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Abstract

Deep learning has been successfully applied in many research fields, such as computer vision, speech

recognition and natural language processing. Most of them are focused on a single modality. On the other

hand, multimodal information is more useful for practical applications. Multimodal deep learning has gained

a lot of attention and becomes an important issue in the field of artificial intelligence. Compared to traditional

single-modal deep learning, there are the following challenges in multimodal deep learning such as:

development of the multimodal dataset; multimodal representation; multimodal alignment; multimodal

translation and multimodal co-learning. The purpose of this research is to develop an efficient and accurate

multimodal deep learning methods and apply them to the healthcare systems range from touchless medical

image visualization for surgery to estimation of depression level using computer vision and deep learning.

The main achievements of this research work are as follows.

(1)

)

3)

I developed three multimodal datasets for three different applications of multimodal deep learning. The
first one is a multi-angle view hand gesture RGB-D dataset (MaHG-RGBD), which contains 75000
paired color-and-depth images of 15 subjects with 25 hand gestures obtained by two Kinect V2 sensors
from different viewing directions. The second one is a human pose RGB-D dataset (Pose-RGBD),
which contains 13800 paired color-and-depth images of 6 subjects with 15 postures obtained by Kinect
V2 sensor. The third one is a multimodal behavioural dataset of depression (MB-DD), which comprises
two components: the behavioural dataset and the screening survey results. The behavioural dataset
contains dynamic expression facial images, speech and gait of depression subjects with different
depression levels, which are recorded by two video cameras and five microphones.

In medical surgery, surgery often faces the challenge of efficiently reviewing the patient's 3D anatomy
model while maintaining a sterile field. I have proposed to use hand gesture recognition techniques to
support, touchless visualization of 3D medical images in surgery. To achieve this, I have developed
three versions. The 1% version, I used HOG as the feature and SVM as a classifier to recognize 9 kinds
of hand gestures from the depth images. In the 2™ version, the system uses a Kinect sensor to acquire
three kinds of hand gestures and track their hand movements. Based on these states and their movements
to visualize 3D hepatic anatomic models in real-time. In the 3™ version, I have proposed a multimodal
deep learning method to perform gesture recognition using color and depth images. The multimodal
system achieves more accurate and robust real-time gesture recognition compared with a single-modal
system.

Image-based human posture recognition is a challenging problem due to many aspects such as cluttered
background and posture self-occlusion. With the help of depth information, depth-based methods have
better performance. However, depth cameras are not as widely used and not as affordable as color

cameras. Therefore, I proposed a two-stage deep Convolutional Neural Network (CNN) architecture



(4)

for accurate color-based posture recognition. The first stage performs translation of color images to
depth images, which is called as pseudo depth image. The second stage recognizes posture classes using
both the color image and its pseudo depth image. The translation stage is based on a conditional
generative adversarial network (cGAN). The proposed method was validated on two private datasets
(i.e., Pose-RGBD, MaHG-RGBD) and one public dataset (i.e., OUHANDS). Experiments demonstrate
that the proposed method achieves superior performance on both human pose and hand gesture
recognition tasks.

Depressive symptoms are a massive problem in this stressful modern society. Early screening of
depressive symptoms helps to reduce the number and intensity of their depression episodes. Automatic
detection of depressive symptoms from audio cues has gained increasing interest in the recent years. In
order to achieve this, I have proposed a multimodal adaptive fusion transformer network for estimating
the levels of depression. The proposed transformer-based network is utilized to extract long-term
temporal context information from single-modal audio and visual data in my work. I also proposed an
adaptive fusion method for adaptively fusing useful multimodal features. Furthermore, inspired by
current multi-task learning works, I incorporate an auxiliary task (depression classification) to enhance
the main task of depression level regression (estimation). The experimental results show that the

proposed methods outperforming state-of-the-art methods.
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Chapter 1

Introduction

Deep learning has been successfully applied in many research fields, such as computer vision,
speech recognition and natural language processing. Most of them are focused on a single
modality. On the other hand, multimodal information is more useful for practical applications.
Multimodal deep learning has gained a lot of attention and becomes an important issue in the
field of artificial intelligence. Compared with traditional single-modal deep learning, there are
the following challenges in multimodal deep learning: development of multimodal dataset;
multimodal representation; multimodal alignment; multimodal translation; multimodal fusion
and multimodal co-learning [1]. The purpose of this research is to develop efficient and
accurate multimodal deep learning methods and apply them to healthcare systems range from
touchless medical image visualization for surgery to estimation of depression level using
computer vision and deep learning. The main achievements of this dissertation are shown in
Figure 1.1. My research pipeline is based on build dataset, proposed original method for
solving the multimodal challenge problems (indicated by black letters in the orange

background) and apply to the healthcare system.
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Figure 1.1: Contributions on multimodal deep learning in healthcare. Black letters in the orange
background the corresponding multimodal challenge tasks.

The main contributions of my research are 1) building three multimodal datasets: MaGH-
RGBD hand gesture database [2], human pose RGB-D dataset (Pose-RGBD) [3] and
multimodal behavioural dataset of depression (MB-DD) [4], 2) developing multimodal
methods to solve the multimodal challenge problems: a) multimodal hand gesture recognition
based on multimodal representation and fusion [5]; b) Translation of color image to depth
image for accurate color-based posture recognition based on multimodal translation and fusion
[3,6]; ¢) Extract and fuse the synchronized dynamic facial features associated with different
emotion voice stimuli based on multimodal alignment and fusion [7]; d) an adaptive multitask
fusion transformer network based on multimodal co-learning and fusion [8], 3) apply the
multimodal methods to healthcare applications: touchless medical visualization system [9] and
estimation of depression level [8].

In Chapter 2, I introduce the concept of Convolutional Neural Network (CNN) and Recurrent
Neural Network (RNN). I also present the basic idea about how to perform multi-modal fusion

using early fusion and late fusion.



In Chapter 3, I propose a multi-angle view hand gesture RGB-D dataset (MaHG-RGBD),
which contains 75,000 paired color-and-depth images of 15 subjects with 25 hand gestures
obtained by two Kinect V2 sensors from different viewing directions. I proposed a multimodal
deep learning method to perform the image recognition using a pair of color-and-depth images
and apply them to touchless visualization of 3D medical images. The nine gestures that are
associated with the high recognition accuracies were selected for the touchless visualization
system. I further demonstrated that this technique facilitates touchless real-time visualization
of hepatic anatomical models during surgery. This system is expected to ultimately lead to
better patient outcomes by enhancing the ability to visualize medical images in 3D during
surgery.

In Chapter 4, I demonstrated that the depth images provide higher recognition than the color
image. Though the depth image is more useful and accurate for posture recognition than the
color image, the depth cameras are not as widely used and not as affordable as color cameras.
I proposed an RGB posture-recognition network based on a two-stage CNN architecture. To
improve the recognition performance from color images, I generated an estimated depth
posture image by a hybrid loss function incorporated in the generation module. The loss
function captures the high-level features and recovers the sharp depth discontinuities. The
proposed method was evaluated on the two datasets, including our novel dataset of color-depth
pose images, and the public OUHANDS hand gesture dataset. The hybrid loss effectively and
accurately generated depth posture images and the estimated depth image improved the
accuracy of posture recognition.

In Chapter 5, I first introduced the basic methods of experimental design and data acquisition
system of computer-aided depressive severity diagnosis. Second, I introduced the multimodal
behavioral dataset of depression (MB-DD) [4], which comprises two components: the
behaviours dataset and the screening survey results. The behavioural dataset contains dynamic
expression facial images, speech, and gait of 102 subjects with different depression levels,
which are recorded by two video cameras and five microphones. Third, I summarised the
baseline behavioral features such as facial expressions and speech prosody and the baseline
gate recurrent unit (GRU) network and a late fusion strategy to combine audio and visual
modalities. Finally, I presented a multi-modal adaptive fusion transformer network for

depression detection using multi-task representation learning with facial and acoustic features,
3



which achieves the best results on the development set of the AVEC 2019 DDS dataset. By
fusing the selected modalities, my proposed approach achieved a CCC score of 0.733 on the
AVEC 2019 DDS dataset, outperforming the alternative methods investigated in this work.

In Chapter 6, I presented the conclusion of this dissertation.
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Chapter 2

Fundamentals of Deep Learning

2.1 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are one of the most successful ideas in deep
learning, generally including convolutional layers, pooling layers, and fully connected layers.
They are made up of neurons that have learnable weights (/) and biases (b). They can be split
into two parts: feature extraction part (convolutional layer and pooling layer) and classification
part (fully connected layers). On the fully connected layer, they have a loss function. The image
is first going through a series of hierarchically convolution layers, pooling layers for feature
extraction. Thus, the extracted features are fed to the full connected layers for classification.
The Figure 2.1 shows a typical architecture of CNN (AlexNet). It consists of five convolutional
layers, three pooling layers (Max pooling), and two fully connected layers (FC).

= 4 CONV
Overlapping 3x3pad=1
CONV Ovcrlappmg CONV Max POOL Xx3,pa
1x11 Max POOL 5x5, pad = 2, 3x3, 384 kemels
stride =4 % 3",3d' N 256 kernels stride =2, N
_____ i stride =
Py 4
: Ir: 96 kcmci - 4» (27 - 5)/1 (27 3241 5-113 f}l -3)1
L 55 (553)2+1
______ (227-11)/4 5o +1=27
1l +1 =55 55

CONV 384
3x3,pad=1
384 kemels

CONV 256 Overlapping
3x3,pad=1 Max POOL 256

256 kernels 3x3,
Stride =2

- >

—>
(13+2%1-3y1
+1=13 (13+2*1:3)1 - — gs > g
+1=13 (13-3)2+1 FC
7 13 =6 6 FC
13 |£=p 6
= 13
13 . 1000
13 softmax

4096 4096

Figure 2.1: A typical convolutional Neural Network (AlexNet).



2.1.1 Convolutional Layer

The image that goes through the convolutional layers can be considered as feature extraction.
The convolutional layer performs an operation called a “convolutional”, which involves the
multiplication of sets of weights with the input. The set of weights is called a filter or a kernel.
The idea of applying convolutional operation is not new. Traditional filters are designed by
experts based on their experience for a specific purpose. The traditional machine learning uses
existing filters, such as Laplacian filter and Gabor filter, to extract features and the features are
fed into the classifier for classification. Only the classifier is trained using training samples.
The innovation of using the convolution operation in a neural network is that the weights of
the filter are learned together with the FC layers (classifier) in a fashion of end-to-end. It means
that we can automatically obtain optimum or specific filers to extract features for a given task
Convolutional neural networks can learn multiple features in parallel for a given input.
Different feature maps can extract different types of features. Each filter is called as a channel
in the convolutional layer. In the first convolutional layer of AlexNet as shown in Figure 2.1,
there 96 filers resulting in 96 feature maps, the output of the convolutional layer can be viewed
as a volumetric image.

The size of the filter kernel is smaller than that of the input data, and an element-wise
multiplication (dot production) is applied between a kernel size patch of the input and the kernel.
The amount by which the filter shifts at each step is called stride. When the stride is 1, we
move the filters one pixel at a time. Suppose the kernel size is K and the stride is S, the
convolution operation can be expressed by Equation (2.1):

(K-1)/2 (K-1)/2
u(i,j) = Z Z w(l,m)x(ixXS+1LjxS+m) (2.1)
l=—(K—-1)/2 é=dm=—(K-1)/2

Where w, x, u are filter kernel, input, and output, respectively. Examples of convolution

operation with strides 1 and 2 are shown in Figure 2.2.
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Figure 2.2: Convolution operations with stride of 1 and 2.

When we want to control the spatial size of the output volumes, we can use padding to
surround the input with zeros. Suppose the size of the input image is N, the kernel size is K,
and the stride and padding are S and P, respectively. The size of the output of the convolution
is defined as (N-K+2P)/S+1. In Figure 2.2, the size of the output is (4-2+0)/1+1=3 for S=1
and (4-2+0)/2+1=2 for S=2, respectively. In the first convolutional layer of AlexNet (Figure
1), the size of the output is (227-11+2*0)/4+1=55. Since we have 96 channels (kernels), the

size of the feature map (output volume) is 55 X 55 x96.
2.1.2 Pooling Layer

In the CNNs, a pooling layer follows a convolution layer and has the same number of
feature maps (channels) as the previous convolution layer. Each feature map in pooling layers
subsampling on the feature map in the previous layer. Therefore, the pooling layer can
effectively reduce the size of the feature maps and reduce the number of parameters in the last
fully connected layer. The usage of the pooling layer can speed up the calculation and prevent
over-fitting. The examples of max pooling and average pooling are shown in Figure 2.3 (a) and

2.3 (b), respectively.



Max pool with 2*2 filters Average pool with 2*2 filters

i And stride 2
1111213 And stride 2 1111213 nda striae
46|78 8 =] 78
3010110 3(1|11|0
512143 212|143
(@) (b)

Figure 2.3: Examples of max pooling (a) and average pooling (b).
2.1.3 Fully Connected Layer

Fully connected layers connect every neuron in input layer to every neuron in output layer.

It is in principle the same as the traditional multi-layer perceptron neural network. The fully

connected layers are often used in the classification task, which is the final part of the CNN, it

takes the output of formal layers as inputs, and maps them into the targets of the classification
task as output.

In this way, the CNN transforms the original pixel values from the original image layer by

layer to the final classification results.

2.2 Recurrent Neural Networks

In feedforward neural networks, which are discussed in section 2.1, data is processed only
the way from input to output. In contrast, Recurrent neural networks (RNN) are primarily used
to process time-series data. RNNs include a feedback loop that sends the output of processed
information back as an input at the next time step in the sequence. The basic idea of RNN is
shown in Figure 2.4. We can process a sequence of vector x by applying a recurrence formula
at every time step. The same function and the same set of parameters are used at every time

step. The hidden state update process can summary as Equation (2.2):

he = fw(he—q, x¢) (2.2)
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where x; donates the input vector at ¢ time step h; represent the new state, h;_, represent the
old state, fj, corresponds to some non-linear transformation such as tanh, ReLU with
parameters W.

The advantages of RNN are: 1) can process any length input, 2) same weights applied to
every timestep. Model size doesn’t increase for longer input. On the other side, the
disadvantages of RNN are: 1) Recurrent computation is slow, 2) it difficult to access
information from many steps back, which means it is difficult to extract long-term temporal

context information from long sequences.

Rolled RNN Unrolled RNN

Output layer @
Hidden layers .

e () @ ®

Time

Figure 2.4: Basic structure of Recurrent Neural Network.
2.2.1 Long Short-Term Memory

The design of Long short-term memory (LSTM) [1] is inspired by logic gate of a computer.
Basic elements of Long short-term memory include an input gate to control activations for the
memory cell, a forget gate to drop useless information of the past cell status, and an output gate

to control the output activations for the ultimate state (Figure 2.5).

Memory 0)
Ceq Input
Forgetgate ‘ gate Candldat
Hidden state T | Ct
He g

N

Input X,

Figure 2.5: The unfolded chain structure of LSTM in time sequence
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The update of LSTM units at time-step t can be described as the Equation (2.3). where I, is
the input gate, F; is the forget gate, O,is the output gate, o is the logistic sigmoid function,
Wi, Wy, Wy, and Wy; , Wy e, Wy, are weight parameter, b; , by, b, are biases. The input is
X; and the hidden state of the pervious time step is H;_;.

I, =0XWy; +H Wy +by)
F, = 0(X;Wys +H,_ Wy, +by)

(2.3)
0, = U(thxo +H;_ Wy, + bo)

The LSTM architecture has the candidate memory cell C, . Its calculation is similar to the
three gates described above but using a tanh function as the activation function. C, can
summary as Equation (2.4):

Ct S tanh(Xthc + Ht_lwhc + bC) (2-4)

where W, ., W}, are weight parameters and b,. is a bias parameter.

In LSTM, we have the input gate I, controls how much of the new data into account via C,
and the forget gate F, addresses how much of the old memory cell content C,_;. The memory
cell C; can summary as Equation (2.5):

C=FOC.+1,0O Ct (2.5)

Another component of LSTM is hidden state. he hidden state H, can summary as Equation

(2.6):
H; = 0; O tanh(C;) (2.6)

where (© is the elementwise product operator. When the output gate O, close to 0, the network
retains all the information only within the memory cell C;. When the gate O, close to 1, the

networks pass all memory information through to the predictor.

12



2.2.2 Gated Recurrent Unit

The gated recurrent unit (GRU) [2] is the newer RNN variant that make it much better
capturing long range connection and solve with the vanishing gradient problems. GRU is got
rid of the cell state and used the hidden state to transfer information. It also has two gates. a
reset gate and update gate. The GRU Cell and its gate is shown in Figure 2. 6. The reset gate
is used to decide how much past information to forget. The update gate decides what
information to throw and what new information to add. It is similar to the forget and input gate
of an LSTM. Then, the reset gate R, € R™"and update gate Z, € R™" are computed as
follows:

R; = 0(X; Wy, + H;_; Wy, + b)), (2.7)
Z, = 0(X Wy, + H_ Wy, +by),

where H,_; is the hidden state of pervious time step. Wy, W,, Wy, W;, are weight

parameters and b,, b, are biases.

The candidate hidden state H, is calculated as follows:
Ht s tanh(Xthh + (Rt @ Ht—l)whh + bh) (2.8)

where W, ;,, Wy, are weight parameters and by is bias. © is the elementwise product operator.
Compare with RNN, the influence of the pervious states can be reduced with the elementwise

multiplication of R; and H,_1 .
The final update Equation (2.9) for the GRU is calculated as follows:
H=1-Z)OH 1 +Z, O I:lt (2.9)

If Z, is close to 1, H, is closed to the candidate hidden state H, . If Z, is close to 0, the GRU
retain the old state H,_; . The GRU can cope with the vanishing gradient problem in RNNs
and better capture long-rang sequence. Illustrates of GRU cell and its gates are shown in Figure

2.6.
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Figure 2.6: GRU cell and its gates. The orange part is reset gate, while the light blue part is update gate.

