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Abstract

In this thesis, we consider a coefficient stability problem for one-dimensional stochastic differential equa-
tions driven by an a-stable process with @ € (1,2). More precisely, we find an upper bound for the
L*~1(Q, P) distance between two solutions in terms of the L% (R, ugo) distance of the equation coefficients
for an appropriate measure u§ which characterizes symmetric stable laws and depends on the initial value
of the stochastic differential equation.

The organization of the thesis is as follows. In Chapter[I] we introduce the background and the outline
of this thesis. We also explain the meaning and implications of this study.

In Chapter[2] we describe the notations and basic definitions used in this thesis. We then recall a result
proven by Kulik [10] who gives an upper bound of the density function of the solution of the stochastic
differential equation.

In Chapter we state the first of two main results of this thesis, which is a rate for the L*~'(Q,P)
distance between two solutions and give its proof. We obtain this result using the method introduced by
Komatsu [[11] which is used in the proof of uniqueness of solutions together with an upper bound for the
transition density function of the solution of the stochastic differential equation obtained by Kulik in [9].

In Chapter [d] we present the second main result, which is a rate of uniform convergence of two solu-
tions in probability when the difference between the coefficients converge to zero. We also introduce the
definition of quasi-martingale and its properties and prove the second main result.

In Chapter[5] we present some accessory lemmas needed for proving our results.
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Chapter 1

1 Introduction

Consider a d-dimensional ordinary differential equation (ODE) defined by

% = b(x)dt, x9=0,

for t > 0, where the function b : RY — R?. It is well-known that we can prove the existence and the
uniqueness of a solution (x;),»¢ of the ODE by using the Picard iteration when b is (globally) Lipschitz
continuous (see [1l], Theorem 6.1.3). However, when the function b is not Lipschitz continuous, there may
be multiple solutions of the ODE, for example, when d = 1 and b(x) = 2sign(x) V|x|. In the case of
stochastic differential equations (SDEs), it is known that the uniqueness of solutions may be preserved even
if the coefficients are not Lipschitz continuous.

Leto = (0i;), b = (b)), X = (X;) and B = (B) fori,j = 1,2,...,d be functions defined on RY, a
R-valued random variable and a R¢-valued Brownian motion, respectively. We consider a d-dimensional
stochastic differential equation following as

d
dXi(t) = bi(Xi())dt + Z o (X)dB,  i=1,2,....d. (1)
=1

When d = 1 and b and o are linear functions, the above SDE is well-known as the Black—Scholes model in
finance.

The model is based on the assumption that stock prices are continuous with respect to time, and it has
been applied in practice. However, stock prices are not continuous with respect to time and can jump. In
order to deal with this, Lévy processes which include jumps are being applied to finance, and research on
SDE’s using these processes is being actively conducted. This is also applied in the engineering field when
considering dynamical systems. The solutions of uniformly elliptic SDE’s driven by Brownian motion do
not possess heavy-tailed distribution, but SDE’s driven by Lévy processes can have this property and have
been actively studied in recent years. The term “heavy-tailed distribution” refers to a phenomenon in which
the probability of a huge loss, such as in the record of insurance losses, is relatively high compared with
Gaussian distributed models.

Let T > 0 and Z := (Z;)o<<r be a symmetric a-stable process with @ € (1,2) on a probability space
(Q,F,P) with a filtration (¥;)o<<7 satisfying the usual conditions. That is, Z is one of the stochastic
processes with satisfy the properties which define Lévy processes.

In particular, their characteristic function (Fourier transform) is described by the formula
—log (]E [ei"z‘]) =16|* for any + >0 and 6 € R.

We consider any solution X := (X;)y<.<7 to the following one-dimensional SDE

!
X = xo+ f (X,)dZ,, P
0



where xp € Rand o : R — [0, o0) and X,_ := lim,q, X,,. The infinitesimal generator A, of Z is defined by

d
M%, forany f € Ci(R), x eR.

Aaf(x) = f {FOr+9) = f) = Ly f ()
R\{0}

We briefly explain some known results in this area. In the case where the driving process is a Brownian
motion, for example, Yamada and Watanabe [[19] showed the pathwise uniqueness of solutions when the
coefficient o is (1/2)-Holder continuous. The convergence of the Euler-Maruyama approximation for SDE
(I in the pathwise sense has been shown under non-Lipschitz condition for coefficients (see Kaneko-Nakao
[7] and Yamada [18]). Here, the approximation is X(n,-) = (X;(n, -)) for some time partition ( )x=0,1
[0, T'] defined by

f t

d
Xi(n,0) := X;(0) and X;(n,1) = Xi(n,1a(1)) + f bi(X(n, na(s)))ds + Z f i, j(X(1,1,(5)))d B

(1) Jj=1 (1)

forany r € (0,T] and i = 1,2,...,d, where 1,(¢) = #; for any t € [t;_1, #). In the case of a symmetric a-
stable process, there are also many preceding studies. In the one-dimensional case, Komatsu [[11]] and Bass
et.al [2] proved the pathwise uniqueness of solutions of SDE (@) if o is (1/@)-Hélder continuous. In the
case of non-Lipshitz coefficient, Tsuchiya [16] obtained the pathwise uniqueness of solutions in the multi-
dimensional case and Kulik [9] studied existence of the unique weak solution and the Gaussian boundedness
of the density function of the solution. The convergence of the Euler-Maruyama approximation and the
existence of strong solutions for the SDE (]Z[) has been shown (see Hashimoto [4]).

We consider how the solution changes if the coefficients are altered. This situation is related to the so

called stability problem. Let X := (X;") ___be a solution of the following SDE

!
X" = X +f o (X@) dZ, foreach n € N, (3)
0

where x(()") € R and o, is bounded non-negative y-Holder continuous. Stability problem for solutions of

SDEs driven by a semimartingale with Lipschitz coefficients has been developed by Emery [3] (in the linear
case) and Protter [15]. Kawabata and Yamada [8]] also studied the stability problems in the case of SDEs
driven by the Brownian motion with non-Lipschitz coefficients. Hashimoto [4] proved the convergence in
the LA(Q, P)-norm of the time-supremum distance between two solutions with 8 € (1, @) when the sequence
(0n)nen uniformly converges to o and satisfies Komatsu condition (see [4)]), but the author did not obtain
the rates of convergence. Hashimoto and Tsuchiya [5] got the rates of convergence in the case, xp = xf)”):

sup E [|X, - X,(”)rl_l] < Cllo = o,ll%, for some p,C > 0. 4)
t€[0,T]

The aim of this thesis is to extend the result (@) to the convergence in L* (R, ,ugo)-norm. We will prove
the following inequality for C > 0 and an explicit value of p which depends on the problem parameters.

