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Abstract

Pain Facial Expression for Patient Robot based on

Musculoskeletal Pain Inference

Miran Lee

Graduate Shool of Information Science and Engineering

Ritsumeikan University

Care and nursing training (CNT) is to develop the ability to effectively respond

to the needs by investigating patients’ requests and improving trainee’ care skills in

a caring environment. With the advances in medical and health care systems, it is

essential in care and nursing education to train professionals who can competently

handle various situations and help the needs of individuals with diseases and care

recipients’ quality of life in homes, hospitals, and facilities. Although conventional

CNT program has been conducted based on videos, books, and role-playing, the best

way is to practice on an actual human. However, it is challenging to recruit patients for

training continually, and the patients may have experienced fatigue or boredom with

iterative testing. As an alternative approach, a patient robot that reproduces various

human diseases and provides feedback to trainees has been introduced.

This dissertation introduces a patient robot that can express facial emotions or

feelings of pain states like an actual human does in joint care education. The primary

three objectives for the proposed patient robot-based care training system are (a)

to understand better the effects of care skills by deeper interpretation of the results

based on quantitative data obtained from the robot for providing an effective patient

robot-based care education system, (b) to infer the pain felt by the patient robot and

intuitively provide the trainee with the patient’s pain state, and (c) to provide the facial

expression-based visual feedback method of the patient robot for care training.



The first objective is to develop the development of the patient robot’s upper

limb containing a shoulder and an elbow complex. Experts who have experienced

for many years in the medical field and students participate in the data acquisition

process to collect quantitative data of the patient robot by performing care tasks as

range of motion (ROM) exercises. Based on the robot’s sensor data, the results are

analyzed and interpreted through various perspectives to discuss the effectiveness

and feasibility of the patient robot. The second objective is to improve the way of

interaction and feedback in which the patient robot provides the current pain state

to the trainees by proposing the method for inferring the pain state of the patient

robot. The conventional post-analysis is proper to interpret the analysis of parameters

associated with the robot’s pain and use when investigating the effect of parameters on

care training. However, there are limitations in quantitatively evaluating their care skill

and automatically recognizing the robot’s pain during care education. To overcome

the issues, the method of pain inference is suggested. The third objective is to develop

a robot’s emotion and pain expression by developing a robot’s avatar in joint care

education. For this objective, tracking the user’s emotions in real-time based on the

face image is proposed. Consequently, the robot’s avatar can express a continuous

mood transition and the pain state to the trainees during the care training. The findings

of this study are anticipated to provide a new path for the development of advanced

patient robots used in the care training environment by reproducing the symptoms of

various muscle and joint diseases, such as paralysis, contracture, and muscle weakness.

Further, the robot’s emotion and pain expression techniques are expected to provide

efficient feedback on care training in terms of human-robot interactions.

Keywords: Care and nursing training, human patient simulation, patient robot, care training assistant
robot, social robot, human-robot interaction, sensor systems, pain expression, robot personality, robot
emotional expression, facial expression
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Chapter 1

Introduction

This dissertation considers care training systems for effectively improving care skills

during care education and training. The ultimate goal is to make effective care educa-

tion that allows users to react immediately to robots’ actions by continually interact-

ing. This thesis achieves patient robots’ development, prediction of pain intensity of

robot, tracking of robot’s mood transition, and providing feedback that includes the

robot’s current pain and emotional state to caregivers.

This Chapter describes the essential background, objective, and research problems

of the proposed system in this dissertation and reports the contributions to the research

findings in detail.

1.1 Background

1.1.1 Care and nursing training

A caregiver is an expert who provides medical treatment or non-medical care to

improve care recipients’ quality of life in homes, hospitals, and facilities. The role

of the caregiver is to support appropriate care and nursing by constantly interacting

with the care recipient and helping care recipients maintain a good life by providing

treatment methods to perform various activities in their daily lives thoroughly. Care

recipients who need the help of a professional caregiver such as a nurse or therapist

due to an accident, illness, or aging, can be divided into three main groups: 1) elderly,

2) disabled, and 3) patient, depending on the needs and purpose of care and nursing

skills.
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Figure 1.1. Demographic indicators of the elderly population of major countries
(Greece, Japan, Portugal, Italy, and Germany) provided by the Organization for Eco-
nomic Cooperation and Development (OECD) [1]. The elderly population is defined
as people aged 65 and over.

• Elderly: According to the Organization for Economic Cooperation and Devel-

opment (OECD) report, the population of older people in Japan was 12.05%

in 1990 and more than doubled to 25.06% in 2013 as shown in Fig. 1.1 [1]. In

this aging society, the role of caregivers becomes crucial, as most older people

need routine help daily due to their reduced functional and cognitive capabili-

ties [2]. The caregivers must be trained in an appropriate and accurate training

environment to acquire proficient skills to care for the elderly to ensure the com-

fort and safety of the elderly. Further, the caregivers should continually train their

ability to deal with the limited range of joints and muscles’ movement and help

with stretching exercises periodically to prevent muscle weakness, contracture,

and stiffness for the elderly in daily life.

• Disabled: Since disabled individuals have different challenges and needs, such

as moving, washing, and cooking, it is necessary to maintain a dignified life

based on the support of appropriate care and nursing and independently satisfy

various daily activities.

• Patient: Communication with patients is one of the most critical factors in care
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and nursing [3]. The nurse needs to resolve the patient’s illness based on suitable

treatment methods and provide evaluation and support for treatment to establish a

positive interaction with the patient. Therefore, nursing for continuous treatment

evaluation is also an essential role in terms of patient care.

In terms of various care and nursing environments, an outstanding caregiver must

have not only competent skills to provide adequate care and support but also ancillary

qualifications such as reliability [4], stability [5], optimism [4], and communication

[4, 6] with care recipients as follows:

• Reliability: Skilled caregivers must increase the reliability of their skills by

empirically acquiring the required skills of treatment and care.

• Stability: Stable posture and facial expression can reassure the patient and create

a comfortable environment when constantly communicating with the patient.

• Optimism: Caregiver with an optimistic disposition can positively change the

depression or low moods and anxious psychology of a care recipient.

• Communication: Care recipients may experience pain or stress in care or nursing

environments, and caregivers must interact with them based on communication.

To achieve these abilities and qualities, experts or students in care and nursing need

to learn and train to reach their superior skills consistently. Care and nursing training

(CNT) is to develop the ability necessary to effectively respond to the needs by inves-

tigating patients’ requests and improving caregivers’ skills in a caring environment. In

CNT, however, the principal issue is the risk of injury to the subjects during training

due to a trainee’s ineptitude. Therefore, it is necessary to train experts who can com-

petently manage various situations and meet the needs of individuals with diseases [7]

according to medical and healthcare systems’ advances.
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1.1.2 Human patient simulation

For CNT, students or novices who wish to become professional caregivers or thera-

pists can accumulate theoretical knowledge through the traditional methods (watching

videos and reading books) and the empirical methods for hands-on practice as hu-

man patient simulation (HPS) as shown in Fig. 1.2. HPS can be divided into three

areas, such as role-playing, stationary human mannequin, and patient robot, and the

definitions and pros and cons can be described as follows:

• Role-playing: Role acting is a method of asking a nursing college student or

subjects familiar with the target patient’s symptoms to act as a patient. The

role-playing method, however, is ineffective because a healthy person cannot

accurately simulate a patient’s actions suffering from declining muscle strength

and paralysis [8].

• Stationary human mannequin: In the late 1950s, a life-sized prototype man-

nequin was utilized to evaluate the skills of the physical assessment of student

nurses [9]. Since then, stationary mannequins are frequently used for training

in clinical examinations (e.g., blood pressure measurement, diagnosis using a

stethoscope) and intravenous injections. However, there is a limitation in that

trainees cannot receive feedback after CNT because the conventional method

of HPS, such as stationary mannequins, imitate care-receiver movements or

specific diseases and do not contain interaction technology.

• Patient robot: A patient robot is a human-like mannequin (or tool) that effectively

provides CNT for gaining skills based on the interaction between humans and

the robot. Since it is difficult for student nurses to have opportunities to train care

and nursing for real-patient, a patient robot has the robust advantage of benefit

from the teaching and learning of their care and nursing skills in a controlled

environment [10].
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To summary this Section, although there are various suitable methods for using

HPS depending on the purpose and target of CNT, the importance of research related

to feedback on HPS has been increasing because effective methods for assessing CNT

performance, including caregiver and care recipients interactions, are not well defined,

and the development of more advanced HPS is required.

Figure 1.2. Different methods for care and nursing training (CNT); textbook of
nursing [11], carer’s book [12], video [13], role-playing [14], virtual reality (VR)
[15], medical mannequin [16], robot in patient transfer [8], and patient robot [17].
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1.2 Statement of problem

In CNT, most students aspiring to be caregivers, nurses, or therapists are provided

an opportunity for training at the school or institute for a fixed training period. Al-

though they gain experience through conventional methods such as watching videos,

reading books, practicing with simulated subjects, the most recommended training

method involves practicing on an actual human. However, it is challenging to contin-

ually recruit patients for training with ethical and safety concerns in care and nursing

methods, and the care-receiver in the CNT program experiences fatigue or boredom

with iterative testing. To resolve these concerns of conventional care and nursing

education systems, developing a human patient simulation (HPS) for CNT has been

inevitable.

Figure 1.3. Conceptual and motivational mind map to derive the problem’s statement
in this work.
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Fig. 1.3 shows the conceptual and motivational mind map to derive the problem’s

statement in this dissertation. As explained in Section 1.1.2, HPS can be mainly divided

into role-playing, stationary mannequin, and patient robot. One of the main limitations

of a stationary mannequin is its insufficient effectiveness in enhancing the care training

performance because it is unable to record quantitative data on movements, such as

the joint angle, force, speed, duration, and pressure value; thus, evaluating the efficacy

of care education for trainees becomes difficult. Besides, the role-playing method

that cannot satisfy excellent feedback is ineffective because a healthy person cannot

accurately simulate a patient’s actions suffering from declining muscle strength and

paralysis [8]. On the other hand, the patient robot can be used not only for caregivers

to train care and nursing but for therapists to rehabilitate patients with the disease,

which are considered helpful in improving their skills, and many studies have been

introduced recently [18, 19, 20, 21, 22, 23]. Although a lot of research has been

proposed to develop patient robots for various purposes, there remains a need for

research to reproduce specific diseases in patients. In particular, since patient robots

for CNT reproduce various tasks such as transferring, rehabilitation, and diagnosis,

the patient robots that respond to specific tasks must be continuously developed. Also,

patient robots have been developed to speak, hear, and breathe and respond actively and

passively to joint movements and reproduce symptoms to simulate various situations

and activities in humans to help train students [24]. However, it is unclear to get

feedback on how well students performed their tasks from the robot’s emotion during

training. Therefore, a more advanced HPS is required to express current emotions or

feelings of pain like a human through text-, alarm-, voice-, and visual-based methods

for interaction between users and robots.

Keeping in mind the aforementioned issues and motivation, this dissertation deals

with the development of a patient robot that reproduces the patient-specific problematic

joint for effectively improving the skills of caregivers and the care training system based

on feedback that contains robot’s pain and emotional expression for supporting the

robot.
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1.3 Aims and objectives

1.3.1 Aims

To achieve the advanced HPS in CNT, this dissertation introduces the patient

robot for care training assistant to reproduce the patient with specific musculoskeletal

symptoms. As described above, the advanced feedback system for care training is a

significant issue for the proposed care training system. Therefore, this dissertation

proposes a patient robot that can express emotions and pain like humans and studies

a visual feedback method that allows the user to respond immediately to the robot’s

emotion and pain state in care training. Furthermore, the proposed integration system

consists of several modules such as the care quantitative score estimator, user’s facial

expression recognizer, patient robot’s avatar generator, and provider of the facial

expression with pain and emotion is crucial for the development of the proposed

system.

The primary aims of this dissertation are (a) to understand better the effects of

care skills by deeper interpretation of the results based on quantitative data obtained

from the robot for providing an effective patient robot-based care education system,

(b) to infer the pain felt by the patient robot and intuitively provide the trainee with the

patient’s pain state, and (c) provide a novel approach to the facial expression-based

visual feedback method of the patient robot for care training to improve the interaction

skill of the caregivers.
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1.3.2 Objectives

To accomplish the three principal aims of this work, the specific objectives must

be attained as follows, and more detailed objectives are specifically addressed in each

Chapter.

• To develop an upper limb robot for care education consisting of the shoulder

complex and elbow joint.

• To develop a graph-based system for monitoring care training in real-time.

• To reproduce the patient-specific problematic joint using a developed robot.

• To conduct four kinds of ROM exercises (extension and flexion of shoulder

complex joint, elevation and depression of shoulder complex joint, lateral and

medial rotation of shoulder complex joint, and extension and flexion of elbow

joint) using a care assistant robot.

• To evaluate the feasibility of care training assistant robot and monitoring pro-

gram.

• To investigate the significant differences in care training between students and

experts and the effects of continuous and repetitive care education using robots.

• To generate 3D avatars with pain expression by building the database including

facial images through pain stimulus expression using transcutaneous electrical

nerve stimulation (TENS).

• To develop visual-based feedback of robot based on robotic emotional transition

method using modules of care training ability and interaction skill in CNT.
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1.3.3 Main research problems

This Section presents the research problems (RPs) to be solved as follows according

to the research objectives described above as follow:

• Does the proposed system lead to a more significant effect in the final trial than

the initial trial in the care education using robots for users?

• Does the proposed system prove a significant difference in care skills between

experts and novices in care education using a robot?

• Do experts with many years of experience participate in care education in the

same manner and behavior?

• Do experts differ in quantitative performances when performing the same type

of care education (exercise)?

• Does the proposed method provide an assessment of how well the user performs

care training according to the guidelines of care in the assessment aftercare

training?

• Does the proposed method provide feedback to the user on how well the inter-

action between the user and robot is performing?

This dissertation describes the proposed system modules by analyzing and interpreting

the results for modules’ performance and feasibility to achieve the research purposes.

In the following Chapters, the specific research problems are suggested, and the

observations obtained while solving RPs are presented.
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1.4 Statement of contributions

This Chapter describes the contributions of the work. The specific assessment of

contributions achieved from the results are described in Chapter 7.

• The proposed patient robot has been proven to potentially improve caregivers’

care skills by conducting experiments on ROM exercises in a group of experts

and students.

• The results of the study confirmed the feasibility of utilizing the patient robot

with pain expression for care training, and it is concluded that the proposed

approach may be used to improve care and nursing skills upon further research.

• The proposed patient robot that can effectively improve care skills is proposed,

using the robot that reproduces a subject with musculoskeletal disorders, pro-

viding more functions than existing methods such as books, videos, and medical

mannequins.

• The proposed visual feedback method providing the robot’s pain and emotional

state expression can help to improve the interacting skills of caregivers.

• The proposed robot’s pain and emotion expression system allows the user to

respond more immediately to the robot’s emotional state or pain than the previous

graph-based feedback method.

To summarize, this Chapter outlined the fundamental background related to CNT

and the patient robot to improve understanding of the purpose of this work. The

paper’s main purpose provides a deeper understanding and results in the analysis of

the mechanism of the robot for care training to improve the skills of the caregiver

effectively and propose a novel approach to the visual feedback method that provide

the robot’s pain and emotion expression. The dissertation’s detailed contributions are

explained in detail from the subsequent Chapters by proposing a care training system.
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1.5 Organization

This dissertation is organized as follows (Fig. 1.4). The literature review works on

the human patient simulator and feedback method for care training is done in Chapter

2. To propose the visual-based feedback for care training using that patient robot, the

method to develop the patient robot and to reproduce the musculoskeletal problem-

atic symptoms is presented in Chapter 3. Chapter 4 describes the pain inference and

expression of patient robot, and in Chapter 5, the robotic emotion generation method

for robot’s current emotional expression is detailed. Chapter 6 presents an integration

system to the care training feedback system that provides an avatar of the patient robot.

Finally, some concluding remarks of this dissertation are addressed with future work

in Chapter 7.

Figure 1.4. A brief summary of the organization of the thesis.
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Chapter 2

Literature review

This Chapter’s objective is to review the accurate and comprehensive research literature

on patient robots, which is the main theme of this dissertation. The literature review

of this Chapter will be essential findings to form the fundamental background and

motivation for the proposed method in the following chapters and will be a detailed

knowledge of the materials for the proposed method.

2.1 Patient robot

A patient robot, computer-controlled patient simulator, was first introduced to

augment resident education in the medical field in 1969 [25, 26]. The patient robot

presented by Denso and Abrahamson [25, 26] proved that the robot was competent at

acquiring skills for anesthesia training through subjective performance improvement.

In universities and research institutions, patient robots are extended to demonstrate

the various fields for the students’ training [27, 28] and are considered helpful in

improving the students’ skills since the introduction of patient robots.

2.1.1 Patient robot for medical training

Patient robots have been developing according to the purposes they are used,

such as surgery, anesthesia, nursing, and care. Wang et al. [20] proposed a robot

containing arm joints for neurologic examination training to enhance the medical

staff’s ability. Kitgawa et al. [22] presented a human-like patient robot that can express

emotions to facilitate training in administering injections. In addition, Takanobu et

al. [29] proposed the dental patient robot with questionnaire assessment, and Noh et
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al. [30] presented the WKA-1R robot assisted for evaluating quantitative assessment

of airway management. Although robots are used for surgery or clinical diagnosis

training since the hands move freely by various tools with both hands, the interaction

between the hands and robots or surgical equipment is excessively entangled [31]

in surgery; the surgical training system has been developing through virtual and

augmented reality [15, 31, 32]. In terms of CNT using a patient robot, however, a

training conducts actively or passively movement by applying physical force, such as

rehabilitation or regular stretching. A robot for CNT, therefore, that produces sensor

data such as joint angle, resistance torque, and pressure may be more suitable than an

educational system based on virtual reality or augmented reality.

2.1.2 Patient robot for care and nursing training

Patient robot for care and nursing training (PRCT) can be used for training and

improving care ability in interactions with patients or care-receivers, such as treatment,

nursing, bathing, transferring, and rehabilitation. One of the critical challenges of using

the PRCT in daily life is patient transfer, and the other is rehabilitation. For patient

transfer, caregivers commonly perform a task in hospitals, vehicles, and homes to

move patients with mobility problems or who need a wheelchair [8]. Patient transfer’s

complicated tasks include parking a wheelchair, mutual hugging, standing up, pivot

turning and sitting down in a wheelchair. As a training system for these tasks, Huang

et al. [8, 33, 34] proposed the patient robot for transfer and investigate the effect of

practice on training skills through robot patient. Besides, PRCT has been proposed to

assist patients in sit-to-stand postures by Lin et al. [35], and many studies involving

training systems for daily life activities using patient robots have been achieving

notable outcomes.

In the case of rehabilitation, patients with musculoskeletal disorders may experi-

ence the limited movement of muscles and joints due to symptoms such as stiffness,

contraction, or weakness of muscles. Thus, caregivers or therapists must periodically

ask patients to perform the rehabilitation. The caregivers must practice sufficiently in
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advance so that they do not stress the joints or skin of a patient with musculoskeletal

disorders when performing care or treatment because trainees tend to apply unnec-

essary force to the joint when doing rehabilitation or stretching for patients. Mouri

et al. [19] developed the robot hand with disability (contracture) for rehabilitation

therapist training by using a distributed tactile sensor that estimates the elbow joint

torque of the robot hand (Fig. 2.1 (a)). Fujisawa et al. [18] proposed the upper limb

patient simulator for training the practical experiences. Their simulator can reproduce

the stiffness of elbow joint to allow trainee to improve the opportunities to stretch of

the physical therapy (Fig. 2.1 (b)).

Figure 2.1. Rehabilitation training using patient robots. (a) Robot hand for therapist
education [19] ©Reprinted, with permission, from [Mouri et al., Development of robot
hand for therapist education/training on rehabilitation, 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, and 10/2017 of publication] (b) Up-
per limb patient simulator [18] ©Reprinted, with permission, from [Fujisawa et al.,
Basic Research on the Upper Limb Patient Simulator, 2007 IEEE 10th International
Conference on Rehabilitation Robotics, and 06/2017 of publication].
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2.2 Musculoskeletal symptoms

Musculoskeletal disorders of the upper limb contain a variety of symptoms, in-

cluding disorders of joints, muscles, ligaments, and nerves [36]. Common symptoms

of musculoskeletal disorders include aching, stiffness, fatigue, muscle and joint pain

that worsens with movement. A general treatment technique to relieve these symptoms

in daily life is a range of motion (ROM) exercise or stretching.

2.2.1 ROM exercise

Range of motion (ROM) exercise, which describes physical exercise that is used

for improving the movement of joints. This ROM exercise is characterized by the

musculoskeletal actions when performing an exercise [37]. ROM exercises in the

upper limbs can be performed by the shoulder complex and the elbow joint. There are

about nineteen types of ROM movements of the upper limb [38] as shown in Fig. 2.2.

Figure 2.2. Range of motion (ROM) exercises of the upper limb. ©Reprinted,
with permission, from [MMF et al., Efficacy of shoulder exercises on locoregional
complications in women undergoing radiotherapy for breast cancer: clinical trial,
Brazilian Journal of Physical Therapy, and 11/2008 of publication].
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2.2.2 ROM exercise effects

Many studies have reported that ROM exercise is effective in preventing movement

limitation in patients with musculoskeletal disorders [39, 40, 41]. Observing the

quantitative results of the reported data, Kim et al. [40] reported passive ROM exercise

for upper extremities in 37 patients with acute stroke, and the results of the work showed

a significant increase in range of motion for four weeks compared to initial exercise

for two weeks as shown in Table 2.1. At two weeks, the average effect of all ROM

exercises was 2.25° in the experimental group (patients with stroke) and 0.42° in the

control group (healthy group). On the other hand, in the results of four weeks, it can

be seen that the ROM effect was significantly improved to 4.27° in the experimental

group and 2.05° in the control group.