2.3 Multimodal fusion

Different sensors can provide different information about the same context. Multimodal
fusion is the technology to join the relevant information from the different modalities that leads
to accurate prediction over using only one modality [6,7]. The respective approaches can be
broadly categorized as early fusion, late fusion, and intermediate fusion, depending on the

position of the fusion.
2.3.1 Early fusion

Early fusion combines the different modalities before attempting to classify the content.
There are two types of early fusion. One is using raw data, for example multi-modal images
are used as multi-channel images (each modality is used as an input of channel). Another one
is concatenating multimodal feature vectors into a joint representation and fed into a classifier
for classification. The two types of early fusion architectures are shown in Figure 2.7 (a) and
(b), respectively. Note that the first type is a single-stream architecture and is easy for
implementation, but it can only be used for multi-modal data with same dimension. On the

other hand, the second type is a multi-stream architecture, which may take more computation
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cost, but can be used for any multi-modal data even with different dimension such as fusion of

audio and visual data.

Modality 1 Features

Modality 1
Features CNN
L ‘ |
* .
Modality n CNN Classifier Modality2 Classiier

Modality n

(a) (b)
Figure 2.7: Two types of early fusion architecture. (a) using raw data; (b) concatenating multimodal feature

vectors.
2.3.2 Late fusion

In late fusion, each modality is processed in a separate unimodal CNN stream and the scores
(results) of each modality are fused into a final decision using a simple mechanism such as
voting and averaging [8-11]. Late fusion is the simplest and most used fusion method. Late
fusion has a major drawback which is the very limited potential for the exploitation of the

cross-correlation between the different unimodal data. Figure 2.8. shows the basic late fusion

architecture.
Modality 1
CNN Classifier
Modality 2 N ;
G Classifier Fusion
Modality n
CNN Classifier

Figure 2.8: Late fusion architecture.
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Chapter 3
Multimodal Deep Learning for Accurate Gesture
Recognition Using Color and Depth Images for

Touchless Visualization of 3D Medical Image

3.1 Introduction

Understanding the patient’s anatomic structure is essential for successful surgery [1-2].
Though the visualization of the reconstructed anatomic model on computers can provide
detailed and useful anatomic information for surgery, the surgeon usually needs to use some
contacting devices such as a mouse, keyboard, or touch panel to display the medical images
during the surgical operation. After operating the visualization device, re-sterilization is
necessary to maintain hygiene, which is an inefficient and un-effective process for surgery.
Touchless technology is an attractive and potential solution to address the above problems.
How to develop a real-time and accurate hand gesture interaction system is becoming the main
challenge for touchless interaction in sterile environments for surgeons.

A lot of visualization and virtual reality techniques have been proposed for surgical
navigation and surgical support. Sugimoto et al. [9] proposed a spatial navigation system for
medical information by interactively superimposing a 3D hologram and 3D printing
technology. The limitation is that users need to hold a pen connected to the Z-space system
(VR display) as an interactor. After operating the visualization device, re-sterilization is

necessary to maintain hygiene, which is an inefficient and un-effective process for surgery.
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Table 3.1: Summary of state-of-the-art devices using in the area of touchless interaction in the operating
room.
Device Evaluation results and problems

¢ It is possible to intuitively confirm the anatomic structure from a
3D printer [2] e IS angle by holding the printed model in hand, but it lacks flexible
d sualization such as zoom in/out, selectivity of the specific vessel

compared with the visualization of 3D models on computers.

;u 4‘:; i Sugimoto et al. proposed a spatial navigation system for medical
Z-space [9] t\,’\\"',' i by superimposing 3D hologram and 3D printing technology. The
™ "< [imitation is that users need to hold a pen connected to the system as

an interactor.

HoloLens can detect hand gestures and realize the touchless

HoloLens [13] visualization. The problem for HoloLens-based touchless

" the operation, which is not practical and will limit the operational
performance.

Touchless technology is an attractive and potential solution to address the above problems.
In 2010, Microsoft released a low-cost RGB-D camera, called Kinect. Kinect can provide both
color image and depth image, and it can detect the human actions and human skeleton without
any markers. Since it can be used for accurate gesture recognition, Kinect is considered as an
ideal solution for touchless interactions. Several touchless interaction systems based on Kinect
have been proposed for the visualization of medical images in the surgical operating room.
Gallo et al. developed a controller-free exploration of medical image data [3]. Yoshimitsu et
al. developed a system called “OPECT” for the visualization of 2-D slice images in brain
surgery [4]. Roppurt et al. developed a touchless gesture user interface for interactive image
visualization in urological surgery [5]. However, these systems still have some limitations:
need two hands for interaction, slow responding time, lack of flexibility of interaction. So the
purpose of this research is to develop a high accuracy, real-time, and flexible interactive
touchless medical visualizing system using multimodal gesture recognition.

We have developed several versions to achieve our final goals. In the first version [6], |
used HOG as feature extraction and SVM as classifier to recognize nine kind of hand gesture
from the depth images only, the mean recognition accuracy is found to be 87.5% totally in 8
fps. The system could not achieve real-time recognition. In our second version (Section 3.3), |

just recognized three kinds of hand states and their movements by using the API of the Kinect
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without processing of feature extraction and classification to realize a real-time interaction.
They could not be able to realize complicate interaction and lack flexibility of interactions.

In the third version (Section 3.4), I built a novel Multiview RGB-D dataset, namely MaHG—
RGBD. Moreover, I performed a recognition experiment to recognize depth images using deep
learning. MaHG—-RGBD comprises 25 classes of gestures, proposing 9 classes of gestures with
high recognition accuracy. However, the average recognition accuracy of 9 and 25 classes was
96.51% and 91.87%, respectively. These showed that some gestures were difficult to recognize
using only a depth image. I have proposed a two-stream multi-modal deep learning and to fully
utilize the depth and color information. Thus, the proposed system outperforms my previous
system from the viewpoint of recognition accuracy, rapidity, and flexibility.

The remainder of this Chapter is as follows. Section 3.2 introduces the touchless visualization
system. Section 3.3 describes a real-time interaction based on 3 hand states combined with
movements. Section 3.4 describes my originally proposed multi-angle view hand gesture RGB-
D dataset for the deep learning-based gesture. In Section 3.4, I focus on the multimodal deep
learning method to recognize the hand gestures. I conclude in Section 3.5 with a summary of

my main findings and identify directions for future research.

3.2 Visualization system

3.2.1 System configuration

I designed a visualization module and an interaction module respectively to raise the
usability and freedom of their adaptation to the surgery environment. The two modules
communicate with each other through a socket. The hardware for the visualization module
consists of a server PC with visualization software and a 3D display or a screen with a projector.
As a demonstration system, I use an L-shaped stereoscopic display with two projectors
connected to a server PC to display the 3D models. It should be noted that the L-shaped
stereoscopic display with two projectors probably too big and not suitable for use in a surgical
room. | use it just for the demonstration of 3D visualization. In real clinical applications, we
may use a glass-free 3D display such as magnetic 3D [17] instead of the L-shaped stereoscopic

display with two projectors. The hardware for the interaction module is a Microsoft Kinect
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connected with a smart PC, which is used to capture and recognize hand gestures. Our

demonstration system is shown in Figure 3.1.

Projector (wall)

Kinect and smart PQ

Figure 3.1: Our demonstration system.

The diagram in Figure 3.2 summarizes our system architecture that includes two modules:
the interaction module and the visualization module. When the Kinect sensor detects that user's
gesture becomes available state (i.e., user's right hand is above the waist for 45c¢m), it performs
real-time hand gesture recognition and records hand's 3D location (in the Kinect's coordinate
frame), the hand state and its movement are processed by command module and send to
visualization modules through a socket, and finally, the visualization module responds to the
command and performs the corresponding operation like rotation, opacity adjustment, zoom

in/out, fusion and selection of vessels.
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Figure 3.2: Diagram of the proposed system.

3.2.2 Visualization module

In the visualization module, surface models of hepatic structure including hepatic artery,
hepatic portal vein, hepatic vein, and liver parenchyma (Figure 3.3) are generated by converting
each corresponding volume data to a triangulated mesh surface using marching cube algorithms.
Each volume of data is segmented semi-automatically from CT images under the guidance of
a physician [1, 2].

Compared with the traditional slice-by-slice visualization and review techniques, the
surgeon can easily recognize the liver geometry, its vessels structures, and locations during the
surgery with the 3D surface rendering of hepatic structures as shown in Figure 3. Please refer
to [1, 2] for detailed information about CT data and segmented liver and vessel data. The system
has four visualization modes: rotation, zoom in/out, adjustment of opacity, fusion, and selection

of vessels.
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(a) Hepatic artery (b) Hepatic portal vein (c) Hepatic vein (d) Liver

Figure 3.3: Visualization of liver and its vessels.

Figure 3.4: Visualization of fused liver and its vessel structure.

3.2.3 Interaction module

The interaction module is the main contribution of this research. In the first version [6], |
used the histogram of oriented gradients features and a support vector machine (SVM)
classifier. The method consisted of two processes: feature extraction and classification. Though
machine learning-based methods achieved high recognition accuracy, they could not achieve
real-time recognition. In the second version [22], I recognized three kinds of hand states and
their movements by using the API of the Kinect without processing feature extraction and
classification to realize a real-time interaction. Though the first proposed system has limitations:
it is not able to realize complicated interactions and lacks the flexibility of interactions, the
proposed interactions are enough for touchless visualization control. The originality and
novelty of this preliminary study is that I proposed an easy and fast framework to solve this
task without doing gesture recognition by ourselves. In the third proposed system [23, 24], I
build a new dataset, which is recorded with 15 participants performing all twenty-five hand
gestures. [ use a multimodal deep learning technique to recognize hand gestures using the depth
learning network that adds color information to depth information. A rapidly responding and

flexible Kinect-based touchless visualization system has been realized.
22



3.3 Kinect-Based Real-time Hand Gesture Interaction Systems

for Touchless Visualization of 3D Medical Image

3.3.1 Proposed method

In this section, I focused on the second version. To realize a real-time hand gesture
interaction and visualization, I combined three hand states (open, close, and lasso), which are
automatically detected by Kinect, with their hand movements to control the visualization in the
new system. The hand gestures (hand state + hand movement) for controlling visualization
mode are summarized in Table 3.2. Detailed information about visualization is described in
Sec.3.2.3.

Since the Kinect V2 supports 3 types of hand states: open, closed, lasso (lasso is defined
by closing the hand and extending the index finger), which are shown in Figure.3.5(a), (b) and
(c), respectively. I can accurately recognize the hand state at high speeds. In addition to three
types of hand states, I also use the movement of hand joints for hand gesture recognition. By
using the function of skeleton tracking features in Kinect for Windows Software Development
Kit (SDK) 2.0 [7], I can easily detect 31 landmarks of the skeletal human body (a machine-
learning-based algorithm automatically interprets each pixel as belonging to the background or
to one of the 31 parts in person's body has been subdivided [8]. This information is then used
to calculate the position of the skeleton). I use HandRight and HandLeft joint points to detect

hand movements. The hand movement detection algorithm is shown in Algorithm 3.1.
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(c) hand lasso
Figure. 3.5: Three types of hand states used in the system. (a) open, (b) closed, (c) lasso.
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Algorithm 3.1 Hand movement detection algorithm

System starts:

1: visualization server loads image data and visualizes liver and its vessel structure
2: While server is listening to client (interaction module) do

3: if user's hand is above waist for 45cm then

4:  user's gesture become available state

5: else if hand from other states to open

6: client records hand's location as a new benchmark

7: else if hand state is close

8: compare right hand's location this frame with benchmark frame hand location
9: if difference above threshold, then

10: send corresponding movement (both direction and distance) to server
11: else

12: continue

13:  else

14: responding to other gestures

15: else

16: send neutral command

The visual information provided by the system is based on surgeons’ advice and
requirements. Especially the hepatic vessel structure is one of the most important visual
information for hepatic surgery. I design simple and fast interactions for touchless operations.
The interactions are designed based on the workflow of hepatic surgery. The interaction tasks
that I observed most frequently during operation. I classified interaction steps during each
procedure, such as rotation of 3D liver model to check it from different angles, adjustment
opacity to check the structure of vessels inside, fusion and selection of vessels to confirm the
positional relationship between them or zooming to analyse details in the models. The hand
gestures (hand state + hand movement) for controlling visualization mode are summarized in
Table 3.2. Right hand open and left hand open are idle states that ensure the system’s ability to
detect the next frame movement accurately.

There are two operations that use motion: (1) rotation and (2) fusion and selection of vessels.
For rotation, if the direction of motion is around only one particular axis (x or y), the model
will rotate around that axis. The angle of rotation is proportional to the movement's distance
(Ad = x — xy or (y — ¥p)), which is represented by Equation (3.1):

_ 0 (lad] < D) (3.1)
angle = {(Ad —D)*10 (degree) (|Ad] > |D])

where D is the threshold set to 10 cm. So, the range of motion for rotation is +10 to +40 cm

or —10 to —40 cm from the initial position xo (or yo) in the predefined recognition area (—40 to

25



+40 cm). For the fusion and selection of vessels, the movement threshold is set to 20 cm. The

range of motion is 20 to 40 cm.

Table 3.2: Visualization mode controlled by gestures.

Gesture Interactions
right hand open idle state for rotation
left hand open idle state for selection of vessels

right hand closed and move 4-dimensional | rotation of models along corresponding direction
left hand closed and move left, up, down fusion and selection of vessels

right hand in lasso state opacity up
left hand in lasso state opacity down
right hand pull back in closed state Zoom in
right hand push forward in closed state zoom out

(b) Opacity adjustment.

(c) Fusion and selection of vessels.

¥ &

(d) Zoom in/out.
Figure 3.6: Examples of 4 visualization modes controlled by specific gestures.

3.3.2 Experimental setup

I conducted both single- and multi-user experiments, whose setups are shown in Figure. 3.7
and 3.8, respectively. In the single-user experiments, the distance between the Kinect sensor,
which was 2.5 m in height and tilted 45° horizontally, and the user was 2.0 m. At most, six
people could be detected at an effective depth range of 0.5 to 4.5 m. The Kinect field of view
was 70.6° and 60° in the horizontal and vertical directions, respectively [18]. There were three

users (A, B, and C) in the multi-user experiments, as shown in Figure 3.8. User A was the
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surgeon, whereas Users B and C were medical workers, who stood at 0.5 m to the right of and

0.5 m behind the surgeon, respectively.
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Figure. 3.7: (a) Experimental setup for a single user. (b) The dashed rectangle shows the recognition area

in the x—z plane.
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Figure. 3.8: (a) Experimental setup for multiple users. (b) The dashed rectangle shows the recognition

area in the x—z plane.
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3.3.3 Results

The participant was asked to make and repeat a different gesture (open, closed, or lasso)
every 4 s. To simplify the problem, I used class ID to represent each gesture. The capture frame
rate of Kinect was 30 fps. The results of the recognition by my previous and proposed systems
[6] are shown in Figure. 3.9. The recognition rate of my first version system was 87.5% at 8 fps.
In order to increase the recognition rate, I recognized the gesture within a temporal sliding
window (rather than frame by frame). The most voted gesture was the final recognition result.
I used a sliding window with 10 sequential frames, which corresponds to 0.8 fps. The
recognition rate was improved by 100% at 0.8 fps. In contrast, my second version system
achieved a recognition rate of 100%, even at 30 fps (real-time). By predefining the recognition
area, the recognition accuracy for multiple users was the same as that for a single user. The
measurements of both experiments were taken by a computer equipped with an Intel Core-i7

processor, 16GB of RAM, and an integrated graphics processor.

100
98
96
94 ' )
H previous system with temporal
92 smoothing [6]
90 H previous system [6]
88
proposed system
86
84 H proposed system (multi-user)
82
80
0.8 8

30

recognition accuracy(%)

Response rate (fps)

Figure 3.9: Comparison of response rates and recognition accuracies of previous and proposed systems.
3.3.4 User-experience experiment

Both systems (the second system and the first system [6]) are also evaluated by users. A total

of 15 participants attended user-experience experiments.
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Before starting the experiment, participants were given 3 minutes demonstration on how to
use the system with gestures for both systems, followed by one-minute self-directed practice.
During this task, the participants were free to ask any questions regarding usage and control of
the system.

Following the training, the participant completed the task without interruption. A task consists
of the following steps:

S1: Wear 3D glasses and move right hand above the waist for 45cm to start the system.
S2: Rotate models alone in different directions.

S3: Adjust liver's opacity down.

S4: Fusion and selection of vessels

S5: Adjust liver's opacity up.

After finishing the task, participants were moving on to the next system, which again started
with a training task. The order of the two systems was randomized.

After completing all trials, the participant responded to a questionnaire. For each of the three
basic interactions (rotation, opacity adjustment, fusion, and selection of vessels), participants
evaluated four items (intuitive, smoothness, accuracy, and fatigue) in 5 levels. The evaluation
decreases as approaching 1 and becomes higher as closer to 5 (not tired is considered as a high
score). The definition of four criteria is as follow [18]:

How good was the gesture fitting the visualization result (intuitive)?
How would you evaluate the response time of the system (smoothness)?
How would you evaluate the precise of the system (accuracy)?

How good was the comfort of performing the gestures (fatigue)?

Figure 3.10: A participant adjust liver's opacity up (S5) during the experiment.
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Figure 3.11: Mean evaluation scores and the standard errors over all participants between the previous
system(red) [6] and the proposed system(orange)for each of the 3 interactions: (a) Rotation of models, (b)
adjustment of opacity, (c) Fusion and selection of vessels.
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Table 3.3: P-value over all participants for each of the 3 interactions.

Interactions Subject P-value
Intuitive 0.2042

. Smoothness <0.01

Rotation of models

Accuracy 0.0336

Fatigue 0.018
Intuitive 0.8342

. . Smoothness <0.01

Adjustment of opacity

Accuracy 0.0269

Fatigue 0.024

Intuitive 0.6461

Smoothness <0.01
Fusion and selection of vessels Accuracy 0.0276
Fatigue 0.3018

The average evaluation scores are shown in Figure 3.11. It can be seen that the proposed
system significantly outperforms the previous system in terms of mean evaluation scores. To
confirm there is a statistically significant difference between the proposed system and the
previous system, I use the ANOVA (Analysis of Variance) method [14] using a significance
level of @ = 0.05. In the test, I have a main null hypothesis as: there is no difference exists
between the proposed system and the previous system. The p-value for each evaluation term is
shown in table 3. For the first and second interactions (rotation and opacity adjustment),
improvements on smoothness (p < 0.01), accuracy (p < 0.05) and fatigue (p < 0.05) are
confirmed. For the third interaction (fusion and selection of vessels), improvements on
smoothness (p < 0.01) and accuracy (p < 0.05) are confirmed. Improvements on intuitiveness
for all three interactions (p > 0.05) and fatigue for the third interaction (fusion and selection of
vessels) (p > 0.05) could not be confirmed. The reason is that the main contribution of this
work is to improve the accuracy and speed of interactions. Further improvements in

intuitiveness will be my future work.