(|- () ja-1 P
sup ]E[X—X <o - PP Cllo— ol )
1€[0.T] | ' ! | 0 "Ry
Here, the finite measure uﬁo is defined as
p% (dy) = (Iy = xol ™™ A 1) dy, 6)



where the constant xo is the initial value of SDE (2).This finite measure u§ has features that it decreases with

distance from the initial value xy. The space L* (R, yf,ﬁo) is composed of measurable functions f : R —» R
such that the following norm is finite:

(e = ( [ If(y)l“ﬂxo(dy)) . ™

One defines similarly the spaces L”(Q2, P) and L”(R) := LP(R, Leb) for any p > 0, where Leb is the Lebesgue
measure.

We state two applications of the result (3)). In the first application, we consider a Cauchy sequence of
coefficients (0,) ey in the norm || - || Lo(Rut ) Then we prove that there exists a subsequence limit of SDE
)

() such that the limit is the unique solution of the SDE corresponding to the limit of the subsequence of
coeflicients. For more details, see Subsection 5.3}

In the second application, given in (3), we consider the case that the coefficient o satisfies conditions
that guarantee uniqueness of X but the exact value of o is unknown on points distant from the initial value
Xo. Under this situation, we may still approximate X using a coefficient o, which approximates o near x.
Result (B) ensures that the error estimation is small if the difference between o, and o~ is small under the
LY (R, /Jgfo)—norm. For more details, see Example

The method to prove (B) uses the pathwise uniqueness by Komatsu [11] and the estimate of the density
of solutions to SDE (@) by Kulik [10]. We also give the rate of uniform convergence of solutions in proba-
bility. This is proven by using the properties of quasi-martingales given by Kurtz [12]. This doctoral thesis
is in line with the content of Nakagawa [[14].

Chapter 2

2 Notation and the density of the weak unique solution for SDE (2)

2.1 Notation

In this subsection, we explain the symbols used in this thesis.

We define minimum and maximum as a A b = min{a, b} and a V b = max{a, b}, respectively. We denote

the gamma function by I'(z) = j:o x"le=*dx, for any z > 0. The notation f” stands for the p power of the

function f. The uniform norm || - || for any real valued function f is denoted as ||f|| = sup|f(x)|. The
xeR

convolution of the functions f and g is denoted by f * g(x) = fR f()g(x —y)dy, for any x € R. The Fourier

transform of the function f is denoted by F(f)(6) = f_ O:O e f(x)dx, for any § € R. The inverse Fourier

transformation of the function f is denoted by F~'(f)(0) = 5 L D; e f(x)dx, for any 6 € R. The notation
(P.V.) means the Cauchy principal value. A measure yu is absolutely continuous with respect to a measure '
if ¢/ (A) = 0 implies pu(A) = 0 for every measurable set A. This is written as u < ¢’. Let Z = (Z;)p<<1 be a
symmetric a-stable process with @ € (1,2). The jump size of Z at time ¢ is defined by AZ, = Z, — Z,_ for any
t > 0 and AZj := 0. The Poisson random measure associated to Z on B([0, T]) x B(R \ {0}) is denoted by
N, F) = Yoy LP(AZ) for t € [0,T] and F € B(R\{0}). The Lévy measure of Z on B(R\{0}) is defined



as lzlcﬁdz, where the constant ¢, := 77 'T'(a@ + 1) sin (%) The compensated Poisson random measure of Z
is defined as N.

2.2 The transition density function associated to the SDE (2)

In this subsection, we introduce results which Kulik [10] has proved. These results are about the
transition density function of the solution of SDE (). The following result shows that if the function o is
Holder continuous, bounded and uniformly positive, then the solution of SDE (Z]) admits a transition density
function.

Lemma 2.1. ([l10], Theorems 2.2 and Proposition 4.1)
Suppose that (X;)o<i<r is the unique weak solution of the SDE

!
X = Xxo +f o(X,-)dZy,
0

where Z = (Z;)o<i< is an one-dimensional symmetric a-stable process with a € (1,2), and o® satisfies the
following conditions. There exist ci, c; > 0 andy’ € (0, 1) such that for any x, y € R,

c1 <o), lolle <oco and [0 (x) — ()| < ealx =yl

Then, for each t € (0,T], X, has a transition density function p,(xo,-) and the function satisfies that there
exists positive constants My, M, such that for any y € R,

Mipi(x0,y) < pi(x0,¥) < Mapi(x0,Y). (8

The function p, is given by

—_ 1 _
Pi(x0.y) = — g(a)(y] xO],
teo(y)  \teo(y)

where g% is the density function of Z;. A function G denotes G (x) = (|x|"“" A 1) for any x € R.

Moreover, g9 and GV satisfy the following properties. There exist constants Ky, K> > 0 such that for
any cz > 0and x € R,

GP(c3x) < (57 vV DG (%) 9)
and K,G?(x) < g9x) < K2G9(x). (10)

The following upper bound for the density p;(xo, -) of X; is useful for proving Theorem 3.1] .1
Lemma 2.2. There exists K > 0 such that for any t € (0,T],
Ppilxo.y) < Ko (15 v 1) Gy - xo).

Proof. From (8) and (T0), we obtain

M - MoK -
Pilx0,y) < — g“”(y x°J< ZZG(“)(y on.

ro” \rew) o) \now)



Here, by the definition of G, we have forall x e Rand 0 <y < z,

G®(x) = G(lx)) and G() < Ga).

R

— (03 -1 1 (03
P(x0,y) < Koy (c}+ v l)t a (t”u' v l)G( )y = x0).

Hence, from ¢; < o(x), we have
- X
G@ (yl_o] - G(“)(
o)
It follows from (9), (IT) and ¢; < o(x) that

Yy =X

ra o (y)

y—Xo

)zc(a)(m)_ (11)

tecy tecy

Hence the proof of Lemma [2.2]is completed. i

Chapter 3

3 The distance of two solutions in the L*~!(Q, P)-norm

In this Chapter, the first main result of this thesis is given. Hashimoto and Tsuchiya [5]] obtained the dis-

tance between two solutions using the supremum norm. We give this distance in term of L* (R, ,uﬁo)-norm
defined in (7).

