
Doctoral Dissertation

Multicore Task Scheduling and
High-Level Synthesis for

Embedded Systems

March 2022

Doctoral Program in Advanced Electrical,
Electronic and Computer Systems

Graduate School of Science and Engineering
Ritsumeikan University

　

NISHIKAWA Hiroki

Doctoral Dissertation Reviewed
by Ritsumeikan University

Multicore Task Scheduling and
High-Level Synthesis for

Embedded Systems

(組込みシステム設計における
マルチコアタスクスケジューリングと

高位合成)

March 2022
2022年3月

Doctoral Program in Advanced Electrical, Electronic and
Computer Systems

Graduate School of Science and Engineering
Ritsumeikan University

立命館大学大学院理工学研究科

電子システム専攻博士課程後期課程

NISHIKAWA Hiroki
西川 広記

Surpervisor: Professor TOMIYAMA Hiroyuki
研究指導教員: 冨山 宏之教授

Abstract

This thesis addresses scheduling techniques of data-parallel tasks and of function-
level module sharing for embedded systems. Embedded systems are generally designed
for a specific and dedicated application under a variety of constraints according to the
requirements of the application. In many cases, there are requirements for performance,
price, circuit size, power and energy consumption between hardware and software, and
it is necessary to choose the best design method in order to satisfy these requirements for
achievement of the best performance exploited from both hardware and software. On the
other hand, even though the performance requirements of applications are increasing,
the performance improvement of a single core is approaching the limit according to the
Dennard scaling law. Multicore architectures have attracted much attention to exploit
the performance of systems. Multicore architectures allow a single application to be
executed on multiple cores in parallel, achieving higher performance than single-core
architectures. This trend has led to the emergence of multi-core systems, including dual-
and quad-core systems from IBM, AMD, Intel, ARM, NVIDIA, and others, which have
contributed to higher performance not only in embedded systems but also in mainstream
computers such as general-purpose servers. However, as the increase in the number
of cores, system-design processes become very complex, and further development of
parallel computing and design automation technologies is prospective.

Task scheduling is one of system-design processes that determines the execution or-
der of the tasks in an application and the assignment of the tasks on one of the cores.
Classical task scheduling assumes that a task is executed on one of the cores, and dif-
ferent tasks can run on different cores in parallel in such a way that the overall schedule
length is minimized. On the other hand, this thesis allows each task to run on multi-
ple cores in parallel, and the number of cores assigned to a task is determined during
task scheduling simultaneously. Such tasks are generally called as data-parallel tasks,
which has recently attracted attention to exploit the parallelism inherent of the tasks
(data-parallelism) in many applications and to make efficient use of multicores, and
scheduling techniques for the tasks have been excessively expected in parallel comput-
ing. This thesis proposes a technique to rapidly find a good schedule based on constraint
programming. The experiments demonstrate that our proposed technique reduces the
schedule length by up to 81.9%. The proposed technique is further extended towards
two directions. One direction is to consider the performance overheads for commu-
nications among cores. In this thesis, we propose a communication-aware scheduling
technique. This work determines the execution order and the assignment of the tasks,

and also schedule the communications among the cores such that the overall schedule
length is minimized with mitigating the performance overheads for the communications.
The experiments demonstrate that the proposed technique reduces the schedule length
by 22.5% on average compared to the state-of-the-art techniques. The other direction
is to consider energy efficiency that is one of the most demanding factors in embed-
ded systems. This work targets heterogeneous multicores that consist of two types of
cores, where one is high-performance but high-power cores and the other is low-power
but low-performance cores. In this work, the proposed technique determines an opti-
mal type for each core at the same time as scheduling of the tasks. In the experimental
results, the proposed technique reduces energy consumption by up to 12.4% compared
with the state-of-the-art techniques.

Regarding efficient hardware design, high-level synthesis (HLS) that automatically
translates software programs into hardware descriptions has now become an indispens-
able technology. HLS techniques can quickly generate circuits that satisfy design con-
straints, however unfortunately, the circuit area becomes often larger than that of man-
ually designed circuits. One of the reasons is that common HLS tools basically create
multiple instances of a same hardware module when a function is called multiple times
in the original software program. Our proposed HLS techniques generate only a single
instance of the module which is shared in a time-division manner. The experiments us-
ing FPGA shows that the proposed techniques reduce the number of look-up tables by
up to 14.9% and flip-flops by up to 19.1%.

ii

Contents

Abstract i

List of figures v

List of tables 1

1 Introduction 2
1.1 Background and Motivation . 2
1.2 Contribution of This Work . 3
1.3 Overview of Chapters . 5

2 Design of Embedded Systems 7
2.1 Introduction . 7
2.2 Design of Embedded Systems . 8

2.2.1 System Specification . 8
2.2.2 Co-Synthesis . 10
2.2.3 Hardware and Software Synthesis 14

2.3 Scheduling and High-Level Synthesis 15
2.3.1 Scheduling . 15
2.3.2 High-Level Synthesis . 19

3 Scheduling for Moldable Tasks on Homogeneous Multicore 23
3.1 Introduction . 23
3.2 Related Work . 25
3.3 Scheduling for Moldable Fork-join Tasks 27

3.3.1 Problem Description . 27
3.3.2 ILP Formulation . 27
3.3.3 Constraint Programming Approach 29
3.3.4 Experiments . 32

3.4 Scheduling for Moldable Synchronous Tasks 35
3.4.1 Problem Description . 35

i

3.4.2 ILP Formulation . 37
3.4.3 Constraint Programming Approach 38
3.4.4 Expertiments . 39

3.5 Conclusions . 42

4 Scheduling of Moldable Tasks with Inter- and Intra-Task Communications 43
4.1 Introduction . 43
4.2 Related Work . 45
4.3 Scheduling Problem . 47

4.3.1 Problem Description . 47
4.3.2 IP Formulation . 51
4.3.3 Two-Phase Heuristic Approach 57
4.3.4 Limitations . 57

4.4 Experiments . 58
4.4.1 Performance Results . 59
4.4.2 Effect of CCRs . 61

4.5 Conclusions . 62

5 Simultaneous Scheduling and Core-type Optimization for Moldable Tasks
on Heterogeneous Multicores 63
5.1 Introduction . 63
5.2 Related Work . 64
5.3 Scheduling of Moldable Fork-Join Tasks on Heterogeneous Multicores . 66

5.3.1 Problem Description . 66
5.3.2 ILP Formulation . 68

5.4 Simultaneous Scheduling and Core-type Optimization 72
5.4.1 An Integrated Framework . 73
5.4.2 Two-Phase Approach based on Warm Start Technique 74

5.5 Experiments . 74
5.5.1 Setup . 74
5.5.2 Results . 76

5.6 Conclusions . 79

6 Function-Level Module Sharing in High-Level Synthesis 81
6.1 Introduction . 81
6.2 Related Work . 82
6.3 Function-Level Module Sharing Techniques 83

6.3.1 Motivation . 83
6.3.2 Module Sharing Technique by Selective Function Inlining . . . 84

ii

6.3.3 Module Sharing Technique by Multiple Function Calls 86
6.4 Experiments . 88
6.5 Conclusions . 91

7 Conclusions 92
7.1 Summary . 92
7.2 Future Directions . 95

Acknowledgment 96

Publications 108

iii

List of Figures

1.1 Performance stagnation by the end of Dennard scaling [1] 3

2.1 Cost and performance trade-off between hardware and software 8
2.2 Traditional design flow of embedded system 9
2.3 Architecture specification . 10
2.4 Mapping of tasks onto different processing elements 11
2.5 Two different schedules based on identical application mapping 13
2.6 Energy management with applying dynamic voltage scaling 14
2.7 Highlighting the target topic in co-synthesis 16
2.8 Taxonomy of scheduling problems . 17
2.9 Different scheduling of parallel task models 18
2.10 Taxonomy of parallel tasks . 18
2.11 Highlighting the target topic in hardware synthesis 20
2.12 Hardware synthesis flow . 21
2.13 High-level synthesis flow . 22

3.1 A scheduling example for MFJ tasks 26
3.2 A concept of resource constraint . 31
3.3 Scheduling results for MFJ tasks on 4 and 8 cores 33
3.4 Scheduling results for MFJ tasks on 16 and 32 cores 34
3.5 A scheduling example for MS tasks 36
3.6 Scheduling results for MS tasks on 4 and 8 cores 41
3.7 Scheduling results for MS tasks on 16 and 32 cores 42

4.1 An inputs of MFJ task scheduling with inter and intra-task communica-
tions . 48

4.2 A scheduling result without communication delay 49
4.3 A scheduling result taken into account communication delay 50
4.4 A optimal scheduling result without considering communication delay . 51
4.5 Performance evaluation with the proposed techniques 59
4.6 Scheduling results on 4 cores . 60

iv

4.7 Scheduling results on 8 cores . 61

5.1 An example of scheduling of moldable fork-join tasks 67
5.2 Cores usage during the execution of task a, b, and c 73
5.3 Dynamic and static energy consumption under deadline constraintD=100% 77
5.4 Dynamic and static energy consumption under deadline constraintD=87.5% 78
5.5 Dynamic and static energy consumption under deadline constraintD=75% 79
5.6 Dynamic and static energy consumption under deadline constraintD=50% 80

6.1 An example of the concept for module sharing 84
6.2 State Transition Diagram . 85
6.3 An example of function module sharing 86
6.4 FSM of the circuit with module sharing 87
6.5 Call graph with a different call hierarchy 87
6.6 Call graphs of the benchmark programs 89

v

List of Tables

6.1 Synthesis and simulation results . 90

1

Chapter 1

Introduction

1.1 Background and Motivation

Nowadays, there is still increasing demand for better digital electronic systems. Such
systems drive the necessity to satisfy even more stringent requirements than ever. In
particular, in the domain of embedded systems, the simultaneous optimization of many
design metrics such as performance, cost, size, and the energy consumption is so signif-
icant that many pieces of research have been studied to solve the issues. Systems-on-a-
chip (SoC) has been traditionally adopted to deal with such aforementioned issues since
they have achieved things in terms of a significant reduction in energy consumption,
chip size, and manufacturing cost due to its high performance per footprint. Unfortu-
nately, however, this pursuit has resulted in the adoption of very complex on-chip ar-
chitectures, even as growing heterogeneously and/or parallel SoCs, causing prolonging
time-to-market, and increasing manufacturing cost and chip size.

As illustrated in Figure 1.1, the number of transistors, thread performance, and clock
frequency have been predicted to flatten by 2025 [2]. In other words, the improvement
of a single core performance can be no longer possible in the absence of Moore’s Law.
In addition, embedded software programs have become tremendously complicated as
well as SoCs’ on-chip design in the context of the emerging Internet of things (IoT)-
oriented software applications, artificial intelligence, etc. An important turning point
has this circumstance led to reaching for an effective methodology that covers both
hardware/software co-design.

An embedded system is different from a general-purpose computer in that the em-
bedded systems are designed to satisfy a variety of requirements such as timing and
resource constraints. Mostly, embedded systems are desire to work with low power but
prefer if they are small and fast. In addition, the design term of embedded systems
should be shortened to meet the time-to-market requirement. From this perspective,

2

Figure 1.1: Performance stagnation by the end of Dennard scaling [1]

therefore, the efficiency of system design is becoming more and more crucial.
Today, the design of embedded systems and SoC devices is based on multiple pro-

cessors. Multiprocessor system-on-chip (MPSoCs), which execute concurrent process-
ing on multiple processors, is one of the mainstream in embedded systems to achieve
high performance [3, 4]. In addition, tasks of recent modern applications have inherent
data parallelism, and which is called as data-parallel tasks [5]. The systems are required
to efficiently exploit both task parallelism (inter-task parallelism) and data parallelism
(intra-task parallelism). On the other hand, however, system complexities have been
growing at an almost exponential rate by the introduction of MPSoC. This has led to
the degradation of productivity by the disparity between the required speed of system
design and design complexity. One of the major solutions to fill the productivity gap is
to raise the level of abstraction in the design process. The purpose of the abstraction is
to fully automate the system design process as much as possible.

1.2 Contribution of This Work

This section describes the main contribution of this thesis. There are four contributions,
described in the following paragraphs. These contributions address the overall thesis
goal and the four specific goals are to explore co-synthesis and hardware synthesis to
design embedded systems. Let us briefly look at an overview of the contributions in this
thesis, as shown in the following.

• Contribution 1: This thesis addresses scheduling of data-parallel tasks on multi-
core based on constraint programming (CP) paradigms.

• Contribution 2: In addition, the work extends to data-parallel tasks scheduling

3

with inter- and intra-task communications.

• Contribution 3: For energy-efficiency, this thesis presents scheduling of data-
parallel tasks on heterogeneous multicores, and extends to simultaneous tech-
niques of scheduling and core-type optimization.

• Contribution 4: Finally, this thesis proposes function-level module sharing tech-
niques in high-level synthesis.

Increasing number of cores in embedded devices, multicore task scheduling, which
determines the order in which tasks are executed on many cores, has been identified
as one of the most important technologies on embedded systems[6, 7]. Multicore task
scheduling is classified to NP-hard problems, an optimal solution can hardly be found
in practical time. In the literature, many heuristics have been proposed. In order to
evaluate such solutions, however, an optimal solution is necessary to be asked once in
advance. Many studies that address multicore task scheduling have been proposed for
the optimal solution, but most of them have been developed with ILP-based techniques
that are very time-consuming to find an optimal solution. This work proposes CP-based
scheduling techniques to more quickly find an optimal solution than the state-of-the-art
techniques, which has led to contribution 1.

In parallel computing on embedded systems, communications among multicores
significantly lead to performance degradation. Inter-task communication such as pass-
ing messages, shared memory access, synchronization, etc. frequently occurs as a non-
negligible amount of latency [8]. Nevertheless, there have been few works that propose
scheduling problems take into account communications on multicore architecture. Even
though moldable task scheduling has been studied for the last couple of decades, to the
best of our knowledge, there does not exist works that take into account both inter-
task and intra-task communication overheads. This thesis extends to multicore task
scheduling by taking into account inter-and intra-task communications, which has led
to contribution 2.

While pursuing high-performance computing, energy consumption is another im-
portant design criterion embedded devices. Low power design techniques have been ex-
cessively developed over the last decades. On MPSoCs, there have appeared heteroge-
neous architectures that have several different types of cores, but system design becomes
far more complex than homogeneous architectures [9, 10, 11]. Therefore, the techniques
for efficient design of heterogeneous architectures are attracting attention to deal with
the issue. Such techniques, however, focus mainly on the optimization of a hardware
component in isolation, and there are few techniques for co-design between hardware
and software. This work associates with task scheduling and architecture design on
heterogeneous multicores. In the past, the techniques for scheduling on heterogeneous

4

multicores have been investigated and a major portion of the works still assumes that a
task is assigned a single core [12, 13, 14, 15]. There are, however, few studies that are
focused on scheduling multi-threaded tasks on heterogeneous multicores. Furthermore,
it extends to an integrated framework that addresses both data-parallel task scheduling
and core-type optimization. Through this technique, scheduling and core-type of cores
on architecture are simultaneously determined such that the overall energy consumption
is minimized, and which is led to contribution 3.

The final contribution, which is referred to as hardware synthesis, represents the
techniques in high-level synthesis. To shorten the design time of hardware, there have
developed many high-level synthesis tools for a decade. However, such tools can hardly
produce a more efficient circuit than manually designed ones. One reason is that high-
level synthesis tools often generate multiple instances from a module if a function is
invoked more than two times. This thesis attempts to solve this issue and proposes
function-level module sharing techniques. The proposed techniques can generate one
instance of a shared module even if the shared function is invoked multiple times at
different times, which has led to contribution 4.

1.3 Overview of Chapters

The remainder of this thesis is organized as follows. Chapter 2 describes a common
design flow of embedded systems and specifies the topics for scheduling and high-level
synthesis addressed in this thesis. Furthermore, the overview of the main topics that are
addressed in this thesis is introduced in brief.

Chapter 3 to Chapter 6 addresses task scheduling problems. In particular, the schedul-
ing problems addressed in this thesis are classified into multicore task scheduling, and
Chapter 7 refers to high-level synthesis in hardware design. In Chapter 3, scheduling
problems for data-parallel tasks on homogeneous multicore based on CP are addressed.
In this chapter, CP which is one of the recent programming paradigms is adopted to
quickly solve the scheduling problem, compared to the state-of-the-art techniques. Fur-
thermore, it extends to address another scheduling problem of data-parallel tasks, which
is generalized from the aforementioned ones.

Chapter 4 extends the work in Chapter 3 to scheduling of data-parallel tasks taking
into account inter-and intra-task communications. In the real world, embedded systems
need to compute with considering communication resources such as data bus, network-
on-a-chip, and so on. Such communication overheads may degrade the performance of
the systems. This chapter demonstrates that the proposed scheduling techniques with
the communication overheads can find an schedule in such a way the overall completion
time is minimized.

5

Chapter 5 presents the scheduling of data-parallel tasks on heterogeneous multi-
cores. Energy-efficient embedded system design has been one of the most crucial topics
for several decades. Heterogeneous computing refers to system environments with more
than two kinds of computing resources. In order to achieve a low-power design without
degrading the performance of the systems, this chapter addresses simultaneous schedul-
ing and core-type optimization techniques in heterogeneous multicores environments.

In Chapter 6, this thesis moves the topic into hardware design. This chapter es-
pecially addresses high-level synthesis (HLS) techniques for hardware synthesis. In
general, hardware designs are more efficient from the perspective of performance and
power consumption than software implementations. However, the design of the hard-
ware is still regarded as a more time-consuming process. HLS is one of the promis-
ing techniques to efficiently design hardware, and this chapter presents function-level
module sharing techniques. Finally, Chapter 7 summarizes this thesis and refers to the
extensions for future work.

6

Chapter 2

Design of Embedded Systems

2.1 Introduction

The ever-progressing semiconductor processing technique has remarkably increased the
number of transistors on a single chip, which leads to efficient and powerful embedded
processors. With the increasing functionality and performance of electric systems due
to the high degree of integration of LSIs, embedded systems have expanded their ap-
plication from conventional control devices to information devices such as smartphones
and IoT terminals. Highly functional information processing equipment requires diverse
functions such as multimedia such as video and audio, sensor processing, and connect-
ing clouds through a network connection to the Internet. In order to meet the diverse
requirements, the scale of software on embedded devices tends to expand and become
more complex every year. In addition, the shortening of development time and cost
reduction due to the expansion of the market size requires developers to produce soft-
ware efficiently in a short time. From the industrial perspective, most digital functions
are implemented by software programs for cost reduction and less power consumption
compared to the hardware as shown in Figure 2.1. Furthermore, the performance of a
single processor still grows and recent systems employ multicore architecture so that
software programs can rapidly run in parallel.

Nonetheless of the improvement of software processors, however, they are often
failed to meet the strict performance constraints of embedded systems. Embedded sys-
tems usually have to meet their performance constraints; therefore, part of the systems
are developed on hardware such as application-specific hardware (ASICs) and field-
programmable gate arrays (FPGAs), and currently, graphical processing units (GPUs)
are also in fashion. The performance constraints mean the latency to execute a given set
of tasks. The hardware performance is dependent on the operation scheduling result, on
the other hand, the software performance is determined as the number of clock cycles

7

Performance

Cost

Software

Hardware

Figure 2.1: Cost and performance trade-off between hardware and software

that takes the processor to execute the tasks. That is why the cycle-per-instruction (CPI)
must be a critical metric to evaluate the performance of the processor as software per-
formance. In such literature, efficient embedded system design requires optimization in
both hardware and software areas of the application. The common methodology is usu-
ally down for the design steps that bring a product idea down to its physical realization,
and which is often called a system-level design flow.

2.2 Design of Embedded Systems

This section addresses basic system-level design flow of embedded systems. In this
thesis, top-down design process is as shown in the Figure 2.2.

It is characterised by three important components such as Specification, Co-Synthesis,
and Hardware and Software-Synthesis. In the following subsections, each step in design
flow of embedded systems addressed previously will be explained in detail.

2.2.1 System Specification

The first process specification starts driving with ideas from the designer’s brain. De-
signers have to informally describe what is required for the target embedded systems
in a natural language such as English, Spanish, etc. This process is usually called as
requirements, which is the highest level in system-level design. These requirements
are not limited to functional requirements, and the non-functional requirements such as
performance, cost, and size should be captured in a specification document [16]. Then,
the specification of the functionality for a system can be captured with various spec-
ification models [17] such as high-level languages, and more abstract models can be
introduced such as task graphs, block diagrams, finite state machines (FSMs), and Petri
nets. In this thesis, the task graph model will be employed to represent the system model
corresponding to the work.

The functionality equipped in a system with stream data operations can be expressed

8

Figure 2.2: Traditional design flow of embedded system

as a graph. In particular, one of the general ways represents a directed acyclic graph
(DAG) G = (V,E), where V denotes a set of tasks that should be executed, and E
denotes a set of directed edges which refers to flow dependency of communications be-
tween the tasks. The task graph can be generated by a variety of techniques such as

9

(a) Power consumption: 560mW, Production cost: $110

(b) Power consumption: 410mW, Production cost: $230

Figure 2.3: Architecture specification

[18]. According to the specification, each task or a whole of the tasks holds a deadline
τ , by which the execution must be finished. In addition, an application in embedded sys-
tems usually inherits a repetition period θ that represents the maximum delay between
activation of the source tasks.

2.2.2 Co-Synthesis

In Co-Synthesis, based on the task graph captured in the previous step, this step consists
of the following fourfold: architecture allocation, application mapping, task scheduling
in the application, and management of energy consumption.

In the first step, Architecture allocation, designers need to determine the system
components (i.e., processing elements and communication links) to satisfy the require-
ments addressed beforehand. There are too many target architectures to determine ap-
propriate ones that can use for the implementation of the desired functionality.

Figure 2.3 indicates a selection problem to determine the appropriate architecture.
The goal of this process is to identify the architecture that is the most suitable to the
specification. The optimal architecture must provide sufficient performance for the ap-
plication to meet delivery constraints. In addition, the cost, design time, energy con-
sumption should be reduced as long as possible. In this example, one has two CPUs

10

Figure 2.4: Mapping of tasks onto different processing elements

(i.e., CPU 1 and CPU 2) and an ASIC are connected with an internal bus as shown in
Figure 2.3(a) and the other has, unlike the former ones, an additional CPU that is im-
plemented in the architecture as shown in Figure 2.3(b). If software implementations
are assigned to general-purpose processors such as CPU, they can be flexible and the
cost can be reduced to realize than hardware designs. On the other hand, the ASIC can
provide higher performance and better energy efficiency than general-purpose proces-
sors. Note that ASIC is aimed and designed to process a specific application so that
there appears an issue of time-to-market by designing the specific hardware. While bal-
ancing between the trade-offs among power consumption, production cost, and design
time, and so on, the system designers are required to determine an appropriate archi-
tecture design. To efficiently explore an appropriate architecture design, system-level
co-synthesis tools are aided to the designers.

Application Mapping

When the architecture specification has been done, the next step is called Application
mapping. This process play a role of task and communication allocation onto both
processing elements and links to communicate on the architecture.

11

Figure 2.4 indicates two different mappings that tasks in an application are allocated
onto identical target architectures. The application is represented as DAG, which is re-
ferred to the previous subsection, then the nodes represent tasks and the edges represent
precedence dependency among the tasks, respectively [19]. The nodes labeled S and E
are namely dummy tasks, which do not have a computational payload. In addition, the
number with parenthesis beside a node represents the execution time of the task.

This example shows two cases where tasks are mapped to the same processing unit
in a given architecture. In both figures, Task 1 is determined to be executed on the
ASIC. In the left mapping, Tasks 2 and 3 are assigned to CPU 1, while tasks 4 and
5 are assigned to CPU 2. On the other hand, the right figure shows that Task 4 is
assigned to CPU 1 instead of CPU 2, and Task 3 is allocated onto CPU 2. Mapping
determines whether a task is implemented in either hardware or software. Therefore,
the partitioning is mainly conducted in this process [20].

Implementation of Hardware is more efficient from the perspectives of performance
and power consumption than the software implementation. In contrast, hardware design
is very time-consuming compared with software design. In this context, determining a
good solution of mapping is required for a good system design. Without appropriately
distributing those activities on the architecture, the performance cannot avoid degrada-
tion.

Task Scheduling

After application mappings onto processing elements, the next step is called as Task
scheduling. This process determines the execution orders of tasks and communications
timing within satisfying deadline constraints. Given an architecture and mapping of
tasks and communications on processing elements as well as task graph of applications,
the tasks are scheduled on identical processing elements.

Figure 2.5 shows an example of scheduling result based on the application mapping
in Figure 2.4. According to the system specification, there is precedence dependency
among the tasks. Task 1, 2, and 3 can start independently, but Task 4 and Task 5 are
not allowed to start before Task 3 is finished. In this task graph referred to the upper in
Figure 2.4, Task 1 requires 40-time units for the execution. Similarly, other tasks require
execution times in the parenthesis beside each node.

