
Doctoral Dissertation

A framework for developing requirements

engineering tools for computational business

intelligence

March 2021

Doctoral Program in

Advanced Information Science and Engineering

Graduate School of Information Science and Engineering

Ritsumeikan University

KOVACS Mate

Doctoral Dissertation Reviewed
by Ritsumeikan University

A framework for developing requirements engineering tools
for computational business intelligence
(ビジネスインテリジェンスにおける

要求工学ツール開発のためのフレームワーク)

March 2021
2021年 3月

Doctoral Program in Advanced Information Science and Engineering
Graduate School of Information Science and Engineering

Ritsumeikan University

立命館大学大学院情報理工学研究科
情報理工学専攻博士課程後期課程

KOVACS Mate
コバーチ　マーテー

Supervisor : Professor KRYSSANOV Victor
研究指導教員 : クリサノフ　ビクター教授

Contents

1 Introduction 7

2 Background and literature survey 13
2.1 Computational approaches to learn about customer needs . . . 14
2.2 Methods for assessing review quality 17
2.3 Technological background and challenges 19
2.4 Related literature summary . 26

3 Proposed approach 28
3.1 Overview . 28
3.2 Theoretical model of document pertinence 30

3.2.1 The inferential problem of approximating document
pertinence . 31

3.3 Data transformation . 32
3.3.1 Preprocessing . 32
3.3.2 Feature learning and engineering 32

3.3.2.1 Extracting domain and target population
specific word vectors 33

3.3.2.2 Word weighting 36
3.3.2.3 Incorporating external knowledge into a deep

learning model 36
3.3.3 Quantifying document pertinence to assess review quality 38

3.4 Model creation . 39
3.4.1 Data debiasing . 40
3.4.2 Machine learning . 40

3.4.2.1 Proposed architecture to incorporate external
data into the network 40

3.4.2.2 Adjusting a pretrained language model to a
different target task 42

4 Case studies 44
4.1 Computing environment . 44
4.2 Predicting sentence level review informativeness of search products 45

4.2.1 System design . 46
4.2.1.1 Pertinence quantification module 48
4.2.1.2 Model development module 50

2

4.2.2 Data . 51
4.2.3 Experiments . 53
4.2.4 Results and Discussion 58

4.3 Expanding the feature space of deep neural networks for multi-
class sentence level sentiment classification 63
4.3.1 Network architecture . 63
4.3.2 Data . 65
4.3.3 Experiments . 67
4.3.4 Results and Discussion 69

4.4 Technical details . 71
4.4.1 Performance metrics . 72
4.4.2 Cross-validation . 72
4.4.3 Krippendorff’s Alpha . 73
4.4.4 Recurrent and Long Short-Term Memory neural networks 74
4.4.5 One-dimensional convolution and pooling 77
4.4.6 Optimizer, loss and activation functions 78

5 Overall discussion 80

6 Conclusions 83
6.1 Contributions . 83
6.2 Limitations and future work . 84

6.2.1 Towards closer approximation of document pertinence . 84
6.2.2 Contextualized word embeddings with polarities 85

3

List of Tables

4.1 The models built to analyze the performance of the proposed
model (model E). 57

4.2 Performance comparison of the five models. 58
4.3 Class-wise performance scores for the retrained model. 59
4.4 Number of class-wise sentences in the final dataset. 66
4.5 Class-wise performance measures for the proposed architecture. 69
4.6 Confusion matrix for a binary classification task. 72

4

List of Figures

1.1 Iterative model of the requirements engineering process 7
1.2 Conceptual overview of the determinants of review helpfulness . 10
2.1 The typical setup for transfer learning 20
2.2 High-level overview of the two models of Word2Vec 22
2.3 The stacked encoder structure of BERT 24
2.4 The input representation for BERT (see main text for notations) 25
3.1 Overview of the proposed framework 29
3.2 Conceptual process flow of calculating document pertinence . . 31
3.3 Extraction process of domain and task specific word vectors . . 33
3.4 Process of extracting the embeddings e from BERT 34
3.5 Incorporating external knowledge into a deep learning model . . 37
3.6 High-level structure of the proposed network architecture 41
3.7 Proposed transfer learning strategy 43
4.1 Overview of the system developed to predict search product

review informativeness on the sentence level 47
4.2 The transfer learning process 50
4.3 An example of a digital camera review from Amazon 51
4.4 Amazon review metadata . 52
4.5 The elbow point is detected at k = 3 53
4.6 Distribution of the review sentences after automatic pre-annotation 54
4.7 Violin plot of class-wise sentence length of the dataset created

for annotation . 55
4.8 Distribution of the human-annotated dataset 55
4.9 Class-wise F1 scores for all models 59
4.10 Examples of input reviews with the corresponding outputs (class

labels are shown in bold numbers) 62
4.11 The proposed network architecture 64
4.12 An example of a hotel review from Rakuten Travel 65
4.13 Inconsistent precision and recall scores over the cross validation

folds for the neutral category 70
4.14 The repeating structure of LSTM building blocks with a detailed

block at time t . 75
4.15 The BiLSTM architecture unfolded for three steps 76
4.16 Example of max and average pooling operations for a size 2

pooling block with stride 2 . 77
5.1 An example of system runtime for an increasing number of input

sentences . 81

5

Abstract

Online reviews available on e-commerce websites (such as Amazon, Yahoo, Yelp,
TripAdvisor, Rakuten, etc.) are short textual documents written by customers
about the products and services they buy. This form of electronic word-of-mouth
is considered to be the leading driving force of consumer purchase decision making,
and can provide highly valuable information not just for the customers but also for
the companies. Knowledge derived from product reviews can help companies develop
and improve their products and services by integrating relevant information into
the requirements engineering process. As the amount of reviews grows over time,
however, both companies and customers experience an information overload. With
the vast amount of customer reviews available on online platforms at present days,
companies need computational tools to analyze the reviews with minimal human
intervention and extract valuable information from them to assist the iterative
process of requirements engineering.

In this thesis, a conceptual framework is proposed for developing requirements
engineering tools for computational business intelligence. The tools and systems
developed using the proposed framework would reduce the information overload
associated with online reviews and extract valuable knowledge about customer
needs. To make the framework suitable for requirements engineering, the
following objectives have been achieved:

• Investigating and improving data quality is essential for industrial
applications. In the presented study, a theoretical model with a novel
measure called pertinence is introduced to assess the quality of reviews
for requirements engineering purposes.

• In order to obtain detailed information on customer needs, companies
often require using small, hand-labeled datasets. In this study, an
original approach is proposed to incorporate external knowledge into
machine learning models and use deep learning algorithms more
efficiently with small datasets.

Two case studies have been conducted to test the practicality and effectiveness
of the proposed framework. While the first one implements a system for
estimating sentence level review informativeness, a multi-class sentiment
classification tool is developed in the second case study. Experimental results
indicate that the framework proposed in this work is applicable for developing
requirements engineering tools.

6

Chapter 1

Introduction

Businesses gather customer information to enhance their current goods
and services, facilitate new product innovation, and detect trends of customer
behavior for marketing activities. Analyzing the customer’s voice and knowing
their needs and expectations will increase customer satisfaction and reinforce
customer loyalty, which is strongly linked to the company’s long-term growth,
providing an edge over rivals in the global market [1, 2]. Therefore, acquiring
data about customers can boost the efficiency of information-based decision
making and make Business Intelligence (BI) more efficient [3].

BI includes technologies, applications, methodologies, and tools that allow
efficient business data analytics by optimizing operational and strategic
business decisions. Efficient BI is crucial to the success of every modern
company in the global economy [4]. One of the most essential areas of BI is
dealing with the acquisition and implementation of customer requirements.
Requirements engineering is the process of gathering, defining, validating and

Figure 1.1: Iterative model of the requirements engineering process

maintaining requirements during the design process of a product or
service [5]. Figure 1.1 shows the process of requirements engineering, based on
the iterative model originally proposed by Loucopoulos and Karakostas [6].
The model consists of three basic stages: elicitation, specification, and
validation. Requirements elicitation is the process of investigating and

7

exploring customer requirements. Requirements specification refers to a
collection of techniques and methods used to acquire information about the
project domain and specifications. During this stage, all functional and
non-functional requirements are defined formally to produce requirements
models ready to be deployed in design and production. Requirements
validation ensures that the requirements set out are complete
and satisfy customer needs, by eliminating the inconsistencies of
requirements elicitation and specification while monitoring customer feedback.
Poor understanding of customer needs can lead to erroneous assumptions
during requirements elicitation and product conceptualization [7]. This can
have an adverse impact on the manufacturing process and may negatively
affect development cost and lead time. Businesses must, therefore, be aware of
and adequately respond to customer requirements, especially in the early
stages of new product development [7, 8].

E-commerce appeared more than 25 years ago, and the popularity of
online shopping has been growing ever since [9]. This transition in purchasing
behavior has resulted in the exponential growth of web-based user-generated
content. One of the key factors behind consumer behavior has always been
word-of-mouth (WOM) communication [10]. These subjective opinions are
often seen as a more reliable source of information than advertisements and
product descriptions because WOM communications are produced by actual
customers [11]. Presently, conventional marketing strategies have a lower
impact on the customers’ decision-making process than eWOM (Electronic
Word of Mouth) [12, 13], and it is known that the opinions of other customers
included in online reviews affect individual purchasing decisions [14, 15]. For
their online and even offline transactions, more than 90% of customers read
reviews [16] and consider other people’s feedback as they can effectively search
for the product or service that fits their personal preferences [17]. Being one
of the most prominent eWOMs, several studies have highlighted the value of
online customer reviews and their relation to product innovation and their
impact on sales [18–21]. While reviews are always subjective, these opinions
should be addressed in product development if such subjective views tend to
occur regularly [22].

Online reviews are reasonably simple to obtain and posted by customers
without much corporate effort [23], while being a reliable and comprehensive
source of information on customer needs, as customers often describe personal
observations, opinions, and feelings on various product features [24, 25].
Nowadays, manufacturing is becoming more and more customer-driven [26].
Customarily, companies use interviews, polls, and surveys to receive feedback

8

from their consumers, but the information on customer requirements derived
from product reviews varies from and complements customer intelligence
gathered by conventional methods [27, 28].

For the reasons mentioned above, many e-commerce websites rely on this
type of user-generated content to attract new customers and enhance user
experience, and retailers encourage customer to leave their feedback on the
products they bought. Extracting consumer intelligence and constructing
useful product and service requirements from such user-generated content,
however, is a time and money consuming task, since it requires handling of
natural language data [7, 29]. Moreover, the sheer number of reviews available
makes it almost impossible for businesses to assess the quality of
user-generated content manually. Therefore, companies need systems that
allow for a large number of reviews to be analyzed and relevant content to be
identified.

While both knowledge-based and machine learning systems are used in
present days, systems of the latter kind are more popular, due to the benefits
modern machine learning tools offer (limited feature engineering yet superior
performance). Since deep learning applications, however, require huge
datasets to build robust models, it is not always feasible to develop
high-performance systems, especially in the case of low-resource languages.
Even with popular languages like English or Chinese, the labeling process to
create adequate-sized datasets can be long and resource-intensive, especially
when the prediction problem is complex. Some of these issues have been
addressed by hybrid learning methods, as inclusion of external knowledge into
machine learning methods can be effective to improve classification
performance [30, 31]. The majority of prior work incorporating knowledge
from lexicons, ontologies, etc., however, focused primarily on binary
classification of opinions [32], which is usually considered as an imprecise
measure often not suitable for real-word applications. Another approach is to
implement hand-made rules about the target domain and task (before or after
machine learning takes place) to increase system performance. Although it
can be effective for certain application areas [33], such methods usually
require substantial human intervention.

While websites with a large volume of helpful reviews attract more
buyers [34], the immense amount of reviews of varying quality are often
overwhelming for both the customers and the companies [35, 36]. The amount
of customer feedback available on web platforms makes it a challenging task
for businesses to collect and process relevant knowledge on customer
requirements. Popular goods receive thousands of reviews from buyers, and

9

review quality differs greatly across the reviews [35, 36]. Addressing this
problem, also referred to as information overload [37–39], is critical for using
customer reviews effectively for improving products and services [40]. The
most popular approach to deal with this issue is to measure review helpfulness.
The term “review helpfulness” has an ambiguous meaning in the related
literature. However, it mainly represents how much customer uncertainty can
be reduced while shopping via a useful product or service evaluation [41–43].
The helpfulness of online reviews could be affected by many qualitative and
quantitative factors [41, 44, 45]. Review helpfulness determinants can be
divided into two main groups: content and non-content related factors (see
Figure 1.2). While non-content-related properties (e.g. reviewer-related

Determinants of review helpfulness

Product related
e.g. informa�veness, emo�ons

Content related

Service or

pla�orm related
e.g. shipping, packaging,

customer service

Non-content related

Reviewer related
e.g. user status, pro�le image

Other
e.g. elapsed �me, product ra�ng,

review posi�on, brand

reputa�on

Figure 1.2: Conceptual overview of the determinants of review helpfulness

properties) also influence the customer-perceived quality of reviews,
content-related factors (e.g. user experience) are often seen as the major
factors of review helpfulness. Review helpfulness is particularly affected by
“review informativeness” [37, 41, 46, 47]. Review informativeness is often
interpreted as a combined measure of information quality and quantity
relevant to the review content. While among other review features,
informativeness has the greatest effect on general review helpfulness [46], there
is an obvious disparity between the helpfulness experienced by the consumers
and the helpfulness perceived by the product designers [48]. For example, for
product designers and other people participating in requirements engineering,
service or platform related factors are irrelevant, while some features related
to informativeness are critical. The majority of studies concerned with the
helpfulness of customer reviews only take into account the customer’s
perspective, and little work dealt with the quantification of design knowledge

10

present in reviews to assist product or service designers, engineers and other
experts working together on the requirements engineering process. Without
filtering relevant and high-quality material, however, it is an arduous task to
successfully develop or adopt new technologies for BI applications, and many
data-mining projects fail because the quality of data is not adequate for
industrial applications [49].

In this thesis, a conceptual framework is proposed for developing
requirements engineering tools for computational BI. The framework would be
used to build systems and tools that can potentially reduce the information
overload of customer reviews and extract meaningful knowledge about the
needs of the customers for requirements engineering purposes. The following
criteria had to be satisfied to make the framework fit for requirements
engineering tool development:

1. The framework must include the assessment of review quality, preferably
in an automatic manner.
Addressing the quality of online customer feedback is essential to reduce
information overload and to select useful reviews for requirements
engineering. Since “review helpfulness” is a relative and ambiguous
concept, the measure of quality must be specialized for requirements
engineering.

2. The framework must be able to handle both small and large datasets
according to the target task, and should have the capability to utilize
external knowledge sources (e.g. processing models, lexicons, etc.).
While for some tasks, huge datasets are available and feasible to use,
acquiring detailed information about customer needs often requires
dealing with small, human-annotated datasets with external knowledge
sources involved.

3. The framework should be technology-independent enough to be usable
with both state-of-the-art and near-future technologies.
This is important because technologies change rapidly, and building an
entirely new framework for requirements engineering tool development is
a more complex task than replacing technologies.

Two case studies have been conducted with English and Japanese customer
reviews to investigate the effectiveness of the proposed framework.

The rest of this thesis is structured as follows. Chapter 2 surveys related
work on computational approaches to learn about customer needs, and

11

presents prior work on analyzing review quality. The chapter also introduces
the technological background related to this study. The proposed framework
for developing requirements engineering tools is presented in Chapter 3. Case
studies performed to examine the effectiveness of the proposed framework are
explained, and experimental results are presented and discussed in Chapter 4.
Chapter 5 gives an overall discussion on the proposed framework, based on
the results obtained from the case studies. Chapter 6 draws conclusions and
outlines the limitations of the given study.

12

Chapter 2

Background and literature
survey

This chapter describes previous work dealing with the extraction of
meaningful information from customer feedback to potentially enhance the
effectiveness of BI operations by learning about customer needs. Prior
approaches to analyze review quality and helpfulness are introduced, and
technological challenges related to the implementation of state-of-the-art tools
for efficient requirements engineering are outlined.

It has been known for a long time that companies should interact with
their customers to track customer satisfaction, as it is strongly related to their
purchasing decisions. Customer need assessment is traditionally done by
conducting interviews with the customers (e.g. focus groups). Although such
qualitative methods can be fine-grained, one of the problems is that the
subjects often hold back their responses and tend not to answer sincerely. The
significance of collecting customer feedback through anonymous surveys was
pointed out in various studies [50, 51]. Such quantitative methods perform
well at uncovering what is required to satisfy the current needs of the
customers, but are restricted by many factors. For instance, the number of
participants is typically low, the range of questions is limited, and the content
is constrained by the responsible persons’ background and their ability to
recognize hidden needs and new opportunities [3]. Godes et al. [52] manually
conducted customer feedback mining and analysis through customer forums of
Usenet. Although online conversations are relatively easy to obtain, the
approach proved to be methodologically inefficient in the long run, as human
assessment of eWOM is a tedious and costly task to perform. When dealing
with extensively large datasets, it is practically unfeasible to analyze customer
feedback manually. Human involvement, therefore, must be minimized, and
domain experts of marketing and product design must cooperate with data
scientists for effective requirement engineering [53–55].

13

2.1 Computational approaches to learn about
customer needs

Due to the possible industrial implications, using computational methods
to extract customer needs was always a popular topic in the data mining
community. Chen et al. [56] built a system for design specification generation
and product conceptualization. The system is built of a customer requirement
elicitation and a customer marketing analysis module. It uses the laddering
technique to create a customer attribute hierarchy, and implements a radial
basis function neural network trained on manually-annotated attribute
importance ratings for further marketing analysis. In a later study, the
authors proposed a customer utility prediction system [57]. This system also
consists of two modules. One creates design options in a hierarchical form
using general sorting. The other is for measuring “customer desirability”, by
using conjoint analysis and a neural network to make predictions about the
customers’ preferences on basic product features. Lee et al. [58] developed a
system that can process customer reviews semi-automatically. The system
summarizes the reviews, and creates word vectors using word co-occurrences.
The vectors are clustered according to their Euclidean distances, and conjoint
analysis is applied to elicit different attribute levels for the products.
Although the system developed requires manual feature engineering, one of
the proposed approach’s strength is that it allows for generating product
attributes from reviews rather than from the descriptions by the
manufacturers. Zhang et al. [59] developed a tool that can potentially assist
engineers capturing product or service design information to meet customer
expectations. After manually defining a set of features relevant to the domain,
the system creates a feature specific product graph and ranks products based
on their quality. Later streams of research focused on topics such as consumer
behavior prediction [60–62], and customer satisfaction estimation [22, 63, 64],
but Sentiment Analysis (SA) became the most popular method to learn about
customer needs.

