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Abstract

A Bayes Estimation Based Control Method for Snake Robots

by

Yuanyuan JIA

Doctor of Philosophy in Department of Robotics

Ritsumeikan University, Biwako-Kusatsu Campus

Professor Shugen MA, Chair

Snake robot control in a cluttered environment has received tremendous attention because of its wide

practical applications such as survival rescue, pipeline inspection, medical surgery, firefighting, and

surveillance. Because of the complexity associated with a highly redundant structure, many degrees

of freedom, occlusions, and environmental clutters, robust and efficient control of snake robots

remains a challenging task. To date, conventional deterministic snake robot control does not perform

well when obstacles are in close proximity or present collisions. In such circumstances, modeling

the interactions among robot modules and the interactions between the robot and the environment,

establishing a correspondence between modules and observations, and decreasing the computational

complexity to achieve real-time implementation are critical problems.

In this dissertation, we investigate issues towards solving these problems. Specifically, the thesis

comprises five fundamental contributions. The first is a centralized Bayesian control method, which

extends the shape-based compliant control and achieves the robust performance of snake robot

control in a complicated environment. Secondly, a dynamically decoupled Bayesian formulation

is proposed for snake robot control with respect to robot modules and interacted obstacles. The

characteristics of this formulation are that it avoids the common practice of using complex fully

coupled interaction analysis and performing difficult joint data association. It extends the Bayesian

control framework by modeling interactions in terms of stimulus functions. The third contribution

is a fully distributed framework using multiple collaborative agents for multiple robot modules with

significant and persistent interactions with clutter surroundings. In this framework, we propose
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modeling the interactions among modules and the environment by an inter-module likelihood and a

module-based virtual external force density. Fourthly, we have proposed a centralized coach-based

Bayesian method for snake robot control. Instead of applying density propagation analysis directly

for controller design, we use it to expedite the training process of a reinforcement learning process.

Experimental results show that it is a very promising direction in combining the advantages of two

research areas for snake robot control. Finally, we apply the distributed Bayesian control as a coach

to the training process of reinforcement learning for the snake robot. Compared with the centralized

framework, it further expedites the training speed due to exploiting parallel computing.

The five Bayesian controllers have been demonstrated on both simulation and real-world data

to verify the proposed methods. As a result, they can achieve robust real-time locomotion for snake

robots in an unstructured environment. While all these systems can function effectively, some are

more stable and efficient than others in various situations. To reveal their advantages and disadvan-

tages, thorough investigations in terms of characteristics of architecture, complexity analysis, and

performance comparison have been studied. Among these methods, the centralized framework is

more suitable for a small system with a limited number of robot links, while decoupled and distribut-

ed structures are better for more complicated snake robots with more body links. Meanwhile, the

two coach-based approaches stand on the shoulders of other frameworks and provide an innovative

way to bridge the reinforcement learning with stochastic Bayesian control together.
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Chapter 1

Introduction

1.1 Motivation and Research Background

Over the recent years, people made great success in developing numerous types of autonomous

mobile robots, to overcome the difficulty of conventional robots in rugged environment. Although

in human survival training, it is common to require versatile ability, which includes swimming

underwater, traversing rocky mountain and desert, tunnels and even more, there still exists a gap

for a single robot to accomplish all the above mobility. The chance to bridge this gap probably lies

in snake-like robots. By imitating biological snakes, snake robots are likely to integrating versatile

mobility within a uniform body mechanism.

Snake robotic control [5] is a system that contributes to the locomotion of robots. This com-

monly involves mechanical aspects and algorithms that make it possible to control robots. Inspired

by biological snake movement, snake-like robots usually consist of serially connected joint links

capable of bending in one or multiple planes. Though these biomorphic hyper-redundant robots can

vary greatly in size and design, all snake robots share the following properties: 1) the small cross

section to length ratio allows them to move into, and maneuver through narrow and tight spaces; 2)

the ability to change the shape of their body allows them to perform a wide range of behaviours,

such as stepping stairs or climbing trees; 3) the chaining redundancy makes them resistant to failure

since they can continue to operate even if parts of their bodies are destroyed. These unique charac-
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teristics make snake robot control a principal research area within robotics community over the last

decade. The increasing interest is attributed to the numerous applications including survival rescue,

medical surgery, fire fighting, sanitation, agriculture, surveillance, and maintenance of complex and

possibly dangerous structures or systems such as nuclear plants or pipelines, intelligent services,

media, exploration, research, education, etc.

Most existing snake robot control systems rely on a particular mechanical design and determin-

istic analysis of kinematics of robots, which are not suitable for practical applications where uncer-

tainties present not only inside a snake robot itself but also in unstructured environments. Stochastic

analysis of snake robot control problem remains a very challenging task for robotics community be-

cause of the difficulties embedded in this tough problem, some of which are as follows:

(1) How to model the high redundant structure with a large number of DOFs and solve the

critical uncertainty problem in a stochastic way?

(2) How to handle the interactions between the surrounding clutters, the changing environment,

and the robot during navigation?

(3) How to efficiently control multiple actuators simultaneously while still keeping the proper

gait in real-time?

(4) How to learn the robot’s kinematics automatically and quickly without prior assumptions?

(5) How to achieve an optimal balance between exploration and exploitation in the locomotion?

The purpose of this thesis is trying to answer these questions and to establish novel efficient

frameworks for snake robot control in unknown environment. The approach is rooted in ideas

from statistics, graphical model theory, probability density estimation, machine learning and control

engineering. The problem is to control multiple links of a snake robot simultaneously, as they

collaborate together to move through clutter scenes, which contains targets and obstacles.

This chapter presents a brief review of background materials relevant to this thesis. Shape-based

gait control, probability graphical modeling, Bayesian network, probability density estimation and

reinforcement learning theory as well, are covered.
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Figure 1.1. The typical gaits of snake robot locomotion.

1.1.1 Shape-Based Gait Control

Research of snake robot has received a lot of attentions and been conducted for several decades.

Early locomotion studies of snakes were reported by Gray [6] in 1940s. Different gaits such as ser-

pentine locomotion, rectilinear locomotion [7], concertina locomotion [8] and sidewind locomotion

were studied as shown in Fig. 1.1 by investigation of biological snakes. Serpentine locomotion is an

effective transverse wave where snakes exploit it in a flat environment most commonly. Rectilinear

locomotion is generated when alternating locomotion of ribs and muscles, where biological snakes

use it when tracking preys. Concertina locomotion consists of gripping or anchoring with portions

of the body while pulling or pushing other sections in the direction of movement. Sidewinding

locomotion is 3D spiral locomotion, which is achieved by a combination of serpentine locomotion

and rectilinear locomotion. Various snake-like robot kinematic models have been studied based on

different gaits. Hirose developed the first snake robot in 1972 [5]. He used sinusoidal functions and

tuned amplitude, frequency and phase differences to derive the robot to a certain direction. The trace

of body of natural snakes is called a “serpenoid curve” which guarantees that the distribution of a

strain in the muscle becomes a smooth function. Ma proposed the serpentine curve in [9], where

a mathematical model of the muscle characteristics of snakes is employed to derive the resulted

form of the body shape during lateral undulation. He proved that the serpentine is more efficient

than serpenoid curve in simulation results. Moreover, snake-like robot can create a variety of gaits

by extracting waveform from spine curves [10]. Furthermore, other gaits such as spiral gait when

climbing trees was investigated by researchers. In some situations, a biological snake may also have

a jump, swing around the body, sliding shock, etc. When snakes climb up along a rod or move by
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lateral gait, their patterns are 3D spiral curves. Generally speaking, shape-based gait control is an

intuitive and computationally simple way to balance the tradeoff between coordinating the motion

of internal degrees of freedom and reacting to unknown features, connecting high-level planning

to low-level control. The advantage of this kind of approaches is that the control can be executed

in a lower dimensional space through shape functions. More detailed reviews of shape-based gait

control of snake robots can be found in [11] and [12].

1.1.2 Probability Graphical Modeling

Probability Graphical Model (PGM) theory has emerged from a mix of log-linear and covari-

ance selection theories, sharing the concepts of path analysis, independence and conditional inde-

pendence. Graphical models are amazing probability models for the analysis of multivariate ran-

dom observations, where the independence structure is characterized by a conditional independence

graph [1]. In this section, we briefly introduce the concepts of graphical model theory used in this

thesis. For details, we also refer readers to [1].

A graph G is a mathematical object that consists of two sets, a set of vertices, V, and a set of

edges, E, consisting of pairs of elements taken from V. There is a directed edge or arrow between

vertices i and j in V if the set E contains the ordered pair (i, j); vertex i is a parent of vertex j,

and vertex j is a child of vertex i. There is an undirected edge or line between these vertices if E

contains both pairs, (i, j) and ( j, i). The graph is undirected if all edges are undirected. Vertices i

and j are adjacent if the undirected edge between i and j is in E, and a line connects them in the

diagram of the graph. Let a ⊆ K denote a subset of vertices of the graph. The neighbors of a are

all those vertices in V, but not in a, that are adjacent to a vertex in a. The conditional independent

graph of X is the undirected graph G = (K,E) where K = (1, 2, ..., k) and (i, j) is not in the edge set

E if only if Xi y X j|XK \ {i, j}, where “y” denotes the independence of two random variables; “|”

means “given” or “conditional”; and “\” is “not including”.

Separation Theorem. If Xa, Xb and Xc are vectors containing disjoint subsets of variables from

X, and if, in the independence graph of X, each vertex in b is separated from each vertex in c by the
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Figure 1.2. Conditional independent graph.

subset a, then

Xb y Xc|Xa, (1.1)

which means given Xa, Xb is conditionally independent with Xc.

The converse of the separation theorem is immediate: if it is true that whenever a separates i

and j that i y j|a then it is true that, whenever i and j are not adjacent, i y j |rest. Fig. 1.2 illustrates

the separation theorem, where we can easily have i y j|V \ {i, j} and Xb y Xc|Xa.

The most important tool for interpreting independence graphs is the Markov property, that, for

all disjoint subsets a, b and c, of V, whenever b and c are separated by a in the graph, then Xb and

Xc are independent given Xa alone: Xb y Xc|Xa.

In many studies of several interacting variables there is a striking lack of symmetry in the roles

played by the variables that corresponds to a notion of causality and the premiss that if X causes Y

then Y cannot cause X. A neat way to portray the relationship that ‘X effects Y’ is by means of a

directed graph and its diagram of Fig. 1.3 together with the conditional probability density p(Y|X).

X
 Y


Figure 1.3. Directed graph

The directed independence graph of X is the directed graph G→ = (V,E→), where V =

{1, 2, ..., v}, V( j) = {1, 2, ..., j} and the edge (i, j), with i → j, is not in the edge set E→ if and

only if j y i |V( j) \ {i, j}. This is the same definition used for the undirected independence graph
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Figure 1.4. Forbidden Wermuth configuration

Figure 1.5. Moral graph

with the conditioning set modified, from the ‘rest’ comprising all past and future variable, to just

the past.

We wish to elucidate the Markov properties of a directed independent graph but hope to avoid

much further work in proving such properties by exploiting the relationship of the directed graph

to independence statements elicited from its associated undirected graph. A directed graph satisfies

the Wermuth condition if no subgraph has the configuration of Fig. 1.4. The moral graph associated

with the directed graph G→ = (V,E→) is the undirected graph Gm = (V,Em) on the same vertex

set and with an edge set obtained by including all edges in E→ together with all edges necessary

to eliminate the forbidden Wermuth configurations from G→. It is termed a moral graph because it

‘marries parents’. For example, Fig. 1.5 shows the moralized graph of Fig. 1.4. It has been proven

that the directed independence graph G→ possess the Markov properties of its associated moral

graph, GM [1, p.76].

1.1.3 Bayesian Network

Many reported controllers of snake robots [13] [14] [15] are deterministic systems. However,

in practical applications, sensors are usually disturbed by different noises. The observation is com-

monly stochastic with uncertainties. Therefore, the state can only be observed partially. In other
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words, a control problem with uncertainties should be regarded as a stochastic process with noisy

observations [16]. Deterministic mathematical modeling of dynamic systems is usually problemat-

ic. A statistical approach is needed to evaluate unknown parameters [17].

Kalman-type filtering has been widely used for solving stochastic problems [18]. It has been

used for state estimation of snake robots by Rollinson et al. [19]. Classic Kalman-type filters assume

a Gaussian distribution, which makes the solution too ideal and not suitable for practical application

due to uncertainties and noises. Some statistical methods have also been reported for dynamic robot

systems, such as [20], and [21] [22].

Bayesian Networks (BN) have received a lot of interests in the research domain of machine

learning, pattern recognition and artificial intelligence. There also exists an analogy between

Bayesian network and interactions between genes in biology [23]. The cell consists of many in-

teracting components. These components affect each other in some consistent fashion. If random

sampling of the system is considered, some states become more likely. In this context, the state of a

cell denotes the concentration of proteins and metabolites in various compartments and so on. And

the likelihood of a state can be specified by the joint probability distribution on each of the cells

components. Furthermore, reconstruction of Bayesian network models from physiologically rele-

vant primary cells might be applied to understanding native-state tissue signaling biology, complex

drug actions, and dysfunctional signaling in diseased cells [24].

Different with most classical control methods, the BN models can be learned from sample data

if the model does not have an analytical form. During the training process, missing information can

be handled. Therefore, BN can achieve superior performance comparing with other self adaptive

systems in different control tasks. BN is a directed acyclic graph model structured by some nodes

and directed edges. The nodes represent random variables and the directed edges represent the

relationship between the nodes. Every node has its own probability distribution. A BN represents

the joint probability distribution of n random variables X,

p(X1,X2, . . . ,Xn) = p(X1)
n∏

i=2

p(Xi|X1, . . . ,Xi−1) (1.2)
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Since not all random variables in X1, . . . ,Xi−1 has an influence on Xi, eq. 1.2 can be written as

p(X1,X2, . . . ,Xn) = p(X1)
n∏

i=2

p(Xi|Pa(Xi)) (1.3)

where Pa(Xi) is the random vector called the parents of Xi, which includes the nodes with an

influence on Xi [25]. The main task of BN is to do probabilistic inference using inference algorithm.

One of the most important operations on BNs is the calculation of marginal distribution. Given a

full distribution p(X) with X = X1, . . . ,Xn, an arbitrary distribution p(X|C) with C ⊂ X can be

calculated by integration over all variables in C,

p(X|C) =
∫

C
p(X)dC. (1.4)

For many control systems, the variables change with time. Dynamic Bayesian Networks (DB-

N) can be used to model and control such kind of linear dynamic systems [25]. The well-known

Kalman filter and Hidden Markov Model which are widely used in prediction and tracking prob-

lems of control systems are special DBNs [25]. Modeling with DBNs is equivalent to learning a

probability distribution which represents the data as well as possible. A more detailed description

of the algorithms used for BNs is given in [25].

1.1.4 Density Estimation Techniques

Many approaches [26] can been applied for the estimation of the probability densities in

Bayesian network such as Expectation Maximization (EM) [27], Variational Inference (VI) [28],

Monte Carlo (MC) [29], etc. In this thesis, we exploit Sequential Monte Carlo (SMC) method and

Bayesian Neural Network (BNN) [30] for density estimation.

Sequential Monte Carlo Method

The conventional SMC method [31] is to estimate the desired density p(·) by a set of random

samples with associated weights. For example, a density p(xt|z1:t) can be estimated,

p(xt|z1:t) =
Ns∑

n=1

wn
t δ(xt − xn

t ) (1.5)
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where {xn
t , n = 1, . . . ,Ns} is a set of samples with associated weights {wn

t ,n = 1, . . . ,Ns},
∑

n wn
t =

1. However, samples from the posterior are not directly available. The filter can use an importance

sampling technique [32] to generate samples where a proposal importance density q(·) is first used

to generate samples. Each sample is assigned weight by

wn
t ∝

p(·)
q(·) (1.6)

In eq. (1.6), “∝” means “is proportional to”. Then the difference between the desired density and

the proposal importance density can be made up by

E[xtwt(xt)] =
∫

xt

xt
p(·)
q(·) q(·)dxt = E[xt] (1.7)

That is, the estimate E[xt] can be approximated instead by E[xtwt(xt)] ≈
∑N

n=1 xn
t wt(xt

n).

For the Bayesian control problem, by substituting the posterior density into (1.6), the weight is

calculated as

wn
t ∝ wn

t−1

p(zt|xn
t )p(xn

t |xn
t−1)

q(xn
t |xn

t−1, zt)
(1.8)

where q(xn
t |xn

t−1, zt) is a proposal importance density from which the samples xn
t are easily gen-

erated. The most common choice of importance density in the conventional sample filter is the

prior

q(xt|xn
t−1, zt) = p(xt|xn

t−1) (1.9)

Substitution of eq. (1.9) into eq. (1.8) yields

wn
t ∝ wn

t−1p(zt|xn
t ). (1.10)

Bayesian Neural Network

Bayesian neural network has received much attention recently due to its ability to model uncer-

tainty comparing to conventional deep learning approaches such as CNN, RNN etc. However, due

to the high computation complexity, little research has been done in physical robot control area [33].

The difficulty lies in not only the network design but also training data collection. Since it’s usually

very time consuming and cost expensive in real word applications. This explains the reason why

little work has been reported using BNN for snake control although it’s very promising in terms
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of capturing the uncertainty during locomotion and interaction with environment. Moreover, the

inherent difficulty of high dimensionality of snake robots makes the problem very challenging.

One of the most distinguishing characteristics about Bayesian is that parameters are probability

distributions but not fixed weights. The Bayesian neural network decomposes complicated uncer-

tainty into model misspecification, model uncertainty, and inherent sensing noise. Dropout is a

well-established procedure to regularize a neural network and limit over-fitting [30]. The dropout

as a Bayesian approximation proposes a simple approach to qualify the neural network uncertain-

ty. It employs dropout during both training and testing. It develops a new theoretical framework

casting dropout in deep neural network (NNs) as approximate Bayesian inference in deep Gaus-

sian processes. It mathematically shows that these multiple passes are equivalent to Monte Carlo

sampling. Thus, the first and second moment (mean and variance) provides the network’s output

and uncertainty respectively. The dropout rate is a hyper-parameter that needs to be tuned. A small

dropout rate eliminates the Monte Carlo sampling utility. A big dropout rate can lead to divergence

or at least require more iterations to converge. The key idea is making dropout do the same thing

in both training and testing process: at test time, repeating a few hundreds of times conducting the

same input into the network with random dropout; after that, taking means of prediction. There are

uncertainties not only in the model itself, but also weight too. Dropout provides a new and handy

way to estimate the uncertainty with minimal changes in most existing networks.

1.1.5 Deep Reinforcement Learning

Robotics is still dominated by complex processing stacks. It has potential to gain a revolution

similar as what happened in the area of computer vision recently in which area powerful gradient-

driven end-to-end optimisation can clear a path directly from pixels to torques [33]. Deep Rein-

forcement learning (DRL) becomes a hot research area because it is capable of learning end-to-end

robotic control tasks. However, the current accomplishments have been mostly in simulation, rather

than on actual robots [34] [33]. Little research has been done applying DRL for snake robot control.

Sartoretti et al. [35] proposed to leverage Asynchronous Advantage Actor-Critic (A3C) algorithm,

one low-level agent per body portion, in order to learn decentralized control policies of a snake
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robot. A3C is a popular learning algorithm. It can allow agents to train a stochastic policy rather

than a deterministic one, where the former is more robust to noise and uncertainty. Snake robot

portions can respond independently against local forcing detected by torque sensors. Windows are

anchored between zero curvature points of the serpenoid curve. Consequently, shape parameters in

each window can be updated by a trained agent. The A3C meta-agent represents the whole robot,

while the low-level worker agents act as the window, each selecting local adaptation with the en-

vironment. The state space is defined by 7-tuple ηi(t) = ⟨τ(t), βi(t)T, µext( j, t)T, βT
0 ⟩, where τ is a

normalized phase of the serpenoid’s wave, β j the current shape parameters of window j, µext the

external torque readings, β0 the nominal value. An action is defined as a 2-tuple a = ⟨aA, aω⟩ with

aA ∈ {− △A, 0,+ △A}, and aω ∈ {− △ω, 0,+ △ω}. At the end of each episode, each worker updates

the global network and then collects the new state of the global weights. An entropy-based loss

function is used to update the policy. An off-policy is exploited to train the agents by replaying

experiences.

Several problems remain open for the reported method: 1) Although different agents share a

common meta-agent during training, reinforcement learning methods such as A3C algorithm es-

sentially only exploit multiple agents to speed up the learning. In other words, there is no explicit

modeling of interactions among these agents. If each window has only one joint, then the modules

of the snake robot will become completely independent and thus lose the serpenoid gait; 2) Because

of the limitations of experience replay, the snake robot can only change its gait based on the training

samples. Namely, it may fail in an unseen situation. 3) The initialization state is very sensitive and

must be learned. It suffers from error propagation problem since all portions are independent. In

case the serpenoid wave is broken, the robot can not recover the gait.

Although being a very promising research direction, reinforcement learning for robotics still

faces many challenges. Firstly, existing DRL research has made a lot of efforts to solve the prob-

lems which are analytically intractable by different estimation algorithms and data-driven methods.