3.3.5 Discussion

The field of touchless interaction in surgery has become very active. An excellent survey on
existing methods can be found in [11]. In this section, I focus on discussing those approaches
most related to my contribution. A practical surgical operation support system wearing
HoloLens has been already proposed [13]. HoloLens can detect hand gestures and realize the

touchless visualization. The problem for HoloLens-based touchless visualization system is that
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surgeons must wear the HoloLens during the operation, which is not practical and will limit
the surgical performance. Several other touchless systems without wearing glasses have been
proposed. A camera-based approach was proposed by Wachs et.al. [10], in which a vision-
based technique is used for hand gesture and posture recognition. The algorithm requires a
clean background to work, and it is not robust for surgery conditions [11]. The Leap Motion
controller represents a revolutionary input device for gesture-based human-computer
interaction. It is a stereo camera with 3 infrared LEDs that illuminate the hand over the sensor.
But it could not be used as a professional tracking system, due to its rather limited sensory
space [12]. Voice commands are also an attractive and potential solution to address this
problem. But it is sensitive to other sounds and voices, which are noise for interactions. The
advantage of the proposed method is the robustness to the noise. Since my system can obtain
depth information, my system can only recognize the action or gesture in a pre-defined specific
area (e.g. operation area) and do not response to gestures or actions outside the specific area.
The advantage of the proposed method by using Kinect sensor to capture the gesture is its
robustness to the noise (other human actions). Jacob’s method [16] is like my previous machine
learning-based recognition [6], in which I used the histogram of oriented gradients features and
a support vector machine (SVM) classifier. Both methods consisted of two processes: feature
extraction and classification. Though machine learning-based methods achieved high
recognition accuracy, they could not achieve real-time recognition. The main advantage of my
proposed method in this paper is that I recognize 3 kinds of hand states and their movements
by using the API of the Kinect without processes of feature extraction and classification to
realize a real-time interaction. Though the proposed system has limitations: it is not able to
realize complicated interactions and lacks the flexibility of interactions, the proposed
interactions are enough for touchless visualization control. The originality and novelty of this
preliminary study is that I proposed an easy and fast framework to solve this task without doing
gesture recognition by ourselves. My system is based on surgeons’ advice and requirements.
Further experiments involve surgeons will be conducted. It also can be used as education for

medical students to help them the visualization of hepatic and vessel structure.
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3.4 Multimodal Deep Learning for Accurate Gesture Recognition

Using Color and Depth image

3.4.1 MaHG-RGBD: A Multi-angle View hand Gesture RGB-D Dataset

Though the second version (Sec. 3.3) is fast and accurate, it lacks flexibility of interactions
because the interaction is only based on the three kinds of hand states and their movements. In
order to realize a fast, accurate and flexible touchless visualization system, I developed the
third system, whose interaction is based on deep learning-base multi-modal gesture recognition
using both color and depth images. In this section, I first present a novel multi-angle view hand
gesture RGB-D dataset, recorded with a Kinect. In the first system [6], I had built a dataset,
which was collected from 10 participants in advance, each person has 100 pieces of depth
images of 9 kinds of hand shapes. It has some limitations, i.e., the number of classes and the
amount of data collected. It has only 9 classes and 1000 images per class. And it only contains
depth images. The lack of data is one big problem when applying machine learning algorithms
for classification. e.g., deep learning algorithms usually required a very large amount of
labelled data to obtain acceptable results.

Therefore, I present a new dataset named MaHG-RGBD. The data are collected with RGBD
sensors (Kinect) that each cover different views of the hand. A Kinect sensor acquired front-
view RGBD videos, and a top-mounted Kinect recorded a pair of RGBD streams. The proposed
dataset consists of 25 gestures and one counterpart from a different view. Each class is then
recorded by 15 participants and each of them provides 100 images per class by repeating the
same hand gesture with slight movements. The main contributions of this dataset are
summarized as follows:

A multi-angle RGB-D dataset with 15 participants performing 25 hand gestures. Not only
the front-view (tilted angle=0) but also the tilted view (tilted angle=45 degree) dataset are
provided, which can be used when the space is limited.

Providing a pair of synchronized color and depth well-segmented hand region images.
Users can use both or according to their purpose.

The benchmark on this dataset using deep learning methods. The recognition accuracy for
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each gesture and each modality (depth or color) is provided, which will be useful for users

to select the robust gestures and image modality (depth or color).
3.4.1.1 The ergonometric design of the dataset recorder system

In the experiments, the distance between the Kinect sensor and the user is 2 meters. The
MaHG-RGBD dataset was captured using two RGB-D cameras (Kinect). The Kinect sensor 1
is planted 2.5 meters in height and tilted 45 degrees horizontally. The Kinect sensor 2 is planted
1.2 meters horizontally. Figure 3.12 illustrates the multi-view RGB-D cameras setup. The
Kinect FOV (field of view) is 70.6 degrees in the horizontal direction and 60 degrees in the
vertical direction [7]. As shown in Figure. 3.12, the experimental setup is in the effective range
of Kinect. I capture hand images with a sheet of blue partition as the default background for

the color image.
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Figure 3.12: Illustration of the dataset acquisition setup.

The dataset includes gestures performed by 15 different subjects. Each subject used their right
hand to perform the gestures. During a recording session, each subject provides 100 images

per class by repeating the same hand gesture with slight movements.

34



3.4.1.2 Hand segmentation and pre-processing

I utilize the skeleton tracking provided by the Kinect and the depth information to generate
the depth image and color image. First, I acquire a color and depth image of the user,
respectively (Figure. 3.13 (a) and 3.13 (b)). Then I do calibration between color and depth
camera and using the right hand’s joint point as the centre, chip out a 300%300 pixels squire
region as an ROI of hand region. The segmented color hand image is shown in the Figure. 3.13
(c). The depth image with a range from d — 30cm and d+5cm is defined as a segmented depth
hand region (Figure. 3.13 (d)), where d is the depth of the right hand’s joint point. Since the
hand image has other regions’ pixels with remained as noise, I apply an opening operator and

a median filter to remove the noise.

Hand Segmentation

Original color image Original depth image Color image hand segmentation  Depth image hand segmentation

(d) Depth image hand
segmentation

(a) Original color image (b) Original depth image (c) Color image hand segmentation

Figure. 3.13: Sample data for hand image pre-processing

3.4.1.3 Dataset Characteristics

The proposed dataset consists of 25 gestures and one counterpart from a different view. Each
class is then recorded by 15 participants, and each of them provides 100 images per class by
repeating the same hand gesture with slight movements. The total size of the dataset is 150,000
(2x2x15%25x100) tuples constituted by a depth of the hand region and color of hand region.
The size of the hand image is 300%300 pixels. Examples of the multi-angle view hand images

of 25 classes in the MaGH-RGBD dataset are shown in Figure 3.14.
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Figure 3.14: Example of 25 classes in the MaHG-RGBD dataset.

3.4.2 Single-modal Deep Learning for Gesture Recognition

Accurate and fast hand gesture recognition is an important requirement for touchless
interaction systems. Though the system proposed in Section 3.3 satisfied the requirement, lacks
flexibility and it cannot be used for complicated touchless interactions since its freedom is
limited. The HOG-based machine learning system has higher freedom and flexibility, but it
takes a large computation time, and it cannot work in real-time. In this Chapter, I proposed a
new deep-learning-based hand gesture recognition method based on the newly constructed
dataset (MaHG-RGBD) and develop a new fast and accurate touchless visualization system for

hepatic surgery support. Two well-established networks (LeNet and AlexNet) are used as the
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baseline networks. I also aim at identifying the architecture that performs best in different
image modalities and builds the benchmark of the dataset I proposed in Section 3.4.1.

After that, I have constructed a multimodal deep learning network that adds color
information to depth information together and applies the multimodal hand gesture system to

touchless medical image visualization.
3.4.2.1 Convolutional neural networks for real-time hand gesture recognition

Since 2012 deep learning-based approaches have consistently shown best-in-class
performance in major computer vision tasks [19]. LeNet [21] and AlexNet [19] are selected as
the baseline techniques for depth and color hand gestures recognition.

The network architecture of LeNet consists of two convolutional layers, each followed by
a pooling layer. And three fully connected layers. The first layer uses 6 kernels and the second
16, both with the same size 5x5. The input of the hand image is 32x32. The output is 25 classes

of gestures. The LeNet for hand gesture recognition is shown in Figure 3.15.
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Figure 3.15: LeNet for hand gesture recognition.
The architecture of AlexNet is summarized in Figure 3.16. It contains eight learned
layers — five convolutional and three fully connected layers. The input of the hand image is

224x224. The output is 25 classes of gestures.
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Figure 3.16: AlexNet for hand gesture recognition
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3.4.2.2 Recognition benchmark results

As a verification method, [ used 15-fold cross-validation. 14 persons were used as training
data, 1 person was used as test data. The number of training samples is 35,000 and the number
of test samples is 2,500 for all 25 classes, respectively. I repeated it 15 times in total and verified
the results of all cases. It can be seen in Table 3.4 that the average accuracy of classification
for LeNet and AlexNet.

Table 3.4: Benchmark on MaGH RGB-D Dataset

Classifier Data types Test Accuracy

Tilted Angle = 0 Depth image 89.98+3.67

Tilted Angle = 45 Depth image 84.56+7.09

LeNet [21] Tilted Angle = 0 Color image 79.06+6.53
Tilted Angle = 45 Color image 72.66£13.51

Tilted Angle = 0 Depth image 95.4142.79

Tilted Angle = 45 Depth image 92.32+5.05

AlexNet [19] Tilted Angle = 0 Color image 88.42+6.23
Tilted Angle = 45 Color image 79.58+11.97

Table I illustrate the accuracy results from depth image titled angle = 0, depth image titled
angle = 45, the color image titled angle = 0, and color image titled angel = 45 using LeNet and
AlexNet. From the results, the AlexNet significantly improves the results for all tested datasets.
For example, the overall test accuracy is increased from 89.9% to 95.4%, 84.5% to 92.3%,
79.06% to 88.4%, 72.6% to 79.58% for the depth titled angle = 0, angle = 45, and color titled
angle = 0, angle = 45, respectively. We can also find that the recognition results of depth
images are higher than the results of color images in both methods and different angles of view.
This suggests that the depth image is more appropriate for the hand classification task.

To examine the results in more detail, the benchmark comparative results for 15

participants are shown in Figure 3.17 and Figure 3.18 for LeNet and AlexNet, respectively.
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Figure 3.17: LeNet benchmark result for 15 participants.

AlexNet benchmark Result
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Figure 3.18: AlexNet benchmark result for 15 participants.

3.4.3 Multimodal Deep Learning for Accurate Gesture Recognition Using

Color and Depth image
3.4.3.1 Multi-modal deep learning network

The proposed method employs multimodal deep learning gesture recognition consisting
of two types of images, i.e., depth and color images. This method aims to improve gesture
recognition accuracy using depth and color images. Figure 3.19 shows the network architecture

of multimodal deep learning. The depth and color images are input into the two AlexNet
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learned with the distance and color images, respectively. The average value of the network
output is taken as the final output. The output is computed with the following Equation (3.2):

ydy + }’Ck)
2

where yd;, and yc;, are the probability that the output of the depth and color image network,

y = argmax < (3.2)

respectively, belongs to class k.
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Figure 3.19: Multimodal deep learning network for hand gesture recognition.
3.4.3.2 Experiment results

I use a 15 -fold cross-validation method. A total of 14 persons were used as training data,
and one person for testing. Twenty percent of the training data are selected randomly as the
validation set. I repeat the process 15 times and verify the results of all the cases. The mean
accuracy of 15 times is used as a measure of recognition accuracy, which is defining in

Equation (3.3), where Acc j, is the accuracy of k-th experiment.

Z]1c5=1 ( Acc k) (33)

accuracy = 15
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Previous method [24] 8 Proposed method

Figure 3.20: Comparison of the recognition result of the proposed method and previous method [24]. The
orange graph is the previous method, and the blue graph is the proposed method.

Figure 3.20 presents a comparison between the results of recognition accuracy obtained
from the previous research [24] and those obtained using the proposed method. In the graph,
results obtained using the previous and a proposed method are denoted in orange and blue,
respectively. Most gesture recognition accuracy has been improved. In the recognition using
only the depth image, the accuracy is 92.53%, whereas, in the recognition using the depth and
color images, the accuracy is 94.94%, showing a 2.41% improvement in the accuracy. Using
a color image, the accuracy is significantly improved for gesture recognition accuracy.
However, poor accuracy is remarked for only the depth image. Since the recognition time

consumption is 0.0146 s, the implementation in real-time is similar.

Table 3.5 lists the average confusion matrix of the proposed method. Misrecognition of a
specific gesture is remarked when gesture recognition accuracy is less than 90%. Thus, the
gesture recognition is more robust, if the gesture in the touchless interface does not use an

easily misrecognized gesture.
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Table 3.5. The average confusion matrix of the proposed method. Lager misclassification errors (> 5) are
indicated in red and zero values and not included.
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3.5 Chapter Summary

In this Chapter, I proposed a real-time gesture recognition system for a touchless hepatic
surgery support system. [ have proposed four versions.

In the first version, I used HOG as features and SVM as a classifier to recognize 9 kinds
of hand gestures from the depth images, the average recognition accuracy is found to be 87.5%
with a speed of 8fps. Though the HOG-based machine learning method can recognize various
hand gestures with reasonable accuracy, they could not achieve real-time recognition.

I describe the second version in Section 3.3. the system uses a Kinect sensor to acquire three
kinds of hand states and track hand their movements. Based on these states and their
movements, | designed a range of hand gestures, and finally, four kinds of operations are
available using touchless gestures to visualize 3D hepatic anatomic models in real-time.
Although this version is a prototype, the preliminary result is encouraged. The experiments
demonstrated that the recognition rate of 100% has been achieved in the proposed system even
at the frame rate of 30fps (real-time). The use-experiment showed that the proposed system
significantly improved the smoothness, accuracy, and fatigue (except the interaction of vessel

selection and fusion). This proposed system also can be used as an education system for
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medical students to help them understanding the anatomical structures of humans. I also
realized an interaction robust to noise (second version). In addition to hand state and
movements, | also used depth information (predefined range) to constrain the users. The actions
or gestures out of the predefined range (2.5m ~ 3.5m) were considered as noise and the system
only responded to the gestures in the predefined range (e.g. operation range). So that the system
can only respond to the gestures of the surgeon, which is important especially in the surgery
room.

Further improvements on intuitiveness are in the third version of the system (Section 3.4).
Though the second version of only 4 operations, I develop a deep learning technique for
recognition of various hand gestures to increase the degree of freedom of operations and
achieve more flexible touchless visualization. Since deep learning usually required a very large
amount of labelled data to obtain acceptable results, I built a new multi-view RGB-D dataset
(MaHG-RGBD) with 15 participants performing 25 hand gestures [24]. Not only the front-
view, but also the tilted view (titled angle = 45 degrees) dataset are provided, which can be
used when space is limited especially in the surgery room. After building the dataset, I use
AlexNet to recognize hand gestures and select 9 robust hand gestures for touchless
visualization of 3D medical images. Based on the new dataset I primarily focus on selecting
robust hand gestures for the touchless visualization system. A rapidly responding and flexible
Kinect-based touchless visualization has been realized. I also propose a multimodal deep
learning method to perform recognition using color and depth images. The multimodal system

achieves better real-time robust recognition than conventional methods.
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Chapter 4
Multimodal Image Generation for Improving Single-

modal Posture Recognition

4.1 Introduction

Human posture classification has recently received much attention for its wide potential
applicability in areas such as: augmented reality, human-computer interaction, and
rehabilitation [1]. Based on their input type (RGB images or depth images), human pose
estimation tasks can be divided into two classes. The biggest difference between them is that
pixels in the RGB image record the color information of the subject, while pixels in the depth
image record the distance between the subject and the cameras. Pose and gesture estimation
from an RGB image has been realized by various approaches. For instance, Priya [2] proposed
a CNN for classifying multi-view human pose datasets. Pinto [3] proposed a CNN-based static
hand gesture recognition method. The other source of input is depth information. Nishi [4]
proposed an efficient generation of human depth images with body part labels and verified the
constructed dataset using a fully convolutional network (FCN). Wang [5] proposed a human
pose recognition based on the fusion of local difference of depth feature (LDoD) and
directional gradient of depth feature (DGoD) features. Comparing with RGB images, depth
images provide distance information that is important to overcome the confusion of body parts
and occlusions.

Generative adversarial networks (GANSs) have been explored in various posture estimation
tasks. Wan et al. [6] proposed the VAE and GAN networks (Grossing Nets) to estimate 3D
hand gestures from single depth images. He et al. [7] developed a framework that combines

GANs and style transfer for depth hand image synthesizing from 3D hand gestures. Unlike [8],
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which tends to build the correlation between depth image and 3D hand joints. This paper
generates the estimated depth image from the color image through hybrid loss GANs.

Although depth images show a great advantage, depth cameras are costlier and less widely
used than color cameras. To avert the difficulty of acquiring depth images, I generate estimated
depth images for improved human posture recognition based on color images, which is inspired
by my previous work [8]. This is a further key distinction with the existing posture recognition
methods, which enable the sub-sequence stage to produce accurate classification results.

In this Chapter, I focus on the image-based classification of posture recognition. I propose
anovel deep learning method using a two-stage CNN architecture. The first stage is to estimate
depth posture using the generative adversarial networks (GANSs). In the second stage, I build
two-stream CNNs to learn feature representation for the input RGB and their corresponding
estimated depth image from the first stage, which are then combined with feature fusion. This
architecture is similar to other recent multi-stream CNNs [9]. However, in this work, I consider
the relationship between the RGB image and the depth image, to avert the difficulty of
acquiring depth images. The main advantage of this two-stage architecture is that it exploits
the RGB image and the depth estimation at training time and recognizes the posture directly
from only the RGB image at the testing time, with an average processing rate of 34.44ms per
frame on the novel dataset.

