + (1 − 𝑐𝑜𝑠 𝜃 )𝑡𝑟(𝒏𝒏𝑇 ) + 𝑠𝑖𝑛 𝜃 𝑡𝑟(𝒏∧)

= 1 + 2𝑐𝑜𝑠 𝜃                                                                                      (3 − 14) 

Thus, 
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𝜃 = arccos (
𝑡𝑟(𝑹) − 1

2
)                                                 (3 − 15) 

As for the rotation axis 𝒏 , because it will not change even applying the rotation 

transformation, there are: 

𝑹𝒏 = 𝒏                                                                    (3 − 16) 

That is, 𝒏 is the eigenvector corresponding to case when the eigenvalue of R equal to 

1. Besides, we can get 𝒏 by solving the equation above. 

3.2.3.2 Intuitive Description of Motion with Euler Angle 

Though the rotation vector has its advantages in describing the motion, it is unintuitive 

for the researchers to quickly read the information about the estimated motion. To this 

end, we will introduce another method to describe the motion while in an intuitive 

manner. That is Euler Angle. Besides, this method which contains three parameters 

including "yaw angle", "pitch angle", and "roll angle" is frequently applied in the 

aerospace industry. Furthermore, one of the most common definitions of Euler Angle is 

to describe a motion with the parameter order of yaw-pitch-roll. In this study, we only 

utilize Euler Angle to intuitively verify the experiment results.   

3.2.4 Quaternion 

3.2.4.1 Definition of Quaternion 

The above-mentioned mathematical expressions of motion all have their advantages as 

well as drawbacks. Except for the rotation vector, there is still a commonly used method 

to describe the inclination motion for this research project, namely, quaternion. The 

mathematical expressions of the motion using quaternion is both compact and non-

singular. 

 

Assuming we have a quaternion 𝑞 described by the real part 𝑞0 and three imaginary 

parts 𝑖, 𝑗, 𝑘, thus we have: 

𝒒 = 𝑞0 + 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘                                             (3 − 17) 

Besides, the imaginary parts must satisfy the following constraints: 

{
 

 
𝑖2 = 𝑗2 = 𝑘2 = −1
𝑖𝑗 = 𝑘, 𝑗𝑖 = −𝑘
𝑗𝑘 = 𝑖, 𝑘𝑗 = −𝑖
𝑘𝑖 = 𝑗, 𝑖𝑘 = −𝑗

                                                   (3 − 18) 

Because of this form of representation, it is equivalent to denote a quaternion like: 

𝒒 = [𝑠, 𝒗], 𝑠 = 𝑞0 ∈ ℝ, 𝒗 = [𝑞1, 𝑞2, 𝑞3]
𝑇 ∈ ℝ𝟑                         (3 − 19) 

Where 𝑠 denotes the real part, and 𝒗 denotes the imaginary part of the quaternion. If 
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a quaternary imaginary part is 0, it is called a real quaternion. 

 

Quaternion is very similar to the complex number. Considering that three dimensions 

require three axes, the quaternion also has three imaginary parts. In fact, a virtual 

quaternion can also correspond to a spatial point. We know that a complex number with 

a length of 1 can represent a pure rotation on a complex plane without scaling of the 

length, therefore the rotation in the same three-dimensional space can also be expressed 

in units of quaternions. 

 

Suppose there is a rotation vector 𝜃𝒏 , while vector 𝒏 =  [𝑛𝑥, 𝑛𝑦, 𝑛𝑧]
𝑇 , then the 

quaternion form of this rotation can be expressed as: 

𝒒 = [cos
𝜃

2
, 𝑛𝑥 sin

𝜃

2
, 𝑛𝑦 sin

𝜃

2
, 𝑛𝑧 sin

𝜃

2
]𝑇                                (3 − 20) 

Conversely, the corresponding rotation vector can be obtained if we know the 

expression using quaternion: 

{
𝜃 = 2arccos (𝑞0)

[𝑛𝑥, 𝑛𝑦, 𝑛𝑧]
𝑇 = [𝑞1, 𝑞2, 𝑞3]

𝑇/ sin(𝜃/2)
                                  (3 − 21) 

Adding 2π to θ of equation (2-20) represents the same rotation, but the corresponding 

quaternion becomes −q. Therefore, in a quaternion, any rotation can be represented by 

two quaternions that are opposite to each other. Similarly, taking θ to 0 gives a real 

quaternion without any rotation： 

𝒒0 = [±1,0,0,0]𝑇                                                        (3 − 22) 

3.2.4.2 Motion Description with Quaternion 

Assuming we have a three-dimensional point  𝑝 =  [𝑥, 𝑦, 𝑧]  ∈  𝑅3 , and a rotation 

specified by the axis angle 𝜃𝒏, while the three-dimensional point 𝑝 becomes 𝑝′ after 

being rotated. If a matrix description is used, then 𝑝′ =  𝑅𝑝 . In the case when the 

rotation is described by a quaternion: 

𝑷 = [0, 𝑥, 𝑦, 𝑧] = [0, 𝒗]                                                   (3 − 23) 

This is equivalent to the fact that we associate the three imaginary parts of the 

quaternion with the three axes in space. Then, referring to the equation (3-20), we have: 

𝒒 = [cos
𝜃

2
, 𝒏 sin

𝜃

2
]                                                         (3 − 24) 

Thus, this pure rotation transformation will be described as the equation below: 

𝒑′ = 𝒒𝒑𝒒−1                                                                (3 − 25) 

3.2.4.3 Transformation between Quaternion and Rotation Matrix 

The transformation between a quaternion and the corresponding rotation matrix has 
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been given in the equation (3-21). So now it seems that the most intuitive way to convert 

a quaternion into a matrix is to convert the quaternion q to the axis angle 𝜃𝒏, and then 

convert it to a rotation matrix according to the Rodrigues formula. However, it is more 

expensive to calculate an “arcos” function. In fact, this calculation can be bypassed by 

certain techniques: 

 

Let quaternion 𝑞 =  𝑞0 + 𝑞1𝑖 +  𝑞2𝑗 +  𝑞3𝑘, the corresponding rotation matrix R is: 

 

𝑹 = [

1 − 2𝑞2
2 − 2𝑞3

2 2𝑞1𝑞2 + 2𝑞0𝑞3 2𝑞1𝑞3 − 2𝑞0𝑞2
2𝑞1𝑞2 − 2𝑞0𝑞3 1 − 2𝑞1

2 − 2𝑞3
2 2𝑞2𝑞3 + 2𝑞0𝑞1

2𝑞1𝑞3 + 2𝑞0𝑞2 2𝑞2𝑞3 − 2𝑞0𝑞1 1 − 2𝑞1
2 − 2𝑞2

2

]                   (3 − 26) 

 

Conversely, the conversion from the rotation matrix to the quaternion is as follows. The 

hypothesis that matrix 𝑹 =  {𝑚𝑖𝑗}, 𝑖, 𝑗 𝜖 [1, 2, 3], and its corresponding quaternion 𝒒 

is given by: 

𝑞0 =
√𝑡𝑟(𝑅) + 1

2
, 𝑞1 =

𝑚23 −𝑚32

4𝑞0
, 𝑞2 =

𝑚31 −𝑚13

4𝑞0
, 𝑞3 =

𝑚12 −𝑚21

4𝑞0
     (3 − 27) 

It is worth mentioning that since 𝒒  and −𝒒  describe the same motion, in fact, the 

quaternion description about matrix R is not unique. In practice, basically the most 

convenient form will be applied in this study. In addition, experiment results of testing 

Eigen library are shown in Figure 3-2. as the following: 

 

 

Figure 3-2. Experiment results of testing Eigen library 
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3.3 Coordinate Transformation 

3.3.1 Camera Model and Coordinate Transformation 

between World and Camera Coordinate System 

Binocular vision technology, also known as stereo vision technology, is to obtain two 

pictures in different perspectives of an object and extract the depth information through 

the overlapping parts of the two images to obtain the 3D spatial coordinates of the object. 

The typical binocular camera is designed from the human visual system. Figure 3-3. 

shows a typical pin-hole camera model. In Figure 3-3., by placing two cameras of the 

same size in the horizontal direction, two images are generated. Image processing 

obtains a disparity map, which in turn recovers the three-dimensional information of 

the object through the disparity map. 

 

 

Figure 3-3. Schematic graph of camera pin-hole model 

 

In this section, we will make a review about the transformation relationship between 

camera and imaging plane coordinate system. To describe the relationship, we establish 

three-dimensional coordinate system 𝑂𝑋𝑐𝑌𝑐𝑍𝑐  as camera coordinate system, as 

showed in Figure 3-4. Also, we establish the two-dimensional coordinate system 𝑂1𝑋𝑌  

as imaging plane coordinate system. 𝑂𝑐 is optical center of the camera lens. 𝑂1is called 

as the principle point of image, which is the intersection point of camera optical axis’s 

center line, that is the 𝑍𝑐 axis of the coordinate systems of camera and imaging plane. 

In addition, for one point P in space, which coordinate is (𝑥𝑐, 𝑦𝑐 , 𝑆) in the camera 
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coordinate system. The imaging point of P in the imaging plane is 𝑃′(𝑥, 𝑦). According 

to the imaging mechanism of camera and properties of similar triangles, we could get 

the following equations: 

                         
𝑥

𝑓
=
𝑥𝑐
𝑆
                                                          (3 − 28) 

                        
𝑦

 𝑓
=
𝑦𝑐
𝑆
                                                          (3 − 29) 

 

Figure 3-4. Relationship between camera coordinate system and imaging plane 

coordinate system 

In Equation (3-28) and (3-29), 𝑆 represents the distance between 𝑂𝑐 and 𝑂, which 

denotes the origin of the camera coordinate system. 𝑓 denotes the focal length of the 

lens. Write it into the matrix form, thus: 

                             𝑆 [
𝑥
𝑦
1
] = [

𝑓 0 0
0 𝑓 0
0 0 1

] [
𝑋𝑐
𝑌𝑐
𝑍𝑐

]                                            (3 − 30) 

Equation (3-30) is the matrix expression of the relationship between camera coordinate 

system and imaging plane coordinate system. Through equation (3-30), we could get the 

matrix expression of the relationship between the world coordinate system and imaging 

plane coordinate system: 

                     𝑆 [

𝑥
𝑦
𝑧
1

] = [

𝑓 0 0 0
0 𝑓 0 0
0 0 𝑓 0

] [
𝑹 𝑻
𝟎 1

] [

𝑋𝑤
𝑌𝑤
𝑍𝑤
1

]                              (3 − 31) 

In equation (3-31), (𝑥, 𝑦, 𝑧) denotes the coordinates of point P in imaging plane, while 

(𝑋𝑤, 𝑌𝑤, 𝑍𝑤) represents the coordinates of point P in the established world system. 
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3.3.2 Transformation between Image Plane and Pixel 

Coordinate System 

In this section, we illustrate the mathematical relationship between imaging plane and 

pixel coordinate system. As Figure 3-5. shows, establish a pixel coordinate system 𝑢 −

𝑣 with point 𝑂0 as the origin. Pixel’s abscissa 𝑢 and ordinate 𝑣 are the number of 

columns and the number of rows in the image array. Suppose that the origin 𝑂1 of 

imaging plane coordinate system has a coordinate of (𝑢0, 𝑣0)  in pixel coordinate 

system. And the 𝑥, 𝑦 axis are parallel to 𝑢 and 𝑣 axis, respectively. Assume that 𝑑𝑥 

and 𝑑𝑦 are the physical sizes of each pixel in 𝑥 axis and 𝑦 axis, respectively [5]. So 

that we could get the relationship between imaging plane coordinate system and pixel 

coordinate system as follows. 

                                        𝑢 =
𝑥

𝑑𝑥
+ 𝑢0                                                    (3 − 32) 

                                        𝑣 =
𝑦

𝑑𝑦
+ 𝑣0                                                    (3 − 33) 

Rewrite equation (3 − 32) and (3 − 33) into matrix form: 

                                  [
𝑢
𝑣
1
] =

[
 
 
 
 
1

𝑑𝑥
0 𝑢0

0
1

𝑑𝑦
𝑣0

0 0 1 ]
 
 
 
 

[
𝑥
𝑦
1
]                                           (3 − 34) 

In equation (3-34), assume that the unit of imaging plane coordinate system 𝑂1𝑥𝑦 is 

millimeter, so that the unit of 𝑑𝑥 and 𝑑𝑦 is mm/pixel. And both the unit of 𝑥/𝑑𝑥 and 

𝑦/𝑑𝑦 are pixel. All in all, according to equation (3-31) and (3-34), we could get the 

matrix expression of the relationship between the world coordinate system and pixel 

coordinate system as follows: 

𝑆 [
𝑢
𝑣
1
] =

[
 
 
 
 
 
𝑓

𝑑𝑥
0 𝑢0 0

0
𝑓

𝑑𝑦
𝑣0 0

0 0 1 0]
 
 
 
 
 

[
𝑹 𝑻
𝟎 1

] [

𝑋𝑤
𝑌𝑤
𝑍𝑤
1

] = 𝑴2𝑴1 [

𝑋𝑤
𝑌𝑤
𝑍𝑤
1

]                      (3 − 35) 

In equation (3-35), 𝑴2 is the intrinsic parameter matrix of 3 × 4.  
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      Figure 3-5. Imaging plane and pixel coordinate system 

3.3 Camera Distortion Model 

In the previous research, the ideal model of the camera was used for analysis and 

derivation. However, in the actual environment, the processing and assembly of the 

camera lens inevitably introduce various errors, which would cause distortion of the 

imaging information of the object. Seriously, the final result may be completely wrong. 

Therefore, the main purpose of camera calibration is to derive the error parameters 

between the real camera and the ideal model. 

Under ideal conditions, the relationship between the world coordinate system and the 

imaging coordinate system is shown in equation (3-35), but in the real environment, the 

position of the points in the image is deviated due to the influence of the lens distortion 

of the camera. Therefore, an imaging model with distortion parameters is required. 

Suppose that in the pixel plane, the point 𝑝(𝑥𝑝 𝑦𝑝) 𝑖s the pixel points under the ideal 

model, and after the lens distortion is introduced, its real coordinate becomes 𝑑(𝑥𝑑 𝑦𝑑), 

then: 

[
𝑥𝑝
𝑦𝑝
] = (1 + 𝑘1𝑟

2 + 𝑘2𝑟
4 + 𝑘3𝑟

6) [
𝑥𝑑
𝑦𝑑
] + [

2𝑝1𝑥𝑑𝑦𝑑 + 𝑝2(𝑟
2 + 2𝑥𝑑

2)

𝑝1(𝑟
2 + 2𝑦𝑑

2) + 2𝑝2𝑥𝑑𝑦𝑑
]         (3 − 36) 

The correspondence between the point 𝑝(𝑥𝑝, 𝑦𝑝) and the point 𝑑(𝑥𝑑, 𝑦𝑑)  can be 

obtained by the equation (3-36). Among them, the radial distortion parameters are 

𝑘1 𝑘2 𝑘3 and the tangential distortion coefficients 𝑝1 and 𝑝2. 

The distortion of the camera mainly comes from radial and tangential distortion. They 

are all nonlinear distortions. The radial distortion is caused by the deformation of the 

camera lens, while the tangential distortion is due to manufacturing process limitations 

during the installation process. 
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The photosensitive center has no radial distortion, but the closer to the edge position, the 

greater the radial distortion. For ordinary CCD cameras, radial distortion is usually 

depicted by two coefficients, the first item is usually 𝑘1 and the second item is 𝑘2. For 

cameras with large radial distortion, such as fisheye cameras and panoramic cameras, a 

third radial distortion parameter 𝑘3 can be introduced. Normally, the radial position of 

the CCD camera is adjusted according to equation (3-37): 

{
𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑥(1 + 𝑘1𝑟

2 + 𝑘2𝑟
4 + 𝑘3𝑟

6)

𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑦(1 + 𝑘1𝑟
2 + 𝑘2𝑟

2 + 𝑘3𝑟
6)
                                (3 − 37) 

Here (𝑥, 𝑦)  is the original position of the distortion point on the imager, 

(𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡) is the corrected new position. 

As mentioned above, tangential distortion is caused by the ideal state in which the lens 

is in parallel with the imager due to manufacturing process limitations during the 

installation process. It can be described by two parameters, 𝑝1 and 𝑝2, as shown in 

equation (3-38). Figure 3-6. shows some examples of distortions occurred in the image. 

{
𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑥 + [2𝑝1𝑦 + 𝑝2(𝑟

2 + 2𝑥2)]

𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑦 + [𝑝1(𝑟
2 + 2𝑦2) + 2𝑝2𝑥]

                               (3 − 38) 

 

 

Figure 3-6. Examples of distortions in image [33] 

3.4 Camera Calibration 

3.4.1 Camera Calibration 

For the planar calibration, the most classic is the Zhang’s calibration method [29]. The 

main idea is that, firstly, in the ideal model without distortion, assuming that there is a 

point in the outside world where 𝑄(𝑋, 𝑌, 𝑍) is mapped to 𝑞(𝑥, 𝑦) in the camera, the 

relationships between the two can be expressed by the rotation matrix R and the 

translation matrix t, then the combination matrix of the two is 

𝐓 = [𝑟1, 𝑟2, 𝑟3, 𝐭]                                                          (3 − 39) 

Then the relationship between Q and q can be expressed as: 
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[
𝑥
𝑦
1
] = 𝑠𝑴[𝑟1 𝑟2 𝑟3 𝑟4] [

𝑋
𝑌
𝑍
1

]                                          (3 − 40) 

Where s is the scale factor of the matrix and M is the intrinsic parameter matrix of the 

camera: 

𝑴 = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

]                                                      (3 − 41) 

For the representation space in general, it is only necessary to consider mapping 

relationships on a certain plane. Therefore, the characterization plane of 𝑍 = 0 can be 

chosen such that equation (3-40) is reduced to the following formula: 

[
𝑥
𝑦
1
] = 𝑠𝑴[𝑟1, 𝑟2, 𝑟3, 𝑡] [

𝑋
𝑌
0
1

] = 𝑠𝑴[𝑟1, 𝑟2, 𝑡] [
𝑋
𝑌
1
]                              (3 − 42) 

Let 𝑯 = 𝑠𝑴[𝑟1, 𝑟2,  𝑟3, 𝑡], then equation (3-39) can be simplified as: 

𝒒 = 𝑠𝑯𝑸                                                                 (3 − 43) 

H is a 3 × 3 homography matrix. Therefore, H reflects the relationship between the 

image plane and the external representation plane. Let 𝑯 = [ℎ1, ℎ2, ℎ3], thus: 

𝑯 = [ℎ1, ℎ2, ℎ3] = 𝑠𝑴[𝑟1, 𝑟2, 𝑡]                                            (3 − 44) 

Due to R is an orthogonal matrix, 𝑟1
𝑇𝑟2 = 0  is established, so the following two 

constraints can be obtained: 

 

{
ℎ1
𝑇𝑴−𝑇𝑴−1ℎ2 = 0  

ℎ1
𝑇𝑴−𝑇𝑴−1ℎ2 = ℎ2

𝑇𝑴−𝑇𝑴−1ℎ2
                                           (3 − 45) 

 

For the above two constraints, the intrinsic and extrinsic parameters of the camera 

cannot be obtained. There must be more constraints. Let the matrix 𝑩 = 𝑴−𝑇𝑴−1, 

expand to get the following formula: 

𝑩 = 𝑴−𝑇𝑴−1 = [

𝐵11 𝐵12 𝐵13
𝐵21 𝐵22 𝐵23
𝐵31 𝐵32 𝐵33

]                                                                      

=

[
 
 
 
 
 
 
1

𝑓𝑥2
0

−𝑐𝑥
𝑓𝑥2

0
1

𝑓𝑦2
−𝑐𝑦

𝑓𝑦2

−𝑐𝑥
𝑓𝑥2

−𝑐𝑦

𝑓𝑦2
𝑐𝑥
2

𝑓𝑥2
+
𝑐𝑦
2

𝑓𝑦2
+ 1

]
 
 
 
 
 
 

                                                         (3 − 46) 

Let ℎ𝑖
𝑇𝐵ℎ𝑗 be used to represent the first two constraints, and let  𝑩 =

[𝐵11 𝐵12 𝐵23 𝐵13 𝐵23 𝐵33], thus have the following equation: 
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𝑣𝑖𝑗
𝑇𝑏 = ℎ𝑖

𝑇𝑩ℎ𝑗                                                               (3 − 47) 

Use 𝑣𝑖𝑗
𝑇  to represent the two intrinsic constraints as: 

[
𝑣12
𝑇

(𝑣11 − 𝑣12)
𝑇] 𝑏 = 0                                                  (3 − 48) 

According to 𝑣𝑖𝑗
𝑇 , 𝑽 is a matrix of 2𝑁 × 6, and only when 𝑁 ≥ 2, the equation 𝑽𝒃 =

0  has a solution. Then many intrinsic parameters of the camera can be obtained 

according to the solution of the equation 𝑽𝒃 = 0: 

{
 
 
 
 
 

 
 
 
 
 

𝑓𝑥 = √
1

𝑠𝐵11

𝑓𝑦 = √
𝐵11

𝑠(𝐵11𝐵22 − 𝐵12
2 )

𝑐𝑥 = −𝑠𝐵13𝑓𝑥
2

𝑐𝑦 =
𝐵12𝐵13 − 𝐵11𝐵23

(𝐵11𝐵22 − 𝐵12
2 )

𝑠 =
𝐵11

𝐵33 − [𝐵13
2 + 𝑐𝑦(𝐵12𝐵13 − 𝐵11𝐵23)]

                                   (3 − 49)    

After the intrinsic parameters are obtained, the values of extrinsic parameters of the 

respective rotation matrix and translation matrix can be easily obtained according to the 

intrinsic parameter values: 

{
 
 
 

 
 
 𝑟1 =

𝑴−1ℎ1
𝑠

𝑟2 =
𝑴−1ℎ2
𝑠

𝑟3 = 𝑟1 × 𝑟2

𝑡 =
𝑴−1ℎ3
𝑠

                                                              (3 − 50) 

Where 𝑟1 𝑎𝑛𝑑 𝑟2 are orthogonal, 𝑠 = ‖𝑴−1ℎ1‖. 