Theorem 3.1. Let T > 0 and Z be a one-dimensional symmetric a-stable process with € (1,2). Consider
two processes X and X that satisfy the following one-dimensional SDEs for t € [0, T] and xo, xo € R.

!

X, = xo + f o (X,_)dZ, (12)
0
!

X, =%+ f F(X,_)dZ,. (13)
0

Suppose that o~ and o satisfy the following conditions. There exist constants p, p, my, ma, mz > 0, n € (0,1]
and y € [1/a, 1] such that for any x,y € R,

lo(x) = o)l < plx =", [o(x) = (VI < plx = yI",

my < o(x) <my, |olle <m3 and |lo — FIILH( 1.

<
R,ﬂi’o) -
Then, there exists a positive constant C such that
Ixo — %ol + Cllo — ||~/ if ye(l/a,1)
Lo (Rt

sup E [iX, - )?,lail] <

0<t<T

(14)
[xo _')30'(1—1 + C[log if y=1/a,

-1
”0- - E”LU(R’#%) ]

where the constant C depends on T, a, my, ma, ms, p, p and 1.



Remark 3.2. We give two separate remarks:

(i) Theorem|3.1|holds even if the norm ||-|| Lo(Rout) isreplaced by ||-||z=(r). The reason is that the following
S
inequality is satisfied: ||f||Lr,(R#n ) < |Ifllze) for any f € L*(R) and xp € R.
5

(i) Ify € (1/a, 1] and the assumption ||o- — EIILH(R”H < lisreplaced by |lo- — E'IIU,( ) > 1 in Theorem
M

R
[31] then the power (ay — 1)/ in the inequality is replaced by @ — 1. ’

When y = 1/, the second term in the inequality (T4) is changed. These results are obtained in the same
way as in the proof of Theorem 3.1}

Note that in Theorem [3.1]the coefficient o is required to have a positive lower bound and upper bound
for the existence of the transition density function of X, as stated in Lemma 2.1} The solution of SDE
(X1)eero,r) fails the pathwise uniqueness property if 7 < 1/a (see [2]). Still, Theorem@holds for such
solutions. The result in Theorem [3.1] can be slightly improved at the cost of higher complexity as stated in
Section[5.4] In the following example, we show that the applicable class of diffusion coefficients has been
significantly improved in comparison with [3]].

Example 3.1. We consider the SDE @) and (B) with diffusion coefficients o~ and o, respectively. Suppose
that o and (0,)nen satisfy the following conditions. There exist constants p, p, my, my, m3 > 0, n € (0, 1]
and y € [1/a, 1] such that for any x,y € Rand n € N,

lo(x) — o) < plx =y, |ou(x) = o) < plx = yI",
my < o(x) <my and ||yl < m3

lo(x) — o ()] {S % ifxe Dy, piny = {xeR[|x—xl < f(m)}

. x €R, (15)
=gm,x) ifx ¢ Dy s

where xg is the initial value of SDE @), f(n) > 1 for eachn € N, lim,_,, f(n) = o and g is a some function.
Then, for some constant C and each n € N, we have

< n%f(n) + sup  g%(n, x).

llo = all?,
"L ( fa(n) J(n)<]x—xo|

Ryt )

In fact, the result is obtained using the definition (]§[) and then estimating ||o — 0',1||‘Z (®
TR,

the region of integration according to Dy, s,y and its complementary set. For the first integral, one uses
the inequality |x — xo| "™ A1 < 1 and (T3). For the second integral, one notes that |o(x) — o p(x)| <
SUP f(ny<u—rxo| [07(X) = 0u(X)| for any x € Dy, yny and then the remaining integral can be computed explicitly.
Setting sup <y, 8, %) = 1 and f(n) = n? for each n € N and some p € (0, @), we obtain lim,_,« |lo- -
O’n”La(R’M{:O) = 0. However; in this case, the limit of the sup norm does not converge to 0:

| by dividing

lim |l — 0yl = 1.
n—oo

This example shows that Theorem [3.1| may be useful for a bounded n-Hélder continuous function o
whose exact values are unknown on intervals distant from the initial value x.



We state two remarks in order to deepen the understanding of Theorem 3.1}

Remark 3.3. One may wonder if lim,,_,« SUD;[0.7] E[IX, - Xt(")l"‘l] = 0 even if the equation satisfied by X
may not satisfy the pathwise uniqueness property. If the Holder coefficient of o, is not bounded in n, then
the positive constant C in (T4) may be unbounded in n since C depends on Holder coefficient of o, so that
the right-hand side in (T4) may not be converge to 0 as n — .

On the other hand, if lim,_,, || — 07, 1a( = 0 and the Holder coefficient of o, does not depend

R’”go)
on n, then o = lim,, 0, almost everywhere and o is also y-Holder continuous with y € [1/a, 1] (see
(37) in Section . In this case, the equations associated to (X;)o<;<7 and (X,("))osrgr satisfy the pathwise

uniqueness property.

Remark 3.4. In Theorem[3.1} if » > 1/«, then the equations and (T3) satisfy the strong unique solution
property. If n < 1/a, satisfies the weak unique solution property on a probability space (see [9]]) and
(T3) satisfies the strong solution property on the probability space (see [4]]). Thus, there always exists a
probability space satisfying (T4).

3.1 An approach by Komatsu

Before proving Theorem [3.1] we apply a variation of the method introduced by Komatsu ([I1]], proof
of Theorem 1) in order to evaluate |X, - )?,rkl
Lemma 3.5. Fore > 0, § > 1, we can choose a smooth function s, which satisfies the following condi-

tions,

Voa() between 0 and 2(xlog &)™ el <x<e,
e(X) =
o 0 otherwise,
and :s-' Vse(y)dy = 1. We define u(x) = |x|*~! and Use = U * Yse Then, use € C? and for any x € R,
I < &%+ (), (16)
Use(x) < |x*" + &7 (17)

Proof. 1t follows from fg Z_, 2(xlog 8)~'dx = 2 that the above function Vs exists and that us, is in Cc?.
First, we prove the inequality (T6). Note that us . is a nonnegative function since u and i, are nonnegative
functions. Since the support of ;. is contained in [e67!, €], we have

x—e6~!
Uae(X) = f I Wi Cx = ).