As a result of reliably supporting the aforementioned result, Ono et al [41] demon-

strated the positive effects of ROM exercise on rats with denervation and joint con-

tracture in an in vivo experiment (Fig. 2.3). Their results indicated that passive ROM

exercise prevents the expansion of contracture caused by neglect and denervation and

may help maintain flexibility of myogenic and atherogenic limitations. In changes in

ankle dorsiflexion ROM, the rat models exposed to sciatic nerve resection (reduced

muscle stiffness and muscle strength) and joint fixation recovered muscle strength

after one week of ROM exercise, with a difference of 6° between the control and ROM

exercise group and 19° between the control and non-ROM exercise groups. These

findings of these studies suggest the importance and necessity of regular ROM exer-

cise in musculoskeletal patients in daily care and nursing activities.
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Table 2.1. Comparison of range of motion of affected shoulder and elbow joint. Exp
and Cont indicate the experimental and control group. Participants in the experimental
group were patients with stroke. All participants performed passive ROM exercise for
2 and 4 weeks (abbreviated as wks). Table adapted from Kim et al [40].

Variables
(degree)

Baseline After 2wks After 4 wks
Mean (Standard deviation)

Shoulder

Flexion
Exp (n=19) 114.1 (13.0) 116.7 (12.8) 119.0 (12.6)

Cont (n=18) 109.1 (20.2) 109.8 (20.7) 111.1 (21.1)

Extension
Exp (n=19) 25.2 (5.2) 27.1 (4.9) 29.5 (5.3)

Cont (n=18) 31.2 (4.7) 31.3 (4.7) 31.9 (4.8)

Abduction
Exp (n=19) 94.2 (12.0) 96.3 (12.1) 98.4 (12.5)

Cont (n=18) 92.7 (13.0) 93.0 (13.1) 94.2 (13.4)

Internal rotation
Exp (n=19) 51.3 (19.8) 53.8 (19.5) 55.6 (19.6)

Cont (n=18) 57.7 (14.8) 58.3 (14.8) 58.8 (15.2)

External rotation
Exp (n=19) 44.8 (24.9) 46.7 (25.3) 48.6 (25.5)

Cont (n=18) 35.0 (18.2) 35.4 (18.3) 36.0 (18.3)

Elbow

Flexion
Exp (n=19) 95.2 (35.3) 97.7 (35.3) 99.3 (35.1)

Cont (n=18) 103.6 (16.7) 104.0 (16.9) 105.4 (16.8)

Figure 2.3. Experiment for ROM effects in rat model. Figure adapted from
[41]. ©Reprinted, with permission, from [Ono et al., The Effect of ROM Exer-
cise on Rats with Denervation and Joint Contracture, Journal of Physical Therapy
Science, and 07/2009 of publication].
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2.2.3 Musculoskeletal symptoms reproduction

Yamazaki and Tanaka [42] proposed a method to reproduce the skeleton simulating

the resistance characteristics of human’s joints. In [42], an exponential function-

based prediction method has been proposed to reproduce the resistance nonlinear

characteristics of joints, as shown in Eq. 2.1.

) (\) = 4(?1 (\−?2)) − 4(?3 (?4−\)) . (2.1)

where ) (\) is the resistance torque (Nm), \ is the joint angle (degrees), ?2 and

?4 are the coefficients indicating the position where the resistance torque increases

rapidly, and ?1 and ?3 are the coefficients indicating the degrees of increase in the

resistance torque in the range of movement (Fig. 2.4).

Figure 2.4. Musculoskeletal symptoms reproduction. Figure adapted from [42]
©Reprinted, with permission, from [Yamazaki and Tanaka. Development of a Human
Joint Imitated Dummy, Biomechanisms, and 01/2006 of publication].
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2.2.4 Limitations

Although the studies show that greater attention is being paid to patient simulator

robots, simulators for human care training are still insufficient. Besides, although

simulated robots have been developed in many studies, the development of a human-

robot interaction system in which simulated robots can directly interact with humans

is still lacking. The human-simulated robot interactions for care education can be

developed based on text-, alarm-, voice-, and visual-based methods. However, the

simulated robot for CNT still relies on the post-evaluation using statistical analysis,

and a more advanced feedback method is required for the interaction between users

and robots.
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2.3 Robot’s pain and emotion expression

This Section describes the importance and necessity of expressing pain and emo-

tions in the patient robots. The full advantages of patient robots over the role of static

medical mannequins cannot be proved unless it provides feedback on pain, stress,

and emotions to the caregivers when the patient robot is applied to an actual training

environment. To achieve effective CNT feedback, it is important for care and nursing

training to design patient robots that can express emotions or feel pain like humans

through visual feedback. The robust feedback methods that robots can provide to

learners can be based on visual information and sounds. Among them, visual-based

feedback is the most effective method in terms of practice for caregivers because the

caregivers should periodically investigate whether the patient is feeling pain or not. In

particular, it is imperative to observe painful expressions on the patient’s face because

the patient may experience a burden in communication with caregivers.

2.3.1 Relationship between pain and emotion

According to [43], the relationship between pain and emotions can be presented

in several potential theories, which are highly complicated and ambiguous. Basically,

pain is a sensory and emotional experience, and although pain may lead to unpleas-

antness, it may be defined separately from emotions. However, another concept of

this relationship is that pain implicitly contains a sensory, emotional composition,

cognition, and experiential and external factors, and it is challenging to consider to

completely separate pain and emotion. On the other hand, pain implies a vertical

relationship between pain and emotion because it can be conceptualized as a type of

emotional categories such as fear or anger. Besides, the relationship between pain and

emotion can be defined as a horizontal intersecting relationship, and there are many

more potential theories to define this relationship [44, 45, 46].
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2.3.2 Robot’s pain

Pain is an immediate response that protects the human body from tissue damage

and can be observed as an absolutely subjective measure. When most humans are

subjected to physical pressure from external factors, most humans usually express

pain through facial expressions, voices, and physical responses.

In 2011, the realistic child robot Affetto was presented by Ishihara et al. [47], which

is to understand and interact between the caregiver and child to support the child’s

development. Affetto is able to feel touch or hit by detecting changes in pressure from

synthetic skin [48]. Based on this pressure sensation, Affetto is being developed as

a robot capable of expressing pain and emotions with a painful nervous system. In

this way, applying the pain response system to a robotic system makes it possible to

build a robotic system that can feel pain like an actual human when most humans are

subjected to physical pressure from external factors.

2.3.3 Robotic facial expression

The intelligent robotic facial expressions using emotional processing are more reli-

able, coherent, and human-like [49], forming constant and more profound interactions

because the emotional processing heightens strongly the robot’s empathy and learning

abilities with people [50]. Typically, human emotions can be expressed in three axes,

including pleasure, arousal, and dominance, that Mehrabian and Russell [51] devel-

oped to evaluate experience, as shown in Fig. 2.5 (a). Using this relationship between

pleasure and arousal axis, Russell [52] coordinated several basic human emotions, such

as anger, disgust, fear, happiness, sadness, surprise, and neutral, into two-dimensional

map as shown in Fig. 2.5 (b).
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Figure 2.5. Area of human emotions. (a) Three dimensional model as tripartite view of
experience [53] ©Reprinted, with permission, from [Bakker et al., Pleasure, Arousal,
Dominance: Mehrabian and Russell revisited, Current Psychology, and 06/2014 of
publication] (b) Pleasure (x-axis) and arousal (y-axis) axis for human emotional state.

In recent studies, the robot’s emotions depend on human facial expressions, texts,

or voices, and research on Robotic Mood in which the robot’s emotions continuously

change according to the current emotional state of humans has been actively pur-

suing. In [22] and [54], the emotional model of the patient robot was proposed for

injection training. The proposed model was designed based on emotional fluctuation

by chaos theory, and the robot expressed four emotions—normal, smile, angry, and

pain—using robotic head. These emotions are deeply related to personality, and the

robot have different personalities in behavior and emotional response [55]. There-

fore, studies on the emotional response according to the personality of the robot were

also conducted. In [56], a robotic mood transition with personality was proposed

for autonomous emotional interaction with humans, and the questionnaire of their

experiment showed positive and feasible evaluation of responsive robotic facial ex-

pressions. Masuyama et al. [57, 58] claimed that the relationship between emotion and

personality are influential factors in communication and proposed the robotic emo-

tional model with the human’s personality factors based on the pleasant and arousal

scaling. Likewise, the research on robotic emotions can further improve the user’s

satisfaction in the human-robot interaction system and can lead to a positive effect of

receiving more feedback from responsive robots.
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2.4 Summary

With the advances in medical and health care systems, it is essential in care and

nursing education to train professionals who can competently handle various situations

and meet the needs of individuals with diseases [7]. To improve care and nursing

skills, most students aspiring to be caregivers, nurses, or therapists are provided

an opportunity for training at the school over a given period. Although they gain

experience utilizing watching videos, reading books, and practicing with simulated

subjects, the most effective way is to practice with an actual human. However, it

is challenging to recruit patients for care and nursing programs continually, and the

patients may have experienced fatigue or boredom with iterative testing. Therefore,

a novel approach to the care and nursing training system is required to resolve the

existing methods’ issues effectively. The patient robot imitates an actual human’s

behavior and activity [23, 59] and can be used for care training and improving nursing

skills in interactions with patients or care-receivers, such as bathing, transferring, and

rehabilitation [60, 61, 62]. Although many studies have proposed the patient robot,

however, the care training studies depend on the statistical or empirical techniques

that can analyze results manually. These methods are proper for analyzing each

parameter and easy to use when investigating the effect of parameters on care training.

Consequently, it is difficult for trainees to evaluate their treatment quantitatively in a

real-time system, and there is a limitation in calculating the final score automatically

after finishing care education. Further, the post-analysis method has a limitation

in that it is difficult to recognize the emotional state, pain, or stress that the robot

feels during care education. Keeping in mind the aforementioned motivation, it is

crucial for a more advanced HPS system to develop patient robots that can express

current emotions or feelings of pain like an actual human through text-, alarm-, voice-

, and visual-based methods for interaction between users and robots. While several

studies have demonstrated the advanced patient robot, there remains an opportunity to

improve how robots provide effective feedback to caregivers and how robots interact

with caregivers in care education.
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Chapter 3

Care training assistant robot

In CNT, students lack methods for acquiring the necessary skill and experience. Be-

sides, they lack sufficient opportunities to practice on actual human beings. This

chapter, therefore, presents a patient robot with the musculoskeletal symptom that

supports efficient care education for caregivers to achieve improved care skills, inter-

prets the results to prove the necessity and feasibility of the patient robot developed in

this chapter, and discusses the results. First and foremost, this study aims to develop a

patient robot with a shoulder (the glenohumeral joint and sternoclavicular joint) and

elbow complex and a care training monitoring program. By performing care tasks as

range of motion (ROM) exercises (extension and flexion, elevation and depression,

and lateral and medial rotation of the joint) in care education using a patient robot,

four experts who have experienced for many years in the medical field, participated in

the data acquisition process to collect quantitative data of the patient robot. Based on

this information, the results are analyzed and interpreted through various perspectives

to investigate and discuss the effectiveness and feasibility of the patient robot. This

study is anticipated to provide a new pathway for developing advanced patient robots

used in care training environments by imitating the symptoms of various muscle and

joint diseases such as palsy, contracture, and muscle weakness.
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3.1 Motivation

The examination of the correlation between simulated robots and actual humans

can help evaluate simulated robots’ applicability. Kim et al. [63] presented a haptic

elbow spasticity simulator and compared the robot and in-person questionnaire results

for improving the reliability of clinical assessment. Based on their results, they

concluded that their proposed haptic recreation of spasticity has the potential to be

used as a training tool for standardizing and enhancing the reliability of clinical

assessment. Huang et al. [8, 34] proposed a robot patient for nursing skills training

during stand-up and sit-down actions on a wheelchair during patient transfer, in

addition to performing relevant experimental tests. Their results revealed that the

robot patient could successfully simulate the limb actions of a patient according to

the operations performed by the nursing teachers and was suitable for nursing-skill

training.

Caregivers to the patient with musculoskeletal symptoms should continually de-

velop their ability to deal with the limited range of movement of joints and muscles

and assist in stretching exercises periodically to prevent the muscle weakness, con-

tracture, and/or stiffness of patients. As mentioned in Chapter 2, the passive range

of motion (ROM) exercise is a type of physical exercise that is used for improving

the movement of joints, which is one of the most important tasks in care and nursing

because the patients may experience limited joint movement in daily life due to the

musculoskeletal symptoms. However, the principal issue in caregiving training is the

risk of injury to the patient during the training due to a trainee’s inexperience. In

addition, although robots for various purposes with specific diseases have been pro-

posed to be used for the betterment of care and nursing education, there are still not

enough research and well-established training systems to develop patient robots that

mimic the musculoskeletal diseases of the elderly. To resolve these issues, a patient

robot is presented as a method to improve the care abilities of caregivers or students

effectively.
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3.2 Objectives and research problems

3.2.1 Specific objectives

The objectives of the care training assistant robot introduced in this Chapter to

achieve the goals are as follows.

• To develop an upper limb robot for care education consisting of the shoul-

der complex and elbow joint and reproduce the patient with musculoskeletal

symptoms.

• To develop a care education system for monitoring care training in real-time.

• To conduct four kinds of ROM exercises using the patient robot.

• To investigate the significant differences in care training between students and

experts and the effects of continuous and repetitive care education using robots.

3.2.2 Research problems

In order to achieve the goals of the proposed patient robot in this Chapter, the

research problems are as follows:

• RP 3.1) Are there any statistically significant differences between expert and

student groups in care training using the patient robot?

• RP 3.2) Do experts with many years of experience participate in care education

in the same manner and pattern?

• RP 3.3) Does the proposed patient robot have sustainability and feasibility in

the future?
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3.3 Requirements

3.3.1 Target subjects

In the study of this Chapter, the patient robot will be designed for the follow-

ing conditions by considering the medical symptoms of elderly-specific problematic

movements of the upper limb joint. Here, the specific problematic movements means

that the current range of motion of the joint is more limited than that of the past due

to the stiffness, and several experts have determined the range of motion of the patient

robot during the development process.

3.3.2 Target tasks in care training

The patient robot in this study aims to be developed to educate passive ROM

exercises in the care education environment. These ROM exercises are frequently

performed for the rehabilitation of people suffering from musculoskeletal diseases. In

the several ROM exercises mentioned in Section 2.2.1, the main ROM exercises are

the extension and flexion of the shoulder complex joint (SEF), elevation and depres-

sion of the shoulder complex joint (SED), lateral and medial rotation of the shoulder

complex (SLM), and extension and flexion of the elbow joint (EEF). In the SED

exercise, elevation and depression represent the upward and downward movement of

body structures, respectively; for example, the depression of a sternoclavicular joint

corresponds to the arm moving vertically downward. The SEF exercise constitutes

increasing and decreasing the angle between the two bones connected by the gleno-

humeral joint [64]. The SLM exercise refers to the lateral and medial arm rotations of

the humeral around its longitudinal axis. A brief explanation is as follows:

• SEF: The caregiver holds the patient’s wrist with one hand and the shoulder with

the other, bending the patient’s arm straight to the tip of the shoulder (Fig. 3.1
(a)).
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• SED: The caregiver holds the patient’s shoulder with one hand and the elbow

with the other, moving the shoulders upwards and downwards (Fig. 3.1 (b)).

• SLM: The caregiver holds the patient’s elbow in one hand, the forearm in the

other hand, and rotates the arm in the patient’s shoulder joint’s lateral- and

medial axis (Fig. 3.1 (c)).

• EEF: The caregiver holds the patient’s wrist with one hand and the shoulder

with the other, bending the patient’s arm based on the elbow (Fig. 3.1 (d)).

Figure 3.1. Range of motion (ROM) exercises of the upper limb (a) SEF: shoulder
extension and flexion (b) SED: shoulder elevation and depression (c) SLM: shoulder
lateral and medial rotation (d) EEF: elbow extension and flexion.
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The positive effects of these periodic ROM exercises in patients with musculoskele-

tal disorders are demonstrated in Section 2.2.2. The patient robot in this Chapter is used

for four kinds of ROM exercises for care training by reproducing the joint movements

of the patient target mentioned above.

3.3.3 Target joints and kinematics

To perform care training for the four ROM exercises, SEF, SED, SLM, and EEF,

the patient robot requires joints of the shoulder complex and the elbow complex, as

shown in Fig. 3.2. The shoulder complex includes the sternoclavicular (SC) joint and

the glenohumeral (GH) joint; the SC joint is located where the clavicle and sternum

meet. The GH joint indicates the joint where the glenoid cavity and the head of the

humerus are connected. On the other hand, the elbow joint is a complex consisting of

the humerus and the radius and ulna of the arm.

The upper extremity kinematics for the four ROM movements can be described

Fig. 3.3, and Fig. 3.3 (a) shows the overall structure and mechanism of the upper

extremity joints. The elbow complex consists of the rotational motion based on

the I1 axis in three orthogonal joints (Fig. 3.3 (b)). The glenohumeral joint of the

shoulder complex consists of a spherical joint and can be disassembled into three

orthogonal rotation joints (Fig. 3.3 (c) and (d)). This joint rotates lateral and medial

direction based on the H2 axis (Fig. 3.3 (c)), and performs vertical movement based

on the I2 axis (Fig. 3.3 (d)). Finally, the clavicle joint, which is contained in the

sternoclavicular joint, rotates based on the G3 axis (Fig. 3.3 (e)).
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Figure 3.2. The bones of the shoulder complex and elbow complex. A picture of the
anatomy is provided in Complete Anatomy [65]. The sternoclavicular joint is located
where the clavicle and sternum meet. The glenohumeral joint is located where the
glenoid cavity and the head of the humerus meet. The elbow joint is a complex
consisting of the humerus and the radius and ulna of the arm.
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Figure 3.3. Upper limb kinematics (a) Right upper limb (b) Extension and flexion of
elbow complex (c) Lateral and medial rotation of glenohumeral joint (d) Extension
and flexion of glenohumeral joint (e) Elevation and depression of sternoclavicular
joint. \ indicates the range of angle of each joint.
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3.4 Hardware configuration of the patient robot

3.4.1 Specification

As explained in Section 3.3.1, the patient robot developed in this study was deter-

mined for the elderly with joint problems, and the robot body size of the elderly person

was set based on Human Body Properties Database (HBPD) [66] in Japan and was set

to the average size of an elderly person older than 65 years. As shown in Table 3.1,

based on the HBPD, the lengths of the upper arm and the forearm, as well as the cir-

cumferences of the upper arm and the forearm, together with the weight of the robotic

elbow joint, were set to 288 mm, 285 mm, 220 mm, 240 mm, and 0.35 kg, respectively.

Table 3.1. Size of the joints of the actual human and the patient robot.

Human [66] (mm) Robot (mm)

Upper arm length 289 170

Upper arm circumference 280 285

Forearm length 225 220

Forearm circumference 242 240

3.4.2 Joint configurations

The joint configuration of the robot is shown in Fig. 3.4, which has totally six joints:

three parts of glenohumeral (GH1), (GH2) and (GH3); two parts of sternoclavicular

(SC1) and (SC2); as well as the elbow joint.

The robotic joints of glenohumeral (GH) and sternoclavicular (SC) were com-

bined into the shoulder complex robot. These joints were designed based on the

forceless joint because the elderly robot does not need to move actively during the

care training. The robotic GH and SC joints (GH1, GH2, GH3, SC1, and SC2) were
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designed using six Dynamixel XM-430-W350-R (Robotis Inc., Seoul, South Korea)

servo motors (Fig. 3.4 (a)). The Dynamixel XM-430-W350-R has the main feature

of a robot exclusive actuator with integrated motor, reduction gearhead, controller,

driver, and network in one module (Fig. 3.4 (b)). In addition, two 6-axis force sen-

sors PFS030YA301 (Leptrino Inc., Nagano, Japan) was used to measure the torque

acting at the robotic joints (Fig. 3.4 (c)).

Figure 3.4. Hardware configuration of the shoulder complex (a) Joint design (b) Servo
motor Dynamixel XM-430-W350-R (Robotics Inc., Seoul, South Korea) (c) Six-axis
force sensors PFS030YA301 (Leptrino Inc., Nagano, Japan).
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Fig. 3.5 (a) shows the 3D design, using Autodesk Fusion 360 ®, of the elbow

complex. It includes a carbon frame with components such as a position sensor, a

force sensor, a servo motor, and pressure sensors (Fig. 3.5 (b)). The MX-28 (Robotis

Inc., Seoul, South Korea) was selected as a servomotor, which is utilized for actuation

of the elbow joint. This motor supports low weight (72 g) and has an operating range

of 360°. One of the purposes of using the MX-28, which provides position and speed

proportional–integral–derivative controller, was that the user could control the position

and speed in real-time [67]. Additionally, the 6-axis force sensor CFS018CA201U

(Leptrino Inc., Nagano, Japan) was used for measuring the torque of the robotic

joint. The position angle sensor SV01L103AEA11T00 (Murata Electronics Co., Ltd.,

Kyoto, Japan) and four pressure FlexiForce A201 (Tekscan, Inc., MA, USA) sensors

were used for obtaining the angle and pressure values of the elbow joint of the robot,

respectively.