Figure 2.5 represents two scheduling results based on the application mapping. Fig-
ure 2.5(a) indicates a schedule if Task 3 is allocated to CPU 1 and Task 5 is allocated to
CPU 2, respectively. There is data flow dependency between Task 3 and Task 5, there-
fore, it incurs the communication in the internal bus from CPU 1 to CPU 2. Embedded
systems often have deadline constraints, which are shown in the figure. The tasks in
the application must be finished before the deadline. If the system misses the deadline,

12

(a) Schedule A

(b) Schedule B

Figure 2.5: Two different schedules based on identical application mapping

the schedule is not invalid and other schedules should be adopted. In the Figure 2.5(a),
Schedule A misses the deadline, therefore, this schedule is invalid. On the other hand,
Schedule B in Figure 2.5(b) can meet the deadline. In this case, Schedule B is preferred
to be employed for a scheduling result. For more detail, communications should be
taken into account during scheduling. If either of Task 4 and Task 5 or both are mapped
onto different elements from the element that execute Task 3, Task 3 should send data
where the successor tasks are assigned. In Schedule A, Task 3 sends data twice to CPU
2 to run Task 4 and Task 5.

Scheduling of the tasks is generally classified as NP-hard problems, and this pro-
cess is very complex to find an optimal schedule. Therefore, scheduling of tasks onto
processing elements is one of the crucial research topics as well as other processes in
embedded design.

Energy Management

After allocation an architecture and mapping as well as scheduling, the next step is
called as Energy management [21]. The step needs to accurately estimate the require-
ments of the systems, which is for the guidance of the optimization of allocation, map-

13

Figure 2.6: Energy management with applying dynamic voltage scaling

ping, and scheduling towards energy-efficient designs [22]. Generally, the techniques
for energy management exploit idle and slack times from the scheduling result [23]. Idle
times are periods in a schedule that no processing elements execute a task, while slack
times are the time between task deadline and the finish time of tasks outgoing edges
to dummy task E. For such times, there are some techniques such as dynamic voltage
scaling (DVS), dynamic power management (DPM) [24]. DPM is a technique that re-
duces the power consumption of the system by selectively shutting down or sleeping
idle elements. On the other hand, the DVS technique reduces supply voltage and clock
frequency simultaneously, resulting in shortening idle and slack times.

Figure 2.6 shows the schedule with applying DVS. As shown in the figure, Task 4
and Task 5 are executed with a reduction of supply voltage and clock frequency and
slow down the execution so that the execution manages to meet the deadline. However,
the effective functioning of DPM and DVS depends on how long the idle time and slack
time are. In order to optimize allocation, mapping, and scheduling effectively, idle and
slack times optimization must be taken into account.

2.2.3 Hardware and Software Synthesis

Previously, co-synthesis of the systems has been addressed. The systems designed
throughout the co-synthesis process are finally split into hardware and software physical
implementations [25]. The synthesises of hardware and software are usually conducted
concurrently since the interplay between hardware and software can be co-simulated
simultaneously.

Hardware Synthesis

The recent design for hardware components has been with synthesis tools and tech-
niques for very-large-scale integration (VLSI). In this step, a behavioral specification
is transformed into a description at the register transfer level (RTL). Each component

14

is generated as data paths under the control of a control unit. An RTL description is
translated into gate-level expressions by logic synthesis tools. Similar to the data path,
the control unit is represented structurally as a netlist of logical gates. Note that power
reduction can be handled by the synthesis steps such as high level: clock gating, gate
level: logic optimization, mask level: technology selection, etc. However, apart from
the low-level power reduction techniques, the energy savings can be further enhanced
by applying the previously described energy management techniques such as DPM and
DVS at a higher level of abstraction. In general, the higher the abstraction level at which
energy minimization is addressed, the greater the energy savings that can be achieved.

Software Synthesis

As with hardware synthesis, all tasks mapped to the software must be translated from
high-level descriptions (JAVA, C/C++, SystemC, etc.) to machine code [26]. The soft-
ware translation hierarchy composes two steps.

Translation of the initial specification in the high-level language into assembly code
can be conducted in a general compiler such as GCC or with a special compiler opti-
mized for a particular processor (e.g. DSP). Optimization aims to allocate registers such
that operations can be performed without time-consuming memory accesses.

There are also compiler-based techniques to minimize power, such as instruction
reordering and memory access reduction. In addition, careful design of algorithms at the
source code level can lead to significant power reductions. Such approaches to minimize
the power consumed employing system-level energy management techniques do not
exclude each other. In actuality, both technologies require to be taken into account for
the most energy-efficient system design.

2.3 Scheduling and High-Level Synthesis

2.3.1 Scheduling

In this thesis, we focus on scheduling of tasks in the co-synthesis process. Schedul-
ing basically represents how the processes can be assigned to an available processing
element.

This is crucial in terms of multitasking, multiprocessing, multithreading, and real-
time operating system design. Modern applications are capable of parallel processing,
and parallel processing is one of the promising approaches to efficiently satisfy compu-
tational requirements. However, there are problems such as the application partitioning
into tasks, the coordination of communication and synchronization, the scheduling of
tasks, and their mapping to processing elements. Scheduling and mapping are very

15

Figure 2.7: Highlighting the target topic in co-synthesis

important issues to achieve minimization of the completion time, of the overall energy
consumption, and maximization of quality of services (QoL), because if tasks are sched-
uled inappropriately, the full potential of the system cannot be exploited, but rather the
benefits of parallelism are offset.

Figure 2.7 recalls the embedded systems flow, which notates the works in the thesis.
In order to determine whether an application is implemented on hardware or software,
the co-synthesis process have a large influence on the partitioning result. Behind the
background, this thesis mainly focuses on task scheduling as well as application map-
ping and architecture allocation. The topics in the figure are addressed from Chapter

16

Figure 2.8: Taxonomy of scheduling problems

3 to Chapter 5 in detail. The characteristics of the scheduling techniques addressed in
this thesis are to handle data-parallel tasks that can be partitioned into several threads
and executed in parallel on the multiple cores. The following section briefly mentions
that the taxonomies of scheduling problems and data-parallel tasks for comprehension
of this topic.

In general, real-time systems can be classified by several types of deadlines. Figure
2.8 represents taxonomy of scheduling problems [27]. The initial separation is based on
the type of deadline constraint, which refers to whether hard deadline or soft deadline.
Hard deadline constraint means the deadline which all the execution becomes invalid
if a schedule violates. On the other hand, a soft deadline is relatively safe in terms of
execution even if the deadline is missed. Then, the taxonomy shows static scheduling
and dynamic scheduling. Static scheduling is often conducted during compile time.
For the parallel program, the profiled characteristics are necessary to be known using
profiling tools in advance, such as the execution times, communication delays, data de-
pendencies, synchronization, and so on [28, 29]. Since many parallel programs have
data dependencies among tasks, a task graph of the parallel program is usually formed
as DAG. On the other hand, the scheduler assigns a task onto processing elements on
the fly. Dynamic scheduling algorithms do not know the arrival time of the tasks that a
priori can hardly guarantee optimal performance. The objective of dynamic scheduling
is not only to minimize the completion time but also to minimize the overhead of com-
munications. If the execution allows preemption, a running task can be suspended by
interruption and other tasks can start running. Non-preemptive execution, on the other
hand, does not allow the interruption. Once started a task, other tasks cannot be exe-
cuted instead of the task. In the rest of the thesis, static scheduling is mainly focused on
and the preemption is not allowed.

The performance of parallel processing is highly dependent on scheduling of the
tasks. In parallel applications, the threads of the same parallel task are allowed to be

17

(a) Thread tasks (b) Gang tasks

(c) Federated tasks

Figure 2.9: Different scheduling of parallel task models

Figure 2.10: Taxonomy of parallel tasks

executed on multiple cores in parallel. As shown in Figure 2.9, there are three main
execution models of parallel tasks to run applications in parallel on a multicore such as
thread-based, gang, and federated models. The rest of the two models are specialized
by thread-based scheduling models. In gang scheduling, multiple parallel threads are
categorized and executed with each other, as the name suggests. During the execution
of a task, a set of cores assigned to the task is reserved exclusively as shown in Figure
2.9(b). On the other hand, a federated task is a more particular case than a gang task
in that the cores are focused on the threads during the lifetime of the systems as shown
in Figure 2.9(c). In contrast, thread-based tasks are allowed to be executed on multiple
cores independently in Figure 2.9(a). This thesis focuses on thread-based tasks, which is
the most complex task model in the parallel execution models, and it addresses thread-
based tasks in the following.

Scheduling of parallel tasks requires determining the number of threads for a task.
Furthermore, it is necessary to map the tasks onto multicores at the same time as

18

scheduling. Parallel tasks can be classified if the number of threads for a task assigned
to the execution is determined, such as rigid, moldable, and malleable tasks as shown
in Figure 2.10 [30]. For a rigid task, its parallelism is specified in advance and remains
unchanged during scheduling. The number of threads for a moldable task is flexible and
decided at the same time as scheduling, but once it is decided, its number is not allowed
to be changed during the execution. The number of threads in a malleable task can be
changed throughout the runtime. Therefore, the malleable task model is regarded as a
generalization of the moldable task model with preemption and migration. Let us recall
that this thesis focuses on static scheduling problems that prohibit preemption, and the
target of parallel tasks is assumed to be moldable. The detail of the scheduling problems
is later addressed from Chapter 3 to Chapter 5.

2.3.2 High-Level Synthesis

In order to efficiently design hardware from a high-level specification, hardware synthe-
sis is very crucial [31]. The design for complicated hardware components is generally
based on very-large-scale integration (VLSI) techniques. In the step of hardware synthe-
sis, the design flow can be divided into several subsequent steps; high-level synthesis,
logic synthesis, layout synthesis, and the target topic in this thesis is displayed once
again as shown in Figure 2.11. The figure represents the fine-grained steps in hardware
synthesis, but the work addressed in this thesis is coarse-grained in terms of being higher
level in abstraction.

The overview of hardware synthesis is shown in Figure 2.12. High-level synthesis
transforms a behavioral specification into an RTL description. The RTL components
are generated as data paths execute operations such as arithmetic operations beneath
a control unit. Then, the RTL description is synthesized into a gate-level expression
as netlists of logic gates. Finally, the layout mask for IC fabrication can be generated
through the layout synthesis step. Each physical gate is placed and interconnected wires
are implemented and routed.

This thesis focuses on the high-level synthesis step. Typically, designers start an
abstract specification that is implemented as a custom processor or a kind of custom
hardware in a high-level description. Therefore, the description is usually written as
untimed that a function consumes all its input data at the same time without taking into
account any delay and obtaining outputs at the same time. High-level synthesis tools
transform such untimed high-level specifications into a timed implementation. That is,
they automatically generate custom hardware that contains a data path and a controller
that satisfy the required specification and design constraints.

High-level synthesis consists of sequential flow as shown in Figure 2.13. Starting

19

Figure 2.11: Highlighting the target topic in hardware synthesis

from the high-level description of an application, High-level synthesis tools finally out-
put an RTL component. The high-level synthesis starts with compiling the functional
specification in the high-level description for code optimization such as dead-code elim-
ination, constant folding, loop transformations, solving false data dependency. The for-
mal model generated by the compilation is often formed as a data flow graph (DFG)
with the data flow dependencies between operations. The nodes are represented as the
operations and the edges are represented data flow dependencies, respectively. In gen-
eral, the DFG model is extended to the ones with control dependencies by unrolling all
the loops and resolving conditional assignments. Such graphs are called the control data

20

Figure 2.12: Hardware synthesis flow

flow graph (CDFG), in which the edges represent the control flow.
CDFG is more expressive than DFG and can represent loops that can repeat in-

finitely. However, parallelism is based on a basic-block level. That is, the analysis and
transformations must reveal parallelism that exists between basic blocks. For example,
it includes loop unrolling, loop pipelining, loop merging, and loop tiling. These tech-
niques are used to optimize latency, throughput, and the size and the times of memory
accesses by clarifying the parallelism among loops and between loop iterations.

Allocation process decides the number and the type of resources of hardware such
as functional units, storage, and connectivity components to satisfy the resource con-
straints. The components to use are chosen from the RTL components library. The li-
brary includes the characteristics of the components such as delay, gate area, and power
consumption. It is crucial to select more than a component for an operation and is also
important to describe that this scheduling process is different from the one described
in the previous section. This scheduling process requires that all operations listed in
the specification are scheduled in clock cycles. This means that each operation must be
read from its source (a storage device or a component of a functional unit), carried to

21

Figure 2.13: High-level synthesis flow

the input of a functional unit capable of performing that operation, and the result carried
to its destination. Depending on the functional unit where the operation is mapped, its
operation is scheduled either over one clock cycle or over several cycles (multi-cycle).
Additionally, the operations may be able to be chained (the output of one operation
is fed directly into the input of another operation). Therefore, the operations schedul-
ing can be conducted for parallel execution if there are no data-dependent precedence
constraints and if there are adequate resources available at the time.

Multiple Variables that periodically keep a value cannot avoid storage unit bound. A
lifetime of the variables can be bound to the same storage unit even if the variables are
non-overlapping or completely exclusive. Therefore, every operation must be bound to
a functional unit, resulting in that the binding algorithm must optimize its selection if
there is a functional unit. Furthermore, the binding of a storage device to a functional
unit depends on the connectivity binding. Each transfer from a component to another
component should be bound to a connectivity unit such as a bus, crossbar, or multiplexer.
In the HLS processes, it estimates the latency and area of connectivity at the earliest
possible stage. Another approach is to determine the entire architecture at allocation
time in order to use the early floorplanning for both binding and scheduling results.

As mentioned earlier, HLS generally represents a fine-grained process, but what we
are dealing with in this paper is a coarse-grained approach using a high-level language
rather than an RTL description.

22

Chapter 3

Scheduling for Moldable Tasks on
Homogeneous Multicore

This chapter addresses scheduling problems for moldable tasks on homogenous multiple
cores1.

3.1 Introduction

With the rapid progress of semiconductor manufacturing technology, multicore systems
have replaced single-core systems to become the mainstream design paradigm for mod-
ern systems. In the literature, multicore task scheduling, which determines the execution
order of tasks on multiple cores, has become more important than ever as an increasing
number of cores in embedded systems. Each task is classically assumed to be assigned
to one of the available cores, and the multiple tasks can be started in parallel on dif-
ferent cores while other tasks are running. [6, 33]. Much recent application includes
tasks that can be partitioned into multiple threads in a data-parallel fork-join manner,
and the threads can be executed independently on multiple cores [34]. Many scheduling
problems that take into account task parallelism (i.e. inter-task parallelism) and data
parallelism (i.e. intra-task parallelism) have been remarkably studied [35], [36, 37].
According to [35]-[38], they have assumed that a task is rigid, where the number of
threads in each task is fixed. On the other hand, the works in [36, 37] assume that
tasks are moldable that has an unfixed number of threads. The number of threads is
determined during scheduling and its number does not change at runtime.

Task scheduling problems are generally recognized as the NP-hard class of com-
putationally intractable problems [39]. Thus, moldable task scheduling, which is more

1This chapter is a refined and reproduced version of the paper originally published in International
Journal of Networking and Computing [32].

23

complex than general task scheduling, is much hard to solve in a practical time. In
the past, moldable task scheduling in [36, 37] has been tackled by using integer linear
programming (ILP). However, empirically and theoretically, such techniques can find
optimal schedules for a small task graph but are hard to find an optimal schedule or even
one of the feasible schedules for large task graphs in a time for practical usage.

This work attempts to pursue the issues from a perspective of the programming
paradigm, which is called constraint programming. Constraint programming (CP) is one
of the promising approaches to combinational optimization problems that include clas-
sical task scheduling problems [40, 41, 42]. This work proposes a CP-based scheduling
technique for moldable fork-join (MFJ) tasks. Given a set of dependent moldable tasks
formed as directed acyclic graph (DAG) and a set of homogeneous multiple cores, the
proposed technique determines the number of threads partitioned by a task and assigned
the threads to the cores to minimize the overall completion time (a.k.a. makespan). In
addition, this work proposes a CP-based scheduling technique assuming that a moldable
task offers synchronization, which is called moldable synchronous (MS) tasks. As well
as MFJ tasks, an MS task can be partitioned into an unfixed number of threads and the
number will be determined during scheduling. On the other hand, threads of a task are
prohibited to run independently and need to be mapped at the same time2. In contrast,
the threads of an MFJ task are allowed to start independently on different cores, or they
are even allowed to run sequentially on the same core.

This work contributes to the following threefold:

• This work proposes a CP-based scheduling technique for MFJ tasks.

• This work also proposes a CP-based scheduling technique for MS tasks.

• This work conducts a set of experiments and shows that the proposed CP-based
techniques outperform state-of-the-art techniques with ILP.

The remainder of this chapter is organized as follows. Section 3.2 describes related
work on multicore task scheduling problems. Section 3.3 provides an ILP-based math-
ematical formulation and the CP-based approach to MFJ task scheduling. This section
also presents the experiments and the evaluation. In Section 3.4, we present CP-based
scheduling of MS tasks with the introduction of an ILP-based formulation with the ex-
periments. Finally, Section 3.5 concludes this chapter with future plans.

2If the threads have to synchronize with each other frequently during their execution on a non-
preemptive environment, the task is considered as the synchronous ones.

24

3.2 Related Work

Classical task scheduling techniques for multicore architectures have been widely in-
vestigated in [6]. In general, tasks are allowed to run in parallel on multiple cores
if the tasks are independent so that they have not interfered in terms of memory and
data. The authors of [33] develop an ILP-based approach to scheduling tasks on mul-
tiple processors, considering communication contention. However, these works ignore
that a task inherent data-parallelism, resulting in that each task is allowed a single-core
execution. In the real-world, applications such as image processing and deep learning-
based, include data-parallel tasks as well as task parallelism. In the literature, task
scheduling problems, which consider both parallelisms, have been studied in [34]-[37].
In [35], Liu et al. proposed list-based scheduling algorithms for data-parallel tasks.
Their work assumes that a set of dependent tasks is assumed in the form of a task graph
but tasks are assumed to be rigid, where the number of threads for each task assumes
fixed beforehand. The goal of the work is to ask for a schedule to minimize the overall
schedule length. Yang and Ha’s work in [38] also focuses on the scheduling of data-
parallel tasks. The work in [38] assumes that tasks are called malleable that the number
of threads for each task is determined during scheduling and its number is allowed to
change at runtime. The goal of the work aims to minimize hardware costs with meeting
deadline constraints. Unlike rigid tasks, malleable tasks are intuitively flexible in terms
of their granularity, however, malleable tasks offer preemption that a task is necessary
to be suspended to change its parallelism, leading to overhead for the interruption and
may degrade performance. In [43], the authors take advantage of data-parallelism and
present a technique for pipelined task scheduling and mapping on heterogeneous MP-
SoCs. Chen and Chu in [44] developed and proved a polynomial-time approximation
algorithm for malleable tasks to ask a minimum schedule length. Scheduling of MFJ
tasks for real-time systems is studied in [45]. In the scheduling of MFJ tasks, a task is
partitioned into multiple threads, and each thread is mapped to one of the multiple cores,
independently. The work aims at the evaluation of the tractable and intractable fork-join
real-time task model. Lakshmanan et al. in [46] developed an algorithm for malleable
fork-join tasks in OpenMP. Saifullah et al. in [47] proposed a real-time task scheduling
model which assumes that a task holds the various numbers of threads. Shimada et al.
in [36] study MFJ task scheduling with the adoption of an approach based on ILP. They
also study in [37] scheduling of moldable tasks with ILP. In this work, a moldable task is
assumed that synchronization among all threads of each task is necessary for start time
and end time. Their works are with an ILP-based technique, and therefore can hardly
be explored due to the excessive time to ask for a solution.

To find a feasible solution in a practical time, heuristic-based approaches have been

25

(a) Task graph (b) Execution time of task 1

(c) Split into threads (d) An optimal schedule

Figure 3.1: A scheduling example for MFJ tasks

developed such as mix integer linear programming (MILP), satisfiability modulo the-
ory (SMT), and CP. In [48], the work studies a MILP approach to scheduling problems
of parallel tasks, but it is focused on rigid tasks, where each task is assumed to be
executed on a statically fixed number of processors. Liu et al. [49] analyze how ef-
ficiently an SAT solver can eliminate the solution space for task scheduling problems
with mapping. The SAT-based framework proves a significant improvement in terms of
optimality and scalability. Malik et. al in [50] evaluated the performance of scheduling
problems with SMT. Furthermore, CP-based approaches are also proposed in the task
scheduling area. In [40], the principle of CP techniques for combinational optimization
problems has been surveyed. Derived from the work, Baptiste et al. [41] developed
a scheduling problem with a CP-based approach. Kuchicinski in [42] also proposes
a scheduling problem that takes into account communication cost. The authors both
in [51] presented scheduling problems, assuming that tasks are executed on multiple
processors. However, the works applied to such a solver are not focused on schedul-
ing for moldable tasks. This work studies a CP-based approach to the scheduling of
moldable tasks. We ask for better solutions and much faster than the state-of-the-art
techniques for data-parallel task scheduling.

26

3.3 Scheduling for Moldable Fork-join Tasks

In this section, we first explain MFJ task scheduling using a comprehensive example.
Then we describe formulation based on ILP, followed by [36]. Recall that an MFJ task
assumes that a task is allowed to be partitioned into a set of threads. The split threads
are generally permitted to run independently on multiple cores at different times. In
this work, we ignore task migration and preemption. Once determining the number of
threads during scheduling, its number will never change at runtime. In addition, one of
the threads once assigned to a core cannot be moved to another core at running. For this
scheduling problem, given a set of dependent tasks and a set of homogeneous cores, we
ask a scheduling result to minimize the overall schedule length.

3.3.1 Problem Description

Figure 3.1 (a), (b), (c), and (d) show an example of MFJ task scheduling on four cores.
The table on the top of Figure 3.1 (a) represents a task graph formed as DAG, and (b)
shows Time1,k,j values for task 1. In this example, task 1 is partitioned into two threads
as shown in Figure 3.1 (c). That is, task 1 is determined to run on dual cores. Then,
one of the examples for scheduling results is represented in Figure 3.1 (d). As shown
in this figure, the threads of task 1 are assigned to Core 1 and Core 4 at different times,
respectively.

3.3.2 ILP Formulation

According to [36], the scheduling problem is based on ILP and the problem is solved
by using a commercial solver. In the rest of this section, we briefly address the ILP
formulation referred to [36].

This work assumes moldable tasks that the tasks can be partitioned into several
threads. For simplicity, we assume that each of the tasks is allowed to be split into
threads. Note that the number of threads is no more than the number of cores at most
since the efficiency may be degraded due to incurring wait if the number of threads
exceeds the number of cores in the target system. Let spliti,k denote a 0-1 decision
variable. spliti,k becomes 1 if task i is split into k threads.

∀i,
∑
k

spliti,k = 1 (3.1)

Recall that the execution time of each thread in a task assumes to be the same. Let
Timei,k,j denote the execution time of j − th thread of task i when it is assigned to k
cores. Timei,k,j is 0 for j > k. Timei,k,j is assumed to be given. This work does not

27

consider how to obtain Timei,k,j values since that is out of scope in this work, but the
execution time of each thread in a task can be obtained by many profiles of running the
tasks iteratively.

∀i,j, timei,j =
∑
k

(spliti,k × Timei,k,j) (3.2)

Let starti,j and finishi,j denote the start time and the finish time of the threads of
task i, respectively. Note that starti,j is a decision variable and finishi,j is a dependent
variable defined by the following equation.

∀i,j, finishi,j = starti,j + timei,j (3.3)

Next, let corei,j be the identified number of the cores which is assigned to j − th

thread in task i. If two threads, thread j1 in task i1 and the thread j2 in i2, are mapped
to the same core, the execution of the two threads cannot be overlapped in time. In other
words, multiple threads are prohibited to run on the same core at the same time. This
resource constraint is formulated by the following.

∀i1,i2,j1,j2, corei1,j1 6= corei2,j2

∨ finishi1,j1 ≤ starti2,j2

∨ finishi2,j2 ≤ starti1,j1 (3.4)

This work assumes a set of dependent tasks, where the tasks may have a flow de-
pendency among them. Let start mini and finish maxi denote the start time and the
finish time of task i, respectively. They are defined as follows.

∀i, start mini = minj{starti,j} (3.5)

∀i, finish maxi = maxj{finishi,j} (3.6)

Let Flowi1,i2 denote a flow dependency from task i1 to i2. Flowi1,i2 is 1 when task
i1 must be finished before task i2 starts. Otherwise, Flowi1,i2 is 0. We assume that
Flowi1,i2 is given. Then, the precedence constraint is expressed as follows.

∀i1,i2, F lowi1,i2 → finish maxi1 ≤ start mini2 (3.7)

This work aims at minimization of the overall schedule length. Therefore, the ob-
jective function of our scheduling problem to be minimized is given as follows.