SA is the process of computational identification of sentiments, emotions,
and perceptions toward entities and their aspects [65]. In present days, SA is
one of the most fundamental ways to learn about customer needs
computationally [66], and therefore, it must be in every middle to big
company’s BI toolbox to enhance the requirements engineering process. SA
from customer reviews is one of the most prominent study fields of text
mining that draws growing interest from both the research community and

14

industry, as it proved to be a reliable measure of overall customer
satisfaction [67]. SA can be done at three distinct levels [68]. Although on the
document level, sentiments are evaluated in the context of the entire
document, sentence level sentiment analysis deals with the extraction of
opinions from individual sentences. Finally, aspect-based techniques aim to
identify people’s sentiments on the target features of an entity. Although
regression methods do exist, usually SA is defined as a straightforward binary
classification task to assess sentiment polarity, or as a multi-class classification
problem, sometimes involving more abstract categories (e.g., emotions,
attitudes), creating a more difficult machine learning task.

Most early studies in SA utilized polarity dictionaries, opinion lexicons,
and linguistic rules to perform sentiment classification, or used these jointly
with conventional machine learning algorithms to achieve superior
performance (Support Vector Machines, Naive Bayes, Maximum Entropy,
etc.). Recent years’ research, however, shows that purely machine
learning-based approaches, particularly deep learning algorithms, are typically
more powerful than knowledge-based methods [69]. One of the reasons for the
success of deep learning in text mining applications is that language modeling
involves learning the relations between sequential components, and Recurrent
Neural Networks (RNN) are exceptionally good at learning such temporal
dynamics [70]. Deep learning algorithms, however, typically require a
significant volume of labeled data to achieve adequate performance [71], which
is often unfeasible to acquire. For this reason, researchers and developers
often convert user ratings (usually stars) to labels from the reviews, which
mitigates the need for human annotation.

Various neural network models were proposed for SA, making use of the
star system. A joint architecture of recurrent and Convolutional Neural
Network (CNN) models has been proposed by Wang et al. [72] for sentiment
classification on short textual data. Experiments were conducted on two
binary and a 5-class dataset (with the additional “very negative”, “neutral”
and “very positive” categories), utilizing the 5-star system fully. Glorot et
al. [73] investigated the issue of domain adaptation for document sentiment
polarity classification. The authors introduced a system using a stacked
Denoising Autoencoder with built-in sparse rectifier units to extract textual
features in an unsupervised manner. Experimental results have shown that
these features can be used efficiently with supervised sentiment classifiers.
Chen et al. [74] combined customer information and product information on
the global level for sentiment classification. A Long Short-Term Memory
(LSTM) neural network is used to generate document and sentence

15

representations, where customer and product information is incorporated into
the model via word and sentence-level attentions.

Although utilizing user ratings alongside with the review text is a common
and convenient way to conduct SA, there are several downsides of this
approach. While it allows for using large datasets (due to the fact that the
reviews essentially include the labels), it is a crude way to measure customer
opinion since it is on the document level, aiming to assign an overall polarity
score to a document (that is, a full customer review). Often, there are both
positive and negative assessments of a product or service in a review, and
using the stars for labels cannot account for such cases. Furthermore, the
most common categories used for classification are a.) negative or positive,
and b.) negative or neutral or positive [65], which are not fine-grained enough
to acquire detailed knowledge about customer sentiments. The reason
companies still use binary or three-class document level SA is that annotating
on the sentence or aspect level using more abstract categories (e.g. emotions,
attitudes) requires time and money, and the created datasets are usually not
large enough to build robust machine learning models.

There are a couple of studies aim at acquiring detailed information about
customer needs via SA. Dos Santos and Gatti [75] used a CNN where one of
the convolutional layers extracts word-level features, and the other tries to
capture sentence-level characteristics to perform SA on the sentence level.
The model was applied to binary and a more fine-grained classification scheme
(very negative, negative, neutral, positive, very positive). Wang, et al. [76]
proposed a joint CNN and RNN architecture in which recurrent layers learns
long-term dependencies, while the convolutional layer captures local features.
Besides binary classification, model performance was also tested on a dataset
labeled for both valence and arousal on the sentence level, and experimental
results showed that the combination of these two network architectures is a
powerful method for SA. A few studies investigated the efficiency of hybrid
methods by combining multiple classification strategies. Poria et al. [77],
combined linguistics cues with machine learning to enhance the accuracy of
sentiment polarity classification. Their strategy was to use the linguistic
patterns present on SenticNet [78] if applicable, and use a supervised machine
learning model otherwise. A different kind of hybrid approach was proposed
by Appel et al. [79] for sentence level SA. The system uses SentiWordNet [80]
and a sentiment lexicon with fuzzy sets to classify the polarity of sentences
into the categories of positive or negative, with identifying the strength of the
sentiment. Huang et al. [81] suggested a tree-structured LSTM network in
which Part of Speech (POS) tags handle the recurrent network gates to

16

encode additional syntactic information about phrases and sentences. The
authors managed to encode POS tags into conventional RNN and also LSTM
networks, and achieved superior performance compared to the vanilla models
in the typical three-class (negative-neutral-positive) classification.

While some of the previous work recognizes the utility of using external
data sources alongside machine learning models, current methods do not
suggest to include external knowledge directly into the network architecture
to acquire more efficient sentence or document representations, especially
when the classification task is more complex than a conventional three-class or
binary sentiment polarity classification scheme.

2.2 Methods for assessing review quality
Ranking reviews, based on a certain quality criteria, improves customer

experience and helps companies in the requirements engineering process by
filtering out weakly-related information. In SA studies, review content is
rarely debated [82], even if most reviews appear virtually useless for designers
and marketing experts. Many e-commerce websites have adopted helpfulness
voting, where users rank reviews from other users based on their perceived
helpfulness. Amazon, for example, asks readers, “Was this review helpful?” to
encourage users to show whether they think a particular review was helpful or
not. Although can be beneficial, such social voting mechanisms are highly
biased by the Matthew effect [83] and are widely argued being unreliable
measures for estimating the helpfulness of online reviews [36, 37, 47, 83–87].
Since most customers only read and vote for the already top reviews, these
tend to remain at the top, and older reviews naturally receive more votes than
freshly-posted ones. Furthermore, most of the currently deployed helpfulness
voting mechanisms are highly imprecise indicators of quality, as the vote
function is for the entire review.

Studies addressing the topic of predicting review quality based on various
criteria mostly tried to classify reviews into two or more classes [88–91]. Other
methods include using regression to score or rank reviews [23, 92–94]. Another
line of research has focused on exploring the features that affect review
helpfulness [42–45, 95–97]. A variety of features were suggested for predicting
the helpfulness of online reviews, such as readability [88, 89, 98], polarity [99],
subjectivity [37], extremity [98], syntactic, semantic and lexical
features [88–90, 100–102], meta-data [100, 101], etc. Descriptions of different
product features are generally associated with more detailed and long reviews,
and review length is widely regarded as a significant aspect of review

17

helpfulness [42, 91, 96]. However, using review length as a feature is not an
ideal method for measuring review helpfulness if information quality is not
addressed [37, 41]. Mostly, long reviews include only a handful of phrases
about product attributes and usability, and “useless” text decreases
classification performance [41, 44, 103].

Krishnamoorthy [88] has suggested a hybrid approach to predict
review helpfulness based on review metadata, linguistic attributes (e.g. the
usage of particular verbs and adjective types), with subjectivity
and readability features. Liu et al. [47] trained an SVM model on a
human-annotated dataset of digital cameras reviews from Amazon. The
authors concluded that informativeness features, such as the number of
product aspects and the number of brand names, increase helpfulness
classification accuracy. In order to create a ranking among mobile phones,
Gobi and Rathinavelu [104] developed an approach to recognize
basic features from product reviews via soft clustering techniques. Although
the approach mainly identifies fundamental features, it is capable of detecting
attributes expressed both explicitly and implicitly. Cohen and Tseng [105]
introduced an information quality framework to identify product features and
determine the quality of customer reviews. The authors adopted features such
as the volume of information, believability, understandability, timeliness,
reputation, etc., and performed experiments on a human-annotated corpus.
Saumya et al. [106] conducted binary quality classification experiments
on Snapdeal.com and Amazon.in reviews. Findings indicate that in addition
to using review text, including information from question-answer data
can boost review classification performance. Using product reviews from
JD.com, Sun et al. [41] investigated the role of review informativeness on
helpfulness. Review informativeness, defined by a selection of quantitative
features (for example, the number of attributes), was found to improve the
prediction performance of helpful reviews as a determinant of review
helpfulness. Lee and Choeh [101] used a neural network regression model to
estimate the helpfulness of Amazon.com customer reviews. According to their
findings, textual features (review length, number of words, etc.) and
contextual variables (e.g. product sales rank, price) are important factors for
predicting user-perceived helpfulness of a review.

Although there has been limited research on evaluating review quality for
different target groups (such as product designers), there are still a few studies
addressing this issue. Liu et al. [48] measured the utility of reviews from the
viewpoint of the product designer to investigate what are the most important
factors of review helpfulness in the case of product design. Four types of

18

features have been classified as relevant. These include linguistic features (e.g.,
word count), product features (aspects of a given product), informational
attributes (e.g., number of entities referred to), and information-theoretic
features (e.g., review sentiment polarity). Yagci and Das [28] suggest that
design intelligence that benefits both designers and consumers can be derived
from product reviews. The authors performed sentence level SA (with
negative, neutral, positive classes), and used noun-adjective and noun-verb
association heuristics to identify the possible cause of an opinion. In another
study, the authors implemented the design-level information quality (DLIQ)
metric to determine the amount and quality of design information present in
online customer reviews [107]. Reviews were analyzed based on quantity
(total number of words), complexity (e.g. noun count), and relevance (number
of nouns matching manually defined features), and promising results were
reported for assisting companies in design and development.

Most of the preceding work does not distinguish between the helpfulness
seen by the customers and product designers. While informativeness is
frequently considered to be one of the essential factors determining the
helpfulness of reviews, only a handful of studies have dealt with it explicitly,
excluding non-content-related and service-related factors. Recognizing
product features is crucial for assessing the quality of product reviews for
requirements engineering. In the related literature, this was usually achieved
by manual feature engineering of explicit attributes based on
manually-constructed feature lexicons and pattern-lists, applying linguistic
heuristics, and other labor-intensive yet arbitrary and frequently imprecise
methods. In natural languages, the same aspect can be represented in
different ways (explicitly or indirectly, with different terms and phrases, etc.),
and pattern matching techniques are not suitable to deal with such cases. In
addition, the presence of a particular word does not inherently indicate
high-quality material since the context of a word plays a crucial role in its
meaning and interpretation. Although sentence level assessment has been
commonly used for text processing in a variety of fields (e.g. sentiment
analysis, discourse parsing, novelty identification, etc.), this type of
fine-grained content evaluation is seldom examined in customer review
helpfulness research.

2.3 Technological background and challenges
Training a neural network from scratch to acquire adequate results is a

time -and resource-consuming process, as often millions of labeled datapoints

19

have to be collected to train a robust model. For this reason, researchers and
developers frequently use pretrained deep learning models. The performance of
the model, however, is often severely impaired when it is used for a prediction
task other than the original. Transfer learning allows one to use knowledge
from a previously learned task, and adapt it to a new but similar task. Transfer
learning is formalized as follows [108]. A domain D has a feature space X with a
marginal probability distribution P (X), where X ∈ X and X = {x1, x2,…, xn}.
Given a domain D = {X , P (X)}, the task consists of a label space Y and an
objective function f : X → Y . The latter is used to predict the label f(x) of
a new datapoint x. The task T = {Y, f(x)} is learned from the training data
{xi, yi}, where xi ∈ X, and yi ∈ Y . Given a source domain and task DS and
TS, the goal of transfer learning is to increase the learning performance of the
objective function of the target fT (·) in TT , applying the knowledge learned from
the source domain and task. The typical transfer learning setup is illustrated
in Figure 2.1.

Figure 2.1: The typical setup for transfer learning

In practice, this means that the weight matrices of the original model are used
for the initialization of the weights in the new model, instead of setting them
randomly. In an ideal scenario, this would mean that researchers and developers
can utilize a pretrained, open-source deep learning models which eliminate the
need of training a network from scratch, and can fine-tune previous models even
on small datasets successfully.

In various situations, however, there is an unavoidable change in the data
distribution of the source and the target domains, or tasks TS and TT are
greatly different, so transfer learning will inherently lead to a performance
decrease [109]. The term negative transfer applies to situations when
transferring previously learned knowledge to a new model results in a decrease
in performance compared to a model where transfer learning is not
utilized [110].

20

Transfer learning is widely used in various fields of computer science, and
in Natural Language Processing (NLP), the most popular transfer learning
applications are pre-trained word embedding models. Most deep learning
models for text processing require word embeddings as inputs representing
natural language words and sentences. Word embeddings are real number
vectors, capable of capturing word meaning in a high-dimensional continuous
vector space. Although each dimension of the vectors represents a feature,
these are abstract, low-level features interacting with each other, usually
impossible to grasp by humans. While these vectors are “high-dimensional”
(usually, between 128-1024), modern word embedding techniques are far more
sophisticated than early attempts to create word vectors, e.g. one-hot
encoding, where all words in the dictionary occupy a dimension. One of the
main purposes of advanced word embedding methods is to capture not just
the meaning of words with syntactic and morphological information, but also
to incorporate the contextual relationships between words. Words appearing
in similar contexts tend to be semantically relatable, and their vectors should
reflect this characteristic. Unlike the Euclidean distance, cosine distance can
be reliably used to compare vectors of high dimensionality, and it is a
well-accepted, common measure of word vector similarity [111, 112]. Cosine
similarity cossim between vectors G and H is defined as:

cossim = cos(θ) = G ·H
‖G‖‖H‖

=

n∑
i=1

GiHi√
n∑
i=1

G2
i

√
n∑
i=1

H2
i

. (2.1)

Mikolov et al. [111] introduced Word2Vec in 2013, a huge advancement in
creating word vectors utilizing the representative power of neural networks.
The authors proposed two variations of the embedding model: Continuous
Bag-of-Words (CBOW) and Skip-Gram. CBOW predicts the central word in
a window of words around it, while Skip-Gram is the opposite, predicting the
context words of the central word. The basic idea of CBOW and Skip-Gram is
depicted in Figure 2.2, where w(p) refers to word w observed at position p.
The words in the input layers are one-hot-encoded. Compared to previous
word embedding approaches, both versions of Word2Vec highly outperformed
previous language models, with slightly superior performance of Skip-Gram
over CBOW. Word2Vec, however, cannot vectorize Out Of Vocabulary Terms
(OOV) words and unable to address word disambiguity.

In comparison to predictive embedding models, such as Word2Vec, word
vectors of GloVe [112] are learned by creating a word-word co-occurrence

21

Figure 2.2: High-level overview of the two models of Word2Vec

matrix, then using matrix factorization to acquire vectors in a
lower-dimensional space. Although predictive methods typically depend on
local information (direct word context), GloVe extracts not only local but also
global information from the whole corpus, alleviating some of the problems
with Word2Vec. Before the training takes place, the word co-occurrence
matrix G is built, where Gij denotes how often word i observed together word
j. For each word combination, the embedding vectors e for words i and j are
explained as

eTi ej + bi + bj = log(Gij), (2.2)

where bi and bj are bias terms for word i and word j. The goal is to minimize
the following objective function J :

J =
V∑

i,j=1
f(Gij)(eTi ẽj + bi + b̃j − log(Gij))2, (2.3)

where ei is the word vector for word i and ẽj is the associated context vector
with biases bi and b̃j , and V denotes the vocabulary size. f is a weighting

22

function with parameter α usually set to 0.75, defined as:

f(x) =
(x/xmax)α if x < xmax

1 otherwise
(2.4)

The output is the two sets of word vectors, W and W̃ , only different because
their initialization was done randomly. This property, however, helps reduce
possible overfitting, as to get the final, unique vectors, the corresponding vector
pairs are summed up. Due to its ability to capture global statistics about
the corpus, GloVe tends to perform better in word similarity benchmarks and
is considered to be a preferable choice over Word2Vec for certain NLP tasks.
Nevertheless, both models are commonly used for creating word vectors for
machine learning applications in various fields in data science.

Advanced language modeling methods allow for context-dependent,
sentence specific, and dynamic word representations. Embeddings from
Language Models (ELMo) [113] computes word vectors based on entire
sentences, as oppose to using static, predefined vectors. In short, ELMo
deploys a pre-trained deep Bidirectional LSTM (BiLSTM), to calculate word
vectors in an unsupervised way. Unlike conventional LSTM, BiLSTM
networks process the input text in forward and backward directions at the
same time. The input layer for the bidirectional architecture are vectors from
a character level CNN, and the output vectors are weighted averages of the
internal layers. Although proved to be a superior method compared to
previous embedding techniques, the method was outperformed by BERT
(Bidirectional Encoder Representations from Transformers) [114] in the same
year, establishing a new, long-standing standard in language modeling. In
order to handle sequential data and represent contextual relations between
words, BERT utilizes a transformer with self-attention mechanism. Originally,
transformers involve two different parts: the textual input is fed into the
encoder, and the decoder produces predictions. Since the objective of BERT is
to build a language model, the decoder part is not required. The pretrained
BERT-Base model involves 12 stacked encoder layers with 12 attention heads
per layer. The model input is a word sequence, and after applying
self-attention at an encoder layer, the outputs from the attention heads are
moved to a 768-unit feed-forward network before passing the outputs to the
next encoder layer. Figure 2.3 shows the stacked arrangement of encoders
used in BERT.

23

Figure 2.3: The stacked encoder structure of BERT

Most language models predict the next word in a word-sequence to pretrain
the model in a one-directional way. Instead of using this method, BERT applies
masked language modeling. 15% of words are originally hidden (masked) from
the input sequence, and non-hidden words are used to infer masked words based
on word positions. During training, BERT calculates the probability of each
word in a sequence with softmax, but only the prediction of hidden words are
considered in the loss function. The input sequences are given to the model
in the form of pairs of sentences to formulate a second task: to predict if the
sentences are subsequent or not (50% true subsequent and 50% random for
training). Before a sequence is fed into the encoder-stack, it is processed to
have segment and position embeddings besides token embeddings (vocabulary
IDs). While segment embeddings indicate sentence order, position embeddings
signify word positions. There are three kinds of special tokens used for the
input for BERT:

1. [MASK] is a pretraining token for masked words.