The contributions of this Chapter are as follows: (1) a generated adversarial network
(GAN)-based feature augmentation subnetwork for estimated depth posture generation, which
improves the performance of posture recognition; (2) a hybrid loss function for the generation
module, which generates estimated depth posture image while capturing the high-level features
and recovering the sharp depth discontinuities; (3) a novel dataset of 13800 pairs of color and
depth human pose images, which is used for depth map estimation from the single color image.
The dataset is available at: http://media.ritsumei.ac.jp/iipl/database/pose/.

The remainder of this Chapter is organized as follows. The details of the proposed network
are described in subsection 4.2. Subsection 4.3 presents the experimental results. The

confusions are present in Subsection 4.4
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4.2 Proposed Method

This study proposes a high-accuracy human posture recognition system using RGB color
images alone. The structure of the proposed method is shown in Figure 4.1. My approach has
two main stages: generation of an estimated depth image from a color input image, and
recognition of the human posture using both input color image and its estimated depth image.
The first stage is realized by an improved Pix2pix network, and second stage is realized by a
two-stream CNN network. The first stage also includes a hybrid loss function that generates

estimated depth posture images while capturing the high-level features and recovering the

sharp depth discontinuities.

Depth posture estimation

Network Architectures
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Figure 4.1: Overview of the proposed method. (a) An example of Depth posture estimation using the
generative adversarial network. (b) Different approach for fusing information from raw color image and
estimated depth image. Each green box represents a convolutional stream. The left part is late fusion, and
the right part is committee fusion. (c) Details of the convolutional stream.

4.2.1 The generation networks

The generative network is shown in Figure 4.2. The network architecture is based on

Image-to-Image Translation with Conditional Adversarial networks (Pix2pix) [10-12]. GANs
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are composed of a generator G and a discriminator D. The goal of GANs on depth estimation
task is to learn a mapping from the input RGB image x; to the target image y:. During training,
G aims to deceive the D by approximating the real data y: distribution to generate the image
G(xi), whereas D tries to distinguish between real image y; and fake image G(x;). The detailed
parameters of the improved single channel generator network and discriminator network are

shown in Figure 4.3.

G
D
D
Input x i g
i - fake!
Input x;
Input x;
G: Generator Nets (U-net based architecture) x; : Input image (color hand gesture)
D: Discriminator Nets GT y; : Ground truth (depth hand gesture)

G( x;): Generated by G-network

Figure 4.2: Structure of my generative adversarial network
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Figure 4.3: Parameters of the improved generator network (single channel) and discriminator network.
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For generator G and its discriminator D, the adversarial loss can be written as
Lean(G,D) = Ex p,... 108 D(x | Y)] + Eg)~pe)[log(1 = D(G(x) 1 y))]  (4.1)
I employ L1 loss on the generator to enforce the pixel-wise consistency between generated
and real image. The L1 loss is defined as
L1t = Exypga e [ Y = G () "]] (4.2)
The overall objective in the Image-to-Image Translation with conditional adversarial
networks can be expressed as

G* = argmGinmngGAN(G, D) + AL;41(G) 4.3)

Let {x;}¥,(x; € X) and {y;}},;(y; €Y) be the color and real depth pose images
respectively. My goal is to learn a mapping function between two domains x and y-based
training a dataset (pairs of x and y). The generator aims to minimize the loss value, and the
discriminator aim to maximize the loss value. (Setting A= 100).

For the loss value of the generator network, we add perceptual loss [13],[15], gradient loss
[14] to the loss of the generator’s final output.

The perceptual loss is estimated by using the L2 norm between the feature maps from the

predicted and ground truth depth maps.

1
fperceptual = m I f(G(X)) - f(.V) ”2 (44)

f(G(X)) and f(y)are the activations of the 7" convolutional layer of the generator
network of the shape CxHxW based on the predicted depth map and ground truth depth map,
respectively.

To recover the sharp depth discontinuities and smooth gradient changes in the predicted

depth images, I also consider

1
Canagint = — (IVX(G(x) = M)+ [Vy(G(x) = y)]) (4.5)
where, Vx and Vy represent the depth derivatives in x and y directions, respectively. The
Cgradient g1ves the L1 difference between the predicted logarithmic depth derivatives in x and y

directions and the ground truth logarithmic of their depth derivatives.
The total loss can be calculated by solving the following Equation (4.6):
fGANS = arg mgnmngGAN(G' D) + ALLl(G) + Alfperceptual + Azfgradient (46)
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Where, A, and 4, are the wight of perceptual loss and gradient loss. The effect of
varying these 3 losses on the final output will be evaluated in a study of the estimated depth

posture.
4.2.2 The classification networks

My classifier network is shown in Figure 4.1(b). this stage consists of two CNNs with the
same architecture. One stream extracts features from the raw color image; the other stream
extracts features from the estimated depth image. For a baseline, I build an 18-layer ResNet
[16], which has achieved great performance on image classification. The Figure 4.1 (c) presents
the detail of my ResNet. I adopted batch normalization after each convolution and before
activation (ReLU). Figure 4.1(b) presents the ways for fusing information from RGB and
estimated depth images. I employ the independent convolutional layers for RGB and estimated
images. The outputs of the max pooling layers are concatenated and fed into a two-way shared

fully connected layer with softmax to compute a cross-entropy classification loss.

4.3 Experiment and Evaluation

This section evaluates the performance of the proposed model on two benchmark datasets.
One is the released novel human pose dataset. The second is the public OUHANDS hand
gesture dataset. In particular, I discuss the implementation details, list the standard metrics for
comparing the generative models, compare the estimated depth generations with different

losses, and summarize the classification results.
4.3.1 Experiment on human pose dataset

4.3.1.1 The ergonomics design to the dataset recorder system

The first dataset is the novel human poses dataset, which contains 13,800 samples of paired
color-and-depth of 6 subjects with 15 postures obtained by Kinect V2 sensor [19]. In the
experiments, the Kinect V2 sensor was displaced horizontally by 1.2 meters. Figure 4.4. shows

the dataset acquisition setup. In this study, the distance information in the range from 1.1 m to
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2.375 m is converted into grayscale. The depth images obtained by the Kinect V2 sensor are
considered as the ground-truth depth map. In order to make an easy visual understanding, I
use a pseudo color to represent the depth images in Figure 4.4 I set the minimum value of the
human body-field to 0 and the maximum value to 1 and normalized each picture. The pixel
values larger than the maximum value are set to 1, and the pixel values smaller than the

minimum value are set to 0.

O

Kinect
j \ | | : : |

Om 1.1m 2375m 3.1m

Figure 4.4: Illustration of the dataset acquisition setup.

4.3.1.2 Human poses dataset

This dataset contains 23 poses acquired from six subjects. The resolution of the image
taken with Kinect V2 is 1920 x 1080 for color image and 512 x 424 for depth image. The total
size of the dataset is 13,800 (23x6x100) tuples of depth and color images. The dataset is split
into training, validation, and testing sets with 2300, 2300, and 9200 images, respectively. I use
this dataset to evaluate the proposed method for both depth estimation and pose recognition.

The mentioned 23 poses are demonstrated in Figure 4.5.
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(b) Depth images of 23 classes of human pose (with color bar)

Figure 4.5: Paired color (a) and depth (b) images of the 23 human-pose classes compiled in the
dataset.
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4.3.1.3 Implementation details

The generation network was trained for 100 epochs with a batch size of 16. When I apply
perceptual loss, as the weights in the network are not pre-trained, I first trained the network
using the MSE loss for 10 epochs. Next, the ground-truth and estimated depth maps were
passed through the network, and the loss was measured using the feature maps in the
penultimate layer of the encoder. During the training, 20 pieces were randomly selected from
each pose of the training set (using 1840 images in total). In addition, the input image was
clipped to a resolution of 256 x 256.

The classification network training was performed for 200 epochs by the SGD optimizer
with a batch size of 64 and an initial learning rate of 0.001. All results were generated on an
NVIDIA GeForce RTX 3070 GPU and the network was implemented using the PyTorch
library.

4.3.1.4 Evaluation of the estimation depth map

I qualitatively compare the performances of the baseline Pix2pix [11] and my approach
with different combinations of loss functions. The evaluation set was excluded from training.

Denoting the total number of valid pixels (non-background pixels) in each evaluation by
P, I assessed the performances by the following accuracy measures, which are commonly used

in related studies [17]:

. d_ .
1) Mean relative error: REL = %Zle "lg#”l
l

2) Thresholder accuracy: Percentage of di satisfying max (%, %) = § < threshold

L L

Using these popular measures, I can compare the depth accuracy of different methods from
multiple perspectives. The threshold in the second measure was varied as thr; = 1.25, thr, =
1.252, thry; = 1.253. The assessment metrics are quantitative compared in Table 4.1 and are
visually compared in figure 4.6. Pix2pix (setting 1; = 0, 1, = 0 in Eqn.4.4-4.6), Perceptual
(setting 4;,=0.5, 4, = 0 in Eqn. 4.4-4.6, Gradient (setting A;= 0, 1,=0.5 in Eqn. 4.4-4.6) and
Hybrid loss (setting 1; = 0.25, 4, = 0.25 in Eqn. 4.4-4.6 methods are estimated. The proposed
hybrid loss significantly produced better results and more precise details than the original

Pix2pix method.
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Table 4.1: Quantitative comparison of depth map estimation.

Method REL Thrl Thr2 Thr3
Pix2pix [11] 0.241 0.843 0.888 0.923
Perceptual [15]  0.304 0.844 0.872 0.904
Gradient [14] 0.297 0.861 0.895 0.923
Hybrid loss 0.137 0.864 0.920 0.947

The visual results on the pose dataset for the different approaches are shown in Figure 4.6.

I have the following common findings. (1) Pix2pix, gradient loss, and perceptual loss have

grid-like artifacts at the pixel level, which leads to an unsatisfactory visual quality. (2)

Compared to other methods, my hybrid loss produces visually realistic images with more

accurate detail. I believe that the hybrid loss helps the network to predict more accurate images

by incorporating additional constraints to enforce appearance consistency between predicted

and ground-truth images.

No. (a) Color (b) GT (c) Pix2pix (d) Gradient (e) Perceptual (f) Hybrid Cl(:;(:r
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Figure 4.6: Visual comparisons on pose dataset: (a) Color images (input), (b) ground truth, (c) pix2pix
results, (d) gradient loss results, () perceptual loss results, (f) Hybrid loss results.
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4.3.1.5 Evaluation of the pose recognition

This subsection demonstrates the effectiveness of the proposed method on human posture
recognition. I first perform ablation experiments to show the effect of each key component.
The experiments include the baseline using RGB image only, methods using estimated depth
image with different loss functions, and two-steam architecture with both color and estimated
depth images. The results are summarized in Table 4.2. As shown in Table 4.2, compared to
the baseline using RGB image only, the methods using estimated depth image achieved better
results. Compared with existing loss functions, the proposed hybrid loss improved the
recognition accuracy to 0.898 from 0.863 (pix2pix loss [11]), 0.816 (gradient loss [14], and
0.870 (perceptual loss [15]), respectively. The accuracy was further improved to 0.967 using a
two-stream architecture with both color and estimated depth images (the proposed method).

Table 4.2: Ablation experiment for proposed method.

Color  Estimated Depth Loss Acc
\Y% 0.778
v pix2pix loss 0.863
v perceptual loss  0.870
\" gradient loss 0.816
v hybrid loss 0.898
v v hybrid loss 0.967

Table 4.3: Comparison of the proposed method and the-state-of-the-art on the pose test set.

Model Input Acc Precision  Recall F1 Score  Time (ms)
Pinto. [3] RGB 0.778 0.778 0.778 0.750 15.00
Liu. [8] RGB 0.863 0.874 0.863 0.850 30.95
Zheng [14] RGB 0.816 0.855 0.816 0.793 30.95
Kumari [15] RGB 0.870 0.902 0.870 0.862 30.95
Thomas [22] skeleton  0.812 0.812 0.786 0.790 14.73
Proposed method RGB 0.967 0.975 0.967 0.964 34.44
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In Table 4.3, the proposed method is compared to other state-of-the-art methods for the
pose dataset. I use accuracy, precision, recall, and F1 as my evaluation measures. | also
compared the computation time in Table 4.3. As shown in Table 4.3, my methods outperform
the rest by 10.2%, to 21.4% in terms of F1 score, which confirming that the estimated depth
generation stage enhances the recognition accuracy. For processing time, though the proposed
depth-estimation-based method takes twice as long as the conventional RGB-based method [3]
and Skelton-based method [22], the proposed method can still perform posture recognition in
real-time (about 29 fps) with higher recognition accuracy.

Figure 4.7 compares a color baseline with the proposed method, with the per-category for
the pose database. The largest absolute gains are observed for pose2, pose3, pose6, and posel4.

These are categories where depth information is of vital importance.

Per-category AP on pose dataset

0.8
0.6
NI

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

m Color [3] mProposed method

Figure 4.7: Per-category AP on the pose dataset: a color input baseline (blue) vs proposed method (orange).

4.3.2 Experiment on OUHANDS

4.3.2.1 OUHANDS Dataset

OUHANDS Dataset [20] contains 10 different hand gestures from 23 subjects and is split
into training, validation, and testing sets with 1600, 400 and 1000 images, respectively. All sets
come with corresponding segmentation masks, depth, and color images. The example of hand

gestures is demonstrated in Figure 4.8.
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Figure 4.8: Samples from the OUHANDS train databases. (a)(c) columns show the hand region RGB data,
while (b)(d) columns show the hand region depth data (with color bar)

4.3.2.2 Evaluation of the hand gesture recognition

Table 4.4 compares the performances of different network architectures on the
OUHANDS dataset. The performance of the proposed method achieved the best accuracy when
I applied my hybrid loss to coalesce the depth and color stream. The results emphasize the
effectiveness of my fusion network architecture.

Table 4.4: Comparison of recognition accuracy on the OUHANDS test set.

Model Acc | Precision | Recall | Fl score | Time (ms)
Baseline (ResNet 18) 0.888 0.890 0.888 0.887 23.6
Proposed method
(estimated depth using hybrid loss stream 0.913 0.914 0.913 0.912 27.27
only )
Proposed method two-stream late fusion
_ ) ] 0.922 | 0.924 0.922 0.922 30.87
(RGB, estimated depth using hybrid loss)

Figure 4.9 shows the category-wise comparison for color input baseline and proposed

method on OUHANDs Dataset. The results show that the estimated depth information
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improves the accuracy on most gestures, while reduces the accuracy on gestures 3, 8, and 9.
The reason for accuracy reduction on gestures 3, 8, and 9 is because the estimation of the depth
map for these gestures are not correct. The estimation means relative error for gestures 3, 8, 9
are 0.358, 0359, 0.452, respectively, while the mean relative error for the other 7 gestures is

0.34. Improvement of depth map estimation will be the future work.

Per-category AP on OUHANDS dataset
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Figure 4.9: Per-category AP on the OUHAND:s dataset: a color input baseline (blue) vs proposed method
(orange).

4.3.2.3 Real-time gesture recognition system

I build a real-time gesture recognition system using the proposed method. The system is
shown in figure 4.10. The green rectangle is the hand region color image, the red rectangle is
the pseudo depth generated by my network. The real color image and generated depth image
are used as input of the multimodal hand gesture network and get the recognition results (blue
rectangle). The system can recognize hand gestures in real-time. In the future, high-accuracy

touchless medical visualization can be realized only use a web camera in the operation room.
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4.4 Chapter Summary

This Chapter proposed an RGB posture-recognition network based on a two-stage CNN
architecture. To improve the recognition performance from color images, I generated an
estimated depth posture image by a hybrid loss function incorporated in the generation module.
The loss function captures the high-level features and recovers the sharp depth discontinuities.
The proposed method was evaluated on the novel dataset of color-depth pose images and the
public OUHANDS hand gesture dataset. The hybrid loss effectively and accurately generated
depth posture images and the estimated depth image improved the accuracy of posture
recognition. I am going to increase the human pose dataset including the back images of the
participants and perform experiments to identify whether the participant is facing the camera

or facing away from the camera.
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Chapter 5
Multimodal Deep Learning for Detection of

Depressive Severity

5.1 Introduction

Depressive severity is widespread in the population and can negatively impact people's
daily life in several ways. University students are at high risk of depressive severity as they can
face intense academic, financial, and interpersonal pressures [1] while going through a critical
period of transition from adolescence to adulthood and making many important life decisions
[2]. Students with depressive severity can exhibit typical symptoms, such as low mood, loss of
interest, and decreased energy. Such symptoms are a serious issue, and are especially
significant for university students, since they can affect academic performance and health, and
may in extreme cases lead to suicide [1].

People with depressive severity are screened using self-assessment questionnaires, such
as Beck's Depression Inventory (BDI) [3] and the Centre for Epidemiologic Studies Depression
Scale (CES-D) [4]. In this study, I define university students with depressive severity as those
whose BDI-II and CES-D scores meet or exceed the depression assessment criteria but do not
meet the diagnostic criteria for major depressive disorder given in the DSM-5 [5].
Depression, given its high incidence and negative impacts, such as impaired personal functions
and social-economic burden [6, 7, 8], has become a serious social problem, worthy of the
increased attention. Currently, the depression rate among Chinese university students has risen
to 23.8% [2]. Previous research has shown that depressive severity experienced by the young
is likely to persist into adulthood and develop into depressive disorder [9, 10]. Effectively
recognizing such symptoms in university students can therefore help university mental health

workers to identify and help them earlier, reducing the risk of depression.

63



Most existing studies into developing automated depression diagnosis systems have
attempted to extract suitable features from a clinical interview dataset (e.g., the AVEC
depression dataset) [11-13], focusing their analysis on patients with clinical depression from
the western culture [11-15]. However, there has been little work on combining expression,
action, and speech data in order to extract multimodal features and, in particular, there is
currently no multimodal dataset based on Chinese university students with depressive severity.

The remainder of this Chapter is as follows. Section 5.2 introduces the related work
including existing public dataset, depression detection using single modality and multi-
modality. In Section 5.3 I described our private multimodal behavioral dataset of depressive
symptoms (MB-DD), extractions of their audio and visual features and some experiments using
deep learning on MB-DD. In Section 5.4, I presented a multi-modal adaptive fusion
transformer network for depression detection using multi-task representation learning, which
achieved the best results on the public Audio/Visual Emotion Challenge and Workshop (AVEC
2019) Dataset. I concluded in Section 5.5 with a summary.