28

Minimize : maxi{finishi} (3.8)

Our scheduling problem for MFJ tasks is now formally defined: Given a set of de-
pendent tasks, a set of cores, Timei,k,j and Flowi1,i2, find spliti,k, corei,j and starti,j
which minimize the objective function (3.8) subject to the constraints formula (3.1)-
(3.7). For simplicity, we do not consider communication among the cores and con-
tention between hardware resources such as memory, bus, and so on. Further, the tasks
in this problem are well-ideal in that the execution times of each task are not jitters.
Each thread is partitioned from a task assumed to have the same execution time as an-
other thread of the same task. These extensions are out of this work, but they can be
easily realized by adding some constraints.

3.3.3 Constraint Programming Approach

To apply CP to an optimization problem, IBM ILOG CP Optimizer is one of the promis-
ing solvers, whose expressions and functions are very suitable to solve combinational
problems such as job scheduling and nurse scheduling problems in [52] and [53]. ILOG
CP Optimizer includes several built-in functions. Referred to IBM ILOG CP Optimizer
official publication and the related studies such as [54] and [55], CP Optimizer has been
developed for the internal strong search strategies and techniques. By default, the CP
optimizer employs a variety of metaheuristic techniques that are dynamically modified
according to the problem. The main search techniques include, but are not limited to,
Depth First Search (DFS), Large Neighborhood Search (LNS), and Genetic Algorithm
(GA). Furthermore, constraint propagation is an internal technique that ILOG CP op-
timizer performs for searching for a solution to a CP problem. Constraint propagation
removes values from regions that are not involved in the solution. CP optimizer then
starts to search for a solution under the constraints using a backtracking algorithm. If the
CP optimizer succeeds in obtaining a feasible solution, the solution is added to the con-
straints as an upper or lower bound. Furthermore, the constraint propagation removes
the values of the decision variables from the domain which are not involved in the other
solutions considered together with the solution. Once again, the CP optimizer restarts
to find a solution. In this way, a powerful strategy for solving optimization problems
is employed in the CP optimizer. It is these features of the CP that motivate this work.
By using the built-in functions, the optimal schedule can be found efficiently. Even
in case, optimal schedules are not found in a practical time, the CP optimizer can find
better schedules than the ILP-based technique [36]. In the following, we describe the
formulation for this scheduling using CP provided by IBM ILOG CP Optimizer.

29

Interval Variable

One of the unique concepts in ILOG CP Optimizer is called an interval variable. An
interval variable internally holds the interval of time between the execution of an activity
and is described as the size (length) of the start time, end time, and execution time.
Another interesting thing about interval variables is that they include a bool number if
it is optional or not. The interval variable may or may not be present. If an interval
variable is marked as not existing, then it is ignored during scheduling.

Let taski,j be an interval decision variable for the j-th thread of task i. If the j-th
thread of task i is considered, it is present in the scheduling, otherwise, it is not. In the
scheduling problem, we are given the execution time of each thread of a task and we
attempt to determine the number of threads for each task, to which core it should be
mapped and its execution start time.

Precedence Constraints

This scheduling problem assumes a DAG-based task graph. There are the tasks where
data-dependent precedence dependency does exist among them. The function, called
endBeforeStart(a, b) built in ILOG CP Optimizer, represents the precedence between
two interval variables a and b to be true with their presence. Therefore, the precedence
constraint that taski1,j1 must be finished before taski2,j2 starts is expressed as follows.

∀j1,j2, endBeforeStart(taski1,j1, taski2,j2) (3.9)

Alternative Constraints

Next, we introduce another concept of a set of variables called as decisioni,k,j . Let
decisioni,k,j denote a set of the execution time for j − th thread in task i on k cores. To
guarantee that one of decisioni,k,j is present for each taski,j where task i is determined
to be split into k threads, we use the alternative function.

∀i,j alternative(taski, ∪k {decisioni,k,j}) (3.10)

In Formula (3.10), it should be recalled that task i is always present. Therefore, one
in a set of decisioni,k,j must be present, where the threads in task i must be taken into
account. The constraint is expressed in Formula (3.11).

∀i,k,j1,j2, presenceOf(decisioni,k,j1)→ presenceOf(decisioni,k,j2) (3.11)

30

(a) Pulse function

(b) Cumulative function

Figure 3.2: A concept of resource constraint

presenceOf is a built-in function of ILOG CP Optimizer, which returns values 0-1
for the existence of the given interval variable.

Resource Constraints

At any moment in time during scheduling, the total number of cores assigned to active
tasks is prohibited to exceed the number of cores. The resource constraint is introduced
by a concept called as pulse function and the cumulfunction, where they are built-
in ILOG CP Optimizer as shown in Figure 3.2. Figure 3.2 (a) shows the concept of
the pulse function. Let a be an interval variable and h be a scalar value, respectively.
pulse(a, h) indicates scalar h while the interval a is active. When a is once absent,
the pulse value is down to 0. According to [52] and [53], the cumulative function can
accumulate the values generated by its pulse function from pulses over time. As shown
in Figure 3.2 (b), it demonstrates an example with the interval variables a, b and c. This
case represents that the pulse function is utilized with a, b, and c, respectively. Now,
the cumulative function is accumulated with pulse(a, 1) + pulse(b, 2) + pulse(c, 2).
Introduction of the pulse and cumulative functions to the resource constraint, we can
show the resource constraint about the number of cores as follows.

31

Ncores ≥ CumulFunction{
∑
i

∑
k

∑
j

pulse(decisioni,k,j, 1)} (3.12)

In the formula, Ncores indicates the total number of cores in the target system.
It should be recalled that decisioni,j,k is an interval variable and is present if j − th

thread of task i split into k threads is active. Formula (3.12) expresses the value of
pulse(decisioni,j,k, 1) is 1 while j − th thread in task i being active. It represents the
value is one if one of the threads is assigned to one of the cores. The right side of the
inequality shows that sum of the total number of cores assigned to the active threads in
tasks.

Objective Function

Our objective function is to minimize the overall schedule length, and is defined as
follows.

Minimize : maxi,j{endOf(taski,j)} (3.13)

endOf is a built-in function in ILOG CP Optimizer, which returns the end time of
the given interval variable. In general, constraint programs do not have any objective
functions to be minimized or maximized. Constraint programs search for values for
variables which satisfy all of the specified constraints. However, many state-of-the-art
CP solvers including ILOG CP Optimizer are capable of finding the best values for
variables to optimize a specified objective function. In this work, we take advantage of
the optimization capability in ILOG CP Optimizer.

3.3.4 Experiments

In order to compare the performance of the proposed scheduling techniques, we have
conducted a series of experiments. The scheduling of MFJ tasks is much more complex
than general scheduling problems in terms of computational cost since a task is allowed
to be parallelized. Thus we have prepared a small set of task graphs consisting of 6 to
30 randomly generated tasks in DAGs [56]. The rest of the task graphs are derived from
the Standard Task Graph(STG) developed at Waseda Univerity [57]. Ten out of thir-
teen task graphs, called rand0000 to rand0009 are randomly generated with exact 50
tasks. The three task graphs out of them are called robot, sparse, and fpppp, respec-
tively. They are well-known as actual applications in the real world. For scheduling,
the applications are detailed as follows: robot control application includes 88 tasks and

32

(a) Scheduling results on 4 cores

(b) Scheduling results on 8 cores

Figure 3.3: Scheduling results for MFJ tasks on 4 and 8 cores

131 edges, sparse matrix solver application includes 96 tasks and 67 edges, and SPEC
fpppp application includes 334 tasks and 1145 edges. The experiments explicitly ignore
communication costs among the cores due to memory accesses and bandwidth. In addi-
tion, hardware resource contention is also neglected. Each application program assumes
that there is a data-dependent precedence constraint between tasks. STG’s original task
graph assumes that each task is expected to run only on a single core so that the execu-
tion times are given assuming execution on a single core. We have also multiplied them
by 100, as the execution times may be less than 1 if we assume that the task runs on
32 cores. Therefore, in our experiments, the execution times of MFJ tasks on multiple
cores are assumed to be Timei,k,j = 100× Timei,1,j × (0.1+ 0.9/k), for k ≥ 1, where
Timei,k,j denotes the execution time of j−th thread in task i assigned to k cores, where
each thread is assumed to have 10% overhead for parallelization of a task. The number
of cores in the target systems is varied from 4 to 32.

• Single (optimal): Optimal scheduling on the assumption that a task is assigned to
a single core. The optimal solutions are provided in the STG package [57].

• Max: Every task is executed on all cores, and the tasks are sequentially executed.

• MFJ-ILP: ILP-based MFJ task scheduling presented in [36].

33

(a) Scheduling results on 16 cores

(b) Scheduling results on 32 cores

Figure 3.4: Scheduling results for MFJ tasks on 16 and 32 cores

• MFJ-CP: CP-based MFJ task scheduling presented in this work.

Figure 3.3 (a) and (b) and Figure 3.4 (a) and (b) show scheduling results on 4,
8, 16 and 32 cores, respectively. The obtained results are formally normalized to the
Single technique. For the case of 4-core systems, as shown in Figure 3.3(a), the MFJ-
CP technique can find schedules in a practical, but they are slightly different from the
results by the Single technique due to poor parallelism against the number of tasks. With
decreasing number of tasks, we can find much shorter schedules even on 4 cores in the
systems. On the other hand, the results by the MFJ-ILP technique are almost missed
in the graphs, which means that the technique is failed to find any of the schedules
in time. In the cases with a small number of tasks, the MFJ-ILP may be possible to
find better schedules than the Single technique and the Max technique. However, the
schedule lengths are the same or longer by 7.1% than the MFJ-CP technique. From the
results, the CP-based scheduling technique is superior to the state-of-the-art scheduling
techniques in terms of the quality of schedule length.

In the 8-core systems as shown in Figure 3.3(b), much significant improvement is
observed. The MFJ-CP technique is successful in obtaining shorter schedules than the
other techniques. On the other hand, the MFJ-ILP technique can no longer find a sched-

34

ule in many cases. In the sparse benchmark, the best schedule is obtained by assigning
each task to a single core. The MFJ-CP technique demonstrates that it can reduce the
schedule length by up to 56.6%, compared to the Single technique.

With the increase in the number of cores, the MFJ-CP technique can reduce the
length of the schedule by 65% on average, while the MFJ-ILP technique is no longer
able to solve this problem. As for the Max technique, it is possible to find a shorter
schedule than the Single technique. However, the Max technique always finds worse
schedules than the MFJ-CP technique. On the other hand, this technique has the ad-
vantage that it can find schedules instantly. In Sparse, the parallelism of the tasks is
relatively high for the number of cores due to the priority dependency between tasks.
Also, the overhead due to parallelism affects the length of the schedule. Therefore, for
this benchmark, when the parallelism of the number of cores is low compared to the
parallelism of the priority dependencies, running on a single core is more suitable.

In the 32-core systems in Figure 3.4(b), the MFJ-ILP technique is impossible to find
any of the solutions due to the high complexity of scheduling on multicore. The same
is true for the case of fpppp tried by the MFJ-CP technique, but it is successfully able
to improve the effectiveness by up to 81.9% concerning minimization of the schedule
lengths in the overall cases.

3.4 Scheduling for Moldable Synchronous Tasks

Similar to the scheduling presented in the previous section, MS tasks can be partitioned
into an unfixed number of threads. However, the threads cannot be executed indepen-
dently, and need to be scheduled synchronously with each other. The threads of an MS
task run at the same time on different cores. In this section, we describe a CP-based
scheduling technique for MS tasks. Scheduling of MS tasks properly asks the execution
order of tasks and the number of threads for each task during scheduling. The objective
of this scheduling problem aims to minimize schedule length as well as the previous
section.

3.4.1 Problem Description

Figure 3.5 (a), (b), and (c) show an example of scheduling for MS tasks. In Figure 3.5
(a), a set of dependent tasks is represented as DAG, called a task-graph. Each of the
tasks is associated with the execution time which is a function of the number of cores to
execute the task. A table of execution time for task 1 is shown in Figure 3.5 (b).

For example, if task 1 is to be run on a single core, then the execution time for task 1
will consume 45-time units. It is also assumed that each task must need to synchronize

35

(a) Task graph

(b) Execution time of task 1

(c) An optimal schedule

Figure 3.5: A scheduling example for MS tasks

with the other threads in the task and that all threads start running in parallel on multiple
cores at the same time. When running on dual cores, the execution time of task 1 will
take 25-time units. It should be noted that task partitioning incurs overhead for paral-
lelization, so the assumption is made that execution time will not be linearly reduced
on multicore. Consider the function of the execution time of a task is given, and it is
outside the scope of this study to determine how to obtain that value. The number of
cores allocated to a task is determined at the same time as during scheduling.

Figure 3.5 (c) shows one of the optimal schedules for the task-graph in Figure 3.5
(a). The overall scheduling length of the schedule is seen as 45 time units.

36

3.4.2 ILP Formulation

The scheduling for MS tasks presented in [37] is with ILP. To compare with the proposed
technique, the solutions are obtained by a commercial solver. The rest of this section
briefly describes the ILP formulation presented in [37].

Let mapi,j be a 0-1 decision variable. mapi,j becomes 1 if task i is mapped to core
j, otherwise 0. Let coresi,k be 0-1 variable, which becomes 1 if task i uses k cores; k is
ranged from one to the maximum number of cores in the target system, and otherwise
0. Note that coresi,k depends on mapi,j and is determined as follows.

∀i,
∑
k

coresi,k = 1 (3.14)

∀i,
∑
j

mapi,j =
∑
k

coresi,k × k (3.15)

Let Timei,k denote the execution time of task i on k cores. Timei,k is assumed to
be given as mentioned earlier. The execution time of task i is given by the following
equation.

∀i, timei =
∑
k

{coresi,k × Timei,k} (3.16)

Next, let starti and finishi denote the start time and finish time of task i, respec-
tively. Note that starti is a decision variable and finishi is a dependent variable defined
by the following equation.

∀i, finishi = starti + timei (3.17)

The two tasks, i1 and i2, cannot be mapped to a core at the same time. That is, the
execution of the two tasks cannot be overlapped in time. This resource constraint of
cores is formulated by the following inequality.

∀i1,i2,j, mapi1,j +mapi2,j < 2

∨ finishi1 ≤ starti2

∨ finishi2 ≤ starti1 (3.18)

This work assumes a set of dependent tasks, and some tasks have precedence depen-
dencies. As a precedence dependency between task i1 and task i2, Flowi1,i2 becomes 1
if task i1 is ended before task i2 starts, and otherwise 0.

37

∀i1,i2, F lowi1,i2 → finishi1 ≤ starti2 (3.19)

The objective is to minimize the overall scheduling length. Therefore, the objective
function of the scheduling problem is as follows.

Minimize : maxi{finishi} (3.20)

Now, the scheduling problem for MS tasks is formally defined: Given a task-graph,
a set of cores, Timei,k and Flowi1,i2, it decides mapi,j and starti which minimize the
objective function (3.20) subject to the six constraints (3.14)-(3.19). Although some
of the expressions are not linear, they can be easily transformed into linear forms as
presented in [36].

3.4.3 Constraint Programming Approach

Let taski denote an interval decision variable for task i. It must be present in the
scheduling problem, and thus the presence status of taski is true. Next, let decisioni,k

denote an interval decision variable which decides the number of cores to execute taski.
decisioni,k is present if k cores are assigned to taski, otherwise absent. This work as-
sumes that the execution time of decisioni,k is given, similarly to Timei,k in Section
3.3.2.

This work assumes a set of dependent tasks, where tasks may have a given prece-
dence dependency. The function, called endBeforeStart(a, b) built-in ILOG CP Op-
timizer, represents the precedence constraint between interval variables a and b are con-
sidered to be true provided that both of the two-interval variables are present. Therefore,
the precedence dependency constraint that taski1 must be finished before taski2 starts
is expressed as follows.

∀i1,i2, endBeforeStart(taski1 , taski2) (3.21)

An alternative constraint is one of the functions in ILOG CP Optimizer. Let denote
a and bi interval variables. The function alternative(a, b1...bn) represents exactly one
of a set of intervals b1...bn is present on the condition that interval a is present. The start
and the end time of interval a are synchronized with those of bi which is chosen to be
present. If a is absent, every bi is also absent. Using the alternative function, we can
guarantee that one of decisioni,k is present for each taski, as shown in Formula (3.22).

∀i, alternative(taski, ∪k {decisioni,k}) (3.22)

In Formula (3.22), it should be recalled that taski is always present. Therefore, one

38

of decisioni,k must be present.
This work tries to minimize the schedule length under a resource constraint on sev-

eral cores. At any moment in time, the total number of cores assigned to active tasks
cannot exceed the number of cores in the target system. This resource constraint is
expressed with the pulse function in ILOG CP Optimizer. Figure 3.2, shown in the
previous section, shows the concept of the pulse function. The resource constraint is
expressed as follows.

Ncores ≥ CumulFunction{
∑
i

∑
k

pulse(decisioni,k, k) (3.23)

In the formula (3.23),Ncores denotes the number of cores. It should be recalled that
decisioni,k is an interval variable and is present if k cores are assigned to task i. Formula
(3.23) means the value of pulse(decisioni,k, k) is k while task i being active. The value
k is the number of cores assigned to a task, that is, the right side of the inequality shows
that sum of the number of cores assigned to the active tasks. Therefore, this formulation
does not take into account mapping of the tasks onto the cores but simply does the
number of cores assigned to them. Formula (3.23) does not identify what cores to be
assigned to a task, thus, the number of combinations of the cores assigned to a task is
significantly reduced unlike the formulation addressed in the ILP technique.

Our objective function is to minimize the overall schedule length, and is defined as
follows.

Minimize : maxi{endOf(taski)} (3.24)

As earlier mentioned in the previous section, endOf is a built-in function in ILOG
CP Optimizer, which returns the end time of the given interval variable. We try to
minimize the overall schedule length with the benefit of ILOG CP Optimizer that are
capable of finding the best values for variables to optimize a specified objective function.

3.4.4 Expertiments

To evaluate and compare the performance of the proposed approach, we have conducted
a set of experiments. we have set task-graphs that are composed of a small number
of tasks from 6 to 30 tasks in [56]. The rest of the task graphs are derived from the
Standard Task Graph(STG) developed at Waseda Univerity [57]. Ten out of thirteen
task graphs, called rand0000 to rand0009 are randomly generated with exact 50 tasks,
and the others, called robot, sparse, and fpppp, are modeled into DAG as benchmarks
of actual application.

The details of each application are as follows. Robot control application has 88

39

tasks and 131 edges, sparse matrix solver application has 96 tasks and 67 edges, and
fpppp application includes 334 tasks and 1145 edges. Each application is formed as a
DAG-based task graph, therefore, tasks have data-dependent precedence dependency.
STG’s original task graphs assume that each task is only executed on a single core,
and therefore provide execution times that assume execution on a single core. In the
experiments, the execution times of each tasks are given as follows: Timei,k = 100 ×
Timei,1 × (0.1 + 0.9/k), for k ≥ 1, where Timei,k denotes the execution time of task
i assigned to k cores with 10% for an overhead by parallelization of tasks. The number
of cores in the target systems is varied from 4 to 32.

• Single (optimal): Optimal scheduling on the assumption that a task is assigned to
a single core. The optimial solutions are the same as the ones multiplied by 100
in the STG package [57].

• Max: Every task is executed on all cores, and the tasks are sequentially executed.

• MS-ILP: ILP-based MS task scheduling presented in [37].

• MS-CP: CP-based MS task scheduling presented in this work.

A commercial solver, IBM ILOG CPLEX 12.8 is used to solve for the MS-ILP
and MS-CP methods. CPLEX has two optimization engines, i.e., a mathematical pro-
gramming engine and a constraint programming engine. The mathematical program-
ming engine is used for the MS-ILP method and the CP engine is used for the MS-CP
method, respectively. CPLEX is run on an Intel Core i9 7980XE (2.6GHz) processor
with 128GB of memory; CPLEX execution time is limited to 10 hours in CPU time,
after which the best schedule found at that time is used for comparison.

Figure 3.6 (a) and (b) and Figure 3.7 (a) and (b) show scheduling results for MS
tasks on 4, 8, 16 and 32 cores, respectively. The X-axis of the graphs shows the task-
graphs, where rand0000 to rand0009 include 50 tasks for each task-graph as well as
in the previous section. The Y-axis shows the schedule length obtained by the four
techniques. The schedule lengths are normalized to the Single technique. In some
cases, no solution is found by the MS-ILP technique. There is a reason that the MS ILP
technique is almost failed to obtain even one of the feasible solutions in a practical time.

Figure 3.6 (a) shows the results of the 4-core systems. The results in the MS-CP
technique surpass the ILP-based technique with an improvement of 11% on average,
nevertheless, there is poor parallelism. As shown in the cases of the applications, the
effectiveness of multi-threaded tasks is no more improved than the traditional technique.
On the other hand, the Max technique finds longer schedules in many cases due to the
overhead by parallelization.

40

(a) Scheduling results on 4 cores

(b) Scheduling results on 8 cores

Figure 3.6: Scheduling results for MS tasks on 4 and 8 cores

In the 8-core systems as shown in Figure 3.6 (b), the effectiveness of the MS-CP
technique is observed. Although the MS-ILP technique fails to obtain a shorter schedule
in some cases, the MS-CP technique is still successfully obtained with better solutions
than the other techniques. For small task graphs of 6 to 30 tasks, there is a slightly
different schedule length by the MS-CP technique is shorter than the schedule by the
MS-ILP technique by up to 7.6%. On average, the MS-CP technique finds shorter
schedules by 18.6% over the results.

In Figure 3.7 (a) and (b), the results found by the MS-ILP technique are almost
missed. With an increasing number of cores, the number of threads of each task can
be large. On the other hand, the MS-CP technique can find feasible schedules, which
means that our CP-based approach can find good feasible schedules in a short time. In
the results, we can obtain benefits attributed to a CP-based approach.

41

(a) Scheduling results on 16 cores

(b) Scheduling results on 32 cores

Figure 3.7: Scheduling results for MS tasks on 16 and 32 cores

3.5 Conclusions

In this chapter, we have presented the scheduling technique using constraint program-
ming for the MFJ task and MS task. In the scheduling of MFJ tasks, the number of
threads and their execution order are determined during scheduling and multiple threads
can run in parallel independently at different times. In the scheduling of the MS task,
the number of threads is determined during scheduling as well, on the other hand, the
threads require synchronization and run in parallel at the same time. The experimental
evaluation demonstrates the effectiveness of the proposed techniques. For all the experi-
ments, we have obtained much better schedules compared to the existing state-of-the-art
techniques. Thus, we have confirmed that CP-based scheduling can quickly find good
schedules for formable tasks. In the future, we will take into account more complex
issues such as memory accesses such as cache and main memory. In addition, we need
to consider resource conflicts between tasks.

42

Chapter 4

Scheduling of Moldable Tasks with
Inter- and Intra-Task Communications

This chapter addresses a communication-aware scheduling problem that consider inter-
and intra-task communications on homogeneous multicore1.

4.1 Introduction

Due to the growing demand for high performance in embedded systems, parallel com-
puting is a promising technique for multicore systems [6]. In the domain of parallel
computing, one of the main challenges faced by designers is to obtain an efficient sched-
ule to speed up or reduce energy consumption. To satisfy the requirements, an essential
technique in parallel computing is multicore task scheduling, which determines the ex-
ecution order and mapping of the tasks on multiple cores. Many existing scheduling
techniques classically have in the common assumption that each task is assigned to one
of the multiple cores; however, most programs have recently included inherent data par-
allelism. A task in a modern program can be partitioned into multiple threads by taking
advantage of the task structure in a data-parallel manner so that the threads are executed
in parallel. In other words, many current works study the scheduling of parallel tasks
that consider both task parallelism and data parallelism.

According to [27] and [60] applications in the real world for parallel tasks can be
classified into three types, i.e., rigid tasks, moldable tasks, and malleable tasks. For a
rigid task, its parallelism is specified in advance and remains unchanged during schedul-
ing. The number of threads for a moldable task is flexible and decided at the same
time as scheduling but, once decided, this number cannot be changed during the ex-

1This chapter is a refined and reproduced version of the papers originally published in International
Journal of Embedded Systems [58] copyrighted by Inderscience Publishers and in International Workshop
on Software and Compilers for Embedded Systems (SCOPES) [59].

43

ecution. The number of threads in a malleable task can be changed throughout the
runtime. Therefore, the malleable task model is the one generalized from the moldable
task model with preemption and migration.

In the real world, many tasks for parallel applications are moldable [6]; however,
there remains little research that focuses on the scheduling of moldable tasks. Moreover,
most of the existing works in scheduling problems for moldable tasks have assumed a
strongly idealized model of the parallel systems. One of the classical assumptions in the
scheduling of parallel tasks has been to ignore communication costs between the cores.
Based on this premise, it can easily maximize the utilization of multicore to map tasks
to each core; however, it incurs the communications among cores in the real world and
cannot ignore.

There were several works such as [61, 62, 63], and [64] assume that communica-
tion to incur among the cores for data transfer. In parallel programs, communication
between the cores has a strong impact on a scheduling result since the cores carry out
various threads of a task with different sizes of data. For a moldable fork-join (MFJ)
task, internal communication between the cores for shared memory accesses or message
passing inevitably leads to the degradation of latency.