2. [SEP] is a pretraining sequence delimiter for sentence-pair tasks. In the
case of a single sentence, it is used as the last token.

24

Figure 2.4: The input representation for BERT (see main text for notations)

3. [CLS] is the first token of the sequences used for classification tasks (with
a softmax layer).

Accordingly, the input representation for training BERT is shown in Figure 2.4
with an example sentence. After the whole input sequence has been fed into the
model, the probability of the subsequent sentence is calculated. The final cost
function is the combined loss obtained from the prediction of masked words and
next sentence predictions.

In BERT, the raw embeddings from the pre-trained model are transformed
by using the context of words of the input sentence, making the vectors context-
dependent. First, all the raw word token vectors of a sequence U = {ui | i =
1, ..., n} representing the n tokens of the input are put into the attention heads
at the first layer. These vectors are then transformed into Query, Key, and Value
vectors by multiplying the token vectors with three matrices learned during the
pretraining phase, WQ, WK , and WV , respectively. The self-attention weights
between all the word pair combinations are calculated by taking the dot product
between the Query vectors q and Key vectors k of word token vector u, then
normalizing it by the softmax function. The output of an attention head for

25

word token vector ui is the weighted sum of the Value vectors v:

output(ui) =
n∑
j=1

exp(qikTj)∑n
m=1 exp(qikTm)vj , (2.5)

As BERT uses multi-headed attention (12 in total for BERT-Base) to give the
layers multiple representation spaces, there are multiple output matrices for
each layer. These matrices are concatenated and multiplied by a fourth weight
matrix WO that is trained together with the other weight matrices. With this
operation, a single output matrix is obtained, possessing condensed information
from all attention heads. This matrix is then put into a feed-forward network
before entering the next layer.

BERT is a general language model that supports transfer learning
applications, and usually, it is not utilized purely for feature extraction and
acquiring word vectors. BERT is mostly built into the network architecture,
so that the model can utilize the sentence specific embeddings directly. For
certain applications, however, it would be desirable to obtain stationary
vectors, where one word is bound to a single vector, while still holding
information about word usage in the target domain. Using the raw
embeddings from the pre-trained model, however, would not be ideal, as these
vectors do not contain any domain specific information, similarly to the
previously introduced Word2Vec or GloVe.

2.4 Related literature summary
Most of the studies dealing with extracting or evaluating customer needs

did not consider the feasibility of the approaches in real-world scenarios.

• Assessment of customer reviews should be on the sentence or aspect-level
to obtain usable information about requirements.

• While it can be applied to big data without human annotation, the
usability of binary classification of sentiments is questionable.

• Although some of the studies consider using external data sources with
machine learning systems, integrating them into deep learning models
directly is usually not considered, although offering new opportunities
methodologically.

While review quality is rarely discussed in customer reviews studies, a

26

considerable amount of information is not just useless for requirements
engineering purposes, but also depreciates the overall value of reviews.

• Most of the research dealing with the quality/helpfulness of customer
reviews does not define “quality” or “helpfulness” clearly.

• Although there is a clear difference between the two concepts, the majority
of studies do not make a distinction between the helpfulness seen by the
customers and the helpfulness perceived by product or service designers.

• Recognizing product or service features to filter out high-quality material
is usually done by methods involving a considerable amount of human
intervention while still being an imprecise measure of quality.

There are multiple technological challenges researchers and developers face
when building systems for industrial applications, and make them relevant for
requirements engineering.

• While advanced word embedding techniques allow one to capture the
contextual meaning of words, it is a challenging task to obtain stationary
vectors from them, and keep domain knowledge incorporated into the
embeddings.

• Although transfer learning methods attempt to alleviate the need to use
large datasets for deep learning applications, because of the potential
source-target task discrepancy, transfer learning is not always a feasible
option.

27

Chapter 3

Proposed approach

This chapter introduces the proposed framework for developing
requirements engineering tools for computational business intelligence, aiming
to mitigate the issues summarized in Section 2.4.

3.1 Overview
Figure 3.1 provides an overview of the proposed framework. There are two

main parts of the framework, development, and deployment. It is assumed that
the users can acquire customer review data and have access to the necessary
facilities (e.g. storage, server, network, workstations, etc.). Since this work
focuses on the development stage, the deployment part is not described in
detail, and it is only outlined on a high level. Nevertheless, it is necessary to
include it in the framework, as there are iterative processes embedded in a loop
structure.

The data collector interface transmits the raw data into the Data
transformation module, where the data is transformed into the required
format for model creation. Model creation can have several iterations
internally until model performance reaches an acceptable level, depending on
the specific task at hand. The stored model(s) are read in by an interface
connected to a live server that gives the output on newly acquired and
transformed data. Model outputs are stored in a database, ready to be used
by the responsible individuals involved in the requirements engineering process
(e.g. product designers, market researchers, etc.). Model outputs are also used
to validate the deployed model and to further fine-tune it if necessary. After a
large amount of new raw data (unseen during initial model training) is
collected, these are merged with the old raw data, and some parts of the
model creation phase are repeated to potentially achieve better performance.

28

Figure 3.1: Overview of the proposed framework

29

3.2 Theoretical model of document pertinence
Instead of defining what “helpfulness” is in the context of customer reviews,

a more general, widely applicable theoretical model is proposed to describe
the quality of reviews. The pertinence of a document defines the document’s
relevancy and applicability in a certain domain, for a given target audience.
The concept of pertinence is also used to create domain and task specific word
vectors, and assign weights to the words, explained in later sections.

Intuitively speaking, the model proposed is based on the assumption that
there is always a chance to encounter a certain word in natural languages,
regardless of the type of the document. Depending on the document’s target
population T (intended target audience) and the domain V , occurrences of
words w for a certain language L = {w1, w2, ..., wm} are probabilistic rather
than binary, as although not all words carry the same importance in a certain
domain, any word can appear in any kind of document d for all possible
documents D = {d1, d2, ..., dn}. Besides a word’s literal, “hard-coded”
semantics in a certain language, the meaning of a word is always influenced by
the context. This pragmatic relationship between a word and its context is
highly dependent on T and V .

For instance, one may find the word sensor in any type of text, but if the
domain is digital cameras, and the target population is the product designers,
this word is of great importance. If the domain stays the same and the target
population combination is university students, the term sensor may still be
significant, but it does not have the same weight. On the other hand, even if
T is the same (product designers), if the domains are speech recognition and
digital cameras, the usual context of the word sensor will be quite different,
and this should be reflected in the corresponding word vectors in the different
domains. Because it is such a general word, the term comparison is probably
not highly-relevant for V = digital cameras and T = product designers, but
this does not imply that it does not convey any information about V and T ,
particularly in the proper context, e.g. “Comparisons of megapixel ratings...”.

Let us represent the probabilistic nature of word occurrence with word
weights in accordance with V and T as ΦT

V = {ϕTV1 , ϕ
T
V2 , ..., ϕ

T
Vm
}, and the

contextual meaning of words for V and T as ΨT
V = {ψTV1 , ψ

T
V2 , ..., ψ

T
Vm
}. The

above can be formally defined as follows:

∀V ∀T∀w∀d[dED∧wEL∧♦(wEd)∧∃ϕTV ∃ψTV (ϕTV EΦT
V ∧ψTV EΨT

V |= (ϕTV , ψTV)Bw)],
(3.1)

where E defines the relationship element of, B signifies the association belongs to,

30

and ♦ is denoting the modal logical proposition of what cannot be disproved,
therefore, is possible. In relation to domain V and a target population T ,
the pertinence of a document can be represented as the distance between the
contextual meaning of words Ψd in a document d and ΨT

V , weighted by ΦT
V .

The concept of pertinence was introduced by the author in [115].

3.2.1 The inferential problem of approximating
document pertinence

The inferential problem is to define ΨT
V and ΦT

V in a numerical format,
for a given V and T , to approximate the pertinence of document d. In the
case of requirements engineering of products, T mostly refers to the product
designers who participate in the requirements engineering process at some point.
Since technical documents are presumed to include a large amount of knowledge
relevant to product designers, the author argues that technical documents of
V should be analyzed to define ΨT

V and ΦT
V , where T =product designers. The

conceptual process flow of calculating document pertinence is shown in Figure
3.2. Practically speaking, ΨT

V consists of context-dependent stationary vectors

Figure 3.2: Conceptual process flow of calculating document pertinence

associated with the words in technical documents of V . ΦT
V can be represented

as scalar weights, computed by analyzing the same documents. The embedding
model for creating Ψd should be the same that was used to extract vectors of
ΨT
V to assure compatibility for the distance calculation.

The main idea of document pertinence approximation was introduced by the
author in [115].

31

3.3 Data transformation
Data transformation focuses on converting the raw data into a format that

can be used by the model creation phase. Preprocessing and feature engineering
reduce data quality issues, and aims at producing representative inputs for
further processing steps.

3.3.1 Preprocessing
The goal of preprocessing is to reduce noise and filter out evidently irrelevant

information from the dataset. It is always task specific, and while some tasks
require extensive preprocessing, some do not require it at all (for instance, when
using external data sources that is already in the desired format).

• Text cleaning involves processes like removing typos and unneeded
characters (e.g. emoticons, quotation marks), deleting duplicate entries,
removing unnecessary parts of structured text (for example, author
information).

• Tokenization is the task of slicing up documents and sentences into small
pieces called tokens (i.e. words and punctuation).

• Stopword elimination is the process of filtering out “useless”, commonly
used words to reduce noise in the data.

• Part of Speech (POS) filtering means tagging every word with their
corresponding POS, and removing unneeded categories (e.g.
interjections).

• Lemmatization aims at reducing inflectional and derivational forms of a
word to its common, dictionary form called lemma, based on
morphological analysis and a dictionary (for example, all word “plays”,
“played”, “playing” becomes “play”).

• Normalization focuses on reducing inconsistencies in the dataset, e.g.
removing too short and too long sentences, converting all synonyms of a
certain entity to a single word, etc.

3.3.2 Feature learning and engineering
Feature engineering refers to a set of techniques used to extract features

from data by applying domain knowledge, in order to enhance machine

32

learning performance. Feature engineering usually involves human
intervention, but semi-automatic approaches exist to reduce the number of
manual processes. Feature learning, on the other hand, is the process used to
create feature representations without the need of manual feature engineering.
While feature learning nowadays is considered to be a superior approach to
discover and encode features, feature engineering techniques are still relevant
due to the fact that high-performance feature learning usually requires a large
amount of input data.

3.3.2.1 Extracting domain and target population specific word
vectors

Figure 3.3: Extraction process of domain and task specific word vectors

The importance of word embeddings in modern BI systems and the related
recent technologies were introduced in Section 2.3. While remarkable results
were achieved by models like BERT, some applications would require extracting
feature vectors from the model, instead of just using it as a part of a whole deep
learning architecture. There are multiple ways to obtain the embeddings from
a transformer models [114], but since word vectors of state-of-the-art models

33

are sentence specific and not stationary, the problem of acquiring single vectors
for words while keeping most of the contextual information in a certain domain
remains.

The approach proposed utilize the concept of pertinence, introduced in
Section 3.2. The overview of the process with a sentence specific
contextualized language model for embedding is shown in Figure 3.3. After a
corpus of documents applicable for the target population and domain are
collected, instead of retraining the language model that would likely end in
negative transfer, all sentences s of the documents d are vectorized (e(·)) using
the pre-trained embedding model EMB. After stopwords are removed, all
unique words w from the corpus vocabulary are put into the Embedding
dictionary in their lemmatized form, with the corresponding word vectors.
Since at this point, the contents of the Embedding dictionary are the unique
word lemmas with all the word vectors e associated with them, the
embeddings are averaged for their words to capture T and V as accurately as
possible with stationary vectors ψ ∈ Ψ:

ψi = 1
R

R∑
j=1

ei,j , (3.2)

where R is the number or embeddings ei associated with word wi. Using this
method, the “customary” contextual usage of words in the domain will be
integrated into the embeddings. The computational process of calculating the
vectors and putting them to the embedding dictionary emb_dic is defined in
Algorithm 1.

The function EMB.embed is model specific. For example, in the case of
BERT, the process of obtaining the word vectors is depicted in Figure 3.4.

Figure 3.4: Process of extracting the embeddings e from BERT

34

Algorithm 1 Calculation of domain and target population specific word vectors
1: procedure vector computation(corpus, EMB)
2: initialize dictionary emb_dic
3: for all document in corpus do
4: for all sentence in document do
5: embed_sent = EMB.embed(sentence)
6: for all word, vector in sentence, embed_sent do
7: lemma = lemmatize(word)
8: if lemma not in stopwords then
9: if lemma not in emb_dic then

10: insert lemma into emb_dic
11: emb_dic[lemma]= vector
12: end if
13: else
14: append vector to emb_dic[lemma]
15: end if
16: end for
17: end for
18: end for
19: for all term in emb_dic do
20: average(emb_dic[term])
21: end for
22: return emb_dic
23: end procedure

For BERT, after the attention heads passed the weight matrices into the feed-
forward network, the output will be a 768-dimensional vector for all 12 encoder
layers. These vectors are put to a 12x768 embedding matrix M :

M =


m1,1 m1,2 ... m1,768
m2,1 m2,2 ... m2,768
...

m12,1 m12,2 ... m12,768.

 (3.3)

TheN = 12 rows ofM (the vector outputs from the encoder layers) are summed
to create a single embedding e = {e1, e2, e3, ..., e768}, where

ei =
N∑
j=1

mj,i. (3.4)

35

The word vectors computed this way can be used for any tool or application that
requires domain and target population specific stationary vectors, and would
constitute ΨT

V of the previously introduced document pertinence model.
The main idea behind extracting domain and target population specific word
vectors is introduced by the author in [115], where the ELMo model [113] is
used for embedding.

3.3.2.2 Word weighting

Word weighting is the process of assessing the importance of each word in a
document collection. From a practical standpoint, it means assigning numerical
values to words, in order to enhance the performance of information systems
(e.g. for text classification, information retrieval, etc.). Usually, word weights
reflect the extent of how relevant a particular word is to a document or a certain
type of document in a given corpus.

Since the proposed method to calculate word weights is based on the
pertinence model (Section 3.2), it aims to represent how valuable a word is in
a collection of documents for T and V , i.e. establish ΦT

V of scalar weights for
the words observed in all documents combined. The weight ϕw of word w is
determined as

ϕw = ln
(
N

ows

)
ow
N
, (3.5)

where ow is the frequency of word w in all documents, ows is the number of
occurrences of sentences s including word w. N stands for the total number of
sentences in the documents. The weights with their corresponding words are
put into the Weight dictionary for further processing.
The main idea of weight calculation was introduced by the author in [115].

3.3.2.3 Incorporating external knowledge into a deep learning model

The potential in incorporating external knowledge explicitly into deep
learning models when the volume of data is low has been discussed in Section
2.1. The outline of the proposed approach (including model training for
transparency) is depicted in Figure 3.5. The basic idea is that the two inputs
(the textual data of training samples and the external knowledge source) are
processed in two separate pipelines, and merged inside the network for further
processing to drive the network to capture latent relationships between the
two inputs, and potentially increase performance.

The training and test samples are embedded into word vectors to build the

36

Figure 3.5: Incorporating external knowledge into a deep learning model

feature space of X . In a separate pipeline, external knowledge is used to create
an additional feature space X ′ for the words in the train and test datasets.
The deep learning model first processes them without any connection to adjust
representations independently during the training. Then these internal outputs
are merged and further processed to extract the most meaningful representation
possible in order to decrease training and testing loss. Thus, instead of using
only the word-embedded feature space X , it is used together with separate
feature space X ′ to define the classification problem f : {X ,X ′} → Y .

The author argues that the method described above would be useful when
the number of training samples is low, but external knowledge sources exist for
not particularly the same but similar classification (or regression) tasks. Feature
encoding of the external knowledge to create feature space X ′ is data and task
specific, and can be performed either by feature learning or feature engineering.

A practical example is multi-class sentence level SA, when the
classification task is more complex than the usual binary or three-class
polarity determination on the whole document level. While fine-grained SA is
more beneficial for companies than simple binary polarity determination
(Section 2.1), datasets annotated with detailed sentiments like emotions on
the sentence level are usually small, especially in the case of low-resource
languages. In such cases, using sentiment lexicons and polarity dictionaries
labeled either binary (negative and positive) or on a continuous scale (e.g.
between 0 and 1) would be beneficial in the proposed processing scheme.
Since the network does not have enough training samples to learn the intricate
differences and nuances between the classes, even if the classification task is
different, a sentiment lexicon can still convey some high-level information

37

about the words that can potentially be advantageous during the learning
process.
The main idea was proposed by the author in [116], where incorporating external
data into a deep learning model was implemented using a custom network
architecture with a sentiment lexicon.

3.3.3 Quantifying document pertinence to assess review
quality

Before entering the model creation stage, the quality of the dataset is
addressed by quantifying the pertinence of reviews for a given domain V and
target population T. The pertinence of a single document is calculated
according to the steps in Algorithm 2. Besides a corpus of documents and
embedding model EMB, the inputs are the domain and target population
specific word vectors ΨT

V from the Embedding dictionary emb_dic (Section
3.3.2.1) and their corresponding weights ΦT

V from the Weight dictionary
weight_dic (Section 3.3.2.2). Pertinence scores pert_scores are calculated on
the word level. Word scores are allocated by calculating the cosine distances
between the observed word’s embedding vector wordvec and all term vectors
ψ ∈ ΨT

V , then choosing the weight ϕ ∈ ΦT
V of the closest term. Although

merely summarizing the word scores would be skewed against longer reviews,
taking the mean of the word or the sentence scores would totally neglect the
length of the review len. Accordingly, review scores sum_score are divided by
len1/len to get an adjusted score for pertinence. Since the calculated sentence
scores are not within a predefined range, the scores are normalized between
the interval [-1,1] before returning the final pertinence scores. Besides
enhancing interpretability, the normalization helps with using the scored
sentences in possible further processing steps.
The main idea of document pertinence calculation was introduced by the author
in [115].