The inequality (T6)) is proved by studying three different cases according to Case 1: —& < x < &, Case
2: e <xorCase3: x<—¢.

Case 1: Since |x| < &, we have

Mol < e < £ 4 us ().



The last inequality follows from us.(x) > O for all x € R.

Case 2: Since 0 < x — &, we obtain |[y| > |x — g/ for all y € [x — & x — &6”']. The inequality
[x[” — |y|? < |x+ y|? for any x,y € R and p € (0, 1) and f;,, Vs(y)dy = 1 imply that

x—g6!
Us () 2 |x — 8" f Woe(x = )y 2 |61 =&
X

—&

Hence we have
X7 < &7 4 us o(x).

Case 3: Since x— &6~ < 0 then from the inequality |y| > |x —&d~'| forall y € [x—&, x—&6~'], we have

x—e6”!

s () > [x — 67! [ f Woe(x — y)dy
= (le + 86_1)(’71
> ||x| - sé_lilkl .

The last inequality follows from a + b > |a — b| for any a, b > 0. By using the inequality |a — b|’ > |a” — b?|
for any a,b > 0 and p € (0, 1) and 67! < &, we have

a-1
Use(x) = |I)c|[’_1 - (56_1) | > et - g2l

Thus, we obtain (T6).
In order to show the inequality (I7), we rewrite us(x) as

&

w0 = [ atr=yssy = [ r=st w00y

The last equation follows since the support of ¢ is included in [e67!, €] By the inequalities [x—y| < |x|+]y]
for any x,y € R and (a + b <a® ! + b ! for any a,b > 0, we have (IH]) since

Use(X) < (Ix + D" s e()dy
go!

N I T
<ot o) [ vsoa

< |x|a—1 + 8(1—1'

The second to last inequality and the last one follows from ¢s.(x) > 0 and fg Z-' Yse(y)dy = 1, respectively.
This concludes the statement. O

Definition 3.6. A function g is called a tempered function (or a function of slow growth or a slowly increas-
ing function) if g is a continuous function and for some p € N,

lg(0l = O(x”) as |x| — co.

10



The following lemma is used for proving Lemma[3.8]

Lemma 3.7. For 8 # 0 and a tempered function g,
-1
F(Aag)®) = -7 (F(a £ 1) sin(%)) 101"F (2)(6). (18)

Note that the Fourier transform of tempered functions is finite (see [[13]], Definition 1, 2).

Proof. By the definition of # and A,, we have

F(Aag)(O) = f e f g0 +) = 8(0) = 10y —ro—dx
—oo R\(0) [yl

It follows from Fubini’s theorem that

00 —i0x + e—iﬂx
F(Aag)(0) = f f { |gff(, Ve g 1|y<uyg.(f3}d dy,
R\{0} vl vl [yl

—lb’x —16’x 00
gx+y) f g(x) y f i
= ——dx — —dx—l <y —— e " g(x)dx ; dy.
fR\{m {fm |+ TR W=D ype f_

The integrals with respect to x in the last equation are finite since g is a tempered function. Furthermore,
since 1< IyI‘L” is an odd function with respect to y, we have

0o —ifx 0o —ifx
F(Aa2)(O) = f { f €SN o f €8 0} dy (PV.).
R0} W= DY o I

Using the change of variables w = x + yon [ © lfl',(f: Y dx, we have

00 —if(w—y) —t(-)x
F.00 = [ { [ - [ —ﬁ(x)dx}dy
R\{0} '+ o Mt

ei@y
= f € —Lireo.
ry0; 1V

Performing the change of variables |8y = z, we get

elzsen() _

1
F(Aag)(®) = f dz|01"F (8)(6).

R\{0}

|Z|1+a

Therefore, in order to obtain (I8)), we should prove only

iz _ 1 =iz _ 1 -1
f = f fdz = [T+ Dsin(T)
ryo) 2T VO < 2

Using the change of variables z = —z’, we have

e — 1 e — 1
f 1+a dz = f 7|1+ dZ'.
r\(0) R0} 1]

11



Hence, it is enough to prove that

e -1 . fam\\!
[ St el v

From Euler’s formula e = cos(x) + i sin(x) for all x € R, we obtain

et -1 cos(z) — 1 ) sin(z
f e dz:f (11a dZ'”f 1Sa)dz
R\{0} |z] R\{0} |zl R\{0} |z]

cos(z)—1
|Z|l+a

is an even function and Tzlll}(j,) is an odd function, we have

et -1 * cos(z) — 1
r\0) 2l 0 Iz|

Using the integration by parts formula, we have

(o] R .
2f —COS(Z) _ ldz =2lim lim — ([(cos(z) - l)z_”]f - f sin(z) dz).
0 £

1
|Z|1+a £—0 Rooo (v ol

Using the fact that

Observe that first the term equals O on the right-hand side by L’Hdpital’s theorem. Hence, we have

-iz _ 1 2 0o -
f el—dZ =0-— f SIH(Z) dZ.
rRyoy l2'* aJy ¢

Here, [ x*!sin(ax)dx = T(s)a™sin (<) for any @ > 0 and 0 < [Re(s)| < 1 ([6], P430). By setting
s =1 —a, we have

et -1 2 (- a)ﬂ) 2 (om)
——dz=——T({ —a)sin =—T0 -a)cos|{—).
fR\{O} |21+ e ( ) ( 2 a ( ) 2

T
sin(sr)

e -1 2 4 7 an
— g de=——T(a)" = cos (—)
ryo) 2"t a sin(arr) 2

By sin(ar) =2 sin(%) cos (%) and I'(s + 1) = s['(s) for any s € C, we get

et -1 am\\~!
dz = —ﬂ(F(a+ l)sin(—)) .
fR\{O} J2|!+e 2

Thus (T9) is satisfied. Thus, the equation (T8)) follows. m

From the reflection formula I'(s)I'(1 — s) = for s > 0, we have

The following result is useful to obtain an estimate of A,us, since the function ¥, is bounded for each
&> 0and ¢ > 1 and limy_,o A,us.(6) = 0. The property limy_,0 Ay ut5.(6) = O is not satisfied if we replace
u(x) = |x|*"! by a general power function u(x) = |x/® with 8 # a — 1.