In the case of the ROM exercise of the elbow joint, when undergoing the care and

nursing training, caregivers may grip the wrist of the patient and there is a possibility

of straining the wrist of the patient as shown in Fig. 3.5 (c). Therefore, the pressure

sensors attached to the wrist of the elbow joint can provide feedback on the gripping

pressure. As shown in Fig. 3.5 (d), four pressure sensors were attached to the wrist

of the elbow joint robot: radius (P1), outside of the wrist (P2), ulna (P3), and inside

of the wrist (P4). The position angle sensor and four pressure sensors embedded in

the elbow joint are obtained through custom hardware boards (Fig. 3.5 (e)) and then

transmitted to a computer. The torque data from force sensor are transmitted to the

computer. The sampling rate of all sensors is set to 100 Hz.
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Figure 3.5. Hardware configuration and design of the elbow complex contain-
ing pressure sensors (a) Joint design (b) Sensors: in order from left to right,
servo motor Dynamixel MX-28 (Robotics Inc., Seoul, South Korea), six-axis force
sensors CFS018CA201U (Leptrino Inc., Nagano, Japan), position angle sensor
SV01L103AEA11T00 (MurataElectronics Co., Ltd., Kyoto, Japan), and FlexiForce
A201 (Tekscan, Inc., MA,USA) pressure sensors (c) ROM exercise of the elbow joint
(d) Position of pressure sensors (P1: radius; P2: outside the wrist; P3: ulna; and P4:
inside the wrist) (e) Hardware design.
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The elbow joint of patient robot can switch between active rotation (to enable the

elbow to be moved actively) and passive rotation (to enable the elbow to be moved

passively) by connecting the clutch and the motor. In passive rotation, as the rotating

part of the motor and the elbow joint part of the forearm are separated from each

other, power is not transmitted at all and the forearm can only be moved by an external

force. In the active state, it is possible to transmit power by fixing the rotating part

of the motor and the elbow joint part of the forearm with screws. However, since

switching between active and passive states is not required while the robot is imitating

a symptom in this study, it was determined that there would be no influence even when

it is switched manually.

The exterior of the shoulder complex was designed using 3D CAD (Autodesk,

Fusion 360, CA, USA) and created with a 3D printer (Zortrax S.A Inc., Lubelska,

Poland), whose material was applied based on acrylonitrile butadiene styrene copoly-

mer for robust durability (Fig. 3.6 (a)). On other hand, the exterior of elbow joint

which was sheathed in artificial skin to make it look more human. To provide the

tactile feeling of a human being, a urethane sponge was placed under the artificial

skin (Fig. 3.6 (b)).
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Figure 3.6. Pictures of exterior design of the patient robot with artificial skin (a)
Shoulder complex (b) Elbow complex.
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3.5 Mechanism

3.5.1 Mechanical design

Fig. 3.7 (a) shows the movement of the shoulder complex joint and the servo motor

of the GH joint used to control the extension-flexion (SEF) and lateral-medial rotation

(SLM) of the robotic GH joints. In addition, the robotic SC joints were developed,

whose elevation–depression (SED) was controlled with the SC joint as the rotation

axis. Fig. 3.7 (b) shows the mechanism of the elbow joint robot and demonstrates the

performance of movement of EEF of the joint by the elbow joint of patient robot.

Figure 3.7. Mechanism of the patient robot (a) Shoulder complex (b) Elbow complex.
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3.5.2 Symptom reproduction

To mimic the movement of the actual human joints, Yamazaki and Tanaka [42]

proposed the Eq. 3.1 of resistance torque by fitting four parameters as ?1, ?2, ?3, and

?4.

) (\) = 4(?1 (\−?2)) − 4(?3 (?4−\)) . (3.1)

where ) (\) represents the resistance torque (# · <) of the joint of the patient

robot. Parameters ?1 and ?3 determine the degree of resistance torque at the end of the

range of the joint angle, whereas ?2 and ?4 are coefficients that designate the joint an-

gle range and can determine the timing at which the onset of the resistance torque can

be perceived. The parameters of ?1 and ?3 are coefficients that determine the extent

of resistance torque increases in the end-feel, whereas the parameters ?2 and ?4 are

coefficients indicating the position where the end-feel begins. To have the robot imi-

tate a patient with joint-specific problematic movements, the range of joint movement

of a patient with limited range of motion was reproduced based on the opinions of the

experts (caregivers) who participated in this experiment. The angle at which feeling

of resistance begins was set from \BC0AC to \4=3 as shown in Table 3.2.

Table 3.2. Determination of the parameters for resistance torque.

Range of limited angle (degrees) Parameters
)start )end ?1?1?1 ?2?2?2 ?3?3?3 ?4?4?4

SEF -15 100 2.8 2.0 2.4 0

SLM -10 10 0.75 -0.3 0.3 0

SED -10 5 0 0 1.3 0

EEF 100 105 10.5 2.1 8.5 1.6

Note: SEF, SLM, SED, and EEF indicate the extension and flexion of the shoulder complex, the

lateral and medial rotation of the shoulder complex, the elevation and depression of the shoulder

complex, and the extension and flexion of the elbow complex, respectively.
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In Fig. 3.8, a graph of the resistance torque with respect to varying joint angles

were represented. By changing ?1 and ?3, the slope of the graph changed. The Eq. 3.1
of resistance torque was applied to the proposed patient robot.

Figure 3.8. Resistance torque graph of joint resistance torque (y-axis) with respect to
joint angle (x-axis): (a) SEF (b) SLM (c) SED (d) EEF.
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3.6 Interface

For the monitoring of care training in real-time, the custom program using Python

was developed as shown in Fig. 3.9. Firstly, the patient robot is connected to the

computer by serial communication, and the data from both the force sensor (unit:

#<) and angle sensor (unit: degrees) are input simultaneously to the computer. In the

control window as shown in Fig. 3.9 (a), there are four parameters as :1, :2, :3, and

:4 are the parameters for determining the resistance torque (The parameters :1, :2,

:3, and :4 are the same as the parameters ?1, ?2, ?3, and ?4, respectively, in Eq. 3.1).

In addition, the function to predefine (refer to Table 3.2) the maximum and minimum

angle to limit the range of joint angle was included.

In Fig. 3.9 (b), the quantitative data are input from three kinds of sensors such

as angle, force, and pressure (the pressure value is obtained using only the elbow

complex). On the left side, torque (# · <) and angle (degrees) are represented as

one-dimensional graphs, and on the right side, the values of four pressure sensors

are represented as a circle graph. The orange line of the graph on the left represents

the ROM exercise graph obtained from an expert in advance, and is referred to as

a guideline. The novices can learn the range of the patient’s motion based on this

guideline and intuitively check the pressure the patient robot feels on its wrist through

the pie graph that appears on the right screen. As described in Fig. 3.5 (d) and (e),

P1 (radius), P2 (outside of the wrist), P3 (ulna), and P4 (inside the wrist) of the

pressure sensor of the robot’s wrist are attached to the fixed positions, respectively.

Accordingly, the pressure value is expressed on the pie graph. As shown in Fig. 3.9
(c), when the pressure sensor is activated, it can be seen that the corresponding circle

point moves outward in the pie graph. Fig. 3.9 (c) shows the screenshot of obtaining

the quantitative data in real-time when care training is performed. The pressure value

on the right screen represents the magnitude of the torque in a one-dimensional line

from a small circle to a large circle when pressure is detected.
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Figure 3.9. Care training monitoring program (a) Control UI; (b) Care training UI,
and (c) Examples of obtaining the quantitative data in real-time when care training.
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3.7 Experiment and results

3.7.1 Purpose

The purpose of this experiment aims to investigate the effects of using the patient

robot for care training. Even though experts have many experiences, care and reha-

bilitation are carried out empirically and subjectively. Thus, a system is needed to

quantitatively evaluate the care skills. Here, this Chapter investigates the contribution

of the patient robot used in care training, including the ability to simulate the joints

based on the movement range of the patient with musculoskeletal disease, and its

applicability to technical training. Moreover, experiments were carried out by experts

to confirm the necessity of the care training assistant robot in care education. The

issues are discussed to resolve the research problems presented in Section 3.2.2 and

to find the observations.

3.7.2 Participants

Eight subjects participated in the evaluation of the care training using the patient

robot. Experts were caregivers who took care of the patient for at least two years in the

rehabilitation center and the hospital, and a more detailed information of the expert’s

experience is described as shown in Table 3.3. The remaining four trainees (two male

and two female) were students in Ritsumeikan University, who had no experience

in care to the patient. All subjects agreed to participate by signing a consent form,

while researchers tried to ensure their safety. Furthermore, the entire experimental

procedure was approved by the institutional review board (IRB) of the Ritsumeikan

University (BKC-2018-059).
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Table 3.3. Experience and skill of the experts in this experiment.

Expert Experience and skill Gender

Expert #1 - Experience in care, nursing, and orthopedics Male

Expert #2
- Experience in ROM exercise

- Physical therapist in a hospital
Female

Expert #3
- National therapist certification

- Experience in ROM training for the patients
Female

Expert #4 - Nursing care specialist Female

3.7.3 Experimental setup and procedures

Fig. 3.10 (a) shows the flowchart of the experiment for the feasibility of the

patient robot’s capabilities in the three stages of care training—generation of expert’s

guideline, performing care training of the user’s learning skill in accordance with the

guideline, and evaluating user’s care skill—was investigated by experiments. The

investigation was performed to check if there was a correlation between the experts

and students through sensor data obtained when trainees with no care experience

performed the range of motion (ROM) training using the patient robot. Fig. 3.10 (b)

depicts the flowchart of the protocol and is detailed below:

• The expert first performs ROM exercises using the patient robot and explains

the ROM training to the students.

• The students watch the video of the expert performing the ROM training using

the patient robot.

• In pre-evaluation, each student performs the ROM training with the patient

robot, and the quantitative data of the robot is measured simultaneously.

• After pre-evaluation, all students practice the ROM training for 30 minutes using

the patient robot with measured data from the expert displayed on the practice
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system.

• In the post-evaluation, each student performs the ROM training and the data is

measured again.

Figure 3.10. The flowchart of experiment (a) Procedure (b) Protocol.

All participants performed the experiment consisting of four kinds of ROM exer-

cises—SEF, SED, SLM, and EEF—as shown in Fig. 3.11 (a). In the order of SED,

SEF, and SLM, and in certain cases, were performed with the robot lying on the

bed, based on particular instructions [68, 69], the EEF exercise is performed with

the robot’s elbow joint fixed to the desk. The sensor data were obtained from the

angle, torque, pressure sensors as shown in Fig. 3.11 (b). The ROM exercises were

performed for a total of three-set with each set of ten reps (Fig. 3.11 (c)), and Fig. 3.11
(d) is an example showing one trial (rep) of ROM exercise in SEF.
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Figure 3.11. Experimental procedure of range of motion (ROM) exercises using the
patient robot (a) ROM exercises: elevation and depression of the shoulder complex
(SED), extension and flexion of the shoulder complex (SEF), lateral and medial
rotation of the shoulder complex (SLM), and extension and flexion of the elbow
complex (EEF) (b) Data acquired from sensors attached to joints (c) Description of
the entire procedure (d) an example of a trial of the ROM movement.
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3.7.4 Result of elbow ROM exercise

This assessment examines the effectiveness of care training using the patient robot

in elbow ROM exercise, i.e., EEF, for expert and student groups and aims to discuss

quantitative results and differences between the two groups.

Fig. 3.12 depicts the quantitative data (i.e., the elbow joint angle, torque, and pres-

sure data) obtained from the output of the elbow joint of the patient robot. Fig. 3.13
shows the curve graph of the range of angle (ROA) and range of torque (ROT) in

elbow exercise (EEF). For pre-evaluation, the size of both the angle and torque from

student group (pre-test) were larger than those of experts (ground-truth). The values

of angle and torque in each ROM cycle from the experts were constant (minor standard

deviations), while there were large variations in the values from the students.

Figure 3.12. Example of quantitative data output from the robot’s elbow joint in
extension and flexion exercise (EEF) (a) Robot’s elbow kinematics (b) Elbow joint
angle (c) Torque (d) Pressure data.
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Figure 3.13. The graph of robot’s data obtained from experts and students during
elbow ROM exercise (EEF) training. ROT and ROA indicate the range of torque and
angle value, respectively.

In addition, the graph of the expert shows a clear and constant pattern, and as the

angle changes from about 95 to 115 degree, the force torque changes from 30 to -20

Nm. However, in the graph of student #1 (Stud #1 (Pre)), it is observed that the angular

change is large, ranging from about 90 to 125 degree, and the force torque changes

from about 95 to -40 Nm. These results show that considerable force is applied to the

robot’s elbow joint because the Stud #1 is male, and it is evident that there are marked

variations in both the angle and force values. To interpret one more result, in the

graph of student #2, the force torque varies from about 42 to -38 Nm while the angle

varies from about 105 to 123 degree. Consequently, both the results of ROM from the

49



student group were higher than those of the expert group. This result emphasizes that

there may be a negative impact on the elbow joint of a patient in the care environment.

In the post-evaluation, the results of ROM for both Stud #1, Stud #2, and Stud #3,

were significantly lower than the results of pre-evaluation. Based on the results, the

angle and force torque of Stud #1 varied from about 87 to 105 degree and from 56

to -15 Nm respectively, and the angle and torque of Stud #2 varied from 84 to 115

degree and from 57 to -15 Nm respectively.

Figure 3.14. Example of contour of pressure values from pre- and post-evaluation of
(a) Student #1 and (b) Student #3. P1: radius; P2: outside of the wrist; P3: ulna; and
P4: inside the wrist. The rest of the participants in the experiment had little or no
pressure sensor value.

Fig. 3.14 (a) and (b) shows the example of contours of the pressure data obtained

from Stud #1 and Stud #3, respectively. In the contour, the x-axis represents the

indices of pressure sensors, including P1 (radius), P2 (outside the wrist), P3 (ulna),

and P4 (inside the wrist). The pressure data from the four pressure sensors by the

experts was almost zero because they could control the force applied while gripping

the wrist of the robot during the ROM exercise. For Stud #2 and Stud #4, the pressure

value was almost zero. As shown in Fig. 3.14, in the pre-evaluation, the values of both

P1 and P4 are high for each time the ROM training is performed. The results show
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that Stud #1 applied pressure on the pressure sensor of the robot’s elbow joint during

ROM training. However, from results of post-evaluation, it is evident that pressure

values only appear twice in P4 and the remaining pressure sensors are not generating

any values. In the contours of Stud #3, the values in P1 and P3 appear for each cycle of

the ROM training. For the post-evaluation, the pressure value of P3 is represented but

the other pressure sensors are not presenting any values. Based on these results, it can

be concluded that Stud #1 and Stud #3 did not apply excessive force on the pressure

sensors attached to the patient robot’s elbow joint after practicing the ROM exercise.

These result denotes that when performing passive ROM training, the exercise helps

the caregiver develop the ability not to apply force on the wrist of the patient.

Fig. 3.15 depicts the comparison results of ROM training from the experts, stu-

dents (pre-test), and students (post-test). For the comparison result of the robot’s

elbow angle, there were statistically significant differences in all groups (?<0.0001,

analysis of variance (ANOVA) test). In particular, it can be seen that the average an-

gle of the student group’s post-test (mean (M)=96.97, standard deviation (SD)=4.73)

was shifted close to about 96 degrees compared with that of the pre-test (M=105.31,

SD=8.86) (?<0.01, I=75.18, Kruskal-wallis test), but the deviation of the angle de-

creased, resulting in a decrease in the range of motion of the robot elbow joint.

Similarly, in case of the torque result, it was confirmed that the deviation in the

post-evaluation (M=11.63, SD=16.86) was significantly reduced compared to the pre-

evaluation (M=6.57, SD=21.55) (?<0.01, I=21.04, Kruskal-wallis test). In the results

as shown in Fig. 3.15, there was a well-marked difference between the pre-and post-

evaluation of the pressure sensor’s results (?<0.0001, I-value=45.10, Kruskal-wallis

test). In the pre-evaluation, the mean of pressure signal magnitude of area (PSMA)

was 6.18 (10.90), decreased significantly to 1.32 (5.28) at the post-evaluation.
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Figure 3.15. Comparison results of the elbow ROM exercise (EEF) among groups
(experts vs. students (pre-test) vs. students (post-test)). PSMA means the pressure
signal magnitude of area. The asterisk below the bar-graph indicates the statistical
result using the ANOVA test among three groups, and the asterisk above the bar-graph
indicates the statistical results using the Dunn’s multiple comparison test between the
two groups. The significance level was set at U= 0.05. The asterisk (*), two asterisk
(**), and four asterisk (****) indicate statistical significance at ? <0.05, ? <0.01,
and ? <0.0001, respectively.

52



3.7.5 Result of shoulder ROM exercises

This assessment examines the effectiveness of care training using the patient robot

in shoulder ROM exercises with SEF, SED, and SLM for expert and student groups and

aims to discuss quantitative results and differences between the two groups. Fig. 3.16
illustrates an example of obtaining quantitative data of the robot from the shoulder

ROM exercises by Exp #1. Fig. 3.16 (a) is the sensor data of the robot acquired in the

SEF motion. To interpret the raw data’s graph, when the shoulder is extended from

flexion to extension based on the GH2 joint of the shoulder complex in SEF exercise,

the GH2’s angle increases from 0 to roughly 120 degrees, whereas the SC1’s angle

decreases from 0 degrees to about -50 degrees. From this data, it can be observed

that the GH2 and SC1 joints move simultaneously in the extension of the SEF, and

it can be confirmed that the force sensor located in the GH also outputs a constant

torque according to the extension movement. Fig. 3.16 (b) is a graph of data output

in the SED exercise. The elevation movement of the SED causes the robot’s shoulder

to move in the vertical direction based on the SC1 joint. Here, the SC1 joint has a

range of motion between approximately from roughly -20 degrees to 15 degrees, and

the GH2 joint is also involved at the same time. In the case of torque, it was output

from about 10 to -20 Nm based on the SC joint. Finally, in SLM (Fig. 3.16 (c)), the

GH3 joint’s range of motion increased from about -100 to 10 degrees in the lateral

rotation movement, and the movement of the GH1 joint was also observed very finely.

On the other hand, it was observed that the values of the torque sensors of SC and

GH were output in a similar pattern. Although the results of the graphs mentioned

above were limited to the example of Exp #1, the range of motion (angle) of each

ROM exercise was similar, but there was a slight difference in the range of torque, the

ROM cycle’s duration, and the interval both of two ROM movements. Based on these

quantitative data, the results were analyzed to evaluate the necessity and the feasibility

of the proposed patient robot for the care education.
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Figure 3.16. Example of quantitative data output from the robot’s shoulder complex
in (a) Extension and flexion exercise (SEF), (b) Elevation and depression (SED), and
(c) Lateral and medial rotation (SLM). GH and SC indicate the glenohumeral and the
sternoclavicular joint, respectively.
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The experts and students perform the SEF exercise based on the grip positions as

shown in Fig. 3.17 (a), and Fig. 3.17 (b) illustrates the mechanism of the shoulder

complex in SEF exercise. In Fig. 3.17 (c), the movements performed by the expert

group were almost the same as each other. When student #4 (Stud #4) performed the

exercise in the pre-test, however, the joint angles were not constant in the time domain,

because Stud #4 did not perform a complete movement from flexion to extension, i.e.,

a contraction was performed again after a slight joint relaxation.

Figure 3.17. Graph of sternoclavicular (SC) and glenohumeral joints (GH) in exten-
sion and flexion (SEF) exercise: (a) Grip positions (b) Mechanism of SEF exercise (c)
Angle curves between SC1 and GH1 joints.
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For the SED exercise, the experts and students perform the exercise based on the

grip positions shown in Fig. 3.18 (a). The robot’s shoulder complex moved based on

GH2 and SC1 (Fig. 3.18 (b)), and Fig. 3.18 illustrates a graph of the SC1 and GH2

joints in SED exercise. In the SED exercise, the joint movements of SC1 and GH2

were clearly represented, in which, the experts performed each cycle of SED exercise

in constant motion range. However, the student group in the pre-test differed slightly

in the motion range of the joints.

Figure 3.18. Graph of sternoclavicular (SC) and glenohumeral joints (GH) in elevation
and depression (SED) exercise. (a) Grip positions (b) Mechanism of SED exercise (c)
Angle curves between SC1 and GH2 joints.
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In the SLM, the participants performed the exercise by holding the shoulder and

wrist of the robot (Fig. 3.19 (a)), and the robot’s joint moved as the mechanism in

Fig. 3.19 (b). In Fig. 3.19 (c), a graph representing the SLM exercise based on the

GH1 and GH3 joints was presented. In the SLM exercise, the results of all students

were significantly different. The Stud #1 and Stud #3 had relatively a constant joint

angle amplitude and period for each motion cycle. However, the angle range of the

GH1 joint of Stud # 2 and Stud # 4 was more extensive compared to the expert group,

and it can be suggested that the joint of GH1 was moved excessively when the joint

was rotated relative to GH3.

Figure 3.19. Graph of the glenohumeral joints (GH) in lateral and medial rotation
(SLM) exercise. (a) Grip positions (b) Mechanism of SEF exercise (c) Angle curves
between GH1 and GH3 joints.
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Fig. 3.20 shows the statistical analysis of the robot’s data obtained in all shoulder

ROM exercises. The joint angle and torque data obtained were statistically significant

in most three groups due to differences in individual’s care techniques and skills.

Figure 3.20. Statistical analysis of the quantitative data of the patient robot in shoulder
ROM exercises (a) Extension and flexion (SEF) (b) Elevation and depression (SED)
(c) Lateral and medial rotation (SLM). The asterisk above the graph indicates the
statistical result using the Dunn’s multiple comparison test between the two groups.
The significance level was set at U= 0.05. The asterisk (*), two asterisk (**), and
three asterisk (***), and four asterisk (***) indicate statistical significance at ? <0.05,
? <0.01, ? <0.001, and ? <0.0001, respectively.
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Based on the interpretation of the results mentioned above, the observation can be

suggested in RP 3.1 as follows:

• Observation 3.1) There was a statistically significant difference between the

expert and student groups in the ROM exercises using the patient robot. In par-

ticular, the EEF exercise showed notable results demonstrating the effectiveness

of care training using the patient robot in the pre-and post-evaluation of the

student group.