38

Algorithm 2 Calculation of document pertinence
1: procedure calc_pertinence(corpus, EMB, emb_dic, weight_dic)
2: initialize list pert_scores
3: for all document in corpus do
4: sum_score = 0
5: for all word in document do
6: len = 0
7: if word not in stopwords then
8: len+ = 1
9: initialize array cos_vector

10: wordvec=EMB.embed(word)
11: for all ψ in emb_dic do
12: cosdis = 1− ψ·wordvec

‖ψ‖‖wordvec‖
13: append cosdis to cos_vector
14: end for
15: closest_word=emb_dic[argmin(cos_vector)]
16: ϕ=weight_dic[closest_word]
17: end if
18: sum_score+ = ϕ
19: end for
20: pert_score = sum_score

len1/len

21: append pert_score to pert_scores
22: end for
23: for all pert_score in pert_scores do
24: pert_score = 2 pert_score−min(pert_scores)

max(pert_scores)−min(pert_scores) − 1
25: end for
26: return pert_scores
27: end procedure

3.4 Model creation
Although it can take a relatively long time to transform data to the

desirable format, model creation is sometimes even longer due to the iterative
nature of the machine learning phase. Since the goal is to achieve model
performance as high as possible, multiple iterations of training are performed
with several combinations of hyperparameters. Also, to realistically assess
model performance, often multiple, entirely different models are built and
compared.

39

3.4.1 Data debiasing
Reduction of bias in the dataset is important to achieve reliable results at

the end of model creation. While shuffling the datapoints should be done in
almost all cases (an exception would be time series prediction), resampling is
only necessary if the dataset is imbalanced (skewed class proportions).
Downsampling means only including a subset of the samples from the classes
with a large amount of instances, and upsampling refers to the process of
duplicating a portion of datapoints randomly in the classes with a low volume
of data. If the dataset is divided into train and test sets of some proportion,
resampling must be performed separately on the divided sets. While
resampling the dataset can be particularly useful when there is an abundance
of labeled data available, in the case of smaller datasets, using k-fold
cross-validation (explained in Section 4.4.2) during training is more beneficial.

3.4.2 Machine learning
While the detailed procedure can vary based on the prediction task and

data available, supervised machine learning is a well-established process. The
difference in developing tools for requirements engineering compared to other
applications is that besides model testing, model validation is also necessary
to assess the performance of the model in the deployment stage. Although
in the case of a large dataset, it is possible to create a separate dataset and
perform validation during the development phase, evaluating the efficiency of
the deployed model is imperative. By doing so, developers can further tune the
model if necessary to accommodate present trends and needs.

3.4.2.1 Proposed architecture to incorporate external data into the
network

In order to realize the concept of incorporating external data directly into
the learning process (Section 3.3.2.3), it is critical to build a network
architecture that can learn from the external data source while still focusing
on the embeddings to reduce the classification error of the target task. The
high-level structure of the proposed architecture is shown in Figure 3.6.
Unlike fully-connected neural networks, recurrent neural networks (RNN)
excel in processing sequential information (explained in Section 4.4.4).
Therefore, recurrent layers (RECL) are optimal for handling both the word
embeddings and the encoded features from the external knowledge source.
The output of the RNN layers are concatenated (CONCAT) to merge the two

40

Figure 3.6: High-level structure of the proposed network architecture

representations. In order to discover local features in the merged layers
regardless of their location, a 1-dimensional convolutional layer (CONV) is
applied after the concatenation (explained in Section 4.4.5). To help reduce
the spatial scale of the feature representations while keeping a reasonable
amount of information on the classes, a pooling layer (POOL) is put after the
convolutional layer. Finally, a fully-connected layer (FULLC) with softmax
(explained in Section 4.4.6) is applied to make the predictions. It is to note
that the exact architecture (e.g. type of the recurrent layers) and the
complexity of the network (number of layers, neurons, convolutional filters,
etc.) may vary based on the target task, choice of word embedding model,
and the nature of the external knowledge source. Nevertheless, regardless of

41

future advancements in recurrent types of networks, word embeddings, etc.,
the above architecture would be generally applicable for classification tasks
with textual inputs when there is a low volume of annotated data available.
The main idea was proposed by the author in [116], where the above architecture
was implemented using a LSTM+BiLSTM+CNN architecture with a sentiment
lexicon of word polarities on a continuous scale.

3.4.2.2 Adjusting a pretrained language model to a different target
task

As it was discussed in Section 2.3, when there is a discrepancy between the
source and target domains or tasks, transfer learning might result in negative
transfer, causing a decrease in machine learning performance. The proposed
approach to use pretrained language models trained for a different task than
the target classification problem is shown in Figure 3.7.

The original language model (e.g. BERT, ELMo, etc.) is pretrained on
an extensively large collection of documents from the source domain DS (e.g.
Wikipedia, One Million Word Benchmark, BookCorpus, etc.) for the source
task TS (usually, next word/sentence prediction, to make TS unsupervised).
Since these models are available online for multiple languages, it is not necessary
to train them from scratch. In order to avoid potential negative transfer, the
pretrained language model is retrained or fine-tuned on documents from the
target domain DT , depending on automatic pre-annotation is possible or not.
Automatic pre-annotation is the process of assigning labels to a dataset without
human intervention. Although automatic annotation methods are not accurate
and hard to test their performance, if it is feasible to label large volumes of
data in an unsupervised way, the produced pre-annotated dataset can be used
to retrain a pretrained language model to a different task. Retraining, in this
case, means that all layers of the pretrained model are involved in the training
process to adjust the weight matrices to the target task TT . If automatic pre-
annotation is not a feasible option for the target task, the documents for DT are
first fine-tuned for the source task TS, i.e. in the same manner pretraining was
conducted. Fine-tuning means that some of the layers are frozen, and not all
of them are involved in the training process (the exact number of frozen layers
is task specific). The reason for fine-tuning is to avoid overfitting on the new
dataset, which would mean losing the robustness of the original model. The
last phase is the same for both cases, fine-tuning a small but human-annotated
dataset for the target task TT . Since the retrained model’s prediction task is the
same or similar to the final target task, it is possible to fine-tune the retrained
model without negative transfer, even on a small human-annotated dataset.

42

In the scenario when pre-annotation is not possible, the proposed procedure
attempts to mitigate negative transfer by fine-tuning the model in two stages,
first for TS, then for TT .

Figure 3.7: Proposed transfer learning strategy

43

Chapter 4

Case studies

This chapter describes the case studies undertaken within this research to
demonstrate the effectiveness of the given framework. The two case studies
cover the following parts of the proposed approach.

1. Predicting sentence level review informativeness of search
products (Case study I.): Testing the applicability of the pertinence
model in the context of the proposed framework, including the suggested
methods to acquire domain and target population specific vectors and
weights. Additionally, the feasibility of the proposed transfer learning
strategy using an automatically pre-annotated dataset is also assessed.

2. Expanding the feature space of deep neural networks for
multi-class sentence level sentiment classification (Case study
II.): In order to investigate the usefulness of incorporating external data
explicitly into deep learning models in an unbiased manner, this part of
the framework has been tested independently. Since SA is widely used
in service-related contexts, experiments were conducted using online
hotel reviews.

4.1 Computing environment
The case studies were implemented in Python version 3.6 and 3.7, and

the code was run on Ubuntu 16 (Xenial Xerus) and 18 (Bionic Beaver). The
workstation used is equipped with an Intel Core i9-9920X 12 core/24 thread
CPU with 128GB DDR4 RAM, and two Nvidia RTX 2080TI GPUs connected
with NVLink for GPGPU computing. Essential Python libraries used in the
implementation of the case studies are listed below:

• pandas: Pandas is a library for data manipulation and analysis, used to
read in and manipulate data in numerical tables.

• numpy: NumPy is a module for scientific computing in Python, offering
a large set of mathematical functions, supporting up to high-dimensional
tensors.

44

• scipy: SciPy is a library offering modules for linear algebra and
optimization for various subfields in information science and engineering.

• matplotlib: Matplotlib is a plotting library built upon NumPy, to create
both static and interactive visualizations in Python.

• sklearn: Scikit-learn is a machine learning library, offering tools for
predictive data analysis and algorithm validation, built upon NumPy,
SciPy, and matplotlib.

• nltk: The Natural Language Toolkit is a collection of NLP tools (e.g.
tokenization, lemmatization, parsing, etc.) for Python, mainly for the
English language.

• mecab: MeCab is a Japanese text-segmentation library used mainly for
tokenization, lemmatization, and Part of Speech tagging.

• tensorflow: TensorFlow is a machine learning library focusing on the
implementation of various type of neural networks, including
custom-designed architectures.

• keras: Keras works as an interface for TensorFlow, built to enable user-
friendly and fast experimentation with deep learning systems.

• multiprocessing: Multiprocessing is a Python package for parallel
computing, allowing one to run functions on multiple cores/threads.

• numba: Numba is a just-in-time (JIT) compiler that translates low-level
Python code directly to optimized machine code, speeding up algorithms
potentially to the speed of pure C code.

• gc: The Garbage Collector enables the user to release unreferenced
memory manually. It is useful when working with large data structures
to free up system memory in loops.

• re: The re library allows for regular expression pattern matching for
various preprocessing and data transformation tasks.

4.2 Predicting sentence level review
informativeness of search products

In this case study, the framework introduced in Chapter 3 is applied to
develop a system that would reduce the information overload of eWOM by

45

assessing review informativeness on the sentence level. The system assigns
pertinence scores (Section 3.2) to the review sentences without manual feature
engineering, and uses the proposed transfer learning strategy (Section 3.4.2.2)
on a small human-annotated dataset for informativeness prediction.

In the context of online reviews, the information needs of both customers and
companies depend on the product type [23,45,117]. Nelson separated products
into two main types: search and experience products [118]. In contemporary
requirements engineering and customer behavior research, this is one of the
most used and acknowledged classification scheme of product types. The reason
for focusing on search products in this case study is the following. While the
evaluation of experience products (e.g. movie DVDs, books) is usually based on
subjective and emotional assessments, the value judgment of search products
(e.g. digital cameras, PCs) should be based on verifiable facts and impersonal
evaluations [83, 119], much more useful for product designers and other people
involved in requirements engineering.

While aspects such as reviewer status, shipping time, return policy, etc.
can be crucial for customers, these carry little significance for requirements
engineering. Therefore, service and platform-related factors (e.g. packaging,
shipping, website customer-service), as well as non-content-related factors (e.g.
reviewer’s user status, product rating in stars) will not be considered as valid
features of review informativeness in the presented case study. Technical
attributes, however, such as physical characteristics (e.g. display size) and
other specifications (e.g. processing power) are considered as prominent
features of review informativeness, regardless of whether expressed explicitly
or implicitly in a review. For more information on the notion of
informativeness, see Chapter 1 and Section 2.2.

4.2.1 System design
Figure 4.1 shows the overview of the proposed system, based on the

framework proposed in Chapter 3. The system has two phases: development
and operation. The development involves two modules: one for pertinence
quantification and another for developing the prediction model. The operation
phase simulates the potential deployment of the proposed system: takes
product reviews (unseen during model training) as input, and labels the
sentences in the reviews, according to their level of informativeness.

46

Figure 4.1: Overview of the system developed to predict search product review
informativeness on the sentence level

47

4.2.1.1 Pertinence quantification module

The pertinence quantification module has two inputs: technical documents
from domain V , and a large amount of customer review sentences. As it was
described in Section 3.2.1, technical documents are presumed to represent the
target population T well, when T = product designers. Therefore, after
preprocessing the technical documents, all word lemmas are put into the
embedding dictionary emb_dic with their corresponding contextualized,
domain specific embeddings (Section 3.3.2.1) created using model EMB. The
preprocessed technical documents are also used to assign scalar weights
(Section 3.3.2.2) to all unique words, signifying their importance for V and T .
The weights with their matching words are put into the weight dictionary
weight_dic. The two dictionaries are used together with the preprocessed
customer reviews to calculate pertinence scores for the review sentences.

Algorithm 3 Calculation of sentence-wise pertinence
1: procedure calc sentscores(reviews, EMB, emb_matrix, emb_dic,
weight_dic)

2: initialize array sen_scores
3: for all sentence in reviews do
4: sum_score = 0
5: for all word in sentence do
6: len = 0
7: if word not in stopwords then
8: len+ = 1
9: wordvec=EMB.embed(word)

10: distances = cosdis_computation(wordvec, emb_matrix)
11: closest_word = emb_dic[argmin(distances)]
12: weight=weight_dic[closest_word]
13: end if
14: sum_score+ = weight
15: end for
16: adj_score = sum_score

len1/len

17: append adj_score to sen_scores
18: end for
19: return sen_scores
20: for all sen_score in sen_scores do
21: sen_score = 2 sen_score−min(sen_scores)

max(sen_scores)−min(sen_scores) − 1
22: end for
23: end procedure

48

The algorithm introduced for pertinence calculation in Section 3.3.3
(Algorithm 2) is readjusted in the following manner for the given case study:

1. Since in this case study, informativeness prediction is performed on the
sentence level, the procedure returns pertinence scores of sentences
instead of whole reviews, regardless of their document origin (i.e. the
same sentence has the same score in all documents).

2. The algorithm requires computing cosine distances between every word in
the review sentences and each word in the embedding dictionary emb_dic.
Because this is a computationally expensive process for a large number of
reviews, the embeddings from emb_dic are combined to a H×dim matrix
emb_matrix, where H is the total number of entries in the embedding
dictionary, and dim is the dimensionality of the individual embedding
vectors. The cosine distance calculation between emb_matrix and a word
vector from the review sentences wordvec is parallelized, speeding up the
process significantly.

Algorithm 4 Fast calculation of cosine distances
1: procedure cosdis_computation(vector u, matrix M)
2: M_len = length(M.rows)
3: u_len = length(u)
4: initialize array distances of length M_len populated with zeros
5: for i in range(M_len) do in parallel
6: v=M[i]
7: u_dot_v = 0
8: u_norm_t = 0
9: v_norm_t = 0

10: for j in range (u_len) do
11: u_dot_v += u[j] * v[j]
12: u_norm_t += u[j] * u[j]
13: v_norm_t += v[j] * v[j]
14: end for
15: u_norm =

√
u_norm_t

16: v_norm =
√
v_norm_t

17: theta = u_dot_v/(u_norm ∗ v_norm)
18: distances[i] = 1 - theta
19: end for
20: return distances
21: end procedure

49

The final pertinence calculation procedure for the case study is shown in
Algorithm 3. The embedding model EMB used in this study is BERT-Base,
introduced in Section 2.3 The algorithm for computing cosine distances
(cosdis_ccomputation) between the embedding matrix and the observed
word’s vector is specified by Algorithm 4. The function returns an array of
cosine distances distances between emb_matrix (matrix M) and the observed
word’s vector wordvec (vector u).

4.2.1.2 Model development module

To be able to define a classification problem of informativeness prediction,
the scored review sentences are clustered according to their pertinence scores,
by k-means. The number of clusters is determined with the elbow
method [120], that assumes that model performance will inevitably decline as
k increases. This process of clustering based on pertinence scores can be
considered as automatic pre-annotation. Next, a small number of sentences
are selected from each class (cluster), and re-annotated by humans to build a
small but representative dataset.

Figure 4.2: The transfer learning process

The transfer learning strategy suggested in Section 3.4.2.2 is applied to the
pre-annotated sentences and the human-annotated dataset, to adjust a
pretrained language model to the target classification task TT (informativeness
prediction). The transfer learning process used in the proposed system is
depicted in Figure 4.2. The original model, BERT-Base is pretrained on the
BooksCorpus (∼800 million words) [121] and Wikipedia (∼2,500 million

50

words). In order to avoid negative transfer, BERT is first retrained on the
automatically pre-annotated but huge dataset. To specialize the model to the
task of informativeness prediction without overfitting, only the last 6 layers
plus the classification layer are fine-tuned on the human-annotated dataset,
and the weight matrices of the first half of the 12 encoder layers are frozen.

4.2.2 Data
The domain V chosen for the experiments is Digital Cameras and

Accessories. The technical documents used to create the term dictionary are
articles from Wikipedia on digital camera photography. There is a vast
amount of useful technical information freely accessible on Wikipedia, and all
articles can be downloaded through Wikimedia dumps1. 1,039 articles related
to digital photography equipment and technical jargon have been collected
using Wikipedia metadata. Unneeded sections, such as “References” and “See
also” were discarded during preprocessing, resulting in a total of 24,134
sentences. 13,166 unique words lemmas were vectorized and weighted, then
inserted into the Embedding and Weight dictionaries. The pretrained
BERT-Base language model was retrieved from Google Research2.

Customer reviews used in this research come from the “Electronics” part of
Amazon Review Data [122] (ranging from May 1996 to July 2014). An example
of an Amazon review on the website is shown at Figure 4.3.

Figure 4.3: An example of a digital camera review from Amazon
1https:/dumps.wikimedia.org/
2https:/github.com/google-research/bert

51

Figure 4.4: Amazon review metadata

Algorithm 5 Extract relevant product IDs
1: procedure Extract IDs(metadata_t)
2: initialize list asins
3: initialize list brands of camera brand names
4: initialize list desc of strings “camera”, “digital”, “battery”, “lens”
5: for all row in metadata_t do
6: if string “camera” not in row.categories then
7: if any in brands not in row.title then
8: if any in desc not in row.description then
9: delete row

10: end if
11: end if
12: end if
13: end for
14: for all id in metadata_t.asin do
15: append id to asins
16: end for
17: return asins
18: end procedure

In order to extract reviews connected to digital camera and a accessories
(such as lenses, flashes, etc.), relevant product IDs had to be acquired from

52

the review metadata. Figure 4.4 shows the metadata after removing unneeded
information. Relevant product IDs (asin in the metadata) were obtained using
the procedure described by Algorithm 5. Using the extracted IDs, 300,170
reviews were retrieved from the Electronics review dataset. Sentences with
35+ tokens were presumed to be from reviews without punctuation, therefore,
these were excluded from further processing steps. This resulted in a total of
1,160,601 unique sentences collected for the pertinence quantification module.

4.2.3 Experiments

2 4 6 8 10
k

0

1000

2000

3000

4000

Su
m

 o
f s

qu
ar

ed
 d

ist
an

ce
s

The elbow method showing the optimal k

Figure 4.5: The elbow point is detected at k = 3

The issue of deciding on the number of k-means clusters was addressed by
applying the Kneedle algorithm [123], to detect the elbow point of the sum
of squared distances measured for various k. The elbow point was defined at
k = 3, as seen in Figure 4.5.