Related Work

5.1.1 Public dataset for depression detection

Access to clinical data is extremely important for depression detection. Due to the sensitivity
and privacy of clinical data, depression datasets are neither widely available for free. The
current depression datasets are as follows: Black Dog Institute depression dataset (BlackDog)
[64], DAIC-WOZ [66], Audio/Visual Emotion Challenge depression dataset (AVEC) [26],
University of Pittsburgh depression dataset (Pitt) [65]. The Black Dog Institute is a clinical
research facility in Australia, which collected a clinically depression dataset. The audio-video
experimental process contains reading sentences and interviews. At the University of
Pittsburgh (Pitt), a clinically depression dataset was collected during treatment sessions. A total
of 57 depression were collected at seven-week intervals using HRSD clinical interview. DAIC-
WOZ is partly available and be used as part of AVEC. The AVEC is the only fully public
available for free download. AVEC 2019 is the ninth competition aimed at providing a

common benchmark test set for multimodal information processing. Detecting depression with
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Al is a sub-challenges of AVEC 2019. A summary of database for depression detection is

shown in Table 5.1

Table 5.1: A summary of database for depression detection

Dataset Subject Modalities Procedure Depression Scale
Human-computer
AVEC2019 [26] 275 audio/video/Text ) ) PHQ-8 [53]
interaction
Human-computer
DAIC-WOZ [66] 189 audio /video/Text ) ) PHQ-8 [53]
interaction
Watch clips,
BackDog [64] 80 audio /video reading speech, DSM-1V [67]
structure interview
) o HRSD clinical
Pitt [65] 57 audio /video ] ) DSM-1V [67]
Interview

5.1.2 Depression detection using single-modal information

As data used in Deep Learning for depression detection are time series, irrespective of
how many modalities there are, it is important to effectively extract temporal information from
every single modality. Currently, the most used methods for extracting temporal information
for a single modality are RNN models, including LSTM and GRUs. For example, the baseline
model of the AVEC 2019 DDS Challenge [26] used a single GRU layer to process time series
to detect depression levels. [39] used a hierarchical Bi-LSTM to extract temporal information
to obtain information with different temporal scales. [42] used the traditional LSTM structure
to obtain sequential features for every single modality to estimate the levels of depression.
Although RNN families are widely used for extracting temporal information, they still have
some drawbacks, the most significant being the problem called Forgetting. The forgetting issue
is explained as an RNN model that loses previous information when processing long-term
sequences. Although LSTM and GRUs have been proposed to mitigate the negative impact of
the forgetting problem, unsatisfactory results are achieved while processing extremely long-
term sequences. This forgetting issue limits the sequential length that RNN models can process.

The forgetting issue can be handled better now that the transformer model [41] has been
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proposed. As a transformer model [41] has a pure attention structure, the impact of forgetting
is small, allowing the model to process longer sequences than traditional RNN families.
While original transformer models have been successfully used in natural language
processing tasks, recent research studies have employed transformer models in other fields,
such as image processing and emotion recognition image. In particular, [45] fused a CNN
model and transformer model to process images, which has been called conformer. In the field
of emotion recognition, [46] first used a transformer model to predict emotions. Because of the
similarity between emotion recognition and depression detection, numerous research studies
[47] have applied emotion methodologies to depression detection. In this work, I used a
transformer model to predict the levels of depression; to the best of our knowledge, this is the

first time a transformer model is used in this field.
5.1.3 Depression detection using multi-modal information

Multi-modal learning is one of the most important strategies in depression detection. As
the data to be analysed in depression detection are composed of several modalities, such as
video, audio, and text, it is relatively common to perform multi-modal learning. Currently,
numerous research studies [38, 39] have proven that multi-modal learning can improve the
accuracy and robustness of depression level prediction. The most used modalities include audio,
videos, and texts, which are collected through interviews with patients suffering from
depression, with their corresponding features, such as MFCCs and AUposes. For example, the
AVEC 2019 DDS Challenge [26] dataset includes features extracted from original audios and
videos, such as MFCC, eGeMAPS, and AUposes.

The multi-modal fusion strategy can be roughly divided into early fusion and late fusion.
Early fusion means fusion of data at the feature level, whereas late fusion means fusion of data
at the decision level. Nowadays, most methods fuse information in the early fusion stage. For
instance, [48] used the bag-of-words model to encode audio and visual features and then fused
them to perform multi-modal learning for depression detection [49] used texts generated from
the original speech audio by Google Cloud’s speech recognition service with their hidden
embedding extracted from pretrained BERT [50] model while concatenating all modalities,

achieving a concordance correlation coefficient (CCC) score of 0.69 on the AVEC 2019 DDS
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Challenge dataset. Aside from audio, video, and text modalities, [7] employed body gestures
as one of the modalities to perform early fusion. For late fusion, the most representative method
is the baseline model of the AVEC 2019 DDS Challenge [26], which first obtains results from
each unimodality and then takes the average as the final prediction.

However, most of the current methods did not explicitly weigh modalities with different
performances, whether using early or late fusion. In my work, I propose an adaptive late-fusion
strategy that can leverage the importance of different modalities. Specifically, I weight
modalities according to their performances, which means that I assign high weights to
modalities with high performance and low weights to those with poor performance to obtain
final late-fusion results. According to the experimental results, we can infer that the proposed

Adaptive Late-Fusion can improve the performance of depression detection.

5.2 Multimodal Behavioral Dataset of Depressive Symptoms

(MB-DD)

In this section, I first described our private multimodal behavioral dataset of depressive
symptoms (MB-DD), which is constructed under the collaboration with Prof. Huang Xinyin’s
Lab in Soochow University, China. Then I represented extraction of their audio and visual
features and some experiments using deep learning on MB-DD. Figure 5.1 gives an overview
of this study. First, the multimodal dataset (MB-DD) is created to investigate the relationship
between university students' depressive severity and their observed behavior during
several behavioral experiments. The dataset comprises two components: the behavioral dataset
and the screening survey results. Later (in Section 5.3.3), I will extract visual audio features
from part of these data to use them to construct a model (or mapping function) to investigate
the relationship between participants’ behavior and their depressive severity. In this study, I

use the results of screening surveys as ground truth regarding depressive severity.
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Figure 5.1: Overview of the study into the relationship between university students' depressive severity and
their observed behavior.

5.2.1 Collecting Survey Data

This study was reviewed and approved by Soochow University in China. In this study, I
used BDI-II screening survey data as ground truth regarding depressive tendencies. I used
two scales (BDI-II and CES-D) to increase data credibility and eliminate participants whose

scores differed significantly.
5.2.1.1 Beck Depression Inventory-II

The BDI is a 21-item self-reported depression metric. Each item is rated on a Likert scale
with four possible answers, increasing in intensity from 0 to 3, yielding a total BDI score of
between 0 and 63. In this study, I used the second BDI version, revised by Wang et al.
[16]. There are four specific levels of the severity of depressive severity: 0 to 13 as minimal
(no depression), 14 to 19 as mild, 20 to 28 as moderate, and 29 to 63 as severe [17]. For 2-class
classification, 14 is the classification boundary. In this study, the BDI-II data's internal

consistency was 0.88.
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5.2.1.2 Centre for Epidemiologic Studies Depression Scale

The CES-D is a 20-item self-reported depression metric. Each item is rated on a Likert
scale with four possible answers, increasing in intensity from 0 to 3, yielding a total CES-D
score of between 0 and 60. The Chinese version of CES-D [18] was adopted in this study. I
set the threshold for possible depression to 16, following the original author's recommendation
[19]. In this study, the CES-D data's internal consistency was 0.86.

Participants were recruited by distribution and collection of questionnaires on campus.
Students who met the screening criteria were invited to participate in the study by phone or text
message. All participants were first taken through a consent process. They were then invited to
complete the BDI-II and CES-D again, and the resulting scores were used to select participants
for further experimental analysis.

102 participants (Chinese university students) were recruited for the study. The
participants were divided into two groups: depressive persons (DP) and healthy persons (HP),
according to their scores on standardized self-report questionnaires (BDI-II [19] and CES-D
[20]). The DP group included 51 participants (26 males, 25 females): BDI-II 214 and CES-D
216, none of whom met the DSM-5 diagnostic criteria for major depressive disorder. The HP
group included 51 participants (26 males, 25 females): BDI-II < 14 and CES-D < 16, none with
histories of mental illness. There was no age difference between the DP and HP groups (¢ (100)
=0 .80, p = 0.43). The BDI-II (¢ (100) = 14.38, p < 0.001) and CES-D (¢ (100) =14.17, p <
0.001) scores were significantly higher in DP than in HP. Differences in the groups'
demographic and psychological characteristics were presented in Table 5.2. A preliminary

study of this database is referenced in [21].

Table 5.2: Differences in the groups' demographic and psychological characteristics

DP HP
(N=51) (N=51)
Age(M*SD) 18.984+0.91 18.84+0.83
Gender (n)

Male 26 26
Female 25 25
BDI-II(M+SD) 21.31+6.72 5.454+4.12
CES-D(M+SD) 24.18+6.82 7.53+ 4.89
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5.2.2 Acquiring Behavioral Data

Next, four experimental tasks were tried out for data collection, and the data acquisition
system was shown in Figure 5.2. The four experimental tasks in this study were designed based
on preliminary experiments with reference to relevant studies [22, 23, 24].

In this subsection, I will introduce the multimodal data acquisition system used to build
the behavioral dataset. Participants sat 2.7m away from the display screen, which was
1.9mx1.06m. A web camera (Logitech C920) was set up directly 1.2m away in front of them
to synchronously collect their expression and voice information at a resolution of 1920 x 1080

with a frame rate of about 50 frames per second.

Wajy

5 95 screen -~

Interviewer  Interviewee

- [y

Figure5.2: Illustration of the data acquisition system.

As shown in Figure 5.1, the experimental tasks in the behavioral database in this study
included four tasks: natural walking, natural situational interview, reading emotional text and
freely watching emotional videos. The four experimental tasks were completed on the same
day, and each participant completed all the experimental tasks in the order of Task 1, Task 2,
Task 3 and Task 4 (the sequence arrangement of the four experimental tasks was adjusted and
determined according to the feedback of the subjects in the pre-experiment and the coherence
of the whole experiment). Adequate rest time was set between tasks to reduce the interference

between different tasks.
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In task 2, I designed 13 questions based on the diagnostic criteria for major depressive
disorder given in the DSM-5 [5] and the Hamilton Depression Rating Scale [20]. These
questions were designed to elicit spontaneous speech from the participants, together with
related facial expressions and actions. During this process, I also wanted to ensure that the
participants were not clinically depressed. Those who answered yes to fewer than five of the
first nine questions were not asked the remaining ones (10-13). Table 5.3 list 13 main topics
covered during the interviews (task 2).

To facilitate the follow-up research to explore the cross-valence stability of the interview
questions, participants would be asked three types of emotional questions at the beginning of
the interview: (1) Neutral question: Can you tell me something about your recent study and
life? (2) Positive question: Please share with me a good memory and describe the scene at that
time. (3) Negative question: Please share with me a sad memory and describe the scene at that
time. The list of topics is listed in Table 5.3.

Table 5.3. List of topics covered during the interviews (task 2).

Topic Sample Questions
1 How has your mood been for the last two weeks? -Have you felt sad for
most of the days?
What are you usually interested in? -Have you been interested in this
2 during the last two weeks? -Have these activities brought you pleasure
during this time? -Has your interest in other topics diminished?
Has your appetite changed at all during the last two weeks? -Has your

3 weight changed during this time? -By how much has it increased or
decreased? - Has it changed by more than 5% of your original body
weight?

How have you slept during the last two weeks? -Did you have insomnia
(such as having difficulty falling asleep, waking during the night, waking
in early hours and unable to fall asleep again) or sleep too much?
Here, notes were made of the behavior observed during the interview,
5 such as fidgetiness, playing with hands, hair, inability to sit still, standing
during the interview, hand wringing, nail biting, hair pulling, biting of
lips.
How has your energy been over the last two weeks? -Have you always
6 been tired? - Have you experienced back pain, headaches, or muscle pain,
or heaviness in your limbs, head, or back?
Have you blamed yourself for anything over the last two weeks? -Have
7 you felt guilty for most of the day during the last two weeks? -Have you
felt worthless during this time? - Did it last for most of the day during the
last two weeks?
Have you felt unable to think over the last two weeks? -Did this last for
8 most of the day during the last two weeks? -Have you been able to
concentrate on what you were doing during this time? - Did it last for
most of the day during the last two weeks? -Have you felt hesitant to do
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something during this time? -Did it last for most of the day during the last

two weeks?
Have you experienced any extreme thoughts or behaviors over the last
9 two weeks, such as hurting yourself or committing suicide? -Did you act
on them?
10 Have the problems you've talked about had a negative impact on your

social life, studies, or daily life, giving you pain or discomfort?
11 Are these problems related to a particular substance or disease?

Have you ever had any psychiatric disorders (schizophrenia spectrum
12 disorders or other psychiatric disorders)? -Were/was these/this associated

with the onset of the problems you've talked about?

Have you had a remarkably persistent high level of emotional ego-
13 inflation or mood irritability, or an unusually persistent increase in

activity or energy most of the day more than 4 days a week?

Task 3 was inspired by related work [25] to collect more audio information from the
subjects. The emotional sentences are listed in Table 5.4.

Table 5.4. List of emotional sentences. 7 is the number of key frames in each sentence (task 3).

Emotional | Sentence Content written in Chinese (translate to English) n
Type 1D

ot BHRT L BB LA TS T - o
) (Wish ah! Wish ah! The Spring Festival is coming soon.)

Noa HEIX, FAH AR T k. 0
(Thinking about it, I couldn't help laughing.)
FEFATRT, NATDAESIETE, A SFE .
No.3 (Before the Spring Festival, people are all beaming, and in | 18
high spirt.)
BTN SEAL, A HELFE, A RELEDR.
No.4 (People go shopping in an endless stream, some are buying | 20
New Year pictures, some are buying New Year goods.)
AR KB B, A B NAEST RRAST $h 70 5545,
Tl 2
(Some were watching TV by the fire, others were playing
mah-jongg and poker, and so on.)
RE=ZA+, MUV HEDCRR, W ELRAKR, F
HLIRTBOHAERENT o 28
(On New Year’s Eve, people often play late into the night,
eating delicious fruit and setting off fireworks in their hands.)
RNNEHBERE S, BRI MR
No.7 (Adults and children are singing and dancing and enjoy | 16
themselves.)
FHAMAL AL 2SN GER b, BER 2] 15 ToK
(Lugou Bridge is located on the Yongding River outside 23
Guang'anmen Square in Beijing, 15 kilometers away from
Tiananmen Square.)
CIRETEMRIEERE, TR 3 FE, €48 F
e 22
(It was built in the Dading period of the Jin Dynasty, took 3
years to build, and was named "Guangli Bridge".)
XK R RFR SV, JrEA RN R IR - V-
(Because the Yongding River was formerly known as the 20
Lugou River, the Guangli Bridge is commonly known as
Lugou Bridge.)
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No.4

PV AL B DX IAT (4 e ol 2 ) — PR A A
(Lugou Bridge is the oldest existing multi-arch stone bridge
in Beijing.)

21

No.5

HIERAEA 18, IER BN 1986 FHBE G
I
(The stone bridge was rebuilt in the Ming and Qing
dynasties, and what we see now is the stone bridge that was
rebuilt in 1986.)

28

No.6

Ml 266.5 K, MriHiFE 9.3 K, ALK H FTIE L.
(The bridge is 266.5 meters long and 9.3 meters wide. It is
made of granite.)

24

No.1

= EF A R AR KR 1 BT T R
1
(Thirty-three years ago, a car accident took my mother from
us forever.)

21

No.2

WA — AR A

(Mom, how is life with you in the other world?)

14

No.3

LTI A s g

(Your son misses you so much!)

No.4

RAZER, LTI —ZIBA SIL IR BRI A
(Over these years, your son never forgot your kind smile for a
moment.)

22

dAnE3IN

BANEETTNEAF =2, B —KEA ik E
N ARILTAEWEEAR T E
(Although I was only thirteen when you left me, and you had
not left a single picture yet, I will never forget you.)

35

No.6

ZORR BB NEN G 2008 HIRERE
(I have dreamed of you many times during the night and have
cried for you many times in my dreams.)

20

No.7

s, EARLRCETT T RATAE TWR?

(Mom, why did you leave us so cruelly? )

18

5.2.3 Baseline Estimation

In this subsection, I make a preliminary application of the multimodal dataset established
in the previous section, to evaluate the feasibility of this dataset in predicting university
students' depressive severity using data from Task3 as an example. Figure 5.3 shows the
architecture of the proposed model. The deep neural network model consists of three parts: (1)
the subnetworks for each single modality feature extraction. (2) the gated recurrent unit (GRU)

network for each audiovisual representation. (3) the final decision layer that detection

depressive severity.
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(a) Classification architecture.

. FUs GRU >

“ResNet »| GRU | .| SWR

SWVR |
Feature Extraction

% | Fusion Results

MFCCs oD |
1 L GRU | [ W |
Feature Extraction‘ : .
ot *VGG_."GRU | [ svR

(b) Regression architecture.

Figure 5.3: The architecture of the proposed model. The unimodal features are extracted separately and
concatenated in a decision strategy. Classification architecture (a) and regression architecture (b).

5.2.3.1 Feature Extraction

In this subsection, I will explain how I calculated the baseline set of behavioral features,
which can be used to investigate the relationship between university students’ depressive
severity and their observed behavior. The feature sets are inspired form AVEC 2019 [26]. For
ethical reasons, I have not published raw video. The numbers of all features of audio and video

are summarized in Table 5.5.

Table 5.5. Numbers of features of audio and video.

Middle-level features High-level
Low-level feature
(BoW) features
MEFCCs eGeMAPS MFCCs-F eGeMAPS-F BoW-m BoW-e DNet VGG
Audio 39 88 78 176 100 100 1920 | 4096
Low-level feature High-level features
ResNet ResNet VGG
FAUs . .
(ImageNet) (Affwild) (Affwild)
Video 17 2048 2048 4096
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Audio Feature

The first step in analyzing the prosodic features of a person’s speech is to isolate it from
silence, other speakers, and noise. As audio features, I use the openSMILE [27] toolkit to
compute the low-level features. To calculate functionals, several statistical measures are
applied to normalize the low-level features.