In the scheduling of moldable tasks, Shimada et al. proposed a scheduling method
with inter-task communication and tried to reduce the communication overhead to the
overall execution time [65]. This study assumes a synchronous task model where
threads in a task are considered to simultaneously run in parallel on different cores,
but intra-task communication is not considered. MFJ tasks are multi-threaded, with
each thread running independently on a core. If multiple threads are distributed across
several different cores, the threads need to transfer data frequently between the cores.
Also, even if multiple cores are provided for parallel execution, the speed of task ex-
ecution is limited by Amdahl’s Law. Therefore, inter- and intra-task communication
for task scheduling is important to improve the performance of parallel computing sys-
tems. In addition, although this research assumes a synchronous parallel task model, it
has a drawback that most tasks in real parallel programs have a fork-join structure, and
threads can be scheduled independently.

The contributions of this work are as follows: Our work formulates scheduling of
MFJ tasks considering inter- and intra-task communication costs for the first time. Data-
parallel tasks are nowadays popular, but there are few works to tackle communication
overheads among cores. Moreover, there have never been such scheduling problems
for moldable tasks. Another contribution indicates we propose a two-step approach
to the scheduling problem for efficiently finding good solutions in a practical time.
Throughout the experiments, we show the effectiveness of the scheduling techniques
for task graphs generated at random and several real-world applications. Furthermore,

44

to evaluate the impact of communications among the cores on makespan, we evaluate
the scheduling results with various computational communication ratios. The rest of
the chapter is organized in the following: Section 4.2 describes related the literature of
scheduling techniques for parallel tasks. Section 4.3 presents the proposed techniques
for MFJ task scheduling with inter- and intra-task communications. Section 4.4 exper-
iments performance evaluation with the state-of-the-art scheduling techniques and the
proposed techniques and for the effect on communication cost to computation cost ratio
(CCR) on multicore architecture. Finally, Section 4.5 concludes the chapter.

4.2 Related Work

Scheduling of parallel tasks on multicore architectures has been widely investigated by
the works [34, 66, 67]. Scheduling of tasks on multicore is classically assumed to as-
sign a single core to a task, and multiple tasks are executed on the cores in parallel,
independently. On the other hand, a modern task called a parallel task is assumed to be
executed on multiple cores. In other words, both the task parallelism and the data paral-
lelism are necessary to be exploited [68] and [69] so that the potential of parallelization
in a task is fully utilized. In the execution of parallel tasks, there are well-known two
main models, called Gang and Thread [70] and [71]. The gang-constrained task model
is assumed that all parallel computational elements of instances for a task start and end
the execution with synchronization. On the other hand, there is no such constraint for
the order-constrained model; therefore, each of the threads does not have to be synchro-
nized with the other threads and can be started independently in a fork-join manner.
Since our research focuses on multi-threaded tasks in the fork-join task model, the fol-
lowing works are aimed at the thread model of parallel tasks.

Scheduling techniques for multi-threaded tasks have been widely studied for a decade.
In [35], they presented list-based PCS scheduling algorithms oriented to data-parallel
tasks. Their work assumes that a set of dependent tasks is given formed as a DAG-based
task-graph, where the number of threads for a task is not determined beforehand. The
work attempts to minimize the makespan. Furthermore, they extended the work to solve
the scheduling problem efficiently by a dual-mode algorithm [71] and by a branch-and-
bound approach [72]. The work [38] also focused on scheduling of data-parallel tasks.
Unlike these works by [71] and [72], the work [38] assumed that tasks are moldable,
where the parallelism for a task is unfixed in advance and is determined during schedul-
ing. The goal of the work aims to minimize hardware costs under deadline constraints.
In [45], the authors proposed a technique for scheduling and mapping pipelined tasks
on a heterogeneous MPSoC using data parallelism. Jansen et al. [73] tried to exploit
the monotony of a moldable job. They developed polynomial approximate algorithms

45

in m to polynomial in log m, where m denotes the number of machines. Chen et al.
[44] designed a polynomial-time approximation algorithm for malleable tasks to find
a minimum schedule length. In [46], they developed an algorithm for tasks in fork-
join structure using OpenMP. The work in [32] developed scheduling techniques for
moldable tasks based on constraint programming. Compared to existing techniques that
are based on ILP formulation [37], the constraint programming approach successfully
shortened the schedule length.

One of the drawbacks of the works mentioned above, they were extremely idealized
and did not consider communication for data transfer among multiple cores. However,
communication overhead becomes significantly large and seems to badly affect the per-
formance of parallel computing. Hwang et al. [74] proposed a non-preemptive list
scheduling problem that involves inter-processor communication delay, based on the
earliest task first policy. They aimed at minimization of the schedule length. Yang et
al. [75] developed heuristic list-scheduling techniques that introduce not only critical
path scheduling but also ready list priority. In this literature, the communication over-
head is generally supposed to incur when data-dependent tasks are mapped on different
cores. The data transfer rate between two cores has been assumed to be constant in
general [76]; therefore, the communication costs are almost equal to the amount of data
for transfer. The work in [61] developed task scheduling techniques on multiprocessors
with inter-processor communication as well as dynamic and static load balancing strate-
gies. In this work, they employed a concept of the communication cost that refers to the
amount of time necessary for data transfer, called CCR. Davidovic et al. [62] studied
a set of benchmark instances that includes communication overhead. The work in [64]
proposed MILP formulation for scheduling with communication delays on parallel sys-
tems. Morady et al. [77] studied scheduling of tasks considering communication costs.
They employed a genetic algorithm as a metaheuristic technique to solve the scheduling
problem since task scheduling is well-known as an NP-hard problem. Roy et al. [78]
developed an ILP-based strategy for an optimal solution of precedence-constrained task-
graphs (PTG) on a heterogeneous environment. They argued that heuristic strategies for
scheduling PTG generally assume that processors are fully connected to avoid commu-
nication contention, but the heterogeneous multiple cores are usually connected with
heterogeneous communication resources. Typically, parallel applications have long ex-
ecution times. In other words, the data size in the programs to execute is large, and the
CCR of the tasks in such a parallel program is high. Therefore, such high CCRs lead to
a scheduling result critically different from the one with low CCRs.

Most of the existing works aware of communication costs, unfortunately, have as-
sumed that a task is run on only a single core. On the other hand, the work in cites
shimada2019communication developed moldable task scheduling techniques and con-

46

siders inter-task communication; however, multi-threaded tasks frequently incur both
inter- and intra-task communications. As increasing the number of threads for a task,
intra-task communications may lead to non-negligible interference for efficient execu-
tion. Moreover, the communications further strongly affect a scheduling result if the
CCR of the tasks is high. Therefore, we study the scheduling problem for moldable
tasks with the communications and evaluate how much scheduling by different CCRs
affects the results of schedule lengths.

4.3 Scheduling Problem

In this section, we present the scheduling problem for MFJ tasks on homogeneous mul-
tiple cores. The fork-join task model satisfies the fork-join programming manner, where
a single master thread partitions into multiple computational threads with a fork com-
mand and gathers the results of the parallel computation with a join command. Namely,
scheduling of MFJ tasks determines the number of the computational threads and as-
signment of all the threads on multicore at the same time. Since this work takes into
account inter- and intra-task communication costs for data transfer, our proposed tech-
nique also schedules the communications.

4.3.1 Problem Description

Figure 4.1 shows the example of scheduling of MFJ tasks on homogeneous multiple
cores. In Figure 4.1(a), a set of dependent tasks is represented as DAG-based task-
graph. The tasks labelled “S” and “E” are dummy tasks that represent entry and
exit points, respectively and these nodes have no computational workloads. Edges rep-
resent data-dependent precedence constraints for the tasks and the weights on the edges
indicate inter-task communication between two tasks if they are executed on different
cores respectively. The nodes between the precedence constraints imply that a prede-
cessor task must be finished before a successor task starts. In this work, the following
classical assumptions are adopted; local communication cost is free, there is a com-
munication subsystem so that cores are not involved in communication overhead, and
communications can incur concurrently so that there is no contention for the commu-
nication resources. No that this example consider no communication time for outgoing
edges from the entry node and incoming edges to the exit node for simplicity but with-
out loss of generality. Also, each task is allowed to be multi-threaded as a fork-join
structure.

In this work, we assume fork-join structure as follows: A task consists of three types
of threads, which are called as a pre-processing, body and a post-processing threads,

47

(a) Task-graph (b) Computation times and intra-task communication times for
Task 1

Figure 4.1: An inputs of MFJ task scheduling with inter and intra-task communications

respectively. The pre-processing thread is called one master thread, which is divided
into several parallel threads called body threads. The body threads are allowed to run
in parallel on multiple cores at different cores at different time. When the execution
of the body threads is done, the post-process thread synchronously terminates these
body threads and resumes the execution of the master thread. It is assumed that the
execution time of a thread depends on the number of body threads into which the task
is split. Assume that the execution time of each task and the communication time (or
data transfer time) between the tasks in the priority dependency are profiled and given in
advance. There are several works for estimation of such information [79], but the topic
is out of scope in this work. For simplicity, Figure 4.1(b) shows the execution times of
each of the threads for Task 1.

If Task 1 is not parallelized, the execution time will be 40. In this case, there will be
no pre-processing thread and no post-processing thread respectively. There will be no
thread of processing and no thread of post-processing respectively. For example, given a
task-graph like the one in Figure 4.1(a). In addition, we are given a table of computation
time per thread and communication time between threads as shown in Figure 4.1(b).
Then our scheduling technique simultaneously determines the number of body threads
in each task and the mapping of the threads in each task. By simultaneously determining
the number and mapping of threads for each task, the overall length of the schedule can
be minimized.

Assume that neither inter- nor intra-task communications, Task 1 is split into three
threads is represented in Figure 4.2(a); the computation times of every body thread is
decided as 14. Moreover, of necessity are the pre-process thread and the post-process
thread, each of which respectively takes 5 time-units. Figure 4.2(b) presents the schedul-
ing result of Figure 4.2(a), and it shows an optimal overall schedule length is 31. If the
communications are taken into account besides scheduling, the intra-task communica-
tion incurs by 1 from Core 2 to Core 0, where Core 2 transfers the data of Task 3 to

48

(a) Task 1 is split into three parallel threads without the
communication time

(b) Communication time affects the overall schedule length

Figure 4.2: A scheduling result without communication delay

Core 2. Then, the schedule length is extended to 32. On the other hand, Figure 4.3(a)
represents the problem with considering the communications. Each edge from the pre-
process to the body threads in Task 1 has communication time of 1 in Figure 4.1(b).

The communication times are diverse depending on the parallelism of a task due to
data size fo transfer depending on the number of body threads, followed by the CCR
[61] and [64]. This example assumes the CCR is less than 0.1 for comprehension.
Otherwise, if the CCR is higher than 0.1, the communications could incur degradation
of latency on the schedule. Figure 4.3(b) shows the scheduling result of Figure 4.3(a).
The pre-process thread of Task 1 is assigned to Core 1. Out of the three-body threads
of Task 1, the third thread is mapped on the same core (Core 2), and no communication
is incurred. On the other hand, the first body thread of Task 1 is mapped on Core 0,

49

(a) Task 1 is split into three parallel threads with the com-
munication time

(b) An optimal scheduling result of the task-graph

Figure 4.3: A scheduling result taken into account communication delay

and which is different from the pre-process thread. Therefore, the first body thread is
delayed by a 1-time unit due to transferring data from Core 1 to Core 0. Similarly, the
pre-process of Task 4 on Core 1 is delayed by 3-time units due to data transfer from
the post-process of Task 3 on Core 2. Compared to Figure 4.2(b), the shorter schedule
length is obtained. Figure 4.4(a) shows the case if Task 1 is split into four threads;
however, the schedule length becomes longer, compared to the case with three threads
as shown in Figure 4.4(b). Through the example, each degree of parallelism of a task
and the communications could affect the scheduling result. As the task graph becomes
even larger, the impact of parallelism and communication is expected to increase.

The scheduling problem presented above is much more complex than the existing
scheduling problems. The thread execution time for each task depends on how many

50

(a) A task-graph with multi-threaded tasks

(b) The longer schedule than the previous result

Figure 4.4: A optimal scheduling result without considering communication delay

body threads the task is parallelized into. The intra-task communication time depends
not only on how many tasks are parallelized but also on which core the task is mapped to.
The inter-task communication time also depends on the mapping of the post-processing
thread of the preceding task to the pre-processing thread of the following task. To
minimize the schedule length, all sub-problems need to be solved in one optimization
framework.

4.3.2 IP Formulation

The rest of this section formulates our scheduling problem as an IP problem. Let pari,k
denote a 0-1 decision variable, and which becomes 1 if task i is determined to be split

51

into k body threads, otherwise 0.

∀i,
∑
k

pari,k = 1 (4.1)

Let Time prei,k, Time bodyi,k and Time posti,k denote execution times of the pre-
process thread, body threads and the post-process thread of task i, respectively, if the
task is partitioned into k body threads. Time prei,k, Time bodyi,k and Time posti,k
are assumed to be given. The execution times of the pre-process thread, body threads
and the post-process thread of task i are given by:

∀i, time prei =
∑
k

Time prei,k × pari,k (4.2)

∀i, time posti =
∑
k

Time posti,k × pari,k (4.3)

∀i, time bodyi =
∑
k

Time bodyi,k × pari,k (4.4)

Let Comm intra prei,k and Comm intra posti,k denote communication time from
the pre-process thread to the body threads and from the body threads to the post-process
thread, respectively, if the task is split into k body threads. Comm intra prei,k and
Comm intra posti,k are assumed to be given. Let pre intrai,j be a 0-1 decision vari-
able, which becomes 1 if the intra-task communication is necessary between the pre-
process thread and the j − th body thread in task i. Similarly, let post intrai,j be a
0-1 decision variable, which becomes 1 if the intra-task communication is necessary
between the j− th body thread and the post-process thread in task i. Then, the commu-
nication time from the pre-process thread and the j − th body thread and the communi-
cation time from the j − th body thread and the post-process thread in task i are given
by:

∀i,j comm intra prei,j

=
∑

k Comm intra prei,k × pari,k × pre intrai,j (4.5)

∀i,j comm intra prei,j

=
∑

k Comm intra prei,k × pari,k × pre intrai,j (4.6)

pre intrai,j is 1 if the pre-process thread and the j − th body thread of task i are
mapped to different cores. Similarly, post intrai,j is 1 if the j − th body thread and

52

the post-process thread of task i are mapped to different cores. Let map prei,k and
map posti,k be 0-1 decision variables, which are 1 if the pre-process thread and the post-
process thread of task i are mapped to the k − th core, respectively. Let map bodyi,j,k
be a 0-1 decision variable, which is 1 if the j − th body thread of task i is mapped to
the k − th core.

∀i,j pre intrai,j =

0 if map prei,k = map bodyi,j,k for any k

1 otherwise
(4.7)

∀i,j post intrai,j =

0 if map bodyi,k = map posti,k for any k

1 otherwise
(4.8)

Let start prei and finish prei denote start and finish times of the pre-process
thread of task i, respectively. Similarly, start bodyi,j , finish bodyi,j , start posti and
finish posti are defined for the j − th body thread and the post-process thread:

∀i,j finish prei = start prei + time prei (4.9)

∀i,j finish bodyi,j = start bodyi,j + time bodyi (4.10)

∀i, finish posti = start posti + time posti (4.11)

For a task, the pre-process thread must be finished before any of the body threads start,
and all the body threads must be finished before the post-process thread starts. Then,
precedence constraints inside of a task which consider intra-task communication are
expressed by:

∀i,j finish prei + comm intra prei ≤ start bodyi,j (4.12)

∀i,j finish bodyi,j + comm intra posti,j ≤ start posti (4.13)

The body threads of a task can run independently on multiple cores in parallel. The
body threads may be mapped on different cores for parallel execution, or they may be
mapped on a same core. map bodyi,j1,k represents that the value becomes 1 if j1 − th
body thread of task i is mapped on k − th core, otherwise 0. Thus, if two of the body
threads of task i are mapped on the same core, the resource constraint for prohibiting
overlapping must be met in the following:

53

∀i,j1,j2,k,j1 6= j2 map bodyi,j1,k = map bodyi,j,k

→ finish bodyi,j1 ≤ start bodyi,j2

∨ finish bodyi,j2 ≤ start bodyi,j1 (4.14)

Similar to the formula (4.14), the overlap constraints for each thread of different
two tasks are needed to be satisfied. If a core that executes a pre-process thread of task
i1 is the same core where a pre-process thread of task i2 is assigned, they cannot be
overlapped at the same time. Let map prei,k be 0-1 decision variable, which becomes
1 if the pre-process thread of task i is mapped on k − th core, otherwise 0. In order to
avoid such an overlap, the formula is given by:

∀i1,i2,k,i1 6= i2 map prei1,k = map prei1,k

→ finish prei1 ≤ start prei2

∨ finish prei2,j2 ≤ start prei1 (4.15)

If j − th body thread in task i2 and the pre-process thread of task i1 are mapped
on the same core, they are assigned to the core so that their executions are prohibited to
overlap at the same time as well.

∀i1,i2,k,i1 6= i2 map posti1,k = map posti1,k

→ finish posti1 ≤ start posti2

∨ finish posti2,j2 ≤ start posti1 (4.16)

Let map posti,k be 0-1 decision variable that becomes 1 if the post-process thread
of task i is mapped on k − th core. For the post-process thread of task i2, the overlap
constraint is also satisfied.

∀i1,i2,k,i1 6= i2 map posti1,k = map posti1,k

→ finish posti1 ≤ start posti2

∨ finish posti2,j2 ≤ start posti1 (4.17)

Each of the body threads of two different tasks i1 and i2 are not executed on the
same core at the same time. The overlap constraint is in the following:

54

∀i1,i2,j1,j2,k,i1 6= i2 map bodyi1,j1,k = map bodyi2,j2,k

→ finish bodyi1,j1 ≤ start bodyi2,j2

∨ finish bodyi2,j2 ≤ start bodyi1,j1 (4.18)

If a body thread in task i1 and the post-process thread of task i2 are mapped on same
core, the overlap constraint is met as follows:

∀i1,i2,k,i1 6= i2 map bodyi1,j,k = map posti2,k

→ finish bodyi1,j,k ≤ start posti2,k

∨ finish posti2,k ≤ start bodyi1,j,k (4.19)

The following formula is defined from the post-process thread of task i1 to the post-
process thread of task i2.

∀i1,i2,k,i1 6= i2 map posti1,k = map posti2,k

→ finish posti1 ≤ start posti2

∨ finish posti2 ≤ start posti1 (4.20)

So far, we have focused on precedence constraints and resource constraints within a task.
Similarly, the constraints for inter-task also are required to be satisfied. Let interi1,i2
denote 0-1 decision variable that becomes 1 if the post-process thread of task i1 is
mapped on the different core that is assigned task i2.

∀i1,i2 interi1,i2 =

0 if map posti1,k = map prei2,k for any k

1 otherwise
(4.21)

Let Comm interi1,i2 denote communication time from the post-process thread of
task i1 to the pre-process thread of task i2, which is given in advance. If inter-task
communication is incurred between task i1 and i2, the formula for the inter-task com-
munication is given by:

∀i1,i2 comm interi1,i2 = Comm interi1,i2 × interi1,i2 (4.22)

In the formula (4.22), iner i1, i2 is 0-1 decision variable. inter i1, i2 becomes 1 if

55

the post-process thread of task i1 and the pre-process thread of task i2 are executed on
different cores, otherwise it becomes 0.

If there is a precedence dependency from task i1 to i2, the start time of successor task
i2 can be executed after the post-process thread of predecessor task i1. Moreover, the
inter-task communication may incur at the time. Then, a precedence constraint which
considers inter-task communication is expressed by:

∀i1,i2 finish posti1 + comm interi1,i2 ≤ start prei2 (4.23)

If a task is partitioned into threads, inter-task communication may incur among the
cores due to data transfer. In this work, the communication is incurred if any of the
two threads in a task are mapped on different cores respectively. In contrast, if the task
is determined as single-core execution, there is no communication that incurs among
the cores. The following formula shows that the case that the parallelism of a task is
1. Single-core execution indicates pre-processing, body, and post-processing threads do
not exist. Therefore, the pre-procesing thread and the post-processing thread requires
no computational workload, respectively but assume to be mapped on the same core in
order to ignore the communication time.

∀i,j pari,1 = 1

→ map prei,k ∧map bodyi,j,k ∧map posti,k (4.24)

The goal of the scheduling problem is to minimize the overall schedule length. In
other words, we aim to minimize the overall completion time of the tasks. The objective
function is as follows:

Minimize : maxi{finish posti} (4.25)

As mentioned above, our scheduling problem is based on an integer programming.
Although some of the formulas above are not in a linear form, they can be easily lin-
earized by simple transformation techniques. Therefore, this problem is able to be
solved by employing general-purpose ILP solver software. For simplicity, we do not
consider contention between hardware resources such as memory bandwith, bus delay,
and so on. Further, the tasks in this problem are well-ideal in that the execution times of
each task are not jitters. Each thread partitioned from a task assumes to have the same
execution time as another thread of the same task. These extension are out of this work,
but they can be easily realized by adding some constraints.

56

4.3.3 Two-Phase Heuristic Approach

In general, task scheduling is well known as an NP-hard problem. The scheduling tech-
nique presented in the previous section is much more complicated than existing task
scheduling problems due to considering multi-threading and communication. There-
fore, our scheduling problem includes the issue that it can hardly find a good schedule
within a practical time. To overcome the issue, we propose a two-step heuristic tech-
nique for the scheduling technique. The first step represents moldable synchronous
(MS) task scheduling. Unlike the scheduling technique presented in the previous sec-
tion, the MS task scheduling does not allow the body threads to run on multicore in-
dependently but run simultaneously with synchronization. This scheduling technique
generally determines the number of the body threads and the execution order of the
threads. Through the MS task scheduling, we obtain a schedule, where the number of
threads for each task and mapping of the threads on multiple is determined. Afterward,
fork-join (FJ) task scheduling is utilized with given the parallelism for each task ob-
tained by the MS task scheduling. Therefore, the FJ task scheduling simply determines
the execution order of the tasks. Note that both techniques consider inter- and intra-task
communications during scheduling.

Since MS task scheduling is a subset of our technique described in the previous sec-
tion optimal in terms of synchronization to execute the threads, we can easily obtain the
formulation for MS task scheduling by adding the following formula to the formulation
earlier presented in the previous section.

∀i,j1,j2 start bodyi,j1 = start bodyi,j2 (4.26)

MS task scheduling, in the first step, performs to decide the number of body threads
for each task for a certain period, and we can obtain pari,k that is the degree of paral-
lelism for each task. The tasks with the fixed parallelism are represented as rigid. Then,
for a certain period, the threads are scheduled with the fixed degree of parallelism of the
tasks during FJ task scheduling.

4.3.4 Limitations

There are several limitations to this scheduling technique. We assume that each task
consists of several threads, and that these threads are running on a homogeneous mul-
ticore. We then assume that the execution times of the threads are computationally
equivalent, even on different cores. Therefore, the scheduling techniques in this work
are largely inapplicable to heterogeneous multicore platforms. In addition, this work as-
sumes that the communication links between the cores are ideal. This work also assumes
that the communication link between the cores is ideal, does not consider contention be-

57

tween simultaneous communications, and the communication time does not depend on
the physical distance between the two cores. These limitations will be relaxed in the
future.

4.4 Experiments

This section presents the experiments of the proposed techniques. In order to evaluate
this work, we conduct a set of experiments. Thirteen random task-graphs generated by
TGFF [56] are scheduled on 4-core and 8-core target systems, respectively. Besides the
randomly generated DAGs, the performance of our proposed techniques is also eval-
uated for three real-world applications, i.e., the Broadband workflow, the Cybershake
workflow, and the Montage workflow in [80] Each task in the task-graphs can be split
into several threads, where the degree of parallelism for each task is varied from one
to the number of cores on the target system. As a solver, ILOG CP Optimizer 12.8 is
employed to find solutions. Since task scheduling problem is generally very complex,
it is impossible to find exactly optimal solutions in practical time. Thus, we limit the
runtime of the solver up to five hours in wall-clock time, and the best solutions found
at the moment are selected for the evaluation. The experiments are performed on Intel
Core i9 7980XE (2.6GHz) processor with 128 GB memory.

We compare the four scheduling techniques as follows.

• Max: Each task is assigned to all cores. In other words, each task is split into
N body threads for the N-core target system. Then, the tasks are sequentially
scheduled. If master threads are always executed on the same core, the inter-
task communication is not incurred in the schedule. On the other hand, intra-task
communication must be incurred due to the sequential execution of the tasks.

• MS: Moldable task scheduling technique in [36]. Unlike this work, all the body
threads in a task are started at the same time with synchronization. Thus, intra-
task communication must be incurred for each task.

• MFJ: Moldable fork-join task scheduling technique proposed in this work. This
technique schedules not only threads but also the inter and the intra-task commu-
nications. The threads can be executed on multicore independently.

• MS-FJ: A two-step heuristic approach to the MFJ technique. For the first several
hours, the MS technique is performed to decide the number of body threads for
each task. Then, for the remaining the hours, the threads are scheduled with the
determined parallelism.