The resulting distribution of the sentences is depicted in Figure 4.6. While
Class 1 includes sentences with a low pertinence, Class 3 sentences are
supposed to be highly relevant for the given V , and T . Since the uneven class
distribution could lead to decreased training performance and results would
be biased, retraining BERT-Base required up-sampling Class 3 and
down-sampling Class 1 for the number of instances in Class 2, after dividing
the data into 70% training and 30% test sets (details on data debiasing are
described in Section 3.4.1).

53

1000 sentences were drawn from each class to build a small dataset of 3000
sentences for human annotation. While the sentences were originally chosen at
random, manual intervention was necessary to create a representative dataset,
as the pre-annotated dataset is noisy. To obtain a large dataset, the review
sentences from Amazon data were extracted using brand names and keywords
in product descriptions, etc. (Algorithm 5). Due to this approach, however, the
data would sometimes contain reviews that are not directly related to digital
cameras (e.g. printers). These irrelevant reviews have not been selected into
the final dataset for annotation.

1 2 3
Classes

0

100000

200000

300000

400000

500000

600000

700000

Nu
m

be
r o

f s
en

te
nc

es

Figure 4.6: Distribution of the review sentences after automatic pre-annotation

Since the majority of sentences allocated to Class 1 are short (for example,
“Price is fine.”), and sentences classified as Class 3 are often lengthy, selecting
sentences entirely at random would result in a biased dataset, and classification
results may not be representative. To cope with this issue, sentences with
varying lengths have been chosen from each group to create an unbiased dataset.
Although the natural correlation between sentence length and class allocation
is still reflected in the mean number of words per sentence (Class 1: 16.1,
Class 2: 17.69, Class 3: 22.97), the class-wise sentence length variances are
relatively high for all three classes (Class 1: 23.55, Class 2: 38.46, Class 3:
29.64). The violin plot of class-wise sentence length is depicted in Figure 4.7.
The class distributions illustrated are the kernel density estimations of the real
distributions, the white dots show the median values, and the black rectangular
box marks the interquartile range.

Five individuals have participated in the annotation process. After
training the annotators, they were instructed to tag sentences based on their
informativeness, into three possible categories: “Not informative” (Class 1),

54

“Moderately informative” (Class 2), and “Definitely informative” (Class 3).

1 2 3
class

0

5

10

15

20

25

30

35

se
nt

en
ce

 le
ng

th
 in

 w
or

ds

Figure 4.7: Violin plot of class-wise sentence length of the dataset created for
annotation

Each sentence has been labeled by three participants. Single labels were
determined by majority voting (when all annotators tagged the sentence
differently, a random choice was made). The inter-annotator agreement was
calculated using Krippendorff’s alpha [124] (explained in Section 4.4.3). The
obtained alpha coefficient is 0.75, indicating a reliable annotation. The class
distribution of the annotated sentences is seen in Figure 4.8. The dataset
created is publicly available for academic purposes at Elsevier Mendeley
Data [125]. In order to prevent overfitting on the relatively small dataset,
BERT was retrained for only 5 epochs, and fine tuning was performed for 10
epochs.

1 2 3
Classes

0

200

400

600

800

1000

Nu
m

be
r o

f s
en

te
nc

es

Figure 4.8: Distribution of the human-annotated dataset

55

To transform text into the format BERT requires, the procedure described
by Algorithm 6 had to be performed three times (for the embedding
dictionary, pertinence quantification, and transfer learning). The procedure
returns the input IDs glob_input_ids, masks glob_input_masks, and
segment IDs glob_segment_ids corresponding to the raw input sentences
examples. Details of the input format for BERT are described in Section 2.3.

Algorithm 6 Data transformation required for BERT
1: procedure Prepare inputs(examples, max_len)
2: initialize lists glob_input_ids, glob_input_masks, glob_segment_ids
3: for all example in examples do
4: tokens = tokenize(example)
5: if length(tokens) > max_len then
6: tokens = tokens[0:max_len]
7: end if
8: initialize list tokens_form
9: initialize list segment_ids

10: append string “[CLS]” to tokens_form
11: append int 0 to segment_ids
12: for all token in tokens do
13: append token to tokens_form
14: append int 0 to segment_ids
15: end for
16: append string “[SEP]” to tokens_form
17: append int 0 to segment_ids
18: input_ids = transform tokens_form to ids
19: in_len = length(input_ids)
20: initialize list input_masks of length in_len populated with 1s
21: while in_len > max_len do
22: append int 0 to segment_ids
23: append int 0 to input_masks
24: append int 0 to input_ids
25: end while
26: append input_ids to glob_input_ids
27: append input_masks to glob_input_masks
28: append segment_ids to glob_segment_ids
29: end for
30: return glob_input_ids, glob_input_masks, glob_segment_ids
31: end procedure

56

In order to evaluate the efficiency of the fine-tuned model, four other models
were developed for comparison. Details of the models are presented in Table
4.1.

Table 4.1: The models built to analyze the performance of the proposed model
(model E).

Name Model Features Training dataset

model A Multi-class SVM tf-idf
vectors annotated data

model B retrained BERT-Base embedding
vectors

pre-annotated
sentences

model C BERT-Base frozen
(+ classification layer)

embedding
vectors annotated data

model D fine-tuned BERT-Base embedding
vectors annotated data

model E
(proposed
model)

retrained + fine-tuned
BERT-Base

embedding
vectors

pre-annotated
sentences +
annotated data

Model A is a one-vs-one multi-class radial basis kernel support vector
machine (SVM) classifier. For feature encoding, the model uses word
frequency-inverse document frequency (tf-idf) vectors. Model A was built to
decide if the proposed model’s performance is better than a baseline,
conventional machine learning classifier. Model B is BERT-Base retrained on
the pre-annotated sentences, but without fine-tuning it on the
human-annotated dataset. For Model C, BERT-Base is implemented with an
additional layer for classification without applying transfer learning on the
pre-annotated sentences. In this model, all encoder weights are fixed and
untrainable to investigate the performance of the original BERT-Base model
for the target classification task. Fine-tuning was performed on the last 6 of
the 12 layers of BERT-Base for Model D, i.e. retraining BERT on the
pre-annotated sentences was not implemented, but the model was fine-tuned.
Model E is the proposed model introduced in Section 4.2.1.2. In the cases of
models A, C, and D, training and testing were implemented by performing
5-fold stratified cross-validation on the annotated dataset. Although training
for Model B means only retraining BERT on the pre-annotated sentences,
testing is performed on the same folds of the human-annotated dataset as the
other models, in order to achieve comparable results. For Model E, retraining
is executed on the pre-annotated sentences, and fine-tuning and testing are

57

carried out using 5-fold stratified cross-validation on the annotated dataset.
Besides comparing the accuracy, precision, recall, and F1 scores of the models,
the significance of difference was calculated for all models vs. model E
(proposed model). In order to determine whether the performance of the
models are actually different, the testing accuracy scores of the stratified
cross-validation folds were used to perform t-tests. The null hypothesis of the
paired student t-test states that there is no statistically significant difference
between model performances. On the other hand, the alternative hypothesis is
that the models’ performance is truly different. Although the t-test for
comparing machine learning models is considered to have a low Type II error
(unlike, for example, the 5x2 cv test [126] and the McNemar test [127]), it is
susceptible to Type I error [126, 128]. The explanation behind this is that the
t-test assumes independent sampling, however by definition, the folds of
cross-validation are overlapping through the different folds of training and test
sets. According to Nadeau & Bengio [128], the violation of the assumption of
independence is related to the underestimation of the variance of differences
which results in a higher chance of Type I error. The authors demonstrated
that computation of variance s2 can be modified to consider the dependency
and calculate an adjusted variance s2

corr as follows:

s2
corr = s2

(1
k

+ n2

n1

)
, (4.1)

where k is the number of cross-validation folds, n1 is the number of samples
used for training, and n2 is the total number of data points used for testing.

4.2.4 Results and Discussion
Table 4.2 lists the accuracy, precision, recall, and F1 scores obtained (class-

wise metrics are averaged). The two-tailed p-values for the t-statistics are listed
in the last row, suggesting that there are significant differences between models
A-D and model E. The null hypothesis, therefore, was rejected in all four cases.

Table 4.2: Performance comparison of the five models.

Performance metric model A model B model C model D model E
accuracy 70.02% 72.20% 64.42% 69.30% 79.39%
precision 0.70 0.72 0.64 0.72 0.81
recall 0.69 0.74 0.63 0.68 0.79
F1 score 0.69 0.73 0.63 0.70 0.80
statistical significance p<0.005 p<0.005 p<0.001 p<0.001 -

58

Without retraining BERT, and just adding a classification layer after the
stacked encoder structure (model C) resulted in the poorest results of 64%
accuracy averaged over all folds. Although fine-tuning BERT without
retraining (model D) improved the accuracy by 5̃%, both models struggled to
match the baseline SVM’s (model A) accuracy. This suggests that the weight
matrices of BERT must be retrained first to obtain better results. 72%
accuracy was achieved by retraining all layers of BERT on the pre-annotated
sentences (model B). The second-best accuracy was obtained by model B,
even without fine-tuning the retrained BERT. This shows that the pertinence
quantification module functions adequately as an automated pre-annotation
tool for predicting informativeness. For the retraining phase itself, an
accuracy of 87% was achieved, showing that the weight matrices of BERT
have been successfully adjusted for the target task. Class-wise performance
scores for the retraining process is shown in Table 4.3. Fine-tuning BERT on
the human-annotated dataset after retraining resulted in the highest accuracy
of 79% and higher overall performance metrics (model E).

Table 4.3: Class-wise performance scores for the retrained model.

precision recall F1
class 1 0.91 0.88 0.89
class 2 0.86 0.86 0.86
class 3 0.8 0.92 0.86

The class-wise F1 scores for the models, averaged over all the cross-validation
folds, are shown in Figure 4.9.

1 2 3
Classes

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

F 1
 sc

or
e

model A
model B
model C
model D
model E

Figure 4.9: Class-wise F1 scores for all models

59

The same tendency can be observed for all models. While each model has
shown acceptable results for class 1, the most difficult to predict and recall is
class 2. As in other classification tasks in text analysis (e.g. often in multi-class
SA or emotion recognition), classes in this case study are not entirely distinct
categories. The annotated labels of the following sentences, for instance, are all
class 3 (“Definitely informative”):

1. “Wide, deep images with pinpoint depth of field focus and low light beauty.”

2. “Due to the D7000 more sensitive iso capabilities with more megapixels
compacted in a smaller sensor this lens clearly needs VR II when shooting
at F2.8 in low light.”

3. “Only issue is that you may develop some edge distortion depending on
the focal range and setting, and at 52mm it does suffer a bit in low light
conditions.”

Although all phrases are informative and address multiple product features, the
second and third sentence is much more detailed and includes more technical
content. The following sentences are all Class 2 (“Moderately informative”):

1. “Poorly designed cable on end that plugs into camera.”

2. “It struggles to focus even in the simple center focus mode.”

3. “It’s done very well for daytime shoots of wildlife and I’ve gotten many
national geographic type photos with it.”

In the first two sentences, the customers described issues regarding the camera
accessory cable and the autofocus. While being short sentences, these still
contain potentially useful pieces of information. The third sentence is more
lengthy, and while it is unclear what is a “national geographic type photo”, the
customer mentions that the product worked adequately for daylight wildlife
photography. The following sentences belong to class 1 (“Not informative”):

1. “We got this camera as a Christmas present for my daughter.”

2. “And by virtue of using this lens to its full benefit, I am learning even more
on how shutter speeds, apertures and ISO all work together for maximum
benefit.”

3. “I bought it for my trip to Beunos Aires, and also used it at the Iguazu
Falls, and could not have asked for more perfect performance!!!”

60

According to the definition, none of these sentences are informative, but the
rationale behind why a given sentence belongs to a category varies. The first
sentence refers to irrelevant information, probably as an opening phrase of the
review. In the second sentence, although there are multiple product features
and it is relatively long, the customer merely states that she/he is learning
about them. The third sentence is also relatively lengthy, but the customer
fails to mention the reason why the camera has “perfect performance”. The
remainder of these reviews may be useful, but the above sentences do not offer
any valuable information on the products. The above examples demonstrate
why both annotation and classification are difficult, particularly in the case of
Class 2, which is a category between “Not informative” and “Definitely
informative”.

Figure 4.10 shows two examples of reviews (not included in the original
dataset) with the system output of tagged sentences. As the sentence labels
show, the system is capable of tagging new sentences based on their level of
informativeness effectively. The sentences labeled class 1 are either irrelevant
and missing factual information e.g. “The price point on Amazon for the
Nikon D750 was right for me and so I went for it.”, or formulated as an
introduction/conclusion for the review, for example, “All bets are off, Nikon
has done an insane job creating an amazing camera body!”. While sentences
from class 2 contain useful pieces of information, e.g. “Besides this it has
excellent video capabilities with a Tilt LCD screen.”, class 3 sentences are
detailed and involve more technical details, for instance, “Even at 12,800 I’m
able to get perfectly usable images where the D600 at 2000 ISO was
debatable.”

61

Figure 4.10: Examples of input reviews with the corresponding outputs (class
labels are shown in bold numbers)

62

4.3 Expanding the feature space of deep
neural networks for multi-class sentence
level sentiment classification

In this case study, the proposed approach to incorporate external
information explicitly into deep learning models (Sections 3.3.2.3 and 3.4.2.1.)
is implemented, and the usefulness of using it with a limited amount of
customer review data is investigated. The case study presents a neural
network architecture that integrates semantic information from a sentiment
lexicon to enhance prediction performance of multi-class sentence level
sentiment classification of online hotel reviews.

4.3.1 Network architecture
The network architecture is based on the concept of using two feature spaces

as inputs for the neural network: X and X ′, as proposed in Section 3.3.2.3. One
represents word embeddings, and the other is the feature-encoded training data
based on external knowledge, that is a sentiment lexicon in this case study.

The proposed network architecture is illustrated in Figure 4.11. There are
two types of network inputs: word embedding vectors e and sentiment scores
q from a polarity dictionary. The sentiment scores are inputted into a Long-
Short Term Memory (LSTM) layer to learn sequential relationships among the
words based on their sentiment polarity. The word embedding vectors are
fed into a Bidirectional LSTM (BiLSTM) [129] layer to process words from
both directions and get a more comprehensive representation for deeper layers.
The hidden states from the BiLSTM are concatenated (CONCAT) with the
output of the LSTM layers to create a combined representation of the sentence,
where both feature spaces are integrated into the network. The merged outputs
are then used as inputs for a one-dimensional convolutional layer (CONV) so
that the network can discover local features in sentences regardless of their
location. Max pooling (MAX POOL) and the average pooling (AVG POOL)
are used after the convolutional layer in order to minimize the spatial scale of
the learned matrices. This helps the network to reduce the number of features
yet to maintain a reasonable amount of information on the classes. Finally,
the concatenated outputs after pooling are used as inputs to a fully-connected
dense layer (FULLC) with a softmax activation function.

63

Figure 4.11: The proposed network architecture

64

4.3.2 Data

Figure 4.12: An example of a hotel review from Rakuten Travel

The dataset used in the research is the Tsukuba sentiment-tagged corpus,
constructed by the Tsukuba University’s “NLP on the Web” Laboratory. The
data is distributed by the National Institute of Informatics3, Japan. The data
collection includes 4309 Japanese hotel review sentences labeled with sentiments
from Rakuten Travel4. Rakuten Travel is a web-based hotel reservation site
where customers can also share their opinions and recommendations. A review
example is shown in Figure 4.12.

The annotation was carried out by two human subjects, and the labeling
method was as follows:

• There are five categories: praise「褒め」, neutral「ニュートラル」,
complaint「苦情」, request「要求」, and no sentiment「評価なし」.

• If there are multiple emotions in the same sentence, one annotator used
a single label, and the second annotator applied plural labels.

• Sentences that are not tagged at all are marked as other/pending「その
他/保留」.

3https://www.nii.ac.jp/en/
4https:/travel.rakuten.co.jp

65

Since sentences from category other/pending「その他/保留」are practically
useless, these have been excluded from the data, resulting in 4219 sentences.
When annotator 2 used multiple labels for a particular sentence, the label
from annotator 1 was favored. In the case annotator 1 and annotator 2 used
different singular labels, the final label was decided randomly. The number of
samples for the categories are shown in Table 4.4.

Table 4.4: Number of class-wise sentences in the final dataset.

praise complaint request neutral no sentiment
1846 827 201 280 1065

The sentiment lexicon used in this study was created by Takamura et
al. [130], and it includes 55,125 Japanese words with semantic orientations
automatically assigned on a continuous scale. The reason for choosing this
particular sentiment lexicon for experiments is that the POS considered are
not just only adjectives (形容詞) and adverbs (副詞), but also verbs (動詞)
and nouns (名詞). The word scores are between -1 and 1, where -1 indicates
an entirely negative word, and 1 signifies a fully positive word. Below there
are a few example entries from the lexicon (English translations in parenthesis
are assigned by the author and are not part of the lexicon):

• 苦しめる (to inflict pain): くるしめる: 動詞: -0.999484

• 汚い (dirty):きたない: 形容詞: -0.999332

• 冷淡 (heartless): れいたん: 名詞: -0.721181

• 無論 (certainly): むろん: 副詞 :-0.133712

• 付合 (association): つけあい: 名詞: 0.260877

• 美人 (beautiful woman): びじん: 名詞: 0.358014

• 偉い (admirable): えらい: 形容詞: 0.937503

• 喜ぶ (to be glad): よろこぶ: 動詞: 0.999979

As the above examples show, the noun category also include words that are
usually used as verbs (サ変接続名詞), and adjectival nouns (形容動詞).

66

4.3.3 Experiments
The word embedding model chosen for experiments is GloVe [112]

(introduced in Section 2.3), to investigate the effectiveness of the proposed
approach with a baseline, popular word embedding model that can be trained
easily even for low-resource languages. The GloVe model was pretrained on
the Japanese Wikipedia dump data5 to generate 200-dimensional vectors. The
output of pretraining is a text file where each line contains a word and the
corresponding word vector. For example,

• 人工 0.470812 -0.678248 -0.203591 ... -0.572411 0.140961.

To be able to use it in the proposed deep learning model, an embedding matrix
embed_matrix had to be created, that essentially works as a lookup table for
locating word vectors. The full procedure is described by Algorithm 7.