 

According to the above derivation and analysis of Zhang's calibration method, the four 

intrinsic parameters of the camera (𝑓𝑥 、𝑓𝑦 、𝑐𝑥  、𝑐𝑦 ) and the six extrinsic 

parameters(𝜓 、𝜑 、𝜗、𝑇𝑥  、𝑇𝑦、𝑇𝑧 ) of the rotation R and translation t matrix between 

the camera and the chessboard are calculated. For the lens distortion parameters, since 

the Zhang’s calibration method only considers the radial distortion and does not take 

into account the tangential distortion, the classical Brownian method [30] is used here, 

assuming that the external three-dimensional point P is completely projected by the 

camera lens under the ideal camera model. On the imaging picture point 𝑝(𝑥𝑝, 𝑦𝑝), the 

same point is projected onto the imaging picture as the point 𝑑(𝑥𝑑 , 𝑦𝑑) in the case of 
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distortion, and the maximum is re-appeared by the equation (3-49) according to the 

equation (3-35). However, it is estimated that the optimal parameters are obtained in a 

large number of equations, which is the distortion parameter. 

 

∑ ∑ ‖𝑝𝑖𝑗 − �̂�(𝑀, 𝑘1, 𝑘2, 𝑘3, 𝑅𝑖 , 𝑡𝑖, 𝑃𝑗)‖
2𝑚

𝑗=1

𝑛

𝑖=1
                          (3 − 51) 

 

According to 𝑽𝒃 = 0 , as long as there is a 3 × 3  calibration board with different 

viewing perspectives, the intrinsic and extrinsic parameters of the camera can be 

obtained. However, considering the noise and robustness, the general calibration field 

of view is more than 10 times, and the effective corner point of the chessboard is of 

4 × 6. 

3.4.2 Calibration Experiments of the Measurement System 

In this experiment, the chessboard with the inner corner point of 4 × 6 is selected for 

calibration. It is printed on A4 paper. The chessboard is fixed on the plane, and the 

industrial camera is placed in front of the calibration plate. Move and rotate the camera 

to obtain chessboard images from different viewing angles and ensure that the corners 

within the image of each chessboard are included, as shown in Figure 3-7. The 

workflow of this process is shown in Figure 3-8., while Figure 3-9. shows the extracted 

corner points on the chessboard. 

 

 

Figure 3-7. Images of a chessboard being held at various orientations (left) provide the 

intrinsic and extrinsic parameters of the camera calculated by utilizing OpenCV [33] 
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Table 3-1. Intrinsic and distortion parameters obtained from calibration 

 
By running the calibration program which utilizes OpenCV library, the extracted corner 

points are calibrated. The calibration results are summarized in Table 3-1. According to 

the calibration results shown in Table 3-1., the calibration method based on OpenCV 

can obtain good results. If the calibration results are required to be more accurate, it is 

recommended to use the MATLAB toolbox for calibration. But the disadvantage is that 

it is not convenient for real-time embedded systems to calibrate the camera. Through 

the OpenCV-based calibration method, the calibration result can be transmitted to the 

subsequent correction and the presentation of the disparity map in real time, which 

better realizes the convenience of image processing.  
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Figure 3-8. Workflow of the camera calibration 

 

Figure 3-9. Experiment results of the corner point extraction of chessboard 
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3.5 Chapter Summary 

In this chapter, we firstly illustrated the mathematic methods used to express the motion. 

Secondly, we demonstrated Euclidean transformation between different coordinates 

systems. Besides, we discussed the problem that the introduced camera distortion might 

influence the algorithm performance of the SLAM-based method for inclination 

measurement. Thus, we conducted the camera calibration and obtained the intrinsic 

parameters as well as distortion parameters of the industrial camera. 



 

*This chapter is a refined and reproduced version of the paper originally published in International Journal of 

Advanced Mechatronic Systems [91] copyrighted by Inderscience Publishers. 

 

Chapter 4 Inclination Measurement Based 

on Motion Estimation 

This chapter addresses the inclination measurement for the industrial assembly 

platforms by applying the motion estimation-based method*. 

4.1 Introduction 

4.1.1 Research Background and Motivations 

In the field investigation of the assembly enterprise, it was found that the the enterprise 

adopted the traditional control system to realize automation of the production process 

while ignores problem of slight inclination of the platform, by which the lifetime of 

products and the yield rate will be influenced. Because the traditional controllers 

represented by PLC are good at the process control with excellent robustness, whereas 

are bad at the large-scale analysis and computing. Thus, the computer vision system 

will be a proper choice to serve as a monitoring point and to guarantee the producing 

process will not be influenced by the occurrence of inclination on the assembly 

platforms. In this case, to overcome the above problems, and to further improve the 

intelligence and automation of the assembly enterprise, in this chapter, we will 

demonstrate the motion estimation-based method for tackling the inclination 

measurement of industrial assembly platforms. 

4.1.2 Related Works 

As mentioned in [21], for the motion estimation-based method, there are two main 

categories. Namely, the feature matching-based methods like [31, 71] and the feature 

tracking-based methods [56, 57, 58, 59]. One of the most prevalent feature tracking-

based methods is represented by the Lucas-Kanade Optical Flow. Although the feature 

tracking-based methods might save a portion of computing resources in the feature 

tracking stage, the three-dimensional coordinates of the landmarks need be known in 

the stage of optimization of motion estimation. In this case, there are two solutions to 

obtain the depth information or three-dimensional coordinates of the landmarks in 

general. One of the most convenient methods is to employ the RGB-D camera to get 
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the depth information for the landmarks [36, 77]. Although this kind of solution works 

well, the cost of the vision system is relatively high, mainly because the cost of RGB-

D cameras is much higher than that of general monocular cameras. The second method 

is to apply the stereo vision technology to estimate the depth information for the 

landmarks in the adjacent pictures. Although the relatively expensive RGB-D will be 

unnecessary by applying this method, it will introduce additional computation burden 

to the vision system. 

 

Regarding the feature matching-based method [38, 39, 40], when dealing with the same 

number of landmarks, it will introduce a higher computing burden to find the matched 

point pairs than that of the optical flow-based method. However, since only a few 

matched point pairs will be sufficient in the real application, if we limit the number of 

matched point pairs, the computing burden will be decreased. Thus, through applying 

the non-maximal suppression strategy to screen the point pairs with the highest 

similarity in the two adjacent frames, the actual computing complexity will be reduced.  

4.1.3 Main Works 

According to the above analysis, to solve the problem of inclination measurement with 

a relatively low hardware cost as well as to keep a good measurement performance, the 

main works in this chapter are as follows: Feature matching-based method combined 

with the stereo vision technologies have been applied to implement the inclination 

measurement for the industrial assembly platforms. In specific, for the first step, an 

image feature algorithm is utilized to extract the feature points in adjacent frames. 

Secondly, the feature matching algorithm combined with the non-maximal suppression-

based screening strategy are employed to obtain the best matching point pairs in the 

adjacent frames. Afterward, according to the coordinate information of the matching 

point pairs, epipolar constraints are applied to estimate the motion of the industrial 

camera. Thirdly, the principle of triangulation is implemented to estimate the depth 

information of the spatial points according to the obtained camera motion. Thus, the 

three-dimensional coordinate information of the spatial points is obtained. Then, based 

on the 3D coordinates of the landmarks and the 2D coordinates of the matched point 

pairs, 3D-2D (PnP) method is applied to estimate the motion of the camera. Finally, the 

Trust Region-based Levenberg-Marquardt optimization method is implemented to find 

the optimal motion. 

 

Section 4.2 illustrates the prevalent image feature algorithms as well as the feature 

matching methods. Besides, the advantages and disadvantages of different methods 

have been discussed qualitatively. On this basis, analysis and comparisons have been 

made to determine the most suitable combination of methods for this study. The 

quantitative comparisons among different algorithm combinations are presented in 
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section 4.7. Section 4.3 demonstrates the motion estimation based on the epipolar 

constraints. Section 4.4 presents the triangulation method which will utilize the 

obtained motion information to calculate the depth information of the spatial points 

corresponding to the landmarks in pictures. After obtaining the three-dimensional 

coordinates of the landmarks in space, section 4.5 demonstrates the working schematics 

of the perspective-n-points (PnP) method and the trust region-based optimization, 

which are applied in this study to realize the motion estimation of the inclination angles 

of the industrial assembly platforms. Section 4.6 illustrates the feature tracking-based 

methods. Finally, section 4.7 presents the workflow of the inclination measurement 

applying the motion estimation-based methods. Besides, implementations and 

validation experiments have been made to verify the effectiveness and performance of 

the motion estimation-based method for inclination measurement. 

4.2 Image Feature and Matching Approaches 

The main problem to be solved in this chapter is to estimate the inclination motion of 

the assembly platforms by employing SLAM algorithms. In specific, we employ a 

method that firstly select representative points in the pictures. Because the 

representative points will keep invariant in the adjacent frames of images, thus it would 

serve as landmarks that help us to obtain the motion of the industrial camera. In sum, 

we will discuss the motion estimation based on this kind of points. 

 

In vision systems, these representative points are so-called landmarks or image features 

points [28, 29]. Image features have been widely used in various computer vision tasks. 

In other words, the feature can be considered as an alternative expression of significant 

information in the pictures. Apparently, robust image feature will greatly guarantee the 

success of the computer vision tasks. Therefore, we need to select the proper feature 

algorithm that will benefit the inclination measurement system developed in this study. 

 

In general, there are several types of feature points including corners, edges, and blocks. 

However, according to the conclusions of previous studies, it is more common to have 

the same corner in two images. There are fewer cases that the same edge appears in 

different pictures because the pictures often have high similarity along the edge. As for 

the cases that the identical block appears in two images, the probability is the least. In 

other words, the corner features have the highest probability to be identified in adjacent 

frames of picture. 

 

In practice, use corner features only still dissatisfy the needs of many computer vision 

tasks. To this end, many researchers have made efforts in developing feature algorithms 

which provides more robust and stable features for the computer vision tasks. The most 
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commonly used algorithms including SIFT, ORB, and SURF [31, 32, 93, 94]. These 

mentioned feature algorithms have the superior advantages compared to the corner 

features. In specific, ORB feature refers to the two tasks of "extracting FAST key-point" 

and "calculating the BRIEF descriptor" [32][33]. Key-points denotes the position 

information of the image features, while the descriptors are basically vectors that store 

the information surrounding the image features. Besides, another classic algorithm 

Scale-Invariant Feature Transform (SIFT) fully considers the variations in scale and 

illumination for the image features. However, its high robustness is followed by a 

relatively higher requirement of computing power. 

 

Other features, consider appropriate reduction of accuracy and robustness, and speed 

up the calculation. For example, Oriented FAST and Rotated BRIEF (ORB) is one of 

the most representative algorithms that try to find a trade-off between the performance 

and cost [30, 31]. It amended the original FAST feature points and employed Binary 

Robust Independent Elementary Features (BRIEF) descriptors [32, 33]. So that the 

speed of the entire image feature algorithm is guaranteed. 

 

Figure 4-1. Example of extraction of FAST key-point [23] 

 

FAST concentrate on promptly finding the obvious change of the pixel gray-scale value 

in a local area. Whenever the algorithm finds a pixel which differs significantly from 

its surrounding pixels, the pixel will be considered as a corner point. In specific, only 

the brightness information will be compared [34, 35]. Basic schematic of FAST is 

shown in Figure 4-1.  

 

Although the time efficiency of FAST is relatively high, it indeed sacrifices the 

performance in return. For example, the number of FAST feature points would be large 

in the image, while usually researchers only need a limited number of them. To this end, 

an idea was proposed to tackle this problem. Namely, whenever we have many FAST 

feature points, a screening process will be conducted to leave the ones with the highest 
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value of Harris response. Besides, the feature points found by FAST are lack of 

directionality information. When the perspective of camera drastically changes, vision 

system will lose the landmarks and cause the failure of the computer vision tasks. To 

overcome this problem, ORB introduced additional information to describe the 

directionality as well as the scale for the most robust feature points [31]. In specific, the 

scale information is provided by applying the image pyramid. And the directionality 

information is provided by using the intensity centroid.  

 

The concept of centroid of mass is extended to describe the mean value of a series of 

pixels distributed in a local area, namely, image block [31]. Assuming we have an image 

block, define the moment of the block as: 

𝑚𝑝𝑞 = ∑ 𝑥𝑝𝑦𝑞

𝑥,𝑦∈𝐵

𝐼(𝑥, 𝑦), 𝑝, 𝑞 = {0,1}                              (4 − 1) 

Where 𝐼(𝑥, 𝑦) indicates the grayscale of (𝑥, 𝑦). Therefore, we have the centroid: 

𝐶 = (
𝑚10

𝑚00
,
𝑚01

𝑚00
)                                                            (4 − 2) 

Then, define the directionality of a feature as the following formula shows: 

𝜃 = arctan (𝑚01/𝑚10)                                                     (4 − 3) 

 

Afterward, we still need to calculate the descriptors for the features. In this study, we 

prefer to use the binary descriptors, because the computation speed of the binary 

descriptors is fast and thus will contribute to the real-time performance of the vision 

system. That is the reason why ORB has been widely employed in many computer 

vision systems that requires a relatively higher real-time performance. Figure 4-2. gives 

out the experimental results of applying ORB. 

 

Figure 4-2. Experiment results of ORB feature extraction 

 

Feature matching is an important step in estimation the motion of the inclined assembly 
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platforms as well as the industrial camera. However, the problem of mismatching has 

not been effectively solved until now. Part of the reason is that there are often many 

repeated textures especially in adjacent frames of pictures, making the feature 

description highly similar. In this case, we first assume that all matches are correct. 

Then, on this basis, we will consider how to reduce the problem of mismatching. 

 

Consider an image of two moments. If the feature point 𝑥𝑚𝑡, 𝑚 =  1, 2, . . . , 𝑀  is 

extracted in the image 𝐼𝑡, the feature points 𝑥𝑛𝑡+1, 𝑛 =  1, 2, . . ., N are extracted in the 

image 𝐼𝑡+1,  

 

We use Brute Force Matcher, which is of high performance to look for the 

correspondence between these two sets of elements. In details, for one feature point 

𝑥𝑚𝑡, measure the similarity with descriptors of the other feature point 𝑥𝑛𝑡+1. Thus, the 

one that has the nearest distance will be taken as the matching point. 

 

In fact, there are many types of metrics for the similarity between features. For instance, 

Euclidean distance is commonly used to measure the similarity of the descriptors with 

decimal elements, while Hamming distance is useful for the binary descriptors. As for 

Hamming distance, the greater number of the different elements between two binary 

descriptors, the greater distance is. The following Figure 4-3. shows the experiment 

results of image feature extraction, descriptor calculation, and matching using the 

combination of ORB feature and Brute-force matching approach [31, 35], while Figure 

4-4. shows the screened good matching results by applying the non-maximal 

suppression strategy. The images used in the experiment were taken by our camera, and 

it can be seen the slight changes of camera perspective exist. 

 

 

Figure 4-3. Experiment results of feature matching without screening of good match 
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Figure 4-4. Experiment results of feature matching with screening of good match 

4.3 2D-2D: Epipolar Geometry 

4.3.1 Epipolar Constraint 

Epipolar geometry is the geometry of stereo vision. When two cameras view a 3D scene 

from two distinct positions, there are a number of geometric relations between the 3D 

points and their projections onto the 2D images that lead to constraints between the 

image points. These relations are derived based on the assumption that the cameras can 

be approximated by the pinhole camera model [86].  

 

Suppose we get a pair of matching feature points 𝑝1, 𝑝2  from the two images 

𝐼1 𝑎𝑛𝑑 𝐼2, as shown in Figure 4-5. If there are a number of such matching points, the 

camera’s motion between the two frames is possible to be recovered by the 

correspondence of these two-dimensional image points [39, 40]. The geometric 

relationship of the corresponding matching points in the two images is demonstrated in 

Figure 4-5. 

 

Taking Figure 4-5. as an example, we want to find the motion between the two frames 

of images 𝐼1 𝑎𝑛𝑑 𝐼2, let the motion from the first frame to the second frame be R, t. 

The two camera centers are 𝑂1 and 𝑂2 respectively. There is a feature point 𝑝1 in 

image 𝐼1 , which correspond to feature point 𝑝2  in image 𝐼2 . Both of them are 

obtained by feature matching. In the case of correct matching, the two are indeed the 

projections of the same spatial point on the two imaging planes. Habitually, people use 

the related terms of epipolar constraint to describe the geometric relationship of the 

matching pairs 𝑝1  and 𝑝2 . First, the connection 𝑂1𝑝1  and the connection 𝑂2𝑝2 

intersect at point P in three-dimensional space. At this time, the three points 𝑂1, 𝑂2, 

and P can determine a plane. That is the so called epipolar plane. The intersection of 

the 𝑂1𝑂2  connection with the image planes 𝐼1 , 𝐼2  is 𝑒1 , 𝑒2,  respectively. The two 

points 𝑒1𝑎𝑛𝑑 𝑒2  are called epipoles, 𝑂1𝑂2  is called baseline. The intersection lines 
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between the epipolar plane and two image planes 𝐼1, 𝐼2 are called epipolar line. 

 

 

Figure 4-5. Schematic of epipolar geometry 

 

From the first frame image, the ray 𝑂1𝑝1 is the spatial position where a certain pixel 

may appear, because all points on the ray are projected to the same pixel. Assuming 

that the P position is not known, from the second frame image, the connection 𝑒2𝑝2 is 

the position of the projection where P may appear, that is, the projection of the ray 

𝑂1𝑝1  in the second camera. Since the projection position of the pixel point 𝑝2  is 

determined by feature point matching, the spatial position of P and the motion of 

camera can be inferred. 

 

From an algebraic perspective, the above geometric relationship can be described. In 

the coordinate system of the first image, let the spatial position of P be: 

𝑷 = [𝑋, 𝑌, 𝑍]𝑇                                                                (4 − 4) 

According to the pinhole camera model, we know that the pixel positions of the two 

pixel points 𝑝1 ,𝑝2 are: 

𝑠1𝒑1 = 𝑲𝑷, 𝑠2𝒑2 = 𝑲(𝑹𝑷 + 𝒕)                                       (4 − 5) 

Where matrix K consists of intrinsic parameters. Transform matrix constructed by R 

and t represents motion between the adjacent images. If we use homogeneous 

coordinates, we can also rewrite the above equation as: 

𝒑1 = 𝑲𝑷,       𝒑𝟐 = 𝑲(𝑹𝑷 + 𝒕)                                               (4 − 6) 

Let: 

𝒙1 = 𝑲
−1𝒑1, 𝒙2 = 𝐾−1𝒑2                                                  (4 − 7) 

Here 𝒙𝟏, 𝒙𝟐 denotes the two pixel points, substitute the formula (4-7) into (4-6): 

𝒙2 = 𝑹𝒙1 + 𝒕                                                               (4 − 8) 

Then both sides are left multiplied by 𝒕∧ at the same time, thus we have: 

𝒕∧𝒙2 = 𝒕
∧𝑹𝒙1                                                                (4 − 9) 

After that, both sides are simultaneously multiplied by 𝑥 2
𝑇: 
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𝒙2
𝑇𝒕∧𝒙2 = 𝒙2

𝑇𝒕∧𝑹𝒙1                                                    (4 − 10) 

Looking at the left side of the equation,𝒕^ 𝒙2 is a vector that is perpendicular to both 𝒕 

and 𝒙2 . When making an inner product with 𝒙2 , it get 0. So we got a succinct 

expression: 

𝒙2
𝑇𝒕∧𝑹𝒙1 = 0                                                       (4 − 11) 

Substitute with equation (4-7), therefore: 

𝒑2
𝑇𝑲−𝑇𝒕∧𝑹𝑲−𝟏𝒑1 = 0                                               (4 − 12) 

These two expressions are called epipolar constraints, and their form is very simple. 