58

(a) Scheduling results on 4 cores

(b) Scheduling results on 8 cores

Figure 4.5: Performance evaluation with the proposed techniques

In the experiments, we employ four techniques with different parameters to investi-
gate the effectiveness of the MS-FJ technique, called as MS4-FJ1, MS3-FJ2, MS2-FJ3,
and MS4-FJ1, respectively. For example, the MS4-FJ1 technique represents that the MS
technique is performed in four hours, and the MFJ technique performs in an hour with
the parallelism.

4.4.1 Performance Results

The results of scheduling on 4 and 8 cores for performance evaluation are shown in
Figure 4.5 (a) and (b), respectively. The x-axis of the graph represents the task-graph,
and the numbers in the suffixes mean the identification of the task-graph. The numbers
in parentheses represent the number of nodes in the task-graph. The Y-axis represents
the length of the schedule obtained by the seven techniques. The Y-axis shows the length
of the schedule obtained by the seven techniques, normalized by the MAX technique.

Figure 4.5(a) shows the scheduling results on four cores. The MFJ technique yields
shorter schedules than the other techniques. Due to the huge solution space, the MFJ
technique can flexibly schedule the threads in such a way that the inter- and intra-task
communications are hidden in the schedule. On average, the MFJ technique achieves
the short schedules by 22.5%. In cases such as 27 tasks and the Cybershake workflow,
which consists of 20 tasks, the MFJ technique shows a long schedule than the heuristic

59

(a) 10% of inter-task and 5% of intra-task for communication overheads

(b) 50% of inter-task and 25% of intra-task for communication overheads

Figure 4.6: Scheduling results on 4 cores

techniques, on the other hand, the MS1-FJ4 finds the best solution. The overall results
show that more time is spent on determining parallelism than on a schedule. For 20,
24, 27, and 28 tasks, the heuristic techniques show slightly different results. The results
imply that the most effective heuristic method depends on the task graph. Furthermore,
we have conducted experiments on three applications and shown that the proposed tech-
nique is effective compared to the state-of-the-art techniques.

Figure 4.5(b) presents the results on eight cores. As a result, the MFJ technique
cannot find a better schedule than the other techniques within 5 hours due to its huge
solution space. On the other hand, for tasks 7 and 11, the heuristic techniques can ob-
tain a good schedule. This result shows empirically that the scheduling of threads and
communication has a greater influence on the length of the schedule than the degree of
parallelism of the tasks. As the number of tasks in the task-graph increases, the heuris-
tic method yields shorter schedules, but when the number of tasks is 22, the MS2-FJ3
method yields the longest schedule length. This shows that the parallelism of the tasks
has a stronger influence on the results than the scheduling of threads and communica-
tion.

60

(a) 10% of inter-task and 5% of intra-task for communication overheads

(b) 50% of inter-task and 25% of intra-task for communication overheads

Figure 4.7: Scheduling results on 8 cores

In addition, the MS technique finds good solution in the Montage workflow com-
pared to the MFJ technique since the task-graph of the Montage workflow is symmetry
in data dependencies so that the sub-tasks are preferred to run simultaneously. On the
other hand, heuristic approaches such as MS4-FJ1, MS3-FJ2, and MS2-FJ3 find the
same schedule as the MS technique.

4.4.2 Effect of CCRs

To evaluate the impact of the communications on scheduling results, we conduct the
experiments with various. Of the twelve task-graphs, the CCRs for inter-task commu-
nications are 0.1 and 0.5 and those for intra-task communications are 0.05 and 0.25,
respectively.

Figures 4.6 and 4.7 are scheduling results on four cores and eight cores, respectively.
Figure 4.6(a) shows the scheduling results, where the CCR of inter-task is 0.1 and of
intra-task is 0.05. On the other hand, Figure 4.6(b) shows the results, where the CCR of
inter-task is 0.5 and of intra-task communication is 0.25. In Figure 4.6(a), the MFJ tech-

61

nique shortens the schedules by 16.0% on average, compared to the MAX technique.
The MS technique obtains the schedules shortened by 6.3% on average. From the re-
sults on the eight cores, it is observed that an increase in CCR leads to improvement of
the performance in all the cases by the MS technique and the MFJ technique.

Figure 4.7(a), where the CCR of inter-task is 0.1 and the CCR of intra-task is 0.05,
shows that the MFJ technique seems difficult to find the better schedules within five
hours due to the complexity of the scheduling problem. On average, the MFJ technique
and the MS technique find shorter schedules by 8.1% and 7.8%, respectively. In Figure
4.7(b), on the other hand, the MFJ technique achieves shorter schedules by 38.0%, and
the MS technique shortens by 28.7% on average. The results imply that the MS and the
MFJ techniques can relatively shorten the schedule lengths since the MAX technique
must incur intra-task communications for every task due to using all the cores at the
same time. In contrast, the MS and the MFJ techniques can schedule the multi-threaded
tasks in such a way that the effect of both inter- and intra-task communications are
mitigated by hiding the communications in the schedule.

4.5 Conclusions

This work have presented MFJ task scheduling techniques based on IP, considering
intra- and inter-task communications. This scheduling technique integrates both decid-
ing the parallelism for each task during scheduling. Also, we evaluated the performance
of the proposed techniques with several two-step heuristic approaches and studied the
effect of different CCRs on scheduling results. The experimental results demonstrate
that the proposed techniques can find greater schedules than existing state-of-the-art
techniques. Regarding the study for the different CCRs, we show the effectiveness our
scheduling technique can shorten schedule lengths in an increase of CCR. In future, we
plan to develop rapid heuristic algorithms available for large task-sets.

62

Chapter 5

Simultaneous Scheduling and
Core-type Optimization for Moldable
Tasks on Heterogeneous Multicores

This chapter addresses energy-aware scheduling of moldable tasks with core-type opti-
mization in heterogeneous multiple cores1.

5.1 Introduction

Task scheduling on multicore that determines the execution order of tasks on multiple
cores has become more important than ever due to the increasing number of cores in
embedded systems. In general, task scheduling problems are NP-hard [39], and a large
number of researchers have studied task scheduling problems over several decades. Task
scheduling problems classically assume that tasks are scheduled in such a way that the
tasks are executed in parallel on the different core while every task is mapped on one of
the cores [6]. However, modern, realistic applications include data parallelism within
the task. Tasks are essentially decomposed in a fork-join fashion, where the data is split
into multiple small pieces which can be processed independently of each other. From
this point of view, the scheduling of fork-joined tasks, in which each task is divided into
multiple sub-tasks and executed on multiple cores, has been studied. In this study, we
propose a method for scheduling moldable fork-join (MFJ) tasks based on integer linear
programming (ILP) on a heterogeneous architecture consisting of big and little cores. In
this work, we assume that the tasks are moldable. This implies that the number of cores
allocated to a task is flexible. This research aims to meet the deadline constraint while

1This chapter is a refined and reproduced version of the paper to be published in IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences [81] copyrighted by IEICE.

63

minimizing energy consumption. We also propose a method to simultaneously perform
task scheduling and multicore architecture customization. In this method, the type of
core (large or small) is determined simultaneously with the task scheduling of the MFJ.
Note that this work is an extended version of [82], and we have extended the work as
follows.

• The state-of-the-art work in [82] compares the energy consumption from the per-
spective of dynamic energy consumed on the target systems by the cores used
during executing tasks. In this work, we consider not only dynamic energy but
also static energy consumption which is constantly consumed until all tasks end.

• We propose a warm-start approach to the scheduling problem since the previous
work in [82] addresses that the proposed technique cannot find worse solutions
than the traditional technique due to its huge solution space.

The rest of this chapter is organized as follows. Section 5.2 describes the related
work on task scheduling. Section 5.3 proposes a MFJ task scheduling technique. Sec-
tion 5.4 proposes a codesign technique of simultaneous MFJ task scheduling and core-
type optimization. In addition, we present a warm start approach to the codesign tech-
nique. Section 5.5 describes experiments and the comparison, and Section 5.6 concludes
this chapter.

5.2 Related Work

In [6], classic techniques on task scheduling for multicore architectures are extensively
surveyed. Multiple tasks which are independent of each other are executed in paral-
lel on different cores. However, it is assumed that each task is not parallelized and
is executed on a single core. In [35], Liu et al. proposed list-based scheduling al-
gorithms for data-parallel tasks. Their work assumes that a set of dependent tasks is
given formed as a DAG-based task-graph, where each task is assigned a fixed number
of cores. Then, they attempt to minimize the overall schedule length (a.k.a. makespan).
Yang and Ha’s work in [38] also focuses on the scheduling of data-parallel tasks. Un-
like the work in [35], their work in [38] assumes that tasks are moldable, where the
number of cores for a task is unfixed but is determined during scheduling. The objective
of this work asks to find a solution that minimizes hardware cost by meeting deadline
constraints. In [43], the authors take advantage of data-parallelism and proposed a tech-
nique for pipelined task scheduling and mapping on heterogeneous MPSoCs. Chen and
Chu in [44] designed a polynomial-time approximation algorithm for malleable tasks to
shorten schedule lengths The authors of [36] studied scheduling of moldable tasks based

64

on integer linear programming. Furthermore, they proposed a moldable fork-join task
scheduling technique [37]. They argued that the problems can hardly be solved with
an ILP-solver in practical time. To deal with the issue, Nishikawa et al. proposed the
same scheduling problems but was based on constraint programming in [36] and [37]
so those better solutions are explicitly found in a practical time [32]. In [45], fork-join
task scheduling for real-time systems has been studied. The work aims at the evaluation
of the tractable and intractable fork-join real-time task model. Lakshmanan et al. in
[46] developed an algorithm for moldable fork-join tasks in OpenMP. Saifullah et al. in
[47] proposed a real-time task scheduling model, which assumes that a task holds the
various numbers of threads. Another direction of studies on multicore task scheduling
is for heterogeneous multicores [15, 13, 83], and [10]. In [15], Yan et al. studied a task
scheduling problem on heterogeneous multiple processors for real-time applications,
which tries to minimize whole energy consumption with two heuristic algorithms under
deadline constraints.

Bridi et al. [13] developed a scheduler based on constraint programming for hetero-
geneous high-performance computing machines. In this work, a commercial scheduler
is modified with a greedy approach to maximize performance and quality of service.
We improve a commercially available scheduler with a greedy approach to maximize
performance and quality of service. Task scheduling on heterogeneous multicores is
also studied in [14]. Studying task scheduling in heterogeneous multicores, Barbosa
et al. [83] propose a list-based static scheduling algorithm for moldable tasks. A
list-based static scheduling algorithm is proposed to minimize the schedule length of
dependent tasks. It aims at minimizing the schedule length of moldable tasks on het-
erogeneous clusters, where the dependencies between tasks are represented by DAGs.
In addition, modern processors are Modern processors incorporate Dynamic Voltage
Frequency Scaling (DVFS) technology, which dynamically adjusts supply voltage and
frequency. There is a large body of literature on multi-task scheduling using DVFS. For
example, Qin et al. [84] developed an ILP-based energy-aware task allocation technique
for real-time tasks, which employs DVFS scheduling within a task. On the other hand,
in this work, we assume a heterogeneous multi-core architecture without DVFS func-
tionality. Different cores may have different frequencies and voltages, but each core
cannot change its frequency and voltage at runtime. In this work, we study moldable
fork-join task scheduling for energy minimization under deadline constraints using het-
erogeneous multicore architectures. To the best of our knowledge, this is the first work
on this topic. It also differs from the previous literature in that it proposes both MFJ
task scheduling and heterogeneous multicore customization at the same time.

65

5.3 Scheduling of Moldable Fork-Join Tasks on Hetero-
geneous Multicores

This section presents a problem description and an ILP-based formulation for schedul-
ing moldable fork-join tasks on heterogeneous multicores. Unlike [82], this work clas-
sifies the energy consumption into dynamic and static energies. Dynamic energy is
assumed to be consumed by the cores to perform tasks in the target system. Static en-
ergy, on the other hand, is always consumed until all tasks have been completed. The
power consumption of the static energy depends on the type of cores in the architecture.
Therefore, static energy is assumed to be generated when the core is idle unless all tasks
are finished.

5.3.1 Problem Description

Figure 5.1 shows an example of scheduling of moldable fork-join (MFJ) tasks on het-
erogeneous multicores. In Figure 5.1(a), a set of dependent tasks is represented as a
directed acyclic graph, so called a task-graph. Each task is associated with the execu-
tion time which is a function of the number and the type of cores to execute the task.
The tasks labelled “S” and “E” are empty nodes which represent entry and exist
points, respectively.

Figure 5.1(b) shows a table of the execution time of Task 1. If Task 1 is assigned
to a single little core, its execution time is 32-time units. The execution time of Task
1 on a single big core is 21. It is assumed that Task 1 is parallelized and split into
several sub-tasks. If Task 1 is split into two sub-tasks, the execution time of the sub-
task on the little core is 18 and the execution time of the sub-task on the big score is
12. These two sub-tasks can be executed on two little cores, two big cores, or one big
core and one little core. This work assumes that, for each task, a table of execution
time as shown in Figure 5.1(b) is given. Task 1 consumes 32 units of dynamic energy
when the task is executed on a little core without parallelization as shown in Figure
5.1(c). If task 1 is partitioned into two sub-tasks and executed on a little core and a big
core respectively, the task consumes total dynamic energy of 59 (= 18 + 41). Here, we
assume that the execution time and the energy consumption, which represent in Figure
5.1(b) and 5.1(c), are profiled in advance throughout running each task repeatedly on
multicores. To simply reduce energy consumption without concern for performance,
from a dynamic energy point of view Task 1 should not be parallelized but run on a
single small core.

However, from a static energy point of view, dividing up the tasks will, on the con-
trary, reduce the overall energy consumption since the cores consume energy even when

66

(a) Task graph (b) Execution time of Task 1

(c) Dynamic energy consumption of Task
1

(d) A scheduling result

Figure 5.1: An example of scheduling of moldable fork-join tasks

they are idle until the task is finished. On the other hand, if performance is prioritized,
the task should be parallelized and run on as many cores as possible. Between the
minimum energy solution and the maximum performance solution, many alternatives
take dynamic and static energy into account. Therefore, when it comes to scheduling,
the trade-off between performance and energy consumption needs to be considered. In
this work, we assume that the deadline constraint is given as fixed. In other words, the
makespan must be shorter than or equal to the given deadline. Given a set of moldable
tasks and a deadline constraint, we determine the number of sub-tasks for each task and
schedule the sub-tasks on a heterogeneous multicore in such a way that the total energy
consumption is minimized while meeting the deadline constraint. We also assume that
the tasks are non-preemptive and that task migration is not possible. Therefore, each
task dispatched to one core will not be interrupted during execution, nor will it be mi-
grated to another core. As a first step, our work does not take into account dynamic
features of system behavior such as cache misses, page faults, interconnection conges-
tion, and memory contention. In the future, these dynamic features should be taken
into account as they affect the performance and energy consumption of the system. Al-
though this work is based on unrealistic simplifications, it is an important step towards
the practical scheduling of moldable tasks.

67

An example of the scheduling result for the task-graph in Figure 5.1(a) is shown in
Figure 5.1(d). In the figure, it is assumed that the hardware consists of two little cores
and two big cores. Task 2 is parallelized on all four cores, while Task 3 is executed on a
single big core. This work assumes that a deadline constraint is given to the entire task
graph. However, it should be noted that this work can be easily extended in such a way
that individual tasks in a task graph have their deadline constraints.

5.3.2 ILP Formulation

For an architectural platform containing a given set of tasks and a number of cores per
type and type of core, the energy-aware scheduling problem for moldable fork-join tasks
can be addressed by determining the number of cores for each task and allocating sub-
tasks to multiple heterogeneous cores. In this subsection, we begin our ILP formulation
in order to explore the problem of energy-aware scheduling of moldable fork-join tasks
on heterogeneous multicore. Let pari,k denote a binary decision variable to determine
the number of cores to assign task i. If pari,k becomes 1, task i is assigned to k cores.

∀i,
∑
k

pari,k = 1 (5.1)

Each sub-task is assigned to a core, and this work assumes that neither task nor
thread can migrate to a different core. Thus, the sub-task can uniquely decide to be
allocated on which type of the cores. Let typei,j,l denote type l of cores for j − th sub-
task of task i. Note that we assume the cores consist of two types (i.e., big and little),
but the following formula can be employed to use no matter how many types of cores.

∀i,j
∑
l

typei,j,l = 1 (5.2)

If the number of cores and the type of cores to assign a task are decided, the execu-
tion time for each sub-task can be introduced. It should be noted that the execution time
for the tasks is well-profiled beforehand and is not assumed to be jitter. As addressed in
the previous section, we are given the execution time depends on the number of cores
and the type of cores. The execution time of j − th sub-task in task i on core of type
l is profiled in advance and given as Timei,k,l. timei,j is a decision variable for the
execution time of j − th sub-task in task i.

∀i,j timei,j =
∑
k

∑
l

timei,k,l × pari,k × typei,j,l (5.3)

However, the formula includes multiplications by two decision variables. Letmodei,k,j,l

68

denote the execution mode for each sub-task. modei,k,j,l becomes 1 if pari,k and typei,j,l
respectively become 1. The expression is shown as follows:

∀i,j modei,k,j,l =

0 if pari,k + typei,j,l > 1

1 otherwise
(5.4)

Still, the above formula is not linearized. The formula can be easily linearized by
replacing with the following inequalities.

∀i,k,j,l U ·modei,k,j,l − (pari,k + typei,j,l − 1) ≥ 0 (5.5)

∀i,k,j,l U(1−modei,k,j,l) + (pari,k + typei,j,l − 1) ≥ 0 (5.6)

Note that U is a large constant number. With the determined execution mode, we
can calculate the execution time for each sub-task. Recall that jitters of execution time
of the tasks is out of scope in this work. We also assume that the execution times of the
sub-tasks for a task are the same. Recall that we are given the execution time dependent
on the number of cores and the type of cores. Now, timei,j , which is a decision variable
for the execution time of j − th sub-task in task i, can be expressed instead of the
formula (5.3):

∀i,j timei,j =
∑
k

∑
l

Timei,k,l ×modei,k,j,l (5.7)

Let finishi,j denote the finish time of j − th sub-task of task i. Similarly, starti,j
is the start time of j − th sub-task of task i. The finish time of sub-task is represented
as follows:

∀i,j finishi,j = starti,j + timei,j (5.8)

The sub-tasks are assumed to be run on multicore, independently. Thus, the finish
time of task i is defined as the time when all the sub-tasks of task i are finished.

∀i,j finish maxi ≥ finishi,j (5.9)

Similarly, start mini represents the start time of task i. The start time of task i is
defined as the time when a first sub-task of task i is started on a core. Let starti,j denote
the start time of j − th sub-task in task i, then they are given by:

∀i,j start mini ≤ starti,j (5.10)

69

Next, let mapi,j,k,l denote a binary decision variable for mapping of j− th thread of
task i on k − th cores of type l. mapi,j,k,l becomes 1 if j − th sub-task of task i is run
on k − th core of l type:

∀i,j,l
∑
k

mapi,j,k,l − typei,j,l = 0 (5.11)

To avoid overlapping, multiple sub-tasks cannot be assigned to the same core at the
same time. They cannot be assigned to the same core at the same time. If the j1 − th
sub-task of task i1 is mapped to j2− th sub-task of task i2, or two different sub-tasks of
a task are mapped to run, they will be mapped to different cores. If j1− th sub-task of
task i1 and j2− th sub-task of task i2, or two different sub-tasks of a task, are mapped
to be executed, they will be mapped to different cores. If two sub-tasks of a task are
mapped to run, they are mapped to different cores because sub-tasks are not allowed to
overlap on the same core at the same time. Otherwise, after a sub-task has finished on a
core, it will be assigned to that core. It will be assigned to the core. This means that it
must be satisfied that the j1− th sub-task of task i1 and j2− th sub-task of task i2 exist
simultaneously. It must be satisfied that j1− th sub-task of task i1 and j2− th sub-task
of task i2 are not mapped to the same core at the same time, or that they are executed
after some sub-task has finished, which is as shown in the following logical expression:

∀i1,i2,j1,j2,k,l, (i1 6= i2 ∨ j1 6= j2),

¬(mapi1,j1,k,l ∨mapi2,j2,k,l)
∨finishi1,j1 ≤ starti2,j2

∨finishi2,j2 ≤ starti1,j1 (5.12)

Formula (5.12) is not expressed as linear algebra. For the linearization, this expres-
sion can be transformed by De Morgan’s low as follows:

∀i1,i2,j1,j2,k,l, (i1 6= i2 ∨ j1 6= j2),

¬mapi1,j1,k,l
∨¬mapi2,j2,k,l

∨finishi1,j1 ≤ starti2,j2

∨finishi2,j2 ≤ starti1,j1 (5.13)

The formula (5.13) is still expressed as a logical constraint, and we can linearize it
with the four formulas (5.14)-(5.16). Here, x,y are 0-1 auxiliary decision variables to

70

describe the following disjunctive constraint and U is a constant large number as well
as in the formula (5.15):

∀i1,i2,j1,j2,(i1 6= i2 ∨ j1 6= j2),

f inishi1,j1 ≤ starti2,j2 + U(1− xi1,i2,j1,j2) (5.14)

∀i1,i2,j1,j2,(i1 6= i2 ∨ j1 6= j2),

f inishi2,j2 ≤ starti1,j1 + U(1− yi1,i2,j1,j2) (5.15)

∀i1,i2,j1,j2,(i1 6= i2 ∨ j1 6= j2),

(1−mapi1,j1,k,l) + (1−mapi2,j2,k,l) + xi1,i2,j1,j2 + yi1,i2,j1,j2 > 0 (5.16)

In this problem, we assume that each task has precedence constraint. If task i2 must
be started after task i1 ends, which is found in a task graph, Predi1,i2 is set to 1. The
start time and the finish time of a task has been already defined at the formulas (5.8) and
(5.9).

∀i,j Predi1,i2 =

1 if finish maxi1 ≤ start mini2

0 otherwise
(5.17)

Similar to the formula (5.3), the formula (5.17) is also replaced to be linearized as
follows:

∀i1,i2, U · Predi1,i2 − (start mini2 − finish maxi1) ≥ 0 (5.18)

U(1− Predi1,i2 + (start mini2 − finish maxi1) ≥ 0 (5.19)

Another important constraint is deadlines. All tasks must be completed by a dead-
line. In this work we have constrained the deadline to the entire task since we need to
meet the overall completion time of the scheduling. The deadline constraint is given as
follows:

Deadline ≥ maxi{finish maxi} (5.20)

71

In this scheduling problem, the dynamic energy is consumed during the time dedi-
cated to the execution of every sub-task for each type of cores. Note that αl is dynamic
power consumption on l type of cores. Then, the energy consumed on a l type core is
expressed as follows:

dynamic energy =
∑
i

∑
k

∑
j

∑
l

αl × Timei,k,l ×modei,k,j,l (5.21)

On the other hand, the static energy consumption is attributed to the makespan. The
makespan is obtained by the following formula (5.22). Each type of cores is assumed to
have own static power consumption βl, therefore, the total static energy consumption is
calculated for each of the cores k for each type l in the formula (5.23).

∀i makespan ≥ finish maxi (5.22)

static energy =
∑
k

∑
l

βl ×makespan (5.23)

Therefore, this work aims to minimize the total energy consumption with consider-
ation both dynamic and the static energy consumption.

5.4 Simultaneous Scheduling and Core-type Optimiza-
tion

The scheduling problem discussed in the previous section assumes that the architec-
ture is fixed before scheduling. However, in the design of embedded systems, there are
many cases where the hardware architecture has to be customized not only for high per-
formance but also for energy efficiency for application programs to run more effectively.
Therefore, in this section, we introduce a hardware/software code design methodology
for heterogeneous multi-core systems. In this work, the type of cores deployed in the
architecture and the scheduling of the moldable tasks are simultaneously optimized to
minimize the total energy consumption under deadline constraints. In this study, the
total number of cores in the system of interest is fixed in advance, but the type of cores
can be changed flexibly. Given a set of tasks, a total number of cores, and a deadline,
the framework simultaneously optimizes the type of cores and schedules the moldable
tasks such that the total energy consumption is minimized.

72

Figure 5.2: Cores usage during the execution of task a, b, and c

Minimize : dynamic energy + static energy (5.24)

5.4.1 An Integrated Framework

Simultaneous core-type optimization and scheduling can be developed by slightly ex-
tending the formulation presented in Section 3. It should recall that the number of cores
for each type such as little cores and big cores are limited. Let denote t, which is the
time during scheduling 0 ≤ t ≤ Deadline, we define a set of tasks S(t) that the tasks
orsub − tasks run on the cores at time t. Figure 5.2 shows the concept of S(t). This
example is given two cores for little cores and big cores, respectively.