Nevertheless, it is usually impractical to make the assumption that the state can be completely ob-

servable. Moreover, observations are commonly noisy due to disturbance and inherent physical

constraints in robotics. Keeping the environmental state containing raw observations and uncer-
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tainty on its estimates is usually necessary [33]. Moreover, exponentially increasing computation

demands more data to cover the complete search of state-action space as the number of dimensions

grows. Therefore, how to achieve efficient training with less samples is critical for the success-

ful applications of DRL in robot control. Furthermore, robotic systems often need to handle the

high dimensionality of states and actions because of the many degrees of freedom in most modern

robots, which gives another challenge for the use of reinforcement learning in robotics. Finally, al-

though model-based methods have potential to alleviate the above problems, designing a sufficiently

accurate model of the robot and its surroundings is also challenging due to complex mechanical in-

teractions, which is difficult to be estimated accurately. Even minor model errors may make the

simulated robot diverge far from the real-world physical system rapidly because of the accumula-

tion of errors. When a control policy is learned by using an inaccurate forward model, its behavior

can not be easily transferred without significant modifications.

1.2 Main Contributions

This thesis mainly comprises four fundamental contributions to the objectives:

The first is a coherent and systematic set of formulations using graphical model theory and

Bayes rule to analyze the interaction and collaboration among multiple snake robot links and exter-

nal objects. These formulations lead to Bayesian conditional density propagation rules and mean-

ingful probability densities which can be easily interpreted and modeled.

The second contribution is different mechanisms to decouple the model for a deeper investiga-

tion. Specifically, three different controllers with a centralized state representation, a dynamically

decoupled interaction handling scheme and a fully distributed structure, are studied respectively.

The third contribution is that different likelihood and interaction models are proposed to es-

timate the probability densities within various implementations. Most of them do not need any

explicit analytical form and can be implemented easily without prior knowledge.

The fourth contribution is that we apply the Bayesian model into reinforcement learning and

propose two coach-based approaches which greatly expedite the training process. It reflects our
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Figure 1.6. Bayesian network for a six-modular snake robot.

preliminary efforts to merge the learning theory with computationally efficient Bayesian framework

together.

The proposed Bayesian framework may not only be used as a controller directly but also play

an important role to improve the performance for other state-of-the-art control methods of snake

robots.

1.3 Overview

1.3.1 Definitions and Symbols

We use a Bayesian network [1] as shown in Fig. 1.6 to model a snake robot with six links,

which has two kinds of nodes: circle nodes in the hidden state layer and square nodes inside obser-

vation layer. Each circle node represents a snake robot link. The undirected edges indicate physical

correlations among snake robot links. Each individual state has its observation, where the directed

edge between two parties represents the local observation likelihood.

Different snake robot models [9] can be used for gait control. We choose the serpenoid curve [5]

in this work,

θl
t = Al

tsin(ωt + lβ) + γl
t, (1.11)

where θl
t is the joint angle for actuator l at time t, Al

t the corresponding amplitude, ω the temporal

frequency determining the wave’s moving speed, β the phase, γl
t the corresponding angular offset,

l = 1, . . . , L the link index of a snake robot, L is the total number. The link state is chosen as
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Figure 1.7. Dynamic Bayesian network controller

xl
t = (Al

t, γ
l
t) for simplicity though other parameters such as velocity, acceleration, torque, could

be included if needed. When these parameters are changing, different shapes would be generated.

Moreover, we denote the observation of xt by qt.

Control problem of a robot can be described by a graphical model such as Fig. 1.7 [25]. The

circle nodes represent the state sequence {xt, t = 0, 1, . . .} of a robot where t is the time index. The

nodes {qt, t = 1, 2, . . .} represent the observations. The nodes {ot, t = 1, 2, . . .} represent inputs.

In this work, they are referred to as interactions from environmental objects such at obstacles and

targets. The directed edges between states characterize the system dynamics p(xt|x0:t−1) (or called

state transition). The directed edges between the state and the associated input characterize the

likelihood p(ot|xt+1). We use x0:t, q1:t and o1:t to represent the set of states, observations, and

inputs up to time t individually, where x0 is the initialization prior. Two general assumptions are

usually made. The first is that the robot dynamics form a temporal first-order Markov chain, so

that p(xt|x1:t−1) = p(xt|xt−1). The second is that observation qt is assumed to be independent both

mutually and with respect to the dynamical process, namely, p(qt|x0:t) = p(qt|xt). The objective of

control is to predict the posterior density based on the set of all available inputs and observations.

The parameters of a Bayesian network might be inferred, or a training algorithm may be used.

In order to keep the serpenoid shape [5] for the snake robot, a joint state representation can

be usually adopted as Xt = (x1
t , . . . , x

l
t, . . . , x

L
t ). It encodes the hidden information of the whole
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snake robot body. Qt = (q1
t , . . . ,q

l
t . . . , q

L
t ) denotes the set of observations of all robot links at

time t. Ot denotes the set of all interacted environmental objects for the whole body of snake

robot at time t. Moreover, the set of all history states up to time t is denoted by X0:t where X0 is

the initialization prior. Similarly, we define the group of all observations as Q1:t, the group of all

interacted environmental objects by O0:t and O0 is the initialization prior.

1.3.2 Outline of This Thesis

The purpose of this research is to develop robust Bayesian controllers for the locomotion of a

snake-like robot in cluttered scenes. The contents of this thesis are organized as follows.

Chapter 2 introduces a simulation platform and a designed snake-like robot JAW-I for real-world

experiments. The hardware specification and software description are all provided. The proposed

control algorithms in the following chapters were verified by the simulator and physical testing

using the snake robot JAW-I.

Chapter 3 outlines a centralized Bayesian solution for snake robot control. Different with the

existing shape-based compliant control, it puts the control problem inside a statistical field. Specif-

ically, it gives an explicit mathematical Bayesian derivation. A sequential density update rule is

presented. Several probability densities with different physical meanings have been unified in a

consistent framework. In particular, we propose two input influence densities, which simulates

the cumulative effect of various external forces that the snake robot undergoes. Moreover, the ob-

servation likelihood model is used to provide an effective closed-loop feedback. The proposed

approach give an innovative way to handle challenging tasks of snake robot control in complicated

environment handling uncertainties in a unified Bayesian framework. The performance has been

demonstrated on both simulation and real-world data.

Chapter 4 presents a method which avoids the common practice of using a complex fully cou-

pled snake robot model and performing kinematics and dynamics analysis for control in cluttered

environments. Instead, we introduce a dynamically decoupled Bayesian formulation with respect

to interacted snake robot links and environmental objects, which requires much lower complexity
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for efficient and robust control. When a snake robot does not interact with obstacles, it runs by a

simple serpenoid controller with centralized state propagation. When it exhibits interaction with

environments, defined as close proximity or collision with targets and/or obstacles, we extend the

conventional Bayesian framework by modeling such interactions in terms of stimuli. The proposed

“multi-neural-stimulus function” represents the cumulative effect of both external environmental

influences and internal constraints of the snake robot. It implicitly handles the “unexpected colli-

sion” problem and thus solve the difficult data association and shape adjustment problems for snake

robot control in an innovative way. Preliminary experimental results have demonstrated promising

performance of the proposed method comparing with the state-of-the-art.

Chapter 5 describes a fully distributed Bayesian framework which can greatly reduce the com-

putation complexity by exploiting efficient parallel computing. Different with the centralized frame-

work which uses a definition of high dimensional state and thus faces exponentially increased com-

putational cost with link number, this decentralized solution adopts multiple controllers, one for

each robot link, simultaneously. Some decentralized control solutions have been reported, for ex-

ample, using central pattern generators. However, it still lacks enough studies of the dynamical

correlation among snake links as well as environmental interactions. The proposed approach has

several major contributions: 1) A novel graphical model is presented to set up the snake robot con-

trol problem; 2) A completely distributed probabilistic updating rule is derived mathematically for

each robot link within a stochastic process, where the uncertainty has been covered and simulated;

3) An inter-link likelihood and a link-based environmental input function are introduced to simulate

the interaction among snake robot links and with environmental objects. Superior performance has

shown validity of the proposed method on both simulations and real world tests.

Chapter 6 presents a centralized coach-based method for snake robot control using Bayesian

analysis, which successfully combine the advantages of both stochastic density propagation analy-

sis and reinforcement learning. It can effectively expedite the training speed with much less episodes

than existing methods. The main contributions of the proposed method include: 1) a unified graph-

ical model for Bayesian analysis, which combines a coach layer to guide the RL agent, embedding

prior knowledge and handling uncertainty in model parameters; 2) an explicit stochastic formu-
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lation of robot-environment interaction with different uncertainties; 3) an efficient and effective

learning process for snake robot control, which can make the path planning and obstacle avoidance

simultaneously. The proposed probabilistic dynamics model allows the agents to consider transi-

tion uncertainty throughout planning and prediction, greatly improving the data efficiency. We have

reported both simulation and real-world experimental results comparing with state-of-the-art.

Chapter 7 extends the coach-based reinforcement learning control framework by exploiting a

distributed architecture, which has been demonstrated in providing more complexity during the

interaction handling. It can further expedite the training convergence speed by using parallel com-

puting. The advantage of distributed topological structure is successfully combined in a coherent

formulation with RL. Simulation results have shown the promising performance.

Finally, in chapter 8, a full discussion and comparison of the proposed methods is given. After

that, conclusion of the thesis as well as an outline of some promising future research are provided

in chapter 9.
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Chapter 2

Simulation and Experimental Platform

The goal of this research is to propose robust Bayesian controllers for a snake-like robot. To

verify the control systems, simulation and physical experiment platforms are necessary. Therefore,

a 3-D virtual dynamic simulation environment has been developed. For physical experiment, a

snake-like robot, JAW-I, is designed to verify the proposed controllers.

2.1 V-REP Based Simulation Setup

To verify the proposed control approaches, a simulator has been developed in Virtual Robot

Experimentation Platform (V-REP) [36]. V-REP is a versatile and scalable robot simulation frame-

Figure 2.1. The used ACM-R5 robot and simulation scenario in V-REP.
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Table 2.1. Physical parameters of the simulated robot

Number of joints 8

Size of link (mm) 124 × 139 × 201

Mass of link (g) 300

Moment of inertia (kgm2) 1.612 × 10−3

Max torque (Nm) 10

Joint angle (deg) [−90, 90]

work. Specifically, we used ACM-R5 snake robot as shown in Fig. 2.1, which is composed of 8

joints. The physical parameters used are given in Table 2.1. The anisotropy in friction is achieved

by equipping passive wheels on each link. The time step is set to be 10ms. Instead of using torque as

input, we calculated the angle of each joint that is realized by the controller. 20 cylinder obstacles

were set inside a 5m × 5m scene. Two sensors including a camera and LiDAR are used to give

observations. The camera provides bird-view RGB images, which can be represented by a tensor

of R128×128×3. For the LiDAR, we project the point cloud to the ground plan getting a 2D image

represented by a tensor of R128×128×3. These two sensors can provide complementary information.

LiDAR point clouds can give accurate spatial information of target and obstacles in 360 degrees of

view while the bird-view camera image of each robot link is good at providing information of the

local surroundings.

2.2 Experimental Platform - JAW-I

2.2.1 Physical Prototype

The overview of designed snake robot JAW-I is shown in Fig. 2.2. Similar as the robot model

reported in [37], it has six actuators chained together in a serial configuration. The links are com-

posed of 3D-printed connection blocks and separated by DYNAMIXEL XL430-W250 servo motors

(manufactured by ROBOTIS Inc., Seoul, South Korea). For simplicity, only yaw joints rotating on

a vertical axis between adjacent links are adopted in the tests. Therefore, the snake-like robot can
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Figure 2.2. Overview and mechanical structure of the snake robot JAW-I for real-world tests.

Table 2.2. Mechanical specifications of the snake robot JAW-I

Items Details

Number of joints 6

Link Size(mm3) 75 × 35 × 65

Weight of link (g) 72

Motion range of yaw angle (deg) [-180, +180]

Width of wheel (mm) 9

Radius of wheel (mm) 11

Weight of wheel (g) 25

Figure 2.3. The experimental setup for real-world testing.
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move on a two-dimensional horizontal plane. Labels of different colors are used to indicate links.

Specifically, yellow for robot head and green for body. A single free wheel with a rubber cover is

mounted at the bottom of each link to realize asymmetric friction in normal and tangential direc-

tions. Suspension mechanisms by compression coil springs are mounted at the bottom of each link.

The specifications of the robot are shown in Table 2.2.

2.2.2 Control System

The control system design of the snake-like robot JAW-I is shown in Fig. 2.3. The robot

is controlled by signals sent from a Linux computer through an RS-485 communication module.

Similar as [2] [15], an overhead camera is used to monitor the scene, providing observations for

each robot link. Tags of different colors are used to label objects, specifically, red for targets, blue

for obstacles. A Convolutional-Neural-Network learning based video detector [38] was exploited to

estimate the object position and robot link’s shape variation in real time. Consequently, the stimulus

density and measurement likelihood could be dynamically calculated.

2.3 Summary

In this chapter, we introduced the design of the simulation and experimental platform. The mo-

tion of a snake robot can be simulated in an virtual dynamical environment V-REP. A sensor-driven

snake robot JAW-I is implemented to perform desired serpenoid locomotion in unstructured scenar-

ios. In the following chapters, the proposed controllers will be verified by the designed simulator

and the physical snake-like robot JAW-I on the real-world data.
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Chapter 3

Stochastic Centralized Bayesian Control

A snake robot is characterized by features of a redundant structure, multiple joints, and a modu-

lar framework that enable a wide range of locomotion patterns and adaptation to environment. Such

kind of characteristics makes snake-like robot control a challenging task in practical applications.

A natural and widely adopted choice is based on a centralized solution which regards the articulated

snake robot as a whole. The global controller can coordinate the multiple links together presenting

rhythmic gait. However, due to the uncertainty incurred by noisy perceptions, unknown environ-

ments, and dynamical collisions, robust control of snake robots is still an open problem. In this

chapter, we discuss this issue and investigate the snake robot control in a stochastic domain.

Comprehensive surveys on existing methods of snake robot control can be found in [11] [12]

[39]. For snake robot applications, sophisticated control mechanisms, such as model-based ap-

proaches [13] and Central Pattern Generators (CPG) [12] were used. Nevertheless, when snake

robots move in unstructured terrain or collide with barriers, these approaches are prone to failure.

The movement of snake robots using contact with objects as an aid has been examined by several

studies. In [40], Transeth et al. present a hybrid model based on robot dynamics and the contac-

t force with obstacles. Obstacle-assisted snake robot approaches often depend on assumptions of

precise sensing and modeling, in which the convexity and number of friction models are often pre-

determined. These assumptions restrict their applications in unstructured terrains, since it is usually

difficult to predict and hard to model the constraints. Some study investigates approaches of neural
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networks [12] to model the interaction mechanism of biological snakes with objects and utilizes ma-

chine learning approaches [12]. Obstacle avoidance for snake robots has been addressed in different

ways. A neurally controlled steering strategy for a snake robot’s collision-free behavior is present-

ed in [41]. Tanaka et al. [13] studied self-collision avoidance and provided a range-sensor-based

technique to achieve whole body collision avoidance semi-autonomously. A shape-based compliant

controller [14] [15] has recently been used to provide a computationally efficient method to snake

robots that addresses various challenges associated with this complex work. Even if these methods

can handle external interactions in theory, they requires accurate measurement of torques or forces,

as well as a nice evaluation of the controller’s gain matrices, which confines their application, par-

ticularly in unknown complex environments, in which the dynamics are changing and difficult to

model reliably.

The majority of known controllers, such as those in [15], are deterministic. However, determin-

istic mathematical modeling of robotic systems is often inaccurate due to different kinds of uncer-

tainties, say, sensor noise, input disturbance, a discrepancy between control signals and mechanical

actuations, vagueness, and model incompleteness etc. Because deterministic simulation of system

dynamics is often inaccurate, a statistical technique is required to approximate unknown parameters

and assess their accuracy. To tackle stochastic situations, Kalman filtering is widely utilized [18].

The Kalman filter was used by Rollinson et al. [19] to estimate states of snake robots. Traditional

Kalman filters, however, assume a Gaussian noise distribution, which is not valid in many cases.

For various aspects of dynamic robot systems such as control and navigation, advanced statistical

approaches such as Bayesian network [1] have been examined. As far as we know, nonetheless, not

quite enough work has been done using Bayesian network in stochastic field for snake robots.

We present a Bayesian network-based snake robot controller in this chapter. Some state-of-the-

art techniques are unified into a coherent formulation. In particular, we deduce an unique conditional

density propagation strategy for snake robot control in unstructured environment with disturbances.

Furthermore, we explicitly cope with shape variation and obstacle interaction issues in a unique

style by calculating observation probability, the input influence density, and state transition in a

sequential importance sampling process.

23



3.1 Methodology of the Centralized Framework

A novel Bayesian formulation for snake robot control is presented next in this section. First, a

brief overview of shape-based compliant control is provided.

3.1.1 Shape-Based Compliant Control

Shape-based compliant control uses an admittance controller to adjust the snake robot’s shape

parameters by the external torques Ft [15]. If βt = (At, γt)T is defined, in which A and γ are the

amplitude and angular offset respectively in the serpenoid curve model [5], the compliant controller

is defined by

Mβ̈t + Bβ̇t + Kβt = Ft, (3.1)

in which M,B,K ∈ R2×2 respectively denote the effective mass, damping, and spring constant

matrices. This technique may appropriately adjust the snake robot’s body in response to obstacles

by incorporating the serpenoid model into the shape function and tuning the parameters of the

aforementioned controller.

There are still a few challenges ahead for this controller: 1) M,B and K, the optimal gain ma-

trices of a snake robot are usually hard to determine; 2) External torque Ft is difficult to accurately

measure during collisions because it varies in magnitude, angle, direction and so on; 3) It lacks an

observer design, despite the fact that the external force may alter the snake robot’s posture implic-

itly. Thus, it’s hard to precisely approximate the controller state. To this end, we suggest a more

sophisticated shape-based control mechanism.

3.1.2 Shape-Based Bayesian Network Modeling

In this chapter, a joint state representation is adopted as Xt = (x1
t , . . . , x

l
t, . . . , x

L
t ) for snake robot

representation where the link state is chosen as xl
t = (Al

t, γ
l
t) by the serpenoid curve. Considering

the locomotion problem, a dynamical Bayesian network as shown in Fig. 3.1 is used. In this

figure, states of the whole body of the snake robot are denoted by circle nodes, the corresponding

observations are represented by square nodes. Totally three consecutive time frames are shown.
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Figure 3.1. Dynamical modeling of snake robot locomotion.

The state transition that is assumed to be a Markov chain, is denoted by an arrow between adjacent

states. We used an additional layer to indicate the input Ot, which represents obstacles and targets

in the environment during interaction. From Fig. 3.1, we can derive the Markov Properties, or,

conditional independence properties as below, by using the Separation Theorem [1].

p(Ot|O0:t−1,X0:t+1,Q1:t) = p(Ot|Xt+1,Xt) (3.2a)

p(Qt|O0:t−1,X0:t+1,Q1:t−1) = p(Qt|Xt) (3.2b)

p(Xt+1|O0:t−1,X0:t) = p(Xt+1|Xt) (3.2c)

3.1.3 Bayesian Conditional Density Propagation

In comparison with Kalman filters and difference equations, the dynamic Bayesian network

derived above has the benefit for statistical investigation. In particular, It offers much modeling

flexibility for stochastic processes. A prediction issue is studied in our work to design a controller.

All the history of evolution of uncertainties is captured by p(O0:t,X0:t+1|Q1:t), the joint posterior,

which is derived to achieve the prediction.
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p(O0:t,X0:t+1|Q1:t)

= p(Ot|O0:t−1,X0:t+1,Q1:t)p(O0:t−1,X0:t+1|Q1:t) (3.3)

= p(Ot|Xt+1,Xt)p(O0:t−1,X0:t+1|Q1:t) (3.4)

=
p(Ot|Xt+1,Xt)p(Qt|O0:t−1,X0:t+1,Q1:t−1)

p(Qt|Q1:t−1)
p(O0:t−1,X0:t+1|Q1:t−1) (3.5)

=
p(Ot|Xt+1,Xt)p(Qt|Xt)p(Xt+1|O0:t−1,X0:t)

p(Qt|Q1:t−1)
p(O0:t−1,X0:t|Q1:t−1) (3.6)

=
p(Ot|Xt+1,Xt)p(Qt|Xt)p(Xt+1|Xt)

p(Qt|Q1:t−1)
p(O0:t−1,X0:t|Q1:t−1) (3.7)

= ctp(Ot|Xt+1,Xt)p(Qt|Xt)p(Xt+1|Xt)p(O0:t−1,X0:t|Q1:t−1). (3.8)

We applied the Markov property (3.2a) in eq. (3.4). The Markov property (3.2b) is also used in

eq. (3.6). The property (3.2c) is applied in eq. (3.7). We take the denominator as a normalization

constant in eq. (3.7), because this item does not contain states.

The interactions between the robot and the environment is explicitly simulated by the stochastic

Bayesian formulation above. We can see that four factors regulate the posterior at time t: (1)

the input influence density p(Ot|Xt+1,Xt); (2) the observation likelihood p(Qt|Xt); (3) the state

transition density p(Xt+1|Xt); (4) the posterior p(O0:t−1,X0:t|Q1:t−1) at the previous time t − 1.