Algorithm 7 Preparing embedding matrix
1: procedure Prepare word vectors(glove_out, idx_dic)
2: initialize dictionary glove_dic
3: for all entry in glove_out do
4: word = entry[0]
5: vector = entry[1:]
6: glove_dic[word] = vector
7: end for
8: initialize array embed_matrix of length(idx_dic) × 200
9: for all word, idx in idx_dic do

10: embedding = glove_dic[word]
11: if embedding != None then
12: embed_matrix[idx] = embedding
13: else
14: populate embed_matrix[idx] with zeros
15: end if
16: end for
17: return embed_matrix
18: end procedure

First, word and vector pairs are put into a dictionary glove_dic from the
pretrained model output glove_out. The embedding matrix is created using
idx_dic, a dictionary of words of the review sentences with indexes assigned

5https://archive.org/details/jawiki-20180301

67

to them, and glove_dic. If the encountered word from the review is out of
vocabulary (OOV), a zero vector is put the embed_matrix. The embedding
matrix represents feature space X .

The sentiment lexicon sent_lex is put into a dictionary pol_dic, and it is
used together with idx_dic to create the sentiment matrix sent_matrix that
is needed to retrieve polarity scores for the words from the review sentences.
The procedure of building sent_matrix is given by Algorithm 8.

Algorithm 8 Preparing sentiment matrix
1: procedure Prepare sentiment scores(sent_lex, idx_dic)
2: initialize dictionary pol_dic
3: for all entry in sent_lex do
4: word = entry[0]
5: pol = entry[4]
6: pol_dic[word] = pol
7: end for
8: initialize array sent_matrix of length(idx_dic) × 1
9: for all word, idx in idx_dic do

10: score = pol_dic[word]
11: lemma_score = pol_dic[lemmatize(word)]
12: if score != None then
13: sent_matrix[idx] = score
14: else if lemma_score != None then
15: sent_matrix[idx] = score
16: else
17: sent_matrix[idx] = 0
18: end if
19: end for
20: return sent_matrix
21: end procedure

In the case of OOV words, the sentiment score of its lemmatized form is used.
If the word lemma is still OOV, the score 0 is assigned to the word (for the
sentiment lexicon used, 0 indicates neutrality). The sentiment matrix obtained
represents feature space X ′.

The efficiency of the proposed approach was evaluated by comparing its
performance with two other models. In order to get a baseline accuracy, a
vanilla neural network with one hidden layer is used. The proposed
BiLSTM+CNN model was trained with and without incorporating knowledge
from the polarity dictionary, to assess the effect of integrating external

68

linguistic information into the network. To avoid overfitting, dropout was
applied after the recurrent layers with the probability of 0.3. 64 filters with
the size of 3 were used for the convolutional layer, and 128-sample batch size
was chosen for network training. To avoid overfitting on the training samples
with the proposed architecture, L2 regularization was applied to the
convolutional layer. Owing to the limited size of the dataset and the unequal
distribution of class samples, 10-fold cross-validation was implemented to
train and validate all models.

4.3.4 Results and Discussion
Each model were trained for 10 epochs, and validation accuracy was

recorded for all folds of cross-validation. Final accuracies were determined by
taking the mean of the accuracy scores over the 10 folds. The baseline neural
network with one hidden layer achieved a test accuracy of 67.02%. The
BiLSTM+CNN model resulted in a significantly higher accuracy compared to
the baseline, achieving 75.62%. The highest performance, however, was
obtained by using the polarity scores from the sentiment dictionary, resulting
in a 80.4% accuracy, outperforming the two other models by 13.38% and
4.78%. This indicates that sentiments that only capture polarities can help
classifying sentiments of higher levels of abstraction, and have a
complimentary function to word embeddings when the available dataset is
small.

Table 4.5: Class-wise performance measures for the proposed architecture.

Performance measure Precision Recall F1
praise 0.874 0.89 0.882
complaint 0.766 0.773 0.769
request 0.758 0.63 0.688
neutral 0.447 0.426 0.436
no sentiment 0.819 0.814 0.8166

The aggregated class-wise precision, recall and F1 values for the proposed
model are shown in the Table 4.5. Based on the experimental results, classifying
sentences for categories praise and complaint is a rather simple task for the given
corpus. For instance, the first sentence below is from the praise class, and the
second is from complaint:

1. “ホテルの周辺はサッカー場や公園で広々としており、駐車場も十分にあ

69

り当然無料でした。” (“There was a soccer field and a park nearby the
hotel, with sufficient amount of parking space which was of course, free.”)

2. “評価などを見て予約して楽しみにしてたけど食事も全く写真と違うか
らガッカリしました。” (“I made reservation based on the reviews and
was looking forward to it, but the food was completely different from the
pictures which was rather disappointing.”)

It has proved to be much more difficult to recognize neutral sentences. This
can be attributed to the fact that the annotation method differentiates
between categories of no sentiment and neutral. The neutral sentiment label
in the dataset means that the annotated statement is a mixture of positive
and negative sentiments, making it “neutral”. For example, the two sentences
below are labeled as neutral:

1. “夕食ルームサービスは全体として満足ですが、メインの鍋焼味噌カツは味
が濃すぎでした。” (“I was satisfied with the dinner room service overall,
but the hot pot miso pork cutlet’s taste was too strong.”).

2. “朝食のご飯が柔らかすぎ以外はとてもよかった。” (“Besides the rice
served at breakfast being too mushy, everything was very nice.”)

This particular characteristic, and the small number of samples makes this
class somewhat obscure, and especially difficult to predict. The inconsistency
of prediction performance is also reflected in the precision and recall scores over
the 10 folds of the cross validation, shown in Figure 4.13.

1 2 3 4 5 6 7 8 9 10
Folds of cross-validation

0.2

0.3

0.4

0.5

0.6

0.7

Pe
rfo

rm
an

ce
 sc

or
e

fo
r n

eu
tr
al

precision
recall

Figure 4.13: Inconsistent precision and recall scores over the cross validation
folds for the neutral category

70

Typically, sentences annotated as no sentiment are factual observations. The
lack of stronger emotional words, and the larger number of samples makes this
category easier to learn for the network. For instance:

1. “12月 25日に宿泊しました。” (“I stayed at the hotel on the 25th of
December.”)

2. “友達 3人での旅行で利用させていただきました。” (“I stayed there with
two of my friends.”)

The F1 score (Table 4.5) of class request is relatively high considering the
limited number of training examples. The explanation for this would be that
suggesting, proposing, demanding or requesting something puts restrictions on
the grammatical form of the sentence and word usage. For example; “...改
善する余地がある” (“...has a place for improvement”), or “...して欲しかった”
(“wanted them to...”), etc. For example:

1. “大浴場のロッカーは壊れているところがありますので、そろそろ直して欲
しいと思ってます。” (“Some of the lockers at the public bath are broken,
so it would be time to fix them.”)

2. “また、風呂場にはアメニティーを備えてもいいのかもと思いました。”
(“Also, I think it would be good to have bathroom amenities prepared for
the guests.”)

This characteristic makes the category unambiguous, and significantly simpler
to classify than neutral.

In this case study, the language model GloVe was implemented to acquire
word vectors, in order to demonstrate the feasibility of using external knowledge
in deep learning-based systems with a widely-used embedding model. Using
contextualized embeddings like BERT or ELMo, however, could be used to
increase overall performance.

4.4 Technical details
This section describes the technologies and techniques used in the case

studies, but were outside of the scope of Section 2.3 (Technological
background and challenges).

71

4.4.1 Performance metrics

Table 4.6: Confusion matrix for a binary classification task.

Predicted class

Actual class
Positive Negative

Positive True Positives (TP) False Negatives (FN)
Negative False Positives (FP) True Negatives (TN)

The performance metrics used in the case studies are precision, recall, F1
score, and accuracy. Given a confusion matrix for a binary classification
example (shown in Table 4.6), precision and recall are calculated as follows:

precision = TP

TP + FP
, (4.2)

recall = TP

TP + FN
. (4.3)

While TPs and TNs are the correctly predicted positive and negative values,
FPs and FNs are the falsely classified values. Precision defines the ratio of
correctly classified positive samples to the total positive samples predicted, and
recall signifies how many actual positives the machine learning model classified
as positives. The F1 score balances precision and recall, i.e. considers both FP
and FN:

F1 = 2recall × precision
recall + precision

. (4.4)

In the case of multi-class classification, calculating aggregated precision and
recall involves computing class-wise scores and averaging them for the total
number of classes. Accuracy is the number of the correctly classified samples
over the total number of samples, and can be represented in the terms of the
confusion matrix in the following way:

accuracy = TP + TN

TP + FP + TN + FN
. (4.5)

4.4.2 Cross-validation
Cross-validation is a method for evaluating the performance of machine

learning models. Although it is a widely used method to achieve unbiased

72

classification results, it is particularly useful when a limited amount of data is
available, or when the class distribution is skewed or imbalanced. Instead of
using a simple 70%/30% or 80%/20% train/test split, the data is resampled
into k folds, where “k” refers to the number of groups the data is split into to
evaluate the machine learning model, e.g. 5-fold cross-validation. The cross-
validation procedure that returns performance scores perf_scores is described
by Algorithm 9.

Algorithm 9 k-fold cross-validation
1: procedure cross-validation(k, data, model)
2: initialize list perf_scores
3: data = shuffle data
4: list folds = divide data into k unique groups
5: for all fold in folds do
6: test_data = fold
7: training_data = folds\fold
8: fit model on training_data
9: perf_score = evaluate model on test_data

10: append perf_score to perf_scores
11: end for
12: return perf_scores
13: end procedure

With the above-described procedure, each datapoint is used in the test set
one time, and k-1 times for training. The obtained perf_scores are averaged
over the k folds, giving an aggregated score. In the experiments conducted in
this study, stratified k-fold cross-validation is used to ensure obtaining unbiased
results. When the class distribution stays the same in each fold, the cross-
validation is stratified, and it is the preferred technique when dealing with
imbalanced datasets.

4.4.3 Krippendorff’s Alpha
Krippendorff’s alpha coefficient [124] is a statistic used to calculate inter-

annotator agreement (sometimes called inter-rater reliability). It can be applied
to any number of annotators with both small and large sample sizes on various
levels of measurement. The coefficient is given by:

α = 1−
∑Ω
ω=1,ω′=1 oωω′δ(ωω′)∑Ω
ω=1,ω′=1 eωω′δ(ωω′)

, (4.6)

73

where oωω′ is the frequency of paired values ω and ω′ from the coincidence
matrix of the annotation, with a total number of value pairs Ω. eωω′ denotes
the frequencies of expected coincidences of ω and ω′:

eωω′ =
∑m
i6=i′ Z(ωiu = ω) · Z(ωi′u = ω′)

n− 1 , (4.7)

where m is the number of annotators, n is the number of pairable values, and
ωiu and ωi′u are the values from coders i and i′ corresponding to the annotated
unit u. Function Z(·) returns 1 if · is true, 0 otherwise. δ(ωω′) from Equation
4.6 is a difference function between values ω and ω′, depending on the level of
measurement. For ordinal data, δ(ωω′) is defined as follows:

δ(ωω′) =
g=ω′∑
g=ω

ng −
nω + nω′

2

2

, (4.8)

where ng denotes the total number of frequencies corresponding to the paired
values for g. The minimum acceptable α is task specific, but the range of the
statistic is as follows:

• α = 1 suggests perfect inter-annotator agreement,

• α = 0 indicates that the annotation is not reliable, and the values are
unrelated,

• α < 0 implies that the disagreements among annotators are systematic,
and not random.

4.4.4 Recurrent and Long Short-Term Memory neural
networks

Recurrent Neural Network (RNN) is the preferred network architecture type
for processing sequential data (e.g. text, audio, various time-series data, etc.),
due to its internal memory that ensures that temporal dynamics is incorporated
to the network. A feed-forward network processes data in one direction, and
can only “remember” through the weight update during training. In contrast,
an RNN considers both current and past information when making predictions.
In practice, this means that a recurrent layer assigns weights to the current and
previous inputs. The main issue with standard RNNs is that gradient values
tend to become extremely small prematurely, which results in very long training
times, or making the updates insignificant, and the network basically stops

74

learning. This issue called the vanishing gradients [131], was eventually solved
by an extension of standard RNN called Long Short-Term Memory(LSTM) [70]
networks.

Figure 4.14: The repeating structure of LSTM building blocks with a detailed
block at time t

Figure 4.14 shows the repeating structure of LSTM blocks (sometimes called
a cell). The text is processed in a forward direction by the network, in the same
manner as humans read. There are three different inputs for an individual
LSTM block: the new input xt at a given time t, the previous hidden state
output ht−1, and the internal memory state ct−1 from the previous block. The
built-in memory determines how many new memories should be made, and the
amount of information retained from previous states. The × and + operations

75

are multiplication and summation, and b refers to the biases. A denotes the
activation functions, either sigmoid (σ) or hyperbolic tangent (tanh). The
outputs are the present block’s internal memory state ct and the hidden state
ht, which depends not only on the current input, but also on the previous
state. In order to calculate ct and ht, the activation vector ft of the forget gate,
the activation vector it of the input gate, the internal memory state activation
vector rt, and the output gate’s activation vector gt have to be computed:

ft = σ(Wf · [ht−1, xt] + bf), (4.9)
it = σ(Wi · [ht−1, xt] + bi), (4.10)

rt = tanh(Wc · [ht−1, xt] + br), (4.11)
gt = σ(Wg · [ht−1, xt] + bg), (4.12)

where W denotes the weight matrices to be learned during training.
Accordingly, the internal memory cell state and the hidden state output are
calculated as follows:

ct = ft · ct−1 + it · rt (4.13)
ht = gt · tanh(ct). (4.14)

Figure 4.15: The BiLSTM architecture unfolded for three steps

Figure 4.15 shows the unfolded structure of a BiLSTM network for three

76

timesteps. A BiLSTM block involves two different LSTM blocks, one for
forward and another for backward processing. This basically means that the
text is processed from left to right by one layer and from right to left by the
other. The two directions of a BiLSTM network do not possess direct links in
the network, and their hidden states are concatenated before passing them
into the next layer or activation function to get predictions y.

4.4.5 One-dimensional convolution and pooling
While two-dimensional Convolutional Neural Networks (CNN) are

particularly popular in fields such as object and face recognition,
one-dimensional CNN layers are widely used in language modeling, activity
recognition, signal processing etc. In the context of machine learning,
convolution is the mathematical operation of taking the dot product of a
weight matrix called a filter and a given input. Since the filter is always
smaller than the input, the operation is performed multiple times on the
input, resulting in a feature map. The stride of the convolution defines how
many “steps” the filter is shifted over the input for the next operation. For
example, if the input is an image and the stride is 1, the filter is moved 1 pixel
at a time. If the filter does not fit the input at the edges, the input is padded
with zeros to make it suitable for the filter. Therefore, the size of the feature
map depends on the filter size, and the stride.

The intuition behind the “filtered” representation of the input is that since
the same filter is applied several times, it will discover reoccurring features
regardless of their location. When the input is visual, usually two-dimensional
CNN is used (with filters specified in width × height). In the case of textual
inputs, the network must be one-dimensional (with filters specified in width).

Figure 4.16: Example of max and average pooling operations for a size 2 pooling
block with stride 2

77

Pooling operations are often performed on the acquired feature map to
downscale the feature space into a condensed representation. A simple
example is given in Figure 4.16 about average and max pooling for a 8 × 1
feature map, with a size 2 pooling block of stride 2. While max pooling takes
the maximum value of the pooling block, average pooling outputs the mean of
the observed block to downscale the feature space. In case study II. (Section
4.3), the dimensions of the pooling block and its stride is identical to the filter
size and stride.

4.4.6 Optimizer, loss and activation functions
The optimizer used in both case studies in the training phase is Adaptive

Moment Estimate (Adam) [132]. Unlike other adaptive optimizers like Adadelta
and RMSprop, Adam keeps updating an exponentially decaying average of the
past gradients (first moment) and the past squared gradients (second moment),
m and v, respectively. The update for weight w at training iteration t + 1 is
given by:

wt+1 ← wt − η
[(mt+1

w

1− βt+1
1

)/(√√√√ vt+1
w

1− βt+1
2

+ ε
)]
, (4.15)

where η is the learning rate, and ε is a scalar (usually 10−8) to prevent division
by 0. mt+1

w and vt+1
w are defined as:

mt+1
w ← β1m

t
w + (1− β1)∇wLt, (4.16)

vt+1
w ← β2v

t
w + (1− β2)(∇wLt)2, (4.17)

where L is the loss function, and β1 and β2 are the decaying factors for m and
v. For the experiments, both beta parameters are set to close to 1, as it was
suggested by the original paper [132] (β1 = 0.9, β2 = 0.999). In both case
studies, categorical cross-entropy was used for loss functions L, as it is suitable
for multi-class classification tasks. It is defined as follows:

Li = − 1
N

N∑
j=1

C∑
c

tj,c log(pj,c), (4.18)

where j ∈ {1, 2, 3, ..., N} is a datapoint, and c ∈ {1, 2, 3, ..., C} is one of the
classes. While tj,c is the target function marking that j belongs to c, pj,c, is
the probability of j belonging to c, predicted by the network. The activation
function usually used together with categorical cross-entropy is softmax. The
softmax function converts the output of the last feed-forward layer into

78

probabilities associated with the classes to be predicted, and it is given by:

f(x)i = exj∑K
k=1 e

xk
, (4.19)

where x is the reference vector of the output, and i ∈ {1, 2, 3, ..., K} is the
output index. As outputs are representing probabilities, the function is suitable
for multi-class classification, unlike e.g. the sigmoid function.

79

Chapter 5

Overall discussion

Discovering product features is a powerful method for analyzing reviews
and assessing “helpfulness” [47, 133]. The same attribute, however, can be
expressed in different ways (synonyms, implicitly or explicitly, referencing,
etc.), and apparently different attributes may still be referencing the same
fundamental aspect. The meaning and usage of words can be different
depending on the domain and the target audience, and the appearance of
words is probabilistic. Therefore, even though a word is not widely used in a
specific domain, there is always some chance to encounter that word. The
proposed framework captures this concept by the theoretical model of
pertinence (Section 3.2). Word semantics and pragmatics are incorporated
into the domain V and target population T specific embeddings ΨT

V , and the
word weights ΦT

V are computed to represent the probabilistic nature of word
occurrence for the given V and T . Accordingly, the proposed model of
pertinence clearly differentiates between the quality of reviews perceived by
product designers and the review quality seen by customers, which is known
to be greatly different [28,107], while still often neglected in review helpfulness
studies (Section 2.2).