First, task a starts running on a little core. At the time, task a is included in S(t)
i.e., a ∈ S(t). Then, task b starts on a little core and a big core during the execution of
task a i.e., {a, b} ∈ S(t). At the time, three cores are occupied in total. When task a
is finished, the task is removed from S(t). When task c is arrived, four cores are used
and S(t) includes the tasks {b, c}, which are during running. The parenthesis upside of
Figure 5.2 shows the number of cores for each type during running. At the time starting
task a, one little core and no big core are employed for the execution. In the example,
the number of each type of cores to execute tasks cannot be exceed the number of cores
in the target system. Given the total number of l-type of cores in the target system as
Ncoresl, the resource constraint is expressed as follows:

∑
i∈S(t)

∑
j

∑
k

mapi,j,k,l ≤ Ncoresl (5.25)

The formula (5.25) can handle both big cores and little cores. In addition, it can
easily extend to more types of cores than three by increasing the core types l. Now, the
total number of cores for the target system is given as Ncore. The sum of the number

73

of cores for each type is the same as the total number of cores in the target system. The
number of cores for each type is constrained by the formula as follows:

∑
l

Ncoresl = Ncore (5.26)

By the equations presented in Section 5.3, we formulate the problem of scheduling
and core-type optimization. In this paper, we assume a heterogeneous multi-core archi-
tecture with two types of cores: big cores and little cores. However, this formulation
can be comprehensively extended to architectures with more than two types of cores.

5.4.2 Two-Phase Approach based on Warm Start Technique

This section demonstrates a warm start approach to the scheduling problem presented
in the previous section. In general, task scheduling problems are classified as NP-hard
problems. Our presented works in Section 5.3 and 5.4 are more complex than general
scheduling problems since both the number of cores assigned to each task and the core-
type on the system are decided throughout scheduling. An optimal schedule can hardly
be found in practical time, and even a feasible schedule is rather difficult to be found. To
address this problem, we propose a two-step warm-started scheduling. This approach
takes advantage of the fact that our proposed technique can determine the type of cores
to be either a big core or a little core. Initially, the tasks are scheduled on only big cores
[32] and obtain a solution. Here, the solution consists of the degree of parallelism of
each task and the start time of each sub-task. The solution in the initial scheduling is
utilized as the initial solution for the second step. In the second step, our technique
that is presented in Section 5.3 starts to find a good schedule. Note that a solution from
the first step scheduling must satisfy the constraints since our technique presented in
Section 5.3 can flexibly determine the type of each core to be either a big core or a little
core. Therefore, this technique can be applied only to the presented technique in Section
5.3.

5.5 Experiments

5.5.1 Setup

To evaluate this work, we have conducted a set of experiments. Twelve random task-
graphs generated by TGFF [56] are used as benchmark task-graphs.

Each task graph consists of between 6 and 30 tasks. In the experiment, the num-
ber of tasks was limited to 30, since problems consisting of a larger number of tasks

74

than 30 cannot be solved in a practical time. The execution time of each task is deter-
mined randomly. For parallelization, we assume an overhead of 10% by dividing the
tasks into sub-tasks. We also set the number of cores of the target system to 4 and 8,
and the maximum parallelism of each task was set within the range of the number of
cores i.e., fourandeight, respectively. There is no scheduling algorithm that solves
the same problem as in this study. Therefore, we compare the following five methods
although they have different hardware architectures.

• All-Big: MFJ task scheduling on big-only homogeneous multicores. This schedul-
ing is solved with constraint programming [32], for deadline-constrained energy
minimization.

• All-Little: MFJ task scheduling on little-only homogeneous multicores. This
scheduling is solved in the same way as All-Big above.

• Big-and-Little: MFJ task scheduling on heterogeneous multicores presented in
Section 3 of this chapter. Half cores are little, and another half are big in [82].

• Big-and-Little-Customized: Simultaneous scheduling and core-type customiza-
tion technique presented in [82].

• Warm-Start-BLC: A warm start approach, which is combined with the All-Big
technique and the Big-and-Little-Customized technique. First, the All-Big tech-
nique is employed to obtain an initial schedule in the first ten hours in CPU time,
and the Big-and-Little-Customized technique starts in the remaining forty hours.

All five scheduling methods are run using ILOG CP Optimizer 12.9 on a Ryzen
Threadripper 3970X (3.7GHz, 32 cores, 64 threads in total) with 256GB of memory.
In general, ILOG CP Optimizer is able to find the exact optimal solution. However,
when the number of tasks increases, it is not possible to find the exact optimal solution
in a practical time. Therefore, in this experiment, we decided to limit the total CPU
execution time of ILOG CP Optimizer to 50 hours and adopt the optimal solution found
at that time. In this experiment, we vary the time limit constraint with the following
equation.

Deadline = XB + (XL−XB)×D (5.27)

In this formula, XL and XB denote the shortest schedule lengths on little-only
multicores and big-only multicores, respectively. XL and XB are obtained with ILOG
CP Optimizer (up to 10 hours in CPU time). D is a parameter indicating the tightness
of deadline. The smaller D is, the tighter the deadline constraint is. In our experiments,

75

D is set to be 100%, 87.5% 75% and 50%. These parameter settings are based on
simplified assumptions as follows; the dynamic power accounts for 70% of the total
power on the big cores; the clock frequency i.e., performance of the big cores are
1.5 times higher than that of the little cores; the supply voltage of the big cores are 1.5
times higher than that of the little cores; the dynamic power is proportional to the cube of
voltage; the static power is proportional to voltage. Since values of the parameters vary
depending on various factors such as the processor architectures, process technology,
temperature and so on, more extensive experiments with various parameter values are
one of our future works.

αbig : βbig = 7 : 3 (5.28)

αbig : αlittle = 3.375 : 1 (5.29)

βbig : βlittle = 1.5 : 1 (5.30)

5.5.2 Results

Experimental results are shown in Figures 5.3, 5.4, 5.5, and 5.6. The X-axis of the graph
represents the task graph and each label indicates the number of nodes in the task graph.
The Y-axis represents the total energy consumption of the scheduling results obtained
by the five methods. Each graph also contains the dynamic energy, shown in darker
colours on the top, and the static energy, shown in lighter colours on the bottom. The
overall energy consumption has been normalized using the All-Big technique. In some
cases, no solution can be found, with the exception of the Warm-Start-BLC technology.
There are two possible reasons for this. One is that there is no feasible solution to the
deadline constraint. Another reason may lay that the CP solver cannot find any feasible
solution within the limited time even if feasible solutions do exist.

Figure 5.3 (a) and (b) show the results under the deadline constraint D=100% on
four cores and eight cores, respectively. Due to the looseness of the dead-line constraint,
the All-Little technique achieves the lowest energy in most cases.

The graphs show that the proposed method achieves the same or smaller values of
static and dynamic energies than the Big-and-Little technique. Theoretically, the Big-
and-Little-Customized technique should be the best because the solution space of the
Big-and-Little method covers the solution space of the other technique. However, due
to the limited CPU runtime of the ILOG CP Optimizer, the Big-and-Little-Customized
technique may not provide as good a solution as the All-Little technique. For the 14
tasks with 4 and 8 cores, the Warm-Start-BLC technique did not find a better solution

76

than the Big-and-Little-Customized technique, while the Big-and-Little-Customized
technique did not find any solution. However, the Big-and-Little-Customized technique
could not find a single solution, whereas the Warm Start-BLC technique was able to
find a feasible solution in all cases. The scheduling results from the Warm-Start tech-
nique depend on how good the initial solution is, and therefore the results depend on
the task graph. Since the deadline constraint is loose, the All-Little technique achieves
the lowest energy in many cases. The graphs show that our proposed technique obtains
the same or smaller values for both static and dynamic energies compared to the Big-
and-Little technique. Theoretically, the Big-and-Little-Customized technique should be
the best because the solution space of the Big-and-Little technique covers the solution
space of the other techniques. However, due to the limited CPU runtime of the ILOG
CP Optimizer, the Big-and-Little-Customized technique may not find as good a solution
as the All-Little techniques. For the 14 tasks with 4 and 8 cores, the Warm-Start-BLC
technique did not find better solutions than the Big-and-Little-Customized technique,
but the Big-and-Little-Customized technique does not find any solutions, whereas the
Warm Start-BLC technique was able to find a feasible solution in all cases. The schedul-
ing results from the Warm- Start technique depend on how good the initial solution is,
and therefore the results depend on the task graph.

(a) Scheduling results on 4 cores

(b) Scheduling results on 4 cores

Figure 5.3: Dynamic and static energy consumption under deadline constraintD=100%

77

(a) Scheduling results on 4 cores

(b) Scheduling results on 4 cores

Figure 5.4: Dynamic and static energy consumption under deadline constraintD=87.5%

When the deadline constraintD is 87.5% as shown in Figure 5.4, the All-Little tech-
nique cannot find any solution since the technique cannot meet the deadline anymore.
On four cores, the Big-and-Little technique consumes lower energy than the All-Big
technique by up to 15.2%. Compared to the All-Big technique, the Warm-Start-BLC
technique finds a schedule with lower energy by up to 19.5%. From the perspective
of static energy, the Warm-Start-BLC finds longer schedules than the Big-and-Little-
Customized so that the static energy becomes larger. Most of the results show that the
total energy consumption largely depends on dynamic energy consumption. However, in
terms of the impact of static energy, the static energy of the Big-and-Little-Customized
technique for 12 tasks in Figure 5.4(b) surpass that of the Warm-Start-BLC technique,
resulting in that the Warm-Start-BLC technique obtaining the better schedule.

When the deadline constraint is 75% and 50% as shown in Figures 5.5 and 5.6, the
Big-and-Little technique fails to find any solution in most cases since deadlines would
be missed. Still, the Big-and-Little-Customized technique finds good solutions in many
cases, however, there are cases with no solution due to the huge solution space. On the
other hand, the Warm-Start-BLC technique is successfully obtaining good solutions for
all the cases, and the total energy required in the target system is almost the same as that
by the Big-and-Little Customized. As shown in Figures 5.3, 5.4, 5.5, and 5.6, the static
energy consumption accounts for a portion by 35.3% of the total energy consumption

78

(a) Scheduling results on 4 cores

(b) Scheduling results on 4 cores

Figure 5.5: Dynamic and static energy consumption under deadline constraint D=75%

on average, and the static energy has less impact than the dynamic energy. In the exper-
iments, we do not consider overheads such as memory accesses and communications.
The scheduled length of the real-world applications should be longer than that of the
experiments, and the static energy is expected to be increased.

5.6 Conclusions

This work proposes a scheduling technique for energy-aware typable fork-join tasks on
heterogeneous multicores. We also propose a technique for multicore customization
and task scheduling simultaneously. Furthermore, we propose a warm-start technique
that simultaneously performs scheduling and core-type optimization to efficiently find a
schedule that can be executed in a practical time. Through experiments, we have demon-
strated the effectiveness of our proposed techniques. In the future, we plan to develop a
fast heuristic algorithm for the scheduling problem and consider more assumptions such
as jitter in the execution time of each task, different overheads due to parallelization of
tasks, and overheads due to communication. In addition, we plan to try the DVFS ap-
proach to evaluate whether energy consumption can be further reduced and to develop
heuristic algorithms to solve the scheduling problem in a practical architecture-aware

79

(a) Scheduling results on 4 cores

(b) Scheduling results on 4 cores

Figure 5.6: Dynamic and static energy consumption under deadline constraint D=50%

manner.

80

Chapter 6

Function-Level Module Sharing in
High-Level Synthesis

This chapter addresses module sharing techniques in high-level synthesis1.

6.1 Introduction

High-level synthesis (HLS) is one of the techniques which automatically translates soft-
ware programs that are typically described in high-level codes such as C/C++ into reg-
ister transfer level (RTL) specifications in hardware description languages [86, 87]. Re-
cently, HLS has been becoming increasingly appealing due to its potential to improve
productivity not only for hardware designers but software designers. In HLS, it is often
necessary to satisfy various constraints such as resource constraints or time constraints
due to area limitation or responsivity of the circuit by minimizing the area or delay of
the generated circuit, respectively. However, the quality of HLS-generated circuits that
meet such constraints is still lower than human-designed circuits in many cases. Our
preliminary experiments with a state-of-the-art HLS tool and standard benchmark pro-
grams showed that the HLS tool can share functional units (such as adders and multipli-
ers). Vivado HLS, which can effectively share function units, is one of the most popular
HLS tools around the world. Vivado HLS is capable of exploiting the sharing of coarse-
grained modules, however, can hardly take advantage of sharing coarse-grained modules
at the function level in practical use. In such conventional HLS tools, multiple instances
of the same module synthesized from a function are generated even if the function is
exclusively called from different functions. To avoid the issue, a common technique
that realizes function-level module sharing is function inlining. Function inlining may

1This chapter is a refined and reproduced version of the paper originally published in ETRI Journal
[85] copyrighted by ETRI.

81

enable improvement latency by exploiting parallelism at the instruction level and opti-
mizing code transformation by code elimination. Moreover, unlike software, hardware
resources are capable of being shared at the function level by removing boundaries
among functions [88, 89].

However, in general, excessive function inlining often leads to degradation of per-
formance, as it creates a large number of huge modules of control state and significantly
increases the number of operations in a function. The more complex the controller, the
longer the wiring, and the larger the load capacity. Therefore, function inlining can
degrade the overall performance and also violate timing constraints. In this paper, we
present two HLS techniques for module sharing at the function level. These techniques
create a single module instance from a function, even if the function is invoked from a
different function. The remainder of this paper is organized as follows. In Section 2 we
describe related work. In Section 3, we introduce the concept of module sharing at the
function level and explain how to share a module without creating multiple instances of
the same module. Section 4 presents the experimental results, and Section 5 concludes
the paper.

6.2 Related Work

Recent previous works in the domain of HLS have been investigated. The work in
[90] addresses pipeline synthesis techniques for field-programmable gate array (FPGA)
and introduces two algorithms to automatically explore the large design spaces and par-
allelizes C-based description to maximize throughput or minimize area. Zhao et al.
introduced mixed-integer linear programming (MILP) formulation for mapping-aware
pipeline module scheduling [91]. Alle et al. presented source-to-source transformation
using dynamic scheduling strategies, yet this work needs additional logic for a com-
plex decision that incurs the overhead of resources [92]. Hara et al. studied function
clustering and proposed integer linear programming (ILP) formulation to optimize for
minimizing clustering size underperformance and area constraints, and they extended
the work to introduce clustering techniques for similar functions merge [93, 94].

In order to reduce the area in a circuit at the register transfer level, a well-known
methodology especially in the binding for HLS processes is called resource sharing.
Recently, there have been several types of research on resource sharing. In resource
sharing, a single functional unit (FU) is shared among different operations by adding
multiplexers (MUXes) into the shared functional unit [95]. The finite state machine
(FSM) controls the MUXes for steering the data to the adder that depends on the state.
Cardoso in [96] presented an algorithm including temporal partitioning, resource shar-
ing, scheduling, and allocation and binding to efficiently use resources of FUs. Cong

82

and Jiang developed a framework for pattern-based behavior synthesis [97]. They pro-
posed graph-based techniques to efficiently extract patterns of operators in the HLS of
FPGA circuits, and share blocks of functional units according to the patterns in binding.
However, the approach works only at the functional unit level within a module. Intra-
module sharing of functional units cannot be allowed. To overcome the limitations,
the work in [98] employed function proxies that enable sharing blocks of common op-
erations across the boundaries of modules, but the approach needs the support for the
synthesis of function pointer. The authors refer that their proposed techniques are nec-
essary to be combined with other optimization strategies such as inlining. The authors
in [99] presented a module sharing technique but it can hardly be used if functions are
invoked in conditional statements.

6.3 Function-Level Module Sharing Techniques

6.3.1 Motivation

In this section, we describe our motivation and proposed function-level module sharing
techniques. Let us consider a C program whose function call graph is shown in Figure
6.1(a). Function AES main calls two functions encrypt and decrypt, each of which
calls function Key. From this program, a state-of-the-art HLS tool such as Xilinx Vivado
HLS generates a circuit as shown in Figure 6.1(b).

The top module AES main contains an encrypt module and a decrypting module,
each of which contains a Key module. Thus, the generated circuit contains in total two
instances of the Key module. Due to the sequential nature of the C program, however,
the two Key modules are not activated simultaneously. In this case, generating multi-
ple instances of the identification module is a waste of silicon area. Our function-level
module sharing techniques proposed in this paper create a single instance of a module
from a function even if the function is called from different functions. One of the ways
to module sharing is function inlining. By function inlining, the functions between the
AES main and the Key function; encrypt and decrypt are inlined to the AES main

function, respectively. The AES main function becomes the only caller of Key so that
a single instance of the Key module is created. In this way, function inlining enables
function-level module sharing. However, excessive function inlining often leads to per-
formance degradation. Function inlining may create huge modules with a large number
of control states, resulting in timing violation [94].

In this paper, two presented techniques focus on module sharing at the function
level. Our techniques both are based on source-to-source transformation at the C-code
level, and it is not necessary to modify an RTL circuit.

83

(a) Function call graph

(b) HLS-generated circuit

(c) Circuit with function inlining; encrypt and decrypt are inlined into AES main

(d) Circuit with module sharing

Figure 6.1: An example of the concept for module sharing

6.3.2 Module Sharing Technique by Selective Function Inlining

To enable sharing of functions in C-code, we first propose a module sharing technique
by function inlining. In general, function inlining itself may lead the performance degra-
dation due to the aforementioned characteristics. In this paper, we introduce a technique
for module sharing by inlining functions except a shared function. Figure 6.2(a) repre-
sents a call graph which has a same call hierarchy. func0 calls both func1 and func2,
and each of func1 and func2 calls the shared func, respectively.

Figure 6.2(b) shows the FSM of a circuit without module sharing. In the fig-
ure, the func0 function calls two functions represented as func1 and func2 which call
shared func, respectively. Note that the circuit is generated by the state-of-the-art HLS
tool in such a way that two instances of the shared func module are created. In order

84

(a) Call graph with a same call hierarchy

(b) FSM without module sharing

(c) FSM with module sharing by function inlining

Figure 6.2: State Transition Diagram

to reduce the area of the circuit, the shared func function is necessary to be shared
since the two shared func are called in a mutually exclusive way. In our proposal, a
C-code for this circuit is modified so that an HLS tool generates a circuit whose FSM is
as shown in Figure 6.2(c). In this figure, each of func1 and func2 is inlined into func0,
and the func0 calls the shared func. The caller of the shared func is only the func0,
and the HLS tool generates an instance of the shared func module.

85

6.3.3 Module Sharing Technique by Multiple Function Calls

Another way for function-level module sharing is to move the shared function into the
upper level. This transformation is performed at the C source level. Figure 6.3(a) shows
an example of C code. The func0 function calls two functions func1 and func2, each of
which calls shared func. As aforementioned, the state-of-the-art HLS tool generates
a circuit whose FSM is similar to the figure as shown in Figure 6.2(a). Our technique
transforms the code in Figure 6.3(a) into the one in Figure 6.3(b). The func1 is parti-
tioned into two parts at the point of calling the shared func, and an if-then-else state-
ment is inserted. The first part of the func1 is moved to the then block, and the second
part is moved to the else block.

Figure 6.3: An example of function module sharing

86

A new argument i.e., int i is added to func1, indicating which part of func1 should
be executed. If i is set to 0, the then block of func1 is executed. If it is set to 1, the
else block is executed. The call to the shared func is moved from the func1 to the
func0. In the func0, func1 is called first with i=0, the shared func is called next, then,
func2 is called again with i=1. The same transformation is applied to func2 as well. In
the modified code in Figure 6.3(b), the shared func is called twice but from the same
function of the func0. Therefore, only a single instance of the shared func module is
created by the HLS tool. Figure 6.4 shows the FSM of the circuit where the module
sharing technique is applied. In this case, the number of function calls is increased,
however, each function keeps its size without growing the complexity of control states
and the operations.

Figure 6.4: FSM of the circuit with module sharing

Figure 6.5: Call graph with a different call hierarchy

This technique is sometimes unable to be employed in such a case as shown in
Figure 6.5. Figure 6.5 represents a call graph in the case in which the shared func
cannot be shared. The figure shows that the func0 calls the func1 and the func2, and
the func2 calls the func3. Each of the func1 and the func3 calls the shared func. To
share the shared func module, the level of the call hierarchy is necessarily the same as
the func0. In other words, the number of functions in the higher place of call hierarchy
from the mutual caller function needs the same to share the shared function. The issue
is solvable if the func3 is inlined to the func2. If either the func3 is inlined to the func2
or the func2 is inlined to the main function, the hierarchy of the shared function from
the mutual caller function becomes the same.

87

6.4 Experiments

We have conducted experiments to compare our module sharing technique with the four
techniques as follows.

• Default: All functions are synthesized based on the default configuration of Vi-
vado HLS.

• Inline-off : HLS-generated circuits without module sharing, and it generates mul-
tiple instances for the same module without inlining.

• Inline-all: Inlining all the functions into a main function.

• Share-inlining: Module sharing technique by function inlining

• Share-calls: Module sharing technique by multiple function calls

We used Vivado HLS 2019.1 as an HLS tool and Xilinx Zynq-7000 as a target board.
Clock frequency was set to 100MHz; thus, timing constraint was within 10ns. We char-
acterize area requirements by reporting the number of look-up tables (LUTs), flip-flops
(FFs), digital signal processing (DSPs), block RAM (BRAMs), execution clock cycles,
and critical path delay (CP delay). In the experiments, three of four benchmarks pro-
grams derived from CHStone benchmark suite [88] were employed. CHStone bench-
mark suite is easy to use since the programs of CHStone are written in the standard
C language and any of the extensions is unnecessary. In this paper, we selected aes,
dfadd, and dfsin.

Figures 6.6(a) and 6.6(b) represent call graphs of dfadd and dfsin, respectively.
For aes, the call graph has been mentioned in Figure 6.3. The rest of the benchmarks
called dfaddsub, is introduced by the work in [93]. This is based on Soft Float library
[100] for software implementation of binary representation. A call graph of dfaddsub is
represented in Figure 6.6(c). dfaddsub has three arguments; a, b, and 1-bit id. id is used
for if-then-else statement to branch off float64add addition function and float64sub
subtraction function from the caller function called as float64addsub. Both float64add
and floaf64sub call three functions; extract64sign, addfloat6sigs, and subfloat64sigs,
respectively. There also exist other functions, but their details are omitted since they are
very small. Note that, the functions to be shared are determined following an objective
such as area minimization and performance maximization by designers in advance.

Table 1 shows the synthesis and simulation results in terms of the number of LUTs,
FFs, execution cycles, DSPs, and BRAMs, where the numbers in parentheses denote the
normalized values to Default. For the aes, Share-inlining can reduce the number of

88

(a) dfadd

(b) dfsin

(c) dfaddsub

Figure 6.6: Call graphs of the benchmark programs

LUTs by 6.4%. The technique effectively reduces the area of the circuit by generating
a single instance of a shared module.

On the other hand, Share-calls increases LUTs by 63.7% due to the additional cir-
cuits for if-then-else statement in each module, and the overhead of multiple functions
calls in this technique to invoke the shared function grows the number of clock cycles.
Share-inlining obtains the smallest number of clock cycles due to the elimination
of the overhead for function calls. In dfadd, both Share-inlining and Share-calls
have achieved reducing the circuit area compared with Default due to a large func-
tion which is shared. Share-calls reduces 4.6% and Share-inlining also reduces by
14.9% of the number of LUTs. If all the functions are inlined into the main function,
the result shows 9.1% reduction of LUTs against Default. According to the result,
Default may generate multiple instances of modules with several LUTs. Our pro-

89

Table 6.1: Synthesis and simulation results

Default Inline-off Inline-all Share-inlining Share-calls
aes
LUTs 1460 (1) 2769 (1.897) 1825 (1.250) 1366 (0.936) 2390 (1.637)
FFs 1764 (1) 2721 (1.542) 1478 (0.838) 1639 (0.929) 2313 (1.311)
DSPs 2 (1) 2 (1) 0 (-) 2 (1) 2 (1)
BRAM 10 (1) 10 (1) 9 (0.9) 10 (1) 10 (1)
Clock cycles 3071 (1) 3193 (1.040) 2996 (0.976) 3062 (0.997) 3073 (1.001)
CP delay (ns) 6.192 7.127 6.342 6.666 6.652
dfadd
LUTs 4650 (1) 4497 (0.967) 4228 (0.909) 3960 (0.851) 4437 (0.954)
FFs 2425 (1) 2439 (1.006) 1857 (0.766) 1962 (0.809) 2615 (1.078)
DSPs 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)
BRAM 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)
Clock cycles 5 (1) 6 (1.2) 4 (0.8) 5 (1) 7 (1.4)
CP delay (ns) 7.401 7.917 9.765 8.249 8.328
dfsin
LUTs 10390 (1) 10510 (1.012) 9211 (0.887) 8896 (0.856) 9858 (0.949)
FFs 6815 (1) 7837 (1.150) 6033 (0.885) 6475 (0.950) 7946 (1.166)
DSPs 43 (1) 43 (1) 59 (1.372) 59 (1.372) 43 (1)
BRAM 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)
Clock cycles 1308 (1) 1308 (1) 1309 (1.001) 1304 (0.997) 1340 (1.024)
CP delay (ns) 9.975 9.975 10.328 9.975 9.975
dfaddsub
LUTs 4664 (1) 9015 (1.933) 4685 (1.005) 4664 (1) 4661 (0.999)
FFs 2426 (1) 5011 (2.066) 2426 (1) 2426 (1) 2429 (1.001)
DSPs 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)
BRAM 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)
Clock cycles 5 (1) 7 (1.4) 5 (1) 5 (1) 6 (1.2)
CP delay (ns) 7.401 7.917 7.401 7.401 7.401

posed techniques, however, degrade the performance of the circuits, which is found in
the CP delay. The techniques for module sharing increase the control states and the
number of operations, and these overheads incur a longer critical path delay than the
others. dfsin is a sine function for double floating-point numbers and is defined as a
quite large circuit in the experiments. In this case, Share-calls can reduce by up to
5.1% of the number of LUTs without performance degradation. In the result obtained
by Share-inlining, LUTs and FFs are reduced by up to 14.4% and 15.0%, respectively.
Due to the increased overhead for multiple function calls, Share-calls needs the largest
number of clock cycles but meets the timing constraint. On the other hand, Inline-all
violates the constraint within 10ns. In the results, function inlining with module sharing
can effectively reduce the area and satisfy the constraint. For dfaddsub, Share-calls is

90

successful in area reduction of the circuit. In the case, Share-calls shares float64 add
addition function and float64 sub subtraction function and invokes one-by-one by mul-
tiple function calls without function inlining. Therefore, a single instance for each of
the other callees invoked by float add and float sub is generated. On the other hand,
Share-inlining inlines the float64 add function and the float64 sub function into the
caller function. The callees for float 64add and float64sub are inlined as well so that
the created circuit becomes a large number of control states is required. The overhead
from the increased number of states by function inlining exceeds that by the function
calls. Inline-off needs more LUTs and FFs than the others since it synthesizes double
instances of the callee functions as well as the shared function. Future work includes
the evaluations with further larger programs applied to our proposed techniques are nec-
essary.