3.2 Density Modeling and Sequential Importance Sampling Imple-

mentation

The sequential importance sampling (SIS) [42] is adopted as a paradigm to approximate the pos-

terior obtained above. The underlying concept of SIS approximation [42] is to manage a weighted

sample set {Xn
0:t,w

n
t }

Ns
n=1 to approximate the posterior density, in which {Xn

0:t, n = 1, . . . ,ns, . . . ,Ns}

are the samples, {wn
t ,n = 1, . . . , ns, . . . ,Ns} the normalized weights associated, and

∑
n wn

t = 1.

Based on the importance sampling theory [42], the samples Xn
0:t can be produced from an impor-

tance density f (·) with associated importance weights:

wn
t ∝

p(O0:t,Xn
0:t+1|Q1:t)

f (·) . (3.9)
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As to the sequential case, if the importance density f (·) is factorized as,

f (O0:t,X0:t+1|Q1:t)

= f (Ot,Xt+1|O0:t−1,X0:t,Q1:t) f (O0:t−1,X0:t|Q1:t)

= f (Ot,Xt+1|Xt) f (O0:t−1,X0:t|Q1:t−1). (3.10)

where the Markov properties f (O0:t−1,X0:t|Q1:t) = f (O0:t−1,X0:t|Q1:t−1) and

f (Ot,Xt+1|O0:t−1,X0:t,Q1:t) = f (Ot,Xt+1|Xt) from Fig. 3.1 are applied. Then by substituting eq.

(3.8) and eq. (3.10) into eq. (3.9), we have

wn
t ∝ wn

t−1

p(Ot|Xn
t+1,X

n
t )p(Qt|Xn

t )p(Xn
t+1|Xn

t )

f (·) . (3.11)

We can approximate the dynamics p(Xt+1|Xt) by applying a random walk model. How to estimate

the input influence density p(Ot|Xt+1,Xt), the observation likelihood p(Qt|Xt) and the choice of the

importance density f (Ot,Xt+1|Xt) are critical and will be developed next.

3.2.1 Input Influence Model

The interaction between environmental inputs and predicted state is modeled by p(Ot|Xt+1,Xt),

the input influence density. The approximation of this probability is very important in different

applications. An Artificial Potential Field (APF) method was adopted to model snake robot loco-

motion in [43]. This inspired us to develop two efficient input influence models to manage obstacle

interaction and target searching. The two interactions are regarded as independent, therefore,

p(Ot|Xt+1,Xt) = p(Oa,t|Xt+1,Xt)p(Or,t|Xt+1,Xt) (3.12)

in which p(Oa,t|Xt+1,Xt) formulates the influence by virtual attraction force from the goal,

p(Or,t|Xt+1,Xt) models influence of the accumulative repulsion force resulted from obstacles. We

formulate the probability densities as below.
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Target Influence Model

The objective of a goal searching task is to arrive at the target as soon as possible. Thus, we use

an attraction potential model to instruct the robot to explore the optimal route [43]. Meanwhile, the

attraction potential function for sample Xn
t+1 can be calculated by

p(Oa,t|Xn
t+1,X

n
t ) =

1
αa

exp

−d2
a,n,t

σ2
a

 (3.13)

in which αa is a constant, σa is a prior constant characterizing the maximal distance of attraction.

da,n,t represents the distance of the robot and the goal. For example, it can be an Euclidean distance

da,n,t = ∥Oa,t−∆Xn
t+1∥, where∆Xn

t+1 = Xn
t+1−Xn

t . The target is static in the original APF model [43].

However, the goal in our model can be movable during the locomotion of the robot.

Obstacle Influence Model

[43] used a repulsive potential model to control snake robot. In a similar way, for sample Xn
t+1,

the repulsive potential function is represented by

p(Or,t|Xn
t+1,X

n
t ) = 1 − 1

αr
exp

−d2
r,n,t

σ2
r

 (3.14)

in which αr denotes a normalization constant, σr indicates a prior constant representing the

maximal effective repulsive distance, dr,n,t indiates the distance between the obstacle Or,t and

Xn
t+1, for instance, we can use an Euclidean distance to measure dr,n,t = ∥Or,t − ∆Xn

t+1∥ where

∆Xn
t+1 = Xn

t+1 − Xn
t . Comparing with the conventional APF approach in [43], in which all obsta-

cles are handled together, We only consider neighboring obstacles according to necessities of the

sample Xn
t+1. In this way, the model is more practical for real applications because the distributions

and whole number of obstacles are difficult to predetermine and may be subject to dynamic vary-

ing. Furthermore, such a mechanism is also effective to tackle the issue of local optimum when the

potential field is calculated, because we only take neighbouring obstacles into account.

During the locomotion in an unstructured terrain, the snake robot moves in a region with po-

tentials resulted from obstacles and the target. An instance of an input influence potential field for
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Figure 3.2. The input influence potential field with obstacles and one target.

a cluttered environment, is shown in Fig. 3.2. As shown, it seems to be a large slope, in which

the goal is at the bottom. The influence of objects is local, and target attraction influence is global.

Every obstacle functions like a hill. And the robot locomotion is like traversing over a hilly area

to arrive at the goal. Instead of being static, the potential field gets dynamically updated during the

whole navigation.

3.2.2 Measurement Likelihood Model

Thanks to the embedded serpenoid function, the robot is able to produce rhythmic gaits and

locomote with state transitions. Benefiting from these interaction functions, the robot can make

responses, vary its state and shape in unstructured environment. Nevertheless, the robot would

be lack of state estimation and have low reliability if there is no design for observer. We use the

observation likelihood density p(Qt|Xt) to approximate the uncertainties between the robot’s state

and its observation. This density is used as a feedback to handle the above issues. Modeling this

probability density is challenging and very important. We got inspired by the nice shape variation of

real snakes when they locomote in complex environment. A biological snake is aware of its internal

shape and would make body deformation smoothly. This is why it seldom overreacts when making

swift transient deformation in response to external perturbations. The objective of an effective
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observation feedback model should be similar to those observed in the biological snakes, which can

be obtained by an observation likelihood function for sample Xn
t ,

p(Qt|Xn
t ) =

1
αm

exp

−d2
m,n,t

σ2
m

 (3.15)

where αm indicates a normalization constant, σm indicates a prior constant characterizing the max-

imal effective distance, dm,n,t represents the distance between Xn
t+1 and the corresponding observa-

tion Qt, for example, a Bhattacharyya distance is accepted in our implementation. This model offers

the system the ability of simulating biological snakes’ shape deformation when making responses

to environmental disturbances.

In conclusion, the proposed mechanism can accomplish robust snake robot control due to the

factors: 1) The serpenoid curve model guarantees the snake robot moving in a rhythmic pattern; 2)

The state transition density introduces motion randomness and thus endows the robot’s locomotion

with more possibilities; 3) The input influence incurs shape deformation and motion variation; 4)

The observation likelihood provides a closed-loop feedback and thus retains the transformation in

a fast and smooth way. All these four reasons are necessary to achieve a robust control for snake

robots. When no obstacle or target appears, the input influence density will be uniformly distributed.

The controller will be degraded to a serpenoid model, if the state transition also adopts a uniform

distribution.

3.2.3 Importance Density

The efficiency of a sequential importance sampling based approach highly relates with the se-

lected importance density f (·). When f (·) is close to the true posterior, the samples become more

effective. A natural choice of the importance density is the state dynamics p(Xt+1|Xt). In our im-

plementation, we use this choice for simplicity.
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Table 3.1. Brief description of CenBC algorithm

◦ j = 0, Sampling Xn
t+1 from f (Ot,Xt+1|Xt)

◦ Initial Weighting, wn
t+1 ∼ Xn

t+1

◦ Initial Prediction, X̂t+1, j=
∑Ns

n=1 wn
t+1 · X

n
t+1

◦ Loop j = 1 : J # Re-sampling Scheme

− Input Influence Weighting, p1(·)

− Measurement Likelihood Weighting, p2(·)

− Updating Weights, wn
t+1 = wn

t+1 · p1(·) · p2(·)

− Normalizing Weights

− Updating Predication, X̂t+1, j=
∑Ns

n=1 wn
t+1 · X

n
t+1

◦ End Loop j

3.3 Experimental Results

The proposed Centralized Bayesian Controller (CenBC) was compared with the Shape-based

Compliant Controller (SCC) [15] on both simulation and real world data. Table 3.1 presents a brief

description of the proposed algorithm for one time slot. Five hundred samples were used to predict

the joint state density in our experiments.

3.3.1 Simulation Results

We designed a simulation in Matlab for a thorough comparison. Fig. 3.3 shows the experimen-

tal scenario with one target and thirteen obstacles, which are all randomly arranged. A potential

field is generated by calculating the proposed input influence models. Although sharing similarities

with APF [43], we only consider the obstacle in the neighbor of the snake robot during the locomo-

tion. By doing this, the local optimum problem commonly annoying APF-type methods could be

successfully avoided. Three trajectories are illustrated in Fig. 3.3. The blue dash curve is generated
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Figure 3.3. Comparison of simulation results using CenBC (black) and SCC (blue).

by the head of a snake robot using SCC. The white solid curve shows the results of CenBC. The

black solid curve is an optimal path computed by a gradient-descent algorithm based on the input

influence potential field. In experiments, we find that the performance of SCC is sensitive to the

initialization status. Different initial direction and position may lead to various trajectories. As illus-

trated in Fig. 3.3, the SCC method falsely misses the target direction in the middle and runs outside

the field. Although the external forces are partially modeled, the collision is still uncontrollable

in terms of contacting direction, degree, and the phase of snake robot’s serpenoid gait. However,

benefiting from the closed-loop design, CenBC can achieve much more robust performance. As

long as the target can be detected, the snake robot tends to move for it. When it approaches to

an obstacle, the effect of repulsion force will be triggered. The sample close to the obstacle will

have a smaller weight while the sample away to the obstacle will be given a larger weight. Such a

reward-far-punish-close scheme will deform the snake robot’s shape and motion curve.

Fig. 3.4 shows the RMSE of SCC and CenBC on ten tests with the same target and similar

initial position. The curves are calculated by computing summation of the difference between each

method’s trajectory and the optimal path. It can be seen that CenBC is more robust. The errors

of CenBC are caused by three factors: 1) Due to the different initial status, it may need an adjust-

ment process at the beginning; 2) The uncertainty may cause a bias during sharp turnings; 3) The
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Figure 3.4. Comparison of Root-Mean-Square-Error (RMSE) using CenBC and SCC methods.

environmental friction and interference may further generate additional deviations. These kinds of

uncertainties are all unpredictable in the real-world applications but need to be considered. This is

why a stochastic framework like the proposed CenBC is desirable.

3.3.2 Real-World Data

The snake-like robot JAW-I is used to test the performance of the proposed CenBC. A learning

based video detector was exploited to find the position of these objects in real-time. Then, the

input influence density and observation likelihood could be dynamically calculated, specifically,

observation Qt was estimated by a link model [12] between centers of adjacent links.

Fig. 3.5 illustrates the performance using both SCC and the proposed CenBC in a real-world

test, where one target and more than twenty obstacles are randomly set in the scene. It challenges

many algorithms because of the presence of moving targets and obstacles. SCC (1st row) suffered

from the unexpected collision problem during the interaction with obstacles. The reason is mainly

because of the complexity of environmental interactions. For example, the friction situation, colli-

sion angle, and strength of contacting force are all not handled explicitly in the controller. In the

experiments, we found that the controller was sensitive to the initial pose. Moreover, although the

shape was deformed by portions, it could not respond to moving obstacles in time due to lack of
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Figure 3.5. Performance comparison of SCC and CenBC for unstructured environments.

a closed-loop design. Furthermore, without a target influence model, it usually missed the desir-

able direction after spontaneous collision with obstacles and finally went out of the scene quickly.

However, the proposed CenBC (2nd row) performed superiorly even with moving obstacles and tar-

gets. In most situations with different initialization status, the proposed CenBC method presented

an impressive performance. Although a joint state space is adopted, the snake robot’s shape is not

exclusively changed as a whole. On the contrary, different portions can be flexibly stimulated by

external inputs similar as [4]. Specifically, due to the various position along a snake robot, each link

may receive different interaction forces even when reaching to the same obstacle. In such a situation,

the distances defined in input influence models are quite different among individual links and thus

play an important role to change the snake robot’s shape. Thus, the proposed framework endows

the entire body with a particular ability to deform locally by environmental features. Compared

with the deterministic controller such as SCC, the snake robot’s locomotion using CenBC is more

active and agile. The reason may be the stochastic modeling inherent in the non-Gaussian density

propagation. Benefiting from keeping multi-hypotheses of both motion and shape variations, the

snake robot can respond to instant moving target and obstacles quickly.
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3.4 Summary

In this chapter, a centralized Bayesian control framework has been proposed for a snake-like

robot. It models the interaction with environmental objects using probability density propagation.

two input influence densities are proposed to model the cumulative effect of various external forces

that the snake robot undergoes. Moreover, the observation likelihood model is exploited to give a

more robust closed-loop feedback. Preliminary experimental results have demonstrated promising

performance in unstructured circumstances.
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Chapter 4

Dynamically Decoupled Bayesian

Control

Snake robot locomotion in a cluttered environment introduces additional challenges beyond the

uncertainty problem in the previous chapter. It is a complicated and computationally expensive task

because the motion model is discontinuous due to the frequent physical contact with obstacles, and

the contact force cannot be determined solely by contact positions. Moreover, the highly redundant

structure with a large number of DOFs makes control and navigation further difficult. [12]. In these

scenarios, how to dynamically model the high-level gait-based interactions inside a snake robot and

the low-level interactions between the robot link and environmental objects is important for snake

robot control. In this chapter, we regard the snake robot as a hierarchical articulated entity, which

has both global gaits and local adaptability simultaneously.

Many approaches have been studied to circumvent the problems inherent in snake robot control.

Cao et al. proposed an adaptive path following scheme to control a three dimensional snake robot

to navigate along certain paths [44]. However, these approaches usually fail when a snake robot

moves in unstructured environment or presents collisions with obstacles. In these circumstances,

modeling surrounding interactions and shape adjustments are the most critical problems. Without an

effective scheme to model the interaction between the robot and neighboring conditions, and solve

shape variation problem, conventional control of snake robots commonly suffers from “unexpected
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collision” problem, where the robot contacts with obstructions either undesirably in an obstacle-free

behavior or by unwanted direction, false angle or unsuitable torque in obstacle-aided situations.

Most existing methods rely on accurate modeling and sensing assumptions, which limit their

performance in unstructured environments where constraints commonly are hard to foreknow and

difficult to model [45] [46] [47]. Several studies [48] began to examine semi-autonomous collision

avoidance of a snake robot based on range sensor data. Bayes filters have been studied by Thrun

et al. for probabilistic robotics in [49]. Yu et al. proposed a Bayesian method to acquire the

estimation of human impedance and motion intention in a human-robot collaborative task [50]. A

Bayesian framework for the active multi-modal perception of 3D structure and motion is presented

by Ferreira et al. in [51]. Nevertheless, snake robot control with Bayesian filtering has not been fully

investigated, especially for the interaction with environments. In [2], we introduced a shape-based

Bayesian controller for a snake robot to navigate in cluttered environment, where virtual forces

generated by external objects are modeled.

In this chapter, we propose a dynamically decoupled Bayesian framework for snake robot con-

trol having intensive interaction with environment. Different with conventional Bayes filter [49], it

dynamically splits the interaction with respect to interacted robot links and associated environmen-

tal objects, which effectively decreases model complexity and implicitly handles the “unexpected

collision” problem in an innovative way.

4.1 Methodology of the Decoupled Framework

Next, a probabilistic graphical model (PGM) is presented, and Bayesian formulation for snake

robot control is discussed.

4.1.1 Probabilistic Graphical Modeling

Conventional models of snake robots [5] could not thoroughly handle the dynamic interactions

between the robot and objects in the environment. Recently, researchers have widely adopted prob-

abilistic sequential analysis for control and prediction tasks [52] [53]. A probabilistic graphical

37



Figure 4.1. A PGM for snake robot control having intensive interactions with the environment

model is developed to model the mutual interplay as shown in Fig. 4.1, which has three consecutive

time slices with multiple layers. Environmental object tier (red) is indicated by O, robot hidden state

tier (blue) by X, and observation tier (green)by Q. Fig. 4.1 only illustrates three adjacent modules

and their neighboring obstacles for simplicity. The same type of nodes are grouped and encom-

passed by dashed ellipses. The grouping relationship dynamically changes with the robot’s journey

because of the varied correlation among surrounding objects. In Fig. 4.1, a link model is used to

denote the snake robot, and a circle node x is used to indicate the state of each link. Quadrilateral n-

odes represent the observation q, and Parallelogram nodes in tier O indicate objects in environment.

In Chapter 3, we have defined the joint state representation as Xt = (x1
t , . . . , x

l
t, . . . , x

L
t ). The state

transition is indicated by directed bold edge between consecutive states. This state transition is con-

sidered as a Markov chain [1]. Moreover, their physical constraints are indicated by blue undirected

edges among link states.

Information of an environmental object, for example, size, position, and status relative to a robot

link, can be encoded in node ok
t . Here, k indicates the object index. The set of all environmental

objects that interact with snake robot at time t, is represented by Ot = (o1
t , . . . , o

k
t . . . , o

Kt
t ). The

number of involved objects is Kt, which would vary with the changing environment during the
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Figure 4.2. The probabilistic graphical model for Bayesian analysis. (a) is the clustered model, (b)
the corresponding moralized graph based on Separation Theorem [1].

locomotion. Kt = 0 means that no object is in close approximity, and the robot would move by

itself. The controller estimates Kt dynamically. If two objects interact with the same robot link,

an undirected red edge in between will connect them. That is to say, if obstacles ok
t and ok−1

t are

very close to the same link xl
t, they are deemed as being coupled. Such a relationship list for all the

detected objects is recorded and updated by the controller as time goes by. The stimulus is denoted

by a directed edge from an environmental object to a state. Interactions of this type is also varying

dynamically. For instance, at time t− 1, robot links l and l+ 1 interact with obstacle k, while at time

t, only link l interacts with obstacle k.

State xl
t generates observation ql

t, which could be decoded from LiDAR point cloud or camer-

a images. The local observation likelihood is represented by the directed edge from a state xl
t to

the corresponding ql
t. Since sensors give stochastic noisy measurement and environmental interac-

tions have disturbances, we can only partially observe links’ state. This also accounts for why we

formulate snake robot control with uncertainties as a stochastic problem with noisy observations.

The proposed model has the following differences in comparison with the existing approach

[49]: i) a new tier which encodes hidden environmental information; ii) an innovative scheme to

handle dynamically correlations among environmental objects; iii) a deeper investigation of link-

level interactions between robot modules and environmental objects.

A two-step solution is adopted for further analysis: we derive a clustered Bayesian formulation

for the whole robot; next, we use an innovative decoupling algorithm to deeply investigate various

interactions.
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4.1.2 Clustered Bayesian Formulation

It is problematic when conventional Bayes filters [25] [49] are directly applied for snake robot

control, because interactions with the environment are not handled well, particularly on link level

of snake robots. To obtain clear description of the proposed Bayesian framework, details of internal

nodes and edges within each ellipse group can be temporarily ignored, and the model from Fig. 4.1

is converted to a clustered graph as shown in Fig. 4.2(a), in which edges connecting the same groups

are merged. From the moralized graph of Fig. 4.2(b), the following conditional independence

properties can be derived by applying the Separation Theorem [1]:

p(Ot+1|O0:t,X0:t+1,Q1:t) = p(Ot+1|Xt+1,Xt) (4.1a)

p(Qt|O0:t,X0:t+1,Q1:t−1) = p(Qt|Xt) (4.1b)

p(Xt+1|O0:t,X0:t) = p(Xt+1|Xt) (4.1c)

where eq. (4.1a) shows that the posterior density of environmental objects given its corresponding

states is conditionally independent of other nodes based on Markov property from the moralized

undirected graph [1] of Fig. 4.2(b). Eq. (4.1b) indicates that the observation Qt is conditionally

independent with all other nodes given corresponding state Xt. In a similar way, when given Xt in

the property (4.1c), Xt+1 is conditionally independent with O0:t.