12



Lemma 3.8. The function us. satisfies
Agse(0) = Cotps (0) for each 6 + 0,
where the constant C, = —2na cot (%)

Proof. Set ug"g(x) = u'D % 54(x) and u?(x) = |x|*"'e~9" for g € (0, 1). From the characteristic function of
the one-dimensional gamma distribution, we have

f e x* () g% P dx = (1 — i8/q)™°.
0
Simplifying this, we have

foo eigxu(q)(x)dx — r(a)(q _ l'g)—ﬂf' (20)
0

Using changing of variables x = —x’ in (20), we obtain
f YD (—x')(—dx') = T(a)(q - i)™
0

Since u'?(-x") = u”(x’), we have by substituting @ for —¢’

0
f eV uD(x)dx' = T(a)(q +i6) ™. (21)
These equations (20) and (ZT)) imply that
FW)O) = T(@){(q +i0)™ + (g — i6)™}. (22)
Since ung is a tempered function, it follows from Lemmathat

F (A6 =~ (T + D sin (%))_1 IRACAC)

It follows from the convolution theorem, (22) and I'(s + 1) = sI'(s) for any s > 0 that
-1
TF(AalfD® = = (T + Dsin (S]] 01T @OOF W3 )O)
-1
= a0 (g + 10" + g = 07"} (arsin (5] F WO

Sl + %) (a' sin(%ﬂ))_l Fse)O) as g — +0.

Using the principal value of i~* and i* it follows
Y4 = e—imr/Z + eimr/Z — ZCOS(%)
> )

(9)

Thus, since u 5
]

is monotone increasing to us. as g | 0, we have
Aattse(0) = lim A,u(0) = lim F~' [F(A.ul))] (0) = 27 cot(g)%g(e).
i q—+0 & qg—+0 hE 2 ’

Hence the proof of Lemma [3.8]is completed. o
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3.2 Proof of Theorem 3.1l

The key point in this proof is to use the fact that the solution X, has a transition density for which an
upper bound is available (see Lemma 2.1} [2.2)).

Proof. WesetY, =X, — Z. By Lemma , we obtain
V1" < &+ use (V). (23)

By using the Lévy-It6 decomposition ([l1]], Theorem 2.4.16), we have
I —_—
Y, =Y+ f (c(X,) - T(X,)) dz
0

= Yo+ f f (0(X,0) - T(X,)) iN(dz. ds) + f f (0(X,-) - F(X,-)) 2N (dz. ds).
0 Jizz1

lzl<1

Using the 1t6’s formula ([[1]], Theorem 4.4.7) and N(dz, dt) = ]V(dz, dr) + lzﬁ"ﬂ, dzdt, we have

Use (Yt)

o+ [ t f| e (7 (00 = FE0) <) s 0] Ve
+ f t f {use (Y- + (0X,0) = FX,0)) 2) = g (Vs )| Nidz, ds)
lzl<1
cadz

ffu e (Vo4 (00 = FR) ) = 3o (V20) = 20 0X0) = TR, (Y10} s

= e (o) + fo [ ol (7 (X0 = F,0)2) s 0] Wt

; e cod
[ (34 (0000 = TR 2) = s (V) = Mg @ 0X) - TRy, () s
0 JR\{0}
= us,. (Yo) + M>* + I°%. (24)

The function us, € C? which appeared in Lemma Here, M%¢ := (M;s ’8)0< o

i Note that the integral I‘s‘g is equal to 0 on the set 7; := {s € [0,1] | o(X) — o-(X ) = 0}. Using the
change of variables y = (o7(X,) — 0(X,))z in I‘SE we have

is a martingale (see Section

— —~ l+a
o(X,) - 7(X,)| Cady
1 = f f | 2 00+ 3) =t (5 = Yy Ot (V)| s,
e Jevo) o(X,) — Xy 2 2 (<l X)-FXo[} V%, ly[+e

Here, since y1 ( O, (Yso) Mﬁ is an odd function with respect to y, we obtain

<] (X)-F(Xs)|}

—_ = l+a —_ = 1+
|o(X,) = T(X,)| |or(X,) - T(X))|
yl e @) Ol (Y0 dy = f Yy Ol 5 (Yo
»[R\IO} <)o X)-F(X)|} RS [y| i+ - i<} se\Ts y|T+a

=0 (PV.).
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Hence, we observe, by the definition of A,, that

_ = |+
O_(Xs) - O—(Xs)
If’g = caf | — ~| Aaué’g (Ys) ds
0\ 0(Xs) — o (X;)

_ = ql+a

Xv - XS

= caCy f o =T s 25)
oM o(X;) —o(Xy)

The last equation follows from Lemma[3.8] We observe, using the Jensen’s inequality, that

1 < 0, 1Cl [ o) = T vinds = I3 26)
0

The boundedness of the function ¢, introduced in Lemma[3.3]yields

ol [e6—1 ,s](Ys)

!
I <20, |Ca X,) - (X,
;s 2l 'fo|‘7( )= TN Togs

Here, by using the inequality (a + b)? < 2%~ 'a® + 29~1b® for any a, b > 0 and y-Holder continuity of &, we
obtain
o) - FX)|" = |o(X,) - T(X,) + T(X,) - FX)|
<2°ME (X)) - FX)|" + 227 o (Xy) - X
<27 Y + 20 o (X)) = TN

Hence, we have

_ logio (Y = (1 _ 1est o1 (Vs
) < Caf|ys|07—1 Mds_,_cafw(xs)_o-(xsnawds
0 1 |Ys|log &
Cote™!
b, f (X)) — T(X,)|® ds, @7
log o log6

where C, = 2%, |Ca,ﬁ| max {p®, 1}. Note that @y — 1 > 0 since @ € (1,2) and y € [1/a, 1]. Using 23),

(26), 27) and (T7), we obtain

5 Cote™!
use (Ye) < use (Yo) + MY + ——— |0'(X ) —o(X,)|" ds
log o logé
_ C, te?! Ea 5 _
<o =Tl et 4 MO 2 o (-) f l(X,) — (X ds. (28)
logé logd \e/ Jo

It follows from (T6) and (28)) that

Cote?r!

+
logo log 0

V1% < |xg — Xol*" + 2877 + M€+

fIO'(X) a(X,)" ds,

By taking expectations and using Fubini’s theorem, we obtain

— o _ Cote™™ ' C, (6\ (! —
B[ = X[ < v - Rl 26 4 Sy (2 f E[lo(X,) - FX) ] ds.  (29)
log o logo \e/ Jy
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Note that o is y(a — 1)-H6lder continuous (see Lemma [5.2)). Hence, from Lemma 2] we have that
X; has the transition density function p,(xo, -). Using Lemma@ there exists K > 0 such that

A

[ Blo@o-gorias < K [ [ lom)=Fo0r s (v ) (- a1 dvds

KD, (1) fR o) = O by = %ol A 1) dy

~na
KDa@llr = Tl

(30)

where D, (1) = fot s‘i(s”% V 1)ds and the norm is the one defined in (7). Therefore, we get the following
inequality.