For middle-level feature, the bags-of-words (BoW) model, which originates from text
processing, represents the distribution of LLDs according to a dictionary learned from them is
used. The bags-of-words (BoW) involves four major steps: (1) local descriptors detection from
traing data; (2) codebook learning using the local descriptors; (3) coding the local descriptor in
terms of the learning codebook; (4) pooling operation by accumulating the codes of local
descriptors of the LLDs into a fix-length representation feature. The open-source toolkit
oepnXBOW [29].

For deep representations, inspired by the development of deep learning in image
processing, spectrogram images of speech instances are fed into pre-trained image recognition
CNNs using VGG-16 [30] and DENSENET-201 [31] to extract high-level features. The
spectrogram is calculated by the short-time Fourier transform on overlapping windowed
segments of the signal. The mel spectrogram is a spectrogram where the frequencies are
converted to the mel scale. The mel scale is a perceptual scale of pitch which equal distances
in pitch sounded equally distant to the listener. In particular, the audio waves are first
transformed into mel spectrogram images with 80 mel-frequency bands with 4s window width
and a hop size of 1 s. Figure 5.4 shows examples of mel spectrogram for depression and non-

depression participants.
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Figure 5.4: Examples of mel spectrogram for (a) depression participant and (b) non-

depression participant.
The audio features are extracted as follows:
1. Mel Frequency Cepstral Coefficients (MFCCs), which are a compact representation of
the short-time power spectrum of speech. Figure 5.5. shows the process of creating MFCC
features.

Waveform

L 2

Convert to Frames

!

Take discrete Fourier
transform -

Take Log of amplitude
spectrum
v
Mel-scaling and
smoothing
¥

Discrete cosine transform

MFCC+features
Figure 5.5: Process to create MFCC features.
2. Extended Geneva Minimalistic Acoustic Parameter set (eGeMAPS) contains 88
dimensions features, resulting in a feature vector with a dimension of 88. The minimalistic
acoustic parameter set contains the following compact set of 18 Low-level descriptors

(LLD), sorted by parameter groups. Some typical features of eGeMAPS are shown in
Table 5.6.
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Table 5.6: Some typical features of eGeMAPS.

Frequency related parameters

Pitch logarithmic FO on a semitone frequency scale, starting at
27.5 Hz (semitone 0)

Jitter deviations in individual consecutive F0 period lengths

Formant 1, 2, and 3 frequencies | centre frequency of first, second, and third formant

Formant 1 bandwidth of first formant

Energy/Amplitude related parameters

Shimmer difference of the peak amplitudes of consecutive F0
periods

Loudness estimate of perceived signal intensity from an auditory
spectrum

Harmonics-to-Noise Ratio relation of energy in harmonic components to energy in

(HNR) noise like components

Spectral (balance) parameters

Alpha Ratio ratio of the summed energy from 50-1000 Hz and 1-5
kHz

Hammarberg Index ratio of the strongest energy peak in the 0—2 kHz region
to the strongest peak in the 2-5 kHz region

Spectral Slope 0-500 Hz and linear regression slope of the logarithmic power

500-1500 Hz spectrum within the two given bands.

Formant 1, 2, and 3 relative as well as the ratio of the energy of the spectral harmonic

energy, peak at the first, second, third formant’s centre frequency
to the energy of the spectral peak at FO.

Harmonic difference H1-H2 ratio of energy of the first FO harmonic (H1) to the
energy of the second FO harmonic (H2).

Harmonic difference H1-A3 ratio of energy of the first FO harmonic (H1) to the
energy of the highest harmonic in the third formant range
(A3).

MFCCs-F represents for the functionals of MFCCs. The low-level feature MFCCs is
summarized over time by computing their mean and standard deviation using a sliding
window of 4 s length, and a hop size of 1 s.

EGEMAPS-F represents for the functionals of eGeMAPS. The eGeMAPS features is is
summarized over time by computing their mean and standard deviation using a sliding
window of 4 s length, and a hop size of 1 s.

BoW-m represents the bags-of-words representation of MFCCs feature. The codebook
size is 100. MFCCs feature is processed a summarized over a block of a 4 s length duration.
BoW-e represents the bags-of-words representation of eGeMAPS feature. The codebook
size is 100. eGeMAPS feature is processed a summarized over a block of a 4 s length

duration.
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7. DNet represents the deep representation using pre-trained DenseNet-201. The input is the
mel spectrogram image. A 1920-dimnesional feature vector is extracted from the last
average pooling layer of DenseNet-201.

8. VGG represents the deep representation using pre-trained VGG-16. The input is the mel
spectrogram image. A 4096-dimnesional feature vector is extracted from the second fully

connected layer in VGG-16 networks.
Visual Feature

For low-level descriptors of visual features, I use the OPEN-FACE toolkit [33] to extract
the intensities of 17 facial action units (FAUs) for each video frame (Figure 5.6), along with a

confidence measure.

> ‘rfjlll\\‘

"
e e g
Input image Facial landmark Face alignment and Dimensiqnality Feature fusion £, .ol Action Unit
detection appearance extraction reduction recognition

Figure 5.6: Low-level descriptors extraction of visual features using OpenFace, including facial landmark
detection, head pose and eye gaze estimation, facial action unit recognition.

For deep visual representations, I employed a VGG-16 [30] network and a ResNet-50
network that are pre-trained with the Affwild dataset [34], which focuses on human affect
understanding. In particular, the OPEN-FACE toolkit [33] is used to detect the face region and
subsequently performed face alignment. Following that, the aligned face images are forwarded
through the two pre-trained models, respectively.

The visual features are extracted as follows:

1. FAUs represents facial action units. The description of action units is shown in Table 5. 7.

Examples of visualization of FAUs features generated from a clip of video for depression

and non-depression participants are shown in Figure 5.7.

Table 5.7: Description of action units.

1 | Inner brow raise | 10 | Upper lip raiser 25 | Lips part
2 | Outer brow raise | 12 | Lip corner puller 26 | Jaw drop
4 | Brow lowerer 14 | Dimpler 45 | Blink

5 | Upper lid raiser 15 | Lip corner depressor
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6 | Check raiser 17 | Chin raiser
Lid tightener 20 | Lip strecher
9 | Nose wrinkler 23 | Lip tightener

Times

|

Features

(a) Example of non-depression participant

Times

Features

(b) Example of depression participant
Figure 5.7: Visualization of FAUs features generated from a clip of video.

2. ResNet(ImageNet) represents the representation using ResNet-50 pretrained by

ImageNet. A 2048-dimensional deep feature vector from ResNet are extracted for each

frame. Figures 5. 9. Shows the examples of visualization of ResNet features generated

from a clip of video for depression and non-depression participants.

Features
Features

>

(a) Non-depression participant (b) Depression participant

>

Times Times

Figure 5.9: Visualization of ResNet features generated from a clip of video.

3. ResNet (Affwild) represents the representation using ResNet-50 network pretrained by

Affwild database. A 2048-dimensional deep feature vector from ResNet-50 network are

extracted for each frame.
4. VGG (Affwild) represents the representation using VGG pretrained by Affwild database.

A 4096-dimensional deep feature vector from VGG network are extracted for each frame.
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5.2.3.2 Detection Model

Finally, I will introduce the baseline gated recurrent unit (GRU) network and a late fusion
strategy to combine audio and visual modalities in this subsection.

A gated recurrent unit (GRU) was proposed by Cho et al. [35] to make each recurrent unit
adaptively capture dependencies of different time scales. As well as the LSTM unit, the GRU
has gating units that modulate the flow of information inside the unit. However, without having
any separate memory cell [36]. I use a gated recurrent unit (GRU) network with two-layers,
each having 64 nodes for their hidden layers, for each audio-visual feature. The GRU is then
followed by a fully connected neural network that has one hidden layer with 32 nodes, followed
by a single linear layer to map to the desired output size of one for depressive severity
regression task and output of four for the classification task.

I define the two tasks used in the experiments: the depressive severity regression task and
the depressive severity classification task. I used SVM for classification task and SVR for
regression task as shown in Figure 5.3 (a) and (b), respectively. In the depressive severity
regression task, I predict its BDI-II score, which range from 0 to 63 in the database. The loss
function for depressive severity regression task is concordance correlation coefficient (CCC)
Loss function. The CCC loss function (L...) can be defined as Equation (5.1) to maximize the

agreement between true value (y) and prediction depressive symptoms degree (9).

1— 2Dyy 030y
o5 + 05 + (g — 1) 5.1)

Lece =

where py,, is the Pearson coefficient correlation between § and y, o is standard deviation, and
U is a mean value.

In classification task, I discretize the BDI-II score into 4 classes [17]: minimal (no
depression) [0-13], mild [14-19], moderate [20-28], and severe [29-63]. I treat this problem as
multi-class classification and cross-entropy loss is used. The cross-entropy loss can be defined

as:

Leg = — Z yilog(p;) (5.2)

where y; it the truth label and p; is the SoftMax probability for the i*" class.
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Late fusion is the most used method for multimodal depression severity detection. I train
a classifier for each modality and merges the decision values from each unimodal modal into a
unified decision using averaging sum.

As shown in Figure 5.3, the model has been obtained as follows. First, the single feature
streams are trained separately using the ground truth. The output of the 8 audio single streams

and 4 visual streams are used as inputs to the decision fusion.
5.2.4 Experiment Results

In this section, I report the results of my model variants described in Section 5.2.3.

5.2.4.1 Experimental Setup

The novel multimodal behavioral dataset of depressive severity for task 3, which is
described in Sec.5.3.2, is used in experiments. There are 102 participants in the dataset. I divide
them into training, development, and test sets. The distribution of the training, development
and test splits is summarized in Table 5.8.

Table 5.8: Distribution of the training, development, and test splits.

Task Train Dev Test
Regression Task 72 10 20
Minimal [0-13] 36 5 10
) ) Mild [14-19] 14 2 4
Classification Task Moderate [20-28] 6 > 4
Severe [29-38] 6 1 2

For evaluation on the test set, I use the best performance model on the development set.
To handle the bias, I converted the BDI-II score labels to floating point numbers by
downscaling with a factor of 38 prior to train. The RMSE results are reported using the original
BDI-II scale. The model is implemented using a PYTORCH framework and is trained with an
ADAM optimizer.

5.2.4.2 Evaluation Functions

To evaluate regression/classification results, I use well-known evaluation metrics that are

standard for depressive severity detection.
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I use the concordance correlation coefficient (CCC) as a measure of estimated scores
(regression task), which is the common metric in dimensional depressive severity detection to
measure the agreement between true depressive severity degree (y) with predicted depressive
severity (¥). The benefits of using CCC are not biased by changes in scale and location, and
elegantly includes information on both precision and accuracy in a single evaluation measure.

The CCC is formulated as Equation (5.3):

2p5y 050y

ccc =
o} + 05 + (5 — Hy)? (5.3)

where py,, is the Pearson coefficient correlation between ¥ and y, o is standard deviation, and
u is a mean value. This CCC is based on Lin’s calculation [37]. The range of CCC is from -1
to 1, which -1 perfect disagreement and 1 perfect agreement.

I also use the Root Mean Squared Error (RMSE), which is defined as Equation (5.4), as

another measure for regression task.

RMSE = (5.4)

For classification task, the accuracy (denoted as Acc) is defined on all test samples and it
the fraction of predictions that the model got right, Total accuracy reaches its best value at 1

and its worst score at 0. It is defined as:

Number of Correnc Predictions
Acc = (5.5

Total Number of Predictions

5.2.4.3 Results

To demonstrate the effect of each feature, I summarized the results of using each audio

feature and visual feature in Table 5.9 and 5.10, respectively. CCC and RMSR are results of
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the regression task and Acc is the results of classification task. The best result on each measure

is highlighted in bold.

Table 5.9: The results of using each audio feature on development dataset and test dataset.

Negative
Audio
Low-level features Middle-level High-level
- Features (BoW) features (DL)
Partition

eG}fg"A MFCCs eGeSlf%AP MFCCs-F | BoW-M | BoW-e DNet VGG

CCC 0.04 0.32 0.16 -0.14 0.54 0.10 0.26 0.31

Dev | RMSE 23.07 10.59 12.77 17.00 9.90 10.48 11.25 9.81
Acc 0.50 0.50 0.70 0.70 0.50 0.60 0.60 0.70

CCC -0.06 0.16 -0.03 0.31 -0.03 -0.19 0.20 -0.12

Test | RMSE 22.72 14.62 17.46 11.37 14.95 13.61 12.61 13.28
Acc 0.10 0.25 0.30 0.35 0.25 0.30 0.25 0.25

Neutral

CcCC 0.43 0.12 0.79 0.51 0.17 0.22 0.51 0.49

Dev | RMSE 10.69 15.35 5.79 9.99 14.91 10.31 9.47 9.47
Acc 0.60 0.50 0.70 0.80 0.70 0.60 0.60 0.50

CcCC -0.21 0.07 0.19 -0.15 0.29 0.15 0.18 0.10

Test | RMSE 14.31 13.26 11.95 16.22 12.29 9.96 13.18 11.68
Acc 0.15 0.20 0.25 0.15 0.25 0.30 0.25 0.30

Positive

CCC 0.36 0.24 0.87 0.43 0.57 0.39 0.60 0.47

Dev | RMSE 10.94 12.47 4.92 11.80 9.24 9.38 8.65 9.67
Acc 0.60 0.60 0.60 0.60 0.60 0.50 0.60 0.60

CCC 0.16 -0.14 -0.50 0.52 0.27 -0.98 -0.23 0.05
Test | RMSE 12.32 17.50 19.23 10.80 12.53 12.82 13.75 12.67
Acc 0.35 0.25 0.30 0.35 0.30 0.35 0.30 0.35
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Table 5.10: The results of using each visual feature on development dataset and test dataset.

Negative
Visual
. Low-level High-level features (DL)
Partition features
FAUs ResNet ResNet VGQ
(Affwild) (ImageNet) (Affwild)

cccC 0.56 0.68 0.72 0.19
Dev RMSE 9.56 7.22 7.02 10.23
Acc 0.70 0.60 0.60 0.50
ccc 0.002 -0.06 -0.24 0.008
Test RMSE 15.93 12.91 15.19 11.42
Acc 0.40 0.25 0.30 0.30

Neutral
Cccc 0.65 0.47 0.72 0.44
Dev RMSE 8.33 9.20 6.29 8.83
Acc 0.70 0.50 0.60 0.50
CcCC -0.27 -0.10 -0.15 -0.12
Test RMSE 19.79 16.84 13.74 12.59
Acc 0.25 0.25 0.30 0.25

Positive
cccC 0.40 0.78 0.80 0.39
Dev RMSE 9.73 6.93 6.20 10.04
Acc 0.50 0.60 0.60 0.50
cccC 0.29 -0.23 0.09 0.18
Test RMSE 13.60 14.99 10.77 11.59
Acc 0.35 0.25 0.2 0.30

With respect to regression task, the best results in terms of CCC score from audio features
was achieved with BoW-M, EGEMAPS-F, EGEMAPS-F for negative, neutral, positive,
respectively. And the model with Res-ImageNet features achieved the best result for visual
features in all three valences. These results indicate the low-level features are more useful for
audio, while representations learnt by deep neural networks are more powerful for visual. In
term of valence, the positive-emotional speech achieved best results both in audio-based and
visual-based depressive severity regression.

The results of fusing all the features (multi-modal features) are summarized in Table
5.11. Compared with Tables 5.9 and 5.10, one can conclude that the decision fusion

outperforms any single modals, which indicates that the feature fusion may provide the

complementary information for detection of depressive severity.
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Table 5.11: The results of fusing all audio and visual features (multi-modal features) on development
dataset and test dataset.

Negative
CCC 0.52
Dev RMSE 8.38
Acc 0.40
CCC -0.05
Test RMSE 10.59
Acc 0.45
Neutral
CCC 0.61
Dev RMSE 7.22
Acc 0.60
CCC -0.03
Test RMSE 10.64
Acc 0.55
Positive
CCC 0.71
Dev RMSE 6.32
Acc 0.40
CCC 0.06
Test RMSE 10.13
Acc 0.50

5.3 Multimodal Adaptive Fusion Transformer Network for

Detection of Depressive Severity with Public AVEC Dataset

5.3.1 Proposed Methods

In this subsection, I first show an overall description of my multi-modal adaptive fusion
transformer network and then provide a detailed description of the transformer encoder module,
encoding the time series data from each modality. Subsequently, I elaborate on how my multi-
task methods use a multi-task representation learning network for PHQ-8 regression and 5-
class classification. Finally, I fuse acoustic and visual modalities in Adaptive Late-Fusion to
conduct the final depression level prediction. The architecture of the proposed method is
presented in Figure 5.10.

To illustrate the effectiveness of the transformer model in depression detection, I employ
the Transformer Encoder to extract temporal information. After features from every modality
are processed by the Transformer Encoder and the Embedding FC Block presented in Figure
5.10, they are fed to two F'C Blocks designed for multi-task learning, which will be later

described in more detail in the Multi-Task Learning sub-section.
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Figure 5.10: Overview of the proposed method. The origin data is firstly processed in the Data Processing
Stage which has been done in the AVEC 2019 DDS dataset. Then the Transformer Encoder is used for
extracting temporal information. The Embedding FC Block combined by a RELU activation layer, a dropout
layer and a fully connected layer is used to extract the hidden embeddings representing each kind of feature.
The embeddings from each kind of feature are fed to two FC blocks to perform multi-task predictions. Finally,
the results from different features are fused in the Adaptive Late-Fusion to predict the final results. The Lz,
means the Concordance Correlation Coefficient Loss for PHQ-8 regression and the Lc means the Cross-
Entropy Loss for 5-class classification.