In case study I., although fundamental product attributes in the domain of
Digital cameras and Accessories received the largest weights (words such as
sensor, aperture, zoom, exposure, mount, iso, etc.), verbs, adjectives, and
adverbs which are not inherently product attributes are also observed even in
the top few hundred terms (of the total of ~13,000 terms). The term
compensate, for example, can hardly be deemed as a product attribute,
however, depending on the context, it could be an important word in the
domain. For instance, “shutter changes automatically to compensate”,
“compensate for exposure errors”, “to compensate, use lower ISO”, etc. In
prior work, usually, only a couple of hand-selected features (mostly only
nouns) are considered for review quality assessment, without assigning weights
or incorporating semantic information into the feature representations.

The language model BERT could not be retrained for the target task
without quantifying sentence pertinence and building a pre-annotated dataset.
Experimental results showed that only fine-tuning the language model results
in a worse performance than a baseline SVM, due to negative transfer

80

(Section 4.2.4). Furthermore, since the proposed framework is sentence-based
to make it suitable for requirements engineering, selecting a few thousands of
sentences for annotation would also entail manually scanning over thousands
or even tens of thousands of reviews to construct a representative data set, if
sentences are not pre-annotated first.

Although in a real word scenario when developing tools for requirements
engineering, not all parts of the proposed framework would be utilized, to
examine the practical viability of the proposed framework for potential
deployment, system operation has been simulated for the system introduced
in case study I. Figure 5.1 demonstrates how the runtime t changes with an
increasing number of sentences n with a batch size of 64 sentences used for
model prediction.

102 103 104 105

Number of sentences

50

100

150

200

250

Ru
nt

im
e

in
 se

co
nd

s

Figure 5.1: An example of system runtime for an increasing number of input
sentences

While system runtime for 100 sentences to process was 26.81 s, for n=5000,
it was still only 32.88 s. The reason for this is that preparing and loading the
model is the same in all cases, and for a smaller to moderate amount of data,
this takes a longer time than the actual processing and prediction. For a greater
number of sentences, while more time is spent on applying the fine-tuned BERT-
Base model, system runtime was still less than 5 minutes (for example, t=265.48
for n=200,000). This experiment showed that, once the model is loaded, the
system based on the proposed framework would label the newly posted reviews
in almost real-time, and could even be used to label relatively large datasets in
a couple of minutes.

81

Considering the GPU memory needed and the time required to train BERT-
Large [114], experiments have been performed with BERT-Base. While in most
cases, the 24-layer BERT-Large does not improve classification performance
substantially, it allows for 1 to 5% improvement depending on the application
[114]. Thus, using BERT-Large with the proposed method to acquire domain
and target population specific word embeddings can potentially improve the
performance of the pertinence quantification algorithm.

As argued in Section 2.1, although it eliminates the need of human
annotation, converting user ratings (usually stars) from the reviews into labels
is not suitable for requirements engineering, as it is an imprecise and
unreliable measure of customer sentiment that usually involves only binary
classification and it is on the whole review level. While sentence-based
approaches exist, the reviewed literature does not address the possibility of
integrating external knowledge directly into deep learning models to capture
categories of higher levels of abstraction (e.g. emotions), and usually only rely
on features obtained from vectorizing the reviews. Case study II. addresses
this issue by implementing the proposed framework to incorporate external
information into a deep learning model (Section 3.3.2.3). Experimental results
demonstrated that the proposed approach for expanding the feature space of
deep neural networks is appropriate for multi-class sentence level sentiment
analysis, especially when a limited amount of samples are available for the
classes. While prediction performance will not reach the levels of a model that
is trained on millions of datapoints using the review stars (particularly in the
case when there are classes with extremely low amount of instances), the
obtained model would be still more useful in the context of requirements
engineering, as it is fine-grained and does not require substantial human
intervention to analyze the reviews further. For example, sentences about
requesting, complaining, suggestions, etc., could be used during requirements
specification and validation. Sentences that praise some aspects of a product
or service could be used to learn about customer preferences and would be
useful during requirements elicitation.

82

Chapter 6

Conclusions

In this chapter, the contributions of this work are highlighted, and the
limitations of the proposed approach with possible future work directions are
discussed.

In the given study, a conceptual framework is proposed for developing
requirements engineering tools that would reduce the information overload
associated with online customer reviews and help companies elicit valuable
knowledge about customer needs. Related studies focusing on the extraction
and evaluation of customer needs suffer from several limitations:

• Despite most of the information customer reviews contain are not
relevant for requirements engineering purposes, assessing review quality
is a seldom-discussed topic in the related literature. The prior work
addressing this issue usually apply methods that require extensive
human involvement, yet do not differentiate between the quality seen by
customers and the quality perceived by product designers. Furthermore,
review quality assessment is usually performed on the document level,
which is inaccurate and ambiguous.

• Converting the review stars to labels is a convenient way to avoid
human annotation and to use large datasets, so robust deep learning
models can be built. For this reason, most of the studies analyzing
review sentiment aim at increasing classification performance of binary
or three-class schemes on the document level. However, even if the
observed classification accuracy is high, such methods are not
fine-grained enough for industrial applications.

6.1 Contributions
Major contributions of the presented study are summarized as follows:

1. In order to make the framework fit for requirements engineering, it
utilizes the proposed theoretical model of pertinence to quantify review
quality automatically with a novel algorithm that uses domain and
target population specific word embeddings and weights.

83

- Experimental results of case study I. demonstrate that the
proposed approach is appropriate for measuring review quality on
the sentence level. Besides using it in various data mining projects
to assess the quality of large datasets, it can be used as an
automatic pre-annotation technique for differentiating between
multiple levels of review informativeness using the suggested
transfer learning strategy.

2. An original approach was proposed to incorporate external knowledge
into machine learning models by expanding their feature space, allowing
one to efficiently apply deep learning on small datasets that are human-
annotated with labels more relevant for companies than the labels created
from stars.

- Experimental results of case study II. show that the approach is
suitable for integrating additional semantic information into the
training process using the proposed network architecture, and
would benefit companies dealing with small, human-annotated
datasets for customer sentiment prediction.

6.2 Limitations and future work

6.2.1 Towards closer approximation of document
pertinence

By definition, it is impossible to have access to absolutely all documents
(that exist and will exist) for a given domain V and target population T to 100%
accurately model ΨT

V and ΦT
V . Therefore, pertinence as it is formulated in the

theoretical model cannot be precisely calculated and can only be approximated.
The performance of the proposed algorithm for quantifying pertinence

(Section 3.3) mainly depends on three factors:

a.) The representative power of the stationary word vectors

b.) The weight calculation method

c.) Initial review dataset size

In the case of the proposed approach (Section 3.3.2.1) to acquire stationary
vectors from a contextual and sentence-based embedding model, the
representative power of the vectors (a.)) depends on the performance of
state-of-the-art embedding models, i.e. current state of language modeling

84

technology. Similar to most word weighting methods, such as the widely-used
tf-idf and its variations, the weighting method (b.)) used in the proposed
framework assumes mutual independence between the scored words. As it was
argued for word vectors, however, this is clearly not the case for natural
languages. Thus, future work would include using an alternative approach for
weight calculation. Since the outputs of the pertinence quantification
procedure would not be in any predefined range without normalization, it is
essential to use a large review corpus (c.)) initially, to obtain representative
pertinence scores for a given V and T . Although the process does not require
any human annotation, this can still be an issue with low-resource languages
where large datasets for a specific product category are not necessarily
available.

6.2.2 Contextualized word embeddings with polarities
The part of the proposed framework that involves incorporating external

knowledge into a deep learning model is designed so that the word
embeddings and feature encodings are first processed in separate pipelines.
The reason for this is to let the network weigh the importances of the two
different feature representations X and X ′. The drawback of this approach is
that the appropriate balance between the two feature representations may
vary from sentence to sentence (even in the case of the same class), and the
suggested method cannot account for such cases. As an alternative approach,
the external knowledge could be integrated into a sentence-based
contextualized embedding model, e.g. element-wise summation with BERT
vectors, for potential performance improvement.

85

List of publications related to the dissertation
• The concept of pertinence and the results of preliminary experiments

with pertinence quantification using the Amazon review dataset have been
reported by the author in:
M. Kovacs and V. V. Kryssanov, “Towards assessing online customer
reviews from the product designer’s viewpoint,” in Springer Lecture Notes
in Computer Sciece: Conference on e-Business, e-Services and e-Society,
pp. 62-74, 2019.

• The main idea of incorporating external data into a deep learning model
using the proposed network architecture with a sentiment lexicon was
introduced by the author in:
M. Kovacs and V. V. Kryssanov, “Expanding the feature space of deep
neural networks for sentiment classification,” International Journal of
Machine Learning and Computing, vol. 10, no. 2, pp. 271-276, 2020.

86

Bibliography

[1] C. P. Blocker and D. J. Flint, “Customer segments as moving targets:
Integrating customer value dynamism into segment instability logic,”
Industrial Marketing Management, vol. 36, no. 6, pp. 810–822, 2007.

[2] C. Lorenzo-Romero, E. Constantinides, and L. A. Brünink, “Co-
creation: Customer integration in social media based product and
service development,” Procedia - Social and Behavioral Sciences, vol. 148,
pp. 383–396, 2014.

[3] B. Kapoor, “Business intelligence and its use for human resource
management,” The Journal of Human Resource and Adult Learning, vol. 6,
no. 2, pp. 21–30, 2010.

[4] X. Tian and L. Liu, “Does big data mean big knowledge? integration
of big data analysis and conceptual model for social commerce research,”
Electronic Commerce Research, vol. 17, no. 1, pp. 169–183, 2017.

[5] G. Kotonya and I. Sommerville, Requirements engineering: processes and
techniques. John Wiley & Sons, Inc., 1998.

[6] P. Loucopoulos and V. Karakostas, System requirements engineering.
McGraw-Hill, Inc., 1995.

[7] J. Jiao and C.-H. Chen, “Customer requirement management in product
development: a review of research issues,” Concurrent Engineering,
vol. 14, no. 3, pp. 173–185, 2006.

[8] B. Verworn, C. Herstatt, and A. Nagahira, “The fuzzy front end of
japanese new product development projects: impact on success and
differences between incremental and radical projects,” R&d Management,
vol. 38, no. 1, pp. 1–19, 2008.

[9] K. Laudon and C. Traver, E-Commerce: Business, Technology, Society
(3rd Edition). New Jersey, USA: Prentice-Hall, 2006.

[10] V. Mahajan, E. Muller, and R. A. Kerin, “Introduction strategy for
new products with positive and negative word-of-mouth,” Management
Science, vol. 30, no. 12, pp. 1389–1404, 1984.

87

[11] R. Robinson, T.-T. Goh, and R. Zhang, “Textual factors in online product
reviews: a foundation for a more influential approach to opinion mining,”
Electronic Commerce Research, vol. 12, no. 3, pp. 301–330, 2012.

[12] M. Trusov, R. E. Bucklin, and K. Pauwels, “Effects of word-of-mouth
versus traditional marketing: Findings from an internet social networking
site,” Journal of Marketing, vol. 73, no. 5, pp. 90–102, 2009.

[13] L. Zhu, G. Yin, and W. He, “Is this opinion leader’s review useful?
peripheral cues for online review helpfulness,” Journal of Electronic
Commerce Research, vol. 15, pp. 267–280, 2014.

[14] Y. Shen, S. Li, and M. DeMoss, “The effect of quantitative electronic word
of mouth on consumer perceived product quality,” International Journal
of Management and Marketing Research, vol. 5, no. 2, pp. 19–29, 2012.

[15] M. D. Sotiriadis and C. Van Zyl, “Electronic word-of-mouth and online
reviews in tourism services: the use of twitter by tourists,” Electronic
Commerce Research, vol. 13, no. 1, pp. 103–124, 2013.

[16] S. Moore, “Attitude predictability and helpfulness in online reviews: The
role of explained actions and reactions,” Journal of Consumer Research,
vol. 42, pp. 30–44, 2015.

[17] W. W. Moe and M. Trusov, “The value of social dynamics in online
product ratings forums,” Journal of Marketing Research, vol. 48, no. 3,
pp. 444–456, 2011.

[18] Y. Liu, “Word-of-mouth for movies: Its dynamics and impact on box
office revenue,” Journal of Marketing, vol. 70, pp. 74–89, 2006.

[19] C. Dellarocas, X. M. Zhang, and N. Awad, “Exploring the value of
online product reviews in forecasting sales: The case of motion pictures,”
Journal of Interactive Marketing, vol. 21, pp. 23–45, 2007.

[20] J. Jin, P. Ji, and R. Gu, “Identifying comparative customer requirements
from product online reviews for competitor analysis,” Engineering
Applications of Artificial Intelligence, vol. 49, pp. 61–73, 2016.

[21] J. Qi, Z. Zhang, S. Jeon, and Y. Zhou, “Mining customer requirements
from online reviews: A product improvement perspective,” Information
& Management, vol. 53, no. 8, pp. 951–963, 2016.

88

[22] C. C. Aguwa, L. Monplaisir, and O. Turgut, “Voice of the customer:
Customer satisfaction ratio based analysis,” Expert Systems with
Applications, vol. 39, no. 11, pp. 10112–10119, 2012.

[23] Y.-J. Park, “Predicting the helpfulness of online customer reviews across
different product types,” Sustainability, vol. 10, p. 1735, 2018.

[24] O. Netzer, R. Feldman, J. Goldenberg, and M. Fresko, “Mine your own
business: Market-structure surveillance through text mining,” Marketing
Science, vol. 31, no. 3, pp. 521–543, 2012.

[25] H. Zhang, H. Rao, and J. Feng, “Product innovation based on online
review data mining: a case study of huawei phones,” Electronic Commerce
Research, vol. 18, no. 1, pp. 3–22, 2018.

[26] F. Ferreira, J. Faria, A. Azevedo, and A. L. Marques, “Product
lifecycle management in knowledge intensive collaborative environments,”
International Journal of Information Management, vol. 37, no. 1,
pp. 1474–1487, 2017.

[27] X. Yu, Y. Liu, X. Huang, and A. An, “Mining online reviews for
predicting sales performance: A case study in the movie domain,”
IEEE Transactions on Knowledge and Data Engineering, vol. 24, no. 4,
pp. 720–734, 2012.

[28] I. A. Yagci and S. Das, “Design feature opinion cause analysis: a
method for extracting design intelligence from web reviews,” International
Journal of Knowledge and Web Intelligence, vol. 5, no. 2, pp. 127–145,
2015.

[29] J. Zhan, H. T. Loh, and Y. Liu, “Gather customer concerns from online
product reviews – a text summarization approach,” Expert Systems with
Applications, vol. 36, no. 2, pp. 2107–2115, 2009.

[30] J. Polpinij and A. K. Ghose, “An ontology-based sentiment classification
methodology for online consumer reviews,” in 2008 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology, vol. 1, pp. 518–524, 2008.

[31] A. R. Sulthana and R. Subburaj, “An improvised ontology based k-means
clustering approach for classification of customer reviews,” Indian Journal
of Science and Technology, vol. 9, no. 15, pp. 1–6, 2016.

89

[32] R. Alfrjani, T. Osman, and G. Cosma, “A hybrid semantic knowledgebase-
machine learning approach for opinion mining,” Data & Knowledge
Engineering, vol. 121, pp. 88–108, 2019.

[33] J. Villena-Román, S. Collada-Pérez, S. Lana-Serrano, and J. C. González-
Cristóbal, “Hybrid approach combining machine learning and a rule-based
expert system for text categorization,” in Twenty-Fourth International
FLAIRS Conference, 2011.

[34] A. Qazi, K. Syed, R. Raj, E. Cambria, M. Tahir, and D. Alghazzawi,
“A concept-level approach to the analysis of online review helpfulness,”
Computers in Human Behavior, vol. 58, pp. 75–81, 2016.

[35] Y. Liu, X. Huang, A. An, and X. Yu, “Modeling and predicting the
helpfulness of online reviews,” in Proceedings of the 2008 Eighth IEEE
International Conference on Data Mining, ICDM ’08, pp. 443–452, 2008.

[36] O. Tsur and A. Rappoport, “Revrank: A fully unsupervised algorithm
for selecting the most helpful book reviews,” in Proceedings of the Third
International Conference on Weblogs and Social Media, ICWSM 2009,
2009.

[37] A. Ghose and P. Ipeirotis, “Estimating the helpfulness and economic
impact of product reviews: Mining text and reviewer characteristics.,”
IEEE Trans. Knowl. Data Eng., vol. 23, pp. 1498–1512, 2011.

[38] Y. Dezhi, S. Bond, and Z. Han, “Dreading and ranting: the distinct effects
of anxiety and anger in online seller reviews,” in International Conference
on Information Systems 2011 Shanghai, vol. 9, pp. 1–20, 2011.

[39] D. Godes and J. C. Silva, “Sequential and temporal dynamics of online
opinion,” Marketing Science, vol. 31, pp. 448–473, 2012.

[40] H. Lee, K. Choi, D. Yoo, Y. Suh, S. Lee, and G. He, “Recommending
valuable ideas in an open innovation community: A text mining approach
to information overload problem,” Industrial Management & Data
Systems, vol. 118, no. 4, pp. 683–699, 2018.

[41] X. Sun, M. Han, and J. Feng, “Helpfulness of online reviews: Examining
review informativeness and classification thresholds by search products
and experience products,” Decision Support Systems, vol. 124, 2019.

90

[42] S. P. Eslami, M. Ghasemaghaei, and K. Hassanein, “Which online reviews
do consumers find most helpful? a multi-method investigation,” Decision
Support Systems, vol. 113, pp. 32–42, 2018.

[43] R. Filieri, “What makes online reviews helpful? a diagnosticity-adoption
framework to explain informational and normative influences in e-wom,”
Journal of Business Research, vol. 68, 2014.

[44] A. Huang, K. Chen, D. Yen, and T. Tran, “A study of factors that
contribute to online review helpfulness,” Computers in Human Behavior,
vol. 48, pp. 17–27, 2015.

[45] H. Hong, D. Xu, G. Wang, and W. Fan, “Understanding the determinants
of online review helpfulness: A meta-analytic investigation,” Decision
Support Systems, vol. 102, pp. 1–11, 2017.