Here, we have introduced the notation A = ||jo— || Lo in order to simplify long expressions. Now,

(R,
we use (30) and take the supremum for ¢ € [0, 7] in (Z9) so as to obtain

a—1

- C,Te'  C,KD,(T) (6
| ! bt ( )(—)/l“.

< oo = ol +2¢ log o logo

sup E [|Xt — )Z

0<t<T

(D
£

We consider the following two cases: case 1: ¥ € (1/a, 1] and case 2: ¥y = 1/a. The above expression
proves that if we choose some appropriate € > 0 and 6 > 1 then the left-hand side in (T)) will go to zero for
Xo = Xo. In order to choose & and & optimally, we divide our study in the following two cases according to
the possible values of y.

Case 1: In this case, note that ay — 1 > 0. We set

1 CoT 2C,KDo(T
6:2,P>0,e=/l”and§C=max{2 ()}.

" log2’  log2

Here, p is a positive real parameter which will be specified later. Using the above choice in (3T)) as well as
the inequalities p(@ — 1) > p(ay — 1) and A < 1, we obtain

- _ 1
sup E [|Xt - x| 1] < |xo — %ol + 3C (247D 4 g7 (32)

0<t<T
Therefore in order to obtain the optimal rate, we choose p = 1/y which satisfies the equation p(ay — 1) =
-p+a

— -1 _ ay-1
sup E“X, - X,la ] < lxo =Tl + CA .
0<t<T

This value of p gives a rate of convergence but it is not an optimal choice for fixed A (see Section[5.4).

Case 2: We set C, 7 = max{2, a,T, EQKDQ(T)} and choose € = (log %)”’ and 6 = A7%. Then we
obtain

— a1 b 1o 1\
sup E [iX, - X,| ] < |xo — %ol ' + Cor (log —) + — (log —) + — (log —) 971,
0<t<T 4 q 4 q A
By choosing p as p = -5 and ¢ = £, we have
-1 a 1
~ a- _ 1 2 2a 1)et
sup ]E[|X, - X,| ! <|xo—%ol* '+ Cur log — 1+—+ ’ log — .
0<t<T ’ A @ @ A
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Note that

1
a 1 ﬁ
sup x?2 (log —) < oo.
xe(0,1] X

1

Thus, choosing C = C,. 1 {1 + % + % sup x3 (10g }C)H

}, we get
x€(0,1]

~ o- _ 1\
sup E[|X,—X,| 1] < |xp = Tol®! +C(log —)
0<t<T A

This concludes the proof. O

Chapter 4

4 The distance between two solutions in probability

In this Chapter, we give our second main result. We study a rate of the convergence in probability of
the time-supremum difference between two solutions.The result is proven by introducing the concept of a
quasi-martingale and their properties. Concretely, we use a lemma obtained by Kurtz [12].

Theorem 4.1. Assume the same conditions of Theorem 3.1} Then, there exists a positive constant C such
that

ay-1

Ixo — Fol™" + cncr—a%w) if ye(ja,1]
—~ - X0

suphP(sup |X,—Xt| ! >h| <
h20 - Aosi<T lxo — %o|*~" + Clog ify=1/e,

-1
”0- - &||LLY(R’”¥O)]

where the constant C depends on T, «, my, my, m3, p, p and 1.

4.1 Quasi-martingales and their properties

We introduce quasi-martingales in order to prove Theorem .1l Let 7 € [0, 0] and Z be a cadlag
adapted process defined on [0, T']. A finite subdivision of [0, T] is defined by At = (, 1, . . ., t,+1) such that
O=tg<ti <<ty =T.

Definition 4.2. The mean variation of X is defined by

n

Vr(X) = supE Y EX, - X, 7]
! i=0

Definition 4.3. A cadlag adapted process Z is a quasi-martingale on [0, T] if for each t € [0, T], E[|Z;]] < oo
and Vi (Z) < oo.

17



Kurtz [12] proved the following lemma by using Rao’s theorem ([[15], Section III, Theorem 17).

Lemma 4.4. ([I2], Lemma 5.3) Let Z be a cadlag adapted process defined on [0, T]. Suppose that for each
te€[0,T], E[|Z]] < o0 and Vi(Z) < co. Then, for each h > 0,

hP( sup |Z;] > h) <Vr(Z2)+El|Zr]].

0<t<T

The inequality in Lemma[4.4]is useful for proving Theorem §.1]

4.2 Proof of Theoremd.1]

Proof. We set us(Y) = {us (Y1)}, wer WithY = X = X. Note that s 1s a nonnegative function since u and
Vs are nonnegative (see Lemma@). Hence, for each r € [0, T'], we have

E [[use (V|| = B [use (¥))] < .

Note that from (28) and (B0), the above expectation is finite. Since M°¢ is a martingale (see Section 3.1)), it
follows from (24) and the definition of the mean variation that

Vr (e (V) = SupB | 3 [B (use (Vo) + MY, + 175) = (e (Vo) + M3+ 13°) |7,
o Li=0

|

<supE ZE“Iz&j 1’| |T’]]

At Li=0

[ n
= sz{pE »; 'E [12: - 12’8|7:ti]
n

The last inequality follows from Jensen’s inequality. The tower property for conditional expectations, (23,
Lemma 3.8] Jensen’s inequality and (26) imply that

I(S,s _ It(f,s”

Liv1

Vr(us. (V) < sup ) |
=0

n liv ~
<sup ICQ,ﬁIE[ f | |or(X,) = X)) Wss(Y,)ds
=i i

= |Cag| E[75°].