Their geometric meaning is that 𝑂1, P, 𝑂2 are coplanar. Both the translation and the 

rotation are included in the epipolar constraint. We denote the middle part of the left 

side of the epipolar constraint as two matrices: the fundamental matrix F and the 

essential matrix E to further simplify the epipolar constraint: 

𝑬 = 𝒕∧𝑹, 𝑭 = 𝑲−𝑇𝒕∧𝑹𝑲−𝟏                                          (4 − 13) 

The epipolar constraint gives a succinct representation of the spatial motion for the 

matched point pairs. Thus, motion estimation is simplified as to firstly estimate matrix 

𝑬 and 𝑭 using the information provided by the matched point pairs. Afterward, with 

the intrinsic parameters obtained through camera calibration, the transformation matrix 

can be calculated. 

4.3.2 Essential Matrix 

The definition of the essential matrix is 𝑬 =  𝒕∧𝑹, a 3 ×  3 matrix with nine elements 

to be calculated [39, 40, 42, 43, 44]. 

 

Assuming we have two matched points with homogeneous coordinates: 𝒙1 =

 [𝑢1, 𝑣1, 1]
T , 𝐱2 = [u2, v2, 1]

T . Thus, the coordinates will satisfy the epipolar 

constraint, and we have: 

(𝑢1 𝑣1 1) (

𝑒1 𝑒2 𝑒3
𝑒4 𝑒5 𝑒6
𝑒7 𝑒8 𝑒9

)(
𝑢2
𝑣2
1
) = 0                                  (4 − 14) 

Expand the essential matrix as the following form:  

𝒆 = [𝒆𝟏, 𝒆𝟐, 𝒆𝟑,𝒆𝟒, 𝒆𝟓, 𝒆𝟔, 𝒆𝟕, 𝒆𝟖, 𝒆𝟗]
𝑻
                                     (4 − 15) 

Therefore, the formula (4-14) will have the following form: 

[𝑢1𝑢2, 𝑢1𝑣2, 𝑢1, 𝑣1𝑢2, 𝑣1𝑣2, 𝑣1, 𝑢2, 𝑣2, 1] ⋅ 𝒆 = 0                                  (4 − 16) 

For the same reason, the same representation is given for other point pairs. If we have 

eight pair of matched points (𝑢𝑖, 𝑣𝑖 for the 𝑖𝑡ℎ feature point, and so on), there are: 
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[
 
 
 
𝑢1
1𝑢2

1 𝑢1
1𝑣2

1 𝑢1
1 𝑣1

1𝑢2
1 𝑣1

1𝑣2
1 𝑣1

1 𝑢2
1 𝑣2

1 1

𝑢1
2𝑢2

2 𝑢1
2𝑣2

2 𝑢1
2 𝑣1

2𝑢2
2 𝑣1

2𝑣2
2 𝑣1

2 𝑢2
2 𝑣2

2 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑢1
8𝑢2

8 𝑢1
8𝑣2

8 𝑢1
8 𝑣1

8𝑢2
8 𝑣1

8𝑣2
8 𝑣1

8 𝑢2
8 𝑣2

8 1]
 
 
 

[
 
 
 
 
 
 
 
 
𝑒1
𝑒2
𝑒3
𝑒4
𝑒5
𝑒6
𝑒7
𝑒8
𝑒9]
 
 
 
 
 
 
 
 

= 0            (4 − 17) 

These eight equations construct a system of linear equations. Whenever the rank of the  

coefficient matrix equals to 8, we can use the formula (4-17) to obtain all the nine 

elements of the essential matrix. 

 

Afterward, by applying the singular value decomposition (SVD) with the essential 

matrix, we can estimate the motion. Hypothesize the essential matrix 𝑬  will be 

decomposed as: 

𝑬 = 𝑼𝚺𝑽𝑇                                                                  (4 − 18) 

Where 𝑼,𝑽 denotes the matrix of orthogonality, while 𝜮 denotes a matrix of singular 

values. Due to the properties of E, the matrix 𝜮 must satisfy the condition of 𝜮 =

 𝑑𝑖𝑎𝑔(𝜎, 𝜎, 0). When conducting the decomposition, for one essential matrix 𝑬, there 

will have two possible 𝑹, 𝒕 corresponding to the essential matrix 𝑬: 

{
𝒕1
∧ = 𝑼𝑹𝑍 (

𝜋

2
) 𝚺𝑼𝑇 , 𝑹1 = 𝑼𝑹𝑍

𝑇 (
𝜋

2
)𝑽𝑇 

𝒕2
∧ = 𝑼𝑹𝑍 (−

𝜋

2
) 𝚺𝑼𝑇 , 𝑹2 = 𝑼𝑹𝑍

𝑇 (−
𝜋

2
)𝑽𝑇

                                 (4 − 19) 

Where 𝑅𝑍(𝜋/2) denotes the matrix 𝑹 with a 90-degree rotation along the Z axis. Due 

to the reason that neither positive nor negative sign of matrix E and t will get the same 

decomposition results, thus we will usually get four possible solutions after the 

decomposition. 

 

P

P

P

P

(a) (b) (c) (d)  

Figure 4-6. Four kinds of possible solution of matrix R and t  
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Figure 4-6. illustrates the possible solutions mentioned above. The blue line denotes the 

projection position of the 3D point on the imaging plane of the camera. In Figure 4-6 

(a), the depth of the two projection positions on the imaging plane are both positive, 

which indicates the correct solution. In this way, by examining the sign of depth, we 

can screen the correct solution after the decomposition. 

 

We know the projection of the spatial point on the camera, which is noted by blue line, 

and want to solve the camera's motion. In the case of keeping the two projection points 

unchanged, four possible cases can be drawn, but fortunately, in the first solution, P has 

a positive depth in both cameras. Therefore, as long as substitute any coordinates of 

points into the four solutions and detect the depth of the point under the two cameras, 

the correct solution can be determined. 

 

However, in terms of essential matrix E, which is solved according to the linear 

equation, may not satisfy its intrinsic property, that is, the singular value may not satisfy 

the form like “𝜎, 𝜎, 0” . To this end, when conducting SVD, matrix 𝜮  will be 

deliberately adjusted into the above form. Usually, we will get the singular value matrix 

𝜮 =  𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, 𝜎3) after the decomposition, assume that 𝜎1 ≥  𝜎2 ≥  𝜎3, set: 

𝑬 = 𝑼𝑑𝑖𝑎𝑔 (
𝜎1 + 𝜎2
2

,
𝜎1 + 𝜎2
2

, 0)𝑽𝑇                                     (4 − 20) 

For simplicity, in practice we can directly set the singular value matrix as 𝑑𝑖𝑎𝑔(1, 1, 0), 

which is also feasible according to the scale equivalence property of matrix E. 

4.3.3 Homography Matrix 

Homography matrix 𝑯 is commonly used to describe the transformation relationship 

between two flat planes [41, 42, 43]. Assuming we have a pair of matching points 𝑝1 

and 𝑝2 distributed in two planes. Assume that the equation of the plane is: 

𝒏𝑇𝑷 + 𝑑 = 0                                                              (4 − 21) 

Reorganize it, then get: 

−
𝒏𝑇𝑷

𝑑
= 1                                                                 (4 − 22) 

Then, according to formula (4-5), we have: 

𝒑2 = 𝑲(𝑹𝑷 + 𝒕) = 𝑲(𝑹𝑷 + 𝒕 ⋅ (−
𝒏𝑇𝑷

𝑑
)) = 𝑲(𝑹 −

𝒕𝒏𝑇

𝑑
)𝑲−𝟏𝒑1      (4 − 23) 

Apparently, the formula (4-23) express the transformation between 𝑝1 and 𝑝2, namely: 

𝒑2 = 𝑯𝒑1                                                                  (4 − 24) 

Similarly, we can use the information of the matched point pairs to obtain H by solving 

the linear equations. Afterward, singular value decomposition will be applied to get the 

information of motion, as the following: 
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(
𝑢2
𝑣2
1
) = (

ℎ1 ℎ2 ℎ3
ℎ4 ℎ5 ℎ6
ℎ7 ℎ8 ℎ9

)(
𝑢1
𝑣1
1
)                                             (4 − 25) 

Expand the above formula (4-25), there are: 

{
 

 𝑢2 =
ℎ1𝑢1 + ℎ2𝑣1 + ℎ3
ℎ7𝑢1 + ℎ8𝑣1 + ℎ9

𝑣2 =
ℎ4𝑢1 + ℎ5𝑣1 + ℎ6
ℎ7𝑢1 + ℎ8𝑣1 + ℎ9

                                                   (4 − 26) 

Therefore, 

{
ℎ1𝑢1 + ℎ2𝑣1 + ℎ3 − ℎ7𝑢1𝑢2 − ℎ8𝑣1𝑢2 = 𝑢2
ℎ4𝑢1 + ℎ5𝑣1 + ℎ6 − ℎ7𝑢1𝑣2 − ℎ8𝑣1𝑣2 = 𝑣2

                               (4 − 27) 

One pair of matching points will help to build two linear equations, thus the matrix 𝑯 

can be solved whenever the the coefficient matrix is of full rank. 

  

[
 
 
 
 
 
 
 
 
𝑢1
1 𝑣1

1 1 0 0 0 −𝑢1
1𝑢2

1 −𝑣1
1𝑢2

1

0 0 0 𝑢1
1 𝑣1

1 1 −𝑢1
1𝑣2

1 −𝑣1
1𝑣2

1

𝑢1
2 𝑣1

2 1 0 0 0 −𝑢1
2𝑢2

2 −𝑣1
2𝑢2

2

0 0 0 𝑢1
2 𝑣1

2 1 −𝑢1
2𝑣2

2 −𝑣1
2𝑣2

2

𝑢1
3 𝑣1

3 1 0 0 0 −𝑢1
3𝑢2

3 −𝑣1
3𝑢2

3

0 0 0 𝑢1
3 𝑣1

3 1 −𝑢1
3𝑣2

3 −𝑣1
3𝑣2

3

𝑢1
4 𝑣1

4 1 0 0 0 −𝑢1
4𝑢2

4 −𝑣1
4𝑢2

4

0 0 0 𝑢1
4 𝑣1

4 1 −𝑢1
4𝑣2

4 −𝑣1
4𝑣2

4]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
ℎ1
ℎ2
ℎ3
ℎ4
ℎ5
ℎ6
ℎ7
ℎ8]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
𝑢2
1

𝑣2
1

𝑢2
2

𝑣2
2

𝑢2
3

𝑣2
3

𝑢2
4

𝑣2
4]
 
 
 
 
 
 
 
 

                    (4 − 28) 

 

The above-mentioned method is the so called Direct Linear Transform. After applying 

the similar decomposition process for the essential matrix 𝑬, we will utilize additional 

information to screen the correct decomposition results. Experiment results of 

estimation of motion utilizing epipolar constraint with the matched point pairs are 

shown in Figure 4-7. 

 

 

Figure 4-7. Experiment results of motion estimation employing epipolar constraint 
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4.4 Triangulation 

Whenever we obtained the motion, we can use it to estimate the position information 

of the image features. Triangulation is a commonly utilized method for estimating the 

depth information of landmarks [76].  

 

P

O1
O2

p1
p2

t
 

Figure 4-8. Schematic of triangulation 

 

Similarly, consider two images 𝐼1 and 𝐼2, as shown in Figure 4-8., we set the image on 

the left as the reference frame, while the translation between 𝐼1 and 𝐼2 is described by 

𝒕. 𝑂1 and 𝑂2 denotes the optical centers of the camera. The matched landmarks 𝑝1 

and 𝑝2  are distributed on 𝐼1  and 𝐼2 , respectively. Ideally, line 𝑂1𝑝1  and 𝑂2𝑝2  will 

have an intersection at the spatial point 𝑃 , as shown in the figure above. With the 

epipolar constraint, while assuming the normalized coordinates of the matched 

landmarks are 𝑥1 and 𝑥2, thus we have: 

𝑠1𝒙1 = 𝑠2𝑹𝒙2 + 𝒕                                                            (4 − 29) 

Now that we know R, t, and hope to solve the depth information 𝑠1 and 𝑠2  of the 

landmarks. In terms of the method to solve these two unknowns, first left multiply 𝑥1
^on 

both sides of the above formula to get: 

𝑠1𝒙1
∧𝒙1 = 0 = 𝑠2𝒙1

∧𝑹𝒙2 + 𝒙1
∧𝒕                                               (4 − 30) 

It is easy to solve the equation above, then we can get the depth information. However, 

because the estimated rotation matrix and translation matrix may not perfectly accurate, 

the equation above might not perfectly equal to 0 as well. To this end, the optimization 

methods need to be applied to find the optimal solution. 

4.4.1 Discussion about Triangulation 

One thing to be mentioned is that the premise of using triangulation is that there is a 

translation between the perspective views of the two images. Therefore, pure rotation 

is impossible to use triangulation because the epipolar constraint will always be 



 

45 
 

satisfied. In this thesis, the images used in the experiment satisfy the premise of using 

triangulation approach. However, even if in the presence of translation, we need to 

consider the uncertainty of triangulation. 

 

t
O1 O2 O1 O2

P
P

δθ δθ 

δd δd

t

Figure 4-9. Analysis about uncertainty of triangulation 

 

As shown in Figure 4-9., when the translation is slight, the uncertainty of the pixel will 

result in a large uncertainty of depth calculation. In other words, if the position of the 

landmark changes by 𝛿𝑥, such that the perspective varies by 𝛿𝜃, causing the calculated 

depth value varies by 𝛿𝑑. As shown in the figure above, in the case of 𝒕 becomes large, 

then 𝛿𝑑  would become very smaller, which means that the larger the translation 

quantity is, the more precise the triangulation is. For obtaining a better triangulation 

result, the method of increasing the translation quantity is proved to be thankless, since 

that will introduce more influence factors, such as illumination variation and mismatch 

problems. One of the effective ways to improve the accuracy of triangulation is to 

properly enhance the resolution of the pictures. Because it will reduce the noises of the 

landmarks, while keeps a relatively low cost of the computation power.  

4.4.2 Experiment of Triangulation 

The three-dimensional coordinates of the matched points are obtained by applying 

triangulation method. We utilize OpenCV to implement the triangulation method. 

Experiment results of triangulation are shown in Figure 4-10., while the obtained depth 

information are shown Figure 4-11. It shows that the magnitude of the error is 

approximately the third decimal place. 
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Figure 4-10. Experiment results of triangulation 

 

 
Figure 4-11. Depth information calculated by triangulation 

 

4.5 3D-2D: PnP 

PnP (Perspective-n-Point) is a method for solving motion of 3D-2D point pairs [44, 45, 

47, 48]. It is a method of estimating camera motion when n 3D spatial points as well as 

its 2D coordinates are known. If the 3D position of the feature points on one image is 

known, then we can estimate the motion only use four pairs of matched points. In 

specific, three pairs will be used to estimate the motion, another pair is for verification. 
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4.5.1 Direct Linear Transformation 

Assume we have a 3D point P with coordinates 𝑃 =  (𝑋, 𝑌, 𝑍, 1)𝑇 . In image 𝐼1 , 

projections are made to feature points 𝑥1  =  (𝑢1, 𝑣1, 1)
𝑇 , which is represented by 

homogeneous coordinates of normalized plane [47]. At this time, the camera’s motion 

𝑹, 𝒕  is unknown. Define that matrix 𝑻 =  [𝑹|𝒕]  is of 3 ×  4  containing the motion 

information. Its expanded form is written as follows: 

𝑠 [
𝑢1
𝑣1
1
] = [

𝑡1 𝑡2 𝑡3 𝑡4
𝑡5 𝑡6 𝑡7 𝑡8
𝑡9 𝑡10 𝑡11 𝑡12

] [

𝑋
𝑌
𝑍
1

]                                          (4 − 31) 

Use the last line to eliminate s and get two constraints: 

𝑢1 =
𝑡1𝑋 + 𝑡2𝑌 + 𝑡3𝑍 + 𝑡4
𝑡9𝑋 + 𝑡10𝑌 + 𝑡11𝑍 + 𝑡12

  𝑣1 =
𝑡5𝑋 + 𝑡6𝑌 + 𝑡7𝑍 + 𝑡8
𝑡9𝑋 + 𝑡10𝑌 + 𝑡11𝑍 + 𝑡12

             (4 − 32) 

To simplify the representation, define the row vector of T: 

𝒕1 = (𝑡1, 𝑡2, 𝑡3, 𝑡4)
𝑇 , 𝒕2 = (𝑡5, 𝑡6, 𝑡7, 𝑡8)

𝑇 , 𝒕3 = (𝑡9, 𝑡10, 𝑡11, 𝑡12)
𝑇           (4 − 33) 

Then there are: 

{
𝒕1
𝑇𝑷 − 𝒕𝟑

𝑻𝑷𝑢1 = 0 

𝒕2
𝑇𝑷 − 𝒕𝟑

𝑻𝑷𝑣1 = 0
                                                       (4 − 34) 

𝒕 is the variable to be sought, and it can be seen that each feature point can provide two 

linear constraints on 𝒕 . Assuming a total of N feature points, a linear system of 

equations can be listed: 

(

  
 

𝑃1
𝑇 0 −𝑢1𝑃1

𝑇

0 𝑃1
𝑇 −𝑣1𝑃1

𝑇

⋮ ⋮ ⋮
𝑃𝑁
𝑇 0 −𝑢𝑁𝑃𝑁

𝑇

0 𝑃𝑁
𝑇 −𝑢𝑁𝑃𝑁

𝑇)

  
 
(
𝒕1
𝒕2
𝒕3

) = 0                                         (4 − 35) 

Since t has a total of 12 dimensions, a solution of the matrix T can be obtained by 

utilizing at least six pairs of matching points. This method is also called DLT (Direct 

Linear Transform). In the DLT solver, we directly consider the T matrix as 12 unknowns, 

ignoring the connections between them. Because the rotation matrix 𝑹 ∈  𝑆𝑂(3), the 

solution obtained by DLT does not necessarily satisfy the constraint, namely rotation 

matrix R is an orthogonal matrix. The translation vector is easier to handle, it belongs 

to the vector space, and does not have its own constraints. For the rotation matrix R, it 

is necessary to look for a best approximation for the 3 ×  3 upper-left matrix block of 

T estimated by DLT. This can be done by QR decomposition which is equivalent to re-

projecting the result from the matrix space onto the SE(3) manifold and converting it 

into two parts, rotation and translation [47]. It should be explained that 𝒙1 here uses 

the normalized plane coordinates and removes the influence of the intrinsic matrix K. 

Because it has been known by camera calibration. 
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4.5.2 Bundle Adjustment 

Except for applying the linear transform to tackle the PnP, construct the PnP problem 

into a nonlinear least squares problem would be another option [73]. The linear method 

mentioned above is to first seek camera motion and then find the position of the space 

point. Non-linear optimization is to treat them as optimization variables and put them 

together for optimization. This is a general solution that can be used to optimize the 

results given by PnP. In PnP, the Bundle Adjustment problem is a problem of 

minimizing the re-projection error [73, 74, 75, 76, 77]. 