3.7.6 Results of care skills in the expert group

This evaluation investigates whether skilled professionals conduct care tasks with

the same care skills or not (RP 3.2). Moreover, the additional assessment examines

whether experts with many years of experience in the care environment perform care

tasks with the same methods and skills and examines the quantitative results of their

care education performance (RP 3.3).

Table 3.4, Table 3.5, and Table 3.6 show the results of the statistical analyses

based on several parameters in SED, SEF, and SLM exercise, respectively. To sta-

tistically evaluate the acquired data, all the eleven parameters were extracted: the

maximum parameters consist of the angle of SC1 (MAX-SC1), SC2 (MAX-SC2),

GH1 (MAX-GH1), GH2 (MAX-GH2), and GH3 (MAX-GH3); The minimum param-

eters contains of the angle of SC1 (MIN-SC1), SC2 (MIN-SC2), GH1 (MIN-GH1),

GH2 (MIN-GH2), and GH3 (MIN-GH3); and the interval between consecutive cycles

(INTV). Based on these parameter, an ANOVA test was conducted to analyze statisti-

cally significant differences among the experts.
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Table 3.4. Comparison of results of parameters from all experts in SED exercise.

Exp 1 Exp 2 Exp 3 Exp 4 p-value

MAX_SC1 12.58 (1.91) 0.34 (2.89) -4.84 (1.27) 4.92 (2.24) <0.01

MAX_SC2 5.51 (2.16) 6.59 (1.56) 2.59 (0.59) 4.21 (0.41) <0.05

MAX_GH1 3.16 (2.11) -1.57 (0.59) -6.09 (1.13) -13.2 (2.16) <0.01

MAX_GH2 -0.42 (0.25) -1.22 (0.54) -1.66 (2.59) 3.18 (3.12) <0.05

MAX_GH3 2.14 (0.42) -1.56 (0.35) 14.56 (1.93) 0.51 (2.54) <0.01

MIN_SC1 -15.84 (0.77) -21.12 (3.26) -17.66 (5.98) -11.35 (6.31) <0.01

MIN_SC2 -17.11 (2.59) -24.56 (5.69) -22.09 (3.78) 12.44 (3.22) <0.01

MIN_GH1 -18.26 (1.59) -16.89 (2.36) -16.12 (4.59) -13.24 (4.26) =0.148

MIN_GH2 -16.36 (0.74) -15.76 (2.43) -10.98 (0.62) -10.24 (0.73) <0.01

MIN_GH3 -30.15 (0.59) -22.09 (2.46) 0.59 (0.05) -21.34 (9.51) <0.01

INTV 2.26 (2.27) 2.33 (0.32) 4.81 (0.62) 3.31 (3.15) <0.01

Note: MAX, MIN, and INTV indicate the maximum, minimum, and interval value, respectively. SC

and GH mean the sternoclavicular and glenohumeral joint.

Table 3.5. Comparison of results of parameters from all experts in SEF exercise.

Exp 1 Exp 2 Exp 3 Exp 4 p-value

MAX_SC1 3.44 (1.78) -23.6 (8.18) -1.24 (2.33) 0.68 (1.61) ****

MAX_SC2 0.56 (0.59) 0.98 (0.56) 0.46 (0.12) 0.16 (0.55) =0.215

MAX_GH1 111.65 (2.14) 72.06 (2.89) 101.32 (0.75) 102.44 (0.95) ***

MAX_GH2 0.59 (0.55) 1.26 (1.56) 2.56 (0.09) 1.59 (0.14) **

MAX_GH3 0.67 (0.15) 0.84 (0.59) 0.59 (0.06) 2.59 (1.46) **

MIN_SC1 -35.2 (2.19) -32.86 (0.32) -32.42 (0.11) -25.74 (5.65) **

MIN_SC2 0.99 (0.05) -20.13 (1.35) -5.69 (1.54) -10.59 (2.54) ****

MIN_GH1 -6.86 (2.51) 24.74 (32.37) -7.51 (3.17) -5.06 (2.3) ****

MIN_GH2 0.59 (0.16) -20.56 (8.56) 0.81 (0.56) -2.46 (1.33) ***

MIN_GH3 -79.59 (21.59) -65.11 (21.56) -20.59 (8.59) -78.59 (16.59) ***

INTV 3.91 (0.71) 2.64 (4.91) 2.61 (1.62) 1.61 (6.23) =0.312

Note: Abbreviations are as described in Table 3.4.
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Table 3.6. Comparison of results of parameters from all experts in SLM exercise.

Exp 1 Exp 2 Exp 3 Exp 4 p-value

MAX_SC1 20.56 (5.95) 22.15 (11.25) 15.46 (11.21) 17.59 (10.59) ****

MAX_SC2 0.51 (0.12) 0.89 (1.56) 2.16 (0.56) 7.56 (2.64) **

MAX_GH1 12.62 (3.62) 5.61 (1.21) 11.8 (4.17) 35.08 (2.9) ****

MAX_GH2 2.21 (2.13) 0.75 (0.54) 0.56 (2.16) 0.51 (0.55) *

MAX_GH3 27.64 (4.01) 21.86 (0.72) 44.16 (26.26) 10.7 (1.29) ****

MIN_SC1 0.12 (0.65) 0.16 (0.13) 1.26 (0.05) 0.11 (1.62) *

MIN_SC2 1.26 (0.11) -1.59 (0.59) 2.59 (1.56) 2.56 (2.32) *

MIN_GH1 -1.98 (0.44) -0.58 (5.87) -11.22 (5.42) -17.32 (1.42) ****

MIN_GH2 0.99 (0.94) -18.46 (11.54) -8.56 (4.13) -18.56 (4.59) ****

MIN_GH3 -72.72 (4.58) -65.94 (53.53) -55.94 (10.42) -32.3 (1.2) ****

INTV 2.51 (0.39) 1.95 (3.57) 5.91 (3.97) 5.8 (0.75) ****

Note: Abbreviations are as described in Table 3.4.

In Table 3.4, all parameters except MIN-GH1 (?=0.148) were observed to show

significant differences between experts in SED exercise. For the SEF exercise (Ta-
ble 3.5), it was observed that most parameters except MAX-SC2 (?=0.215) and INTV

(?=0.312), were exhibited significant differences among the experts. In Table 3.6, all

parameters showed significant differences among experts in SLM exercise. Fig. 3.21
depicts the radar charts of the parameters in shoulder ROM exercises.
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Figure 3.21. Radar charts of the parameters in shoulder elevation and depression
(SED), shoulder extension and flexion (SEF), and shoulder lateral- and medial rotation
(SLM) exercise from the experts.

Based on these results, the following observation according to RP 3.2 can be

suggested:

• Observation 3.2) The findings of this experiment suggest that although experts

have several years of experience, they may perform care and treatment differ-

ently from each other. Different methods of care and treatment may induce a

detrimental effect on the joints and muscles of a patient. Thus, a customized

and suitable care-education method for individuals should be provided on the

basis of quantitative data analysis.
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3.7.7 Questionnaire I: Reviews using the robot

In this evaluation, the results of a survey on the feasibility and the potential

possibility of care education using patient robots are interpreted (RP 3.3). The first

survey was conducted with four experts using the proposed patient robotic system.

The survey consisted of the following four questions:

• Q1) Does the patient robot with real-time monitoring program provide a user-

friendly interface?

• Q2) Do the robot’s movements perform similarly to those of an actual human?

• Q3) How are you satisfied with the patient robot for the training of the trainee?

• Q4) In the future, would you be willing to use the patient robot for care training

of ROM exercises?

Figure 3.22. The questionnaire result from four experts using the patient robot in care
training (a) Graph of the mean and deviation of all experts according to the survey
items (b) Scores on individual survey items by experts. The scores range from one to
five..
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Fig. 3.22 shows the results of the questionnaire from the four experts. The mean

scores of Q1, Q2, Q3, and Q4 were 3.25 (±0.50), 2.75 (±0.96), 3.75 (±0.50), and 4.5

(±0.58) out of a maximum of five, respectively. These results are favorable, although

the experts indicated that the perceived feel of the robot was slightly different to that

of actual human’s joint movement.

3.7.8 Questionnaire II: Reviews of the feasibility

The second survey was conducted with thirty reviewers to investigate the feasibility

of the patient robot for care training. These reviewers did not directly use the patient

robot, but reviewed and voted the robot’s usefulness based on detailed descriptions

and experimental videos of the patient robot. The survey consisted of the following

three questions:

• Q5) Among the various nursing care training methods, do you think which

number is the most effective?

• Q6) Do you think which number needs to be improved the most in patient robots

for care education?

• Q7) What do you think about the usability and feasibility of the proposed patient

robot in the future?

Table 3.7 shows the voting scores obtained from thirty reviewers. In the case of

Q5, the patient robot and role-playing scored 19 and 11, respectively, and there

were many subjective opinions that the patient robot would be useful in situations

or environments where face-to-face education was limited. In Q6, the scores of the

both 'Interaction' and 'Feedback' were scored 12 and 15, respectively. For Q7, which

is about the potential of future development of patient robots, the answer was very

positive.
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Table 3.7. The voting result of the questionnaire II from thirty reviewers.

Voting answer

Q5
Item Book Video

Medical

manequine

Patient

robot

Role-

payling

Score 0 0 0 19 11

Q6
Item Interaction

External

design

Feedback

(care training skills)
Low-cost

Score 12 1 15 2

Q7
Item Very weak Weak Moderate Strong Very strong

Score 0 0 1 3 26

Based on these findings of the survey, an observation can be defined for RP 3.3 as

follows:

Observation 3.3) It can be concluded that the patient robot proposed in this study

will be helpful to trainees with a friendly interface and effective care training ability

in the future.
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3.8 Discussion

This Chapter presented the patient robot for care for quantitative evaluation and

efficient training of caregivers. The mechanism of the patient robot was designed based

on the actual human physical size and reproduced the musculoskeletal symptoms. To

investigate the feasibility of the proposed patient robot, medical experts and novices

were invited for the feasibility experiment, and quantitative data such as joint angle,

torque, and pressure value using the pressure sensors were obtained during the range

of motion (ROM) exercises. There was a statistically significant difference between

the expert and student groups in the patient robot’s ROM exercises. In particular,

the elbow exercise has shown notable results, demonstrating that using the elbow

joint-simulated robot with real-time care training and monitoring program results in

significant improvements in pre-and post-evaluation. However, a limitation of the

study is that it is difficult to generalize the results yet because of insufficient data

from the subjects. Nonetheless, though the range of angle of the robot’s joint was

hypothesized to be the specific range based on the opinions of professional caregivers,

the value and feasibility of using the proposed method in improving the care training

for caregivers were significant.

Further, this research aimed to experimentally investigate whether there was a

difference in the quantitative data results among the experts during the care training.

Consequently, our findings suggested that even experts with many years of experience

may have different methods, thus, introducing a negative impact on care and treatment.

Therefore, the necessity and the feasibility of the care training assistant robot should

be utilized to improve accuracy and elaborated care skills in elderly care education.
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Chapter 4

Pain inference and expression for patient robot

This Chapter aims to develop a pain inference and expression for a care training

assistant robot that can express pain states in joint care education. First, to develop

an automated feedback system for patient care training, the study introduces a fuzzy

logic-based care training evaluation method that can infer the pain level of a robot. The

fuzzy-logic-based pain inference method is developed to calculate the robot’s current

pain levels by combining four key parameters of the quantitative data obtained from

the patient robot. Next, a novel pain facial expression database (RU-PITENS) was

introduced for an avatar with pain expression. The RU-PITENS database contains

pain images of Japanese people, and an experiment of pain stimulus is conducted

based on transcutaneous electrical nerve stimulation, which is low-cost and easy to

use in daily life. Based on the pain images in the RU-PITENS database, an avatar with

pain expression was propose to achieve the goal of the study. To obtain pain intensity

from images, a Siamese network based on a convolutional neural network (ConvNet)

with three layers was used and classified the pain intensity into five pain groups by

calculating the intensity for each image. The pain facial expression system will be

constructed to express five types of pain (no pain at all, very faint, weak, moderate,

and strong pain) with avatars according to the intensity of the pain output of robot in

care training environments. It is anticipated that an advanced patient robotic system

provides efficient feedback on the care and nursing training by utilizing the proposed

method of pain inference and expression.
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4.1 Motivation

In CNT, the pain level can be defined as a quantitative value that can evaluate

how well a student performs care training without burdening the joint of the patient

robot during care education. The pain level is directly related to the care ability of

the caregiver. The care or nursing skills can be assessed by statistical methods or

surveys. Wang et al. [23] assessed the survey responses from doctors by using the

arm robot developed, Kim et al. [63] compared the robot with in-person by using

questionnaire results to improve the reliability of clinical assessment. Takanobu et

al. [29] proposed the dental patient robot with a questionnaire assessment. However,

the evaluation based on surveys tends to be biased by an individual’s perspective [70].

Thus, more accurate and efficient quantitative assessment methods for care skills are

required. Most care training studies use statistical or empirical techniques that can

analyze results manually. These methods are proper for analysis of each parameter and

easy to use when investigating the effect of parameters on care training. However, it

is difficult for trainees to evaluate their treatment quantitatively in a real-time system,

and there is a limitation in calculating the final score automatically after finishing

care education. Therefore, there is a need to develop a method for automatically

inferring the care and nursing skills and the robot’s pain level based on data acquired

from sensors mounted on the robot. In addition, the caregivers should periodically

investigate whether the patient is feeling pain or not and observe painful expressions on

the patient’s face during care conducting because the patient may experience difficulty

in communication with caregivers.
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4.2 Objectives and research problems

4.2.1 Specific objectives

The objectives of the method for pain inference and expression of the patient robot

introduced in this Chapter to achieve the goals are as follows:

• To provide automated quantitative assessment feedback on care training to the

caregiver.

• To develop a method for pain inference for the care training system.

• To build a database to generate a robot’s avatar by recruiting subjects of various

ages.

• To expresses the current pain state through the robot’s avatar.

4.2.2 Research problems

To achieve the goals, several research problems must be solved as follows:

• RP 4.1) Are there any significant differences between the initial trial and final

trial based on the proposed pain inference method?

• RP 4.2) Are there any significant differences between the student and the expert

group based on the proposed pain inference method?

• RP 4.3) Is it proved that facial images representing pain obtained from a subject

via a TENS device are included in the actual pain area?
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4.3 Pain inference

Pain is a response that protects the body from damage when the patient is subjected

to physical pressure from external factors, and the pain level is a quantitative value

that can be used to assess a student’s ability to train care’s skill without causing any

pain to the patient robot’s joints during care education. Fig. 4.1 illustrates the whole

framework of the proposed pain expression of patient robot in this Chapter. More

detailed description based on this framework is given in the next Section.

Figure 4.1. The whole framework of the proposed pain expression.
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4.3.1 Hypothesis

Before building the model for measuring pain level, the study in this dissertation

consolidated several hypothesis:

• The resistance torque increases when the joint of the patient robot is out of

specific degrees (refer to Chapter 3). The range of motion of the patient robot’s

joint was designed based on expert opinion to mimic the joint of a patient

with musculoskeletal disease. Table 4.1 shows the pain inference factors of the

patient robot, and it is assumed that the patient robot may felt pain when the

joint angle of the patient robot is out of a determined parameter’s range.

• The reference data (pain inference factors) for generating membership functions

is based on data from five trials involving an expert who has years (two to ten

years) of experience in the medical field. In future studies, the reference data

may include data from patients with musculoskeletal or neurological diseases.

The reference data given to generate pain inferences is determined by the expert’s

opinion. Therefore, the final robot’s pain value obtained by calculating the robot’s

sensor data collected during care education is to infer the distance from the reference

data. Thus, the pain level of the robot is evaluated based on the reference data (expert’s

opinion), and the comparative evaluation between groups can be possible using the

proposed pain inference method.
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Table 4.1. Pain inference factors.

Joint Elbow Shoulder

Exercise EEF SEF SED SLM
Reference Joint Elbow GH1 SC1 GH3

Factor (unit) Parameter Value

Angle

(degrees)

Low 100 20 -5 -15

Moderate
95 to

125

10 to

100

-15 to

15

-20 to

20

High 120 90 10 15

Torque

(Nm)

Low -10 5 -5 0

Moderate
-15 to

35

0 to

15

-10 to

10

-5 to

10

High 30 10 5 5

Angular velocity

(degree/s)

Low -1 -1 -1 -1

Moderate
-1.5 to

1.5

-1.5 to

1.5

-1.5 to

1.5

-1.5 to

1.5

High 1 1 1 1

PSMA

Low 40 N/A N/A N/A

Moderate 20 to 80 N/A N/A N/A

High 60 N/A N/A N/A

Note: PSMA indicates the pressure signal of magnitude area. N/A means not assigned.
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4.3.2 Fuzzy logic-based pain inference

To generate the model for pain inference, this study uses the fuzzy-logic theory,

which is a proper method to solve ambiguous problems. The specific purposes for

using fuzzy-logic theory for pain inference are as follows:

• This study does not consider classifying the state of pain but requires an output

value of pain intensity

• The relationship of various input variables that determine pain level is required

to measure the pain level

• The fuzzy logic makes it possible to define such relationships and allowable

ranges of movement that the joint of the robot can allow

• This study focuses on the relationship among various factors is more important

than the feature extraction of various factors that determine pain level

The fuzzy set theory of Zadeh [71] is frequently used as a suitable method to

consider ambiguous problems that are complex or uncertain in real-world contexts. A

fuzzy system has the advances that it determines the relationships between input and

output variables and it can describes the interpretation of relationships among input

variables [72]. The output values of the fuzzy-logic method can be obtained by using

the Eq. 4.1.

5B (-) =
∑"
;=1 \;

∏%
:=1 `�;

:
(G: )∑"

;=1
∏%
:=1 `�;

:
(G: )

(4.1)

where G, : , " , and % indicate the input variable, the :th element of the vector

G, the number of membership functions, and features, respectively. `�;
:
(G: ) is the

membership function and \; is the weight.
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To generate fuzzy inference for fuzzy-based pain intensity (FLPI), input variables

of the angle, angular velocity, torque, and the mean of the pressure signal magnitude

area (PSMA) were obtained from the robot’s joint. Here, as shown Fig. 4.2, the fuzzy

model is divided into two approaches based on the ROM exercises of care education:

i) fuzzy logic-based pain inference of the ROM exercise of the elbow joint (FLPI-

EROM); ii) fuzzy logic-based pain inference of the ROM exercises of the shoulder

complex (FLPI-SROM).

• FLPI-EROM: This model is based on input variables such as angle, torque, an-

gular velocity, and PSMA for pain inference in the extension-flexion movement

of the elbow complex.

• FLPI-SROM: This model is based on input variables such as angle, torque, and

angular velocity for pain inference in the ROM exercises (SEF, SED, and SLM)

of the shoulder complex. In particular, since the hardware configuration of the

shoulder complex does not include a pressure sensor, there is no pain inference

factor for the pressure value.

Figure 4.2. Scheme of the models of fuzzy logic-based pain inference.
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As the first step in creating the fuzzy logic model, two trapezoidal membership

functions (boundary variables) and one triangular membership function (intermediate

variables) were used to generate the fuzzy rules as shown in Fig. 4.3. In this study, a

trapezoidal membership function on the left and right for the angle and torque input

parameters was used. The reason for this implementation is that the patient robot

has a limited a range of motion in order to reproduce the joint motion of the patient.

The range in which the patient robot feels pain is defined based on the pain inference

factors in Table 4.1. The trapezoidal membership function reflects the fact that the

patient robot receives the maximum pain when it is out of the range of joint motion.

Therefore, a trapezoidal membership function was applied to set the weight of the

membership function as '1' in the range where the patient robot feels pain.

Figure 4.3. Structure of fuzzy membership functions for input variables.

Three types of membership functions can be defined as Eq. 4.2 to Eq. 4.4.

)`(G) =



0, (G ≤ 0) >A (G ≥ 2)

1, G ≡ 1

(G − 0)/(1 − 0), 0 < G < 1

(2 − G)/(2 − 1), 1 < G < 2

(4.2)
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)!`(G) =


1, 3 < G ≤ 0

(4 − G)/(4 − 0), 0 ≤ G < 4

0, G ≥ 4

(4.3)

)'`(G) =


0, G ≤ 5

(2 − G)/(2 − 5 ), 5 < G ≤ 2

1, 2 < G ≤ 6

(4.4)

where G is the input variables. )`(G), )!`(G), and )'`(G) indicate the trian-

gular, left-trapezoidal, and right-trapezoidal membership function, respectively. The

parameters 0 to 6 are determined as Table 4.1 and refer to the constants of the input

variables that determine the value of the membership function.

Figure 4.4. The input and out variables for the fuzzy logic-based pain inference.

As shown in Fig. 4.4, the input variables of the membership function were divided

into three groups as low-immoderate, moderate, and high-immoderate. The input

variable PSMA of the elbow joint and output variable pain level consist of low, medium,

and high.
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The next step is to generate the fuzzy-rules that define the relationships among the

input variables. The fuzzy rules were constructed using an experts’ opinion and can

be described using Eq. 4.5.

AD;4: : �� -: 8B �:1 0=3...0=3 -? 8B �
:
? Cℎ4= .

: (4.5)

where �:? is the ?-th fuzzy set associated with the :th rule. The rule 'IF G: is �:1
and · · · and -? is �:? 'corresponds to the antecedent from the :th-rule and 'THEN . is

. : 'is the consequent of the :th rule.

Finally, a total of # fuzzy-rules were generated, as shown in Fig. 4.5. For the

FLPI-EROM model, the number of input variables is four (angle, torque, angular ve-

locity, and PSMA), and the membership functions consist of three kinds of antecedent

variables (low, medium, and high). The number of fuzzy rules can then be calculated

as <= (< and = indicate the numbers of antecedent and input variables, respectively).