By using (27), Fubini’s theorem and (30), we have

Vr(use(Y)) <

Cate™™  Cy (6\ (" —

s E[lo(X,) - o(X,)|"]d

oes +10g5()f0 [lo(X,) - T, ds
C,Te"'  CoKDo(T _

S Ca/ & + Ca/ a( )(é)”O__O_”Q

logé logé & Lo(Rops )

< 00,

&

(33)
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Thus us(Y) is a quasi-martingale. Hence, using (23)) and Lemma[4.4} we have that for each 4 > 0

hP( sup |¥;°7 > h) < hP( sup (s"_l + Use (YT)) > h)
0<t<T 0<t<T
< Vi (e + 15 (1) + B[ + use (V)]
Here, by the definition of mean variation and 23), we have
Vr (7! + use (1)) = Vr (s (V) and B[ + uge (Fp)|| = B[ + uge (4]

Therefore, using (33)), (28), Fubini’s theorem and (30), we get

sup hP( sup |Y[*7! > h) < Vr (s (V) + B[ + w5, (V)]
h>0 0<t<T

ol malt 2C, Tt 2C,KDo(T) (6 .
<lxo—xol" +2&7 + + (—)HO’—O’H -
logé logé Lo(Ru,)
The remainder of the proof is carried out in the same way as shown in the proof of Theorem [3.1] O
Chapter 5

S Appendices

In this Chapter, we prove some lemmas used in the proof of Theorem 3.1} .T]and we introduce some results
concomitant with these theorems.

5.1 Proof of the martingale property for M%¢

In this subsection, we prove that M% is a martingale. For this, we need to show that the function Usg
introduced in Lemma [3.3]is Lipschitz continuous.

Lemma 5.1. The function us is Lipschitz continuous.

Proof. From the mean value theorem, we know that a differentiable function is Lipschitz if and only if its
derivative is bounded. We show that u is bounded. Since the support of ¢ is [e67!, ] and using Jensen’s
inequality, we have

0] = i@ = 1) [ sente -y -0 000
<@ [ ot

Here, when x > 2¢ or 0 > x, we observe that for any y € [e67L, €],

lx =y > [yl so that |x -y < |y
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Hence we have that for any x > 2g or 0 > x,

2—-a

& 6 2—a & 6
(0] < (@~ 1) f sy < @ - 1)) f bie)y = @~ 12
67! & &o~! &€

0

The last equality follows from L z,, Yse(y)dy = 1. When x € (0, 2¢], then we have from ys5.(x) < 2/(xlog ),

’ < -1 _ a2
(0| < (@ = 1) fa b=t g ®

20a@-1) (* o
s—————j“lx—ﬂ *dy
elogd Jgs

26 ae

= (|x—g|“*‘ —|x -5 1)

clogé

26

S S

g logs
< oo.

Thus uj, is bounded for each £ > 0 and ¢ > 1. This concludes the proof. O

Now, we will prove that M5 isa martingale. We set Mf’s’l and Mf’s’z foreacht € [0,T] as
56,1 ' v ~
Mo = f f e (Yoo + (0(Xs) = F(X,0)) 2) = s (Y, IN(dz, ds),
0 Jlz>1
!
M;S,s,Z = f f {u(g,g (Ys— + (O'(XS_) - E(XS—)) Z) — Use (Ys—)}N(dZ, dS)
0 Jjzl<1

Then, M>* = M>*' + M?**, We need to prove that (Mf’g’l)oqq and (Mf’5’2) are martingales. First, we

0<t<T

treat the term (M;S’&2>o<;<r‘ Since us, is Lipschitz continuous by Lemma there exists a constant Us,
such that o
t . 2 ¢,
E f f e (Vs + (0(X,) = TXO)) = g (Y| e dads
0 Jlz<1

SU(%SE[ff |(0(X.y)—5(§s))z|2 Ca dzds}.
| 0 Ju<t |z|1+e

By using this fact and the boundedness of o~ and o, we have

[ L.

!
2 2 2 2 Ca
< U, Guploof +md) [ [Pt das
xeR 0 Ju<t [l

dz
|Z|l+a

—_ 2 ¢y
g (Vs + (0(X,) = FXO)) = s (Ve)|| —dads
|Z|1+af

IA

U2 (suplo () + m)T f P
xeR lzl<1

2
ZU; (suplo(x)* + m3)T
a xeR

< 00,
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Hence, (Mf"s’z)
0<t<T

a L'(Q, P)-martingale since

[ L

is a L>(Q, P)-martingale (see [1]], Theorem 4.2.3 and P.231). Similarly, (Mf’g’l) is

0<t<T

Use (Yv + (O-(Xv) - E(XJY))Z) — Use (Yv—)| Ca dZdS
|Z|1+af

dz
< Use(sup |o(x)] + mz)Tf 2|
|zI>1

xeR |Z|1+a

= Usg(sup |o(x)] + mp)T(a + 1)

xeR

< 00,

Therefore M® is a martingale since it is the sum of two martingales.

5.2 Holder continuity of o

In this subsection, we prove that o satisfies the Holder continuity property stated in Lemma[2.1]

Lemma 5.2. Fixn € (0, 1] and p > 0. If o satisfies ||| < 00 and |o(x) —o(y)| < plx—y|" for any x,y € R,
then the function o® is n(a — 1)-Holder continuous.

Proof. By the triangle inequality and ||o||c < co, we obtain

" (x) = )] = o () (x) = ()T ) + ()T ) - (T )|
<o) @) = ' )] + [ )] lo(x) = o)
<ol |0 @) = ' )| + ol o (x) = o)
<ol lo(x) = e * " + [0l o (x) = () -

This last inequality follows as [a®! —=b%~!| < |a—b|*"! for any a, b > 0. Here, since |o"(x) — c(y)| < plx—y|"
and |o(x)| < m, for any x,y € R, we have that any x # y

lor(x) = (lox) = )\* i
|)C — yln(a,_l) = ( |x — qu ) |(T(X) - 0-01)|2

<P Nlo@)] + o))
< 20" YlolI3e.

Thus, o is p-Holder continuous and n(a — 1)-Holder continuous. Hence, we get

10 (x) = O] < llorleop™ "l = Y7+ 20 Jor [ e = D

< max {[lolleop®™" 20 NlorlZ} 1 =y

We conclude the proof. O
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5.3 The limit of subsequences of solutions (X, 0, ey

In this subsection, we consider that the subsequential limit of the solution of SDE @ is the solution of
SDE (]Z[) which the coefficient is the subsequential limit of (07,;),en. Suppose that xy = xO") and (0),env 18 @
Cauchy sequence in the norm || - ||L” () and satisfies following conditions.

Rud

0 < inf inf 07,(x) and sup sup o, (x) < oo. (34)
neN xeR neN xeR

Furthermore, there exist constants p > 0 and y € [1/a, 1] such that for any x,y e Randn e N

sug lou(x) = o < plx — yI". (35)
ne.