By dynamically predicting the posterior p(X0:t+1|Q1:t), an efficient controller is designed. We

can decouple it with respect to interacted environmental objects O0:t+1,

p(X0:t+1|Q1:t) =
∫

p(O0:t+1,X0:t+1|Q1:t)dO0:t+1. (4.2)

where we apply marginalization [1]. We can further derive the joint posterior p(O0:t+1,X0:t+1|Q1:t)

by,

p(O0:t+1,X0:t+1|Q1:t)

= p(Ot+1|O0:t,X0:t+1,Q1:t)p(O0:t,X0:t+1|Q1:t)

= p(Ot+1|Xt+1,Xt)p(O0:t,X0:t+1|Q1:t) (4.3)

where the property of eq. (4.1a)is exploited. Next the probability density p(O0:t,X0:t+1|Q1:t) is
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inferred as below,

p(O0:t,X0:t+1|Q1:t)

=
p(Qt|O0:t,X0:t+1,Q1:t−1)p(O0:t,X0:t+1,Q1:t−1)

p(Qt|Q1:t−1)p(Q1:t−1)

=
p(Qt|Xt)

p(Qt|Q1:t−1)
p(O0:t,X0:t+1|Q1:t−1) (4.4)

where the property eq. (4.1b)is applied. Moreover, we can infer the density p(O0:t,X0:t+1|Q1:t−1) by

Bayes rule as,

p(O0:t,X0:t+1|Q1:t−1)

= p(Xt+1|O0:t,X0:t)p(O0:t,X0:t|Q1:t−1)

= p(Xt+1|Xt)p(O0:t,X0:t|Q1:t−1) (4.5)

where the conditional density property eq. (4.1c) is applied. Thus, by firstly substituting eq. (4.5)

to eq. (4.4) and then into eq. (4.3), we have

p(O0:t+1,X0:t+1|Q1:t)

=
p(Ot+1|Xt+1,Xt)p(Qt|Xt)p(Xt+1|Xt)

p(Qt|Q1:t−1)
p(O0:t,X0:t|Q1:t−1) (4.6)

=
1
cc

t
p(Ot+1|Xt+1,Xt)p(Qt|Xt)p(Xt+1|Xt)p(O0:t,X0:t|Q1:t−1) (4.7)

where the denominator in eq. (4.6) is deemed as a normalization constant cc
t , which is not related

to the state Xt. By substituting eq. (4.7) back into eq. (4.2), we further have,

p(X0:t+1|Q1:t)

=
1
cc

t

∫
p(Ot+1|Xt+1,Xt)p(Qt|Xt)p(Xt+1|Xt)p(O0:t,X0:t|Q1:t−1)dO0:t+1 (4.8)

=
1
cc

t

∫
p(Ot+1|Xt+1,Xt)dOt+1 · p(Qt|Xt)p(Xt+1|Xt) ·

∫
p(O0:t,X0:t|Q1:t−1)dO0:t (4.9)

=
1
cc

t
p(Qt|Xt)p(Xt+1|Xt) ·

∫
p(Ot+1|Xt+1,Xt)dOt+1︸                         ︷︷                         ︸

Multi-Neural-Stimulus Function

· p(X0:t|Q1:t−1).︸          ︷︷          ︸
Posterior Without Integral

(4.10)

where in eq. (4.9), we use the property that Ot+1 is conditionally independent of O0:t when given

Xt+1 and Xt as illustrated in the model of Fig. 4.2(b), which separate the integral.
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Figure 4.3. The decoupled graphical model for the analysis of interactions at time t + 1. Interacted
environmental objects and states have been grouped together.

Regarding the derived Bayesian filter in eq. (4.10), there are four densities: 1) p(Qt|Xt) is the

observation likelihood; 2) the state transition is indicated by p(Xt+1|Xt); 3) the probability marginal-

ization over O0:t is used again to get a recursive formulation p(X0:t|Q1:t−1); 4) an integral with re-

spect to Ot+1 is introduced, which is a “Multi-Neural-Stimulus Function” p(·)MNSF. In this function,

each link is modeled as a neuron and the interaction as stimulus. It also analyzes the accumula-

tive effect of various interactions between the snake robot and environmental objects. First, a deep

Bayesian analysis of p(·)MNSF is given, and then the estimation details of all densities are discussed.

4.2 Decoupling of Interactions

To further lower the complexity of interactions, and study the working mechanism of “multi-

neural-stimulus function”, the graphic model Fig. 4.1 is decoupled with respect to the environmen-

tal objects Ot+1 when given states Xt and Xt+1. As illustrated in Fig. 4.3, we remove all other

unrelated nodes and edges because of the conditional independence of p(Ot+1|Xt+1,Xt) based on

the Separation Theorem [1]. Furthermore, we group the correlated environmental objects, such as

Km
t+1 = {k − 1}, Km+1

t+1 = {k, k + 1}, where m is the set index and K a set of object indices. We also

cluster the corresponding states, for example,L(Km
t+1) = {l − 1} andL(Km+1

t+1 ) = {l, l + 1}, in which

L denotes a set of state indices. As stated above, this grouping dynamically varies with the robot
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locomotion. For example, Kt+1 = 5 if 5 obstacles are interacting with robot links at time t+ 1. And

we have obstacle set number M = 3, and obstacle setK1
t+1 = {1},K2

t+1 = {2} andK3
t+1 = {3, 4, 5}, if

they can be divided into three groups {o1
t+1}, {o2

t+1} and {o3
t+1, o

4
t+1, o

5
t+1} based on the interaction with

different robot links {x1
t+1}, {x3

t+1} and {x4
t+1, x

5
t+1, x

6
t+1}. Therefore, L(K1

t+1) = {1}, L(K2
t+1) = {3},

L(K3
t+1) = {4, 5, 6}. Based on the decoupled graphical model, we propose a two-step scheme to

analyze multi-neural-stimulus function.

4.2.1 Decoupling with Respect to Interacted Environmental Objects

It is likely that a snake robot simultaneously interacts with multiple objects, some of which are

independent while others may have correlations, such as in close proximity or connecting together.

Hence it is desirable to decouple the function p(·)MNSF with respect to each involved environmental

object,

p(·)MNSF

=

∫
p(Ot+1|Xt+1,Xt)dOt+1

=

∫ ∏
Km

t+1∈K̄t+1

p(o
Km

t+1
t+1 |Xt+1,Xt)dOt+1 (4.11)

=
∏

Km
t+1∈K̄t+1

∫
p(o
Km

t+1
t+1 |x

L(Km
t+1)

t+1 , x
L(Km

t+1)
t )do

Km
t+1

t+1 (4.12)

≈
∏

Km
t+1∈K̄t+1

Km
t+1∑

k=1

p(ok
t+1|x

L(k)
t+1 , x

L(k)
t )︸               ︷︷               ︸

Decoupled Stimulus Density

. (4.13)

where K̄t+1 = {K1
t+1, . . . ,Km

t+1, . . . ,K
M
t+1} is the set of all groups of environmental objects which

currently interact with the snake robot at time t + 1, x
L(Km

t+1)
t+1 the states interacting with objects

o
Km

t+1
t+1 , L(Km

t+1) the set of indices of corresponding states, L(k) the set of indices of states having

interactions with object k. Take Fig. 4.3 for an instance, L(k) = {l, l + 1} since object ok
t+1 interacts

with two states xl
t+1 and xl+1

t+1 simultaneously.

Through the derivations above, the interactions can be separated by a set of decoupled stimulus

densities between each environmental object and its related states. And each of them can be further

split with respect to robot links.

43



4.2.2 Decoupling with Respect to Robot Links

As for each environmental object, it may simultaneously interact with multiple robot links.

Therefore, we desire to decouple the stimulus density for each interacted robot link,

p(ok
t+1|x

L(k)
t+1 , x

L(k)
t )

= p(ok
t+1|v

L(k)
t+1 ) (4.14)

=

L(k)−2∏
l′=0

Stimulus-Propagation︷              ︸︸              ︷
p(vl′+1

t+1 |vl′
t+1, o

k
t+1)

p(vl′+1
t+1 |vl′

t+1)︸       ︷︷       ︸
Link-Constraint

· p(ok
t+1|v0

t+1)︸       ︷︷       ︸
Object-Link-Stimulus

(4.15)

where l′ the link index within L(k), L(k) the total number of robot links in group L(k), and vt+1 =

{xt+1, xt} is the state increment.

As shown in eq. (4.15), the stimulus density is finally decoupled by three probability densi-

ties: 1) the initial interaction between the environmental object ok
t+1 and state increment v0

t+1, which

is modeled by the “object-link-stimulus” p(ok
t+1|v0

t+1); 2)the inherent correlation between adjacent

snake robot links l and l+ 1 is denoted by the “link-constraint” p(vl′+1
t+1 |vl′

t+1); 3) the signal transmis-

sion along the body of the snake robot is simulated by the “stimulus-propagation” p(vl′+1
t+1 |vl′

t+1, o
k
t+1).

This decoupling mechanism of two steps, is essentially different with Bayes filters method [49], ba-

cause the proposed multi-neural-stimulus function models the interaction between the robot and the

environment, as well as constraints within the snake robot. It only considers the currently involved

interaction, and makes the control strategy more robust and efficient by effectively narrowing down

the state space.

4.2.3 Simulation with Sequential Monte Carlo Method

It is difficult to calculate the posterior densities inferred above without any approximation, be-

cause they usually do not have analytical forms and are usually non-Gaussian owing to the in-

herent uncertainties. Variation Inference, Gaussian Mixture model, kernel density estimation [54]

and other density approximation approaches can be utilized in our framework. As a paradigm,

the Sequential Monte Carlo (MC) method [55] is adopted in our implementation. Particularly,
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we use a weighted sample set {Xn
0:t+1,w

n
t+1}

Ns
n=1 to estimate the posterior p(X0:t+1|Q1:t). The sam-

ples are {Xn
0:t+1,n = 1, . . . ,Ns}, the associated normalized weights are {wn

t+1,n = 1, . . . ,Ns}, and∑
n wn

t+1 = 1.

{Xn
0:t+1,w

n
t+1}

Ns
n=1 is defined to approximate the posterior p(X0:t+1|Q1:t), in which the samples are

{Xn
0:t+1,n = 1, . . . ,Ns}, the associated normalized weights are {wn

t+1, n = 1, . . . ,Ns}, and
∑

n wn
t+1 =

1. Xn
0:t+1 can be sampled from a functional density f (·) with associated weights by using the MC

theory [55],

wn
t+1 = cw

t p(Xn
0:t+1|Q1:t)/ f (·). (4.16)

where cw
t is a constant. For the sequential case, the function f (·) is chosen to factorize by

f (X0:t+1|Q1:t)

= f (Xt+1|X0:t,Q1:t) f (X0:t|Q1:t)

= f (Xt+1|Xt) f (X0:t|Q1:t−1). (4.17)

where we apply the conditional independence properties f (X0:t|Q1:t) = f (X0:t|Q1:t−1), and

f (Xt+1|X0:t,Q1:t)

= f (Xt+1|Xt) from Fig. 4.2. We then substitute eq. (4.10) and eq. (4.17) into eq. (4.16), and get

wn
t+1= wn

t

cc
tp(Qt|Xn

t )p(Xn
t+1|Xn

t )

cw
t f (Xn

t+1|Xn
t )

p(·)MNSF. (4.18)

where

p(·)MNSF=
∏

Km
t+1∈K̄t+1

Km
t+1∑

k=1

L(k)−2∏
l′=0︸               ︷︷               ︸

Deep Decoupling

Stimulus-Propagation︷                ︸︸                ︷
p(vl′+1,n

t+1 |v
l′,n
t+1, o

k
t+1)

p(vl′+1,n
t+1 |v

l′,n
t+1)︸         ︷︷         ︸

Link-Constraint

· p(ok
t+1|v

0,n
t+1)︸       ︷︷       ︸

Object-Link-Stimulus

. (4.19)

We can deeply decouple the interaction p(·)MNSF with respect to interacted environmental ob-

jects as well as robot links. We will discuss how to estimate the densities in eq. (4.18) as below.

45



Figure 4.4. Training scene of the BNN-based stimulus density estimation. 50000 samples were
generated from 25 trials.

4.2.4 Learning-Based Density Estimation

To model the effect that the snake robot experiences during locomotion, we use a neuron model

motivated by Neuroscience [56]. We regard each robot link as a neuron, which can sense environ-

mental conditions, produce proper stimulus, and propagate to its neighbor with inherent constraints.

Please note that this multi-neural-stimulus function is the weighting density for state samples in im-

plementation, but not the control signal. We can learn these densities from training data by neural

network methods. In our experiments, the Bayesian Neural Network (BNN) [30] is adopted as a

paradigm. The BNN represents model uncertainty with the use of a distribution over the weights

of the NN. The densities of a BNN is usually intractable. Therefore, an approximating solution is

to use variational inference, in which a distribution is found in a tractable family which minimizes

Kullback-Leibler (KL) divergence to the true density. Particularly, the dropout scheme [30] is used

as a variational Bayesian approximation. We learn the distributions from about 50000 samples from

25 trials by using a snake robot as illustrated in Fig. 4.4.

Object-Link-Stimulus

The modeling complexity of p(ok
t+1|v0

t+1) relies on different factors including the property of

terrain scenes, environmental objects, link motion patterns etc. We aim to find an estimate p̂(o|v) of

the true conditional density p(o|v) given a dataset of observationD = {(on, vn)}Nn=1 drawn from the

joint distribution (on, vn) ∼ p(o, v). The KL divergence objective is formulated as expectation over
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Figure 4.5. Compute the relative posture of a robot link with an interacted object in environment.

p(v),

Ev∼p(v)[DKL(p(o|v)∥p̂(o|v))]

= E(v,o)∼p(v,o)[logp(o|v) − logp̂(o|v)] (4.20)

The neural network weights wo are calculated by fitting through maximum likelihood estimation,

w∗o = argmax
wo

N∑
n=1

logp̂wo(o|v) (4.21)

The input of BNN is chosen as ⟨ϕo, do⟩, describing the relative posture between a robot link and

an environmental object as illustrated in Fig. 4.5, where do the normalized distance from robot

link to the object, ϕo is the angle between the link vl′ and object ok. In this way, the information

of both vl′ and ok is implicitly encoded in this input definition. The output of BNN is defined

as a normalized summation of trajectories in a predefined neighbor to indicate the possibility of a

particular position of the snake robot in the state space. Regarding the structure, the NN consists

of two fully connected layers with hidden units number 256. The uncertainty in parameters of the

NN induces prediction uncertainty by marginalizing over the estimated probability density utilizing

Monte Carlo integration.

Link-Constraint of the Snake Robot

Estimation of p(vl′+1
t+1 |vl′

t+1) should adapt to various applications, which models the inherent cor-

relation between the analyzed link l′ and its neighbor l′ + 1. Various methods [57] [58] [59] have

been reported to incorporate different constraint information. Nonetheless, these kinematic analysis

has high computational requirements with the number of links and may fail in crowded scenario
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Figure 4.6. The graph of algorithm implementation. The gray area indicates the multi-neural-
stimulus function p(·)MNSF, whose densities can be learned by BNNs. The objective of control is to
recursively predict the state Xt+1 based on historical information. Measurement Qt can be decoded
from sensor inputs such as camera image or LiDAR point cloud.

with many obstacles, due to the uncertainty inherent in the robot and the surroundings. Moveover,

we introduce a “shape-based spring-joint” model by learning using BNN from the training data.

The input of NN is chosen as vl′ with the output vl′+1. It consists of two fully connected layers with

hidden units number 256. The neural network weights wv are fitted through maximum likelihood

estimation,

w∗v = argmax
wv

N∑
n=1

logp̂wv(vl′+1|vl′). (4.22)

Stimulus-Propagation

The effect of a stimulus signal passing along adjacent snake robot links when facing an envi-

ronmental object is modeled by the density p(vl′+1
t+1 |vl′

t+1, o
k
t+1), which can be learned from training

data by using Bayesian Neural Network. ⟨ϕo, do⟩ is selected as input, vl′+1 the output. The network

parameters wp are fitted via maximum likelihood estimation,

w∗p = argmax
wp

N∑
n=1

logp̂wp(vl′+1|vl′ , ok
t+1). (4.23)
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Measurement Likelihood

The density p(Qt|Xt) can be calculated as follows, by using the Markov property from the

graphical model of Fig. 4.1, in which the link observations qt are conditionally independent if the

corresponding states xt are given,

p(Qt|Xt) =
L∏

l=1

p(ql
t|xl

t), (4.24)

The observation likelihood of body link l, is denoted by p(ql
t|xl

t), which encodes observation

uncertainties due to noisy observations, and serves as a feedback for the controller. Regarding

the BNN training process, the input uses camera images for the observation ql
t with the output of

corresponding state xl
t. Convolutional layers encode sensor images into features of size 256, and

followed by two fully connected layers with hidden units number 256. The network parameters wc

are fitted via maximum likelihood estimation,

w∗c = argmax
wc

N∑
n=1

logp̂wc(q
l
t|xl

t). (4.25)

State Transition and Importance Function

The same choice of state transition and importance function as the conventional Bayes filter [49]

is used to have a better comparison. Given no prior knowledge, the state transition p(Xt+1|Xt) has

been chosen as a random walk model. The efficiency of a sequential Monte Carlo based method

highly depends on the sampling function f (·). If f (·) is in close proximity to the true posterior,

the samples are more effective. A natural choice of this function is the state dynamics p(Xt+1|Xt),

which is accepted in our implementation.

Algorithm Implementation

The implementation process is illustrated by Fig. 4.6. The gray area indicates the multi-neural-

stimulus function p(·)MNSF, whose densities are learned by Bayesian Neural Networks as we stated
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Table 4.1. Algorithm Paradigm of Decoupled Bayesian Control

◦ Sampling Xn
t+1,n = 1, . . . ,Ns, from f (Xt+1|Xt)

◦ Initial Weighting wn
t+1 ∼ Xn

t+1 by equation (4.18).

◦ Initial Prediction, X̂t+1=
∑Ns

n=1 wn
t+1 · X

n
t+1

◦ Loop r = 1 : R # Re-sampling Scheme

− Interaction Weighting,

p1(·) by equation (4.19)

− Measurement Likelihood Weighting,

p2(·) = p(Qt|Xn
t ) by equation (4.24)

− Updating Weights, wn
t+1 ≈ wn

t+1 · p1(·) · p2(·)

− Weight Normalization

− Prediction Updating, X̂t+1=
∑Ns

n=1 wn
t+1 · X

n
t+1

◦ End Loop r

◦ Compute the control signal θ for actuators by

serpenoid curve with shape parameters in the

predicted state X̂t+1.

above. We aim to recursively predict the state Xt+1 based on historical information. This can be

achieved by estimating the posterior p(X0:t+1|Q1:t) as shown in eq.(4.10) . The only input for the

controller is observations Q1:t, which can be estimated from sensor signals such as camera images

or LiDAR point cloud. The environmental object tier O1:t encodes the complexity of surroundings

and the relative status with the snake robot, which can be decoded from sensor observations too.

The correlation graph inside the gray area, as shown in Fig. 4.3, is varying and dynamically approx-

imated by the controller during robot locomotion so as to calculate the function p(·)MNSF. When

the posterior p(X0:t+1|Q1:t) is computed, the joint angles can be calculated and sent to actuators for

proper gaits generation.
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Figure 4.7. Comparisons of simulation results for obstacle avoidance using the proposed DecBC
and the conventional BF. A is the overall the navigation trajectories, B and C the coordinate of the
head position with respect to time, D the robot head speed, E and F the joint angle and torque,
respectively.

Pseudo-code of the proposed algorithm for predicting Xt+1 at time t is presented in table 4.1,

which is recursively called during the whole process. We use a re-sampling mechanism to achieve

stable performance and alleviate the degeneracy commonly seen in MC methods. The number of

re-sampling times R is selected as 3 in our experiments. The total number of samples, Ns, ranges

from 200 to 500. Samples are updated by different weights, where various interactions and the

robot’s own dynamics are considered. And then we calculate the state prediction by the weighted

mean. Next, the control signal of each robot joint θl
t would be calculated via the serpenoid curve

and sent to corresponding actuators.

4.3 Experimental Results

We conducted simulation and real world experiments to show the performance of the Decoupled

Bayesian-based Controller (DecBC) in comparison with the state-of-the-art.
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Figure 4.8. Comparison of using CenBC [2] and DecBC, where DecBC achieved more efficient
result with a shorter trace.

4.3.1 Simulation Analysis

Simulations were performed by using ACM-R5 snake robot in platform V-REP. Performance of

DecBC were first compared with the conventional BF [49]. In the original BF, only the head link was

directly controlled by it while the rest links follow this gait, since the original BF was not designed

for snake robots. To obtain a fair comparison, both the methods used the same state transition

model and observation likelihood functions. In 4.7, the results of two methods are illustated, where

the robot moves from the top-right to bottom-left as shown by the blue dashed arrow.

The overall movement of DecBC and BF are illustrated by pink and green trajectories in Fig.

4.7, which shows that BF suffers from “unexpected collision” problem frequently due to lacking

enough scheme to deal with crowded obstacles. Nevertheless, with the equipment of the decoupled

interaction mechanism, the robot using DecBC effectively swings through the peg array. The corre-

sponding coordinates of head position are shown in Fig. 4.7B and 4.7C. As shown in In Fig. 4.7D,

the head speed of BF remarkably reduces when the robot gets stuck due to collisions while DecBC

does not. The variation of one joint’s angle and torque are shown in Fig. 4.7E and 4.7F. As shown in

Fig. 4.7E, by using either methods, the snake robot can keep the serpenoid gaits well. Whereas, BF

undergoes wider delay because of frequent unexpected collisions. The same problem is reflected by

the overshoots of torque in Fig. 4.7F, in which DecBC has a performance far superior to BF.

To demonstrate the effectiveness of the proposed DecBC framework, the performance of DecBC

and Centralized Bayesian-based Controller (CenBC) [2] by using the same number of samples,

are further compared. The resulted trajectories on the testing ARRAY scenario are presented in

Fig. 4.8. Both methods can reach the final target successfully, but trajectory length, or the control
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Figure 4.9. Measured torque of actuators No. 1, 3, 5 using CenBC [2] and DecBC where CenBC
has more spikes due to collisions or sharp changes of directions. DecBC achieved much less jerky
curves.