5.3.1.1 Input Stream

As data obtained from AVEC 2019 DDS [26] have been processed to specific features,
the data pre-processing stage in Figure 5.11 can be skipped. In the AVEC 2019 DDS Challenge
dataset, two main modalities can be obtained, namely, audio and video modalities. Each
modality type contains several kinds of features, such as MFCC from audio and AUposes from
video. For every type of feature obtained from the AVEC 2019 DDS Challenge dataset, the
model is independently trained. The results obtained from each type of feature are fused in the
independent stage called Adaptive Late-Fusion. For every type of feature, the transformer
model is designed to extract temporal information, and its detailed structure will be described
in the next section, i.e., Transformer Encoder. Suppose pre-processed features have the shape
of RPs**4 where bs standard is the batch size, ¢ standard is the temporal frames, and d standard
is the feature dimension. After they have been processed by the Transformer Encoder, the
features with the shape of R***¢ are averaged in the temporal ¢ dimension to obtain the shape
of R?*_ The averaged features are fed to the Embedding FC Block to obtain features with the
same dimension, which are treated as hidden embeddings representing every feature from each
modality. Each FC Block consists of a rectified linear unit (ReLU) activation layer, a dropout
layer, and a linear layer. The dropout layer in the F'C Block is designed to overcome overfitting
during training. The hidden embeddings are finally passed to the two FC Layer Blocks to

perform predictions on two tasks: PHQ-8 regression and 5-class classification. After the results
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from each modality’s feature are obtained, I employ Adaptive Late-Fusion to obtain the final

prediction results in terms of the PHQ-8 scores.
5.3.1.2 Transformer Encoder

The structure of Transformer Encoder is shown in Figure 5.11. Following [41], I use the
naive Transformer Encoder structure, along with the Positional Encoding module, Multi-head
Attention module, and Feed-Forward module in my work. In both the Multi-head Attention
and Feed-Forward modules, data streams are designed as a shortcut structure with additive and
normalization operations. An entire single Transformer Encoder layer architecture is repeated
by N times to form a complete Transformer Encoder. Before being fed to the Transformer
Encoder, input streams are processed by the Positional Encoding module to alter the positional
information. Before being fed into the Multi-head Attention module, an input stream will be
independently mapped to three sub-streams represented as Q, K, and V, respectively. Then, the
Multi-head Attention module will perform global self-attention from Q, K, and V. If the head
number of the Multi-head Attention module is greater than one, the Multi-head Attention
module will perform the self-attention in different temporal scales. The Feed-Forward module
is a simple feed-forward structure composed of two fully connected layers.

Positional Encoding
Transformer Encoder x N

(

|

: " Multi.Head [ Add ) Feed [ Add ) |Outputs
Inputs K et & H < &

| |v .| Attention Forward | |

l > \ Norm ) \ Norm ) |

Figure 5.11: The structure of the Transformer Encoder employed to extract temporal information of
sequences.#After the data processed, the data are fed to the Transformer Encoder to extract temporal
information. A single Transformer Encoder layer is composed by a Multi-Head Attention module and a
Feed-Forward module with an external Positional Encoding module.

The Positional Encoding module is used to add positional information to the original input.
The Positional Encoding model is important because the Transformer Encoder has a pure
attention structure without any positional information. The positional encoding method as [4],

whose formula is shown in Equation (5.7):
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where pos denotes the position; 7, the indices of elements in every single feature; and dmoder, the
dimension of input features.
The Self-Attention module is designed to map a query (Q) and a set of key (K) -value (V)
pairs to an attention value (Z). The Q, K, V are represented as Equation 5.8:
Q = WyX € RF¥1
K = WX € REX1 (5.8)
V=W,X € REX?

where X represents the origin inputs, while Q, K, and V denote the query vector, key vector
and value vector, respectively. Suppose the dimensions of Q, K, V are F, E, E, respectively.

Wy, Wk, Wy, are linear transform metrices for Q, K, V, respectively, which are learned to find

best Q, K, V during the training process.

In self-attention, we first calculate the similarity between Q and K as Equation 5.9:

_ QKT FXE

where A is a similarity matrix or score matrix with a dimension of F X E. Its element aji can

be represented as

aj; = q;ki/NE (5.10)

where q; and k; are j-th element of Q and i-th element of K, respectively. We use softmax to

normalize a;; as

F
aj; = softmax(a;;) = exP(aji)/zjzl exp(a;i) (5.11)

The attention value (z;) for q; can be represented as:
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E
Zj=zzhlﬁﬂ% (5.12)

where v; is the i-th element of V. The Z€ RF*! can be represented as:

Z=AV (5.13)

whereA’ is the normalized similarity matrix, whose element is aj;
The final feedforward module is made up of two fully connected layers whose hidden units

can be specified as hyperparameters.
5.3.1.3 Multi-Task Learning

To achieve the purpose of multi-task learning, after the features are processed by the
Embedding FC Block, the hidden embedding for each type of feature will be fed to two FC
Blocks to separately perform two tasks, i.e., PHQ-8 regression and 5-class classification. The
FC Blocks comprise a ReLU activation, a dropout layer, and a linear layer. Since we can only
achieve the original PHQ-8 regression task using the AVEC 2019 DDS Challenge dataset, 1
generate 5-class classification labels from the original PHQ-8 score labels, as detailed in the
Data Processing Section.

My multi-task loss function in the training stage can be formulated as:

Loss =a* L., +b*Lg (5.14)

where L. and Lo are loss functions for PHQ-8 regression and 5-class classification,
respectively. a and b in Equation (5.3) are designed to leverage the coefficient between these
two tasks and can be set as hyperparameters. Specifically, the loss function for PHQ-8

regression can be formulated as follows:

Ly, =1 259y
" S2+S2+ (9 - y)? (5.15)
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where ¥ and y denote the predicted depression levels and true labels, respectively. I employ
the commonly used cross-entropy loss as the loss function of the 5-class classification task,

which is shown as follows:

1 N (o
LCl = —NZ Z 1[C=yi] logpi.C (516)

i=1 c=1

where C denotes the number of classification classes; N, the number of samples; 1(.-,,}, a
binary indicator; and p; ., the predicted probability that sample 7 belongs to class c.

5.3.1.4 Adaptive late fusion

To fuse results from different modalities and adjust weights for each type of feature
adaptively, I employ the proposed late-fusion strategies called Adaptive Late-Fusion to fuse
results obtained from every single feature.

The general late-fusion strategy that is widely used takes the average from results obtained
from each feature of different modalities, which can be formulaically expressed as follows:

M . .
m=o Predictions ,,

count (m) (5.17)

FinalPredictions_Averaged =

where M denotes the number of selected features, and Predictionsm denotes the predictions
from feature m. In this study, the general late-fusion strategy is known as Averaged Late-Fusion.
The Adaptive Late-Fusion method proposed in my work aims to increase the weights of
features with high performance while decreasing the weights of features with low performance.
Specifically, I calculate the weights for each feature and take the weighted average from all
modalities. Weights are calculated according to the CCC from each type of feature, and thus,
the feature types with higher CCC will have larger weights in the proposed Adaptive Late-

Fusion. The formulaic expression of my proposed Adaptive Late-Fusion is shown as follows:

M
CCCoum = Z cce,,

m=0
Fi .. . 4 (IIedictions m ¥ CC( ) (518)
lllall redlCthllS Welghted = m
= CC CSum
m=0
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where M denotes the number of selected features; Predictionsm, the predictions from feature m;
CCCsum, the sum of CCCs for all features; and CCCm, the CCC score of feature m.

I implement the Adaptive Late-fusion Strategy in two ways. In one way, I select all
modalities and all types of features and fuse the results from them, which means that the results
obtained will account for every modality. In the other way, I only fuse the top M features ranked

by the CCC [52] metric, which means that I will drop features with poor performance.
5.3.2 Experiments and Results

5.3.2.1 The AVEC 2019 DDS Challenge Dataset

The DDS dataset was obtained from AVEC 2019 [26], where the level of depression
(PHQ-8 questionnaire [53]) was assessed from audio-visual recordings of patients' clinical
interviews conducted by a virtual agent driven by a human as a Wizard-of-Oz (WoZ) [54]. The
recording audio has been transcribed by Google Cloud's speech recognition service and
annotated for a variety of verbal and nonverbal features. Each interview in the AVEC 2019
DDS dataset comprises interview IDs, PHQ-8 binary labels, PHQ-8 scores, and the
participant's gender. The dataset contains baseline features extracted from audiovisual
recordings by common frameworks based on open-source toolboxes. It spans three expressions
levels: functional low-level descriptors (hand-crafted), bag-of-words, and unsupervised deep
representations. The audio features are provided by openSMILE [55], and the video features
are provided by openFace [56].

For every sample in the AVEC 2019 DDS dataset, the PHQ-8 scores range € [0,24].
Following [42], 1 define the cut-points at [0,5,10,15,20] for minimal depression, mild
depression, moderate depression, moderately severe depression, and severe depression,
respectively. The dataset includes MFCC, Bow MFCC, eGeMAPS, Bow eGeMAPS,
DS DNet, and DS VGG for audio and FAUs, BoVW, ResNet, and VGG for video, where
Bow indicates the bag-of-word method; DS, the deep spectrogram; and DNet and VGG, the
data processed by pretrained DenseNet and VGG _Net, respectively. In this dataset, every
modality feature has the shape of R, where ¢ denotes the length of the sequence, and d

represents the dimension of the modality.
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5.3.2.2 Data processing

Because the data sequences are too long to fit in memory, we must shorten the dataset's
original data. To shorten the sequences, I sample N frames from the original features for every
modality feature. Specifically, I evenly split the sequence into s segments; for each segment, I
randomly sample L=N/s successive frames. Finally, I concatenate the s segments obtained from
each segment. Consequently, I can obtain N frames from each kind of feature in this manner.
For different types of features in the AVEC 2019 DDS dataset, I select different N and s, which
can be treated as hyperparameters as the dimensions of different features are different.

I generate the MFCC_functional, eGeMAPS functional, and AUpose functional from
MFCC, eGeMAPS, and AUpose, respectively, using the approach provided by the AVEC 2019
DDS to enhance the modality and avoid the side effect of processing extremely long-term
sequences. Specifically, the functional features have the same lengths as /768 and the mean
value and standard deviation of the original data.

To achieve the goal of multi-task learning, I obtain classification labels from the original
PHQ-8 scores, as illustrated by [42]. The corresponding relationships between the original
PHQ-8 scores and 5-class classification labels and the label distributions are presented in Table
5.12.

Table 5.12: Distribution of Training and development splits with the relationships between 5-class
classification labels and PHQ-8 regression labels.

Task Train Dev
Regression Task 163 56
minimal [0-4] 77 26
mild [5-9] 36 15
Classification Task moderate [10-14] 26 8
moderately severe [15-19] 17 6
severe [20-24] 7 1
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5.3.3 Evaluation Functions

5.3.3.1 Data processing

I use well-known standard evaluation metrics for depression detection to evaluate
regression/classification results. I use the Concordance Correlation Coefficient (CCC) [52] as
a measure of PHQ-8 estimated scores (regression task), which is the common metric in
dimensional depression detection to measure the agreement between true PHQ-8 scores (y) and
predicted PHQ-8 scores (§). The CCC is formulated as follows:

B 285,
2452+ (G —)? (5.19)

where S; and S, denote the variances of ¥ and y, whereas Sy, denote the corresponding
covariance value. The CCC is based on Lin's calculation [52]. The range of the CCC is from

—1 to 1, where —1 represents perfect disagreement and 1 represents perfect agreement.

As another measure for the regression task, I also use the root mean square error (RMSE),
which is defined as Equation (5.9), where y and y denote the predicted and true depression

levels, respectively, and N represents the number of samples.

Zliv i —9)

RMSE = N (5.20)

5.3.4 Experimental Setup

To demonstrate the effectiveness of the proposed method, I apply it, along with the original
baseline GRU model [26], to obtain a direct comparison between them. The AVEC 2019 DDS
dataset is split into training, development, and test sets. I utilized only the training and
development sets for a fair comparison with the state-of-the-art method. The experiments were
conducted on 219 subjects: 163 subjects for training and 56 subjects for development. The
Adam optimization algorithm [57] was employed to learn the parameters in the networks. The
learning rate was set to le-5. The batch size was set to 48 for low- and middle-level features
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and 24 for high-level features. I trained the model for 500 epochs for low&middle-level
features and 200 epochs for high-level features. During training, I set a, b to 1.0, 0.0 for single-
task and 0.9, 0.1 for multi-task in the loss function of Equation (5.3). For the Transformer
Encoder block, I set the head number of Multi-head Attention to 1, the hidden dimension of
the Feed-Forward layer to 2048, and the number of the encoder layer to 6 following the original
Transformer structure [41]. The model is implemented with the framework of PyTorch [58],

whereas the experiments are conducted on double Nvidia RTX 3090 GPU cards.

5.3.5 Results

In this section, I will describe the results of the experiments in more detail. The proposed
networks have several hyperparameters to be optimized. The length of inputs for the
Transformer Encoder N and the number of selected modalities for fusion M is the most
important architectural decisions. In this section, I first discuss the effect of the selection of N
and M. Then, I describe the effectiveness of the Transformer Encoder, multi-task learning, and
multi-modal learning. Finally, I compare the proposed models’ results with those of some state-

of-the-art methods.

5.3.5.1 Effect of Frames Length

The length of inputs (i.e., the number of sequence frames) affects the accuracy of the
depression detection of the networks and should thus be selected carefully. To study how the
performance of the proposed method changes as I modify the input frames length, I fix the task
as regression and modalities as the fusion of top three features (M=3) and compare the CCC
score and RMSE at different selections of frames. As feature dimensions significantly differ, |
select the same frames for low- and middle-level features, whereas I select different frames for
high-level features. Although the use of the transformer model can capture long-term
information, it consumes a lot of memory. The pair of 2048/720 frames for low&middle-level
features and high-level features is the limitation of our hardware. As presented in Table 5.13,
an increase in input frames improves the results. I select N = 2048 for low- and middle-level
features and N = 720 for high-level features in this work. Here {N} is the number of frames.
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Table 5.13: The CCC and RMSE results for different frames of input on fixed 3-top modalities fusion
regression single task. 2048/720 means that I select N=2048 for low-level and middle-level features and
N=720 for high-level features.

Frames(N)
CCC RMSE
(low&middle-level features/high-level features)
2048/720 0.654 4.602
1536/540 0.634 4.526
1024/360 0.560 5.102

5.3.5.2 Effect of the Selection of Features

To study the effect of feature selection in the late-fusion, Figure 5.12 presents the results
of different M selection in terms of the CCC scores with different multi-task combinations. The
most appropriate number of selected top modalities for different tasks varies. The results
indicate that the CCC scores increase with an increase in the number of top modalities selected
and reach a maximum at M = 3 for both single-task and multi-task in Averaged Late-Fusion.
M = 3 and M = 6 are the best choices for multi-task and single-task in Adaptive Late-Fusion,
respectively. Therefore, I select the corresponding best M for different tasks in different fusion
strategies.

Averaged TOP-M Fusion
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Figure 5.12: The CCC scores for different number of top M modalities fusion. Each color represents different

tasks. The points with best results are marked as red.
5.3.5.3 GRU vs. Transformer Encoder

To investigate the effect of transformer-based networks on the CCC scores and RMSE
values, I use single features as inputs of the networks, and the task is set to PHQ-8 regression.

The results are presented in Table 5.14.

Table 5.14: Comparison between The GRU baseline model [26] and The Transformer-based model for
different features from audio and video modality. For every kind of features from each modality, I use two
metrics including CCC and RMSE.

CCC RMSE

Proposed Proposed

Feature GRU [26] melzhod GRU [26] mer'zhod
MFCC 0.198 0.289 7.28 5.70
MFCC _functional - 0.386 - 7.78
eGeMAPs 0.076 0.0002 7.78 8.69
Low-level |  ¢GeMAPs _functional - 0.138 - 8.10
AUposes 0.115 0.602 7.02 5.64
AUposes_functional - 0.277 - 6.23
BoW-MFCC 0.102 0.060 6.32 8.58
) BoW-eGeMAPs 0.272 0.169 6.43 8.56
Middle-level) 5\ AUposes 0.107 0.210 5.99 9.045
DeepSpectrogram DNet 0.165 0.204 8.09 8.67
) DeepSpectrogram_ VGG 0.305 0.141 8.00 8.72
High-level | g ol ResNet 0.269 0.373 7.72 7.56

As presented in Table 5.14, the transformer model outperforms the GRU baseline model

[26] in terms of the CCC metric for low- and high-level features. The CCC score of the AUpose
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feature is higher than those of other types of features. The transformer-based network achieves
higher accuracy for low&high-level features, so we can conclude that the transformer model
outperforms the GRU [26] in terms of processing low- and high-level features. However, for

middle-level features, we can deduce that the transformer-based network does not outperform

the GRU model.

5.3.5.4 Single-Task vs. Multi-Task

To illustrate the effectiveness of multi-modal learning, the proposed method has been
tested on all features available in the AVEC 2019 DDS dataset. As presented in Table 5.15,
applying multi-modal late-fusion outperforms any unimodal learning in any tasks, except for
the Averaged All Late-Fusion. The Averaged All Late-Fusion has poor performance as it does

not take the importance of different modalities into account.

Table 5.15: Comparison between single-task and multi-task with metrics of CCC, RMSE. Single-Task
includes the PHQ-8 regression task while Multi-Task includes the PHQ-8 regression task and the 5-class
classification task.

Tasks CCC RMSE
Our: Single-Task 0.679 4.150
Our: Multi-Task 0.733 3.783

5.3.5.5 Single Modality vs. Averaged Multi-modal Fusion vs. Adaptive Multi-modal

Fusion

To illustrate the effectiveness of multi-modal learning, the proposed method has been
tested on all features available in the AVEC 2019 DDS dataset. As presented in Table 5.16,
applying multi-modal late-fusion outperforms any unimodal learning in any tasks, except for
the Averaged All Late-Fusion. The Averaged All Late-Fusion has poor performance as it does

not take the importance of different modalities into account.
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Table 5.16: Comparison between single modality and multiple modalities fusion and Comparison between
averaged multi-modal fusion and adaptive multi-modal fusion. I employ CCC and RMSE as metrics. For
every kind of fusion strategy, I perform two ways of late fusion including a// fusion and top M fusion.