Therefore, there were 81 rules (=34) that each was connected with one of the three

antecedent variables for the output (pain level). On the other hand, in the case of the

FLPI-SROM model, the number of fuzzy rules is 27 (=33) because it contains three

input variables as angle, torque, and angular velocity and one output variable as pain

level.

This study determine the inference engine using the Mamdani method to design the

fuzzy inference system (FIS). For FIS, there are two main types of methods of mapping

inputs to outputs: i) Mamdani FIS and ii) Sugeno FIS. The Mamdani-based FIS has

the advantages of being intuitive, well-suited to human inputs, more interpretable

fuzzy-rule, and applicable in various fields such as medical diagnostics, industrial

manufacturing, hospitals, and banks [73].

Next, the defuzzification refers to the process of converting a fuzzy output value

into a crisp value based on an inference engine in order to actually use the measured

value from the fuzzy logic. Here, the crisp value indicates the final calculated precise
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value by calculating the imprecise fuzzy value; the defuzzifier is an important compo-

nent of FIS [74]. Since the centroid defuzzification method is the most commonly and

frequently used [73] and has a robust performance, it was used as the final diffusion

layer in this study. Finally, the pain level output obtained by the input variables ranged

from 0 to 10.

Figure 4.5. Example of the fuzzy rules. FLPI-EROM and FLPI-SROM indicate the
fuzzy logic-based pain inference for the ROM exercise of the elbow complex and the
shoulder complex, respectively.
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4.4 Pain expression

This Section describes the pain database to generate pain expression for the avatar

of the proposed system. The novelty of this study is that it proposes a visual feedback

method to express the pain intensity of the patient robot to improve caregivers’ skills

in a training environment. To develop this, a novel pain expression database that

contains more than 13,773 facial images from Japanese individuals was first built in

this study. Based on this database, the pain avatar of the patient robot was developed

by calculating the pain intensity from facial images using a Siamese network.

4.4.1 Databases

To generate the pain facial avatar of the patient robot, an original database was

designed, namely pain intensity using transcutaneous electrical nerve stimulation

from Ritsumeikan University (RU-PITENS), which contains pain images acquired

during transcutaneous electrical nerve stimulation (TENS), and a public database of

UNBC-McMaster shoulder pain [75]. The two databases were used for the following

purposes:

• The UNBC-McMaster database was used as training data to measure pain

intensity obtained from facial images to create a pain avatar.

• The RU-PITENS database was used to test the trained model and finally generate

an avatar of patient robot for pain expression.

The purpose of using the two databases and detailed explanations of the images

contained in the databases are described in the following Sections.
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4.4.2 Original database: Pain intensity using TENS device (RU-PITENS)

Since existing databases contain many images of faces with the face slightly tilted

to the side, an additional algorithm was required to align facial images to the front

to generate an avatar. Therefore, a new database was built, RU-PITENS, containing

frontal images of the faces of subjects, showing images indicating pain intensity caused

by the TENS device. This experiment was approved by the Institutional Review Board

(IRB) of Ritsumeikan University (BKC-2019-060).

For building RU-PITENS, forty one adults were recruited in the experiment, and

the information on the subject’s gender and age is described in Table 4.2. Participants

were classified into ages in their 20s, 40s, 50s, and 60s. The reasons for classifying

the age groups in this database and the important factors of the RU-PITENS database

in this study are as follows:

• Above all, the study of this dissertation focused on designing avatars to be easily

transformable from facial images to enable students to receive education for

various patients in the care education system. Therefore, this study aims to

generate various avatars independent of age and gender from the RU-PITENS

database.

• The patient robot was developed based on the condition of the medical symptoms

of specific problematic movement for the elderly in Japan. Therefore, facial

images of Japanese people were needed to apply the patient robot to the care

and nursing environment in Japan.

• The robot head proposed in this dissertation may be more familiar than the

robot’s mechanical facial muscle movements because it generates facial images

by transforming them into avatars based on the RU-PITENS database. Unfor-

tunately, this means that although much excellent research has been studied

to develop the best realistic mechanical robotic heads with articulated faces,

these robotic heads may suffer from problems such as Uncanny Valley [76, 77]

(Fig. 4.6), a phenomenon caused by the robot’s unnaturalness [78].
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Figure 4.6. The uncanny valley graph. The figure was adapted from [79].

Table 4.2. Demographics of the participant’s gender and age in pain intensity using
the TENS device (RU-PITENS) database.

Pain intensity using the TENS device (RU-PITENS) database

Age range

Gender Measure 20 to 29 40 to 49 50 to 59 60 to 69 Total

Male

N.S

11 5 5 5 26

Female - 5 5 5 15

Total 11 10 10 10 41

Male

M.A

23.7

(2.1)

45.0

(4.6)

53.6

(3.0)

64.0

(3.9)

46.6

(3.4)

Female -
45.2

(2.3)

56.0

(1.6)

66.2

(3.3)

55.8

(2.4)

Total
23.7

(2.1)

45.0

(4.6)

53.6

(3.0)

64.0

(3.9)

47.2

(2.9)

Note: N.S and M.A indicate the number of subjects and the mean age, respectively. Numbers in

parentheses are standard deviations.
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All subjects had no history of peripheral neuropathy or other pain symptoms,

musculoskeletal or facial muscle reaction disorders, trauma, orthopedic hand surgery,

or current medication. All of them agreed to participate by signing a consent form,

while researchers observed to ensure their safety.

Fig. 4.7 illustrates the experimental environment of the pain simulation and mea-

surement. In this study, a commercial device, HV-F140 (Omron Healthcare Co., Ltd.,

Kyoto, Japan), was used as the transcutaneous electrical nerve stimulation.

Figure 4.7. The pain stimulus and the acquisition of pain images.

Transcutaneous electrical nerve stimulation (TENS) has the advantages of being

inexpensive, non-invasive, and easy to use compared to thermal or pressure stimulators.

In addition, the TENS system, which is often used as muscle therapy in daily life, can

induce acute pain with high frequencies, and TENS-based pain databases have been

collected in [80, 81]. Two durable adhesive pads that can be reused up to 150 times

after washing were attached to the skin of the subject’s right arm. The experiment was

conducted until the participant could no longer tolerate the pain when the intensity of
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the TENS was increased or the stimulation level reached the maximum level (the TENS

output had five intensity levels and its frequency ranged from 0 to 1,200 Hz). Fig. 4.8
illustrates an example of the acquired pain facial expression images. A total of 13,773

frames of images were acquired from all subjects.

Figure 4.8. Example of pain facial expression in RU-PITENS database.

In the experiment, a survey was conducted for approximately one minute at the

end of each level of stimulus, including the baseline and post-experimental tests. The

experiment for this database was conducted in the AIS laboratory of Ritsumeikan

University and is published as an open database: https://github.com/ais-lab/

RU-PITENS-database
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4.4.3 UNBC-McMaster Database

The purpose of using the UNBC-McMaster database was to train a model to mea-

sure pain intensity from facial images in the RU-PITENS database used to generate

pain expression avatars. The UNBC-McMaster shoulder pain database [75] contains

pain images from 25 patients with shoulder pain through an experiment of shoulder

range of motion. The UNBC-McMaster database can be used for model training

because it contains the Prkachin and Solomon Pain Intensity (PSPI) score, the ground

truth of pain level. PSPI (range from 0 to 15) is a score that measures the level of pain

in facial expressions, which was first proposed in [82] and and is calculated by several

action units (AUs) using a Facial Action Coding System (FACS) [83]. The PSPI score

which can be calculated as the sum of several action units (AUs, Action units are

the visible indicators of the operation of facial muscles) of AU4 (brow lower), AU6

(cheek raiser), AU7 (eyelid tightener), AU9 (nose wrinkle), AU10 (upper lip raiser),

and AU43 (eyes closed) using Eq. 4.6. The PSPI value was used as the ground truth

to test the model generated to calculate pain intensity from pain images.

%(%� = �*4 + <0G(�*6 >A �*7) + <0G(�*9 >A �*10) + �*43 (4.6)

One notable fact before training the model is that the UNBC-McMaster database

is required to balance the number of data entries in each class because the data are

unbalanced and skewed. Based on the PSPI score (ranges from 0 to 15), the pain

images in the UNBC-McMaster database can be divided into four pain labels: none

(PSPI=0), trace (PSPI=1), weak (PSPI=2 and 3), and strong (PSPI>=4). The total

number of data entries from UNBC-McMaster is 48,398, as shown in Table 4.3.

Since pain is subjective and there are no clear criteria for classification, many studies

arbitrarily classify the PSPI labels. Therefore, in the study of this dissertation, the

PSPI label was determined according to the criteria proposed in the study of [84] by

considering the unbalanced data in the UNBC-McMaster database. In the total data,

this study decided to include only 1,730 images in each pain group for balanced data

based on a minority grade (pain label: strong (PSPI>=4), and the data were randomly
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extracted. To use this database for research purposes, an end user license agreement

was submitted to the Affect Analysis Group at Pittsburgh [75]. Fig. 4.9 illustrates the

example of pain images in UNBC-McMaster shoulder pain database.

Table 4.3. Definition of pain states based on PSPI for classifying classes in UNBC-
McMaster shoulder pain database [75].

Prkachin and Solomon Pain Intensity (PSPI) Pain state Number of images

0 None 40,149

1 Trace 3,037

2 and 3 Weak 3,482

from 4 to 15 Strong 1,730

Note: PSPI indicates Prkachin and Solomon Pain Intensity score.

Figure 4.9. Prkachin and Solomon Pain Intensity (PSPI) score of pain images in
UNBC-McMaster shoulder pain database [75]. Photograph of (a) subject #TV985
and (b) subject #AK064 have been granted portrait rights from Affect Analysis Group
at Pittsburgh, and an explanation of the consent form is provided in Appendix C.
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4.4.4 Siamese Network-based pain intensity

The ultimate goal of this Chapter is to create an avatar representing the pain

intensity from sequential pain images in RU-PITENS database. Although the proposed

method generates an avatar using the face image of the RU-PITENS database, the

pain expression images in this database do not have quantitative value (reference) on

the expression intensity from the pain’s onset to the pain’s cessation. Therefore, it is

necessary to measure the pain intensity using a verified model. In this study, therefore,

a Siamese network was used to measure the intensity of pain from pain images; the

reasons for choosing the Siamese network are as follows:

• Since this study develop an avatar expression system based on sequential pain

intensity estimation, a model that can measure the change in pain intensity

between the current image and the previous image is required.

• It is difficult to distinguish the type of pain and to provide an accurate pain

label to the new input data because pain is subjective information that can be

measured differently depending on the individual.

According to the considerations of use of the Siamese network described above,

the Siamese network-based pain intensity from pain images (SNPI) are measured by

using the Siamese network. This network [85] provides one output, which is a value

indicating the similarity between two inputs. In many studies [86, 87, 88], it has

been utilized as a method for analyzing facial expressions. The Siamese network has

two sister networks (sub-networks) with the same shared weight and structure, which

consists of a layer for the distance of the feature vectors from the two sister networks.

To optimize the network, the contrastive loss function was utilized to make em-

beddings of feature vectors more similar if the target classes were similar [89] and to

distinguish between input pairs. The contrastive loss function [90] can be defined as

in Eq. 4.7.
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�>=CA0BC8E4 !>BB (,,., ®%1, ®%2) = (1 − . ) 12 (�, )
2 + (. ) 12 {<0G(0, < − �, )}

2

(4.7)

where %1 and %2 are pairs of samples. . is a binary label, and the pair samples

are similar when . = 0 (negative). In the second term, < > 0 denotes the margin

for dissimilar pairs. Distance �F between the outputs of �, and can be calculated

using Eq. 4.8.

�, ( ®%1, ®%2) = ‖�, ( ®%1) − �, ( ®%2)‖2 (4.8)

As shown in Fig. 4.10, the sister network has a basic ConvNet structure, and

the network architecture consists of three ConvNet layers and a fully connected layer

with 48 units based on the results of the hyper-parameters that have been empirically

changed. To merge the sister networks, a layer that computes the output of the two

sister networks was added to the last layer.
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Figure 4.10. The structure of Siamese network for the pain intensity.
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4.5 Pain facial avatar

As explained in the purpose of the RU-PITENS database (Section 4.4.2), the most

significant advantage of creating an avatar using the facial image is that it can easily

transform the robot’s avatar. In this study, the avatar is created based on the avatar

generation’s program by converting the facial image (.jpg) into an object file (.obj)

(refer to Fig. 4.11) to express the robot’s pain. This Section describes how to create

an avatar from a subject’s facial image and express the pain that the robot avatar felt

during education as an avatar (see Fig. 4.1).

4.5.1 Avatar generation

To create an avatar object (.obj), a commercial avatar SDK (Itseez3D, Inc., CA,

USA) was utilized in this study. The patient robot’s avatar, which can express pain, is

converted from the original image (.jpg) to an avatar object (.obj) through the avatar

SDK added to the Unity program (Unity Technologies, Inc., CA, USA). Fig. 4.11
illustrates the patient robot’s avatar from participant’s facial image from RU-PITENS

database (the original image is included in Fig. 4.8). The avatars generated according

to the frames of all original images are classified into five pain groups (PGs): PG1 (no

pain at all), PG2 (very faint pain), PG3 (weak), PG4 (moderate), and PG5 (strong). In

other words, five types of pain avatar can be expressed based on the pain’s level of the

patient robot that feels pain during passive ROM exercise.

The pain group that determines the patient robot’s avatar expression is defined

based on the FLPI and SNPI. Here, FLPI indicates the calculated value of the pain

intensity felt by the patient robot based on the fuzzy logic method (Section 4.3.2),

and SNPI represents the pain intensity calculated from the pain image based on the

Siamese network (Section 4.4.4).
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Figure 4.11. Patient robot’s avatar from facial image from RU-PITENS database.
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4.5.2 Pain group generation

The procedure of the pain group generation can be summarized as follows. The

pain intensity from the pain image in the RU-PITENS database in advance (Fig. 4.12
(a)), and the avatar was generated based on the pain group (Fig. 4.12 (b)). Then, the

users conducted care training using the patient robot, and the intensity of the pain the

robot feels was calculated based on the extracted quantitative data of the patient robot

(Fig. 4.12 (c)).

Figure 4.12. The procedure of generating avatars (a) Examples of pain images and
calculated SNPI values in the RU-PITENS database (b) Avatars generated according
to pain groups (c) ROM exercise using the patient robot.
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Finally, the visual feedback system was built by matching the intensity of pain the

patient robot felt with an avatar created in advance. The pain group of FLPI and SNPI

is determined by Eq. 4.9.

5 [-8] =



1, 0 5 -8 < 2

2, 2 5 -8 < 4

3, 4 5 -8 < 6

4, 6 5 -8 < 8

5, -8 ≥ 8

(4.9)

where -8 is the input sample, which can be FLPI8 or SNPI8. The fuzzy logic-

based pain intensity of the patient robot (FLPI) was described in Section 4.3.2. FLPI

was calculated using the sensor’s quantitative data of the patient robot through the

fuzzy-logic method and the pain group of FLPI, PG�!%�
8

can be determined using the

function 5 [-8] as Eq. 4.9.

On the other hand, in Section 4.4.4, the Siamese network was described, and by

calculating the SNPI from the acquired pain images in RU-PITENS database, an avatar

can be generated, as shown Fig. 4.11. The formula for determining the output SNPI

from pain images including five types of pain is as follows:

#(#%�8 = ((#%�8 − <8=((#%�8))/(<0G((#%�8) − <8=((#%�8)),

%�(#%�
8

= 5 [#(#%�8] .

(4.10)

where 8 and SNPI denote the number of samples and Siamese network-based pain

intensity, respectively. To obtain the value of PG(#%�
8

, SNPI is normalized to NSNPI

based on the min-max method. Finally, PG(#%�
8

is determined as Eq. 4.9.
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4.6 Experiment and results

4.6.1 Purpose

The purpose of this experiment is to investigate whether the proposed method

automatically infers the pain level of the patient robot and how it differs from the

statistical results analyzed manually. In particular, the difference between the expert

group and the student group is investigated in the obtained pain interference results,

and the method to generate the patient robot’s avatar that expresses pain state is tested

using the pain inference. The subjects participating and experimental protocol in this

Chapter are the same as in the experiment introduced in Chapter 3.

4.6.2 Result of fuzzy-based pain inference

Fig. 4.13 depicts an example of the quantitative data (i.e., elbow joint angle, torque,

pressure signal magnitude area (PSMA)) output from the elbow joint of the patient

robot and the pain level output by using the fuzzy logic method (FLPI). The top figure

of Fig. 4.13 shows the elbow kinematics of the patient robot; the angle, torque, and

PSMA of the robot are simultaneously output when the elbow of the robot moves by

extension and flexion. Fig. 4.13 (a) and Fig. 4.13 (b) show that when the elbow joint

angle of the robot decreases, the torque increases because the subject has performed

the movement to extend the elbow of the robot. Fig. 4.13 (c) shows the PSMA

results, where pressure has values alternately between extension and flexion; these

pressure sensor values are different for each participant in the experiment because

each participant may have applied different degrees of force and used different hold

positions on the wrist of the robot. Fig. 4.13 (d) shows the FLPI value, and the pain

groups PG were categorized according to the FLPI (refer to Fig. 4.12 (b)), and the

purple-dot PG1 has a range of FLPI of 0 to 1.99, the black-dot PG2 has a pain level of

2 to 3.99, and the green-dot of PG3 ranges from 4 to 5.99, and the green-dot of PG4

ranges from 6 to 7.99, and the red-dot of PG5 has a FLPI ranging from 8 to 10.
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Figure 4.13. Example of quantitative data of the robot and the fuzzy logic-based pain
level (FLPI) in elbow extension and flexion (EEF) exercise: (a) Elbow joint angle
(c) Torque (d) Pressure signal magnitude area (PSMA) (e) Output of the FLPI. PG
indicates the pain group.

4.6.3 Effect of fuzzy-based pain inference in the repetitive ROM exercises

This evaluation investigates the effect of the fuzzy logic-based pain inference

(FLPI) in the repetitive tasks on care education using the patient robot (RP 4.1 and RP
4.2). Based on the four types of ROM exercises for joint care education, the FLPI was

measured as shown in Table 4.4 and Table 4.5. As a result of investigating normality

using the Shapiro-Wilk test, all groups were nonparametric. Therefore, statistical

tests were performed using the Kruskal-Wallis test, and the significance level was set

at U=0.05.
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Table 4.4. The result of the fuzzy logic-based pain intensity (FLPI) in the repetitive
ROM exercises in the expert group.

ROM exercise Initial-trial Medial-trial Final-trial ?-value

Shoulder

Elevation-depression

(SED)

5.18 (2.89) 5.79 0,1 (1.49) 5.14 (1.45) <.001

Shoulder

Lateral-medial rotation

(SLM)

4.42 (1.84) 4.13 2,3 (1.24) 4.23 4 (1.94) <.05

Shoulder

Extension-flexion

(SEF)

6.54 (2.12) 6.21 5 ,6 (2.53) 6.58 (1.84) <.001

Elbow

Extension-flexion

(EEF)

4.39 (1.96) 4.24 ℎ (1.93) 4.12 8 (1.91) <.05

Note: Each trial contains 10 repetitive ROM exercises. The alphabets from 0 to 8 above the numbers

are the result of statistical analysis using Dunn’s multiple comparison test, indicating the groups in

which statistically significant differences were shown (? <.05).

0, 2, 5 , ℎ: Initial-trial vs. Medial-trial

1, 3, 6: Medial-trial vs. Final-trial

4, 8: Initial-trial vs. Final-trial

In the case of the expert group, the results in initial, medial, and final trial had

statistically significant differences. In the results of the post-hoc test using Dunn’s

test, statistically significant differences (?<0.01) were shown in several comparisons

(the alphabetical indicators from 0 to 8 in Table 4.4. When comparing the results of

caring education for SED, SLM, and EEF excluding SEF in the initial and final trials,

the FLPI values tended to decrease to approximately 0.04, 0.19, and 0.27, respectively.
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Table 4.5. The result of the fuzzy logic-based pain intensity (FLPI) in the repetitive
ROM exercises in the student group.

ROM exercise Initial-trial Medial-trial Final-trial ?-value

Shoulder

Elevation-depression

(SED)

6.39 (2.59) 6.12 0,1 (3.16) 5.38 2 (2.57) <.001

Shoulder

Lateral-medial rotation

(SLM)

6.28 (3.15) 5.93 3,4 (2.95) 6.01 5 (3.26) <.001

Shoulder

Extension-flexion

(SEF)

6.16 (2.95) 6.31 6,ℎ (2.67) 6.29 8 (2.06) <.001

Elbow

Extension-flexion

(EEF)

5.97 (2.25) 5.36 9 ,: (2.65) 5.64 ; (1.98) <.05

Note: Each trial contains 10 repetitive ROM exercises. The alphabets from 0 to ; above the numbers

are the result of statistical analysis using Dunn’s multiple comparison test, indicating the groups in

which statistically significant differences were shown (? <.01).

0, 3, 6, 9 : Initial-trial vs. Medial-trial

1, 4, ℎ, :: Medial-trial vs. Final-trial

2, 5 , 8, 8: Initial-trial vs. Final-trial

Table 4.5 shows the result of the FLPI in the repetitive ROM exercises in the student

group. The results in initial, medial, and final trial showed the statistically significant

differences. In the results of the post-hoc test using Dunn’s test, statistically significant

differences (?<0.01) were shown in all comparisons (the alphabetical indicators from

0 to ; in Table 4.5. As a result, when the initial and the final trial were compared,

the FLPI values of the student group for SED, SLM, SEF, and EEF decreased to

about 1.01, 0.17, 0.13, and 0.33, respectively. Based on the results in Table 4.4
and Table 4.5, the following observation can be defined for RP 4.1 of this Chapter as

follows:
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Observation 4.1) The pain inference technique in this Chapter showed signifi-

cant differences in the initial, medial, and final trials in repetitive ROM movements.