 

P

p1
p2' (estimated position)

p2   (actual position)

e

 

Figure 4-12. Schematic of re-projection error 

 

Considering the n three-dimensional point P and their projection p, we want to calculate 

the camera's motion R, t, whose Lie algebra is expressed as 𝜉. Suppose the coordinates 

of a certain space point is 𝑃𝑖 = [𝑋𝑖, 𝑌𝑖, 𝑍𝑖]
𝑇, and the pixel coordinates of the projection 

is 𝑢𝑖 = [𝑢𝑖 ,  𝑣𝑖]
𝑇 . The relationship between the pixel position and the spatial point 

position is as follows: 

𝑠𝑖 [
𝑢𝑖
𝑣𝑖
1
] = 𝑲𝑒𝑥𝑝(𝝃∧) [

𝑋𝑖
𝑌𝑖
𝑍𝑖
1

]                                                (4 − 36) 

Except for camera motion represented by Lie algebra, everything is consistent with the 

previous definition. Written into matrix form as: 

𝑠𝑖𝒖𝑖 = 𝑲𝑒𝑥𝑝(𝝃
∧)𝑷𝒊                                                     (4 − 37) 

Now, there is an error in the equation due to the unknown camera motion and the 

presence of noise at the observation point. Therefore, we sum the errors, build a least 

squares problem, and then find the best camera motion to minimize it: 

𝝃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
1

2
∑‖𝒖𝑖 −

1

𝑠𝑖
𝑲exp (𝝃∧)𝑷𝒊‖

2

2𝑛

𝑖=1

                            (4 − 38) 
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The error term of this problem is the error obtained by comparing the pixel coordinates 

(observed projection position) with the position where the 3D point is projected 

according to the currently estimated camera motion, so it is called a re-projection error. 

This error has 3 dimensions when using homogeneous coordinates. However, since the 

last dimension of u is 1, the error of this dimension is always zero, so it is simpler to 

use non-homogeneous coordinates, and the error is only 2 dimensions. As shown in 

Figure 4-12., we know that 𝑝1  and 𝑝2  are projections of the same spatial point P 

through feature matching, but we don't know the motion of camera. In the initial value, 

there is a certain distance between the 𝑝2̂ which is the projection of P and the actual 

𝑝2. So we adjust the camera's motion to make this distance smaller. However, since this 

adjustment requires consideration of many points, at last the error of each point is 

usually not exactly zero. Using Lie algebra, it is possible to build a nonlinear 

optimization problem, while employing the G-N (Gauss-Newton) or L-M (Levenberg-

Marquart) algorithm to get the optimal solution. Thus, before using G-N and L-M, it is 

important to conduct linearization: 

𝒆(𝒙 + ∆𝒙) ≈ 𝒆(𝒙) + 𝑱∆𝒙                                                    (4 − 39) 

When 𝒆 is the pixel coordinate error of 2 dimensions, and 𝒙 is the camera motion of 

6 dimensions, 𝑱 will be a 2 ×  6 matrix. First, denote that the coordinates of the space 

point transformed into the camera coordinate system is P,', and take out its front three-

dimensional: 

𝑷′ = (exp (𝝃∧)𝑷)1:3 = [𝑋
′, 𝑌′, 𝑍′]𝑇                                      (4 − 40) 

Then, the camera projection model is relative to P,': 

𝑠𝒖 = 𝑲𝑷′                                                                 (4 − 41) 

Expand it, 

[
𝑠𝑢
𝑠𝑣
𝑠
] = [

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [
𝑋′

𝑌′

𝑍′
]                                                  (4 − 42) 

Using the third line to eliminate s, which is actually the distance of P,', you get: 

𝑢 = 𝑓𝑥
𝑋′

𝑍′
+ 𝑐𝑥, 𝑣 = 𝑓𝑦

𝑌′

𝑍′
+ 𝑐𝑦                                              (4 − 43) 

This is consistent with previous camera models. When finding the error, we can 

compare the u ,v here with the actual measured value and find the difference. After 

defining the intermediate variables, we left multiply the disturbance quantity 𝛿𝝃 for 𝝃∧ 

and then consider the derivative of the change in e with respect to the amount of 

disturbance. Using the chain rule, write the following: 

𝜕𝒆

𝜕𝛿𝝃
= lim

𝛿𝝃→0

𝑒(𝛿𝝃⊕ 𝝃)

𝛿𝝃
=
𝜕𝒆

𝜕𝑷′
𝜕𝑷′

𝜕𝛿𝝃
                                        (4 − 44) 

Here " ⊕ " refers to the left-multiply disturbance on the Lie algebra. The first term is 

the derivative of the error with respect to the projection point. According to equation 

(4-43), it is easy to get: 
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𝜕𝒆

𝜕𝑷′
= −[

𝜕𝑢

𝜕𝑋′
𝜕𝑢

𝜕𝑌′
𝜕𝑢

𝜕𝑍′

𝜕𝑣

𝜕𝑋′
𝜕𝑣

𝜕𝑌′
𝜕𝑣

𝜕𝑍′

] = − [

𝑓𝑥
𝑍′

0 −
𝑓𝑥𝑋

′

𝑍′2

0
𝑓𝑦

𝑍′
−
𝑓𝑦𝑌

′

𝑍′2

]                         (4 − 45) 

The second term denotes the derivative of the point after transformation, 

𝜕(𝑻𝑷)

𝜕𝛿𝝃
= (𝑻𝑷)⨀ = [ 𝐼 −𝑷′∧

𝟎𝑇 𝟎𝑇
]                                      (4 − 46) 

From equation (4-40) we have: 

𝜕𝑃′

𝜕𝛿𝝃
= [𝐼 −𝑷′∧]                                                        (4 − 47) 

Multiply these two to get a 2 ×  6 Jacobian matrix: 

𝜕𝒆

𝜕𝛿𝝃
= −

[
 
 
 
𝑓𝑥
𝑍′

0 −
𝑓𝑥𝑋

′

𝑍′2
−
𝑓𝑥𝑋

′𝑌′

𝑍′2
𝑓𝑥 +

𝑓𝑥𝑋
2

𝑍′2
−
𝑓𝑥𝑌

′

𝑍′

0
𝑓𝑦

𝑍′
−
𝑓𝑦𝑌

′

𝑍′2
−𝑓𝑦 −

𝑓𝑦𝑌
′2

𝑍′2
𝑓𝑦𝑋

′𝑌′

𝑍′2
𝑓𝑦𝑋

′

𝑍′ ]
 
 
 

             (4 − 48) 

The matrix 𝑱 express the first-order derivative of the reprojection error regarding the 

camera motion’s Lie algebra presentation. We retain the negative sign because the error 

is defined as “the observed value substract the predicted value”. On the other hand, 

except for optimizing camera motion, we also want to optimize the spatial position of 

feature points. Therefore, it is necessary to derive derivative of e with respect to spatial 

point P. Still using the chain rule, there are: 

𝜕𝒆

𝜕𝑷
=
𝜕𝒆

𝜕𝑷′
𝜕𝑷′

𝜕𝑷
                                                             (4 − 49) 

The first item has been derived before, as for the second item, by definition 

𝑷′ = exp(𝝃∧)𝑷 = 𝑹𝑷 + 𝒕                                                  (4 − 50) 

We find that after deriving, the second item 
𝜕𝑃′

𝜕𝑃
 only leaves R, thus: 

𝜕𝒆

𝜕𝑷
= −[

𝑓𝑥
𝑍′

0 −
𝑓𝑥𝑋

′

𝑍′2

0
𝑓𝑦

𝑍′
−
𝑓𝑦𝑌

′

𝑍′2

] 𝑹                                                (4 − 51) 

Thus, we derive the two derivative matrices of the camera observation equation for 

camera motion and feature points. They are significant to provide gradient directions 

during the optimization process and to guide the iteration of optimization. 

4.5.3 Levenberg-Marquart Method  

Since the second-order approximation of Taylor expansion used in the Gauss-Newton 

method can only have a good approximation near the expansion point [49, 50], some 

researchers have suggested that a “Trust Region” should be added to ∆x, and it cannot 

be made too large to make the approximation inaccurate [85]. This sort of nonlinear 
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optimization methods is collectively named as the Trust Region Method [18] [31]. 

Within the trust region, the approximation is generally considered to be valid; however, 

outside the region, the approximation is considered to be inaccurate. How to make sure 

the range depends on the difference of the approximate model and actual function. In 

specific, when the difference is tiny, then expand region; if the difference is large, then 

narrow the approximate range. So, consider using 

 

𝜌 =
𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

𝑱(𝑥)∆𝑥
                                                      (4 − 52) 

 

to determine if the Taylor approximation is good enough. The numerator of above 

formula is the descent value of the actual function, and the denominator is the descent 

value of the approximate model. If the value of ρ is close to 1, the approximation is 

good. If ρ is too small, indicating that the actual descent value is much less than the 

approximate descent value, the approximation effect is considered to be poor, and the 

trust region needs to be narrowed. Conversely, if ρ is much greater, it indicates that the 

real descent value is greater than approximated one, therefore the trust region need to 

be enlarged. 

 

Thus, the workflow of the optimization process applying the collectively called Trust 

Region Method is as follows: 

⚫ Set 𝑥0 as an initial value as well as 𝜇 which denotes the initial radius of the 

optimization  

⚫ In the 𝑘𝑡ℎ iteration, calculating: 

min
Δ𝑥𝑘

1

2
‖𝑓(𝑥𝑘) + 𝑱(𝑥𝑘)Δ𝑥𝑘‖

2，  s. t. ‖𝑫Δ𝑥𝑘‖
2  ≤ μ  (4 − 53)  

Where 𝜇 is the radius of the confidence zone. D is a non-negative diagonal 

matrix 

⚫ Calculate 𝜌. 

⚫ If 𝜌 > 3, then 𝜇 = 2𝜇. 

⚫ If 𝜌 < 0.25, then 𝜇 = 0.5𝜇. 

⚫ If 𝜌 is greater than a certain threshold, approximation is considered to be 

feasible, let 𝑥𝑘+1 = 𝑥𝑘 + ∆𝑥𝑘. 

⚫ Determine if the algorithm converges. If converge, end algorithm, otherwise, 

return to the second step. 

Where the multiples and thresholds of the approximate range expansion are empirical 

values obtained through many experiments using the Assembly Platform Dataset. In 

equation (4-53), we limit the increment to a sphere with a radius of μ, which is 

considered valid only in this sphere. After taking D, the ball can be seen as an ellipsoid. 
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In the optimization method proposed by Levenberg, taking D as a unit matrix I is 

equivalent to directly constraining ∆x in a sphere. 

 

When applying the above-mentioned L-M method for optimization, it is necessary to 

solve the equation (4-53) to get the gradient. This is an optimization problem with 

inequality constraints, we use Lagrange multipliers to turn it into an unconstrained 

optimization problem: 

𝑚𝑖𝑛∆𝑘 =
1

2
‖𝑓(𝑥𝑘) + 𝑱(𝑥𝑘)∆𝑥𝑘‖

2 +
𝜆

2
‖𝐷∆𝑥‖2                             (4 − 54) 

Where 𝜆 is the Lagrange multiplier. Similar to the approach in Gauss-Newton, after 

expanding it, the core problem is to calculate the linear equation of the increment: 

(𝑯 + λ𝑫𝑇𝑫)∆x = 𝒈                                                        (4 − 55) 

In the incremental equation above, it introduced the 𝜆𝑫𝑇𝑫 comparing with the G-N 

method. To simplify the equation, namely set 𝑫 =  𝑰, there are: 

(𝑯 + λ𝑰)∆x = 𝒈                                                            (4 − 56) 

It can be seen that when the parameter 𝜆 is small, H dominates, which means that the 

quadratic approximation model is better in this range, and the L-M method is closer to 

the G-N method. On the other hand, when 𝜆 is large, 𝜆𝑰 dominates, and L-M is closer 

to the Gradient descent method, which indicates that the nearby approximation is not 

good enough [78, 80]. The solution of L-M can avoid the non-singular problems of the 

coefficient matrix of linear equations to a certain extent, and provide a more stable and 

accurate incremental ∆x. 

 

In summary, the framework of nonlinear optimization problems is divided into two 

categories: Line Search first fixes the search direction and then looks for the step size 

in that direction, represented by the gradient descent method and the Gauss-Newton 

method [81, 82, 83, 84]. Trust Region first fixes the search area and then considers the 

best increment in the area [85]. Such methods are represented by Levenberg-Marquart. 

In practice, we choose L-M method as the gradient descent strategy. Figure 4-15. shows 

the experiment results of motion estimation employing PnP method with Bundle 

Adjustment optimization. The extracted feature points and results of feature matching 

are shown in Figure 4-13. and Figure 4-14, respectively. 
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Figure 4-13. Experiment results of ORB feature extraction 

 

 

Figure 4-14. Experiment results of feature matching 

 

 

Figure 4-15. Experiment results of motion estimation using PnP with Bundle 

Adjustment optimization 
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4.6 Position Estimation Based on Direct Method 

In this section, the optical flow feature point tracking method is introduced at the 

beginning. Moreover, a comparison between feature tracking and feature matching 

method has been made. On the other hand, motion estimation employing direct method 

based on feature tracking have been implemented [3, 86]. Experiment results prove that 

proposed direct method can achieve a good performance when the perspective view of 

camera changes slightly. 

4.6.1 Introduction of the Direct Method 

Except for applying the feature matching-based method to realize the motion estimation, 

other methods can also be helpful to implement it. For example, the optical flow-based 

method can be utilized to replace the process of matching the feature points [53, 54, 55, 

58].   

 

Also, some feasible ideas to overcome the disadvantages of feature matching-based 

methods are as follows: 

(1) Retain feature points, but only calculate key-points. Then, applying the optical flow 

for tracking the trajectory of the extracted landmarks. In this way, it may save the 

time required to calculate and match the descriptors, although the optical flow 

method itself requires a certain amount of computation; 

(2) Only key-points are calculated and no descriptors are calculated. At the same time, 

apply the Direct Method to track the positions of the landmarks in the adjacent 

frames. This also skips the computing for descriptor, and the collectively called 

direct method is less computationally intensive than the optical flow method. 

(3) Neither calculating key-point points nor calculating descriptors, but directly 

calculating camera motion based on pixel grayscale differences. 

 

The first method also depends on the extracted landmarks, and just replaces the process 

of matching landmarks with tracking them applying the optical flow method. On the 

other hand, it utilizes the epipolar constraints or 3D-2D algorithm when estimating the 

camera motion. In the latter two methods, they calculate the camera motion by utilizing 

the grayscale value of the adjacent pictures, which are called direct methods [56, 57]. 

 

When realizing the motion estimation with feature-based method, we assume that the 

position of the extracted landmark is fixed in the space. Then, we estimate the motion 

and find the optimal solution through minimizing the re-projection error based on their 

projected position in the adjacent pictures. Thus, the exact position of projection of the 

spatial point in the adjacent pictures shall be known - this is the reason to match or track 
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the features. However, if applying the direct method, it is unnecessary to measure the 

similarity between different landmarks [59, 60]. Because it utilizes the luminance 

information of the pixels in the adjacent frames. 

4.6.2 Optical Flow  

The collectively called direct method has the similar assumptions as the optical flow. 

The optical flow method tracks the movement of the pixel in adjacent pictures, while 

the direct method take the model of camera motion into account. 

 

t1 t2 t3
Time t

x

y

It1 It2

x

y

x

y

It3

pixel pixel
pixel

 

Figure 4-16. Schematic of optical flow algorithm 

 

The optical flow tracks the movement of the pixel in adjacent pictures over time, 

demonstrated as Figure 4-16. above. As time passes, the same pixel moves through the 

image, and we want to track its motion. Tracking the motion for some of the pixels is 

defined as the sparse optical flow. One representative method is the Lucas-Kanade 

optical flow. 

4.6.2.1 Lucas-Kanade Optical Flow 

In the LK optical flow, it assumes that the perspectives of the pictures vary as time 

passing by [79, 86]. The frames are regarded as the function of time 𝐼(𝑡). Thus, at the 

point-in-time 𝑡 , hypothesize that one pixel located at (𝑥, 𝑦) , with grayscale value 

𝐼(𝑥, 𝑦, 𝑡). Besides, the basic principle of the optical flow is as follows: 

 

The assumption of the invariance in grayscale refers to the grayscale value of a pixel 

projected from a three-dimensional point will keep unchanged in the image. If there is 

a pixel located at position (𝑥, 𝑦) at the point-in-time 𝑡, while at the time point 𝑡 +  𝑑𝑡, 

it moves to (𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦). Since the grayscale value is unchanged, there are: 

𝑰(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡) = 𝑰(𝑥, 𝑦, 𝑡)                                       (4 − 57) 

The gray-scale invariant assumption is an ideal hypothesize, thus, probably it may not 

hold true in many cases. In this way, the optical flow might not reliable under the certain 

conditions. Under the grayscale invariant assumption, conduct Taylor expansion, while 

retaining the first order item, gives: 
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𝑰(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡) ≈ 𝑰(𝑥, 𝑦, 𝑡) +
𝜕𝑰

𝜕𝑥
𝑑𝑥 +

𝜕𝑰

𝜕𝑦
𝑑𝑦 +

𝜕𝑰

𝜕𝑡
𝑑𝑡             (4 − 58) 

Because we assume that the grayscale is invariant, then the grayscale at the next 

moment is equal to the previous grayscale, thus: 

𝜕𝐼

𝜕𝑥
𝑑𝑥 +

𝜕𝐼

𝜕𝑦
𝑑𝑦 +

𝜕𝐼

𝜕𝑡
𝑑𝑡 = 0                                              (4 − 59) 

Dividing both sides by 𝑑𝑡 gives: 

𝜕𝑰

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝑰

𝜕𝑦

𝑑𝑦

𝑑𝑡
= −

𝜕𝑰

𝜕𝑡
                                                      (4 − 50) 

Where 𝑑𝑥/𝑑𝑡 denotes the velocity of the pixels shifting horizontally, while the 𝑑𝑦/𝑑𝑡 

represents the velocity along the vertical direction. Besides, denote them as 𝑢, 𝑣 , 

respectively. On the other hand, 𝜕𝐼/𝜕𝑥  denotes the gradient of the pixel in the 

horizontal direction, while 𝜕𝐼/𝜕𝑦 represents the vertical gradient, expressed by 𝐼𝑥, 𝐼𝑦. 

Denote the variance of grayscale with respect to time 𝑡 as 𝐼𝑡, written into matrix form, 

gives: 

[𝑰𝑥 𝑰𝑦] [
𝑢
𝑣
] = −𝑰𝑡                                                            (4 − 51) 

What need to calculate are 𝑢 and 𝑣, which are motion of the point (𝑥, 𝑦). With the 

hypothesize of the optical flow, it assumes a block of pixel points will have the same 

movement trajectory. If the block is of 𝑤 ×𝑤 with 𝑤2 pixel points in it, then there 

would be 𝑤2 constraints for solving the motion: 

[𝐼𝑥 𝐼𝑦]𝑘 [
𝑢
𝑣
] = −𝑰𝑡𝑘, 𝑘 = 1, … , 𝑤2                                          (4 − 52) 

To find the least squares solution of 𝑢, 𝑣., therefore: 

[
𝑢
𝑣
]
∗

= −(𝑨𝑇𝑨)−1𝑨𝑇𝒃                                                       (4 − 53) 

This gives the velocity 𝑢, 𝑣  of the pixel motion in the adjacent pictures. To get an 

optimal estimation, normally it will need to make several times of iterations. 

4.6.2.2 Experiment of Lucas-Kanade Optical Flow 

We apply the LK optical flow provided by OpenCV to trace the trajectories of the 

landmark points. Technical University of Munich (TUM) dataset is utilized to 

implement the experiment. It contains many RGB-D images, and it also provides an 

accurate trajectory measured with a motion capture system that can be regarded as a 

ground truth. Since the TUM images are collected from the actual environment, it is 

necessary to explain its data format. 

(1) “rgb.txt” and “depth.txt” record the collection time and corresponding file name of 

each file. 

(2) The “rgb/” and “depth/” directories store the captured image files which are in “.png” 

format. The color image is a eight-bit three-channel image and the depth map is a 
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16-bit single-channel image. The file name is the acquisition time. 

(3) “groundtruth.txt” is the camera motion acquired by the external motion capture 

system in the format (time, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧, 𝑞𝑥, 𝑞𝑦, 𝑞𝑧, 𝑞𝑤). 

 

Due to the process of acquisition of color maps, depth maps, and standard traces are 

independent, and the acquisition frequency of the traces is much higher than the image. 

Before using the data, it will be essential to align the images according to the acquisition 

point-in-time to pair the RGB map with the depth map. In principle, it will be available 

for regarding the data with an acquisition time which close to a threshold as a pair of 

matched images. The accurate trajectory at a similar time point that provided by the 

dataset will be considered as the actual acquisition position of the image. TUM provides 

a python script "asso-ciate.py" to align the data. 