6.5 Conclusions

In this paper, we have proposed techniques for function-level module sharing in high-
level synthesis. Since our techniques are source-level transformation, it can be applied
as a front-end of existing HLS tools. Our experimental results show a significant re-
duction in look-up tables. In future, we plan to improve our techniques in order to
automatically determine which technique to employ. Also, we plan to extend our tech-
nique towards more general programs. On another direction, our proposed techniques
are tool dependent so far, and the techniques can hardly be applied to other HLS tools
in the same way. Therefore, we plan to develop an extension of our techniques that are
available without stuck to particular HLS tools.

91

Chapter 7

Conclusions

7.1 Summary

Today, embedded systems are found everywhere in smartphone, digital cameras, many
kinds of wearable devices, and other devices/gadget. As the characteristics of such de-
vices are totally different, the requirements for the design also differ, and there have
appeared advancement of technologies, especially efficient system-level design tech-
nology, that enable designers to automatically make the development and production
of the systems in such a way that the requirements are fully satisfied under timing and
resource constraints specialized to the embedded systems. To further improve perfor-
mances with reduction of energy, size, and cost, Systems-On-a-Chip (SoC) have been
grown rapidly. Recently, the need for more computing power as well as increasing de-
mand for the higher performance leads to SoC with multiple computation cores, which
is called Multi-Processor System-On-Chip (MPSoC).

MPSoC platform has been developed by many industrial companies, however, the
time-to-market has often prolonged due to increasing the difficulty caused by complex-
ity of system-level design. Therefore, the technology for efficient design are focused to
optimize both perspectives of software and hardware, which has led to co-design tech-
nology. One of major challenges faced by designers in software design is the scheduling
and mapping of embedded parallel applications on multicore so that they can improve
their performance and scale over more and more cores. In general, application perfor-
mance is hitting the ceiling due to multiple bottlenecks including contention for shared
resources such as caches, memory and internal connections. It results in time consum-
ing for developers to identify where the bottleneck degrades the performance from the
source code. On the other hand, another of the challenges refers to hardware design.
Hardware implementation is very efficient in terms of performance and power con-
sumption compared to software implementation, however, the design of hardware has

92

been regarded as more time consuming process among embedded system processes.
To overcome the issues, this thesis has worked on task scheduling techniques that

determine the execution order of tasks in an application and allocation the tasks on mul-
ticore. The tasks in the parallel programs of the application can be run at the same time
in parallel on multicore. In addition, the tasks in recent applications usually have in-
herent parallelism in the data parallelism fashion, and such tasks are called data-parallel
tasks. Data-parallel tasks are allowed to split into multiple threads (or sub-tasks), and
each thread is assigned to one of the cores. Data-parallel tasks can be classified into
rigid, moldable, and malleable, and this thesis focuses on moldable tasks, where the
number of threads are determined during scheduling and not changed during runtime.
Thus, this thesis has focused on scheduling of moldable tasks on multicore, which de-
termine the number of threads for each task and the schedule the tasks on multicore.
Behind the literature, this thesis have proposed several scheduling techniques. In addi-
tion, this thesis has tackled to hardware design issues in high level synthesis (HLS). HLS
techniques, which automatically generate register transfer level (RTL) design from the
behavior level languages such as C/C++ description. The common HLS tools are able to
generate the circuit that can satisfy the timing and resource constraints, but they are not
efficient enough to create the better circuits since the HLS tools generate the multiple
instances even if the instances are invoked at the different time. This thesis have pro-
posed modules sharing techniques to generate a better circuit than existing techniques
do.

Let us summarize the overview of the chapters. Chapter 2 has described the com-
prehensive design flow of embedded systems. Chapter 3 has addressed the scheduling
techniques that schedule moldable tasks on multicore, which is based on constraint pro-
gramming (CP) paradigm. The proposed techniques are contributed to more quickly
find an optimal scheduling solution than the state-of-the-art techniques. On four-core
architecture, the proposed technique for moldable fork-join tasks (MFJ) tasks can find
solutions although the state-of-the-art techniques fails to find any solution. In addition,
On 8 to 32 cores, the results of the proposed technique can still find a good solution
compared to existing techniques. The proposed scheduling technique for moldable syn-
chronous tasks (MS) tasks can achieve the improvement by up to 11% on average com-
pared to the state-of-the-art technique. The state-of-the-art technique fails to find any
solution in a practical time, therefore, the proposed techniques are able to quickly find
a solution in a practical time.

Chapter 4 has extended the scheduling techniques to take into account communi-
cation delays. The experiments have been conducted in terms of performance, and
the effect of communication to computation rate (CCR) has been evaluated. The ex-
perimental results show our proposed techniques can obtain greater schedules than the

93

state-of-the-art techniques on multicore. Regarding the study for the different CCRs,
we show the effectiveness our scheduling technique can shorten schedule lengths in
increasing CCRs.

Chapter 5 has addressed the scheduling problems that assume a heterogeneous ar-
chitecture from the perspective of energy efficiency. The proposed techniques determine
the number of threads and schedule for reduction of the overall energy consumption in
the system. Furthermore, it optimizes the types of cores as well as the schedule for
further reduction of energy consumption. The experimental results show that the pro-
posed scheduling techniques for heterogeneous multicore architecture can reduce the
energy consumption compared to the techniques for homogeneous multicore architec-
ture. With regard to the comparison on the heterogeneous multicore architecture, the
state-of-the-art technique, where the architecture is fixed and determined in advance,
is less of flexibility in terms of mappings, while the proposed technique can flexibly
determine the architecture (i.e., the types of cores on the architecture). If the deadline
is loose, the proposed technique can remarkably reduce the energy consumption, and
the two-phase heuristic technique is able to find a feasible solution every case. As the
deadline becomes tight, the proposed technique can find better solutions than the state-
of-the-art techniques in many cases, while there are some cases that the state-of-the-art
techniques fails to find a good solution due to the huge solution space. It should be
noted that the architecture determined through the proposed technique become closer to
the homogeneous architectures since the performance becomes crucial for satisfying the
deadline. The proposed heuristic approach demonstrates that it can obtain the solutions
in all the cases within the runtime even if the deadline becomes tight.

Chapter 6 has mentioned the HLS techniques to deal with the conventional issues
lurking in the HLS tools. The experimental results show the module sharing techniques
can reduce the number of hardware resources, while the traditional techniques require
more LUTs and FFs than the others since it synthesizes double instances of the callee
functions as well as the shared function. In contrast, the proposed techniques effectively
reduce the area of the circuit by generating a single instance of a shared module. To
share a module, however, it is necessary for each module to own a branch statement
such as an if-then-else statement so that the created circuit becomes huge and the large
number of control states is required. It should suggest that the overhead of area incurred
by the circuit for the branch statement can be ignored if the modules are relatively large.
Module sharing with function inlining indicates that it can achieve the reduction of
area since the circuit for the branch statement is almost unnecessary, while the inlined
module becomes large.

94

7.2 Future Directions

The works presented in this thesis will be able to extend in several directions. Chapter
3 has proposed scheduling techniques for two kinds of moldable tasks. One is called
fork-join task and another is called synchronous task, respectively. The techniques are,
however, simplified in order to evaluate the performance improvement with exploiting
data-parallelism of the tasks. Thus, the work does not consider main memory access and
cache misses that are excessively crucial bottlenecks in parallel programs. In addition,
this thesis have not mentioned a heuristic technique based on meta-heuristics.

Chapter 4 has extended the work in Chapter 3 with taking into account inter- and
intra-task communications. Furthermore, this work introduce the concept of computa-
tion and communication ratio, and it suggests that scheduling aware of the size of data
is very crucial in communication overheads. This work has assumed that communica-
tions are incurred between the cores. For simplicity, this work has ignored the number
of resources for communication, such as network interfaces and links, however, it is
limited in the real-world. The conflicts among communications often result in prolong
the overall execution time. Thus, resource contentions and network typologies will be
taken into account in the future.

Chapter 5 has addressed that energy-aware scheduling techniques and optimization
of core-types on heterogeneous multicores. The work attempts to minimize the overall
energy consumption throughout scheduling the tasks, mapping, and core-type optimiza-
tion. In core-type optimization, the technique determines weather each core is either
high-performance core and power-efficient cor during scheduling. However, this tech-
nique has not employed dynamic voltage and frequency scaling (DVFS) and dynamic
power management (DPM). As well as the mentions in Chapter 4, memory accesses
also largely affect energy consumption such as cache misses and main memory ac-
cesses. These metrics should be taken into account in order to make this work practical
in reality, and considering the dynamic features is one of future works.

Chapter 6 has proposed function-level module sharing techniques in high-level syn-
thesis (HLS). This work can be applied to a front-end of HLS tools, however, the tech-
nique currently is necessary to be done manually. Therefore future work includes auto-
matic determination for which sharing techniques to employ. In addition, this work have
been conducted in several programs. In the future, more general programs are employed
to evaluate our sharing techniques.

95

Acknowledgment

I would like to express my greatest gratitude to Professor Hiroyuki Tomiyama in
Ritsumeikan University. He gave me a lot of opportunities to dive into the depths in
the field of embedded systems. It is my fortune to have studied under a guidance of
Professor Tomiyama for five years. I also thank to Ittetsu Taniguchi, Associate Profes-
sor of Osaka University, for his expert advice and encouragement throughout the life
in Ph.D course. Associate Processor Meng Lin in Ritsumeikan University has induced
me to pursue Ph.D degree. Actually, I had never thought to enter Ph.D course before
I was assigned to this laboratory and met those professors. Of course, I must thank to
Assistant Professor Xiangbo Kong, for having many discussions and invaluable sug-
gestions. It is one of my greatest opportunities to have discussed for five years with
Assistant Professor Kong as a student and as an instructor. They are always open when-
ever I got in trouble or had questions not only about my research or writing as many
as my personal trouble. They consistently steered or guided me in the right direction
whenever and wherever they thought I needed it. Professor Samarjit Chakraborty, Pro-
fessor of The University of North Carolina at Chapel Hill (ex. Technical University of
Munich), warmly accepted me visiting his laboratory for three months from August in
2018. I would like to thank Prof. Dr. Sangyoung Park, Assistant Professor of Technical
University of Berlin, for their hospitality and giving precious opportunities to discuss
optimization design of cell-balance with batteries during my visit. Dr. Swaminathan
Narayanaswamy, Researcher of Technical University of Munich, taught me what is the
high-level technical research, and the way of making progress of research. The op-
portunity in TUM was very stimulating and precious in my life, and such experiences
resulted in having encouraged me to enter Ph.D course. I must give my greatest appre-
ciation, of course, goes to all of the members in Tomiyama-lab. Special thanks are to be
given especially my colleagues, Takafumi Miyazaki, Hayato Hidari, Kazumasa Kadota,
Yusuke Funabashi, and Shunsuke Negoro for supporting our daily lives and solving a
lots of technical problems as well. Along with my master course, I really thank to Kana
Shimada, Ryohei Nozaki, and Kenta Shirane to discuss, draft and submit manuscripts
together. We can have had many discussions to achieve submitting manuscripts. These
experiments could lead me to Ph.D course and actually result in changing the direction

96

for my life. Along with my Ph.D course, I have been supported by Satoshi Ito, Yuho
Toku, Wanyin Shi, Qidi Zhang, Kazuki Shima, Koyu Ohata, Masaki Sano, Tomoyasu
Shimada, Chiharu Shiro, Eiji Sugahara, Yilin Zhao, Takumi Mizuno, Mao Nishira, and
Tomoki Shimizu. Of course, I am truly grateful for the warmth of the other members of
laboratory. As far as I am concerned, they must be the best company that I have ever
known. They have always been there for me, sometimes encouraging me to come back
to research with their patient support. I would like to express my greatest gratitude and
respect to all people who still have been working hard for the degree of their philosophy
through the world. Finally, I am eternally grateful to my family and precious for their
endless support and encouragement, and to all the wonderful friends I have encountered
so far. Thank you for your endless support and encouragement. I could not have done
this work without the many supportive and important people in my life.

97

References

[1] John Shalf, “The future of computing beyond moore’s law,” Philosophical
Transactions of the Royal Society. A, Mathematical, Physical and Engineering
Sciences, vol. 378, no. 2166, 2020.

[2] Igor L. Markov, “Limits on fundamental limits to computation,” CoRR, vol.
abs/1408.3821, 2014.

[3] Grant Martin, “Overview of the mpsoc design challenge,” 2006 43rd ACM/IEEE
Design Automation Conference, pp. 274–279, 2006.

[4] Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and J”org Henkel,
“Mapping on multi/many-core systems: Survey of current and emerging trends,”
2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–10,
2013.

[5] Jaspal Subhlok and Gary Vondran, “Optimal mapping of sequences of data par-
allel tasks,” ACM SIGPLAN Notices, vol. 30, no. 8, pp. 134–143, 1995.

[6] Maciej Drozdowski, “Scheduling multiprocessor tasks—an overview,” European
Journal of Operational Research, vol. 94, no. 2, pp. 215–230, 1996.

[7] Adel Manaa and Chengbin Chu, “Scheduling multiprocessor tasks to minimise
the makespan on two dedicated processors,” European Journal of Industrial En-
gineering, vol. 4, no. 3, pp. 265–279, 2010.

[8] Dirk Bouwmeester and Anton Zeilinger, “The physics of quantum information:
basic concepts,” The physics of quantum information, pp. 1–14, 2000.

[9] Rakesh Kumar, Dean M Tullsen, Norman P Jouppi, and Parthasarathy Ran-
ganathan, “Heterogeneous chip multiprocessors,” Computer, vol. 38, no. 11,
pp. 32–38, 2005.

[10] Jing Liu, Kenli Li, Dakai Zhu, Jianjun Han, and Keqin Li, “Minimizing cost of
scheduling tasks on heterogeneous multicore embedded systems,” ACM Trans-
actions on Embedded Computing Systems (TECS), vol. 16, no. 2, pp. 1–25, 2016.

98

[11] Hui Cheng, “A high efficient task scheduling algorithm based on heterogeneous
multi-core processor,” 2010 2nd International Workshop on Database Technol-
ogy and Applications, pp. 1–4, 2010.

[12] C’edric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-Andr’e
Wacrenier, “Starpu: a unified platform for task scheduling on heterogeneous
multicore architectures,” Concurrency and Computation: Practice and Experi-
ence, vol. 23, no. 2, pp. 187–198, 2011.

[13] Thomas Bridi, Andrea Bartolini, Michele Lombardi, Michela Milano, and
Luca Benini, “A constraint programming scheduler for heterogeneous high-
performance computing machines,” IEEE transactions on parallel and dis-
tributed systems, vol. 27, no. 10, pp. 2781–2794, 2016.

[14] Shaikhah AlEbrahim and Imtiaz Ahmad, “Task scheduling for heterogeneous
computing systems,” The Journal of Supercomputing, vol. 73, no. 6, pp. 2313–
2338, 2017.

[15] Yan Wang, Kenli Li, Hao Chen, Ligang He, and Keqin Li, “Energy-aware data
allocation and task scheduling on heterogeneous multiprocessor systems with
time constraints,” IEEE Transactions on Emerging Topics in Computing, vol.
2, no. 2, pp. 134–148, 2014.

[16] AA Jerraya, M Romdhani, Phillipe Le Marrec, Fabino Hessel, Pascal Coste,
C Valderrama, GF Marchioro, JM Daveau, and Nacer-Eddine Zergainoh, “Multi-
language specification for system design and codesign,” System Level Synthesis,
NATO ASI, 1999.

[17] Daniel D Gajski, Jianwen Zhu, and Rainer Dömer, “Essential issues in codesign,”
Hardware/Software Co-Design: Principles and Practice, pp. 1–45, 1997.

[18] Keith S Vallerio and Niraj K Jha, “Task graph extraction for embedded system
synthesis,” 16th International Conference on VLSI Design, 2003. Proceedings.,
pp. 480–486, 2003.

[19] Daniel D Gajski and Loganath Ramachandran, “Introduction to high-level syn-
thesis,” IEEE Design & Test of Computers, vol. 11, no. 4, pp. 44–54, 1994.

[20] Frank Vahid and Daniel Gajski, “Specification partitioning for system design,”
DAC, vol. 92, pp. 219–224, 1992.

99

[21] Gustavo Callou, Paulo Maciel, Eduardo Tavares, Ermeson Andrade, Bruno
Nogueira, Carlos Araujo, and Paulo Cunha, “Energy consumption and execu-
tion time estimation of embedded system applications,” Microprocessors and
Microsystems, vol. 35, no. 4, pp. 426–440, 2011.

[22] Vasilios Konstantakos, Alexander Chatzigeorgiou, Spiridon Nikolaidis, and
Theodore Laopoulos, “Energy consumption estimation in embedded systems,”
IEEE Transactions on instrumentation and measurement, vol. 57, no. 4, pp. 797–
804, 2008.

[23] Khurram Bhatti, Cecile Belleudy, and Michel Auguin, “Power management in
real time embedded systems through online and adaptive interplay of dpm and
dvfs policies,” 2010 IEEE/IFIP International Conference on Embedded and
Ubiquitous Computing, pp. 184–191, 2010.

[24] Gang Chen, Kai Huang, and Alois Knoll, “Energy optimization for real-time
multiprocessor system-on-chip with optimal dvfs and dpm combination,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 13, no. 3s, pp. 1–21,
2014.

[25] Wayne H Wolf, “Hardware-software co-design of embedded systems,” Proceed-
ings of the IEEE, vol. 82, no. 7, pp. 967–989, 1994.

[26] Rajesh Kumar Gupta, Co-synthesis of hardware and software for digital embed-
ded systems, vol. 329, Springer Science & Business Media, 2012.

[27] Tobias Langer, Lukas Osinski, and Juergen Mottok, “A survey of parallel hard-
real time scheduling on task models and scheduling approaches,” ARCS 2017;
30th International Conference on Architecture of Computing Systems, pp. 1–8,
2017.

[28] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis, Introduction
to parallel computing, vol. 110, Benjamin/Cummings Redwood City, CA, 1994.

[29] David Culler, Jaswinder Pal Singh, and Anoop Gupta, Parallel computer archi-
tecture: a hardware/software approach, Gulf Professional Publishing, 1999.

[30] Joël Goossens and Vandy Berten, “Gang ftp scheduling of periodic and parallel
rigid real-time tasks,” arXiv preprint arXiv:1006.2617, 2010.

[31] Rainer Dömer, Daniel D Gajski, and Jianwen Zhu, “Specification and design of
embedded systems,” it-Information Technology, vol. 40, no. 3, pp. 7–12, 1998.

100

[32] Hiroki Nishikawa, Kana Shimada, Ittetsu Taniguchi, and Hiroyuki Tomiyama,
“A constraint programming approach to scheduling of malleable tasks,” Interna-
tional Journal of Networking and Computing, vol. 9, no. 2, pp. 131–146, 2019.

[33] Sarad Venugopalan and Oliver Sinnen, “Optimal linear programming solutions
for multiprocessor scheduling with communication delays,” International con-
ference on algorithms and architectures for parallel processing, pp. 129–138,
2012.

[34] Pierre-François Dutot, Grégory Mounié, and Denis Trystram, “Scheduling par-
allel tasks: Approximation algorithms,” 2004.

[35] Yang Liu, Lin Meng, Ittetsu Taniguchi, and Hiroyuki Tomiyama, “Novel list
scheduling strategies for data parallelism task graphs,” International Journal of
Networking and Computing, vol. 4, no. 2, pp. 279–290, 2014.

[36] Kana Shimada, Shogo Kitano, Ittetsu Taniguchi, and Hiroyuki Tomiyama, “Ilp-
based scheduling for parallelizable tasks,” IEICE Transactions on Fundamen-
tals of Electronics, Communications and Computer Sciences, vol. 100, no. 7, pp.
1503–1505, 2017.

[37] Kana Shimada, Ittetsu Taniguchi, and Hiroyuki Tomiyama, “Ilp-based schedul-
ing for malleable fork-join tasks,” ACM SIGBED Review, vol. 16, no. 3, pp.
21–26, 2019.

[38] Hoeseok Yang and Soonhoi Ha, “Ilp based data parallel multi-task map-
ping/scheduling technique for mpsoc,” 2008 International SoC Design Confer-
ence, vol. 1, pp. I–134, 2008.

[39] Juris Hartmanis, “Computers and intractability: a guide to the theory of np-
completeness (michael r. garey and david s. johnson),” Siam Review, vol. 24, no.
1, pp. 90, 1982.

[40] Francesca Rossi, Peter Van Beek, and Toby Walsh, Handbook of constraint pro-
gramming, Elsevier, 2006.

[41] Philippe Baptiste, Claude Le Pape, and Wim Nuijten, Constraint-based schedul-
ing: applying constraint programming to scheduling problems, vol. 39, Springer
Science & Business Media, 2001.

[42] Krzysztof Kuchcinski, “Constraints-driven scheduling and resource assignment,”
ACM Transactions on Design Automation of Electronic Systems (TODAES), vol.
8, no. 3, pp. 355–383, 2003.

101

[43] Hoeseok Yang and Soonhoi Ha, “Pipelined data parallel task mapping/scheduling
technique for mpsoc,” 2009 Design, Automation & Test in Europe Conference &
Exhibition, pp. 69–74, 2009.

[44] Chi-Yeh Chen and Chih-Ping Chu, “A 3.42-approximation algorithm for schedul-
ing malleable tasks under precedence constraints,” IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 8, pp. 1479–1488, 2012.

[45] Jinghao Sun, Nan Guan, Yang Wang, Qingxu Deng, Peng Zeng, and Wang Yi,
“Feasibility of fork-join real-time task graph models: Hardness and algorithms,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 15, no. 1, pp.
1–28, 2016.

[46] Karthik Lakshmanan, Shinpei Kato, and Ragunathan Rajkumar, “Scheduling
parallel real-time tasks on multi-core processors,” 2010 31st IEEE Real-Time
Systems Symposium, pp. 259–268, 2010.

[47] Abusayeed Saifullah, Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher
Gill, “Multi-core real-time scheduling for generalized parallel task models,”
Real-Time Systems, vol. 49, no. 4, pp. 404–435, 2013.

[48] Alfredo Goldman and Yanik Ngoko, “A milp approach to schedule parallel in-
dependent tasks,” 2008 International Symposium on Parallel and Distributed
Computing, pp. 115–122, 2008.

[49] Weichen Liu, Zonghua Gu, Jiang Xu, Xiaowen Wu, and Yaoyao Ye, “Satisfia-
bility modulo graph theory for task mapping and scheduling on multiprocessor
systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 8,
pp. 1382–1389, 2010.

[50] Avinash Malik, Cameron Walker, Michael O’Sullivan, and Oliver Sinnen, “Sat-
isfiability modulo theory (smt) formulation for optimal scheduling of task graphs
with communication delay,” Computers & Operations Research, vol. 89, pp.
113–126, 2018.

[51] Ridvan Gedik, Darshan Kalathia, Gokhan Egilmez, and Emre Kirac, “A con-
straint programming approach for solving unrelated parallel machine scheduling
problem,” Computers & Industrial Engineering, vol. 121, pp. 139–149, 2018.

[52] Irvin J Lustig and Jean-François Puget, “Program does not equal program: Con-
straint programming and its relationship to mathematical programming,” Inter-
faces, vol. 31, no. 6, pp. 29–53, 2001.