Therefore, it can be concluded that the pain inference method of care training using a

patient robot can provide feedback on a caregiver’s stable posture and care skills while

reducing robot pain in the repetitive task.

Fig. 4.14 illustrates the results of comparing the FLPI between expert and student

groups in repetitive tasks. The differences between experts and students in SED,

SLM, SEF, and EEF were 0.59, 1.81, -0.19, and 1.41, respectively, and there were

statistically significant differences in SED, SLM, and SED exercise (?<0.05). The

observations of the results in Fig. 4.14 can be presented for RP 4.2 as follows:

Observation 4.2) The proposed pain inference method helps to compare intuitively

the differences between groups.

Figure 4.14. Comparison result of the fuzzy logic-based pain intensity (FLPI) of the
patient robot in the repetitive ROM exercises between the expert (Exp) and student
group (Stud) (a) Shoulder elevation and depression (SED) (b) Shoulder lateral and
medial rotation (SLM) (c) Shoulder extension and flexion (SEF) (d) Elbow extension
and flexion exercise (EEF). An asterisk (*) indicates statistical significance at ? <0.05,
and double asterisk (**) indicate statistical significance at ? <0.01.
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4.6.4 Pain sensitivity-based FLPI

Even different subjects with the same disease may report vastly different levels

of pain depending on the severity of trauma and patients’ pathophysiological condi-

tion [91]. This study hypothesis that robots have different pain sensitivities like a

human, and designed robots with pain sensitivity (PSEN) such as Table 4.6.

Table 4.6. The weighing of the robot’s pain sensitivity.

Pain sensitivity (PSEN)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Weight 0.1 0.3 0.5 0.7 0.9 None

The higher the weight value of the PSEN indicates that the robot is more sensitive

to pain and vice versa. The final FLPI can be obtained by using the pain sensitivity, it

can be calculated as Eq. 4.11.

�!%�: = �!%�: + �!%�: × %(�#,

�!%�: =


0, �!%�: ≤ 0

10, �!%�: ≥ 10

�!%�: , 0 < �!%�: < 10.

(4.11)

where : denotes the input samples. The FLPI close to ten indicates that the user’s

care ability is insufficient, while the value of FLPI close to zero indicates that the care

ability is sufficient.

98



Fig. 4.15 illustrates an example of the result of FLPI according to the robot’s

personality. Fig. 4.15 (a) shows the angle and torque of the patient robot in EEF

exericse. When performing the flexion exercise, it can be observed that the value of

torque increase rapidly. As a result, the value of FLPI is affected due to the abrupt

change in torque (Fig. 4.15 (b)). In Fig. 4.15 (b), the positive area of FLPI (<5) had

less response to the pain sensitivity, while the negative part of FLPI (>5) was defined

(refer to Eq. 4.11) so that the more pain sensitivity is high, the more FLPI’s response

is sensitive. The reason is that if the robot has a high sensitivity to pain, it can respond

more to the pain caused by the inexperienced care skills of users during care education.

Figure 4.15. Example of the fuzzy logic-based pain intensity (FLPI) of the patient
robot calculated according to the pain sensitivity in extension and flexion exercise of
the elbow complex (EEF) (a) angle and torque raw data (b) FLPI.
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4.6.5 Result of questionnaire in RU-PITENS database

The pain is a subjective factor that can be measured differently depending on the

situation and the individual. To investigate the effect of the pain intensity in the

RU-PITENS database, participants answered the questionnaire immediately after the

end of stimulation tests for each level (the procedure of the stimulus test is described

in Section 4.4.2). The questionnaire consisted of a visual analogue scale (VAS) and a

subjective pain score (SPS). The VAS is easy to work with and frequently used for the

assessment of variations in intensity of pain [92]. In this experiment, the SPS survey

was designed as a subjective indicator of pain. The value of SPS can be classified as

follows: no pain at all=0, very faint pain (just noticeable)=1, weak pain=2, moderate

pain=3, strong pain=4, and very strong pain=5.

Fig. 4.16 shows the result of the questionnaire from all subjects. In Fig. 4.16 (a),

the SPS continuously increased according to the stimuli levels, and there were statisti-

cally significant differences among stimuli levels (�=164, ? <0.01, ANOVA test). For

the pleasure score, the score decreased with respect to the stimuli level, indicating that

it may suggest that the pain stimulus had a negative effect on the subject’s emotion.

There was a difference of about 2.0 between the maximum level (Lv.5) and the mini-

mum level (Lv.1) in SPS (&=9.89, ?<0.01, Tukey’s post-hoc test). An increase in the

arousal score with stimuli level suggests a negative effect on the stimulus, and showed

a difference of about 3.81 between the minimum (Lv.1) and maximum (Lv.5) stimu-

lation level (&=14.42, ?<0.01, Tukey’s post-hoc test). Additionally, according to the

evaluation of all parameters for gender, there was no statistically significant difference

in most male and female groups. However, when the survey statistics were analyzed

by classification by age group (the 20s, 40s, 50s, and 60s), there were differences in

each survey result. In the case of SPS and arousal scores, there was a statistically

significant difference in all age groups at from Lv. to Lv.5 (ANOVA test), and there

was a significant difference from Lv.2 and Lv.5 (ANOVA test) in the pleasure score.

Based on these results, the pain images in Lv.5 (stimuli maximum level) were utilized

to generate the robot’s facial avatar.
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Figure 4.16. Result of the survey in RU-PITENS database (a) All subjects (b) Survey
results according to gender group (c) Survey results according to age groups (20s,
40, 50s, and 60s). The test methods were used the analysis of variance (ANOVA)
and Tukey’s method (post-hoc analysis). The significant level was set at U=0.05.
An asterisk (*) indicates statistical significance at ? <0.05, and double asterisk (**)
indicate statistical significance at ? <0.01. SPS and Lv indicate the subjective pain
score and the stimuli level.

101



4.6.6 Result of Siamese network-based pain intensity

To train the Siamese network, the pain images of 96 by 96 resolution were input

to the network; A total of 2,856 pair samples were used for training and the remaining

1,226 pair samples for testing in the UNBC-McMaster database. Fig. 4.17 shows the

contrastive loss chart of the Siamese network used in this study. The model was eval-

uated by changing the number of layers, and ! indicates the layer shown in Fig. 4.17.

As a result of the investigation conducted by increasing the number of layers from L3

to L5, the loss of both training and validation was the least in the ConvNet-L3 model.

Figure 4.17. The loss of the method of pain intensity using Siamese network.

Fig. 4.18 illustrates an example of feature vectors with corresponding PSPI and

SNPI. The ground truth, PSPI, was compared with the SNPI of the proposed method

for pain intensity, and also observed changes in pain expressions by extracting facial

landmarks from the image. In Fig. 4.18 (a), a total of 68 facial landmarks were ex-

tracted and feature vectors (FV) were calculated as follows: left eyebrow width (FV1),

right eyebrow width (FV2), distance between left and right eyebrow (FV3), left eye

width (FV4), right eye width (FV5), left eye height (FV6), right eye height (FV7),

distance between left eyebrow and left eye (FV8), distance between right eyebrow and

right eye (FV9), distance between left eye corner and lip left corner (FV10), distance

between right eye corner and lip right corner (FV11), lip width (FV12), inner lip width

(FV13), lip height (FV14), distance between nose tip and upper lip (FV15), and nose
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height (FV16). From observing frame #354 in Fig. 4.18 (b), which has the maximum

value of the ground truth (PSPI=15), changes in FV8, FV11, FV14, FV12, FV8, and

FV9 were observed (Fig. 4.18 (a)). These feature vectors are related to several action

units (AU4: brow lower, AU6: cheek raiser, AU10: upper lip raiser, and AU43: eyes

closed) when calculating PSPI. As a result, SNPI also had the highest value at 0.312

in frame #354.

Figure 4.18. Example of the feature signals with corresponding Prkachin and Solomon
Pain Intensity Scale (PSPI) and Siamese network-based pain intensity (SNPI) from
data ’107-hs107-hs107t2aaaff’ (UNBC-McMaster Database) (a) Feature vectors (FVs)
and (b) Result of the PSPI and SNPI.
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To estimate the pain intensity using the Siamese network SNPI compared to the

PSPI (ground truth), two measurement methods such as the Pearson correlation coef-

ficient (PCC) and mean absolute error (MAE) were used. The PCC is a statistical test

that measures the relationship between two variables. It has a value between −1 and

1, and the closer it is to 1 (positive correlation) or −1 (negative correlation), the higher

the correlation was shown Table 4.7 shows that the ConvNet-L3 model had the best

estimations (PCC=0.87 and MAE=3.13).

Table 4.7. The evaluation of the pain intensity of the pain image using Siamese
network (SNPI).

ConvNet-Layer 3 ConvNet-Layer 4 ConvNet-Layer 5

PCC 0 0.87 0.79 0.55

MAE 1 3.13 4.89 6.11

0 Pearson correlation coefficient. 1 Mean absolute error

Figure 4.19. The result of pain intensity using Siamese network (SNPI) from all
subjects in RU-PITENS database (a) male (b) female.
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Figure 4.20. The result of pain intensity using Siamese network (SNPI) from subjects
in RU-PITENS database (a) S1 (b) S38 (c) S10 (d) S15.

The results of most subjects showed that the intensity of facial pain tended to

increase with the intensity of the electrical stimulation, as shown in Fig. 4.19. Com-

paring the pain intensity extracted from the facial image (SNPI) and the questionnaire,

as with the result of S1, S10, S15, and S38 (Fig. 4.20), four participant’s subjective

pain (SPS), pleasure, and arousal scales averaged about 4.0 (out of 5 points, the higher
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the score, the greater the pain), 3.0 (out of 9 points, the higher the score, the more

positive) and 5.75 (out of 9 points, the higher the score, the more arousal) (refer to

Fig. 4.16). Thus, in general, as the stimulation intensity increased using the TENS de-

vice, the intensity of pain obtained from the face and the questionnaire results showed

a similar tendency. To address the RP 4.3, the following observations can be proposed

based on these results.

Observation 4.3) It can be concluded that facial images, including pain intensity,

can be acquired through stimulation using the TENS device.

Figure 4.21. Result of pain group (PG) determination and avatar generation according
to normalized Siamese network-based pain intensity (NSNPI).
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4.6.7 Feasibility testing of robot’s pain expression based on pain inference

Fig. 4.22 shows an example of a test of the integrated pain inference and expression

technique in ROM exercise of the shoulder extension flexion (SEF). In Fig. 4.22, the

patient robot can express five types of pain (PG1: no pain at all, PG2: very faint pain,

PG3: weak, PG4: moderate, and PG5: strong) based on the method of determining

the avatar. In passive SEF exercise, when the user fully flexes the glenohumeral joint

of the robot, the angle of the glenohumeral joint ranges from roughly 100 to 110

degrees, and the FLPI value ranges from about 6 to 9. Finally, the avatar expressed a

moderate or strong pain intensity as shown in Fig. 4.22 (c).

Figure 4.22. Testing of the pain expression of the patient robot in ROM exercise of the
shoulder extension-flexion (SEF) (a) The angle and torque value of the glenohumeral
joint of the robot (b) Fuzzy logic-based pain intensity of the robot (FLPI) (c) Avatar
expression.
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4.7 Discussion

The main objective of this Chapter was to propose a pain inference model and a

pain expression model for the patient robot that can express pain states in joint care

education to improve caregivers’ skills in care training. The proposed system makes

the following contributions. In Section 4.6.3, the increase in the number of trials of the

ROM exercise affected the decrease in the pain intensity felt by the robot. Focusing on

the result of the decrease in variance in the final trial rather than the initial trial, it can

be concluded that users performed more consistent ROM exercises for care training in

the final trial. Thus, it can be concluded that the patient robot has the potential to be

an effective method for ROM exercises in joint care education.

In addition, the user relies on the value or graph of the robot’s quantitative data

output during care training in all ROM exercises. Because the gaze of the user tends to

be focused on the robot’s joints and joint movements, it is difficult to check how well

the user is performing their tasks. However, care education applying the proposed

visual feedback method in this work allows the user to receive feedback from facial

expressions of pain in the robot in real time and obtain more information through

advanced human-robot interaction. Consequently, it anticipated that these visual in-

dicators can play an important role in achieving the ultimate goal of effective care

education that allows users to react immediately.
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Chapter 5

Robotic emotion expression

This Chapter presents the development of robot emotion detection and mood transition

for a patient robot that can express current emotional states in joint care education. The

main purposes of the proposed method in this Chapter are (a) to provide feedback that

allows the caregiver to react immediately to the emotions felt by the robot during care

training and (b) to propose a way for the caregivers and the robot to communicate their

emotions, thereby enhancing the caregivers’ ancillary qualifications such as stability,

optimism, and communication (refer to Section 1.1). First, a method to track the

user’s emotions in real-time based on the face image is proposed so that the user’s

emotions are reflected as the robot’s emotions, and the robot can express continuous

mood transition. To track the user’s emotional intensity, a total of 15 feature vectors

according to seven types of facial expressions are calculated by extracting facial

landmarks. Before starting the user’s emotion tracking in real-time, the standard

feature vectors for all user facial expressions are obtained through calibration, and

when tracking starts, the distance between the input feature vector and the input

image is obtained to measure the current emotional intensity. A new facial emotional

intensity database from Ritsumeikan University (RU-FEmoI2021) was introduced for

the robot’s emotional expression for the experiment. The RU-FEmoI2021 database

contains facial expression images of 41 Japanese people. This database consists of data

obtained by dividing people into age groups in the 20’s, 40’s, 50’s, and 60’s. Based on

the pain images in the RU-FEmoI2021 database, a robot’s avatar is generated based

on the user’s current facial expression to achieve the interaction between the patient

robot and caregivers. It is anticipated that an advanced patient robotic system based on

human-robot interaction on the CNT by utilizing the robot’s facial expression method.
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5.1 Motivation

For the advancement of the patient robot, the scalability of the patient robot to

which the robot’s emotions are applied is required. The main motivations for the study

of robot mood transition for the patient robot are as follows:

• The caregivers must have stability for continuous interaction with the patient

because the caregiver’s stability can give the patient reassurance [5].

• The caregiver with an optimistic disposition can positively change the patient’s

low moods and anxious psychology [4]. Even in terms of care education using

patient robots, the optimistic disposition of caregivers can influence the robot’s

current emotions. Since an unskilled learner can give the patient robot an

impression of tension during care training, a system that can provide the learner

with the robot’s current emotion should be introduced.

According to the above motivations, the unskilled caregivers should be trained to

improve their ability to consistently create positive expression and a bright atmosphere

in patients when the unskilled caregivers are confronted with the patient.

The recent research on the robot’s emotion has been developed based on an ap-

proach in which the robot’s emotion changes according to the current emotion of

humans using expressions, texts, and voices [93]. Therefore, the robot’s mood state

reflects the user’s current mood state, and the user can receive feedback from the robot;

the first step in the robot’s emotional expression is to recognize the human’s emotional

state. Human emotional states can be expressed through non-verbal and verbal expres-

sions [94]. In [95], in the area of interpreting and capturing human emotional states,

the non-verbal facial expressions account for 55% of the total, and verbal expressions

(speech with the tone, intonation, and word) account for 45%. Besides, facial expres-

sions are recognized as the most important part of communication [96, 97]. Thus, the

study of this Chapter introduces the robot’s emotion generation based on the user’s

current facial emotion.
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5.2 Objectives and research problems

5.2.1 Specific objectives

The objectives of the method for robotic emotion transition of the patient robot

introduced in this Chapter to achieve the goals are as follows.

• To develop an approach of robotic emotional state transition for generating

robot’s avatar

• To calculate the user’s emotional intensity based on facial’s expression using a

camera

• To generate the robot’s emotional transition that can give feedback by interacting

with the user

• To propose a method of the robot’s emotional transition according to the robot’s

personality

5.2.2 Research problems

In order to achieve the goals of the proposed method for robotic emotion transition

in this Chapter, several research problems must be solved as follows:

• RP 5.1) What kind of method can determine the robot’s personality?

• RP 5.2) Can the robot recognize and track the user’s facial expressions?

• RP 5.3) In the continuous change of the user’s facial expressions, can the robot’s

emotional transition continuously change in the pleasure-arousal map?

• RP 5.4) Does the robot’s personality affect the robot’s emotional transition?
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5.3 Proposed framework

The framework (Fig. 5.1) of the proposed robotic mood transition method con-

sists of (a) calculating the user’s facial intensity to provide emotional information to

the patient robot and (b) designing an approach to transit robotic emotion for inter-

action with the user. More detailed technical explanations are given in the next Section.

Figure 5.1. The whole framework of the proposed robotic emotional state transition.
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5.4 User’s emotional intensity

The user’s emotional state can influence the psychological state of the robot. For

example, if the user feels anxious, the robot may feel anxious, while if the user’s

emotions are stable, the robot can feel comfortable. In the human-robot interaction

environment, the intensity of the = th user’s facial expression (*�=) is required to

express the emotional state of the robot (= indicates the number of users). To calculate

the user’s emotional state *�=, there are six kinds of steps as follows: i) calibration,

ii) finding the facial landmarks, iii) extracting the feature vectors, iv) calculating the

dissimilarity between the user and standard facial image, v) obtaining coefficients of

user’s current emotional intensity, and vi) determining user’s current emotion. In this

method, all procedures for detecting the user’s emotional state are performed by the

camera in front of the user.

5.4.1 Facial landmark detection

Facial landmarks are areas that protrude from the face and can be defined as char-

acteristic points that can express facial features such as eyes, eyebrows, nose, mouth,

and chin line as shown in Fig. 5.2 (a). Facial landmark detection is the task of de-

tecting critical landmarks on the facial area and tracking the feature points of the face

through a shape prediction method in the range of interest (ROI). In this study, a shape

predictor for faces (shape predictor 68 face landmarks) provided by the DLIB library

(C++ toolkit containing machine learning algorithms and tools) [98] was used as a

method of finding face points. In order to recognize the position of the facial land-

marks, the shape predictor uses an ensemble of regression trees for learning on the

given training data, and the accurate position of the facial landmark can be obtained

in real-time. Fig. 5.2 (b) shows the result of 68 facial landmarks detected from an

example image in AKDEF datbase [99].
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Figure 5.2. Facial landmarks (a) 68 standard coordinates (b) Landmarks with
AKDEF datbase (Facial image credit: AKDEF-MNES (the Averaged Karolinska
Directed Emotional Faces-Man-Neutral- Straight) [99]).

5.4.2 Calibration

Before starting calculating user’s emotional state, the standard feature vectors are

required to track the user’s facial expression in step (a) (refer to Fig. 5.1). Therefore,

before starting tracking, a calibration step of capturing the user’s face according to each

facial expression is performed. Fig. 5.3 illustrates the procedure of the calibration from

seven facial expressions such as fear (F), angry (A), neutral (N), happy (H), disgust

(D), sad (S), and surprise (R). When the user expresses each facial emotion as much as

possible, standard landmarks (!"BC3, : ) of each expression is extracted (Eq. 5.1) and

stored in the buffer until all calibrations are completed.
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!"BC3, : =



;<�
BC3, :

;<�
BC3, :

;<#
BC3, :

;<�
BC3, :

;<�
BC3, :

;<(
BC3, :

;<'
BC3, :



=



: Cℎ landmark in fear

: Cℎ landmark in anger

: Cℎ landmark in neutral

: Cℎ landmark in happiness

: Cℎ landmark in disgust

: Cℎ landmark in sadness

: Cℎ landmark in surprise



(5.1)

Figure 5.3. The facial landmarks detection from seven facial expressions.
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5.4.3 Feature vector extraction

The feature vectors were extracted using a method verified by Sharma et al. [100]

from 68 facial points based on Euclidean distance measure Eq. 5.2.

�+ (;<?, ;<@) =
√
(;<?

G − ;<@G )
2 + (;<?

H − ;<@H)
2 (5.2)

where ;<? and ;<@ refer to the landmarks of the feature vector �+(;<? ,;<@) to be

obtained. Based on the coordinates of the two landmarks, the distance was calculated

and total 15 feature vectors were extracted as shown in Fig. 5.4, and Table 5.1
represents the description of feature vectors. The criterion for selecting 15 feature

vectors is defined by the action unit (AU) defined in the Facial Action Coding System

(FACS) [101], and explanations related to each expression are as follows (except for

neutral expressions):

• Fear (F): the expression of Fear is related to the movement of the facial muscles

of inner brow raiser (AU1), outer brow raiser (AU2), brow lowerer (AU4),

upper lid raiser (AU5), lid tightener (AU7), lip stretcher (AU20), and jaw drop

(AU26); FV3, FV8, FV9, FV15, FV12, and FV14 are extracted to estimate

these movement.

• Anger (A): the expression of Anger is related to the movement of the facial

muscles of brow lowerer (AU4), upper lid raiser (AU5), lid tightener (AU7),

and lip tightener (AU23); FV3, FV6, FV7, FV8, FV9, FV12, FV13, and FV14

are extracted to estimate these movement.

• Happiness (H): the expression of Happiness is related to the movement of the

facial muscles of cheek raiser (AU6) and lip corner puller (AU12); FV10, FV11,

and FV12 are extracted to estimate these movement.

• Disgust (D): the expression of Disgust is related to the movement of the facial

muscles of nose wrinkler (AU9), lip corner depressor (AU15), and lower lip de-
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pressor (AU16); FV15, FV12, FV10, FV11, and FV16 are extracted to estimate

these movement.

• Sadness (S): the expression of Sadness is related to the movement of the fa-

cial muscles of inner brow raiser (AU1), brow lowerer (AU4), lip corner, and

depressor (AU5); FV3, FV8, FV9, FV10, and FV11 are extracted to estimate

these movement.

• Surprise (R): the expression of Surprise is related to the movement of the facial

muscles of inner brow raiser (AU1), outer brow raiser (AU2), upper lid raiser

(AU5), and jaw drop (AU26); FV4, FV5, FV8, FV9, and FV14 are extracted to

estimate these movement.