 

The purpose of using LK is to track feature points. To find the corner points in the first 

picture and trace the trajectories of them by applying LK optical flow, then plot them 

in the graph. Experiment result show the situation of several frames during the running 

of the program. Initially we had about 1,780 feature points. Some of the feature points 

are lost during the tracking process, and we have about 192 feature points up to 100 

frames. The perspective view of camera has also changed significantly from the original 

image. By analyzing the tracking process of the feature points, we find that the features 

at the corners of the object are more stable. The features at the edges "slide" along the 

edges, mainly because the content of the blocks of feature remains essentially 

unchanged as they move along the edges, so these regions could be easily considered 

to be the same place. For the feature points that are neither at the corner nor at the edge, 

their positions are very unstable. All in all, the corner points can edges can be 

recognized better. 

 

On the other hand, as for the processing speed of the above-mentioned method, in the 

case of tracking 1500 landmarks, it cost 15 milliseconds around. If reducing the quantity 

of landmarks, the calculation time is significantly reduced. It reveals that the method 

avoids matching descriptors, whereas it still cost some time for computing. On our 

experiment platform, LK optical flow can increase the time efficiency by 20% to 25%. 

In addition, the tracking-base method is equivalent to get the correspondence of 

landmarks by applying feature matching. In practice, generally the problem of 

mismatch will not occur. This is the advantage of optical flow method over matching 

descriptors. However, the method of matching descriptors can still succeed when the 

camera moves significantly, while the optical flow require that the camera motion to be 

slight. In this respect, the robustness of the optical flow method is somewhat worse than 

the matching of descriptors. Finally, we can estimate the camera motion using the PnP 

method with the landmark pairs tracked applying the optical flow approach. In summary, 

above-mentioned algorithm will be helpful to accelerate the vision system under the 

conditions that the perspective view of the camera changes relatively slight. In Figure 
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4-17., it shows the experiment results of tracking feature points applying LK optical 

flow. Figure 4-18. shows the time consumption of tracking feature points employing 

LK optical flow method. 

 

 

Figure 4-17. Experiment results of tracking feature points employing LK optical flow 

 

 
Figure 4-18. Time consumption of LK optical flow approach 

 

4.6.3 Direct Methods 

In this section, the direct method will be introduced and implanted in the simulation 

experiments. The basic schematic of the direct method will be demonstrated at the 

beginning, afterward, the g2o optimization library will be utilized to implement the 

direct method. 

4.6.3.1 Derivation of Direct Method 

As shown in Figure 4-19., consider a point P in space and two images captured at two 

moments. The coordinates of P in world coordinate system is [X , Y , Z], its two 

projection points on two images, with non-homogeneous pixel coordinates 𝑝1 and 𝑝2. 

The aim is to obtain the relative movement between the adjacent pictures. Assuming 
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the first picture to be the reference frame, while hypothesize the movement of the 

current frame is expressed by 𝑹, 𝒕. Furthermore, intrinsic parameters will be denoted 

by matrix 𝑲. The complete projection equation is as follows: 

{
 
 

 
 𝑝1 = [

𝑢
𝑣
1
]

1

=
1

𝑍1
𝑲𝑷

𝑝2 = [
𝑢
𝑣
1
]

2

=
1

𝑍1
𝑲(𝑹𝑷 + 𝒕) =

1

𝑍2
𝑲(exp (𝝃∧)𝐏)1:3

                          (4 − 54) 

Where 𝑍1  denotes the depth information of the three-dimensional point P in the 

reference frame, while 𝑍2 denotes the depth of the spatial point in the current frame. 

 

In the case of applying the feature matching-based method, the positions of 𝑝1 and 𝑝2 

can be obtained by matching the descriptors, we can calculate the positions of the re-

projection. But in the direct method, without feature matching, there is no way to know 

the correspondence of 𝑝1 and 𝑝2. The idea of the direct method is to find the position 

of 𝑝2 using the motion information. However, under the condition when the estimation 

results are not good enough, the position of 𝑝2 will be significantly different from 𝑝1. 

To this end, the optimization for the motion is necessary to get a more accurate positon 

of 𝑝2, which could have a higher similarity to 𝑝1. The goal of the optimization problem 

will be minimizing the photometric error, which is the brightness difference of point P 

in the two images: 

𝑒 = 𝑰1(𝑝1) − 𝑰2(𝑝2)                                                          (4 − 55) 

P

First Frame  Second Frame

p1 p2

R, t

exp(ζ^)

I1 I2

 

Figure 4-19. Schematic of direct method 

 

Similarly, the optimization goal is the 2-Norm of 𝑒, gives: 

𝑚𝑖𝑛𝝃 𝐽(𝝃) = ‖𝑒‖2                                                         (4 − 56) 

When applying direct method, it also under the assumption of the invariance of the 

grayscale value in the adjacent frames, as mentioned before. Therefore, it is available 

to assume there are N spatial points 𝑃𝑖 that satisfy the assumption, and the optimization 

problem can be described as follows: 
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𝑚𝑖𝑛𝝃 𝐽(𝝃) =∑𝑒𝑖
𝑇𝑒𝑖

𝑁

𝑖=1

, 𝑒𝑖 = 𝑰1(𝑝1, 𝑖) − 𝑰2(𝑝2, 𝑖)                            (4 − 57) 

Where 𝝃  denotes the motion, which is the optimization variable. To make the 

optimization, the derivative relationships between the movement and the error need to 

be known. Therefore, the perturbation model on the Lie algebra is used. We left multiply 

𝑒𝑥𝑝(𝝃) by a small perturbation 𝑒𝑥𝑝(𝛿𝝃) to get: 

𝑒(𝝃⨁𝛿𝝃) = 𝑰1 (
1

𝑍1
𝑲𝑷) − 𝑰2 (

1

𝑍2
𝑲 𝑒𝑥𝑝(𝝃∧)𝑷 +

1

𝑍2
𝑲𝛿𝝃∧exp (𝝃∧)𝑷)       (4 − 58) 

Denote that, 

{

𝒒 = 𝛿𝝃∧𝑒𝑥𝑝(𝝃∧)𝑷

𝒖 =
1

𝑍2
𝑲𝑞

 

Where q denotes the coordinate of P in the current frame with disturbance, and u 

denotes the pixel coordinate of the spatial point P. Retaining the first-order Taylor 

expansion, there are: 

 𝑒(𝝃⨁𝛿𝝃) = 𝐼1 (
1

𝑍1
𝑲𝑷) − 𝐼2 (

1

𝑍2
𝐾𝑒𝑥𝑝(𝜉∧)𝑷 + 𝒖)                                                        

= 𝑒(𝝃) −
𝜕𝑰2
𝜕𝒖

𝜕𝒖

𝜕𝒒

𝜕𝑞

𝜕𝛿𝜉
𝛿𝝃                                                                   (4 − 59) 

It can be seen that the first derivative contains three terms by applying the chain rule: 

(1) 𝜕𝐼2/𝜕𝑢 denotes the pixel gradient of u; 

(2) 𝜕𝑢/𝜕𝑞 is the derivative of the projection equation for 𝒒. Denote that 𝒒 =

 [𝑋, 𝑌, 𝑍]𝑇, in terms of the derivation shown in the previous section, the derivative 

is: 

𝜕𝒖

𝜕𝒒
= [

𝜕𝑢

𝜕𝑋

𝜕𝑢

𝜕𝑌

𝜕𝑢

𝜕𝑍
𝜕𝑣

𝜕𝑋

𝜕𝑣

𝜕𝑌

𝜕𝑣

𝜕𝑍

] = [

𝑓𝑥
𝑍

0 −
𝑓𝑥𝑋

𝑍2

0
𝑓𝑦

𝑍
−
𝑓𝑦𝑌

𝑍2

]                                (4 − 60) 

(3) 𝜕𝑞/𝜕𝛿𝜉 is the derivative of the 𝒒 regarding motion. 

𝜕𝒒

𝜕𝛿𝝃
= [𝑰, −𝒒∧]                                                           (4 − 61) 

Combine the latter two items them together, there are: 

𝜕𝑢

𝜕𝛿𝝃
=

[
 
 
 
𝑓𝑥
𝑍

0 −
𝑓𝑥𝑋

𝑍2
−
𝑓𝑥𝑋𝑌

𝑍2
𝑓𝑥 +

𝑓𝑥𝑋
2

𝑍2
−
𝑓𝑥𝑌

𝑍

0
𝑓𝑦

𝑍
−
𝑓𝑦𝑌

𝑍2
−𝑓𝑦 −

𝑓𝑦𝑌
2

𝑍2
𝑓𝑦𝑋𝑌

𝑍2
𝑓𝑦𝑋

𝑍 ]
 
 
 

               (4 − 62) 

This 2 ×  6 matrix has been derived before, thus, derive the Jacobian matrix of the 

error relative to the camera motion transformation: 

𝑱 = −
𝜕𝑰2
𝜕𝒖

𝛿𝒖

𝜕𝛿𝝃
                                                               (4 − 63) 

Assume there are N point pairs, it is possible to apply the above-mentioned method for 
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obtaining the Jacobian matrix and apply G-N or L-M method to calculate the increment 

and conduct iteration to find optimized solution. 

4.6.3.2 Discussion of Direct Method 

As mentioned above, the three-dimensional position in space of, P known. This is 

because using the RGB-D dataset, we can back-project any pixel into the three-

dimensional space to project it into the adjacent image. In addition, the sparse direct 

method eliminates the process of calculating the descriptors, while just utilizes a few 

hundred points in image. Therefore, it will keep a pretty good time-efficiency. In 

particular, for the platforms with constrained computing resources, it will get a good 

real-time performance, 

4.6.3.3 Experiment of Camera Motion Estimation Using the 

Direct Method 

To verify the effectiveness of the above-mentioned approach, TUM dataset is employed 

so that the depth recovery part utilizing triangulation can be omitted. We utilize g2o 

optimization library to implement direct method for camera motion estimation. After 

defining the edge of g2o, we combine the nodes and edges into a graph. After that g2o 

is called for optimization. In this experiment, first read the image sequence of the 

dataset, and the first image is used as a reference frame, and then the direct method will 

be applied to solve the movement of the subsequent frames. In reference frame, the 

FAST key-points are extracted, then the positions of these key-points as well as the 

movement between the adjacent frames will be estimated by applying the direct method. 

Finally, we draw the positions of the tracked key-points on the adjacent frames. The 

experiment result is depicted in Figure 4-20. It presents that when the perspective 

between the adjacent frames changes slightly, the direct method adjusts the camera's 

motion so that most of the pixels are correctly tracked. 
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Figure 4-20. Experiment results of direct method 

 

4.7 Implementation and Evaluation Experiments 

This section gives out the outline of our proposed techniques, which solves the 

estimation of inclination angle of the assembly platforms in the industrial plant. First 

of all, the proposed method will extract the feature points from the input images 

captured by the industrial camera. One image is taken at the calibrated status of the 

assembly platform, while the other images are taken at the inclined status of the 

assembly platform. Then, the proposed method will associate the pictures taken at 

different time steps through feature matching and output the correlated feature points 

with the counterpart coordinates. After that, by employing the PnP method optimized 

by the trust region-based method, it realized the motion estimation between the pair of 

images. In our case, the estimated motion represents the desired inclination angle of the 

assembly platform. In the verification experiment, first of all, our work compared 

different combinations of the prevalent feature extraction and matching algorithms, 

including feature extraction algorithms like scale-invariant feature transform [29], 

speeded up robust features [30], oriented fast and rotated brief [31, 32, 33] and feature 

matching algorithms fast library for approximate nearest neighbors [35] and brute-force 

matching [30, 34]. The comparison results in total six cases indicates that the 

combination of ORB and BF achieves the best performance under the consideration of 

several factors such as matching accuracy, the amount of well-matched point pairs, and 

computation time which reflects the computation complexity of the algorithm. The 

reason of considering these factors is that, in our application scenery, the mounting plant 

of bearing factory, it requires the system having quick response ability as well as high 

measurement accuracy. On the other hand, for the inclination measurement part of our 

proposal, the optimized PnP algorithm outperforms the traditional PnP algorithm and 
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epipolar-constraint-based method. Specifically, the optimized method greatly reduces 

the re-projection error and saves computation time compared to the traditional epipolar-

constraint-based mechanisms. Figure 4-21. demonstrates the process flow of the 

proposed method which solves the problem of inclination measurement. 

 

 

Figure 4-21. Workflow of the motion estimation-based inclination measurement 

 

The rest of this section investigates the performance of the proposed mechanism for 

inclination measurement and compared it with other mechanisms. A prototype of the 

mechanism was implemented using IDE that illustrated in Chapter 2. For the validation 

experiments, we conducted several experiments utilizing images of Assembly Platform 

Dataset. To find the most suitable feature extraction and feature matching algorithm, 

we compared and evaluated the performance of multiple algorithm combinations. The 

comparison results are shown in Figure 4-22. 
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Figure 4-22. Comparison results of a few feature matching algorithms, (a) ORB with 

BF (b) ORB with FLANN (c) SURF with BF (d) SURF with FLANN (e) SIFT with BF 

(f) SIFT with FLANN 

 

In the comparative experiment, we compared the combination of several mainstream 

feature extraction algorithms and matching algorithms. There are three kinds of feature 

extraction algorithms, namely SURF, SIFT, and ORB. The feature matching methods 

include the BF and FLANN. The comparison starts with several factors such as time 

consumption of the algorithm, number of matching points, excellent matching points, 

and good matching rate. Figure 4-24. shows the comparison results in regard of the 

computation time of the algorithms. In this case, the combination of ORB and BF 

matching outperforms other methods. In addition, the number of good-match and total 

number of matching points are summarized in Figure 4-25. It indicates that the ‘ORB 

+ BF’ got the biggest number of good matching points. Therefore, as for the comparison 

of the good-match rate, experiment results are summarized in Figure 4-26. It exactly 

certificates that the ORB method combined with BF matching achieves the highest 

good-match rate. 

 

Based on the comprehensive consideration about the performance of the different 

algorithms, we draw a conclusion that the combination of ORB and Bruce-force 

matching algorithm will be the most suitable one for the inclination measurement 

system, not only for its low computation complexity, but also for its stability and high 

performance. Besides, by setting the screening conditions, only a certain number of best 

matching point pairs are retained, which saves computing resources and shortens the 

overall running time of the algorithm, and at the same time improves the accuracy of 
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the algorithm towards motion estimation. The evaluation experiments show that the 

ratio of the good match reaches over 90% in the case of applying the non-maximal 

suppression strategy with the tuned parameters. 

 

Since the inclination of the assembly platform is required not to exceed 10 degrees in 

the actual production process, this study estimates the inclination angle between 1 

degree and 10 degrees. The image of the scenery without inclination and the image of 

inclined platform were utilized to conduct the comparison and the evaluation 

experiments. The obtained matched point pairs among the images of standard and 

inclined platform are marked using connection lines, as shown in Figure 4-23. The 

results show part of the experiment results of feature matching in regard to the standard 

assembly platform and the inclined platform. The experiments prove that the 

combination of ORB and BF algorithm accurately matched over 92% of the 

corresponding feature points in the two images taken at different perspective. After 

obtained the accurate corresponding feature points, the coordinates of these feature 

points will be utilized in the process of the inclination angle estimation based on the 

optimized PnP method, which is one of the main contributions in this work. The 

performances of the proposed method and the traditional techniques in regard of the 

inclination angle estimation are summarized in Figure 4-27. The evaluation 

experiments proves that the optimized PnP method outperforms the traditional epipolar 

constraint-based methods, not only in time efficiency but also in the low re-projection 

error which indicates the high estimation accuracy. 

 

Figure 4-23. Performance of feature matching in cases of different inclination angles, 

(a) 1 degree of inclination (b) 2 degrees of inclination (c) 3 degrees of inclination (d) 5 

degrees of inclination (e) 7 degrees of inclination (f) 9 degrees of inclination 
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Figure 4-24. Time cost of different algorithm combinations 

 

 

 

Figure 4-25. Total number of matching points and good match of different algorithms  
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Figure 4-26. Good-match rates among different algorithm combinations 

 

 

 
Figure 4-27. Performance comparisons about the traditional method and our proposal 
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4.8 Chapter Summary 

Due to the requirements of high measurement accuracy, well real-time performance and 

limitations of computation complexity, inclination measurement for the bearing 

assembly platforms in an industrial environment remains a challenge. In this work, a 

series of algorithms have been applied to tackle the problem. First, the feature matching 

techniques have been employed to correlate the feature points of the current frame and 

reference frame. A binary descriptor-based matching algorithm with tuned parameters 

of the non-maximal suppression method have been found, in the interest of correlating 

the matched feature points as well as improving the good match rate. The good match 

rate reaches over 92% when applying the non-maximal suppression strategy. Besides, 

the optimization based on the trust region optimization of the conventional PnP 

algorithm has been realized. Afterwards, the optimized PnP is employed to estimate the 

inclination angle of the assembly platforms, to find the optimal solutions of the PnP 

problem. In other words, the optimized PnP algorithm minimizes the estimation error 

of the inclination measurements. Numerical results show that, time efficiency of the 

method for inclination measurement achieves 7.3% higher than the conventional 

epipolar constraints-based ones. On the other hand, the optimized PnP significantly 

reduces the measurement error by 90% compared with the epipolar constraints-based 

mechanisms. As for the future work, we will consider replacing the feature matching-

based approaches with the feature tracking-based ones, which may further reduce 

computation cost as well as improve the estimation accuracy. 

 

 



*This chapter is a refined and reproduced version of the paper originally published in Wireless Communications 

and Mobile Computing [92]. 

 

Chapter 5 Inclination Measurement Based 

on Artificial Intelligence 

5.1 Introduction 

Machine learning (including deep learning) is an engineering science that is largely 

directed by the engineering practice, not the theory. In this case, the improvements in 

algorithms are available only if there are sufficient computational power as well as 

dataset for the engineers to make their ideas into practice [93, 94]. In the two decades 

from 1990 to 2010, the Internet developed rapidly, while the graphics boards with high 

computational power were designed to meet the demands of the computer games. 

During this period, the ascend of the Internet also made it available to accumulate, store 

and distribute tremendous datasets for try new ideas in the machine learning field. 

Except for the computing resources and validation dataset, twenty years ago, the 

researchers still had no appropriate way to train the neural networks with over 10 layers 

[90]. This changed until 2009, when several very important algorithm improvements 

emerged, including better activation functions and better optimization schemes. These 

improvements allow researchers to train models with more than 10 layers [107]. So far, 

as a branch of machine learning, deep learning has begun to shine. In the following 

years, some other excellent methods that benefit with the gradient propagation have 

been developed, including the batch normalization, residual structures, as week as the 

depthwise separable convolutions. Deep learning has revolutionized progress in 

practice, yielding impressive results on perceptual problems, such as very high-

performance classification for computer vision and the recognition with high accuracy 

for speech [108]. Although these problems mentioned are very easy to handle for the 

humans, but for several decades, they are regarded very hard for machines to solve*. 

 

In recent years, people have gradually begun to apply deep learning to many important 

problems, from medical diagnosis to digital assistants, where deep learning has played 

a transformative role. AI research has been advancing at an astonishing speed over the 

past decade, in large part due to unprecedented funding in AI research field, but so far, 

few of these advances have been able to convert into the real products or the practical 

processes that change the various industries. Besides, most of the achievements in deep 

learning has not been applied to solve the problems in many parts of people’s daily life. 
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Especially in the production line of the manufacturing industry, the control systems still 

widely employ the relatively traditional but highly reliable controller represented by 

Programmable Logic Controller. After investigation and research, as described in 

previous chapters, our group manage to design an inclination measurement system 

suitable for the bearing assembly platforms. In addition, a series of algorithms based on 

the machine learning as well as the neural networks have been applied on the 

engineering project of the inclination measurement [91, 92]. However, for the simplex 

machine learning methods, although they could obtain a relatively good performance 

regarding the classification of inclination angles, the classification accuracy is not good 

enough that can satisfy the high requirements of the assembly plant. On the other hand, 

for the deep learning models, the complex structure and tremendous of parameters make 

it hard to address the classification tasks with limited training samples.  

To overcome these problems, as well as to fulfill the constraints about computing 

resources from the assembly enterprise, the main works of this study are as follows: 

First of all, a shallow network structure is designed that is efficient and robust for 

tackling the classification of inclination angles. Secondly, considering the 

characteristics of the Assembly Platform Dataset, feature engineering based on K-

Means clustering have been implemented to reduce the computational burden and to 

improve the classification accuracy. Besides, through extensive experiments, the 

optimal value of K has been found. Finally, some baseline machine learning algorithms 

have been implemented and utilized in the validation experiments to validate the 

effectiveness and performance of the image classification-based inclination 

measurement. 