Figure 4.10. Measured joint angles of actuators No. 1, 3, 5 using CenBC [2] and DecBC where
DecBC got smoother curves than CenBC.

efficiency is quite different. DecBC is apparently more efficient with a shorter trajectory. The robot

of using DecBC achieved more robust results, while the CenBC experienced a few collisions during

the journey. This result verifies that the DecBC framework is more efficient than the centralized

framework in that it needs less samples to hand the interaction densities. To analyze the motor

power consumption, the variation of actuator torque is investigated, because they are correlated in a

positive manner. Torque values can be obtained from the platform V-REP. The measured torque of

joint actuators No.1, 3, 5 using CenBC [2] and DecBC, are shown in Fig. 4.9. DecBC has a much

less jerky curve with fewer power consumption, while the overall consumed energy of CenBC is

higher with more spikes due to collisions or sharp changes of directions. The actual joint angles

of actuators No.1, 3, 5 using CenBC [2] and DecBC are shown in Fig. 4.10. Both the methods

obtained similar periodic performance due to using the shape-based model. Nonetheless, DecBC

obtains more robust results with a smoother curve than CenBC.

As far as we know, because of the high DOFs and the challenging obstacle interaction problem,

little study has been done using sequential Monte Carlo methods directly for snake robot control.

To have a further comparison with the state-of-the-art, two more related approaches Particle Filter
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Table 4.2. Comparison of performance and computational complexity

Method
Optimal

Sample No.
Spent
Cycles

Unexpected
Collisions

Computational
Complexity

BF 2000 53 18 O(Ns)

PFC 1000 37 16 O(NsK)†

BSC 300 33 14 O(NsKpL)*

CenBC 300 31 8 O(NsKL)†

DecBC 300 27 3 O(NsKL)‡

* Kp = nT
2π
ω0∆t , where nT is the number of periods in each episode of Q-

learning, ∆t the discrete time step-size, ω0 input torque frequency [60].

† K is the max number of detected environmental objects which is much less

than Kp, L the total number of links of the snake robot.

‡K is the number of interacted environmental objects, which is much less

than K; L is the number of interacted links, which is usually less than L too.
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based Controller (PFC) [61] and Bio-inspired-learning of Sensorimotor Control (BSC) [60] were

chosen. PFC was implemented for the head link of the snake robot similar as BF, although it was not

originally developed for snake robot control. Comparison of the average quantitative performance

as well as the computational complexity are given in Table 8.2. We ran the experiments for the

five methods by ten tests respectively, on similar setup of Fig. 4.7. The computer is equipped

with Intel i7-1065G7 CPU and 16GB RAM. We study the resampling algorithms for complexity

comparison. In this table, BF has the least computational complexity theoretically but needs a much

more samples to achieve relatively stable results because it lacks a sufficient scheme to deal with

obstacle collision problems. As we can see, PFC has additional computational cost on solving

obstacle detection and avoidance, though it needs much less samples. Collisions occurred mostly

by the rest robot links because there is no particular interaction handling scheme except the head

link. The other three methods introduce more complexity to deal with the environmental interaction

for the body links of snake robot. Particularly, CenBC is less complex than BSC since Kp is usually

much larger than K, for instance, Kp = 3140 in [60] where K is normally less than 100. DecBC

has the least computational complexity among these three centralized approaches because it only

considers the interacted obstacles and robot links when necessary due to the decoupled framework.

For a fair comparison of performance, we applied the same number of samples for these three

methods. As we can see, equipped with the proposed decoupled formulation and interaction model

in eq. (4.19), DecBC achieved the most robust and efficient performance in terms of less cycles and

unexpected collisions to reach the same target than the other two approaches.

4.3.2 Real-World Data

We used the snake robot JAW-I for implementation. The performance of using DecBC on a

real-world test is presented in Fig. 4.11. As we can see, one target and more than twenty obstacles

are randomly set in the scene. It is very challenging due to the presence of movable targets and ob-

stacles. The DecBC method achieved a robust performance, smoothly traversing through peg array

and successfully reaching the target. Though we adopted a centralized state space, the snake robot’s

shape was not changed as a whole. Instead, external objects can stimulate different body links. The
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Figure 4.11. Results of the proposed DecBC for unstructured RANDOM scenario with a shiftable
target.

Figure 4.12. Performance of DecBC on testing scene WALL-LIKE with various obstacles and a
sharp turn.
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Figure 4.13. Measured results of joint actuators No. 1, 3, 5 on the real world data RANDOM.

snake robot can respond to shifting obstacles and targets quickly by keeping multi-hypotheses of

both motion and shape variations. Fig. 4.13 shows the results of measured joint current and angle

of actuator No. 1, 3, and 5. The power consumption in motors by the current is investigated be-

cause they are positively correlated. As we can see, even with the uncertainties of environmental

interactions during the locomotion, the proposed controller present relatively smoothing shape vari-

ation. Some slight overshoots of current can be observed in Fig. 4.13, which are introduced by the

collisions or direction changes after obstacle interactions.

The obstacles in real-world scenes are very complicated. We further studied the performance

of DecBC with more scenarios. For instance, a situation with WALL-LIKE obstacles and a sharp

turn on the way to the target is shown in Fig. 4.12. DecBC could achieve a successful performance

with these challenges as shown in Fig. 4.12, by benefiting from the proposed decoupled Bayesian

framework which models various interactions.
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4.4 Summary

In this chapter, we have presented a decoupled Bayesian framework for snake robot control in

dynamically changing surroundings. The interactions between the robot and environment are sim-

ulated by a Bayesian dynamic graphical model. Benefiting from the decoupling mechanism, the

proposed probabilistic propagation formulation provides an innovative way to model the uncertain-

ty during locomotion in cluttered terrain. The proposed “multi-neural-stimulus function” represents

the cumulative effect of both external environmental influences and internal constraints of the snake

robot. It implicitly handles the “unexpected collision” problem and thus solve the difficult data

association and shape adjustment problems for snake robot control in an innovative way. Prelim-

inary experimental results have demonstrated promising performances of the DecBC approach for

different unstructured scenarios.
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Chapter 5

Interactively Distributed Bayesian

Control

The centralized representation discussed in the previous two chapters has inherent difficulty

when the body length of snake robot is getting longer or the computational resource is limited on

the mobile platform. In these cases, a decentralized solution is desirable where the snake robot is

regarded as a multi-agent system. In this chapter, we focus on how to design distributed intelligence

to achieve better predictability and more prompt control performance for snake robot control.

The advantage of centralized snake robot control methods is that they can keep the snake robot

gait effectively in different aspects [2]. Nevertheless, most of them have limited environmental

adaptability or a large requirement of computation cost, which makes them difficult for many prac-

tical applications. To further reduce the complexity, researchers are interested in various decen-

tralized control solutions for snake robot control in cluttered environments [45]. Central Pattern

Generator (CPG) [62] has been a hot research area and received a lot of attentions. In order to

simulate the biologic interaction strategy of snakes with obstacles and exploit machine learning

techniques, researchers considered neural network based methods [63] [64]. Sartoretti et al. [4]

take this idea a step further, using the A3C algorithm by learned agents. It does not yet offer an

explicit mathematical description of the interaction with the world, though this technique points to

a promising direction. Compared with the centralized approaches, the reported decentralized meth-
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ods have presented a promising way to improve the control performance. However, many additional

challenges have come up too. For instance, both physical constraints among snake robot links and

the various frequent interactions with environment still need to be well modeled. Without effective

schemes, most existing methods still suffer from error collision problems, where the snake robot

may be easily stuck by obstacles. Furthermore, many learning-based approaches have limited adap-

tation to dynamical environment. When the variation is beyond the training data, they may fail due

to the confined learning experience.

In this chapter, we propose a fully distributed framework by extending our previous Bayesian

methods. Compared with the previous centralized method, it can greatly reduce the complexity by

parallel computation. Different with other approaches, it provides a new perspective to model the

various interactions among snake robot links and environmental objects.

5.1 Methodology of the Distributed Framework

A graphical design is firstly presented for the distributed snake robot control. Then, we give a

strict mathematical derivation for the whole stochastic process. Finally, the details of probability

density approximation are discussed.

5.1.1 Bayesian Network Modeling

Dynamic Bayesian network [1] is a useful tool to analyze the complicated problems such as

snake robot control. In particular, we present an example for three joints with three time steps in

Fig. 5.1, which has three levels: the hidden state level (yellow), the observation level (green), and

the environmental input level (pink). The circle nodes represent snake robot links while the square

nodes indicate their observations. Four different kinds of edges are exploited: 1) the undirected

ones show the constraints among snake robot links; 2) the directed ones from a link state to its

observation represent the local likelihood; 3) the directed edges from an environmental input to a

state represents the interactions such as collisions; 4) the directed edges among link state show the

robot dynamics, which is assumed as a Markov chain. xi
t, where i = 1, . . . , L, denotes the link state
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Figure 5.1. Bayesian network modeling for a snake-like robot with three joints.

Figure 5.2. Dynamical distributed model decomposition for a link of snake robot.

for link i, where L is the total number of all snake robot links. The corresponding observation is

qi
t, which can be estimated by a learning based video detector. Specifically, we define the state as a

two tuple by xi
t = (Ai

t, γ
i
t), where Ai

t and γi
t are the amplitude and offset in the serpenoid curve [5].

Furthermore, we denote the group of all environmental inputs to time t by o1:t.

The graphical model in Fig. 5.1 has too many couplings and thus is difficult for a direct analysis.

By applying graphical decomposition rule [65], we can split the model with respect to each robot

link as shown in Fig. 5.2. Such kind of decomposition is meaningful since all information is kept

when we process all links in parallel. In the decomposed graphical model such as Fig. 5.2 for

link i, all other nodes and links are ignored temporarily except the directed edge and nodes of link

i. A(i) denotes the set of all adjacent links of i, where j ∈ A(i) is used to show an example.

Correspondingly, the set of observations is denoted as qA(i).
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5.1.2 Bayesian Sequential Updating Rule

The dynamic graphical model designed above endows good flexibility for sophisticated proba-

bility density analysis comparing with traditional Kalman filters. Since we accept a decentralized

control scheme, one controller for each link, the posterior p(oi
0:t, x

i
0:t+1|qi

1:t) is desirable to be recur-

sively estimated based on the evolutional history of various uncertainties:

p(oi
0:t, x

i
0:t+1|qi

1:t, q
A(i)
1:t )

=
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where we use the Bayes rule in eq. (5.1). Two Markov properties p(oi
t|oi
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i
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t) are applied in eq. (5.2) and

eq. (5.3), respectively, which can be easily verified from the decomposed graphical model in Fig.

5.2. A constant ct is used to replace the denominator of (5.4) because there is no state xi in it. In

eq. (5.5), another Markov property that p(xi
t+1|oi

0:t−1, x
i
0:t, q

i
1:t−1, q

A(i)
1:t−1) = p(xi
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density p(qi
t,q
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t) in eq. (5.5) can be viewed as a likelihood function for all related observations

including qi
t and qA(i)

t . We give a further derivation for it as follows,
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where in eq. (5.6) and eq. (5.7), Markov properties that observations are conditionally independent

given xi
t are applied. In eq. (5.8), the adjacent state of x j

t appears by introducing an integral oper-

ation. In eq. (5.9), the Markov property that the observation depends on its own xi
t is exploited to

simplify the derivation. By substituting eq. (5.9) back into eq.(5.5), we can get a new form of the

posterior density,
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By marginalization [1], the above posterior can be further simplified,
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From eq. (5.11) to eq. (5.12), we substitute eq. (5.10). In eq. (5.13), the Markov property that oi
t

is independent with oi
0:t−1 is used to simplify the derivation, which can be easily verified from the

graphical model in Fig. 5.2.

The derived sequential updating rule in eq. (5.14) clearly simulates different correlations and
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interactions inside the snake robot itself and between the robot and environment. As we can see,

there are five distinguishing densities: i) the inter-link likelihood p(x j
t |xi

t); ii) the observation like-

lihood p(qi
t|xi

t) and p(q j
t |x

j
t); iii) the state dynamics p(xt+1|xt); iv) the environmental input function

p(oi
t|xi

t+1, x
i
t); v) the previous posterior p(xi

0:t|qi
1:t−1,q

A(i)
1:t−1).

Compared with the centralized formulation in [2], this newly proposed method has three im-

portant advantages: 1) It avoids using the computationally expensive joint state representation but

chooses a distributed state space, which can exploit the benefits of parallel computing; 2) The de-

rived “inter-link likelihood” could be used to simulate the physical correlation among snake robot

links; 3) The derived “environmental input function” can be used to model the interactions between

the snake robot and its surrounding objects.

5.2 Density Estimation

Different density estimation techniques could be used to approximate the derived probability

densities. Monte Carlo (MC) method [66] is chosen in this work for a better comparison with our

previous centralized solution. Specifically, The posterior density p(xi
0:t+1|qi

1:t, q
A(i)
1:t ) could be ap-

proximated by a group of samples with associated weights {xi,n
0:t, ω

i,n
t }

Ns
n=1 where {xi,n

0:t, n = 1, . . . ,Ns}

are samples, and {ωi,n
t ,n = 1, . . . ,Ns} the weights. When the samples are drawn from an importance

function f (·), their weights wi,n
t are proportional to p(xi,n

0:t+1|q
i
1:t, q

A(i)
1:t )/ f (·) based on the importance

sampling theory. For the sequential case, f (·) could be further factorized by the following equations,
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the weights can be calculated as,
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As we can see, we use a summation to estimate the integral of oi
t where k = 1, . . . ,K is index of

environmental objects such as target and obstacles, n′ = 1, . . . ,N′s the samples. A Gaussian random

walk model is used to estimate the state dynamics p(xi
t+1|xi

t). The importance function f (xi
t+1|xi

t) is

chosen as the state dynamics, which is a common selection. Moreover, we have carefully designed

various models to estimate the other densities as follows.

5.2.1 Estimation of Inter-Link Likelihood

The derived inter-link likelihood p(x j
t |xi

t) indicates the internal constraints among links of the

snake robot. If there is no such kind of interaction modeling, the distributed framework will have

multiple independent agents. Each agent controls one robot link. Such a situation will make the

snake robot lose its serpenoid gait because different links can not collaborate with each other rhyth-

mically in the navigation. We choose a learning method with Bayesian Neural Network (BNN) [30]

for this density estimation, which can simulate the uncertainty by a distribution over the network

weights.

If a sample set {(x j,n
t , x

i,n
t )}Nn=1 is drawn from the distribution (x j,n

t , x
i,n
t ), the objective is to find

an estimate p̂(x j
t |xi

t) of the true conditional density p(x j
t |xi

t). In particular, the dropout scheme [30]

is adopted. The neural network weights wBNN are estimated by a maximum likelihood estimation,

w∗BNN = argmax
wBNN

N∑
n=1

logp̂wBNN(x j
t |x

i
t) (5.18)

We have learned the likelihood function from 20 trials with 40000+ samples, which are produced by

a snake robot similar as [2]. Since there are different interactions with environmental objects during
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the learning process, the training data can model the inter-link function with uncertainties. The

prediction uncertainty can be generated by the uncertainty of BNN weights through marginalising

over the approximate density with Monte Carlo integration.

5.2.2 Estimation of Environmental Input Function

The density p(oi
t|xi

t+1, x
i
t) models the interaction between state xi

t+1 and the environmental

objects oi
t, which includes both target and obstacles. It can be further factorized by the con-

ditional independence property since the target is independent with obstacles, p(oi
t|xi

t+1, x
i
t) =

pa(oi
a,t|xi

t+1, x
i
t)ps(oi

s,t|xi
t+1, x

i
t), where pa(·) models the attraction from the target, and ps(·) models

the stimuli by obstacles.

Similar to [2], we propose two distributed paradigms for link i. For the target attraction function,

we have

pa(oi
a,t|xi

t+1, x
i
t) =

1
ρa

exp

−∥oi
a,t − ∆xi

t+1∥2

σ2
a

 (5.19)

where ρa is a normalization constant, σa a standard variation, ∥oi
a,t − ∆xi

t+1∥ the Euclidean distance

between two arguments, ∆xi
t+1 = xi

t+1 − xi
t.

For the stimulus from obstacles, we have

ps(oi
s,t|xi

t+1, x
i
t) = 1 − 1

ρs
exp

−∥oi
s,t − ∆xi

t+1∥2

σ2
s

 (5.20)

where ρs is a normalization constant, σs a standard variation, ∥·∥ also the Euclidean distance between

two arguments.

5.2.3 Estimation of Observation Likelihood

The distribution p(qi
t|xi

t) indicates the likelihood from xi
t to qi

t. In control theory, this density

gives a feedback, which can be observed for a better estimation of the state. Without such a closed-

loop design, the controller may be not stable especially when facing obstacle collisions since the

potential bias can not be rectified in time during the snake robot’s locomotion. Many methods

have been reported for the estimation of the observation likelihood in the literature. We choose the
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CNN-based learning algorithm [38] to detect the observations in our implementation. After that,

the likelihood p(qi
t|xi

t) is modeled as a Gaussian distribution N(|qi
t − xi

t|, σ2
o), where |qi

t − xi
t| is the

mean, σo the standard variance.

5.2.4 Estimation of State Dynamics

The state transition p(xi
t+1|xi

t) predicts the state one step further based on the current state. It can

be used to simulate the systematic uncertainty inside a snake robot’s dynamics. For instance, there

are many spur gears and electric components in the snake robot’s servo motors, which have inherent

disturbances due to the non-negligible friction and/or inertia resistance. Such kind of uncertainties

are hard to be calculated without a statistical estimation. Without any prior knowledge and loss of

generality, this state transition density can be model by a Gaussian random walk.

5.3 Experimental Performance

We have demonstrated the performance of the proposed Distributed Bayesian Controller (Dis-

BC) in different situations including both simulations and real-world scenarios.

5.3.1 Simulation Analysis

We performed simulations by using ACM-R5 snake robot in V-REP. 20 cylinder obstacles were

set inside a 5m × 5m scene with walls around.

Path Following

We first tested the performance of DisBC for path following. The results are shown in Fig.

5.3. The robot moves straightly from right to left, where the green curve shows the locomotion

trajectory. As we can see, the control seems to work reasonably well in the physical simulation,

despite some small variations. Fig. 5.3B to 5.3F show the recorded position, speed, joint angle and

torque of the robot’s head with time. Although a decentralized control framework is adopted, one
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Figure 5.3. Simulation results of path following using ACM-R5.

Figure 5.4. Simulation results of obstacle avoidance using ACM-R5.

controller per robot link, it still works well because all controllers can collaborate with each other

based on the proposed Bayesian updating rule. The robot can trace the desirable path, tolerating

the environmental uncertainty as shown in Fig.5.3B and 5.3C. Moreover, the serpenoid gait is kept

successfully as can be seen from Fig.5.3A, 5.3B, and 5.3C.

Obstacle Avoidance

To test the performance of the proposed DisBC for environment with obstacles, we have de-

signed an experiment using a scene as shown in Fig. 5.4A. It also reports the overall trajectory
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Figure 5.5. Quantitative performance of both current and angles for all snake robot links.

of one test where the snake robot swings from the top-right to bottom-left. Equipped with the in-

teraction mechanism, the robot can effectively move through the peg array as shown in Fig. 5.4B

and 5.4C. The initial rapid change is shown in Fig. 5.4D and 5.4E as the snake robot converges

to the serpenoid gait at the beginning. The overshoot of torque in Fig. 5.4F occurs when the di-

rection changes dramatically after avoidance of obstacles. Overall, the serpenoid gait is kept well.

Furthermore, the movement is relatively smooth.

5.3.2 Real-World Data

In order to demonstrate the effectiveness of the DisBC method, we have used the snake robot

JAW-I in different carefully designed scenarios. Similar to [15], we have exploited an overhead

camera to watch the scene and observe the robot. Consequently, we have used a CNN-based video

detector [38] to measure the obstacle position and robot link’s shape variation dynamically. By the

proposed models and density estimation functions, we can further update posterior density for the

robot states, which are then used to calculate the control signals.

We have placed 10+ beverage bottles and one target randomly in a rectangle area. Both the

target and obstacles are movable either manually or by collisions. This setup introduces a number
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of different uncertainties and is suitable to test the stability of the proposed DisBC in a dynamical

scene, which is very common in practical application. We have tested it with 40+ trials. With the

results, we have done a thorough analysis of the DisBC controller both qualitatively and quantita-

tively.

Fig. 5.6 presents some snapshots in two different scenes. As we can see, although the target

was changed, the proposed DisBC method can still successfully lead the snake robot to reach it fast

and smoothly. Moreover, even with crowded obstacles, the controller could handle the uncertainties

well and keep the gait during the environmental interactions.

Fig. 5.5 shows the performance of both current and angle for all robot links in the scene of

5.6(a). The power consumption in motors can be evaluated by the current. There are different types

of uncertainties during the robot’s navigation. The DYNAMIXEL XL430-W250 servo motor itself

has different spur gears and electric components, which easily give various inherent uncertainties of

power consumption and frictions. Moreover, the frequent collisions and interactions with obstacles

and the ground also introduce additional uncertainties. This can explain why a stochastic analysis is

really desirable. As shown in the figure, the DisBC controllers can be run in parallel very well due to

modeling the inter-link interaction as well as the environmental inputs. The overall movement of the

snake robot is smooth without any failure or large jerky during the navigation. It can successfully

swing through the peggy array and keep the gait very well as can be seen from the reported curves.