Figure 5.4. Features vectors (a) The method to calculate between two landmarks (b)
15 feature vectors (Facial image credit: AKDEF-MNES (the Averaged Karolinska
Directed Emotional Faces-Man-Neutral- Straight) [99])).
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Table 5.1. The descriptions of 15 feature vectors from the coordinate map with 68
facial landmarks.

Facial region Feature vectors Description

Eyebrows

FV1 Left eyebrow width

FV2 Right eyebrow width

FV3
Distance between left

and right eyebrow

Eyes

FV4 Left eye width

FV5 Right eye width

FV6 Left eye height

FV7 Right eye height

FV8
Distance between left eyebrow

and left eye

FV9
Distance between right eyebrow

and right eye

FV10
Distance between left eye corner

and lip left corner

FV11
Distance between right eye corner

and lip right corner

Mouth

FV12 Lip width

FV13 Inner lip width

FV14 Lip height

Nose FV15
Distance between nose tip

and upper lip
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5.4.4 Facial emotional intensity

To obtain the intensity of each facial expression, a current feature vector −−→�+ 2DA
:

is calculated by extracting the landmarks when an image is an input from a camera

in real-time. The feature vector −−→�+ : refers to the 15 feature vectors described in the

Section above. Referring to Fig. 5.5, this Section explains how to measure the inten-

sity of the current emotional state −−→�+ 2DA
:

, that is, the dissimilarity (distance) of the

standard emotional state −−→�+"=(�,�,#,�,�,(,')
:

acquired in the calibration step. Here,

�, �, # , �, �, (, and ' indicates the fear, angry, neutral, happy, disgust, sad, and

surprise expression, respectively.

Figure 5.5. The procedure of the method to calculate distance between the standard
feature vector �+"

:
and the current feature vector �+ 2DA

:
of input image.
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First, the dissimilarities (324"=(�,�,#,�,�,(,')
:

) [56] were calculated between the

user’s current feature vector (−−→�+ 2DA
:

) from input image and standard feature vectors
−−→
�+"

:
, " = (�, �, #, �, �, (, '). The dissimilarities (324"=(#,�,�,()

:
) of the four

facial expressions in [56] were extended to seven expressions in this research, and the

dissimilarities (324"=(�,�,#,�,�,(,')
:

) were defined using Eq. 5.3.

324<=,: =
1

(‖−−→�+ 2DA
:
− −−→�+<

:
‖)

(5.3)

where < indicates the index of the expressions such as �, �, #, �, �, (, and

'. When the distance between the current emotional feature vector −−→�+ 2DA
:

and the

standard feature vector −−→�+"
:

is small, the similarity is high. Therefore, the dis-

similarity 324"
:

of the two feature vectors can be calculated as the inverse of the

distance ‖−−→�+ 2DA
:
− −−→�+"

:
‖.

Finally, the user’s current emotional intensity 248"=(�,�,#,�,�,(,')
:

(cei∈[0,1]) can

be normalized based on the dissimilarity (324"
:
= (�, �, #, �, �, (, ')). Algorithm 1

is the pseudo code of the current emotional intensity (CEI).

248�: =
324�

:

324�
:
+ 324#

:
+ 324�

:
+ 324�

:
+ 324(

:
+ 324'

:

(5.4)

248�: =
324�

:

324�
:
+ 324#

:
+ 324�

:
+ 324�

:
+ 324(

:
+ 324'

:

(5.5)

248#: =
324#

:

324�
:
+ 324�

:
+ 324�

:
+ 324�

:
+ 324(

:
+ 324'

:

(5.6)

248�: =
324�

:

324�
:
+ 324�

:
+ 324#

:
+ 324�

:
+ 324(

:
+ 324'

:

(5.7)
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:
+ 324�

:
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:
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:
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:
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:

(5.8)
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:

324�
:
+ 324�

:
+ 324#
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:
+ 324�

:
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:

(5.9)

248': =
324'

:

324�
:
+ 324�

:
+ 324#

:
+ 324�

:
+ 324�

:
+ 324(

:

(5.10)
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Algorithm 1: Current emotional intensity
procedure Emotional Intensity Procedure

landmarkindex← list to landmark index [FV1=[17, 21], FV2=[22, 26],

FV3=[21, 22], FV4=[36, 39], FV5=[42, 45], FV6=[37, 41], FV7=[43, 47],

FV8=[19, 37], FV9=[24, 43], FV10=[36, 48], FV11=[45, 54], FV12=[48,

54], FV13=[67, 65], FV14=[51, 57], FV15=[33, 51]]

M=(fear, angry, normal, happy, disgust, sad, surprise)

dce" : dissimilarity to emotions

newfv: feature vectors for input landmarks

stdfv" : feature vector to standard emotions

Function DistanceFunc(0, 1):
distance"← sqrt((pow((a[0] - b[0]), 2) + pow((a[1] - b[1]), 2)))

Return 38BC0=24" ;

while True do
landmarklist← list to facial landmark position

for ;4=Cℎ(;0=3<0A:8=34G) do
newfv← DistanceFunc(landmarklist[landmarkindex[i][0]],

landmarklist[landmarkindex[i][1]])
distance"← DistanceFunc(newfv, stdfv")

dce"← inverse to distance"

diSum← sum to dce"

cei"← round(dce"/38(D<, 2)
Result: Current emotional intensity← 248"

B@AC and ?>F indicates the square root and exponent power, respectively.
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Figure 5.6. Example of dissimilarity 324"
:

of emotional states from ’KDEF-
BM34’ in KDEF database [102].
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5.5 Robot’s emotional transition

As a method for generating robotic expressions, research on producing robots’

emotions is conducted after tracking the user’s current emotional state. The reported

approaches for forming a robot’s emotions have been proposed based on the user’s

emotions. Caregivers must continuously train care skills and qualifications such as

stability, optimism, and communication. For example, in a care and nursing environ-

ment, the caregiver with an optimistic disposition can cause positive changes in the

depression or anxious psychology of the patient. Besides, the caregiver’s stability

reassures the patient and creates a comfortable environment when communicating

with the patient. Therefore, the caregiver needs training to continuously check the

patient’s mood transition, receive feedback for the patient’s current emotion, and have

a stable and bright expression. This Section deals with a method of tracking the mood

transition of the patient robot according to the caregiver’s facial expression for care

education using the patient robot.

5.5.1 Robot’s emotional state

Han et al. [57] proposed the interactive robotic emotional intensity (4U8, 4V8)
based on four kinds of emotions (happiness, neutral, anger, and sadness). The inter-

active robotic emotional intensity represents the response from user’s current emo-

tional intensities on the pleasure-arousal plane. To define the relationship between

pleasure and arousal, Russell [52] proposed the emotion’s coordinates into the two-

dimensional map. Fig. 5.7 illustrates the mapping of prototype emotions based on the

pleasure-arousal plane. The study of this Section measures the emotional intensity of

robot (REI), '��: (4U8, 4V8) for seven standard emotion factors (fear, angry, neutral,

happy, disgust, sad, and surprise expressions).
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Figure 5.7. The mapping of prototype emotions based on the pleasant-arousal plane.

Table 5.2. Mapping factors.

Expressions

Axis
Fear

(< 5 �)
Anger
(< 5 �)

Neutral
(< 5 # )

Happiness
(< 5 �)

Disgust
(< 5 �)

Sadness
(< 5 ()

Surprise
(< 5 ')

% -0.8 -0.9 0.6 0.9 -0.4 -0.2 -0.2

� 0.7 0.2 -0.5 0.9 -0.2 -0.5 0.9

Note: % and � indicate the pleasure and arousal axis, respectively.

Table 5.2 shows the mapping factors of seven expressions for projection robot’s

emotional intensity on the pleasure and arousal axis. Based on the mapping factors,

the robotic emotional intensity '��: (ΔU8,ΔV8) can be calculated using Eq. 5.11 and

Eq. 5.12.

'�� U8 (pleasure axis) = < 5 �U,8 × 248�8 + < 5 (U,8 × 248(8 + < 5 �U,8 × 248�8
+<?�U,8 × 248�8 + <?�U,8 × 248�8 + <?'U,8 × 248'8 + <?#U,8 × 248#8

(5.11)

'��
V

8
(arousal axis) = < 5 �V,8 × 248�8 + < 5 (V,8 × 248

(
8 + < 5 �V,8 × 248�8

+< 5 �V,8 × 248�8 + < 5 �V,8 × 248�8 + < 5 'V,8 × 248'8 + < 5 #V,8 × 248
#
8

(5.12)
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where < 5U and < 5V indicate the mapping factors in pleasure and arousal axis,

respectively (Table 5.2), and 2488 represents the current emotional intensity and it can

be calculated using Eq. 5.4 to Eq. 5.10 in Section 5.4.4. Fig. 5.8 illustrates the example

of the result of robotic emotional intensity '��8. From the 8-th input face image, the

user’s current emotional intensity ���8 for the seven expressions is calculated, and

the robotic emotional intensity '��8, is calculated based on the mapping factors

in Table 5.2. For example, in the case of the current image #1 (Fig. 5.8), the most

potent user’s current emotional intensity value among���"=�,�,#,�,�,(,'
8

obtained is

0.83 at 'Happiness (248�1 )'. As a result, '��1 was calculated and projected as closest

to the mapping factor 'Happiness (< 5 �=0.9, 0.9)'.
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Figure 5.8. Example of the result of robotic emotional intensity (REI).
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5.5.2 Robot personality determination

A robot’s personality affects the robot’s emotional state and transition, and many

studies have been investigated the robot’s personality [103, 104, 105]. For human-

robot interactions that extract robust comprehension, a robot’s personality can be

determined based on the cognitions and behaviors of a human personality [103]. In

most studies, the robot personality was determined by using the Big five factors (BF) as

openness (BF$), conscientiousness (BF�), extraversion (BF� ), agreeableness (BF�),

and neuroticism (BF# ). This Big five factors model, OCEAN, was derived by Mc-

Crae et al. [106] to investigate the traits of personal characteristics. The description

of OCEAN is as follows [107]:

• BF$: The tendency to appreciate new art, ideas, values, feelings, and behaviors.

• BF� : The tendency to be careful, on-time for appointments, to follow rules, and

to be hardworking.

• BF� : The tendency to be talkative, sociable, and to enjoy others.

• BF�: The tendency to agree and go along with others.

• BF# : The tendency to experience negative emotions such as anger, worry,

sadness, and being interpersonally sensitive.

In this study, the robot personality was set to three types as talkative (Case A),

shy (Case B), and smiling (Case C). As shown in Table 5.3, the weighting of OCEAN

factors of four types of robot’s personality were generated based on the result of

the Spearman correlation of the five factors with the subject has observed character-

istics reported by Gurven et al. [108].
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Table 5.3. Result of Spearman Correlations of the OCEAN factors from self-report
sample. Table adapted from Gurven et al. [108].

Personality

Factor
Case A

(Talkative)
Case B
(Shy)

Case C
(Smiling)

Openness (BF$) 0.070∗ -0.508∗∗∗ 0.364∗∗∗

Conscientiousness (BF�) 0.133∗∗∗ -0.428∗∗∗ 0.270∗∗∗

Extraversion (BF� ) 0.178∗∗∗ -0.584∗∗∗ 0.444∗∗∗

Agreeableness (BF�) 0.069∗ -0.496∗∗∗ 0.292∗∗∗

Neuroticism (BF# ) -0.016∗∗∗ 0.315∗∗∗ -0.236∗∗∗

Note: The asterisk (*) indicates statistical significance at ? <0.05 and asterisks (***) indicates

statistical significance at ? <0.001.

In Table 5.3, Case A (Talkative) showed very little correlation with all OCEAN

factors and self-report results. On the other hand, in Case B (Shy), there was a negative

correlation in openness (-0.508) and extraversion (-0.584), and this result means that

Case B’s personality opposes the extroversion character. In Case C (smiling), there

was a positive correlation with extraversion (0.444) but a slight negative correlation

with neuroticism (-0.236).

Based on the statistical results, the relationship according to the correlation value

was interpreted to provide weights to determine the robot’s personality, as shown

in Table 5.4. Finally, the weight of the OCEAN factor concerning the three types

of robot characteristics is defined as shown in Table 5.5. The observation for the

research problem RP. 5.1 in this Chapter are as follows:

Observation 5.1) Since the robot’s personality is motivated by the actual human’s

personality extracted in [108], it can be more human-friendly than the robot’s character

set as an arbitrary value. In addition, reliability can be ensured based on statistical

results in determining the robot’s character.
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Table 5.4. Interpretation of relationship between Spearman correlation and robot’s
personality’s weighting.

Value of
Spearman correlation (d)

Relationship
Interpretation

Robot’s personality
weighting

-0.9≤ Very high negative -1

-0.9≤d<-0.7 High negative -0.7

-0.7≤d<-0.4 Moderate negative -0.5

-0.4≤d<-0.2 Weak negative -0.3

-0.2≤d<0 None -0.1

0≤d<0.2 None 0.1

0.2≤d<0.4 Weak positive 0.3

0.4≤d<0.7 Moderate positive 0.5

0.7≤d<0.9 High postivie 0.7

≥ 0.9 Very high postivie 1

Table 5.5. The OCEAN factor’s weighting in three cases for robot’s personality.

Robot’s personality weighting

Factor
Case A

(Talkative)
Case B
(Shy)

Case C
(Smiling)

Openness (BF$) 0.1 0.5 0.3

Conscientiousness (BF�) 0.1 -0.5 0.3

Extraversion (BF� ) 0.1 -0.5 0.5

Agreeableness (BF�) 0.1 -0.5 0.3

Neuroticism (BF# ) 0.1 0.3 -0.3
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5.5.3 Robotic mood transition

Using the OCEAN factors, Mehrabian [109] presented the pleasure-arousal tem-

perament model and derived the Eq. 5.13 in order to calculate the pleasure-arousal

scale (%B20;4 and �B20;4, respectively) by analyzing the correlation among five factors.

%B20;4 = 0.21��� + 0.59��� + 0.19��# ,

�B20;4 = 0.15��$ + 0.3��� − 0.57��# .
(5.13)

Robot’s personality-based robotic emotional intensity (REIP), '��%(U, V)
8

, is cal-

culated by using Eq. 5.14 and Eq. 5.15.

'��% U
8 =


−(%B20;4 · '�� U

8
), 8 5 (%B20;4 < 0 0=3 '�� U

8
< 0)

%B20;4 · '�� U
8
, >Cℎ4AB

(5.14)

'��%
V

8
=


−(�B20;4 · '�� V

8
), 8 5 (�B20;4 < 0 0=3 '�� V

8
< 0)

�B20;4 · '�� V
8
, >Cℎ4AB

(5.15)

Finally, the robot’s mood transition (RMT), '") (U, V)
8

is constantly affected by the

previous state '") (U, V)
8−1 [56] and it can be calculated by using Eq. 5.16.

'")
U, V

8
= '")

U, V

8−1 + '��%
U, V

8 (5.16)

where 8 denotes the number of samples. In the initial state when the image is first input

(8=1), '")8=1 is equal to the robot’s emotional intensity '��8=1 because '")8=1 is

not affected by changes according to the robot’s personality in the initial state. On

the other hand, in the case of the robot’s mood transition occurs continuously (i>1),

the robot’s mood transition '")8, (8>1) is projected by reflecting the '��%8 from the

previous '")8−1.
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Fig. 5.9 illustrates the example of calculating the robot’s emotional intensity

REI from the input images of the three emotions (happiness (Emotion #1), anger

(Emotion #2), and sadness (Emotion #3)), and calculating the REIP according to the

three types of robot’s characteristics defined in Table 5.5. For case A (talkative), there

was little change in REIP values because the values of the %B20;4 (0.099) and �B20;4

(-0.012) obtained from OCEAN were insignificant. In case B (shy), the %B20;4 (-0.343)

and �B20;4 (-0.246) were negative due to its OCEAN effect, and it can be observed that

the REIP value shifted to the negative plane. On the other hand, in case C (smiling),

since the case C was greatly influenced by extroversion and openness factors, the REIP

was shifted significantly toward the positive plane.

Figure 5.9. Example of robot’s emotional intensity (REI) with robot’s personality.
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Fig. 5.10 illustrates the example of the robot’s mood transition in the case of

talkative (case A), shy (case B), and smiling (case C). By calculating the final robot’s

mood transition RMT using Eq. 5.16, it is observed that there is a significant difference

in the robot’s mood transition depending on the robot’s personality. More detailed

results and interpretation are discussed in the following Section.

Figure 5.10. Example of robot’s mood transition (a) none personality (b) case A
(talkative) (c) case B (shy) (d) case C (smiling).
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5.6 Experiment and results

5.6.1 New database: Facial emotion intensity (RU-FEmoI2021)

To measure the user’s facial emotion intensity and generate the robot’s emotional

transition, a new facial emotion intensity (RU-FEmoI2021) database was built in

this experiment. In particular, this RU-FEmoI2021 database was constructed by dis-

tinguishing four age groups in the 20s, 40s, 50s, and 60s, collecting facial images

harmoniously according to age groups, and the purposes are as follows:

• Since the ultimate goal of this doctoral thesis (refer to Section 1.3), which is

to measure the user’s emotional intensity and generate the robot’s emotional

transition, is to generate an avatar of the patient robot. Therefore, the face

images and meaningful findings in this RU-FEmoI2021 database are finally

utilized to determine the patient robot’s avatar in Chapter 6.

• The avatar-based robot head has the advantage of being easy to transform, so

the face images of the subjects are used to divide the gender and age group to

express the robot avatar in various ways.

As shown in Table 5.6, total forty one healthy subjects (Japanese people) were

recruited to the study by advertisements posted on the participant’s recruitment for

experiment of the company. Facial images from 41 subjects, 26 males (mean age

46.6±3.4) and 15 females (mean age 55.8±2.4), were used for facial feature analysis

and emotional intensity.

The subjects had no history of facial musculoskeletal disorders and paralysis,

neurological pathology, and orthopedic surgery. This study briefed each subject on

the study’s purpose, and the subjects provided written informed consent prior to

participation in the experimental procedures. The study was approved by the Rit-

sumeikan University Institutional Review Board (approval: BKC-2019-060). The

experiment for this database was conducted in the AIS laboratory of Ritsumeikan
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University and is published as an open database: https://github.com/ais-lab/

RU-PITENS-database

Table 5.6. Demographics of the participant’s gender and age in facial emotion intensity
(RU-FEmoI2021) database.

Facial emotion intensity (RU-FEmoI2021) database

Age range

Gender Measure 20 to 29 40 to 49 50 to 59 60 to 69 Total

Male

N.S

11 5 5 5 26

Female - 5 5 5 15

Total 11 10 10 10 41

Male

M.A

23.7

(2.1)

45.0

(4.6)

53.6

(3.0)

64.0

(3.9)

46.6

(3.4)

Female -
45.2

(2.3)

56.0

(1.6)

66.2

(3.3)

55.8

(2.4)

Total
23.7

(2.1)

45.0

(4.6)

53.6

(3.0)

64.0

(3.9)

47.2

(2.9)

Note: N.S and M.A indicate the number of subjects and the mean age, respectively. Numbers in

parentheses are standard deviations.

5.6.2 Experimental environment and protocol

The experiment was conducted in a laboratory room, and the apparatuses including

a main camera Sony RX100VII (Sony Group Corporation, Tokyo, Japan), video cam-

era Sony HDR-PJ790 HD Handycam (Sony Group Corporation, Tokyo, Japan), and

laptop camera Samsung Odyssey NT800G5W (Samsung Electronics, Seoul, South Ko-

rea) were used to acquire the facial images and record the video as shown in Fig. 5.11.
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Figure 5.11. Experimental environment for RU-FEmoI2021 database.

Fig. 5.12 (a) shows the protocol of facial expression for the experiment. The sub-

ject’s facial images were taken sequentially by placing the main camera in front of

the subject and requesting seven facial expressions such as fear (F), angry (A), neutral

(N), happiness (H), disgust (D), sadness (S), and surprise (R). In addition, the pro-

tocol for robotic emotion transition in real-time was designed as shown in Fig. 5.12 (b).

Figure 5.12. Protocol of facial expressions for RU-FEmoI2021 database (a) Exam-
ple of facial expressions in KDEF database [102] (b) Protocol of facial emotional
transition.
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Fig. 5.13 illustrate the example of seven facial expression in RU-FEmoI2021

database. The English-numbered mark shown below the subject’s face image is the

subject’s identifier (ID). The first three letters of the identifier are the age group, and the

last three letters are the index of the subject. For example, In the ID of '60AS07', '60A' is

an age group in the 60s, and 'S07' is an index of the subject, and English letters that

follow with a hyphen mean identification of facial expressions.

Figure 5.13. Example of facial expressions in RU-FEmoI2021 database.
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5.6.3 Result of user’s facial emotion state

This evaluation measures the intensity of the user’s facial expression obtained from

the camera in real-time. The protocol of this experiment is based on Fig. 5.12 (a). All

subjects who participated in the experiment repeated each expression ten times in a

sequence (from the neutral expression to the next expression).

Figure 5.14. Testing of the user’s emotional intensity (ID: 60AS28) in real-time.
Blue text indicates the highest intensity. AFF, ANG, DIS, HAP, NEA, SAD, and SUS
indicate the fear (afraid), angry, disgust, happy, neutral, sad, and surprise expression.
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Fig. 5.14 is the screenshot of an experiment in which the facial expression’s inten-

sity was measured when subject #28 (S8, ID: 60AS28) conducted seven expressions in

a real-time environment. The blue text indicates the intensity of the highest expression

among the seven expressions in Fig. 5.14. Fig. 5.15 illustrates the results of continu-

ous facial emotional transition of S8. In the expressions of happiness (H), angry (A),

and fear (afraid), the appropriately corresponding intensities of happiness, anger, and

fear (afraid) showed relatively more remarkable results than the intensities of other

emotions. In addition, it was remarkably confirmed that the cycle of changing from a

neutral expression to a next expression was performed ten times. On the other hand, in

disgust, surprise, and sadness expressions, negative expressions were complicatedly

entangled and it was showing rather ambiguous results.