[46] J. Mackiewicz and D. Yeats, “Product review users’ perceptions of review
quality: The role of credibility, informativeness, and readability,” IEEE
Transactions on Professional Communication, vol. 57, no. 4, pp. 309–324,
2014.

[47] J. Liu, Y. Cao, C.-Y. Lin, Y. Huang, and M. Zhou, “Low-quality product
review detection in opinion summarization,” in Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, pp. 334–342, 2007.

[48] Y. Liu, J. Jin, P. Ji, J. A. Harding, and R. Y. K. Fung, “Identifying
helpful online reviews: A product designer’s perspective,” Computer-
Aided Design, vol. 45, no. 2, pp. 180–194, 2013.

[49] Q. Liu, G. Feng, N. Wang, and G. K. Tayi, “A multi-objective model
for discovering high-quality knowledge based on data quality and prior
knowledge,” Information Systems Frontiers, vol. 20, no. 2, pp. 401–416,
2018.

[50] A. N. Abukhalifeh and A. P. M. Som, “Servqual: A multiple–item
scale for measuring customer perceptions of restaurants’ service quality,”
Advances in Environmental Biology, vol. 9, no. 3, pp. 160–162, 2015.

[51] L. Bovey, K. Holt, H. Geschka, and G. Peterlongo, “Need assessment—
a key to user-oriented product innovation,” R&D Management, vol. 15,
no. 3, pp. 258a–258a, 1985.

91

[52] D. Godes and D. Mayzlin, “Using online conversations to study word-of-
mouth communication,” Marketing science, vol. 23, no. 4, pp. 545–560,
2004.

[53] E. T. Bradlow, User-Generated Content: The ”Voice of the Customer”
in the 21st Century, pp. 27–29. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010.

[54] J. Li and L. Zhan, “Online persuasion: How the written word drives
wom: Evidence from consumer-generated product reviews,” Journal of
Advertising Research, vol. 51, no. 1, pp. 239–257, 2011.

[55] X. Li and L. M. Hitt, “Price effects in online product reviews: An
analytical model and empirical analysis,” MIS quarterly, vol. 34, no. 4,
pp. 809–831, 2010.

[56] C.-H. Chen, L. P. Khoo, and W. Yan, “A strategy for acquiring customer
requirement patterns using laddering technique and art2 neural network,”
Advanced Engineering Informatics, vol. 16, no. 3, pp. 229–240, 2002.

[57] C.-H. Chen and W. Yan, “An in-process customer utility prediction
system for product conceptualisation,” Expert Systems with Applications,
vol. 34, no. 4, pp. 2555–2567, 2008.

[58] T. Lee and E. T. Bradlow, “Automatic construction of conjoint attributes
and levels from online customer reviews,” University Of Pennsylvania,
The Wharton School Working Paper, 2007.

[59] K. Zhang, R. Narayanan, and A. N. Choudhary, “Voice of the customers:
Mining online customer reviews for product feature-based ranking,”
WOSN, vol. 10, pp. 11–11, 2010.

[60] T. Lang and M. Rettenmeier, “Understanding consumer behavior with
recurrent neural networks,” in Workshop on Machine Learning Methods
for Recommender Systems, 2017.

[61] H. Salehinejad and S. Rahnamayan, “Customer shopping pattern
prediction: A recurrent neural network approach,” in 2016 IEEE
Symposium Series on Computational Intelligence (SSCI), pp. 1–6, 2016.

[62] L. M. Badea, “Predicting consumer behavior with artificial neural
networks,” Procedia Economics and Finance, vol. 15, pp. 238–246, 2014.

92

[63] A. Ansari and A. Riasi, “Modelling and evaluating customer loyalty using
neural networks: Evidence from startup insurance companies,” Future
Business Journal, vol. 2, no. 1, pp. 15–30, 2016.

[64] A. Larasati, C. DeYong, and L. Slevitch, “The application of
neural network and logistics regression models on predicting customer
satisfaction in a student-operated restaurant,” Procedia-Social and
Behavioral Sciences, vol. 65, pp. 94–99, 2012.

[65] K. Ravi and V. Ravi, “A survey on opinion mining and sentiment analysis:
tasks, approaches and applications,” Knowledge-Based Systems, vol. 89,
pp. 14–46, 2015.

[66] B. Liu, “Sentiment analysis: mining sentiments, opinions, and emotions,”
2015.

[67] N. Hu, N. S. Koh, and S. K. Reddy, “Ratings lead you to the product,
reviews help you clinch it? the mediating role of online review sentiments
on product sales,” Decision support systems, vol. 57, pp. 42–53, 2014.

[68] W. Medhat, A. Hassan, and H. Korashy, “Sentiment analysis algorithms
and applications: A survey,” Ain Shams engineering journal, vol. 5, no. 4,
pp. 1093–1113, 2014.

[69] Z. Hailong, G. Wenyan, and J. Bo, “Machine learning and lexicon
based methods for sentiment classification: A survey,” in 2014 11th web
information system and application conference, pp. 262–265, IEEE, 2014.

[70] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[71] V. Gavrishchaka, Z. Yang, R. Miao, and O. Senyukova, “Advantages
of hybrid deep learning frameworks in applications with limited data,”
International Journal of Machine Learning and Computing, vol. 8, no. 6,
pp. 549–558, 2018.

[72] X. Wang, W. Jiang, and Z. Luo, “Combination of convolutional and
recurrent neural network for sentiment analysis of short texts,” in
Proceedings of COLING 2016, the 26th international conference on
computational linguistics: Technical papers, pp. 2428–2437, 2016.

[73] X. Glorot, A. Bordes, and Y. Bengio, “Domain adaptation for large-scale
sentiment classification: A deep learning approach,” in ICML, 2011.

93

[74] H. Chen, M. Sun, C. Tu, Y. Lin, and Z. Liu, “Neural sentiment
classification with user and product attention,” in Proceedings of the
2016 conference on empirical methods in natural language processing,
pp. 1650–1659, 2016.

[75] C. Dos Santos and M. Gatti, “Deep convolutional neural networks for
sentiment analysis of short texts,” in Proceedings of COLING 2014, the
25th International Conference on Computational Linguistics: Technical
Papers, pp. 69–78, 2014.

[76] J. Wang, L.-C. Yu, K. R. Lai, and X. Zhang, “Dimensional sentiment
analysis using a regional cnn-lstm model,” in Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pp. 225–230, 2016.

[77] S. Poria, E. Cambria, G. Winterstein, and G.-B. Huang, “Sentic patterns:
Dependency-based rules for concept-level sentiment analysis,” Knowledge-
Based Systems, vol. 69, pp. 45–63, 2014.

[78] E. Cambria, D. Olsher, and D. Rajagopal, “Senticnet 3: a common and
common-sense knowledge base for cognition-driven sentiment analysis,” in
Proceedings of the twenty-eighth AAAI conference on artificial intelligence,
pp. 1515–1521, 2014.

[79] O. Appel, F. Chiclana, J. Carter, and H. Fujita, “A hybrid approach to
the sentiment analysis problem at the sentence level,” Knowledge-Based
Systems, vol. 108, pp. 110–124, 2016.

[80] S. Baccianella, A. Esuli, and F. Sebastiani, “Sentiwordnet 3.0: an
enhanced lexical resource for sentiment analysis and opinion mining.,”
in Lrec, vol. 10, pp. 2200–2204, 2010.

[81] M. Huang, Q. Qian, and X. Zhu, “Encoding syntactic knowledge in neural
networks for sentiment classification,” ACM Transactions on Information
Systems (TOIS), vol. 35, no. 3, pp. 1–27, 2017.

[82] C. C. Chen and Y.-D. Tseng, “Quality evaluation of product reviews using
an information quality framework,” Decision Support Systems, vol. 50,
no. 4, pp. 755–768, 2011.

[83] J. P. Singh, S. Irani, N. P. Rana, Y. K. Dwivedi, S. Saumya, and P. K.
Roy, “Predicting the “helpfulness” of online consumer reviews,” Journal
of Business Research, vol. 70, pp. 346–355, 2017.

94

[84] Y. Yang, Y. Yan, M. Qiu, and F. Bao, “Semantic analysis and helpfulness
prediction of text for online product reviews,” in Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics ACL,
pp. 38–44, 2015.

[85] A. Ghose and P. G. Ipeirotis, “Estimating the helpfulness and economic
impact of product reviews: Mining text and reviewer characteristics,”
IEEE Transactions on Knowledge and Data Engineering, vol. 23, no. 10,
pp. 1498–1512, 2011.

[86] Y. Yang, Y. Yan, M. Qiu, and F. Bao, “Semantic analysis and helpfulness
prediction of text for online product reviews,” in Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pp. 38–44, 2015.

[87] C. Danescu-Niculescu-Mizil, G. Kossinets, J. Kleinberg, and L. Lee,
“How opinions are received by online communities: A case study on
Amazon.Com helpfulness votes,” in Proceedings of the 18th International
Conference on World Wide Web, pp. 141–150, 2009.

[88] S. Krishnamoorthy, “Linguistic features for review helpfulness prediction,”
Expert Systems with Applications, vol. 42, no. 7, pp. 3751–3759, 2015.

[89] L. Martin and P. Pu, “Prediction of helpful reviews using emotions
extraction,” in Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, pp. 1551–1557, 2014.

[90] M. P. O’Mahony and B. Smyth, “Learning to recommend helpful hotel
reviews,” in Proceedings of the third ACM conference on Recommender
systems, pp. 305–308, 2009.

[91] M. Malik and A. Hussain, “Helpfulness of product reviews as a function of
discrete positive and negative emotions,” Computers in Human Behavior,
vol. 73, pp. 290–302, 2017.

[92] S. M. Mudambi and D. Schuff, “What makes a helpful online review?
A study of customer reviews on amazon.com,” MIS Quarterly, vol. 34,
pp. 185–200, 2010.

[93] D. Yin, S. D. Bond, and H. Zhang, “Anxious or angry? effects of discrete
emotions on the perceived helpfulness of online reviews,” MIS quarterly,
vol. 38, no. 2, pp. 539–560, 2014.

95

[94] Y.-J. Park and K.-j. Kim, “Impact of semantic characteristics on
perceived helpfulness of online reviews,” Journal of Intelligence and
Information Systems, vol. 23, no. 3, pp. 29–44, 2017.

[95] Q. Cao, W. Duan, and Q. Gan, “Exploring determinants of voting for the
“helpfulness” of online user reviews: A text mining approach,” Decision
Support Systems, vol. 50, no. 2, pp. 511–521, 2011.

[96] A. Y. Chua and S. Banerjee, “Understanding review helpfulness as a
function of reviewer reputation, review rating, and review depth,” Journal
of the Association for Information Science and Technology, vol. 66, no. 2,
pp. 354–362, 2015.

[97] S. Zhou and B. Guo, “The order effect on online review helpfulness: A
social influence perspective,” Decision Support Systems, vol. 93, pp. 77–87,
2017.

[98] M. Siering, J. Muntermann, and B. Rajagopalan, “Explaining and
predicting online review helpfulness: The role of content and reviewer-
related signals,” Decision Support Systems, vol. 108, pp. 1–12, 2018.

[99] M. Salehan and D. J. Kim, “Predicting the performance of online
consumer reviews: A sentiment mining approach to big data analytics,”
Decision Support Systems, vol. 81, pp. 30–40, 2016.

[100] M. Weimer and I. Gurevych, “Predicting the perceived quality of web
forum posts,” in Proceedings of the conference on recent advances in
natural language processing, pp. 643–648, 2007.

[101] S. Lee and J. Y. Choeh, “Predicting the helpfulness of online reviews using
multilayer perceptron neural networks,” Expert Systems with Applications,
vol. 41, no. 6, pp. 3041–3046, 2014.

[102] M. E. Haque, M. E. Tozal, and A. Islam, “Helpfulness prediction of online
product reviews,” in Proceedings of the ACM Symposium on Document
Engineering 2018, pp. 1–4, 2018.

[103] Y. Liu, J. Jin, P. Ji, J. A. Harding, and R. Y. Fung, “Identifying
helpful online reviews: a product designer’ s perspective,” Computer-
Aided Design, vol. 45, no. 2, pp. 180–194, 2013.

[104] N. Gobi and A. Rathinavelu, “Analyzing cloud based reviews for product
ranking using feature based clustering algorithm,” Cluster Computing,
vol. 22, no. 3, pp. 6977–6984, 2019.

96

[105] C. C. Chen and Y.-D. Tseng, “Quality evaluation of product reviews using
an information quality framework,” Decision Support Systems, vol. 50,
no. 4, pp. 755–768, 2011.

[106] S. Saumya, J. P. Singh, A. M. Baabdullah, N. P. Rana, and Y. K. Dwivedi,
“Ranking online consumer reviews,” Electronic Commerce Research and
Applications, vol. 29, pp. 78–89, 2018.

[107] I. A. Yagci and S. Das, “Measuring design-level information quality in
online reviews,” Electronic Commerce Research and Applications, vol. 30,
pp. 102–110, 2018.

[108] Y.-P. Lin and T.-P. Jung, “Improving eeg-based emotion classification
using conditional transfer learning,” Frontiers in human neuroscience,
vol. 11, p. 334, 2017.

[109] M. T. Rosenstein, Z. Marx, L. P. Kaelbling, and T. G. Dietterich, “To
transfer or not to transfer,” in NIPS 2005 workshop on transfer learning,
vol. 898, pp. 1–4, 2005.

[110] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on knowledge and data engineering, vol. 22, no. 10,
pp. 1345–1359, 2009.

[111] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Advances in neural information processing
systems, pp. 3111–3119, 2013.

[112] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for
word representation,” in Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pp. 1532–1543, 2014.

[113] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” CoRR,
vol. abs/1802.05365, 2018.

[114] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[115] M. Kovacs and V. V. Kryssanov, “Towards assessing online customer
reviews from the product designer’s viewpoint,” in Springer Lecture Notes

97

in Computer Sciece: Conference on e-Business, e-Services and e-Society,
pp. 62–74, 2019.

[116] M. Kovacs and V. V. Kryssanov, “Expanding the feature space of deep
neural networks for sentiment classification,” International Journal of
Machine Learning and Computing, vol. 10, no. 2, pp. 271–276, 2020.

[117] G. O. Diaz and V. Ng, “Modeling and prediction of online product review
helpfulness: a survey,” in Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 698–708, 2018.

[118] P. Nelson, “Information and consumer behavior,” Journal of political
economy, vol. 78, no. 2, pp. 311–329, 1970.

[119] L. Huang, C.-H. Tan, W. Ke, and K.-K. Wei, “Do we order product review
information display? how?,” Information & management, vol. 51, no. 7,
pp. 883–894, 2014.

[120] R. L. Thorndike, “Who belongs in the family?,” Psychometrika, vol. 18,
no. 4, pp. 267–276, 1953.

[121] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba,
and S. Fidler, “Aligning books and movies: Towards story-like visual
explanations by watching movies and reading books,” in Proceedings of
the IEEE international conference on computer vision, pp. 19–27, 2015.

[122] R. He and J. McAuley, “Ups and downs: Modeling the visual evolution of
fashion trends with one-class collaborative filtering,” in Proceedings of the
25th International Conference on World Wide Web, pp. 507–517, 2016.

[123] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a” kneedle”
in a haystack: Detecting knee points in system behavior,” in 2011 31st
international conference on distributed computing systems workshops,
pp. 166–171, 2011.

[124] K. Krippendorff, “Computing krippendorff’s alpha-reliability,” Annenberg
School for Communication Departmental Papers: Philadelphia, 2011.

[125] M. Kovacs, “Customer review informativeness dataset,” 2020. Mendeley
Data, V1, doi:10.17632/r286xxc7hz.1.

98

doi: 10.17632/r286xxc7hz.1

[126] T. G. Dietterich, “Approximate statistical tests for comparing supervised
classification learning algorithms,” Neural computation, vol. 10, no. 7,
pp. 1895–1923, 1998.

[127] Q. McNemar, “Note on the sampling error of the difference between
correlated proportions or percentages,” Psychometrika, vol. 12, no. 2,
pp. 153–157, 1947.

[128] C. Nadeau and Y. Bengio, “Inference for the generalization error,”
Machine Learning, vol. 52, no. 3, pp. 239–281, 2003.

[129] A. Graves, S. Fernández, and J. Schmidhuber, “Bidirectional lstm
networks for improved phoneme classification and recognition,” in
International Conference on Artificial Neural Networks, pp. 799–804,
2005.

[130] H. Takamura, T. Inui, and M. Okumura, “Extracting semantic
orientations of words using spin model,” in Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL’ 05),
pp. 133–140, 2005.

[131] A. H. Ribeiro, K. Tiels, L. A. Aguirre, and T. B. Schön, “The trade-
off between long-term memory and smoothness for recurrent networks,”
CoRR, vol. abs/1906.08482, 2019.

[132] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[133] P. Racherla and W. Friske, “Perceived ‘usefulness’ of online consumer
reviews: An exploratory investigation across three services categories,”
Electronic Commerce Research and Applications, vol. 11, no. 6,
pp. 548–559, 2012.

99

	Introduction
	Background and literature survey
	Computational approaches to learn about customer needs
	Methods for assessing review quality
	Technological background and challenges
	Related literature summary

	Proposed approach
	Overview
	Theoretical model of document pertinence
	The inferential problem of approximating document pertinence

	Data transformation
	Preprocessing
	Feature learning and engineering
	Extracting domain and target population specific word vectors
	Word weighting
	Incorporating external knowledge into a deep learning model

	Quantifying document pertinence to assess review quality

	Model creation
	Data debiasing
	Machine learning
	Proposed architecture to incorporate external data into the network
	Adjusting a pretrained language model to a different target task

	Case studies
	Computing environment
	Predicting sentence level review informativeness of search products
	System design
	Pertinence quantification module
	Model development module

	Data
	Experiments
	Results and Discussion

	Expanding the feature space of deep neural networks for multi-class sentence level sentiment classification
	Network architecture
	Data
	Experiments
	Results and Discussion

	Technical details
	Performance metrics
	Cross-validation
	Krippendorff's Alpha
	Recurrent and Long Short-Term Memory neural networks
	One-dimensional convolution and pooling
	Optimizer, loss and activation functions

	Overall discussion
	Conclusions
	Contributions
	Limitations and future work
	Towards closer approximation of document pertinence
	Contextualized word embeddings with polarities