 

The rest of the chapter is organized as follows: Section 5.2 illustrates the basic 

principles of the Multilayer Perceptron, activation functions, and training process. 

Section 5.3 demonstrates the shallow network structure designed in this study. Section 

5.4 illustrates the baseline methods employed in this study, while section 5.5 presents 

the validation experiments conducted to examine the effectiveness and performance of 

the designed neural networks. 

5.2 Neural Networks 

Multilayer Perceptron (MLP) is an artificial neural network with a forward structure 

that maps a set of input vectors to a set of output vectors [107]. MLP can be viewed as 

a directed graph consisting of multiple layers of nodes, each of which is fully connected 

to the next layer. Except for the input nodes, each node is a neuron or processing unit 

with a nonlinear activation function. A supervised learning method called the 
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backpropagation algorithm is often used to train MLPs. Multilayer perceptron follows 

the principles of the human nervous system to learn and make data predictions. It first 

learns, then uses weights to store data, and uses algorithms to adjust weights and bias 

during training, to reduce the errors between actual and predicted values. The basic 

structure of multi-layer perception consists of three layers: the first input layer, the 

middle-hidden layer, and the last output layer. The product of input elements and 

weights is fed to a summation node with neuron biases. The main advantage is its ability 

to quickly solve complex problems. MLP is a generalization of the perceptron, which 

overcomes the weakness that the perceptron cannot identify linearly indivisible data. 

5.2.1 Activation Function 

If the activation function of each neuron is a linear function, then an MLP with any 

number of layers can be reduced to an equivalent single-layer perceptron [107]. In fact, 

the MLP itself can use any form of activation function, such as the step function, logic 

sigmoid function, etc. However, to use the backpropagation algorithm for effective 

learning, the activation function must be restricted to differentiable functions. Due to 

their good differentiability, many S-functions, especially the hyperbolic tangent and 

logistic functions, are used as activation functions. 

 

In recent developments in deep learning, linear rectification is more frequently used to 

overcome numerical problems associated with sigmoid functions. 

 

The two historically common activation functions are hyperbolic tangent function 

(Tanh) and Sigmoid function, and are described by 

                                                  𝑦(𝑣𝑖) = tanh(𝑣𝑖)                                                     (5 − 1) 

                                                𝑦(𝑣𝑖) = (1 + 𝑒−𝑣𝑖)−1                                                (5 − 2) 

The first is a hyperbolic tangent that ranges from -1 to 1, while the other is the logistic 

function, which is similar in shape but ranges from 0 to 1. Here 𝑦𝑖 is the output of the 

𝑖𝑡ℎ node (neuron) and 𝑣𝑖 is the weighted sum of the input connections. Alternative 

activation functions have been proposed, including the rectifier and softplus functions. 

More specialized activation functions include radial basis functions (used in radial basis 

networks, another class of supervised neural network models). 

5.2.1.1 Rectified Linear Unit 

Rectified Linear Unit (ReLU), is an activation function commonly used in artificial 

neural networks, usually referring to nonlinear functions represented by ramp functions 

and their variants. 

 

                                                       𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)                                            (5 − 3) 
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The more commonly used linear rectification functions are the ramp function, and the 

leaky rectification function (Leaky ReLU ), where 𝒙 is the input to the neuron. Linear 

rectification is considered to have a certain biological principle and is widely used by 

today's deep neural networks for applications such as image recognition because it 

usually has better performance than other commonly used activation functions (such as 

logistic functions) in practice. 

5.2.1.2 Softmax Function 

In mathematics, especially in probability theory and related fields, the Softmax function, 

or normalized exponential function, is a generalization of the logistic function. It can 

generalize a K-dimensional vector containing any real number into another K-

dimensional real vector, so that the range of each element is between (0, 1), and the 

sum of all elements equal to 1. The form of Softmax function is usually given by the 

following formula: 

                                          𝜎(𝑧)𝑗 =
𝑒𝑧

𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

   𝑓𝑜𝑟 𝑗 = 1, … , 𝐾.                         (5 − 4) 

The Softmax function is actually a logarithmic normalization of the gradient of a finite-

term discrete probability distribution. Therefore, Softmax function is widely used in 

various probability-based multi-classification problem methods including multinomial 

logistic regression, multinomial linear discriminant analysis, naive Bayes classifier and 

artificial neural network. Especially, in artificial neural network, the input to the 

function is the result obtained from K different linear functions, and the probability that 

the sample vector 𝒙 belongs to the 𝑗𝑡ℎ class is: 

 

                                                𝑃(𝑦 = 𝑗|𝒙) =
𝑒𝒙

𝑇𝑤𝑗

∑ 𝑒𝒙
𝑇𝑤𝑘𝐾

𝑘=1

                                         (5 − 5) 

5.2.2 Learning/Training 

Learning means the process of updating the weights after a portion of data has been 

processed, while the updating depends on the difference between the output value and 

the expected value. This gives a sample process of the collectively called supervised 

learning. The algorithm applied to update the weights is backpropagation, which is 

commonly regarded as a milestone in the field neural networks [101]. 

 

Denote the error of an output node 𝑗  for the 𝑛𝑡ℎ  data point (training samples) as 
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𝑒𝑗(𝑛) = 𝑑𝑗(𝑛) − 𝑦𝑗(𝑛) ,in which 𝑑 represents the target value while 𝑦 denotes the 

value produced by the perceptron. Therefore, the weights of the nodes will be adjusted 

based on corrections that minimize the error in the entire output, given by: 

                                                      휀(𝑛) =
1

2
∑𝑒𝑗

2(𝑛)

𝑗

                                                   (5 − 6) 

Applying gradient descent, the change in each weight will be: 

                                               Δ𝑤𝑗𝑖(𝑛) = −𝜂
𝜕휀(𝑛)

𝜕𝑣𝑗(𝑛)
𝑦𝑖(𝑛)                                           (5 − 7) 

where 𝑦𝑖 denotes the output of the previous neuron, while 𝜂 represents the learning 

rate, which is determined to guarantee the convergence of the weights. 

 

The derivative to be calculated depends on the induced local field 𝑣𝑗  , which itself 

varies. It is available to certificate that for one output node, the derivative could be 

simplified as: 

                                                 −
𝜕휀(𝑛)

𝜕𝑣𝑗(𝑛)
= 𝑒𝑗(𝑛)𝜙

′ (𝑣𝑗(𝑛))                                       (5 − 8) 

Where 𝜙′ represents the derivative of the activation function mentioned above, which 

itself does not vary. The analysis of updating the weights for a hidden node will be 

much difficult, therefore here directly gives out the derivative as the following: 

                                         −
𝜕휀(𝑛)

𝜕𝑣𝑗(𝑛)
= 𝜙′ (𝑣𝑗(𝑛))∑−

𝜕휀(𝑛)

𝜕𝑣𝑘(𝑛)
𝑘

𝑤𝑘𝑗(𝑛)                  (5 − 9) 

It relies on the update of weights of the 𝑘𝑡ℎ nodes, which denotes the output layer. 

Thus, to update the weights of the hidden layers, the weights of the output layer must 

update in terms of the derivative with respect to the activation function. In sum, the 

above-mentioned illustrates the backpropagation process of the activation function 

[101]. 

 

Backpropagation method is commonly employed by MLPs for training, while it 

represents one of the most classic training approaches in the field of machine learning 

[107]. Besides, MLPs is still a prevalent research topic in the machine learning field, 

because it is not only feasible to approximate the complex functions, but also performs 

well in many classification tasks. In recent years, MLP has regained the attention 

because of the advances in deep neural networks. 
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5.3 Design of the Neural Networks 

5.3.1 Feature Engineering 

Feature engineering refers to hard-coded transformations (not learned by the model) on 

the data using our own knowledge of the data and machine learning algorithms to 

improve the performance of the model before feeding it into the model. In most cases, 

a machine learning model cannot learn from completely arbitrary data. The data 

presented to the model should be easy for the model to learn. 

 

Let's look at an intuitive example. Suppose we want to develop a model, input a clock 

image, the model can output the corresponding time, as shown in Figure 5-1. 

 

 
Figure 5-1. Feature engineering to read time from the clock 

 

If we choose to use the raw pixels of the image as input data, then this machine learning 

problem will be very difficult. Not only does it take a convolutional neural network to 

solve this problem, but it also takes a lot of computational resources to train the network. 

 

But if we understand the problem from other perspectives, we can find alternative 

features to be utilized by the classifiers. Thus, it is available to write a simple Python 

script to find the black pixel corresponding to the clock hands and output the (𝑥, 𝑦) of 

each pointer tip coordinate. A simple machine learning algorithm can then learn how 

these coordinates correspond to time. 

 

We can also think a little further: make a coordinate transformation to convert the (𝑥, 𝑦) 

coordinates to polar coordinates relative to the center of the image. In this way, the input 
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becomes the angle theta of each clock hand. The features now make the problem so 

simple that no machine learning is needed at all, as applying the dictionary lookups are 

sufficient to complete the task. 

 

This example reveals the essence of feature engineering: formulating the problem in a 

simpler way makes the problem easier. It usually requires a deep understanding of the 

problem. 

 

Before the advent of deep learning, feature engineering used to be very important 

because classical shallow algorithms did not have a large enough hypothesis space to 

learn useful representations on their own. The way data is presented to an algorithm is 

critical to problem solving. For example, prior to the success of the convolution 

manipulation of deep learning on the image classification task for the digit utilizing 

MNIST dataset, the mainstream methods at that time usually employing the hard-coded 

features, including the circles numbers in a picture, or the height of the digits, the 

histogram with respect to the grayscale values, etc. 

 

Luckily, with the advances of the deep learning, in more cases, the researchers need not 

to conduct feature engineering since it is capable for the neural networks to extract 

beneficial features from the original data. However, it does not indicates that the 

researchers do not need to worry about feature engineering if applying the convolution 

neural networks, due to the following cause. 

 

Excellent features make it feasible to use less computing resources to achieve higher 

performance of the algorithm. For example, using deep learning to read time on the 

clock face is thankless. 

�  

Good features allow us to solve problems with less data. The ability of deep learning 

models to learn features autonomously relies on a large amount of feasible dataset. If 

only a limited number of training data is available, the informative meaning of the 

feature will become very important. 

 

In this study, the proposed inclination measurement method which based on image 

classification largely depend on the image features. After obtaining hundreds of image 

feature points from the input samples, we will get many binary feature descriptors with 

high dimensionality which are redundant and will cost more computing resources for 

training. Therefore, instead of directly utilizing feature vectors with high 

dimensionality to train the neural networks, we employ K-means algorithm to conduct 

feature engineering, namely, to reduce the dimensionality of the feature vectors. In this 

way, not only can we save the computation resources, but also will improve the 

classification performance of the proposed neural networks. 

 



 

76 
 

By making feature engineering, we finally got the feature vectors suitable for this 

project. Based on this, we designed the following neural network structure, as shown 

in Figure 5-3. The input layer of the neural network contains 70 nodes. This is because 

the clustering algorithm obtained the optimal number of feature centers is 70. The 

hidden layer contains 3 layers. Besides, the three hidden layers contain 140 nodes, 280 

nodes and 540 nodes, respectively. The last layer is the output layer with softmax 

activation function, which outputs the probability information of each classification 

category. The reason of doubling the nodes in the hidden layer is to increase the 

information capacity of the network and improve the generalization ability of the 

network (this will be introduced later on the neural network design method). 

Furthermore, we utilize Keras library to realize the specific implementation of proposed 

networks. 

 

 

Figure 5-3. Examples of the neural networks [108] 

5.3.2 Underfitting and Overfitting 

During training and validation of the initially designed neural network, we found that 

as the training process lasts for a few epochs, the performance of the network utilizing 

the validation dataset will usually reach a peak value, afterward, it started to decline. 

That is, the overfit phenomenon of the network starts to occur during the training 

process. Overfitting is a common problem when training the neural networks. Therefore, 

knowing the methods to deal with the overfitting will be critical. Finding a balanced 

position between the optimization and generalization is necessary. Optimization 

indicates the process of tuning a model to get the best performance on training data, 
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while generalization considers that whether a tuned network performs well on unseen 

samples. Definitely, the goal of neural networks is to obtain an excellent performance 

in generalization. 

 

For the early epochs of training, the optimization and generalization are related: the 

smaller the loss on the training samples, the smaller the loss on the testing samples. The 

model at this time will be underfit, namely, there is still room for improvement, and the 

network has not modeled all relevant patterns in the training data. However, after a 

certain number of iterations on the training data, the generalization is no longer 

improved, and the verification index is unchanged at first, and then begins to deteriorate, 

that is, the model begins to overfit. This is when the model starts to learn patterns that 

are only relevant to the training data, but that are completely irrelevant to the unknown 

samples. 

 

To avoid the model from learning wrong patterns from the training samples, one 

optimal method is to obtain a large number of training samples. The more training 

samples the model has, the better its generalization ability. If larger dataset is not 

available, the second method is to adjust the memory capacity for the model to store 

information, or to place limitation conditions on the information that the model stores.  

In the case that a network could only remember a few patterns, the optimization process 

forces the model to concentrate on learning the most important patterns, that is more 

likely to generalize well. This method of reducing overfitting is called regularization. 

 

The easiest method to avoid overfitting is to eliminate the model capacity, that is, reduce 

the number of layers/nodes in the network. In deep learning, the quantity of parameters 

in a network is often regarded as the capacity of the network. Basically, a model with a 

large number of learnable parameters will have a larger capacity for memorization, thus 

it will be available to learn an excellent dictionary mapping between training data and 

targets without any generalization ability. Assume a network with 500,000 binary 

parameters will attain the ability of learning the classes corresponding to all the digits 

in the MNIST training set - we just need to assign 50,000 digits to 10 binary parameters 

each. However, such models will fail to classify any other unknown samples. 

 

Deep learning models are usually pretty good at fitting the training data, but the real 

challenge is generalization, not fitting. In contrast, if the network has limited memory 

resources, this mapping cannot be easily learned. Therefore, to minimize the loss, the 

model must fit one compressed representation which is highly predictive of the target, 

which is the data representation we are interested in. We also need to notice that the 

model we use should have enough parameters to prevent underfitting, i.e. the model 

should avoid running out of memory resources. Thus, we need to find a tradeoff 

between overcapacity and under-capacity. 
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However, there is no magic formula that can calculate the optimal layer numbers and 

the optimal capacity of different layers. Thus it must evaluate a range of different 

network structures on the dataset to obtain the best structure regarding the dataset. To 

find an appropriate model size, the general workflow is to start with a relatively small 

number of layers and parameters, and then gradually increase the size of the layers or 

add new layers until the effect of this increase on the validation loss becomes small. 

5.3.2.1 Add weight regularization 

The principle of Occam's razor is widely used in the natural sciences. Occam's Razor: 

If there are two explanations for an event, the most likely correct explanation is the 

simplest one, the one with fewer assumptions. This principle also applies to models 

learned by neural networks: given some training data and a network architecture, many 

sets of weight values (that is, many models) can explain the data. Simple models are 

less prone to overfitting than complex models. 

 

A simple model here refers to a model with less entropy for the distribution of parameter 

values or a model with fewer parameters. Therefore, a common method to reduce 

overfitting is to force the model weights to only take small values, thereby limiting the 

complexity of the model, which makes the distribution of weight values more regular. 

This approach, called weight regularization, is accomplished by adding a cost 

associated with larger weight values to the network loss function. It mainly includes 

two forms: L1 and L2 regularizations. 

 

Figure 5-4. below shows the effect of L2 regularization utilizing Keras. It shows that 

the network adding the L2 regularization (dots) is less likely to overfit compared with 

the reference network (crosses), even if the two models have the same capacity. 

 

 

Figure 5-4. Experiment of adding L2-regularization [108] 
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5.3.2.2 Add Dropout Regularization 

One of the most effective and commonly used regularization methods for neural 

networks is dropout, which was developed by Geoffrey Hinton and his students at the 

University of Toronto. Using dropout for a layer is to randomly drop some output 

features of the layer (set to 0) during the training process. Suppose that during training, 

the return value of a layer for a given input sample should be a vector [0.2, 0.5, 1.3, 0.8, 

0.7]. After using dropout, a few random elements of this vector will become 0, such as 

[0, 0.5, 1.3, 0, 0.7]. The dropout rate is the proportion of features that are set to 0, usually 

in the range of 0.2~0.5. No units are dropped at test time, and the output value of this 

layer needs to be scaled down by the dropout ratio because there are more units 

activated than at training time, which needs to be balanced. The main idea is to 

introduce disturbance in the output values of a layer, breaking insignificant accidental 

patterns. If there is no noise, the network will remember these occasional patterns. 

 

Figure 5-5. below shows an illustration of the result of adding dropout regularization. 

Again, we see that the performance of this method is significantly improved compared 

to the reference network. 

 

Figure 5-5. Experiment of adding Dropout regularization [108] 

5.3.3 Choose Metrics to Measure Success 

For balanced classification problems (equal likelihood for each class), accuracy and 

area under the receiver operating characteristic curve (ROC AUC) will be the 

commonly used metrics. As of the imbalanced class, precision and recall could be 

utilized. About the ranking problems or multi-label classification, mean average 
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precision could be adopted. Custom metrics to measure success are also common. In 

addition to this, browse the data science competitions on the Kaggle website, which 

showcase a variety of questions and evaluation metrics. Since this study belongs to a 

balanced classification problem, accuracy is used as the evaluation metric. Therefore, 

in this study, due to the limited number of samples in the dataset, we adopted the 

"repeated K-fold validation" method to evaluate the designed neural network model. 

5.3.4 Model Regularization and Tuning Hyperparameters 

The step of model regularization and tuning hyperparameters is the most time-

consuming: because it requires constant tuning of the model, training, evaluation on 

validation data, tuning the model again, and repeating the process until the model 

achieves optimal performance. We have done the following work. 

⚫ Add dropout. 

⚫ Try different architectures: increase or decrease the number of layers. 

⚫ Add L2 regularization. 

⚫ Try different hyperparameters (like the number of units per layer) to find the best 

configuration. 

It is important to note that every time the model is tuned using feedback from the 

validation process, knowledge about validation process is leaked into the network. In 

the case when it is only repeated a few times, it doesn't matter; but if it is systematically 

iterated many times, we can end up overfitting the model to the validation process. it 

reduces the reliability of the verification process. To avoid this situation, this study uses 

repeated K-fold validation to evaluate the model. 

 

After obtaining a satisfactory model configuration, three hidden layers, doubling the 

number of nodes in hidden layers, L2 regularization for hidden layers, ReLu activation 

function for input and hidden layers, Softmax activation function for output layer, we 

train the fine-tuned model on all available data (𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 +  𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎), 

and then finally evaluate once on the test set. The experimental results show that the 

performance of the model on the test set is the same as that on the validation set. 

5.3.5 Selection of the Activation Function 

Without activation functions such as ReLU, the fully connection layer can only make 

linear operations.  

                                             𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑑𝑜𝑡(𝑊, 𝑖𝑛𝑝𝑢𝑡) +  𝑏                                    (5 − 10)     

In this way, the Dense layer can approximate the linear transformations of the input 

data only: the hypothesis space of this layer is the set of all possible linear 

transformations from the input samples to the output value. This hypothesis space is 

very limited and cannot take advantage of multiple representation layers, because the 
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stacking of multiple linear layers still implements linear operations, and adding layers 

does not expand the hypothesis space. To obtain a richer hypothesis space and take full 

advantage of the multi-layer representation, we employ the commonly used ReLu. 

5.3.6 Selection of the Cost Function and Optimizer 

Finally, we need to choose a loss function and optimizer. Since this study is faced with 

a multi-classification problem, and the network output is a probability value, (the last 

layer of the network uses a softmax activation function), cross-entropy is the best choice. 

Cross-entropy is a concept from the field of information theory that measures the 

distance between probability distributions. In the experimental verification, we use 

Categorical_crossentropy in the Keras library as the loss function. The optimizer selects 

the Adam optimizer and selects the default parameter configuration. 

 

5.4 Machine Learning Algorithms 

5.4.1 KNN 

The k-nearest neighbor (KNN) algorithm is a basic classification and regression method. 

We only discuss the k-nearest neighbor algorithm in classification problems here [97]. 

 

The input of the k-nearest neighbor algorithm is the feature vector of the instance, 

corresponding to the point in the feature space; the output is the class of the instance, 

which can take multiple classes. The k-nearest neighbor algorithm assumes that given 

a training dataset, the class of instances in it is given. When classifying, the new 

instance is predicted by majority voting according to the class of its k nearest neighbors 

of the training instance. Therefore, the k-nearest neighbor algorithm does not have an 

explicit learning process. 