Figure 5.15. Result of the user’s emotional intensity (ID: 60AS28) in real-time.
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Figure 5.16. Testing of the user’s emotional intensity (ID: 40AS06) in real-time.
Blue text indicates the highest intensity. AFF, ANG, DIS, HAP, NEA, SAD, and SUS
means the fear (afraid), angry, disgust, happy, neutral, sad, and surprise expression.

To take another example, Fig. 5.16 shows the result of expression intensity ac-

cording to the facial expressions of subject #06 (S6, ID: 40AS06). As a result of
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continuous facial expression changes (Fig. 5.17), in the case of angry, sadness, fear

(afraid), which were included in the ambiguous area, it could be confirmed that it

clearly intersect with the neutral expression. Although the intensity of happiness ex-

pression was conspicuous, but there was still an ambiguous boundary between sadness

and disgust expression.

Figure 5.17. Result of the user’s emotional intensity (ID: 40AS06) in real-time..

Table 5.7 shows the confusion matrix for the user’s facial expression using the pro-

posed method, and the overall accuracy is 91.92%. As shown in the confusion table, it

was observed that fear (Precision (PR)=86.18% and Recall (RC)=91.22%) and disgust

(PR=80% and RC=88.78%) were frequently confused, and happiness (PR=92.87%

and RC=98.54%) was detected very slightly incorrectly in surprise (97.71% and

RC=93.66%) expression.
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Table 5.7. Confusion matrix for the user’s facial expression in RU-FEmoI2021
database.

Predicted Label
Total RC

F A N H D S R

Ground
Truth

F 374 10 0 3 20 3 0 410 91.22

A 12 359 0 2 29 0 8 410 87.56

N 0 0 392 0 14 4 0 410 95.61

H 4 1 0 404 0 0 1 410 98.54

D 24 17 0 0 364 5 0 410 88.78

S 20 1 0 0 28 361 0 410 88.05

R 0 0 0 26 0 0 384 410 93.66

Total 434 388 392 435 455 373 393 2870

PR 86.18 92.53 100 92.87 80 96.78 97.71

Note: F, A, N, H, D, S, and R mean the fear, angry, neutral, happiness, disgust, sad, and surprise

expression. PR and RC indicate the precision and recall, respectively.

The observation of the research problem about the possibility of recognizing the

user’s facial expression and measuring the intensity by the method proposed in this

Chapter is as follows.

Observation 5.2) As a result of measuring the user’s facial expression and intensity

in real-time, the proposed method showed an accuracy of 91.92%; it can be concluded

that it will apply to exchanging emotions in a situation where the patient robot and the

user interact.
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5.6.4 Result of robotic mood transition

This evaluation investigates the feasibility of the proposed method to track the

continuous robotic emotional state according to the robot’s personality. As described

in Section 5.5.2, the robot’s personality is set as Case A (talkative), Case B (shy), and

Case C (smiling) as shown in Table 5.8, and the effect of the robot’s mood transition

according to personality is examined.

Table 5.8. The Robot’s personality PB20;4 and AB20;4.

PB20;4 AB20;4

Case A (talkative) 0.099 -0.012

Case B (shy) -0.343 -0.246

Case C (smiling) 0.225 0.306

Fig. 5.18, Fig. 5.19, and Fig. 5.20 illustrate the example of the robotic mood

transition from S1 and S3 in the protocols such as Set 1, Set 2, and Set 3, respectively

(protocols was explained in Section 5.6.2). In Set A (Fig. 5.18), although the result

was significantly different depending on the robot’s personality, the Case A (talkative)

variance was relatively small because its weight projected on the pleasure and arousal

axes was small (PB20;4=0.099 and AB20;4=-0.012). On the other hand, in Case B, it

can be observed that the robot’s mood is rapidly changed from the arousal axis to the

negative direction according to the emotional change of S3. Since the Case B (shy)

personality has a negative weight on the arousal axis (AB20;4=-0.246), the robot’s mood

is more strongly affected when the user’s emotional state is negative. In the Case C, it

can be observed that when the user’s emotion in S3 was detected as happiness (H), the

robot’s mood increases sharply on the pleasure axis (Sequence #3 in Fig. 5.18) and

then changes to negative on the arousal axis when it changes to angry (A) (Sequence #4

in Fig. 5.18)). The personality as Case C (smiling) has a positive weight (PB20;4=0.225

and AB20;4=0.306), it can be observed that it stays in the happiness (H) region even in

the neutral (N) state.
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Figure 5.18. Trajectory of the robotic mood transition with different robot’s person-
ality from S1 and S3 in Set A (N-H-N-A-N-F-N).
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Figure 5.19. Trajectory of the robotic mood transition with different robot’s person-
ality from S1 and S3 in Set B (N-H-N-H-N).
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Figure 5.20. Trajectory of the robotic mood transition with different robot’s person-
ality from S1 and S3 in Set C (N-R-N-S-N).
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Fig. 5.19 shows the trajectory of the robotic mood transition with different person-

ality in Set B. There was no significant change on the arousal axis in Case A (talkative)

when expressing a happy expression continuously from a neutral expression. On the

other hand, the robot’s mood transition in Case B (shy) was found in the midpoint of

the pleasure and arousal plane, and the personality as Case C (smiling) showed more

heightened results in a positive direction in the mood of H (happy) than other cases

such as Case A (talkative) and Case B (talkative).

According to the robot’s mood transition result according to the user’s emotion’s

change based on the arousal axis, the robot’s mood continuously changes along the

arousal axis as in Case A (talkative). In case A of Fig. 5.20), it can be observed that

the robot’s mood changes (Sequence #4 and Sequence #5 in Fig. 5.20) based on the

pleasure axis as the user’s emotions change in the order of neutral, sadness, and neutral

expression. In addition, the personality of Case A (talkative) has a negative effect

(AB20;4=-0.012) on the arousal axis, so it can be seen that when the user’s emotion is

neutral, it continuously decreases in the vertical direction based on the arousal axis.

Based on these results, the observation can be suggested to solve the RP 5.3 and RP
5.4.

Observation 5.3) It was observed that the robot’s mood continuously changed

according to the continuous user’s current emotion, and the current robotic mood was

accumulated and changed under the influence of the previous robotic mood.

Observation 5.4) In the interaction situation, the degree of reaction or expression

may vary depending on the personality of the individuals. Therefore, this study applied

the different personalities to the robot’s mood transition and it was intended to examine

how it affects the robot’s mood. Consequently, the evaluation was found that the

robotic mood according to the robot’s personality had a significant effect on the mood

transition in the situation where the change in the user’s emotional state was the same.
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5.7 Summary

The facial expression and the attitude of the caregivers can be included as a part

of care ability, and it supports the patient’s emotional state to be stably maintained

when the caregiver’s expression is comfortable and calm. To apply these conceptual

problems to the patient robot system, therefore, the following objectives of this study

were achieved. The objectives of this Chapter were (a) to generate the robotic mood for

the patient robot’s avatar to provide the assessment of the user’s care ability in the care

education and (b) to investigate the possibility of the robot’s mood transition based on

the robot’s personality. To summarize the proposed method’s description, the method

to track the robot’s mood transition was proposed for expressing the patient robot’s

emotion in the care training environment. The proposed method was designed for users

using the patient robot to react immediately to the robot’s emotions and performed

based on the user’s facial expression intensity in real-time. In addition, to observe the

tracking of the change of the robot’s mood according to the robot’s personality, the

robot’s personality was defined by statistical results of the actual human personality.

The method for determining the robot’s personality was successfully applied to help

users to improve their interaction skills to respond to various personalities, sensitivities,

and situations in the care and nursing environment. Although studies to determine

the robot’s personality have been conducted in many studies [56, 58], the factors

of OCEAN were arbitrarily determined or set in a dichotomous way as an extrovert

(active trait) or introvert (passive pessimist) personality. To investigate more diverse

personality types, however, this paper proposed human-friendly robot emotions by

setting three personality types through statistical results of personality by a survey

participated in from humans. As a result, the method of this Chapter has been proven

to be applicable to the patient robot’s facial expression system, which is the primary

purpose, and will be expressed as an avatar in the integrated system of the patient

robot to be introduced in Chapter 6. In addition, the proposed method is foreseen to

be applied to successfully communicate emotions in various fields where humans and

robots interact.
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Chapter 6

Care training assistant robot based on the pain and

emotional expression

This Chapter presents an approach for integrating a care training system based on the

patient robot’s pain and emotional expression. The main objective of this Chapter is to

demonstrate the feasibility and the possibility of the proposed integrated care training

system using the patient robot that can provide information on psychological and

emotional factors. In Chapter 3, the patient robot for care training was successfully

designed to reproduce the patient with the musculoskeletal symptom, and it can be

concluded that the feasibility of the patient robot was proved. In Chapters 4 and 5,

the study of the robot’s pain inference and the mood transition was well-established in

order to express the robot’s pain and emotional expression in care education. Based

on the methods proposed in the previous Chapters, a projector-based robotic head is

proposed to express the robot’s pain and emotional state in care education. The use

of the robotic head can relieve the robot’s pain and improve the user’s care skills by

reacting immediately to the pain expression when the robot feels pain according to the

care action in a real-time environment, and the user can make it possible to interact

emotions with the patient robot. In addition, the main advantage of using a projector-

based robot head are its relatively reasonable cost and the ease of transforming the

robot’s avatar into the appearance of a specific patient over various methods involving

physical sensors. This study is anticipated to achieve a new pathway for developing

an advanced care training system by using patient robots that can express the current

emotional and painful state.
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6.1 Motivation

The robotic head provides realistic facial expressions that can be used to support

interaction between a robot and a person. Berns et al. [110] proposed the method to

control robotic facial expression using the robot head ROMAN. Kitagawa et al. [22]

proposed the human-like patient robot for improving the ability of nursing student’s

skills of injecting the patient’s arm into a vein, and the robot was designed with the

aim of being manipulated to express various emotions such as neutral, smile, pain,

and anger. Although the robot’s expression can be communicated in various ways,

the method of using a projector, in particular, has the main advantage of low cost

and easy to use. One of the most significant advantages is that the facial features

(age, gender, specific person, etc.) can be easily and conveniently transformed. The

visual-based feedback that may be obtained by using the projector is able to represent

various realistic facial expressions. Maejima et al. [111] proposed a retro-projected 3D

face system for a human-robot interface. Kuratate et al. [78, 112] developed a life-size

talking head system (Mask-bot) using a portable projector. Pierce et al. [113] improved

the preliminary Mask-bot [78, 112] by developing a robotic head with a 3-DOF neck

to research human-robot interactions. The study of [113] argued the opinion that the

significant advantage of the projector-based robot head is that it may not depend on

complex mechanical structures including motors. Therefore, many motors do not need

to be controlled to modify the facial expression, and it is easy to change the avatar or

shape of the robotic head. In the study of this dissertation, therefore, the projector-

based robotic head that expresses the pain state and emotions for care training is

proposed.
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6.2 Objectives

The specific objectives of the integration system for care training introduced in this

Chapter are (a) to present a novel feedback approach using the patient robot that can

express pain and emotional states by integrating the methods proposed in Chapters

3, 4, and 5, (b) to demonstrate the advantages of projector-based robotic head, and

(c) to investigate the feasibility of the patient robot’s feedback method for expressing

emotions and pain in care education.

6.3 Integrated system

The overall system for the proposed care training system as shown in Fig. 6.1. The

basic methods for developing this system have been proposed in previous Chapter 3,

Chapter 4, and Chapter 5. In Chapter 3, the patient robot was developed to reproduce

the specific-joint movement with musculoskeletal symptoms. The pain intensity felt

by the robot is expressed as the avatar by applying the pain inference method proposed

in Chapter 4 to the patient robot. The method for tracking the robot’s emotional

expression proposed in Chapter 5 is applied to the avatar to express the current robotic

emotion state.

The importance and necessity of applying the methods proposed in previous Chap-

ters to this integrated system are summarized as follows:

• Patient robot (Chapter 3): The patient robot reproduces the movements of

patients with musculoskeletal symptoms, and trainees use the robot to conduct

care training to improve their care skills.

• Pain inference of the patient robot (Chapter 4): The caregivers should periodi-

cally check whether the patient feels pain or not and observe painful expressions

on the patient’s face during care conducting. For this reason, the necessity of

developing a method to automatically infer the pain intensity felt by the robot
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based on the sensor data collected from the robot was emphasized in Chapter 4.

Therefore, the pain inference method in Chapter 4 provides more information

(patient robot’s pain state) to trainees and is applied to the integrated system to

improve the efficiency and quality of the care training feedback method proposed

in this dissertation.

• Robot’s mood tracking (Chapter 5): The method for tracking the robotic mood

based on the trainee’s facial emotion expression was introduced to improve the

ancillary qualifications (stability, optimism, and communication) of caregivers

in Chapter 5. By studying and investigating the effects of caregiver’s emotions

on robot’s mood, this approach is applied to more advanced care education

systems.

Figure 6.1. Framework of the system for care training assistant robot based on the
pain emotional expression.

152



The original facial images are generated as 3D avatars using the Avatar SDK (It-

seez3D, Inc., CA, USA). As shown in Fig. 6.2 (a), the 3D avatars are converted from

original images (.jpg) to avatar objects (.obj) using the Unity program-based SDK.

The Avatar SDK acts as the conversion SDK, and object files are acquired from the

original image. The 3D avatar (.jpg) image can be converted when the object file is

downloaded. After loading the generated 3D avatar object file (.obj) are handled in

the Unity program, and facial avatars with pain and emotion expressions for each of

the five groups are finally created as shown in Fig. 6.2 (b).

Figure 6.2. Example of the method to generate the avatar (a) Framework (b) Generated
facial avatar object (.obj) and imamge (.png).
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Fig. 6.3 illustrates the example of the avatar for pain and emotional expression.

This study tried to create an avatar of a patient robot considering various age groups

and genders without depending on a specific target’s facial shape and appearance.

Several images for avatars are based on the RU-PITENS database designed in Chapter

4 and the RU-FEmoI2021 database proposed in Chapter 5. It has been proven that the

pain image in the RU-PITENS database is an image expressed when the subject felt

pain and is divided into five pain groups according to the intensity of pain obtained

from the image.

Figure 6.3. Example of avatar generation using the facial images in RU-PITENS and
RU-FEmoI2021 database.
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To generate the animation, the unity’s animator was adopted to animate the avatar’s

facial expressions. Each group maintained an interval of about 0.5 seconds, and

animation according to the facial expressions of the avatars was completed as shown

in Fig. 6.4 (a). Fig. 6.4 (b) depicts the expression transition of the avatar changes from

neutral to a specific expression and then returns to the neutral process.

Figure 6.4. The method to animate the avatar’s facial expressions (a) Animator (b)
Expression transition.
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6.4 Experiment

Fig. 6.5 shows the experimental environment of the robot’s avatar expression using

a projector. A facial mask and a camera that can recognize the user’s facial expressions

are located on the desk, and a projector is located in front of the desk. The projector

is positioned in front of the mask to project the avatar onto the mask, and the user

performs the care task using the elbow joint of the patient robot fixed to the desk.

Figure 6.5. Experimental environment for robot’s emotion and pain expression of the
patient robot.

To express robotic facial expressions, a projector was used for the experiment.

Fig. 6.6 depicts the testing of the projector-based robotic head for the emotion and

pain expression.The projector is placed in front of the translucent facial mask, and

the avatar’s expression is determined based on the information obtained from the

patient robot or the user, and the command is transmitted to the Unity program on the

computer.
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Figure 6.6. Projector-based robot’s emotion and pain expression.
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Fig. 6.7 shows the testing results of performing elbow exercises (EEF) using the

integrated system. In the Ready state, the robot head communicates emotions with

the user. As the example of the Ready state in Fig. 6.7 (a), the user tried to express

happiness, and then the robot head expressed the emotion of happiness. Fuzzy logic-

based pain intensity (FLPI) is calculated based on sensor data of angle, torque, and

pressure of the robot’s elbow joint, and FLPI is determined as shown in Fig. 6.7
(b). When the pain group is 1 (=no pain, FLPI ranges from 0 to 1.99), the avatar

expresses a neutral expression, but the avatar expresses the maximum pain expression

when pain intensity is high (pain group=5, FLPI ranges over 8). Fig. 6.7 (c) illustrates

an example of the testing result in which the robot’s avatar and the user communicate

their emotions, and the robot’s avatar can express emotions according to the user’s

facial expression.

Figure 6.7. Testing of the projector-based patient robot (a) Pain expression (b) Result
of the fuzzy logic based-pain intensity (FLPI) of the patient robot (c) Emotional
expression.
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6.5 Discussion

The integration system for practical care training based on visual feedback was

proposed to improve the care skills of caregivers. The most crucial advantage of a

projector-based robot head is that it is easier and more convenient to change the avatar

than mechanical or physical methods. As shown in Fig. 6.6, the avatar with various age

groups and genders can be expressed. Therefore, the integrated system in this Chapter

provides an environment for learners to train how the patient’s mood changes and

respond to the patient’s pain according to the patient’s personality and pain sensitivity

by applying the patient’s face picture and personality to the patient robot in advance.
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Chapter 7

Concluding remarks

The main goals of the work presented in this dissertation were

• to provide the effects of enhancing care skills using patient robots by deeper

interpretation of the users’ care skills based on quantitative data obtained from

the robot for providing an effective patient robot-based care education system

• to infer the pain felt by the patient robot and to intuitively provide the trainee

with the patient’s pain state

• to provide a novel approach of the patient robot’s facial expression-based visual

feedback method for care training.

This Chapter describes the paper’s goals described in Section 1.3 and summarizes

the contributions based on the observations addressed to the research problems in each

Chapter. Finally, future works will be discussed to expand existing work.

7.1 Contributions

This Chapter describes the contributions based on new observations made from

the results of each Chapter.

Chapter 2 highlighted the importance of the research on the patient robots and

feedback in care and nursing education.

Chapter 3 established several contributions by developing a patient robot that

reproduces the musculoskeletal symptoms. The statistically significant results were
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obtained between the expert group and the student group in ROM exercise using

the patient robot, which resulted in notable results demonstrating the effectiveness

of care training using the patient robot. In addition, the experiment’s findings have

demonstrated that, although experts have many years of experience, they performed the

care tasks in different methods and behaviors. Therefore, Chapter 3 has demonstrated

the feasibility of the proposed patient robot that it is necessary to provide appropriate

care and treatment for the patient through analysis of the quantitative data obtained

from the patient robot.

In Chapter 4, the robot’s pain was inferred using the proposed fuzzy logic method

by combining the robot’s sensor data collected during the care training. Using the

proposed method, this study contributed to intuitively comparing learners’ care abili-

ties and consequently demonstrated significant differences in initial, medial, and final

trials of ROM movements using the pain inference method. In addition, the database

of the facial images with pain expressions from 41 Japanese people was built to gen-

erate a robot’s pain avatar and the database will be disclosed as an open database to

expand the scalability of the research related to the pain expression in various fields.

Chapter 5 proposed to calculate the intensity of the user’s facial expression and

to track the robot’s mood transition to express the emotional state that can interact

with users in care education. In terms of care and nursing training, the robot’s mood

transition approach contributes to facilitating research related to interaction in care

training by proposing a more advanced patient robot that allows the user to receive

feedback through the patient’s facial emotional expression and respond immediately.

Chapter 6 demonstrated the proposed a projector-based robot head which has the

advantages of low cost and ease of use. In addition, this work introduced the benefits

of a robotic avatar created based on facial images of participants from different age

groups and genders.

161



7.2 Future work

For the scalability of care and nursing training using the approach in this disserta-

tion, it is necessary to consider several well-defined studies in the future.

7.2.1 Various musculoskeletal diseases

The most important future research required for this research is that more care

and nursing tasks should be considered. Although the experiment in this dissertation

focused only on ROM exercise among various care and nursing tasks, it is necessary

to investigate various medical symptoms (ie, stiffness, contracture, muscle weakness)

of people in need of nursing and to expand the application. Further, the additional

experiment may be extended to perform various ROM exercises and care activities

involving different postures (e.g. sitting, standing, etc.) because the ROM exercises

were conducted for a single case (lying in bed) in the experiment of this dissertation.

7.2.2 Additional data measurements and protocols

In terms of the experiment, perhaps the part that requires additional validation

in this dissertation is to acquire sufficient experimental data to generalize the effect

of care education on patient robots. Although this study demonstrated the validity

of the patient robot by supporting sufficient investigations and results on the robot’s

internal modules, the effectiveness of care education using the patient robot has yet

to be generalized based on various groups and experimental protocols. Therefore,

additional test subjects are required to perform more experiments. Future studies

should focus on generalizing the results based on sufficient data on the effectiveness of

improved care and rehabilitation skills using the proposed patient robot. Comparisons

should also be made between the results obtained from actual patients and the proposed

robot patient.
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7.3 Summary

This Chapter discussed the objectives and research problems defined in the intro-

duction and showed that several contributions with observations were achieved. The

upper extremity of a patient robot that reproduces patients with musculoskeletal dis-

orders has been developed, and a method for the robot’s pain inference and a method

of emotional expression were proposed. The methods proposed in this dissertation

were investigated numerically through various experiments and validated statistically.

This dissertation has the following contributions and scalability for future works:

• Development of a patient robot that can express various diseases and pain

• Care and nursing education system that can respond to various diseases and pain

• Development of a care and nursing training system including an interaction tech-

nique that can improve the additional qualities of caregivers such as reliability,

stability, optimism, and communication

• Development of efficient and effective feedback methods for caregivers and

students in care and nursing training

• Creation of database by acquiring facial images for expressions of pain and

emotion
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