A few moderate overshoots of current appears in Fig. 5.5D and 5.5E. They are induced by the

obstacle interactions. Benefiting from the stochastic modeling of snake robot motion, the inter-link

interaction and the environmental inputs, the entire performance is relatively stable. Particularly, the

controller is robust to the initial position and shape, which normally gives a lot of trouble for many

reporting methods. Additionally, although we accept a purely distributed solution, one controller

per link in parallel simultaneously, the different links can coordinate with each other by not only the

serpenoid model but also the different interaction schemes.

To verify the performance of the proposed inter-link model, the environmental input function,

as well as the distributed solution, we have given a detailed comparison between DisBC with the

state-of-the-art Centralized Bayesian Controller (CBC) [2]. The same observation likelihood and
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Table 5.1. Quantitative comparison between DisBC and two controllers using the CenBC method

Method Time(s) Sample No. Cycles
Unexpected
Collisions

DisBC 17.11 90 31 3.6

CenBC1 51.41 300 33 3.8

CenBC2 19.06 90 46 18.8

Figure 5.6. Results using the proposed DisBC method on real-world data.

state transition have been used in the implementation. Similar setup has been used as shown in

Fig. 5.6. The comparisons are given in Table 8.2 where we averaged the results of six trials using

two methods, respectively. The running platform is a desktop with Intel i7-1065G7 CPU and 16GB

RAM.

As shown from the table, more samples can usually give more stable control results. However,

a large number of samples can easily introduce a very higher computational complexity using the

same centralized method of CBC. With a relatively comparable performance, CBC1 requires much

more samples than DisBC, which is expected because the parallel computing can greatly decrease

the running time. This shows the promising advantage of the distributed framework especially for

the highly redundant snake robot. Meanwhile, DisBC achieved much more efficient and robust re-

sults than CBC2 with much less cycles and unexpected collisions with the same number of samples.

The reason lies in the proper modeling of various interactions inside the snake robot itself and with

the environment.
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5.4 Summary

In this chapter, a fully distributed Bayesian framework, one agent per link, is proposed for the

snake robot. Compared with the centralized framework, it may need additional computation cost for

the cooperation and communication. However, such a tradeoff is definitely worthy especially when

the snake robot has a very long body length. It avoids to use the high dimensional centralized state

representation, thus solving the exponentially increased computational cost. Overall, the proposed

DisBC approach has the following distinguishing contributions: 1) A fully distributed graphical

representation and decomposed modeling of the snake robot; 2) a mathematically derived Bayesian

updating rule of modeling not only the uncertainties but also the various interactions inside the

robot and outside the body with surroundings; 3) likelihood models for inter-link interaction and

environmental input functions are designed. Both simulation and real-world tests have shown the

promising performance.
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Chapter 6

Centralized Coach-Based Bayesian

Control

A robot is an essentially active agent that interacts with the physical world, and it generally does

so under uncontrollable or harmful circumstances [33]. On the basis of inadequate and uncertain

information, robots must perceive, decide, plan, and execute actions. Deep reinforcement learning

has been regarded as a valuable tool by the robotics community, and it had begun to be used and

advanced. However, not enough research has been done for snake robot control due to challenges of

the highly redundant structure, and frequent interactions inside the robot and with the environment

during the locomotion. In this chapter, we study the possibility of applying state-of-the-art Bayes

estimation into RL domain for robust snake control.

The majority of available snake robot control methods still rely on precise modeling and sens-

ing assumptions, which restrict performance in unknown situations [11]. Scientists have recently

begun to use neural network-based approaches and machine learning techniques to model actual s-

nake interactions with obstacles [63]. The use of reinforcement learning to create stable controllers

has sparked a lot of attention. For various robot applications, numerous model-free methods were

used [3] [34]. Despite its immense promise, RL’s implementation in robotics is hampered by the

arduous training process caused by data shortage and poor convergence. Because robotics involves

complicated physical systems, samples could be costly owing to the considerable time it takes to
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accomplish tasks, the requirement for user intervention, and the need for repairs and maintenance.

It is typically hard to use RL for snake robot control without an effective scheme since the large D-

OF makes the problem much more challenging. By generalizing observed transitions, model-based

RL enables agents to develop appropriate policies with a fewer number of trials. A probabilistic

model of the agent’s ignorance about the world can increase data efficiency even further, allowing

it to pick actions under uncertainty [67]. Prior information is encoded and uncertainty in model

parameters is represented in Bayesian RL [68]. It offers a potential way to tackling the problems of

slow convergence in RL. Most disclosed solutions, however, still dedicated to numerical modeling

and seldom applicable to practical robot control.

To address the aforementioned challenges, we offer a centralized coach-based principled

paradigm in this chapter. When compared to traditional model-free RL, it uses a guided procedure

to teach the agent, especially during the start of training, substantially reducing convergence time

and using far less data. The suggested technique is more tractable and efficient to implement than

conventional model-based RL algorithms. Furthermore, the system and environment’s uncertainties

are all explicitly treated inside a unified stochastic framework.

6.1 Methodology of the Centralized Coach-Based Framework

We need a way to embed prior knowledge and mature experience into the RL’s formulation for

snake robot control in order to perform an efficient policy search with a small number of training

episodes. It should maintain a probability distribution across model parameters to explicitly repre-

sent uncertainty, and perform actions that optimize the expected long-term reward with respect to

the distributions. The policy calculation may then examine both the reward and contribution of ac-

tions to learn unknown model parameters, resulting in an appropriate trade-off between exploration

and exploitation. As a result, we decided to frame the notion as a coach-based RL architecture.
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Figure 6.1. The probabilistic graphical model for coach-based reinforcement learning.

Figure 6.2. The coach model (purple) and agent model (green) after graphical decomposition.

6.1.1 Probabilistic Graphical Modeling

As shown in Fig. 6.1, we propose a Probabilistic Graphical Model (PGM) [69] to facilitate the

analysis of the snake robot control issue. The designed model is a Partially Observable Markov De-

cision Process (POMDP) [70]. It has two coupled parts: the agent and the coach. Unlike traditional

model-based RL algorithms, which have complicated dynamics to predict, making convergence

problematic for robot applications, we use a coach-guided formulation to speed up the training pro-

cess. The traditional environment state in RL is further split into three different types of nodes: the

agent state st, the observation qt, and the external interactive objects such as targets and obstacles

ot, where t is the time index. The observation qt includes the location, direction, and link angles of
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the snake robot, which can be estimated by a simulator or an image detector. The external objects

ot includes the location of all currently interacted targets and obstacles. Although the number of

detected obstacles is dynamically changing, the nearest one is used as discussed in Section 6.1.2.

By doing this, we provide a more explicit modeling and deeper analysis of the environment. The

coach’s hidden states xt can then be partially observed by qt. We denote the set of all agent states up

to time t by s0:t, where s0 is the initialization prior, the action of an agent by at, the set of all actions

up to time t by a1:t, the reward of agent by rt, and the set of all rewards up to time t by r1:t. Similarly,

we further denote the set of all coach states up to time t by x0:t, where x0 is the initialization prior,

the set of all observations up to time t by q1:t, and the set of all external interaction up to time t by

o1:t. Formally, the POMDP for RL agent is a tuple ⟨S,A,R, ν⟩, where S is the set of agent states, A

the set of actions, R(st, at) the reward received when taking action at in state st, and ν the discount

factor. Different with common practice of importing the action at−1 into the next step agent state st

directly, we modulate it with coach’s state xt. Both xt and at are defined in shape space as discussed

later in Section 6.1.2. After they are fused together, the correspondingly generated control signal

is then sent to actuators. The robot will next interact with external objects ot, which will give the

observation qt. The command may not be implemented precisely owing to system and environment

uncertainties. Therefore, we use a re-evaluation process based on observation qt and external ob-

jects ot to compute the agent state st. The dynamics is indicated by the directed edges between the

coach’s states. The edge between state and action show the policy πp. We inherit the commonly ac-

cepted Markov assumption, i.e. conditional independence, throughout the whole graphical model.

It provides a potential framework for dealing with uncertainty in a cohesive manner by representing

unknown parameters using probabilistic distributions.

Compared to working from basic trial-and-error as in model-free learning, being able to plan

based on a model is usually far more sample-efficient. Training a good model, on the other hand,

is often challenging, and cumulative errors from model deficiencies usually result in low agent

performance. As a result, many early deep RL successes (such as DQN and A3C) would prefer to

use a model-free form. Despite its enormous potential, direct application of the PGM in Fig. 6.1 by

a model-based RL method is quite difficult. For snake robots, the presented coach-based strategy

can provide a better balance between exploration and exploitation than typical model-based RL
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Figure 6.3. Determining the robot’s position with relation to the goal and the closest obstacle.

methods. Two models, one for coach (purple) and the other for agent (green), could be built using

graphical decomposition theory [65], as illustrated in Fig. 6.2. This graphic breakdown is valid

because all of the knowledge from Figure 6.1 is preserved without loss of any nodes or edges. As

shown in Fig. 6.2, the dynamics makes use of the serpenoid model to aid in the analysis. It may

be used to steer policy searching, resulting in a significant increase in convergence speed. After

decomposition, the agent model is kept as a model-free RL process for a simple implementation

with a modified input state. This approach is referred to as ”Centralized Coach-based Reinforcement

Learning” (CCRL).

Overall, the aforementioned RL issue is addressed, in which an agent operates in a stochastic

environment by sequentially selecting actions across a succession of time steps in order to reduce

a cumulative cost. This coach-guided policy search approach consists of two critical aspect: The

first aspect involves estimating a dynamics model using prior knowledge and updating data, where

a Bayesian approach is critical due to the uncertainty inherent in practical scenarios; the second

aspect involves learning the parameters wπ of an optimal policy function πp that maximizes the

reward expectation.

6.1.2 Shape-Based State and Action Space

We chose the serpenoid model in eq. (1.11), because it has a lower state dimensionality, which

helps speed up learning convergence [5]. The coach state is denoted as xt = ⟨γt, αt⟩. A 4-tuple ex-

pression is used for the agent state. It represents the robot’s and the environment’s relative position,

as seen in Fig.6.3,

s = ⟨d1, ϕ1, d2, ϕ2⟩ (6.1)
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where d1 the distance between the target and the robot for determining if the movement is approach-

ing the destination, the angle in between is ϕ1, d2 the distance between the nearest obstacle and the

robot, and the angle in between is ϕ2.

To keep the action space dimensionality low, we choose a = ⟨∆γ,∆α⟩, where ∆γ and ∆α and

are the offset and amplitude increments respectively. Particularly, constant increments are defined

for ∆γ ∈ {−∆γ, 0,+∆γ}, and ∆α ∈ {−∆α, 0,+∆α}.

6.2 Centralized Coach Modeling By Bayesian Density Propagation

The purpose now is to recursively calculate the control signal xt using the coach mod-

el in Fig. 6.2. This could be accomplished by first estimating the posterior distribution

p(x0:t|q1:t−1, a1:t−1, o1:t−1), and then using the external information ot to compute the agent’s state

st,

p(x0:t|q1:t−1, a1:t−1, o1:t−1)

=
p(xt, qt−1, at−1, ot−1|x0:t−1, q1:t−2, a1:t−2, o1:t−2)

p(q1:t−1, a1:t−1, o1:t−1)
p(x0:t−1, q1:t−2, a1:t−2, o1:t−2) (6.2)

=
p(xt, qt−1, at−1, ot−1|xt−1)

p(q1:t−1, a1:t−1, o1:t−1)
p(x0:t−1, q1:t−2, a1:t−2, o1:t−2) (6.3)

=
p(qt−1|xt−1)p(ot−1|xt−1)p(xt, at−1|xt−1)

p(q1:t−1, a1:t−1, o1:t−1)
p(x0:t−1, q1:t−2, a1:t−2, o1:t−2) (6.4)

=
p(qt−1|xt−1)p(ot−1|xt−1)p(xt, at−1|xt−1)
p(qt−1, at−1, ot−1|q1:t−2, a1:t−2, o1:t−2)

p(x0:t−1|q1:t−2, a1:t−2, o1:t−2) (6.5)

= kc · p(qt−1|xt−1)p(ot−1|xt−1)p(xt, at−1|xt−1)p(x0:t−1|q1:t−2, a1:t−2, o1:t−2). (6.6)

We apply the Bayes rule in eq. (6.2). In eq. (6.3), we use the conditional indepen-

dence property p(xt,qt−1, at−1, ot−1|x0:t−1,q1:t−2, a1:t−2, o1:t−2) = p(xt,qt−1, at−1, ot−1|xt−1) from

the coach model of Fig. 6.2. In eq. (6.4), the Markov property p(xt, qt−1, at−1, ot−1|xt−1) =

p(qt−1|xt−1)p(ot−1|xt−1)p(xt, at−1|xt−1) is applied. In eq. (6.5), we get a recursive updating rule

with posterior p(x0:t−1|q1:t−2, a1:t−2, o1:t−2) for time t−1. We also use a constant kc to denote the de-

nominator in eq. (6.6), since it does not contain the state x. Because it has to know p(x0:2|q1, a1, o1),

the start of the updating rule in eq. (6.6) should meet t ≥ 3. In this implementation, the initialization

of variables x0:2, q1, a1, and o1 are preset.
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This formula expresses the coach dynamics’ uncertainty propagation clearly. Three probability

densities are crucial to updating the posterior, as shown in eq. (6.6): the observation function

p(qt−1|xt−1), the interaction function p(ot−1|xt−1) and the modulated dynamics p(xt, at−1|xt−1). The

next section discusses how to approximate these factors.

6.2.1 Observation Function

The probability from the coach state xt−1 to its observation qt−1 is modelled by probability

density p(qt−1|xt−1). To estimate this observation density, various approaches have been proposed.

To approximate this function, we employ the BNN-based learning method [30].

6.2.2 External Interaction Function

The interaction of the state xt−1 and the external objects ot−1 is represented by the function

p(ot−1|xt−1). We use the BNN-based technique [30] to learn the function from training data.

6.2.3 Dynamics Modulation

We describe the modulated dynamics using a multivariate Gaussian, as illustrated in Fig. 6.2,

so as to integrate the control signals from the agent and the coach,

p(xt, at−1|xt−1)

=
1

2π|Σd|1/2
exp
{
− 1

2
(xt − µ)TΣ−1

d ((xt − µ)
}

(6.7)

where µ is the mean, Σd the covariance as follows,

µ =

αt−1 + kα∆αt

γt−1 + kγ∆γt

 , Σd =

σ
2
α 0

0 σ2
γ

 (6.8)

In eq. (6.8), kα and kγ are modulation coefficients. When kα = 0 and kγ = 0, only the coach is

evaluated and the agent’s actions are ignored. When kα or kγ increases, the involvement of the agent

in the learning process becomes more prominent.
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6.3 Agent Modeling By RL

The posterior p(x0:t|q1:t−1, a1:t−1, o1:t−1) calculates the modulated control signal, which is then

supplied to actuators for implementation. As a result of its interactions with the surrounding envi-

ronment, the robot will produce the observation qt. The two arrows from ot to xt and xt to qt in

Fig. 6.2 represent the aforementioned procedure. It’s challenging to represent such interplay simply

using analytical formulation because of the uncertainty in the environment and the robot. We can,

however, approximate this interaction using the partially observed information. The distance d1 and

the angle ϕ1 denote the position between the robot and the target, as illustrated in Fig. 6.3. Their

integration has the potential to direct the robot to the goal. The distance d2 and the angle ϕ2 denote

the robot’s relative location to the closest obstacle. They may collaborate and play a key part in

avoiding obstacles. The RL network then imports this 4-tuple state to train policies.

6.3.1 Actor-Critic Network

The stochastic value function and policy function are calculated using two deep networks, one

for Critic and another for Actor. The Actor networks are built using two hidden layers, but the

Critic network uses just one. To add some non-linearity to activate the neural networks, rectifier

linear Relu unit is utilized. An A2C-based reinforcement learning approach [34] is used in our

solution to illustrate the performance of the suggested scheme and to compare it to the state of

the art [35]. Alternatively, other model-free reinforcement learning approaches might be applied.

Utilizing gradient descent and an entropy-based loss function as below, the agent learns a policy

πp : S→ A,

fπp(wA)=log
{
πp(at|st; wA)

}{
Rt − V(st; wA)

}
+ κ ·H

{
πp(st; wA)

}
, (6.9)

in which R denotes the discounted estimated return through time t, H is the entropy component

to promote exploration, and κ represents the constant regulating exploitation and exploration. The

expectation of discounted cumulative reward is set as the policy’s value V
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V = E

 ∞∑
t=0

νtR(st, at)

 , (6.10)

where the expectation is with respect to the random variable st at time t, νt the discount coefficient.

The goal is to choose an optimal policy π∗p with maximal value.

Strategy of Reward

Unlike reward design in [4], which simply incorporates obstacle-aided shape change, we com-

bine obstacle avoidance with path planning. As a result, we suggested this reward function,

rt = r1 + r2 + r3 (6.11)

where

r1= −k1, (6.12)

r2=


0

−k2
d2+1 , d2 < th2

(6.13)

r3=


0

k3, d1 < th1

(6.14)

In our test, parameters k1 = 0.01, k2 = 0.1, k3 = 20, th1 = 5, th2 = 50. The penalty r1 is used

to penalize any extra motion. It motivates the robot to go to the destination as quickly as possible.

The second return, is used for obstacle avoidance. The third item r3 is a bonus given when the robot

arrives at the destination.

6.3.2 Process of Learning

We also use a commutative mechanism throughout the training phase to produce a good balance

between exploitation and exploration. In particular, the RL agent is alternately executed with and

without coach assistance. In our tests, such a technique may provide a more stable result than just

running the coach-based RL. The coach might not always be the global optimal option, though
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Figure 6.4. Scenario of Training with one obstacle and one target.

Figure 6.5. Simulation results using the proposed CCRL with comparisons of MFRL [3] and state-
of-the-art DLDC [4].

it might provide mature expertise for learning. As a result, exploration is promoted by a balance

between these two ways.

6.4 Experimental Analysis

With comparisons of Distributed Learning of Decentralized Control (DLDC) and Model-Free

RL (MFRL) [3] techniques, both simulation and real-world data were implemented to assess the

performance of the CCRL method.
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Table 6.1. Comparative analysis of training methods

Item CCRL MFRL DLDC

Episodes 120 ∼ 260 1.2 ∼ 1.7k 11 ∼ 14k

Time (min) 31 ∼ 65 250 ∼ 300 700 ∼ 800

6.4.1 Simulation Results

To do simulations, the ACM-R5 in the Virtual Robot Experimentation Platform (V-REP) is

used. Each actuator is controlled by the joint angle θ . Because the robot interacts with obstacles

and the target, joint angles are altering in response to dynamic environment. As illustrated in Fig.

6.3, the relative position of the robot and the surroundings is dynamically evaluated. The learnt

policy may then be used to compute actions. The proper actuator angles may then be calculated

and fed to the controller. Despite the fact that various sensor noises may affect the state estimation,

the suggested technique can still manage them effectively thanks to the Bayesian mechanism. Fig.

6.4 depicts a training situation with a target and an obstacle. Table 6.1 shows episode number

required to achieve stable convergence. As shown in Table 6.1, the suggested CCRL can accomplish

significantly more training efficiency thanks to the coach model’s acceleration. Only due to more

sophisticated reward design does our version of MFRL converge faster than DLDC. It may, for

example, encourage the robot to approach the destination while dodging impediments. The original

DLDC reward design, on the other hand, focus on transforming the robot’s shape without taking

route planning into account. In our implementation, it is found that this reward tends to fall in a

local minimum that the snake just crawls around without approaching further. This local minimum

may account for the long convergence for training. More sophisticated reward function design

may help to reduce training time, but is susceptible to poor generalization for DLDC. This is to be

considered in our research in future.

We used a 12m x 20m scenario with obstacles and a target to show the efficiency of the CCRL

in complex environment. We assume that the setting is unknown beforehand, and only dynamically

approximated as the robot moves through the scene. In general, there are three types of uncertainty

in this situation: 1) The robot’s internal uncertainty, such as inherent joint friction, current varia-
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tion, and so on. 2) uncertainty in the external world, including interactions such as collisions with

obstacles that aren’t anticipated; 3) data uncertainty resulted from sensor noise. With the aid of

Bayesian-based RL mechanism, the CCRL achieved promising results in coping with these various

uncertainties.The results of the robot moving from the right to the left are shown in Fig. 6.5. To

obtain a fair comparison, we adjusted the reward functions of DLDC and MFRL, adding route plan-

ning abilities similar to r3 in (6.14). In Fig. 6.5A, the pink curve depicts CCRL’s entire trajectory.

The snake robot smoothly goes through the array without being stuck. The trajectories of DLDC

and MFRL, which are substantially less efficient than CCRL, are shown in Fig. 6.5B and 6.5C. This

is further supported by Fig. 6.5D and 6.5E, in which the CCRL trail is obviously the shortest. Be-

cause of unpredictable collisions, DLDC had to take detours. Fig. 6.5F compares the speed of robot

head of 3 separate algorithms, and we observe that CCRL experienced less collisions with obsta-

cles. Fig. 6.5G compares the angle changes of robot head, and the suggested CCRL had the highest

stable performance. Because they applied similar training data but acquired different policies, the

three approaches had similar serpenoid curves with different lengths, as shown in Fig. 6.5H. We

can also see from the torque fluctuations of robot head joint in Fig. 6.5I that CCRL experienced

less collisions due to fewer curve spikes, demonstrating the performance of the learnt control policy.