CCC RMSE

Single-Task Multi- Single- Multi-

Task Task Task

MFCC 0.289 0.471 5.700 5.158

MFCC _functional 0.386 0.460 7.780 7.269
eGeMAPs 0.0002 0.000 8.688 8.688
eGeMAPs_functional 0.138 0.107 8.102 8.345
AUposes 0.602 0.620 5.643 5.355
AUposes_functional 0.277 0.390 6.227 7.114
BoW_MFCC 0.060 0.063 8.584 11.575
BoW_eGeMAPs 0.169 0.181 8.560 8.555
BoW_AUposes 0.210 0.184 9.045 10.760
DeepSpectrogram_Dnet 0.204 0.171 8.672 8.662
DeepSpectrogram VGG 0.141 0.170 8.721 8.145
Facial ResNet 0.373 0.360 7.561 6.900
Averaged all fusion 0.478 0.539 4.591 4.334
Averaged best top M fusion 0.654 0.722 4.602 3.852
Adaptive all fusion 0.628 0.682 4.046 3.782
Adaptive best top M fusion 0.687 0.733 3.829 3.783

The result indicates that the fusion of the best top M modalities improves the estimation
of depression levels in terms of the CCC metric better than other fusions as modalities with
poor performance are excluded to avoid a negative impact on the accuracy of depression
detection. We can infer that the Adaptive Late-Fusion strategy can perform better than the
Average Late-Fusion in estimating the levels of depression.

To investigate the different weights between different features, I counted the best three
features with their corresponding weights in Adaptive Late-Fusion because M = 3 is the best
choice for multi-task learning and nearly the best choice for single-task learning. As presented
in Table 5.17, although the selections of modalities are different for different tasks, the main
influencing features are AUposes and MFCC_Functional. The results indicate that low-level
features are more important than deep- and middle-level features for estimating the levels of
depression.

Table 5.17: The selection of modalities in TOP-3 Adaptive Late-Fusion and their corresponding weights.

Tasks Best 3 features and corresponding weights
Modality Video Audio
Single-Task Features AUposes | MFCC | MFCC_Functional
Weights 0.40 0.30 0.30
Modality Video Audio
Multi-Task Features AUPoses | ResNet | MFCC_Functional
Weights 0.44 0.27 0.29
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5.3.5.6 Comparison with state-of-the-art methods

In Table 5.18, my approaches are compared with other state-of-the-art methods and the
baseline. The baseline model [26] uses a GRU to extract temporal information and then takes
the average of the results from every unimodality. The hierarchical Bi-LSTM [39]
hierarchically employs a Bi-LSTM to obtain temporal sequence information. Multi-scale
temporal dilated CNN [40] employs dilated CNNs with different scales to process temporal
information, followed by average pooling, and max pooling to fuse temporal features. It should
be noted that multi-scale temporal dilated CNN [40] uses features from texts extracted from
pretrained models. Bert-CNN & Gated-CNN [49] use the Gated-CNN to extract features from
each audio-visual modality sequence and the Bert-CNN to obtain features from texts before
fusing the features to predict the final depression levels. The results indicate that the baseline

has superior performance over other DL methods.

Table 5.18: Comparation of the proposed method and the state-of-the-art with CCC metrics and modalities
used.

Methods CCC Modalities Used
Baseline [26] 0.336 Audio/Video
Hierarchical BILSTM [39] 0.402 Audio/Video/Text
Multi-scale Temporal Dilated CNN [40]  0.466 Audio/Video/Text
Bert-CNN & Gated-CNN [49] 0.696 Audio/Video/Text
Ours Best 0.733 Audio/Video

5.3.6 Discussion

Compared with Average Late-Fusion, Figure5.12 shows that using Adaptive Late-Fusion
not only achieves good results but also increases detection robustness, implying that the
inclusion of low-performance features has a slightly negative impact on the detection results.

The comparison of the predicted results with the ground truth is presented in Figure 5.13,
and samples with different classification labels are colored differently. As shown in Figure
5.13, the predicted results of participants with high scores tend to be on the lower side. The
reason is due to the imbalance of the training samples. Figure 5.14 shows the distribution of
the training set of the AVEC 2019 DDS. The training set distribution is unbalanced, more
samples have participants with low PHQ-8 scores, whereas few samples have participants with

high scores. As a result, the model predicts a slightly lower PHQ-8 score than the true label for
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participants with high scores. The prediction accuracy can be improved by increasing the

number of participants with high scores.
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Figure 5.13: Correlation graph between the predicted and true PHQ-8 scores. Each color represents
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Figure 5.14: The distribution of the training set of the AVEC 2019 DDS Challenge dataset.
5.4 Chapter Summary

In this Chapter, I introduced a novel multimodal behavioral dataset of depressive severity.
I have also presented the baseline networks and their results for audio and visual features. These
results indicated that low level features performed better in audio-based depression detection

while deep learning features performed better in visual based depression detection. The
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prediction results in emotional speech scenario indicated behavioral features in positive-
emotional speech have more potential in depressive severity identification.

I also presented a multi-modal adaptive fusion transformer network for depression
detection using multi-task representation learning with facial and acoustic features, which
achieves the best results on the development set of the AVEC 2019 DDS dataset. The
experimental results indicated that the use of the transformer model for depression detection
can improve the final prediction performance. The ablation study demonstrated that multi-task
representation learning, with tasks such as PHQ-8 regression and 5-class classification,
outperforms single-task representation learning for depression detection. However, the results
indicated that the combination of the regression task and the binary gender classification task
cannot outperform the combination of the regression task and the 5-class classification task.
The experimental results indicated that Adaptive Late-Fusion contributes more significantly
than Averaged Late-Fusion to depression detection performance while also increasing
robustness. By fusing the selected modalities, the proposed approach achieved a CCC score of
0.733 on the AVEC 2019 DDS dataset, outperforming the alternative methods investigated in

this work.
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Chapter 6

Conclusion

In this research, I presented some generation, representation, and fusion methods for multi-

modal deep learning and demonstrate state-of-art performance on three datasets that span the

task domains of hand gesture recognition, human pose recognition, and estimation of

depression level.

The achievements are summarized as follows:

Firstly, I built a new multi-angle RGB-D dataset (MaHG-RGBD) with 15 participants
performing 25 hand gestures. Not only the front-view but also the tilted view (titled angle
= 45 degrees) dataset are provided, which can be used when space is limited especially in
the surgery room. Based on the multimodal RGB-D dataset, I primarily focus on proposed
a multimodal deep learning method to perform recognition hand gestures using color and
depth information.

Second, for the touchless interaction systems for visualization of hepatic anatomical
models in surgery, I have proposed four versions. In the first version, I used HOG as
features and SVM as a classifier to recognize 9 kinds of hand gestures from the depth
images, the average recognition accuracy is found to be 87.5% with the speed of 8fps.
Though the HOG-based machine learning method can recognize various hand gestures
with reasonable accuracy, they could not achieve real-time recognition. In the second
version, the system uses a Kinect sensor to acquire three kinds of hand states and track
hand their movements. Based on these states and their movements, I designed a range of
hand gestures, and finally, four kinds of operations are available using touchless gestures
to visualize 3D hepatic anatomic models in real-time. Though this version is a prototype,
the preliminary result is encouraged. For the third version, I develop a deep learning
technique for recognition of various hand gestures to increase the degree of freedom of

operations and achieve more flexible touchless visualization. For the fourth version, I
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proposed a multimodal deep learning method to perform recognition using color and depth
images. The multimodal system achieves better real-time robust recognition than
conventional methods.

Third, in my previous study, I demonstrated that depth images provide higher recognition
than the color image. Though the depth image is more useful and accurate for posture
recognition than the color image, the depth cameras are not as widely used and affordable
as color cameras. I proposed an RGB posture-recognition network based on a two-stage
CNN architecture. To improve the recognition performance from color images, I generated
an estimated depth posture image by a hybrid loss function incorporated in the generation
module. The loss function captures the high-level features and recovers the sharp depth
discontinuities. The proposed method was evaluated on our novel dataset of color-depth
pose images and the public OUHANDS hand gesture dataset. The hybrid loss effectively
and accurately generated depth posture images and the estimated depth image improved
the accuracy of posture recognition.

Fourth, I built a multimodal behavioural dataset of depression (MB-DD), which comprises
two components: the behavioural dataset and the screening survey results. The behavioural
dataset contains dynamic expression facial images, speech, and gait of 102 subjects with
different depression levels, which are recorded by two video cameras and five
microphones. I proposed a deep learning model for depressive symptoms detection, which
extracts and fuses the dynamic facial features associated with different emotion voice
stimuli. The effectiveness of the proposed method is validated on the original multimodal
behavioral dataset. The results demonstrated that dynamic facial expression features can
potentially reveal depressive symptoms. The detection accuracy of three different emotion
states (three different emotion voice stimuli) is about 71.4%. Compared with the single
emotion feature, the fused multiple emotion features can significantly improve the
detection accuracy. The mean accuracy was improved to 76.1%.

Fifth, I presented a multi-modal adaptive fusion transformer network for depression
detection using multi-task representation learning with facial and acoustic features, which
achieves the best results on the development set of the AVEC 2019 DDS dataset. The
experimental results indicated that the use of the transformer model for depression

detection can improve the final prediction performance. The ablation study demonstrated
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that multi-task representation learning, with tasks such as PHQ-8 regression and 5-class
classification, outperforms single-task representation learning for depression detection.
However, the results indicated that the combination of the regression task and the binary
gender classification task cannot outperform the combination of the regression task and
the 5-class classification task. The experimental results indicated that Adaptive Late-
Fusion contributes more significantly than Averaged Late-Fusion to depression detection
performance while also increasing robustness. By fusing the selected modalities, the
proposed approach achieved a CCC score of 0.733 on the AVEC 2019 DDS dataset,

outperforming the alternative methods investigated in this work.
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Student Presentation Award.

Jia-Qing Liu, Tomoko Tateyama, Yutaro Iwamoto and Yen-Wei Chen, “Kinect-
Based Real-Time Gesture Recognition Using Deep Convolutional Neural Networks
for Touchless Visualization of Hepatic Anatomical Models in Surgery”. Intelligent
Interactive Multimedia Systems and Services. KES-IIMSS-18 2018. Smart Innovation,
Systems and Technologies, vol 98. Springer, Cham. Gold Coast, Australia, June 20-
22,2018.

Jia-Qing Liu, Kotaro Furusawa, Tomoko Tateyama, Yutaro Iwamoto, and Yen-wei
Chen, "An Improved Kinect-Based Real-Time Gesture Recognition Using Deep
Convolutional Neural Networks for Touchless Visualization of Hepatic Anatomical
Mode," Proc. of International Conference on Digtal Medicine and Image Processing
(DMIP2018), pp.56-60, Okinawa, Japan, Nov.12-14, 2018. Best Student
Presentation Award.

Jia-Qing Liu, Kotaro Furusawa, Seiju Tsujinaga, Tomoko Tateyama, Yutaro
Iwamoto, Yen-Wei Chen, “MaHG-RGBD: A Multi-angle View Hand Gesture RGB-
D Dataset for Deep Learning Based Gesture Recognition and Baseline Evaluations,”
Proc. of IEEE 37th International Conference on Consumer Electronics (IEEE
ICCE2019), Las Vegas, USA, Jan. 11-13, 2019.

Jia-Qing Liu, Yue Huang, Xin-Yin Huang, Xiao-Tong Xia, Xi-Xi Niu and Yen-Wei
Chen, “Multimodal Behavioral Dataset of Depressive Symptoms in Chinese College
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10.

Students—Preliminary Study,” In: Chen YW., Zimmermann A., Howlett R., Jain L.
(eds) Innovation in Medicine and Healthcare Systems, and Multimedia. Smart
Innovation, Systems and Technologies, vol 145. Springer, Singapore, pp.179-190,
2019 Proc. of InMed2019, Malta, June 17-19, 2019.

Jia-Qing Liu, Kotaro Furusawa, Tomoko Tateyama, Yutaro Iwamoto, *Yen-Wei
Chen, “An Improved Hand Gesture Recognition with Two-Stage Convolutional
Neural Networks Using a Hand Color Image and Its Pseudo-Depth Image,” Proc. of
2019 IEEE International Conference on Image Processing (IEEE ICIP 2019), Taibei,
Taiwan, pp.375-379, Sep. 22-25, 2019.

Jia-Qing Liu, Yue Huang, Xin-Yin Huang, Xiao-Tong Xia, Xi-Xi Niu, Lanfen Lin,
and Yen-Wei Chen, “Dynamic Facial Features in Positive-Emotional Speech for
Identification of Depressive Tendencies” in Y.-W. Chen et al. (eds.), Innovation in

Medicine and Healthcare, Smart Innovation, Systems and Technologies 192 (Proc. of
InMed2020), pp.127-134 (2020).

Seiju Tsujinaga, Nobuo Yamaguchi, Jia-Qing Liu, Tomoko Tateyama, Yutaro
Iwamoto and Yen-Wei Chen, “Interactive Virtual Campus Tour System Using
Skeleton Information from Kinect,” Proc. of 2018 IEEE 7th Global Conference on
Consumer Electronics (GCCE 2018), Nara, Japan, Oct.9-12, 2018.

Kotaro Furusawa, Jia-Qing Liu, Seiju Tsujinaga, Tomoko Tateyama, Yutaro
Iwamoto, Yen-Wei Chen, “Robust Hand Gesture Recognition Using Multimodal
Deep Learning for Touchless Visualization of 3D Medical Images,” In: Liu Y., Wang
L., Zhao L., Yu Z. (eds) Advances in Natural Computation, Fuzzy Systems and
Knowledge Discovery. ICNC-FSKD 2019. Advances in Intelligent Systems and
Computing, vol 1074. Springer, Cham, pp.593-600, 2020 (Kumin, China, July 20-22,
2019).

Yuan Zhuang, Lanfen Lin, Ruofeng Tong, Jia-Qing Liu, Yutaro Iwamot, Yen-Wei
Chen, "G-GCSN: Global Graph Convolution Shrinkage Network for Emotion
Perception from Gait," In: Sato I., Han B. (eds) Computer Vision — ACCV 2020
Workshops. ACCV 2020. Lecture Notes in Computer Science, Springer, vol 12628,
pp.46-57, 2021. https://doi.org/10.1007/978-3-030-69756-3 4.
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Symposiums in Japan

1. Jiaqing Liu, Ryoma Fujii, Tomoko Tateyama, Yutaro Iwamoto and Yen-Wei Chen:
“Kinect-Based Gesture Recognition for Touchless Visualization of Medical Images,”
55 36 Bl H A= WG T ke, 0P2-3, p. 32, IR, 2017.7.27-29.

2. Jiaqing Liu, Kotaro Furusawa, Seiju Tsujinaga, Tomoko Tateyama, Yutaro
Iwamoto, Yen-Wei Chen, “Kinect RGB-D Hand Gesture Image Database for Deep
Learning Based Gesture Recognition,” & - #Hil{E FE /N4 — Vi A 7 «
T EARATIE S, R T3R5, PRMU2018-24, 2018.9.20-21.

RIFEE, WLE T, SAMAKRES, BRIERE, “XoTFX—RAFTTT 4
7 COVID-19 Ok 7 AT —va ., EBmaHli BILOWAHE 27 4,7
B ERIERE TS E AT S, M12020-20, 2020. 9. 3.

4. BIFE, wB, R, @IUE T, AARMKES, BEE, “BrF AU b
T XA NARGRFORIGHEE AW D DIREDORE,” B HIHHRBEFES N
H— iRk A T ¢ T ERRERESE S, PRMU2020-32, 2020. 10. 9.

5. BIFE, W, el LR, &K KRR, BRAEME,  “CNN &
Transformer T a—X % HW\= 95 DIREDKRE,” B HEHREEFEES/N
Ho— iR A T ¢ 7 EREMFSES, PRMU2020-83, 2021. 3.

6. PBIFEE, LRBIE, FRiI, HERE, BN, fELR 1, 5 AR KRR, B AE (&
Transformer T2 a2 —X& Z 7= 9 DARBED EFEIEE DT & ~ LV FE—4&
NT ETT 47T Lb—OMEICET 25,7 EEHREE S E RS
WFgess, 125804, vol. 121, no. 98, MI2021-17, pp. 33-35, 2021.7.9.

7.  Wang Yi, Liu Jiaqing, Deng Zhuofu, Zhu Zhiliang, Chen Yen-Wei: “Development
of a Collaborative and Mobile Platform for 3D Medical Image Analysis,” &5 36 [A]

HAE S T2 KE, 0P5-6, p. 45, IEE. 2017.7.27-29.

8. bukpEkAs, LHEAE, BIFKEE, SAMKRR, LR, BRAEE 7 L 7R
77— & Kinect Z WA VR ¥ L S A RN 2T 4,7 ERk 29
EELBRFSEEES KRS, 612-4, TR, 2017, 11. 25-26.
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WVERERES, BIFEE, ks, LR, AR KRR, BHAEE, “KINECT
NS RV 2 AT Y BB T —HRXR— AR LEEBEFEHICL LDV = AT vl
W, 7 Rk 30 AFERBIMRF B E A K, Kk LK, 2018.12.1-2.

10. A FRFVE, BIZEBE, LT, &AW KR, BEMEE, “Graph

Convolutional Networks Z W72 AMKD 3 RITA— Relik” MR EHR A
FUATHEE e a—~vo AT+ A—3 3 UL, HI2021-8, 2021. 3. 5.

Invited lecture

Award

S W DN —

S O

10.
11.
12.

BB : “A Preliminary Study of Kinect-Based Real-Time Hand Gesture Interaction
Systems for Touchless Visualizations of Hepatic Structures in Surgery” 4 #x5Efih E
D BT, EHEGE S 2 K G 188 1), AT A
2020. 10. 3.

2016 A% 10 - 2018 4= 9 A ST A (MEXT) [EEIMNE AN FAELE 4
2019 4 4 H- 2020 £ 4 H  KREFEEEF I EME] 2019 5524

2020 4F 4 H- BifE H A2 R B2 DC2 H5 Rl iR 52 B

2017 429 H 13 H [EFE¥4 CMECE 2017 Best Student Presentation
Award

2018 4 11 A 11 H EFR52> DMIP 2018 Best Student Presentation Award
2018 4E 11 A 7 H MMEERFVV—F 7 uR—PLrarsx b KE (REH
HTEDH 14 DH)

2019 -4 H 10 B SEmfERFPRFPEIG I T AR 7R 58 b B

20194 12 A 19 B 5 14 B TR PE-EFPEZ VoA T 47X T v
—avT7 AN BEFE

20204F 6 H 18 H [EMHEGIEHRTS SHREmE

2019 A2 6 A SEABE R REREE AR A IR PR e A

2020 A2 6 H SRR R RS AR AR PR e S

2021 4 6 H SEAVEE RS REPe s iR s WIRRAe  AFgEiaEmiE 4 S
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