 

In practice, the k-nearest neighbor algorithm uses the training dataset to partition the 

feature vector space and act as a "model" for its classification. The choice of k value, 

the distance measure and the classification decision rule are the three basic elements of 

the k-nearest neighbor algorithm. The workflow of KNN is as follows: 

 

1. Suppose there is a labeled sample data set (training sample set), which contains the 

correspondence between each piece of data and the category to which it belongs. 

2. After entering new data without labels, compare each feature of the new data with 

the features corresponding to the data in the sample set. 
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i. Calculate the distance between the new data and each data in the sample data set. 

ii. Sort all the obtained distances (from small to large, smaller means more similar). 

iii. Take the classification labels corresponding to the first k (k is generally less than or 

equal to 20) sample data. 

3. Find the most frequent classification label among the k data as the classification label 

of the new data. 

5.4.1.1 Application Scenarios of KNN 

Movies can be classified by subject matter, so how can we differentiate between action 

movies and romance movies? 

1. Action Movies: More fights 

2. Romance Movies: More kisses 

Based on the number of kisses and fights in the movie, the k-nearest neighbor algorithm 

is used, and the genre of the movie can be automatically divided. 

 

Table 5-1 Dataset for the classification of movie types 
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Table 5-2. Distance between known movies and the unknown movie 

 

 

According to the distances between all the movies in the sample set we obtained above 

and the unknown movies, we can find k movies with the closest distances in ascending 

order of distances. Assuming 𝑘 = 3, the three closest movies are, in order, He's Not 

Really into Dudes, Beautiful Woman, and California Man. The k-nearest neighbor 

algorithm determines the type of the unknown movie according to the types of the three 

closest movies, and these three movies are all romance movies, so we determine that 

the unknown movie is a romance movie. In the project of inclination measurement 

system, we mainly employ KNN as a baseline in the validation experiments. 

5.4.2 K-Means Algorithm 

K-Means is a clustering algorithm that finds K clusters of a given dataset [95]. It is 

called K-means because it can find K different clusters, and the center of each cluster 

takes the mean value of the value contained in the cluster. The number of clusters K is 

specified by the user, and each cluster is described by its centroid, that is, the center of 

all points in the cluster. The biggest difference between clustering and classification 

algorithms is that the target category of classification is known, and the target category 

of the clustering is unknown. In this study, we mainly employ K-Means to make feature 

engineering instead of directly use the image features to train the proposed neural 

network model. Advantages and shortcomings of K-Means are summarized as follows: 

Advantage: 

⚫ Belongs to unsupervised learning, no need to prepare training set. 

⚫ Easy to implement. 

⚫ Good interpretability of results. 

 

Shortcomings: 

⚫ The k value needs to be set manually. Before the algorithm starts to predict, we 

need to manually set the k value, that is, to estimate the approximate number of 
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categories of the data. An unreasonable k value will make the results less 

explanatory. 

⚫ May converge to local minima. 

⚫ Time-consuming on large datasets, and sensitive to outliers. 

5.4.3 Classification Method Based on Bayesian Decision 

Theory 

5.4.3.1 Bayesian Theory 

Bayesian classification is a general term for a class of classification algorithms, all of 

which are based on Bayesian theorem, so they are collectively referred to as Bayesian 

classification [98]. We first introduce the basis of the Bayesian classification algorithm 

- Bayesian theorem, and then discuss the simplest one of Bayesian classification: Naive 

Bayesian classification through an example. 

 

Assume that we now have a dataset that consists of two classes of data, with the 

distribution of the data as shown in Figure 5-6. 

 

Figure 5-6. Two probability distribution with known parameters, and the parameters 

determining the shape of the distribution [107] 

https://github.com/apachecn/ailearning/blob/master/docs/ml/img/%E6%9C%B4%E7%B4%A0%E8%B4%9D%E5%8F%B6%E6%96%AF%E7%A4%BA%E4%BE%8B%E6%95%B0%E6%8D%AE%E5%88%86%E5%B8%83.png
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We now use 𝑝1(𝑥, 𝑦) to denote the probability that the data point (𝑥, 𝑦) belongs to 

class 1 (the class represented by the dots in the figure), and 𝑝2(𝑥, 𝑦) to denote that 

the data point (𝑥, 𝑦) belongs to the class 2 (the category represented by the triangle 

in the figure), then for a new data point (𝑥, 𝑦) , the following rules can be used to 

determine its category: 

• If 𝑝1(𝑥, 𝑦)  >  𝑝2(𝑥, 𝑦), then it belongs to class 1; 

• If 𝑝2(𝑥, 𝑦)  >  𝑝1(𝑥, 𝑦), then it belongs to class 2. 

That is, we will choose the category with high probability. This is the core idea of 

Bayesian decision theory, which is to choose the decision with the highest probability. 

5.4.3.2 Conditional Probability 

There is a jar with 7 stones, of which 3 are white and 4 are black. If a stone is randomly 

taken from the jar, what is the probability that it is a white stone? Since there are 7 

possibilities to pick a stone, 3 of which are white, the probability of picking a white 

stone is 3/7. So what is the probability of getting a black stone? Obviously, it's 4/7 . 

We use 𝑝(𝑤ℎ𝑖𝑡𝑒) to represent the probability of getting a white stone, which can be 

obtained by dividing the number of white stones by the total number of stones. 

 

 

Figure 5-7. A collection of seven stones in either white or black color 

 

 

Figure 5-8. Seven stones in two buckets 

 

If the 7 stones are placed in two buckets as shown in Figure 5-8., how should the above 

probability be calculated? 



 

86 
 

 

Calculate 𝑝(𝑤ℎ𝑖𝑡𝑒)  or 𝑝(𝑏𝑙𝑎𝑐𝑘) , if we know in advance the information of the 

bucket where the stone is, it will change the result. This is called conditional probability. 

Assuming that the calculation is the probability of taking a white stone from bucket B, 

this probability can be recorded as 𝑝(𝑤ℎ𝑖𝑡𝑒|𝑏𝑢𝑐𝑘𝑒𝑡𝐵), we call it "probability of taking 

a white stone under the condition that the stone is known to come from bucket B". It is 

easy to get that the value of 𝑝(𝑤ℎ𝑖𝑡𝑒|𝑏𝑢𝑐𝑘𝑒𝑡𝐴)  is 2/4  and the value of 

𝑝(𝑤ℎ𝑖𝑡𝑒|𝑏𝑢𝑐𝑘𝑒𝑡𝐵) is 1/3. 

 

The formula for calculating conditional probability is as follows: 

 

             𝑝(𝑤ℎ𝑖𝑡𝑒|𝑏𝑢𝑐𝑘𝑒𝑡𝐵)  =  𝑝(𝑤ℎ𝑖𝑡𝑒 𝑎𝑛𝑑 𝑏𝑢𝑐𝑘𝑒𝑡𝐵) / 𝑝(𝑏𝑢𝑐𝑘𝑒𝑡𝐵)           (5 − 11)  

 

First, we divide the number of white stones in bucket B by the total number of stones 

in the two buckets to get 𝑝(𝑤ℎ𝑖𝑡𝑒 𝑎𝑛𝑑 𝑏𝑢𝑐𝑘𝑒𝑡𝐵)  =  1/7. Second, since there are 3 

stones in bucket B, and the total number of stones is 7, so 𝑝(𝑏𝑢𝑐𝑘𝑒𝑡𝐵) is equal to 

3/7. So again 𝑝(𝑤ℎ𝑖𝑡𝑒|𝑏𝑢𝑐𝑘𝑒𝑡𝐵)  =  𝑝(𝑤ℎ𝑖𝑡𝑒 𝑎𝑛𝑑 𝑏𝑢𝑐𝑘𝑒𝑡𝐵) / 𝑝(𝑏𝑢𝑐𝑘𝑒𝑡𝐵)  =  1/

3. 

 

Another way to efficiently compute conditional probabilities is called the Bayesian 

criterion. The Bayesian criterion tells us how to exchange conditions and outcomes in 

conditional probability, that is, if 𝑝(𝑥|𝑐) is known and 𝑝(𝑐|𝑥) is required, then the 

following calculation method can be used: 

                                                      𝑝(𝑐|𝑥) =
𝑝(𝑥|𝑐)𝑝(𝑐)

𝑝(𝑥)
                                            (5 − 12) 

5.4.3.3 Making Classification with Conditional Probability 

Above we mentioned that Bayesian decision theory requires the computation of two 

probabilities 𝑝1(𝑥, 𝑦) and 𝑝2(𝑥, 𝑦): 

• if 𝑝1(𝑥, 𝑦)  >  𝑝2(𝑥, 𝑦), then it belongs to class 1; 

• If 𝑝2(𝑥, 𝑦)  >  𝑝1(𝑥, 𝑦), then it belongs to category 2. 

This is not all about Bayesian decision theory. The use of 𝑝1 and 𝑝2 is just to simplify 

the description as much as possible, but what really needs to be calculated and 

compared is 𝑝(𝑐1|𝑥, 𝑦) and 𝑝(𝑐2|𝑥, 𝑦). The specific meanings represented by these 

symbols are: Given a data point represented by (𝑥, 𝑦), what is the probability that the 

data point is from class 𝑐1? What is the probability that the data point is from class 𝑐2? 

Note that these probabilities are not the same as the probabilities 𝑝(𝑥, 𝑦|𝑐1) , but 

Bayesian criterion can be used to exchange conditions and outcomes in probabilities. 

Specifically, applying the Bayesian criterion to get: 
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                                                     𝑝(𝑐1|𝑥, 𝑦) =
𝑝(𝑥, 𝑦|𝑐1)𝑝(𝑐1)

𝑝(𝑥, 𝑦)
                             (5 − 13) 

Using these definitions above, the Bayesian classification criterion can be defined as: 

• if 𝑝(𝑐1|𝑥, 𝑦)  >  𝑝(𝑐2|𝑥, 𝑦), then it belongs to class 𝑐1; 

• If 𝑝(𝑐2|𝑥, 𝑦)  >  𝑝(𝑐1|𝑥, 𝑦), then it belongs to class 𝑐2. 

 

In document classification, the entire document (such as an email) is the instance, and 

certain elements in the email constitute features. We can observe the words that appear 

in the document, and use each word as a feature, and the occurrence or non-occurrence 

of each word as the value of the feature, so that the number of features will be as many 

as the number of words in the vocabulary. 

 

We assume that features are independent of each other. The so-called independence 

refers to independence in the statistical sense, that is, the probability of a feature or 

word occurrence is not related to its neighbors with other words, for example, the 

occurrence of "ice-cream" and "delicious". Probability has nothing to do with these two 

words being adjacent. This assumption is exactly what the term naive means in Naive 

Bayesian classifiers. Another assumption in Naive Bayesian classifiers is that each 

feature is equally important. 

5.4.4 Decision Tree Algorithm 

5.4.4.1 Basic Principle of Decision Tree 

Decision tree is a common machine learning method, which makes decisions on 

samples based on a tree structure, just like a natural processing mechanism of the human 

brain when faced with decision-making problems [100]. Generally speaking, one 

decision tree contains a root node, several internal nodes and several leaf nodes, where: 

⚫ Leaf nodes correspond to decision results, each other node corresponds to an 

attribute test. 

⚫ The sample set contained in each node is divided into sub-nodes according to the 

result of the attribute test. 

⚫ The root node contains the full set of samples. 

⚫ The path from the root node to each leaf node corresponds to a decision test 

sequence. 

 

When constructing a decision tree, the first problem we need to solve is, which feature 

on the current dataset is determined when dividing the data classification. Features play 

a decisive role in classifying data. To find the decisive features, and to divide the best 

results, we must evaluate each feature. After testing, the original dataset was divided 
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into several subsets of data. These subsets of data are distributed across all branches of 

the first decision point. If the data under a branch is of the same type, the data 

classification has been correctly classified and no further data set segmentation is 

required. If the data within the data subsets do not belong to the same type, the process 

of dividing the data subsets needs to be repeated. The algorithm for how to divide the 

subset data is the same as the method for dividing the original data set, until all data of 

the same type are in one data subset. There are various ways to divide the dataset, ID3, 

C4.5 and CART, etc. 

5.4.4.2 Information Gain 

In this study, we use the Iterative Dichotomiser 3 (ID3) algorithm to divide the dataset. 

Assuming that dividing the data according to a certain attribute will produce 2 possible 

values, we will divide the data into 2 pieces and create 2 different branches. We only 

select one feature attribute each time we divide the dataset. If there are 20 features in 

the training set, which feature do we choose as the reference attribute for the division 

the first time? 

 

The general principle of dividing dataset is to make unordered data more orderly. We 

can divide the dataset in a few ways, but each method has its own advantages and 

disadvantages. One way to organize disorganized data is to measure information using 

information theory, a branch of science that deals with information quantitatively. We 

can use information theory to quantify the content of measure information before or 

after dividing the data. The change of information before and after dividing the dataset 

is called information gain. Knowing how to calculate the information gain, we can 

calculate the information gain obtained by dividing the dataset for each feature value 

and obtaining the feature with the highest information gain is the best choice. Before 

we can evaluate which partition of data is the best, we must learn how to calculate 

information gain. The measure of aggregate information is called Shannon entropy or 

simply entropy. Entropy is defined as the expected value of information, indicating the 

degree of confusion of the information, that is: the more orderly the information, the 

lower the information entropy. If the transaction to be classified may be divided into 

multiple classifications, the information of the symbol 𝑥𝑖 is defined as 

                                                                  𝑙(𝑥𝑖) =−𝑙𝑜𝑔2𝑝(𝑥𝑖)                                              (5− 14) 

where 𝑝(𝑥𝑖) is the probability of choosing that class.  

To calculate entropy, we need to calculate the expected value of information contained 

in all possible values of all categories, which is obtained by the following formula: 

                                                𝐻 = −∑ 𝑝(𝑥𝑖)𝑙𝑜𝑔2𝑝(𝑥𝑖)
𝑛

𝑖=1
                                  (5 − 15) 

where n is the number of categories. The base of the logarithm can be 2 or 10, but the 

units of the calculated information entropy are different, the former is nat, and the latter 
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is Hart. 

 

The higher the entropy, the more data is mixed. After obtaining the entropy, we can 

divide the dataset according to the method of obtaining the maximum information gain. 

In addition to measuring the information entropy, the decision tree classification 

algorithm also needs to divide the dataset and measure the entropy of the divided dataset, 

to judge whether the dataset is correctly divided. We will calculate the information 

entropy of the result of dividing the dataset for each feature, and then determine which 

feature is the best way to divide the dataset. 

5.4.4.3 Build a Decision Tree Recursively 

It works as follows: get the original dataset, and then divide the dataset based on the 

best feature value, since there may be more than two feature values, there may be more 

than two branches of the dataset division. After the first division, the data will be passed 

down to the next node of the tree branch where we can divide the data again. Therefore, 

we can use the recursive principle to process the dataset. The condition for the end of 

the recursion is that the program has traversed all attributes that divide the dataset, or 

all instances under each branch have the same classification. If all instances have the 

same classification, a leaf node or termination block is obtained. Any data that reaches 

a leaf node must belong to the classification of the leaf node. For the example of 

decision tree, see the dataset described in Table 5-3. and decision tree constructed in 

Figure 5-8. as follows: 

 

Table 5-3. Dataset of marine creatures 
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Figure 5-8. Application of Decision Tree on the dataset of marine creatures [107] 

5.4.5 Support Vector Machine 

5.4.5.1 Basic Idea of Support Vector Machine 

In machine learning, support vector machine, often abbreviated as SVM, is a supervised 

learning model and related to learning algorithms that analyze data in classification and 

regression analysis [96]. 

 

In addition to performing linear classification, SVMs can efficiently perform a non-

linear classification using what is called the kernel trick, implicitly mapping their inputs 

into high-dimensional feature spaces. Although the classifier is a hyperplane in the 

transformed feature space, it can be nonlinear in the original input space. It is worth 

noting that the higher dimensional feature space increases the generalization error of 

the SVM, but the algorithm can still perform well when given enough training examples. 

Some other common kernel-tricks include Polynomial kernel, Radial basis function 

kernel and Sigmoid kernel. 

 



 

91 
 

 

Figure 5-9. A linearly separable data set is given in box A, and separating hyperplanes 

that can separate the two types of data are given in boxes B, C, and D [107] 

 

Consider the two sets of data in Box A of Figure 5-9. Intuitively, it is easy to draw a 

straight line on the graph to separate the two sets of data points. In this case, this set of 

data is called linearly separable data. 

 

The above line separating the datasets is called the separating hyperplane. In the 

example given above, since the data points are all on the two-dimensional plane, the 

separating hyperplane is just a straight line at this time. However, if the given dataset is 

three-dimensional, then what is used to separate the data is a plane. Obviously, the 

higher dimensional case can be deduced and so on. If the dataset is 1024-dimensional, 

then a 1023-dimensional XYZ object is needed to separate the data. This object is called 

the hyperplane, which is the decision boundary for the classification. All data 

distributed on one side of the hyperplane belongs to one class, and all data distributed 

on the other side belongs to another class. We want to be able to build a classifier in 

such a way that the farther a data point is from the decision boundary, the more credible 

its final prediction will be. Consider the three lines in boxes B, C, and D of Figure 5-9. 

All of them separate the data, but which one is the best? Should the average distance of 

the data points to the separating hyperplane be minimized to find the best straight line? 

If we do so, is the line in boxes B and C in Figure 5-9. really better than the line in box 

D? The answer is negative. In fact, we want to find the points closest to the separating 

hyperplane, making sure they are as far away from the separating plane as possible. The 

distance from the point to the dividing surface is called the margin. We want the margin 

to be as large as possible because we want the classifier to be as robust as possible if 

we train the classifier with limited data. The support vectors are those points closest to 
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the separating hyperplane. To this end, trying to maximize the distance from the support 

vectors to the separating plane, we need to find an optimal solution to this problem. 

5.4.5.2 Find the Largest Margin 

How to find the best separating line for a dataset? Refer to as Figure 5-10. The form of 

the separating hyperplane can be written as 𝑤𝑇𝒙 + 𝑏. To calculate the distance from 

point 𝐴 to the separating hyperplane, the length of the normal or perpendicular from 

the point to the separating hyperplane must be given as |𝑤𝑇𝑨 + 𝑏|/||𝒘||. The constant 

𝑏 here is similar to the intercept 𝑤0 in logistic regression. Here the vector 𝒘 and the 

constant 𝑏 together describe the dividing line or hyperplane of the given data. 

 

Figure 5-10. The distance from point A to the separating hyperplane is the normal length 

from the point to the separating hyperplane [107] 

5.4.5.3 The Optimization Problem Solved by the Classification 

Machine 

The classifier has been mentioned before, but not how it works. Understanding how it 

works will help to understand the process of solving a classifier based on an 

optimization problem. Input data to the classifier will output a class label, which is 

equivalent to a function like Sigmoid. The following will use a function similar to the 

unit step function to act on 𝑤𝑇𝒙 + 𝑏  to obtain 𝑓(𝑤𝑇𝒙 + 𝑏) , where 𝑓(𝑢)  outputs 

−1 when 𝑢 < 0, and +1 otherwise. 
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Why do the category labels here use −1 and +1 instead of 0 and 1? This is because 

the difference between −1  and +1  is only one sign, which is convenient for 

mathematical processing. We can express the margin or the distance of a data point to 

the separating hyperplane by a unified formula, without worrying about whether the 

data belongs to the −1 or +1 class. 

 

When calculating the distance from the data point to the separating hyperplane and 

determining the placement position of the hyperplane, the margin is calculated by 

𝑙𝑎𝑏𝑒𝑙 ∗  (𝑤𝑇𝒙 + 𝑏)(function interval from point to separating hyperplane), then the 

benefits of −1 and +1 categories can be reflected. If the data points are in the positive 

direction (ie +1  class) and are far away from the separating hyperplane, 𝑤𝑇𝒙 + 𝑏 

will be a large positive number. In addition, 𝑙𝑎𝑏𝑒𝑙 ∗  (𝑤𝑇𝒙 + 𝑏) will also be a large 

positive number if the data points are in the negative direction (−1 class) and are far 

away from the separating hyperplane. Since when the class label is −1 , 𝑙𝑎𝑏𝑒𝑙 ∗

 (𝑤𝑇𝒙 + 𝑏) will still be a large positive number. 