Similar trajectories of DLDC and MFRL suggest that pure model-free RL might lead policy search

to local optimum, not as efficient as the coach-based algorithm. Despite the fact that CCRL has a

torque overshoot owing to collision with obstacle in Fig. 6.5I, its direction could still be maintained

by using the Bayesian mechanism, which manages uncertainty well than other techniques.

Table 6.2. Quantitative comparison of different approaches

Average Item CCRL MFRL DLDC Improvements*

Routing Time (s) 23.10 52.41 52.95 55.9 ∼ 56.4%

Collisions 2 10 8 75 ∼ 80%

* Performance improvement of CCRL in comparison with MFRL and DLDC.

By running the simulated test five times, Table 6.2 provides a quantitative average comparison

of three approaches. As can be seen, the robot’s average routing time adopting CCRL is much
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Figure 6.6. Results using the proposed CCRL method on the real-world data.

Figure 6.7. Measured results of all joints of the snake robot on real-world data.

smaller than that of DLDC and MFRL. With the same destination, it obtains a performance increase

of more than 50% in terms of navigation efficiency. Furthermore, DLDC and MFRL have far more

collisions while CCRL has only two, demonstrating that the presented approach could considerably

increase obstacle avoidance performance in such testing circumstances.
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6.4.2 Real-World Results

The suggested CCRL approach was tested in the real world using the physical robot JAW-I.

A camera of bird’s view, similar to [15], is put in place to watch the whole scenario. The object

location and shape variation of robot links are determined in real time by using a CNN-based video

detector [38].

In an unstructured environment with one movable goal and a set of unfixed bottle-like objects,

we examined the performance of the suggested CCRL technique. As previously stated, the robot

itself, as well as external interactions with the environment and inherent sensor noise, comprises

various uncertainties. In practice, collision angles and forces, are difficult to estimate precisely. C-

CRL, nonetheless, demonstrated its promising performance in tolerating those uncertainties. First,

we used V-REP to train a strong policy. Then we transferred it into real world environment and did

additional training for about thirty episodes to make it more adaptive to the actual terrain. With a

half-hour, the whole procedure was completed. To test the robustness, more than 20 experiments

were conducted, and it performed well. During the navigation, the serpenoid gait was well main-

tained with appropriate shape changes adapting to these pegs, as seen in Fig. 6.6. Despite the fact

that the temporal frequency and link phase in (??) are fixed as constants, the joint angle θ is chang-

ing dynamically due to frequent interactions with the real world, causing the body wave to reshape

in response. Additionally, due to the uncertainties imposed by collisions, noise and electrical dis-

turbance, the real phase of the robot’s body wave may vary a little during locomotion. By means of

a coach-based Bayesian formulation, the performance is both efficient and effective. The guidance

significantly reduces the search space and ensures a robust control policy. The Bayesian framework

can tolerate various uncertainty, resulting in stable transfer and generalization. Just a few minor s-

tandstill were found, mostly during intense obstacle involvement. It could be the result of unknown

frictions or unlearned conditions. The measurement results of joint current and angle can be seen

in Fig. 6.7, in which the target moved once at about 12.8 seconds. The electrical current represents

the motor’s power usage as well as the torque it produces. As shown, the joint angles are quite s-

mooth with nice serpenoid curve, allowing the robot to effectively avoid collisions and approach the
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goal, even if it has moved. As anticipated, the electrical current fluctuation is regular with rhythmic

patterns. Collisions with obstructions produce some minor overshoots in energy consumption.

6.5 Summary

We introduced a centralized coach-based Bayesian controller for snake robots that utilizes re-

inforcement learning in this chapter. RL often requires a large number of episodes, making its

deployment on real robots costly and difficult. Due to the extra issue of considerable redundancy of

freedom, there has been little study on snake robot control using reinforcement learning. We use a

stochastic process with probabilistic density propagation to characterize the uncertainty in both the

external environment and the robot itself. The suggested technique achieves robust obstacle avoid-

ance and target searching with substantially reduced convergence time by integrating a shape-based

coach method into a model-free RL strategy inside a uniform formulation. Preliminary tests verify

the effectiveness of the controller.
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Chapter 7

Distributed Coach-Based Bayesian

Control

Deep reinforcement learning is a very active research area. Unfortunately, problems such as

data inefficiency, exploration-exploitation trade-off, and multi-task learning are still very challeng-

ing. Thus, distributed RL received more and more attention recently, which could be run on many

machines simultaneously. In this chapter, we regard the snake robot as a multi-agent system and in-

vestigate the issue of applying Bayes estimation into a distributed RL framework for efficient snake

robot control.

A full review about distributed RL can be found in [71]. A new framework for distributed

reinforcement learning called Acme is proposed by Deepmind team to increase reproducibility in

RL [72]. Pawar and Maulik discussed a deep RL method of using a distributed formulation to

optimize and control system parameters in [73]. Sartoretti et al. exploited A3C algorithm to provide

a distributed learning method for a single articulated robot in [74]. Zhang and Cai used Double-

DQN and PPO of RL to train a snake in [75]. Bing et al. proposed a perception-action coupling

target tracking controller for a snake robot via RL in [76]. In [77], we proposed a coach-based RL

method using a joint state representation for the whole body of a snake robot. A Bayesian control

framework is set up to speed up the process of training and greatly save the convergence time. It
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shows an interesting research direction to reduce the complexity and difficulty encountered in the

slow convergence of RL.

In this chapter, we extend our previous centralized coach-based framework by a distributed

architecture. Compared with the central solution, it adopts multiple agents, one for each snake

robot link, to guide training of RL. Such a framework can greatly decrease the convergence time

by using much less data. The rest of the chapter is organized as follows. Section 7.1 provides the

methodology of the proposed distributed coach-based framework. Section 7.2 derives the distributed

density propagation rule. Section 7.3 discusses the distributed RL agents. Experimental results are

reported in Section 7.4.

7.1 Methodology of the Distributed Coach-Based Framework

The purpose of a distributed coach-based RL method is to go one step further based on the work

in the previous chapter by taking the benefit of parallel computation. The practice in distributed

Bayesian control in the early chapter can be transferred to fulfill this goal.

To exploit the parallel computation capability of GPU and further expedite the training process,

a completely decentralized formulation is really desirable for RL-based method for snake robot

control. Nevertheless, both the physical constraints among robot links and the interaction with en-

vironmental objects have to be well modeled. The uncertainty should also be treated in a stochastic

way by density propagation so that optimal actions can be chosen by maximizing the expectation of

long-term reward. All these ideas have been casted by a newly proposed RL architecture, adopting

purely distributed and coach-based methods as follows.

7.1.1 System Structure

The system formulation has been shown in Fig. 7.1, where a six-link snake robot model is

shown. Each robot link is simulated by a coach module. The dash line between two adjacent robot

links represents the physical constrain. Although a meta-coach is modeled for the whole robot body,

it has been analyzed by a purely distributed way as further discussed in Fig. 7.2. Moreover, we use
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Figure 7.1. The structure of the proposed distributed framework for snake robot control using coach-
based RL method, where each robot link is modeled by a coach and trained by an RL agent. The
dash lines between robot links represent their physical constraints.

Figure 7.2. The spatial graphical modeling and decomposition with respect to robot links. x is the
coach’s hidden state, q the observation, o the external interactive objects, s the agent state, a the
agent action, r the agent reward, t the time index. (a) The static coupled model of two adjacent
robot links; (b) The decomposed model for robot link i; (c) The decomposed model for robot link j.

multiple RL agents, one for each robot link, to learn the control policy simultaneously in the training

process.

The Probabilistic Graphical Model (PGM) [69] is a good tool to formulate the control problem

of snake robot control. Like [78], we model the coach and agent modules by PGMs in Fig. 7.2

for two adjacent links i and j, where (a) is the coupled model, (b) and (c) the decomposed models,

respectively. x is the coach’s hidden state, q the observation, o the external interactive objects, t

the time index. Similarly, s is the state of RL agent, a the corresponding action, r the associated

reward. The undirected edge between xi
t and x j

t represents their physical interaction. Since we
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Figure 7.3. The dynamical graphical modeling for robot link i.

Figure 7.4. The graphical decomposition with respect to coach and agent models.

consider all agents in parallel, it can be split into two directed edges without any information loss

by graphical decomposition theory [65]. In the model of robot link i, for instance, the directed edge

from xi
t to qi

t shows the observation likelihood. The observation includes the information of the

robot’s direction, location coordinates, and link angles. The directed edge from oi
t to xi

t indicates

the interaction between environmental objects to the robot link. There may be different number of

obstacles around the snake robot. For simplicity, only the nearest one is chosen in this work. More

complicated computational scheme could be used instead. The hidden states xi
t of robot coach could

be estimated partially from the observations qi
t. The state si

t of RL agent can be calculated from both

observation qi
t and interactive object oi

t, which are indicated by the two directed edges from qi
t and

oi
t to si

t.

In order to facilitate a sequential analysis, we further provide a dynamical graphical model for
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robot link i as shown in Fig. 7.3, where three time frames are presented. In most RL methods, the

action ai
t−1 is usually imported directly into the robot agent’s state si

t for the next step. Differently,

we connect it with the coach state xi
t instead. The directed edge between two states such as xi

t and

xi
t+1 represents the coach dynamics. The set of all coach’s states up to time t is denoted by xi

0:t,

where xi
0 is the initialization prior. Similarly, we denote the set of all observations up to time t

by qi
1:t. Correspondingly, the set of all external interactions up to time t can be denoted by oi

1:t.

Moreover, the set of all agents’ states up to time t is represented by si
0:t, where the initialization

prior is si
0. ai

1:t is the set of all actions up to time t, ri
1:t the set of all rewards up to time t.

The PGM in Fig. 7.3 is very complicated for a direct analysis due to the various couplings.

Therefore, we exploit the graphical decomposition [65] again with respect to coach and agent mod-

els. The result is shown in Fig. 7.4 for time t and t − 1, where (a) is called a ”Link Coach Model”

(LCM) and (b) a ”Link Agent Model” (LAM). No information is lost since all nodes and edges are

kept comparing with the original model in Fig. 7.3. As shown in Fig. 7.4(a), the control signal xi
t

is first estimated and then sent to robot link’s actuator after xi
t−1 and ai

t−1 are fused together with

the interaction from link x j at time t. After that, each robot link will have interactions with external

environment, for example, attracted by targets and colliding with obstacles, which are all indicated

by oi
t. Finally, the observation qi

t is produced. During this process, the control command may not

be exactly executed because of different noises and uncertainties. Thus, the agent state st has to

be estimated based on both observation qi
t and external objects oi

t as shown in Fig. 7.4(b). As we

can see, the agent model is still a model-free RL process overall where the edge between state and

action represents the RL policy πp. The reward ri
t is computed based on both si

t and ai
t as shown

by the two directed edges in Fig. 7.4(b). In this RL process, an agent acts in a stochastic environ-

ment due to the unknown environment and system uncertainties. The control policy can be learned

by minimizing a long-term cumulative cost. The graphical model adopts the Markov assumption,

namely, conditional independence property. The following Markov properties can easily be verified

from the decomposed graphical models in Fig. 7.4 by the theory in [69],

92



Figure 7.5. The relative pose between robot links and environmental objects.

7.1.2 Definition of State and Action Space

The serpenoid model [5] is chosen to simulate the snake gait. Correspondingly, we denote the

robot’s coach state as xi
t = ⟨αi

t, γ
i
t⟩ for robot link i.

A 5-tuple agent state definition is chosen to depict the relative status between the robot link i

and its environmental objects as shown in Fig. 7.5. We denote

si = ⟨ϕi
1, d

i
1, ϕ

i
2, d

i
2, ϕ

A(i)⟩ (7.1)

where ϕi
1 is the angle between the snake robot link i and the navigation target as shown in Fig. 7.5.

di
1 is the normalized distance between the robot link i and the target, which is used to estimate the

proximity of snake robot to the destination. ϕi
2 indicates the angle between the link i and its nearest

obstacle, where di
2 evaluates the corresponding distance. ϕA(i) is the angle between an adjacent link

j and the robot link i where j ∈ A(i). A(i) is the set of all adjacent links of i where we only illustrate

one adjacent link j here for simplicity. As we can see, this definition is quite different with the joint

state representation in [78] which uses the whole body (dash rectangle) to calculate the relative pose

between snake robot and external objects. The action is defined as ai = ⟨∆αi,∆γi⟩, where ∆αi is

the amplitude increment and ∆γi the offset increment for the control signal in ??. Particularly, we

use a constant increment ∆α for amplitude ∆α ∈ {−∆α, 0,+∆α}, and another constant increment ∆γ

for offset ∆γ ∈ {−∆γ, 0,+∆γ} similarly as [78].
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7.2 The Stochastic Bayesian Derivation for Coach Model

In order to analyze the coach model in Fig. 7.4, we would like to estimate the control signal

xi
t recursively. Specifically, the posterior density p(xi

0:t|ai
1:t−1, o

i
1:t−1, q

i,A(i)
1:t−1 ) is firstly to be derived

whereA(i) represents all indices of adjacent links of i.

p(xi
0:t|ai

1:t−1, o
i
1:t−1, q

i,A(i)
1:t−1 )

=
p(xi

t, q
i,A(i)
t−1 , a

i
t−1, o

i
t−1|xi

0:t−1, a
i
1:t−2, o

i
1:t−2,q

i,A(i)
1:t−2 )

p(ai
1:t−1, o

i
1:t−1, q

i,A(i)
1:t−1 )

p(xi
0:t−1, a

i
1:t−2, o

i
1:t−2,q

i,A(i)
1:t−2 ) (7.2)

=
p(xi

t, q
i
t−1, q

A(i)
t−1 , a

i
t−1, o

i
t−1|xi

t−1)

p(ai
1:t−1, o

i
1:t−1, q

i,A(i)
1:t−1 )

p(xi
0:t−1, a

i
1:t−2, o

i
1:t−2,q

i,A(i)
1:t−2 ) (7.3)

=
p(qi

t−1|xi
t−1)p(oi

t−1|xi
t−1)p(xi

t, a
i
t−1|xi

t−1)

p(ai
1:t−1, o

i
1:t−1, q

i,A(i)
1:t−1 )

p(qA(i)
t−1 |x

i
t−1)p(xi

0:t−1, a
i
1:t−2, o

i
1:t−2,q

i,A(i)
1:t−2 ) (7.4)

=
p(qi

t−1|xi
t−1)p(oi

t−1|xi
t−1)p(xi

t, a
i
t−1|xi

t−1)

p(qi,A(i)
t−1 , a

i
t−1, o

i
t−1|ai

1:t−2, o
i
1:t−2,q

i,A(i)
1:t−2 )

p(qA(i)
t−1 |x

i
t−1)p(xi

0:t−1|ai
1:t−2, o

i
1:t−2, q

i,A(i)
1:t−2 ) (7.5)

= kc · p(qi
t−1|xi

t−1)p(oi
t−1|xi

t−1)p(xi
t, a

i
t−1|xi

t−1)p(qA(i)
t−1 |x

i
t−1)p(xi

0:t−1|ai
1:t−2, o

i
1:t−2,q

i,A(i)
1:t−2 ). (7.6)

In eq. (7.2), we use the Bayes rule. In eq. (7.3) and eq. (7.4), the following two Markov properties

from the LCM of Fig. 7.4(a) are used,

p(xi
t, q

i,A(i)
t−1 , a

i
t−1, o

i
t−1|xi

0:t−1, a
i
1:t−2, o

i
1:t−2, q

i,A(i)
1:t−2 )

= p(xi
t, q

i
t−1, q

A(i)
t−1 , a

i
t−1, o

i
t−1|xi

t−1)p(xi
t,q

i
t−1,q

A(i)
t−1 , a

i
t−1, o

i
t−1|xi

t−1)

= p(qi
t−1|xi

t−1)p(oi
t−1|xi

t−1)p(xi
t, a

i
t−1|xi

t−1)p(qA(i)
t−1 |x

i
t−1).

Finally, a density updating rule from the posterior density p(xi
0:t−1|ai

1:t−2, o
i
1:t−2, q

i,A(i)
1:t−2 ) at time t − 1

is derived in eq. (7.5). A constant kc is further used to represent the denominator in eq. (7.6)

since there is no hidden state xi in it. The recursive rule in eq. (7.6) has to begin with t ≥ 3

because it requires p(xi
0:2|ai

1, o
i
1,q

i,A(i)
1 ) where the initial values of xi

0:2, ai
1, oi

1, and qi,A(i)
1 ) are all

predefined. This mathematically derived rule clearly describes the propagation of uncertainties in

the dynamics of LCM. Compared with the framework in [78], there are two major difference: i) a

completely distributed rule for each robot link instead of the whole body; ii) a newly derived density
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p(qA(i)
t−1 |x

i
t−1), which could be expanded further,

p(qA(i)
t |xi

t)

=
∏

j∈A(i)

p(q j
t |x

i
t) (7.7)

=
∏

j∈A(i)

∫
p(q j

t |x
i
t, x

j
t)p(x j

t |x
i
t)dx j

t (7.8)

=
∏

j∈A(i)

∫
p(q j

t |x
j
t)p(x j

t |x
i
t)dx j

t (7.9)

where we firstly use the Markov properties in eq. (7.7). In eq. (7.8), the state x j
t appears by

introducing an integral. Moreover, the Markov property that the observation is only decided by its

own state xi
t is adopted in eq. (7.9). By substituting eq. (7.9) into eq. (7.6), we can get,

p(xi
0:t|ai

1:t−1, o
i
1:t−1, q

i,A(i)
1:t−1 )

= kc · p(qi
t−1|xi

t−1)︸       ︷︷       ︸
observation function

· p(oi
t−1|xi

t−1)︸       ︷︷       ︸
environment interaction

· p(xi
t, a

i
t−1|xi

t−1)︸           ︷︷           ︸
modulated dynamics

·
∏

j∈A(i)

∫
p(q j

t |x
j
t)︸  ︷︷  ︸

observation function

· p(x j
t |x

i
t)︸ ︷︷ ︸

link interaction

dx j
t

·p(xi
0:t−1|ai

1:t−2, o
i
1:t−2,q

i,A(i)
1:t−2 ), (7.10)

where four different kinds of probability distributions are important to calculate the posterior den-

sity: the observation functions for both link i and its adjacent links, the environment interaction, the

modulated dynamics, and the link interaction. A number of various density estimation techniques

can be exploited to simulate these distributions. Here we give some paradigms.

7.2.1 Observation Function

Both p(qi
t−1|xi

t−1) and p(q j
t |x

j
t) are the likelihood between a coach state i or j to its associated

observation. Similar to [78], the BNN-based learning method [30] is chosen to approximate these

two functions by training data.
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7.2.2 Environment Interaction

The density p(oi
t−1|xi

t−1) simulate the environmental interaction between the state xi
t−1 of robot

link i and the external object oi
t−1, which could be stimulated by obstacles or targets. The BNN-

based algorithm in [30] is adopted to learn this function as well from training data.

7.2.3 Modulated Dynamics

Similar to [78], the modulated dynamics can be modeled as a multi-variate Gaussian distribu-

tion,

p(xi
t, a

i
t−1|xi

t−1)

=
1

2π|Σd|1/2
exp
{
− 1

2
(xi

t − µ)TΣ−1
d ((xi

t − µ)
}

(7.11)

where µ is the multi-variate mean, Σd the multi-variate covariance as follows,

µ =

αt−1 + kα∆αt

γt−1 + kγ∆γt

 , Σd =

σ
2
α 0

0 σ2
γ

 ,
As we can see, kα and kγ are all coefficients where only the coach itself works when kα = 0 and

kγ = 0. When kα or kγ is getting larger, the agent action becomes more critical in the learning

procedure.

7.2.4 Link Interaction

The density p(x j
t |xi

t) models the physical constraints between robot link state x j
t and xi

t. It can

also be learned by the BNN-based learning algorithm [30] with collected training data.

7.3 Learning Details for the Agent Model

After the posterior p(xi
0:t|qi

1:t−1, a
i
1:t−1, o

i
1:t−1) is estimated, the robot control signal can be calcu-

lated and sent to the actuator of robot link i. By interacting with the surroundings, the observation
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qi
t could be measured for the snake robot. As can be seen in Fig. 7.4(a), the two directed edges from

oi
t to xi

t and xi
t to qi

t represent these processes, respectively. By the definition of eq. (7.1), the agent

state can be calculated and then used for the RL training.

7.3.1 The Network for Reinforcement Learning

The A2C-based RL method [34] is chosen as a paradigm in our implementation for a better

comparison with other methods. For the network architecture, we use two deep neural networks

for the RL training process. Specifically, one is used as Actor to estimate the the stochastic polity

function and another plays as Critic to estimate the value function, respectively. For the Actor

network, we have chosen two hidden layers. However, for Critic network, only one hidden layer is

selected. As a common practice, the ReLU function is introduced in order to get non-linearity after

each hidden layer.