102

[53] Philippe Laborie, “Ibm ilog cp optimizer for detailed scheduling illustrated on
three problems,” International Conference on Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research, pp. 148–162, 2009.

[54] Laurent Perron, Paul Shaw, and Vincent Furnon, “Propagation guided large
neighborhood search,” International Conference on Principles and Practice of
Constraint Programming, pp. 468–481, 2004.

[55] Philippe Refalo, “Impact-based search strategies for constraint programming,”
International Conference on Principles and Practice of Constraint Programming,
pp. 557–571, 2004.

[56] Robert P Dick, David L Rhodes, and Wayne Wolf, “Tgff: task graphs for free,”
Proceedings of the Sixth International Workshop on Hardware/Software Code-
sign.(CODES/CASHE’98), pp. 97–101, 1998.

[57] Takao Tobita and Hironori Kasahara, “A standard task graph set for fair evalua-
tion of multiprocessor scheduling algorithms,” Journal of Scheduling, vol. 5, no.
5, pp. 379–394, 2002.

[58] Hiroki Nishikawa, Kana Shimada, Ittetsu Taniguchi, and Hiroyuki Tomiyama,
“Moldable fork-join tasks scheduling techniques with inter-and intra-task com-
munications,” Accepted for publication in International Journal of Embedded
Systems.

[59] Hiroki Nishikawa, Kana Shimada, Ittetsu Taniguchi, and Hiroyuki Tomiyama,
“Scheduling of moldable fork-join tasks with inter-and intra-task communica-
tions,” Proceedings of the 23th International Workshop on Software and Compil-
ers for Embedded Systems, pp. 7–12, 2020.

[60] Dror G Feitelson and Larry Rudolph, “Toward convergence in job schedulers for
parallel supercomputers,” Workshop on Job Scheduling Strategies for Parallel
Processing, pp. 1–26, 1996.

[61] Yu-Kwong Kwok and Ishfaq Ahmad, “On multiprocessor task scheduling us-
ing efficient state space search approaches,” Journal of Parallel and Distributed
Computing, vol. 65, no. 12, pp. 1515–1532, 2005.

[62] Tatjana Davidović and Teodor Gabriel Crainic, “Benchmark-problem instances
for static scheduling of task graphs with communication delays on homogeneous
multiprocessor systems,” Computers & operations research, vol. 33, no. 8, pp.
2155–2177, 2006.

103

[63] Ahmed Zaki Semar Shahul and Oliver Sinnen, “Scheduling task graphs optimally
with a,” The Journal of Supercomputing, vol. 51, no. 3, pp. 310–332, 2010.

[64] Sarad Venugopalan and Oliver Sinnen, “Ilp formulations for optimal task
scheduling with communication delays on parallel systems,” Ieee transactions
on parallel and distributed systems, vol. 26, no. 1, pp. 142–151, 2014.

[65] Kana Shimada, Ittetsu Taniguchi, and Hiroyuki Tomiyama, “Communication-
aware scheduling of data-parallel tasks on multicore architectures,” IPSJ Trans-
actions on System LSI Design Methodology, vol. 12, pp. 65–73, 2019.

[66] Yu-Kwong Kwok and Ishfaq Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Computing Surveys (CSUR), vol.
31, no. 4, pp. 406–471, 1999.

[67] Oliver Sinnen, Task scheduling for parallel systems, vol. 60, John Wiley & Sons,
2007.

[68] Shankar Ramaswamy, Sachin Sapatnekar, and Prithviraj Banerjee, “A framework
for exploiting task and data parallelism on distributed memory multicomputers,”
IEEE transactions on parallel and distributed systems, vol. 8, no. 11, pp. 1098–
1116, 1997.

[69] Saniya Ben Hassen, Henri E Bal, and Ceriel JH Jacobs, “A task-and data-parallel
programming language based on shared objects,” ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 20, no. 6, pp. 1131–1170,
1998.

[70] Geoffrey Nelissen, Vandy Berten, Joël Goossens, and Dragomir Milojevic,
“Techniques optimizing the number of processors to schedule multi-threaded
tasks,” 2012 24th Euromicro Conference on Real-Time Systems, pp. 321–330,
2012.

[71] Yang Liu, Lin Meng, Ittetsu Taniguchi, and Hiroyuki Tomiyama, “A dual-mode
scheduling approach for task graphs with data parallelism,” International Journal
of Embedded Systems, vol. 9, no. 2, pp. 147–156, 2017.

[72] Yang Liu, Lin Meng, Ittetsu Taniguchi, and Hiroyuki Tomiyama, “A branch-and-
bound approach to scheduling of data-parallel tasks on multi-core architectures,”
International Journal of Embedded Systems, vol. 12, no. 1, pp. 125–135, 2020.

104

[73] Klaus Jansen and Felix Land, “Scheduling monotone moldable jobs in linear
time,” 2018 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 172–181, 2018.

[74] Jing-Jang Hwang, Yuan-Chieh Chow, Frank D Anger, and Chung-Yee Lee,
“Scheduling precedence graphs in systems with interprocessor communication
times,” SIAM Journal on Computing, vol. 18, no. 2, pp. 244–257, 1989.

[75] Tao Yang and Apostolos Gerasoulis, “List scheduling with and without commu-
nication delays,” Parallel Computing, vol. 19, no. 12, pp. 1321–1344, 1993.

[76] E Ilavarasan, P Thambidurai, and R Mahilmannan, “Performance effective task
scheduling algorithm for heterogeneous computing system,” The 4th interna-
tional symposium on parallel and distributed computing (ISPDC’05), pp. 28–38,
2005.

[77] Rashid Morady and Deniz Dal, “A multi-population based parallel genetic algo-
rithm for multiprocessor task scheduling with communication costs,” 2016 IEEE
Symposium on Computers and Communication (ISCC), pp. 766–772, 2016.

[78] Sanjit Kumar Roy, Rajesh Devaraj, Arnab Sarkar, Sayani Sinha, and Kankana
Maji, “Optimal scheduling of precedence-constrained task graphs on heteroge-
neous distributed systems with shared buses,” 2019 IEEE 22nd International
Symposium on Real-Time Distributed Computing (ISORC), pp. 185–192, 2019.

[79] Min-You Wu and Daniel D Gajski, “Hypertool: A programming aid for message-
passing systems,” IEEE transactions on parallel and distributed systems, vol. 1,
no. 3, pp. 330–343, 1990.

[80] Gideon Juve, Ann Chervenak, Ewa Deelman, Shishir Bharathi, Gaurang Mehta,
and Karan Vahi, “Characterizing and profiling scientific workflows,” Future
generation computer systems, vol. 29, no. 3, pp. 682–692, 2013.

[81] Hiroki Nishikawa, Kana Shimada, Ittetsu Taniguchi, and Hiroyuki Tomiyama,
“Simultaneous scheduling and core-type optimization for moldable fork-join
tasks on heterogeneous multicores,” Accepted for publication in IEICE Transac-
tions on Fundamentals of Electronics, Communications and Computer Sciences,
vol. E105-A, no. 3, 2022.

[82] Hiroki Nishikawa, Kana Shimada, Ittetsu Taniguchi, and Hiroyuki Tomiyama,
“Energy-aware scheduling of malleable fork-join tasks under a deadline con-
straint on heterogeneous multicores,” ACM SIGBED Review, vol. 16, no. 3, pp.
57–62, 2019.

105

[83] Jorge Barbosa, Celeste Morais, Ruben Nobrega, and António P Monteiro, “Static
scheduling of dependent parallel tasks on heterogeneous clusters,” 2005 IEEE
international conference on cluster computing, pp. 1–8, 2005.

[84] Yang Qin, Gang Zeng, Ryo Kurachi, Yutaka Matsubara, and Hiroaki Takada,
“Energy-aware task allocation for heterogeneous multiprocessor systems by us-
ing integer linear programming,” Journal of Information Processing, vol. 27, pp.
136–148, 2019.

[85] Hiroki Nishikawa, Kenta Shirane, Ryohei Nozaki, Ittetsu Taniguchi, and Hi-
royuki Tomiyama, “Function-level module sharing techniques in high-level syn-
thesis,” ETRI Journal, vol. 42, no. 4, pp. 527–533, 2020.

[86] Daniel D Gajski, Nikil D Dutt, Allen CH Wu, and Steve YL Lin, High—Level
Synthesis: Introduction to Chip and System Design, Springer Science & Business
Media, 2012.

[87] Michael C McFarland, Alice C Parker, and Raul Camposano, “The high-level
synthesis of digital systems,” Proceedings of the IEEE, vol. 78, no. 2, pp. 301–
318, 1990.

[88] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katsuya
Ishii, “Behavioral partitioning with exploiting function-level parallelism,” 2008
International SoC Design Conference, vol. 1, pp. I–121, 2008.

[89] Frank Vahid, “Partitioning sequential programs for cad using a three-step ap-
proach,” ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), vol. 7, no. 3, pp. 413–429, 2002.

[90] Welson Sun, Michael J Wirthlin, and Stephen Neuendorffer, “Fpga pipeline syn-
thesis design exploration using module selection and resource sharing,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.
26, no. 2, pp. 254–265, 2007.

[91] Ritchie Zhao, Mingxing Tan, Steve Dai, and Zhiru Zhang, “Area-efficient
pipelining for fpga-targeted high-level synthesis,” Proceedings of the 52nd An-
nual Design Automation Conference, pp. 1–6, 2015.

[92] Mythri Alle, Antoine Morvan, and Steven Derrien, “Runtime dependency anal-
ysis for loop pipelining in high-level synthesis,” Proceedings of the 50th Annual
Design Automation Conference, pp. 1–10, 2013.

106

[93] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, and Hiroaki Takada, “Function
call optimization for efficient behavioral synthesis,” IEICE transactions on fun-
damentals of electronics, communications and computer sciences, vol. 90, no. 9,
pp. 2032–2036, 2007.

[94] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, and Hiroaki Takada, “Partition-
ing of behavioral descriptions with exploiting function-level parallelism,” IEICE
transactions on fundamentals of electronics, communications and computer sci-
ences, vol. 93, no. 2, pp. 488–499, 2010.

[95] Salil Raje and Reinaldo A Bergamaschi, “Generalized resource sharing,” Pro-
ceedings of the 1997 IEEE/ACM international conference on Computer-aided
design, pp. 326–332, 1997.

[96] João MP Cardoso, “Novel algorithm combining temporal partitioning and
sharing of functional units,” The 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’01), pp. 31–40, 2001.

[97] Jason Cong and Wei Jiang, “Pattern-based behavior synthesis for fpga resource
reduction,” Proceedings of the 16th international ACM/SIGDA symposium on
Field programmable gate arrays, pp. 107–116, 2008.

[98] Marco Minutoli, Vito Giovanni Castellana, Antonino Tumeo, and Fabrizio Fer-
randi, “Inter-procedural resource sharing in high level synthesis through function
proxies,” 2015 25th International Conference on Field Programmable Logic and
Applications (FPL), pp. 1–8, 2015.

[99] Ryohei Nozaki, Hiroki Nishikawa, Ittetsu Taniguchi, and Hiroyuki Tomiyama,
“Function-level module sharing in high-level synthesis,” 2019 International SoC
Design Conference (ISOCC), pp. 50–51, 2019.

[100] John Hauser, “Softfloat,” http://HTTP. CS. Berkeley. EDU/˜
jhauser/arithmetic/softfloat. html, 1997.

107

Publications

Journal Publications

Peer-Reviewed

1. Hiroki Nishikawa, Kana Shimada, Ittetsu Taniguchi, and Hiroyuki Tomiyama,
“A constraint programming approach to scheduling of malleable tasks,”
International Journal of Networking and Computing, vol. 9, no. 2, pp. 131-
146, July 2019.

2. Hiroki Nishikawa, Kana Shimada, Ittetsu Taniguchi, and Hiroyuki Tomiyama,
“Energy-aware scheduling of malleable fork-join tasks under a deadline
constraint on heterogeneous multicores,” ACM SIGBED Review, vol. 16,
no. 3, pp. 57-62, October 2019.

3. Hiroki Nishikawa, Kenta Shirane, Ryohei Nozaki, Ittetsu Taniguchi, Hi-
royuki Tomiyama, “Function-level module sharing techniques in high-level
synthesis,“ ETRI Journal, vol. 42, no. 4, pp. 527-533, August 2020.

4. Satoshi Ito, Hiroki Nishikawa, Xiangbo Kong, Yusuke Funabashi, Atsuya
Shibata, Shunsuke Negoro, Ittetsu Taniguchi and Hiroyuki Tomiyama, “Energy-
aware routing of delivery drones under windy conditions,” IPSJ Transac-
tions on System LSI Design Methodology, vol. 14, pp. 30-39, August 2021.

5. Takuma Hikida, Hiroki Nishikawa, Hiroyuki Tomiyama, “Heuristic algo-
rithms for dynamic scheduling of moldable tasks in multicore embedded
systems,” Accepted for publication in International Journal of Reconfig-
urable and Embedded Systems, IAES, vol. 10, no. 3, November 2021.

6. Hiroki Nishikawa, Kana Shimada, Ittetsu Taniguchi, Hiroyuki Tomiyama,
“Moldable fork-join task scheduling techniques with inter- and intra-task
communications,” Accepted for publication in International Journal of Em-
bedded Systems, Inderscience Publishers.

7. Hiroki Nishikawa, Kana Shimada, Ittetsu Taniguchi, Hiroyuki Tomiyama,
“Simultaneous scheduling and core-type optimization for moldable fork-

108

join tasks on heterogeneous multicores,” Accepted for publication in IEICE
Transactions on Fundamentals, Vol. E105-A, no.3, March 2022.

International Conference Publications

Peer-Reviewed

8. Hiroki Nishikawa, Kana Shimada, Ittetsu Taniguchi, and Hiroyuki Tomiyama,
“Energy-aware scheduling of malleable fork-join tasks under a deadline con-
straint on heterogeneous multicores,” In Proc. of Embedded Operating Sys-
tem Workshop (EWiLi), Torino, Italy, October 2018.

9. Hiroki Nishikawa, Kana Shimada, Ittetsu Taniguchi, and Hiroyuki Tomiyama,
“Scheduling of malleable tasks based on constraint programming,” In Proc.
of IEEE Region 10 Conference (TENCON), pp. 1499-1504, Jeju, Korea,
October 2018.

10. Hiroki Nishikawa, Kana Shimada, Ittetsu Taniguchi, and Hiroyuki Tomiyama,
“Scheduling of malleable fork-join tasks with constraint programming,” In
Proc. of International Symposium on Computing and Networking (CAN-
DAR), pp. 133-138, Hida-Takayama, November 2018.

11. Ryohei Nozaki, Hiroki Nishikawa, Ittetsu Taniguchi, and Hiroyuki Tomiyama,
“Function-level module sharing in high-level synthesis,” In Proc. of Inter-
national SoC Design Conference (ISOCC), pp. 50-51, Jeju, Korea, October
2019.

12. Kana Shimada, Takuma Hikida, Hiroki Nishikawa, Ittetsu Taniguchi, and
Hiroyuki Tomiyama, “Scheduling of malleable tasks with dma-based com-
munication,” In Proc. of International SoC Design Conference (ISOCC), pp.
48-49, Jeju, Korea, October 2019.

13. Hiroki Nishikawa, Kana Shimada, Ittetsu Taniguchi, and Hiroyuki Tomiyama,
“Scheduling of moldable fork-join tasks with inter- and intra-Task commu-
nications,” In Proc. of International Workshop on Software and Compilers
for Embedded Systems (SCOPES), pp. 7-12, Sankt Goar, Germany (Online),
May 2020.

14. Takuma Hikida, Hiroki Nishikawa, Hiroyuki Tomiyama, “Heuristic algo-
rithms for dynamic scheduling of moldable tasks,” In Proc. of International
SoC Design Conference (ISOCC), pp. 55-56, Yeosu, Korea, October 2020.

109

15. Mayu Ida, Hiroki Nishikawa, Xiangbo Kong, Ittetsu Taniguchi, and Hi-
royuki Tomiyama, “A quadcopters flight simulation considering the influ-
ence of wind,” In Proc. of International SoC Design Conference (ISOCC),
pp. 334-335, Yeosu, Korea, October 2020.

16. Takaya Watanabe, Hiroki Nishikawa, and Hiroyuki Tomiyama, “Scheduling
of rigid tasks on heterogeneous multicores,” In Proc. of International SoC
Design Conference (ISOCC), pp. 330-331, Yeosu, Korea, October 2020.

17. Takuya Egashira, Hiroki Nishikawa, Xiangbo Kong, and Hiroyuki Tomiyama,
“A home security camera system with container-based resource allocation
on raspberry pi,” In Proc. of International Conference on Electronics, Infor-
mation, and Communication (ICEIC), Jeju, Korea, January-February 2021.

18. Yuho Toku, Satoshi Ito, Tomoyasu Shimada, Hiroki Nishikawa, Xiangbo
Kong, and Hiroyuki Tomiyama, “Accuracy and speed evaluation of eye
blink detection algorithms via openCV and dlib libraries,” In Proc. of In-
ternational Workshop on Nonlinear Circuits, Communications and Signal
Processing (NCSP), pp. 57-60, Online, March 2021.

19. Eiji Sugahara, Hiroki Nishikawa, Takuya Egashira, Xiangbo Kong, and Hi-
royuki Tomiyama, “A low-power security camera system using opencv and
yolo,” In Proc. of International Workshop on Nonlinear Circuits, Communi-
cations and Signal Processing (NCSP), pp. 298-300, Online, March 2021.

20. Wanyin Shi, Hiroki Nishikawa, Xiangbo Kong, and Hiroyuki Tomiyama,
“Improvement of detection rate using preprocessed infrared images,” In Proc.
of International Workshop on Nonlinear Circuits, Communications and Sig-
nal Processing (NCSP), pp. 337-340, Online, March 2021.

21. Tomoyasu Shimada, Hiroki Nishikawa, Xiangbo Kong, and Hiroyuki Tomiyama,
“A dynamic path planning method for multirotor using depth images in air-
sim,” In Proc. of International Workshop on Nonlinear Circuits, Communi-
cations and Signal Processing (NCSP), pp. 341-344, Online, March 2021.

22. Satoshi Ito, Keishi Akaiwa, Yusuke Funabashi, Hiroki Nishikawa, Xiangbo
Kong, Ittetsu Taniguchi and Hiroyuki Tomiyama, “Routing of delivery drones
considering load and wind effects,” Accepted for publication at International
Symposium on Advanced Technologies and Applications in the Internet of
Things (ATAIT), August 2021.

23. Tomoyasu Shimada, Hiroki Nishikawa, Xiangbo Kong and Hiroyuki Tomiyama,
“Pix2Pix-based depth estimation from monocular images for dynamic path
planning of multirotor on airSim,” Accepted for publication at International

110

Symposium on Advanced Technologies and Applications in the Internet of
Things (ATAIT), August 2021.

24. Chiharu Shiro, Hiroki Nishikawa, Xiangbo Kong, Hiroyuki Tomiyama, Shigeru
Yamashita, “Minimization of routing area in meda biochips,” Accepted for
publication at Biomedical Circuits and Systems Conference (BioCAS), On-
line, October 2021.

25. Kenta Shirane, Hiroki Nishikawa, Xiangbo Kong, Hiroyuki Tomiyama, “High-
level synthesis of approximate computing circuits with dual accuracy modes,”
Accepted for publication at International SoC Design Conference (ISOCC),
Jeju, Korea, October 2021.

26. Koyu Ohata, Kenta Shirane, Hiroki Nishikawa, Xiangbo Kong, Hiroyuki
Tomiyama, “Scheduling with variable-cycle approximate functional units in
high-level synthesis,” Accepted for publication at International SoC Design
Conference (ISOCC), Jeju, Korea, October 2021.

27. Masaki Sano, Kenta Shirane, Hiroki Nishikawa, Xiangbo Kong, Hiroyuki
Tomiyama, Tongxin Yang, Tomoaki Ukezono, “Design of a 32-bit accuracy-
controllable approximate multiplier for fpgas,” Accepted for publication at
International SoC Design Conference (ISOCC), Jeju, Korea, October 2021.

28. Yilin Zhao, Qidi Zhang, Hiroki Nishikawa, Xiangbo Kong, Hiroyuki Tomiyama,
“Power side-channel analysis for different adders on fpga,” Accepted for
publication at International SoC Design Conference (ISOCC), Jeju, Korea,
October 2021.

29. Tomoyasu Shimada, Hiroki Nishikawa, Xiangbo Kong, and Hiroyuki Tomiyama,
“Depth Estimation from Monocular Infrared Images for Autonomous Flight
of Drones,” Accepted for publication at International Conference on Elec-
tronics, Information, and Communication (ICEIC), Jeju, Korea, February
2022.

30. Mao Nishira, Satoshi Ito, Hiroki Nishikawa, Xiangbo Kong, and Hiroyuki
Tomiyama, “An ILP-based Approach to Delivery Drone Routing under Load-
dependent Flight Speed,” Accepted for publication at International Confer-
ence on Electronics, Information, and Communication (ICEIC), Jeju, Korea,
February 2022.

Domestic Conference Publications

Peer-Reviewed

111

30. 西川広記, 島田佳奈, 谷口一徹, 冨山宏之, “Malleable Task Scheduling
with Constraint Programming,”回路とシステムワークショップ論文集,
北九州, pp. 203-207, 2018年5月.

31. 嶋田知泰,西川広記,孔祥博,冨山宏之, “ドローンの衝突回避のため
の単眼画像を用いた深度推定画像の生成,”回路とシステムワークシ
ョップ,オンライン, 2021年8月.

32. 大幡孝融,白根健太,西川広記,孔祥博,冨山宏之, “高位合成における
可変サイクル近似演算のスケジューリング,”回路とシステムワーク
ショップ,オンライン, 2021年8月.

33. 佐野正樹,白根健太,西川広記,孔祥博,冨山宏之,ヨウドンキン,請園
智玲, “FPGA向け32ビット可変精度近似乗算器の設計と解析,”回路
とシステムワークショップ,オンライン, 2021年8月.

34. 菅原英治,江頭拓也,西川広記,孔祥博,冨山宏之, “セキュリティカメ
ラシステムの低電力化と高速化,” 回路とシステムワークショップ,
オンライン, 2021年8月.

35. 城千春,西川広記,孔祥博,冨山宏之,山下茂, “MEDAバイオチップに
おける使用面積の最小化,”回路とシステムワークショップ,オンラ
イン, 2021年8月.

Non Peer-Reviewed

36. 西川広記, 島田佳奈, 谷口一徹, 冨山宏之, “非均質マルチコアにお
ける可変並列度タスクの低消費エネルギー化スケジューリング,”
電子情報通信学会VLD/DC/情報処理学会SLDM/EMB研究会, 広島,
2018年12月.

37. 西川広記, 島田佳奈, 谷口一徹, 冨山宏之, “タスク間とスレッド間
の通信を考慮した可変並列度Fork-Joinタスクのスケジューリング,”
情報処理学会SLDM/EMB/電子情報通信学会VLD/DC研究会, 松山,
2019年11月.

38. 疋田拓万,西川広記,冨山宏之, “可変並列度タスクの動的スケジュー
リングアルゴリズム,”電子情報通信学会VLD/HWS研究会,オンライ
ン, 2021年3月.

39. 白根健太,西川広記,孔祥博,冨山宏之, “精度可変な近似計算回路の高
位合成,”電子情報通信学会VLD/HWS研究会,オンライン, 2021年3月.

40. 伊藤哲,根來俊介,孔祥博,谷口一徹,冨山宏之, “配送用ドローンの消
費エネルギーモデリングの改良,”情報処理学会組込みシステム研究
会,横浜, 2021年11月.

112

41. 嶋田知泰,西川広記,孔祥博,冨山宏之, “ドローンの自律飛行のため
の赤外線画像から深度画像の生成,”情報処理学会組込みシステム研
究会,横浜, 2021年11月.

42. 西羅真央,伊藤哲,西川広記,孔祥博,冨山宏之, “荷重により速度変化
する荷物配送ドローンの経路計画に対する近似解法,”情報処理学会
組込みシステム研究会,横浜, 2021年11月.

43. 徳雄帆,伊藤哲,嶋田知泰,西川広記,孔祥博,冨山宏之, “OpenCVとDlibラ
イブラリを用いた瞬き検出プログラムの開発,”情報処理学会組込み
システム研究会,横浜, 2021年11月.

44. 趙意琳,張啓迪,西川広記,孔祥博,冨山宏之, “FPGAにおける加算器
の電力解析攻撃耐性の評価,” 情報処理学会組込みシステム研究会,
横浜, 2021年11月.

45. 水野拓己,張啓迪,西川広記,孔祥博,冨山宏之, “高位合成における最
適化のサイドチャネル攻撃耐性への影響,”情報処理学会組込みシス
テム研究会,横浜, 2021年11月.

46. 伊藤哲, 赤岩慧士, 舟橋勇佑,西川広記, 孔祥博,谷口一徹, 冨山宏之,
“荷重と風による飛行速度の変化を考慮したドローン配送計画,”電
子情報通信学会VLD/DC/RECONF/ICD/情報処理学会SLDM研究会,
オンライン, 2021年12月.

113