 

The goal now is to find 𝑤 and 𝑏 in the classifier definition. To do this, we have to 

find the data points with the smallest margin, which are the aforementioned support 

vectors. Once we find the data points with the smallest margin, we need to maximize 

that margin. This can be written as: 

                           𝑎𝑟𝑔𝑚𝑎𝑥𝑤,𝑏 {𝑚𝑖𝑛𝑛 (𝑙𝑎𝑏𝑒𝑙 ∗ (𝒘
𝑇𝒙 + 𝑏)) ∙

1

||𝒘||
}                      (5 − 16) 

Solving the above problem directly is rather difficult, so we convert it into another form 

that is easier to solve. Let’s first examine the part in the curly brackets above. Since 

optimizing for products is a nasty thing to do, what we do is fix one of the factors and 

maximize the others. If the 𝑙𝑎𝑏𝑒𝑙 ∗  (𝑤𝑇𝒙 + 𝑏) of all support vectors is set to 1, then 

the final solution can be obtained by finding the maximum value of ||𝑤|| −1. However, 

not all data points have 𝑙𝑎𝑏𝑒𝑙 ∗  (𝑤𝑇𝒙 + 𝑏) equal to 1, only those points closest to the 

separating hyperplane get a value of 1. The farther the data points are from the 

hyperplane, the larger the value of 𝑙𝑎𝑏𝑒𝑙 ∗  (𝑤𝑇𝒙 + 𝑏). 

 

In the above optimization problem, some constraints are given and then the optimal 

value is calculated, so the problem is an optimization problem with constraints. The 

constraint here is that 𝑙𝑎𝑏𝑒𝑙 ∗  (𝑤𝑇𝒙 + 𝑏) ≥ 1.0 . For this type of optimization 

problem, there is a very well-known solution method, the Lagrange multiplier method. 

By introducing Lagrange multipliers, we can formulate the original problem based on 

constraints. Since the constraints here are all based on data points, we can write the 

hyperplane in the form of data points. Therefore, the optimization objective function 

can finally be written as: 

                  𝑚𝑎𝑥𝑎 [∑𝛼

𝑚

𝑖=1

−
1

2
∑ 𝑙𝑎𝑏𝑒𝑙(𝑖) ∙ 𝑙𝑎𝑏𝑒𝑙(𝑗)
𝑚

𝑖,𝑗=1

∙ 𝑎𝑖 ∙ 𝑎𝑗〈𝑥
(𝑖), 𝑥(𝑗)〉]          (5 − 17) 
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While the constraints are: 

                                        𝛼 ≥ 0, 𝑎𝑛𝑑 ∑𝛼𝑖 ∙ 𝑙𝑎𝑏𝑒𝑙
(𝑖)

𝑚

𝑖−1

= 0                                      (5 − 18) 

So far, the optimization problem is formulated, but here is an assumption: the data must 

be 100%  linearly separable. However, we know that almost all data is not 100% 

linearly separable. At this point, we can allow some data points to be separated on the 

wrong side of the separation plane by introducing the so-called slack variable. In this 

way, our optimization objective remains the same, but the new constraints now become: 

                                          𝐶 ≥ 𝛼 ≥ 0, 𝑎𝑛𝑑 ∑𝛼𝑖 ∙ 𝑙𝑎𝑏𝑒𝑙
(𝑖) = 0

𝑚

𝑖−1

                        (5 − 19) 

The constant 𝐶 here is used to control the weights of the objectives of "maximize the 

margin" and "guarantee that the function interval for most points is less than 1.0". In 

the implementation code of the optimization algorithm, the constant 𝐶 is a parameter, 

so we can get different results by adjusting this parameter. Once all the alphas are found, 

the separating hyperplane can be expressed by these alphas. This conclusion is 

straightforward, and the main job in SVM is to solve for these alphas. 

5.4.5.4 SMO Efficient Optimization Algorithm 

In 1996, John Platt developed a powerful algorithm called SMO for training SVMs. 

SMO stands for Sequential Minimal Optimization. Platt's SMO algorithm is solved by 

decomposing a large optimization problem into multiple small optimization problems. 

These small optimization problems tend to be easy to solve, while solving them 

sequentially gives exactly the same results as solving them as a whole. On the other 

hand, the solution time of SMO algorithm is much shorter as well. 

 

The goal of the SMO algorithm is to find a series of alphas and 𝑏. Once these alphas 

are found, it is easy to compute the weight vector 𝑤 and get the separating hyperplane. 

 

The working principle of the SMO algorithm is that two alphas are selected for 

optimization in each cycle. Once a suitable pair of alphas is found, increase one while 

decreasing the other. The so-called "suitable" here means that the two alphas must meet 

certain conditions. One of the conditions is that the two alphas must be outside the 

boundary of the interval, and the second condition is that the two alphas have not been 

performed interval processing or not on the boundaries. The reason for changing both 

alpha values at the same time is that we have a constraint: 

                                                                           ∑𝛼𝑖 ∙ 𝑙𝑎𝑏𝑒𝑙
(𝑖) = 0                                                         (5 − 20) 

The SMO pseudocode is roughly as follows: 
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Table 5-4. Pseudocode of Sequential Minimal Optimization

 

5.4.6 Ensemble Methods 

Several different classification algorithms have been described earlier, each with their 

own advantages and disadvantages. We can naturally combine different classifiers, and 

the result of this combination is called an ensemble method or a meta-algorithm. There 

are many forms when using ensemble methods: it can be an ensemble of different 

algorithms, or it can be an ensemble of the same algorithm under different settings. It 

can also be an ensemble after assigning different parts of the dataset to different 

classifiers. Next, we will introduce two computational methods based on multiple 

different instances of the same classifier. In these methods, the dataset is also constantly 

changing and then applied to different classifier instances. Advantages: low 

generalization error rate, easy to code, can be applied to most classifiers, no parameter 

adjustment. Disadvantage: Sensitive to outliers. 

5.4.6.1 Bagging 

Bootstrap aggregating, also known as bagging, is a technique for obtaining 𝑆  new 

datasets after selecting 𝑆 times from the original dataset. The new dataset is the same 

size as the original dataset. Each dataset is obtained by randomly selecting a sample 

from the original dataset for replacement. Replacement here means that the same 

sample can be selected multiple times. This property allows duplicate values in the new 

dataset, while some values from the original dataset are no longer present in the new 

set. After the 𝑆 datasets are established, a learning algorithm is applied to each dataset 

to obtain 𝑆  classifiers. When we want to classify new data, we can apply these 𝑆 

classifiers for classification. At the same time, the category with the most votes from 

the classifier is selected as the final classification result. Of course, there are some more 

advanced bagging methods, such as random forest. 
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5.4.6.2 Random Forest Algorithm 

Random forest refers to a classifier that uses multiple trees to train and predict samples. 

The construction of random forest has two aspects: randomization of data and 

randomization of features to be selected. These two aspects allow the decision trees in 

random forests to be different from each other, thereby increasing the diversity of the 

system and thus the classification performance [99]. 

5.4.6.3 Workflow of Random Forest Algorithm 

In general, Random Forest algorithm consists of two main tasks, including 

randomization of data and randomization of candidate features, as demonstrated below. 

 

Randomization of data: Make decision trees in random forests more generalized and 

suitable for more scenarios. 

1. Adopt a sampling method with replacement to construct subsets to ensure that the 

order of magnitude between different subsets is the same, whereas elements between 

different subsets/same subset can be repeated. 

2. Use the subsets to build several sub-trees, put these data into each subtree, and each 

subtree outputs a result. 

3. Then count the voting results of the subtrees and get the final classification results of 

random forest. 

4. As shown in Figure 5-11., assuming that there are 3 subtrees in the random forest. 

If the classification results of 2 subtrees are class 𝐴, while the result of 1 subtree is 

class 𝐵, then the final classification result of the random forest is class 𝐴. 
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Figure 5-11. Majority voting of Random Forest 

 

Randomization of candidate features: 

1. The sub-tree randomly selects a certain feature from all the candidate features. 

2. Select the best feature among the selected features. 

In Figure 5-12., the blue squares represent all the features that can be selected, that is, 

the current candidate features; the yellow squares are the splitting features. On the left 

is the feature selection process of a decision tree. By selecting the optimal splitting 

feature from the features to be selected. As for the methods of selecting the optimal 

feature, please refer to ID3 algorithm as mentioned when illustrating Decision Tree. On 

the right is the feature selection process for a subtree in a random forest. 

 

 

Figure 5-12. Process of selecting splitting features in Random Forest 
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5.4.6.4 Boosting Method 

Boosting is a technique very similar to bagging. Whether in boosting or bagging, the 

types of multiple classifiers used are the same. But in the former, different classifiers 

are obtained by serial training, and each new classifier is trained according to the 

performance of the trained classifier. Boosting is to obtain new classifiers by focusing 

on those data that have been misclassified by existing classifiers. Since the result of 

boosting classification is based on the weighted sum of all classifiers, boosting is not 

the same as bagging. The weights of the classifiers in bagging are equal, while the 

weights of the classifiers in boosting are not equal, and each weight represents the 

success of its corresponding classifier in the previous iteration. There are several 

versions of the boosting method, one of the most popular algorithms is adaptive 

boosting (AdaBoost). 

 

The operation process of AdaBoost is as follows: each sample in the training data is 

given a weight, and these weights form a vector 𝑫 . Initially, these weights are 

initialized to equal values. First train a weak classifier on the training data and calculate 

the error rate of the classifier, and then train the weak classifier again on the same 

dataset. In the second training of the classifier, the weight of each sample will be re-

adjusted, in which the weight of the first-time paired sample will be reduced, and the 

weight of the first wrong-classified sample will be increased. In order to get the final 

classification result from all the weak classifiers, AdaBoost assigns a weight value 

alpha to each classifier, and these alpha values are calculated based on the error rate of 

each weak classifier. Among them, the error rate ε is defined as: 

                                    휀 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 𝑤𝑒𝑟𝑒 𝑛𝑜𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
           (5 − 21) 

The formula for calculating alpha is as follows: 

                                                          𝛼 =
1

2
ln (

1 − 휀

𝜖
)                                                  (5 − 22) 

The example of AdaBoost classifier is shown in Figure 5-13., as follows: 
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Figure 5-13. Basic structure of AdaBoost classifier 

 

On the left of Figure 5-13. is the dataset, where the different widths of the histogram 

represent different weights on each example. After going through a classifier, the 

weighted predictions are weighted by the alpha value in the triangle. The weighted 

output of each triangle will be summed in the circle to get the final output. 

 

After the alpha value is calculated, the weight vector 𝑫 can be updated so that the 

weights of correctly classified samples are reduced, and the weights of misclassified 

samples are increased. 𝑫 is calculated as follows. 

 

If a sample is correctly classified, the weight of the sample is changed to: 

                                                                               𝑫𝑖
((𝑡+1))

=
𝑫𝑖
(𝑡)
𝑒−𝛼

𝑆𝑢𝑚(𝑫)
                                                     (5 − 23) 

And if a sample is misclassified, the weight of the sample is changed to: 

                                                                               𝑫𝑖
((𝑡+1))

=
𝑫𝑖
(𝑡)
𝑒𝛼

𝑆𝑢𝑚(𝑫)
                                                      (5 − 24) 

After calculating 𝑫 , AdaBoost starts to enter the next iteration. The AdaBoost 

algorithm will continuously repeat the process of training and adjusting the weights 

until the training error rate is 0 or less than a certain threshold. In this study, we mainly 

adopt the boosting method to serve as a baseline in the validation experiments of the 

proposed inclination measurement system. 
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5.5 Implementation and Evaluation Experiments 

In this section, we would like to demonstrate the realization of the proposed method. 

Furthermore, evaluation experiments and comparison works will also be illustrated in 

this section. Specifically, the prototype work/proposed neural network is implemented 

by using the IDE mentioned in Chapter 2 with Python programming language and some 

necessary libraries including Tensorflow and Keras, etc. And the implementations of 

machine learning algorithms are based on scikit-learn library. Moreover, configurations 

of the hardware employed in evaluation experiments is as the following: CPU(i7-

10700K), GPU(GTX1080Ti), and memory(64GB). As for the image dataset, we mainly 

utilize the Assembly Platform Dataset mentioned in Chapter 2. 

 

When making the implementation, considering the robustness of image feature, our 

group finally decided to adopt a relatively heavy feature - SIFT to extract image features. 

This is mainly because the strict requirements of algorithms applied in the project of 

inclination measurement. To balance the performance and computation power 

requirements of the inclination system, we employ K-Means to reduce the redundant 

features as well as to make feature engineering. Experiments show that the proposed 

classification-based method can effectively reduce the computational burden of the 

system, while maintain good measurement accuracy and stability at the same time. The 

workflow of our solution is depicted in Figure 5-14. 

 

As for the feature clustering process, we adjusted the parameters of K-Means to make 

it obtain the best performance when dealing with the task of inclination measurement. 

About the termination condition to stop clustering, whenever mean square errors (MSE) 

is becoming minimum, the algorithm will stop. With a tremendous time of fine tuning, 

our group achieved the best clustering performance under the condition that the 

clustering center K equals to 70. 
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Figure 5-14. Workflow of the classification-based inclination measurement 

 

With the help of clustering algorithm, the computation burden of feature representation 

regarding our dataset decreases greatly, which benefits for our systems with constrained 

computing resources. About representation of image features, our group utilize feature 

vectors obtained from clustering to represent the original image data. In specific, 

through generating frequency histograms of image features, our group realized feature 

representation of image data. The workflow of this process is shown in Figure 5-15. 

After got the feature vectors of the images from Assembly Platform Dataset, we use the 

feature vectors to train the proposed neural network. 
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Figure 5-15. Workflow of the feature representation of image data 

 

The evaluation experiments take several aspects into accounts, including time 

consumption, computational complexity, time cost of the prediction process, and 

classification accuracy. To verify the ability of reducing computation complexity, a 

comparative experiment between the traditional mechanism [87][88][89] and our 

proposal has been carried out. The comparison results about computational complexity 

are summarized in Figure 5-16. 

 

As for the classification performance, our proposed mechanism is superior to other 

algorithms without introducing additional computational burden. Comparison results 

about the classification accuracy are shown in Figure 5-17. Besides, a summary of the 

prediction time cost among different algorithms is depicted in Figure 5-18. 
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Figure 5-16. Comparison results of the computation complexity 

 

Figure 5-17. Evaluation results about classification accuracy 

 

Figure 5-18. Evaluation results about time cost of the algorithms 
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With a comprehensive consideration about the algorithm performance, we could draw 

a conclusion that, our proposed algorithm which based on feature clustering combined 

with the proposed neural network achieves the best overall performance when dealing 

with inclination measurement task. The advantages involve but not limited to low 

computational complexity and good performance. 

 

Experimental result shown in Figure 5-17. certificate the effectiveness of our proposed 

neural working structure, which is superior to the other algorithms and achieves 98% 

prediction accuracy under the condition of 𝐾 = 70. 

 

Before proposing our own algorithms, some prevalent networks have been 

implemented to deal with the inclination classification task. In the evaluation process, 

we implemented MobileNetV2 [102], Xception [103], ResNet [104, 106] and LeNet 

[90] to classify the inclination angles. These popular convolutional neural networks are 

implemented base on TensorFlow and Keras libraries. Furthermore, Assembly Platform 

Dataset was employed to train and test the model. Three-fold cross-validation is also 

applied to improve the reliability of evaluation results. The classification performance 

among different networks is summarized from Figure 5-19. to Figure 5-24. 

 

 

Figure 5-19. Training and validation performance of MobileNetV2 

 

 

Figure 5-20. Training and validation performance of Xception 
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Figure 5-21. Training and validation performance of ResNet 

 

 

Figure 5-22. Training and validation performance of LeNet 

 

 

Figure 5-23. Training and validation performance of the proposal (50 epochs) 

 

 

Figure 5-24. Training and validation performance of proposal (12 epochs) 
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From the classification performance of MobileNetV2 as shown in Figure 5-19., we 

found that MobileNetV2 failed to converge well within 50 training epochs, since the 

validation loss gradually increased as the training process continued. 

 

Performance of Xception in regard of inclination classification is summarized in Figure 

5-20. Thus, we can conclude that Xception failed to perform well in the inclination 

classification task. After training for 39 epochs, the validation loss increased which 

proved the overfitting of the networks. On the other hand, the overall validation 

accuracy remained under 25% through the training process, which indicates the 

disability of dealing with inclination classification. 

 

The classification performance of ResNet is portrayed in Figure 5-21. It seems that 

ResNet failed to converge in the training process, and the overall performance keeps at 

a poor state, which proved the dissatisfaction towards dealing with the industrial task 

in this work. 

 

Experimental performance regarding LeNet is depicted in Figure 5-22. It is easy to find 

that LeNet reached 94.2% about validation accuracy. However, to a certain extent, the 

validation loss of LeNet increases sharply, which is a disadvantage of LeNet to solve 

the image classification problem. 

 

Regarding the proposed neural network in this research, Figure 5-23. summarizes its 

performance. Obviously, the proposed neural network converges well in the training 

process. In specific, the proposed method converges within 12 training epochs. For this 

reason, we depicted the graph of training process from 1 to 12 epochs in Figure 5-24., 

which showed more details of the first 12 training epochs of the proposed neural 

network. In epoch 12, not only the validation accuracy rate reached 100%, but the 

validation loss also got the minimum value. In sum, the proposed neural network is 

superior to other neural networks. The experimental results prove that the proposed 

neural network is suitable for solving the problem of inclination angle classification. 

 

As for the dissatisfaction of MobileNetV2, Xception and ResNet when tackling the 

classification task of this project, it is mainly because the high complexity of the 

network structures. On the other hand, the input of the convolutional neural networks 

are images of our dataset. In other words, the features of these images in the dataset are 

not clustered in advance. Inputs of our proposed neural network are feature vectors 

obtained after the feature clustering process. In addition, proposed network structure is 

associated with the tuned K value, which will also affect the classification performance 

of image dataset established in this work. To sum up, the above-mentioned reasons lead 

to a good performance of the proposed neural network in the classification of inclination 

angles. 
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5.6 Chapter Summary 

To some degree, the inclination measurement of the industrial assembly platforms 

remains a challenge. This is mainly because of the relatively high computation cost of 

the algorithms. Therefore, in our research, we proposed a method to tackle it. In specific, 

the idea of image classification is adopted to deal with inclination measurement by 

classifying the images of the assembly platforms. First of all, we extract the image 

features from the input images. Then, clustering-based method is applied to construct 

feature vectors for the images of the assembly platforms. Secondly, those feature 

vectors will be utilized to train the neural networks. In this way, inclination 

measurement is transformed to an image classification task. The output of the neural 

network gives the exact category to which an input image belongs. An improved 

clustering algorithm is realized, and the tuned parameter K was finally found after many 

iterations of testing experiment. In contrast to those traditional methods, the proposed 

method achieves the best performance while reducing computational complexity by 

45.31%. In addition, validation accuracy of the presented neural networks with tuned 

parameters reaches over 95%, which outperforms other baseline models. Evaluation 

results certificate the effectiveness of our method for inclination measurement. As for 

future works, we will make effort to improve the performance of the proposed algorithm. 

On the other hand, boosting methods such as AdaBoost will also be considered to help 

enhance the performance of the inclination measurement. 

 

  



 

108 
 

Chapter 6 Conclusions and Discussions  

This study focuses on the problem of the inclination angle measurement for the bearing 

assembly platforms in the manufacturing industry. The main research contents are as 

follows: (1) Through the reading of the literatures, we summarized the current research 

status and future development trend of computer vision and machine learning 

technologies. (2) The actual demand of the measurement system for the bearing 

assembly enterprises was investigated. (3) Considering the requirements of the research 

project and the existing experimental equipment, we designed a computer vision-based 

inclination angle measurement system. (4) In terms of the algorithms to measure the 

inclination angles, we proposed two algorithms which are based on SLAM technology 

and artificial intelligence, respectively. (5) Finally, we evaluated the effectiveness and 

reliability of the proposed system, as well as its advantages over other algorithms 

through a large number of validation experiments. 

 

Due to the limited time and experiment conditions, there are still some shortcomings in 

the current research: (1) In this study, the testing scenarios have good lighting, whereas 

the performance of the algorithms might be influenced by the variations of the lighting 

conditions. Thus, in the future research, we will conduct in-depth studies under different 

lighting conditions. (2) The current experimental scenarios are relatively simple. 

Considering the real scenarios of the manufacturing field might be much more complex, 

we will conduct additional experiments in the scenarios with relatively complex 

backgrounds, and further adjust and improve the performance of the proposed 

algorithms for inclination angle measurement. 
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