A four tuple ⟨Si,Ai,Ri, νi⟩ is used to denote the RL training process. In particular, Si represents

the set of agent states of link i. Ai is the set of all actions for robot link i. R(si
t, a

i
t) is the corre-

sponding reward. νi is the discount factor in the RL. The optimal policy πi
p : Si → Ai is learned by

gradient descent with an entropy-based loss function,

fπi
p
(wi

A)=log
{
πi

p(ai
t|si

t; wi
A)
}{

Ri
t − Vi(si

t; wi
A)
}

+κ ·H
{
πi

p(si
t; wi

A)
}
. (7.12)

where H is the entropy factor used to encourage exploration, wi
A the network weights, κ the constant

adjust the tradeoff between exploration and exploitation. The policy value Vi is defined by

Vi = E

 ∞∑
t=0

νi
tR(si

t, a
i
t)

 , (7.13)

where the objective is to find out the optimal policy π∗p having a maximum value.
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7.3.2 The Design of Reward Function

For a better comparison, the same reward function has been used for all link agents similar

as [78],

ri
t = ri

1 + ri
2 + ri

3 (7.14)

where

ri
1 = −k1, ri

2 =


−k2

di
2+1
, di

2 ≤ th2

0, di
2 > th2

, ri
3 =


ki

3, di
1 ≤ th1

0, di
1 > th1.

Specifically, the reward ri
1 is a punishment factor to reduce the movement and push the snake

robot to approach the target quickly. The factor ri
2 is used to decrease collisions by keeping distance

from obstacles. The third factor is a final reward when reaching the target.

For the parameters, we empirically set k1 = 0.01, k2 = 0.1, k3 = 20, th1 = 5, th2 = 50.

7.3.3 Learning Details

As talked in the previous chapter, we found that a commutative scheme can make the trained

policy more stable because it can achieve a good balance between exploration and exploitation.

Therefore, in this work, we still make the RL agent take turns with and without the coach model.

7.4 Experimental Results

The proposed Distributed Coach-based RL (DCRL) method has been tested by both simulations

and real-world data with comparisons of Model-Free RL (MFRL) [3], the Centralized Coach-based

RL (CCRL) [78], and Distributed Learning of Decentralized Control (DLDC) method [4].

7.4.1 Simulation Analysis

V-REP [36] is used as the simulation platform for experimental verification. The ACM-R5

snake robot is exploited. We varied the number of links from 5 to 12 during the tests. During the
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Figure 7.6. The training scenario adopted in our implementation. It has one target and two obstacles
with different sizes.

navigation, the relative status between each robot link and environmental objects is first dynamically

estimated. After that, the learned policy for each snake robot link can generate an action based on

the input, which can be further used to compute the desirable actuator angle. Although all actuator

joints are controlled independently, they are inherently correlated by two ways: 1) the serpenoid

model guarantees the phase collaboration among robot links which keeps the predominant gait of

snake robot; 2) the interaction between adjacent links has been not only embedded inside the learned

policies during training process but also triggered by the same external objects.

The training scenario is shown in Fig. 7.6 where two obstacles with different sizes and one tar-

get are used. Compared with the one target and one obstacle training scene in [78], we introduce an

additional obstacle in order to cover more abundant interaction situations. In our implementation,

we found that the previous training scenario could not work well for the proposed distributed frame-

work. In our new formulation, each robot link learns its own policy. If lacking enough interaction

cases, the learned policy will be biased although it can make a convergence. In other words, the

performance of inference will be not stable if the training scene is too simple. The policy may fail

when facing unlearned situations. This new scene would slow down the training speed than before

as expected. However, the sacrifice of additional computation is not only necessary but also worthy.

Table 7.1. Comparison of Training Performance*

Item MFRL DLDC CCRL DCRL

Episodes 1.6 ∼ 2.4k 15 ∼ 19k 193 ∼ 354 136 ∼ 238

Time (min) 350 ∼ 490 880 ∼ 950 52 ∼ 61 26 ∼ 44

* The performance was achieved by using the ACM-R5 snake robot with 8 links.
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Figure 7.7. Performance comparison of training speed using CCRL and DCRL.

Figure 7.8. Simulation results using the proposed DCRL on the scene of PEGGY-ARRAY.

Table 7.1 presents the comparison of training performance using different methods. The results

were achieved by using a snake robot with 8 links. As we can see, DLDC is most data starving and

time consuming in order to achieve a relative robust convergence.

Due to using a more complicated reward design, MFRL converges quickly. The efficient train-

ing achieved by CCRL is because of using the coach model. The proposed DCRL achieved the

best results in terms of a least episode demand and a fastest convergence time benefiting from the

distributed formulation.

In order to give a deeper investigation of the newly proposed DCRL comparing with its cen-
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tralized counter party, we varied the number of robot links and tested their training performance as

shown in Fig. 7.7. For each setup, we tested five times and calculated the averaging time as well as

the variance. As can be seen, the convergence speeds are quite similar when the body length is short

with a limited number of robot links. CCRL is even better than DCRL when the number of links is

small, say less than seven. However, when link number gets larger, the convergence time of CCRL

slows down dramatically than DCRL due to the exponentially increased computational complexity

by the centralized state space. However, the training speed of DCRL only varies linearly in terms

of the link number because of the smaller state space and the parallel computing. This shows the

great advantage of such a distributed solution especially when the snake robot has a very long body

length.

Table 7.2. Quantitative Comparisons of Performance*

Performance MFRL DLDC CCRL DCRL

Time Used (s) 63.97 64.71 24.14 25.66

Collisions 23 15 10 4

* The performance was achieved by the ACM-R5 snake robot with 10

links.

For the inference performance, we first tested the learned policy of DCRL in a terrain called

PEG-ARRAY which can be seen in Fig. 7.8A, where a target and obstacles are unknown in ad-

vance and only dynamically estimated during the locomotion. It is challenging due to the frequent

interactions among robot links as well as with environments. Although using multiple independent

controllers, one for each link, during the navigation, the proposed DCRL achieved robust perfor-

mance in tolerating these various uncertainties inside robot itself and from sensor noise by the

proposed collaborative-training-decentralized-execution scheme. Fig. 7.8 shows the experimental

results, where A shows the overall movement trajectory, B and C the joint position, D the joint an-

gle, E the joint speed, and F the joint torque. As we can see, the snake robot can successfully pass

through the peg array efficiently and robustly with a smooth trace. The serpenoid gait is well kept

as shown in Fig. 7.8D. Very few collisions happen as indicated by the spikes in 7.8E and F.
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Figure 7.9. Results on complex data CORRIDOR. It has many crowed obstacles, some of which are
movable.

Figure 7.10. Performance comparison of CCRL and DCRL during the navigation process on
CORRIDOR.

We have compared the quantitative performance with different methods in detail. Table 7.2

gives the analysis of both averaging routing time and collisions of five runs using each control

method. As we can see, both MFRL and DLDC spent a much longer period due to the detours

after collisions. Comparing with CCRL, DCRL achieved a more robust performance with even less

collisions and comparable routing speed. This is mainly because the independent controller of each

robot link provides more flexibility to adjust its local shape.

One more scenario CORRIDOR shown in Fig. 7.9 is further used to demonstrate the effective-

ness of generalization and make a thorough comparison with CCRL like [78]. It is more challenging

due to the narrow space and small movable obstacles. We varied the number of snake robot links and

tested the robustness of learned policy in inference. Fig. 7.10 shows the performance comparison

using the CCRL and DCRL.

Commonly, it is very difficult to achieve a collision-free locomotion in unknown scene with
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Figure 7.11. Real-world experimental results of DCRL method.

Figure 7.12. The quantitative result for all snake robot links using the proposed DCRL approach.

many obstacles, some of which are even shiftable. Sometimes, suitable collisions may be helpful

to aid the movement of the snake robot. However, hard and/or frequent collisions are definitely

undesirable. The goal of this work is to design schemes for obstacle avoidance. As we can see,

there is not much difference when the number of robot links is small. When it is beyond seven, the

collisions of CCRL get much more than DCRL. This is mainly because the joint state representation

makes the complexity increase exponentially in terms of the number of robot links. One central

controller is difficult to coordinate a large number of robot links and fit to complicated environment

changes. On the contrary, DCRL doesn’t suffer from this problem and can keep relatively stable

performance even when the robot length is getting large.
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7.4.2 Experimental Results in the Real World

The physical snake robot JAW-I was used to verify the proposed DCRL in real-world. A testing

scenario having one shiftable target and a number of bottle-like obstacles are adopted to simulate

cluttered environments. For the training process, we firstly transferred the policy learned from

simulation and then re-trained it in the real-world since the physical parameters of snake robots

are different in these two situations. However, we find that the training policy is mostly sensitive

to the number of robot links but not the configuration parameters. In other words, not too much

additional training, say 20-30 episodes, can guarantee a relatively stable performance for the new

environment in our implementation. More than 15 trials were tested to demonstrate the performance

where we found the proposed DCRL could efficiently avoid the obstacles and reach the target in this

challenging scene. Compared with CCRL, it can adjust the local shape more flexible by the multiple

independent controller, one for each robot link. With the serpenoid model and the collaborative

training by multiple coaches, the gait could be kept very well as shown in Fig. 7.11, where some

snapshots are given. In Fig. 7.12, the measured results are provided for the joint currents and angles.

As we can see, the curves are relatively smooth and rhythmical as expected, which demonstrates the

robust performance of the proposed DCRL.

7.5 Summary

In this chapter, we have proposed a distributed Bayesian controller for snake robots. Specif-

ically, it combines multiple coach models, one for each robot link, with multiple agents within a

unified reinforcement learning framework. Compared with centralized solutions, it greatly reduces

the computational complexity and expedites the training convergence time when the link number

of snake robot increases. By the proposed collaborative-training-decentralized-inference scheme,

the interactions both inside robot links and with environmental objects are well learned and handled

during the locomotion.

The mathematically derived distributed Bayesian propagation rule explicitly models the differ-

ent uncertainties inside the snake robot and with the surroundings within a consistent stochastic
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framework. We have also done detailed experiments to demonstrate the performance comparing

with state-of-the-art.
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Chapter 8

Discussion of the Methods

8.1 Characteristics of Topological Architectures

We have presented five Bayesian control methods for snake robot locomotion in unstructured

scenarios. From the perspective of topological structure, they can be classified into three categories:

centralized vs decoupled vs distributed as shown in Fig. 8.1.

Chapter 3 and 6 adopt a centralized controller by using a joint state representation for the snake

robot. Such an architecture is the most intuitive and easy one to be selected. In this design, all links

can collaborate together as a whole by one controller where each agent of the robot link sends its

observation to a master and receives the command back as can be seen in Fig. 8.1(a). The large

Figure 8.1. The topological structures of centralized, decoupled, and distributed systems.
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circle node represents the master controller while each small node is a slave agent controlling its

corresponding robot link actuator. Such kind of centralized systems has many advantages. For

example, it is usually easy to develop and quick to update. Moreover, it is commonly cost-efficient

especially for small systems up to a certain limit where nodes can be easily detached. On the

contrary, its limitations are obvious too. Such an architecture is generally very sensitive to the

central node whose failure tends to cause the entire system to fail. Only vertical scaling on the

central master is possible while horizontal scaling contradicts the single central unit characteristics

of this system.

Chapter 4 chooses a decoupled way which doesn’t have one central owner as shown in Fig.

8.1(b). Instead, there are multiple grouping owners which can listen for connections from other

nodes. Every group of link nodes of the snake robot can make their own decision. However, the

final behavior of the system is the aggregate of the decisions of the individual ones. Compared with

centralized systems, such an architecture shares advantages of high availability and more autonomy

where some nodes can always be available without bottleneck situations. One link’s error would

not make the whole controller fail. However, this mechanism shares a disadvantage where the

additional collaboration cost has been introduced. It is usually not beneficial to build and operate

small decoupled systems because of the low cost ratio.

Chapter 5 and 7 presented methods using a distributed system. It is similar to a decoupled

one in that it doesn’t have a single central controller. By going a step further, it eliminates the

centralization where every node makes its own decision based on the local information as shown in

Fig. 8.1(c). The significant point is that each node has to pick a place to discover after negotiation

with the other nodes in its communication range. For a distributed system, nodes fail independently

without having a severe effect on the entire system, which increases the system’s robustness. Both

horizontal and vertical scaling is possible. But it also has limitations as well. Usually, such kind of

systems are difficult to design. It may be difficult for a node to get a global view of the system and

hence take informed decisions based on the states of other nodes. In other words, it may be difficult

for the whole system to achieve consensus without a specifical design.

While all these systems can function effectively, some are more stable and efficient than others
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by different designs in various situations. Either way, they face the same challenges: fault tolerance,

maintenance costs, and scalability etc. In Table 8.1, we give a comparison of the above issues.

Overall, with a small number of robot links, say less than 5, centralized methods usually is a good

choice considering the development cost. With the increase of link amount, say between 6 to 10,

the decoupled scheme shows its advantage in achieving a tradeoff among system complexity, ro-

bustness, and efficiency. When the link number of snake robot is large, the distributed architecture

will dominate the performance.

Table 8.1. Comparison of centralized, decoupled, and distributed architectures

System
Structure

Proposed
Method

Development
Convenience Scalability

Maintenance
Cost

Fault
Tolerance

Centralized CenBC, CCRL H L L L

Decoupled DecBC M M M M

Distributed DisBC, DCRL L H H H

* H denotes high, M medium, L low; CenBC represents centralized Bayesian controller; DecBC

the decoupled Bayesian controller, DisBC the distributed Bayesian controller, CCRL the cen-

tralized coach based reinforcement learning, DCRL the distributed coach based reinforcement

learning.

8.2 Complexity Analysis

The complexity of the proposed methods are evaluated. Since the resampling is the most time

consuming part for Bayesian density estimation, we provide a comparison of different resampling

algorithms using these methods. However, for the memory requirement, we consider not only for

resampling, but also for the complete process.

As we can see in Table 8.2, CenBC is the most complex method due to using the joint state rep-

resentation and a centralized controller. DecBC has less computational complex in the resampling

because of only considering the interacted environmental objects and robot link. DisBC further de-
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Table 8.2. Complexity comparison for the proposed methods

Method
Computational

Complexity
Overall Memory

Requirements

CenBC O(NsKL)† O(N2
s )

DecBC O(NsKL)‡ O(N2
s )

DisBC O(NsK)* O(N2
s L)

CCRL O(NsKL) O(N2
s )

DCRL O(NsK)* O(N2
s L)

† K is the max number of detected environmental objects, L the

total number of links of the snake robot.

‡K is the number of interacted environmental objects, which is

much less than K; L is the number of interacted links, which is

usually less than L too.

* complexity for one worker.
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Figure 8.2. Performance comparison of the proposed methods.

creases the complexity for each work with a parallel computing scheme. However, it sacrifices the

overall memory requirements. Both two RL based methods CCRL and DCRL actually have addi-

tional complexity beyond the listed for training process due to reinforcement learning. Nevertheless,

they are commonly more efficient in the inference phase than most SMC based methods. Compared

with CCRL, DCRL has less computational complexity in the resampling part during training phase.

However, it needs more memory requirements because of the parallel computing.

8.3 Performance Comparison

In order to compare the performance of the proposed five methods, we use the same scenario

in Fig. 7.9. Five tests for each approach were implemented by assigning a total number of samples

from 200 to 600, and adjusting parameters. Although all of them could successfully pass through the

corridor in real-time and reach the target finally, their navigation efficiency and robustness varied as

presented in Fig. 8.2. As we can see, CenBC achieved a collision-free locomotion when the number

of samples is large enough. However, when only having a small amount of samples, its robustness

decreases dramatically than others. On the contrary, DisBC is not as sensitive as CenBC to the
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number of samples, whose curve is relatively flat. DecBC achieved a tradeoff performance between

CenBC and DisBC. The performance of both CCRL and DCRL is independent with samples in the

inference phase as can be seen. The robustness of CCRL is slightly better than DCRL because we

used the same reward functions and provided same number of training episodes for the two methods.

However, as compared in Chapter 7, DCRL can greatly expedite the training speed than CCRL by

exploiting parallel computing.
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Chapter 9

Conclusions and Future Work

9.1 Contributions

In this dissertation, we have studied issues related to snake robot control. We have proposed

several novel approaches for real-time stochastic control using Bayesian methods.

We have presented a stochastic centralized Bayesian-based controller for snake robots by mod-

eling the interaction with environmental objects using probability density propagation. Preliminary

experimental results have demonstrated promising performance in unstructured circumstances. For

the future work, we would like to investigate more sophisticated interaction models and extend the

proposed framework to more problems such as simultaneous localization and mapping.

Moreover, we have proposed a dynamically decoupled Bayesian framework for snake robot

control in changing surroundings. The interactions between the robot and environment are sim-

ulated by a Bayesian dynamic graphical model. Benefiting from the decoupling mechanism, the

proposed probabilistic propagation formulation provides an innovative way to model the uncer-

tainty during locomotion in cluttered terrain. Preliminary experimental results have demonstrated

promising performances of the proposed approach for challenging unstructured scenarios.

Furthermore, we have given an interactively distributed Bayesian controller for snake robots

by modeling the inter-module interaction and the external virtual force with environmental ob-
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jects using a probabilistic density propagation formulation. Preliminary experimental results have

demonstrated promising performance on real world data.

Finally, two coach-based Bayesian controllers have been presented for snake robots using re-

inforcement learning. The uncertainty lying in both the system and environment is modeled by a

stochastic process with probabilistic density propagation. By combining two shape-based coach

methods, one centralized and one distributed, and a model-free RL approach within a unified for-

mulation, the proposed methods can achieve robust target searching and obstacle avoidance with

dramatically saved convergence time. Preliminary experimental results have shown promising per-

formance.

9.2 Obtained Results and Conclusions

The proposed approaches have been tested both on simulation and real-world experiments. The

control performance have been carefully analyzed qualitatively and quantitatively comparing with

state-of-the-art methods. Through the reported results, the following conclusions can be obtained:

(1) We have verified that Bayes estimation is an effective method to handle the uncertainties in

stochastic snake robot control. Most existing methods of snake robot control are still deterministic.

Uncertainty is inherent and lies in almost everywhere due to sensor noise, input disturbance, dis-

crepancy between control signal and mechanical actuation, vagueness, and model incompleteness

etc. By applying the Bayesian density propagation and estimation, the proposed framework can

greatly improve the control robustness and efficiency.

(2) We have studied different architectures in modeling the high redundant structure, complex

dynamics, and the complicated interaction of snake robot control. Overall, the centralized solution is

more accurate theoretically since it exploits a joint state representation and considers the snake robot

as a whole. Without considering the computation complexity or when the number of robot links is

small, it is good choice because of the relatively simple controller design and the easier deployment

requirement. Decoupled solution is more flexible since it considers both high-level global behavior

and low-level local interactions simultaneously. However, additional design and computational cost
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have to be paid. Such a method is suitable when frequent collisions happen during the snake robot’s

navigation. Finally, the proposed distributed solution is more computationally efficient. It can

exploit GPU’s power to achieve fast implementation by parallel computing. Meanwhile, it is more

proper for the situation where the body length is very long. Every coin has its two sides. Usually,

there is no perfect solution but the most suitable one, all depending on the conditions. Each kind of

architectures has its own advantages and disadvantages.

(3) We have shown that coach-guided RL is a promising framework in solving snake robot

control with state-of-the art AI technologies. Compared with the conventional “supervised” model-

based snake robot control methods, RL-based approaches do not need too much prior knowledge

and can learn intelligence by robot itself from behaviors. Therefore, it provides a more natural way

to design controllers for practical real-world applications. The proposed coach-based solutions can

effectively speed up the training convergence and thus remove one of the largest barriers to realizing

the true potential of RL for snake robot control.

9.3 Future Work

A number of promising avenues of research are suggested by the work presented in this thesis,

some of which are detailed as follows:

•Decoupled Bayesian Control. (1) More efficient interaction models are under investigation to

deal with various challenging obstacles; (2) Although BNN-based supervised learning method has

shown its power for density estimation in our implementation, it still suffers from the bias problem

sometimes due to the quality of training data. We plan to apply unsupervised learning methods

and further improve the performance; (3) Other density estimation methods could be exploited to

simulate the proposed framework for a better comparison; 4) More sensors can be tested to give a

detailed observation of the environment, for instance, embedding a camera on each side of the snake

robot module and getting a panoramic view of the surroundings.

•Distributed Bayesian Control. (1) Although the basic performance of DBC has been verified

by the real-world experiments since we think they are better than simulations to prove the method, a
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deeper investigation through various simulations is still desired to further validate the effectiveness

of the proposed method; (2) State-of-the-art machine learning techniques may have potentials to be

exploited for training better densities in the framework; (3) More sophisticated interaction models

are needed for different types of irregular obstacles.

• Coach-Based Bayesian Control. (1) More sample efficient learning algorithm are still under

investigation to further improve the training efficiency; (2) The sensitivity of state dimensionality

with control performance is an interesting research topic for future study; (3) Different types of rein-

forcement learning algorithms could be applied to get better performance, for example, multi-agent

hierarchical RL learning; (4) The current implementation trains one policy for multiple agents, one

for each snake robot module, distributed during the locomotion. The interactions are not modeled

during the inference. We plan to further investigate more sophisticated reward function including

such kind of information and may give each module a different policy for a better control perfor-

mance in the future.
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