We prove the following corollary by using Theorem 3.1} 1]

Corollary 5.3. Suppose that (oy)nen satisfies (34), @) and (0 y)nen is a Cauchy sequence in the norm

[ - IILH (rs)’ Then, there exists a subsequence (ny)ien such that the limit X~ := klim X" exists almost surely
H3o —00

and it is the unique solution of SDE [@) which has the coefficient limy_,e 07,

Proof. First, we confirm existence of the subsequential limit of the solution of SDE (@). Since MG, is a
finite measure and My < Leb < uf , there exists a subsequence (my)ien such that the sequence (07, Jier
converges pointwise to 0o = klim om, Lebesgue almost everywhere (see [L7] A13.2 (e)). Note that the

limit o, is also y-Holder continuous Lebesgue almost everywhere (see (37)). Using Theorem 1] there
exists a subsequence (ny)reny Of subsequence (my)ren such that the following limit klim X exists almost

surely. Note that this subsequence (1 )rer does not depend on ¢ € [0, T']. The limit X is cadlag since X
converges in supremum norm by Theorem@ (see [, P.140).

We confirm that the limit X is the unique solution of SDE (2). We define V = (V,)g;<7 as

!
V, = xo +f Oo(X3)dZs.
0

‘We prove that
P(V, = X;°, foreachr € [0,T]) = 1.

From Theorem 3.1 and the bounded convergence theorem, we have
- -1
E [|V, Sl ‘] = lim E [|V, -x™ ] :
In the same way as shown in the proof of Theorem [3.1] we have

E [|v, - x}"k’|”_1] <2671 4 MK 4 Pk (36)

where ¢, = 77'T'(a + 1) sin (%), C, appears in Lemma ,
Mt = fo t fR o e (Vi = X524 (0 = 0, (X)) = e (Vi = X)) Nz ) and

!
T = calCal [ o) = 0 P Ve = X0,
0
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By using the same arguments as in Subsection it is shown that Mo+ = (A’/If’a’k)
By the inequality |x + y|* < 297! (Jx| + |y|%) for any x,y € R, we have

is a martingale.
0<t<T

!
Tk <2mC,) f (o) = oo + oK) = 03, X 5o (Vs = X
0

Here, since the sequence (0, )ren coOnverges pointwise to o, Lebesgue almost everywhere, we have

10760 (%) = T < |0(x) = T, ()] + |0, (%) = T, )] + |00, () = e (D)]
< |Te(®) = T, (O] + plx = 3 + |00, () = T )|
— plx—y[” as k — oo for almost all x, y. (37)

Hence, o is y-Holder continuous Lebesgue almost everywhere. Here, since 0« is a bounded function and
y > 1/a > (@ — 1)/a, the function o, is also ((a — 1)/a@)-Holder continuous. Thus, we have

!
< eic [
0

AU

“logo \e/ Jy P
The last inequality follows from the explicit upper bound for s.. By (36), (38) and Fubini’s theorem, we
have

X& - X§<”k)|a_1 + [T (X)) = o, (Xg"k))in} Use(Vy — X\)ds

X2 = X oo (X)) - o (Xi"”)l"} ds. (38)

) |4 a— Ea 0 ’ v ™ )@= n PN
sop B[l 267 () [ {8 [ = x| Bl - ok s

omt, Ca [0\ [ o _ (n)”*'] fT oy _ NG
<2 +10g6(8){Tpog£TE[|XS XSk' " 0 E“O—‘X’(ka) J”k(Xsk)” ds.

From Theorem@ and the bounded convergence theorem, we obtain

sup B||xy - x§”*>|"’1] — 0 as k — oo.

0<s<T

By the assumption on o,, Lemma and Lemma , X,(”) has a transition density function for each
t € (0, T] and each n € N. This density has an upper bound as stated in Lemma[2.2} so that we have by (30),

T
f E [Joe(X2) = 0, (X2)| ] ds = O as k — co.
0

Hence, we have for any € > 0,

lim sup E [iV, - X,("k)|a_1] <2e"7!

koo o<t
Therefore, we get

lim sup E[|V, - Xf"k>|”*1] =0,

k=00 0T
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Thus, we have
P(V,=X)=1foreacht e [0,T].

Here, since each sample path of V and X is cadlag, we have (see [L3], Section I, Theorem 2)
P(V, = X", foreachr€[0,T]) = 1.

This concludes the proof. O

5.4 A more precise estimate for Theorem 3.1 and {4.1]

In this subsection, we give a more precise estimate for the result on Theorem [3.1] and [A.1] for y €
(1/a, 1]. We recall (32), which states that for p > 0,

sup E [|X, - )?,|“71] < lxo — %ol + %c (247D 4 a7,

0<t<T

We consider the function g(x) = 24*@~D + 2=**@_First, we find the critical points of g,

g (x) =22 D@y — 1)logd — A7 log 1 = 0
2/1)6(07—1)(0,7 -1 = P iRas
log(2(ay — 1)) + x(ay — 1)log A = (—x + @) log 4
_ 1 logay - 1)

Yy log A

Second, since lim,_, .+ g(x) = +co and there is only one critical point, the function g takes its minimum
_ 1 _ logQ(ay-1)
value at x = ; — T
Therefore, we get the inequality

ay=1_ (ay=1)log2(ay-1)) ay=1 | logQay=1))

a- _ 1 )
. Slxo—x0|“_1+§C(2/l 7 Tel 4 A7 T met )

sup B[[X, - X,
0<t<T

— 1
< |xo = %l*" + Cg (—)
Y
= |xo —F)E()|a_] + C/l%il
In the same way, we have for any /& > 0,

h]P( sup |X, - )-(dtry_

ay=1 _ (@y=1)log2(ay-1)) ay=1  logQay-1) )
0<t<T

— 1 ay-1
s h) < lxo — %ol + 5C(2/1 v Tog 1 + A7 Tog 1

=~ ja-1 e —
< |xo — Xo| + CA20pe

24



Acknowledgements

I would like to express my gratitude to Professor Arturo Kohatsu-Higa for his support. In particular, his
guidance on the Lévy process helped me write this thesis. I would like to express my thanks to Dai Taguchi
and Mizuki Furusawa for being my tutor in the Lévy process seminars. I would also like to thank Hiroto
Ono, G6 Yiiki, Ngoc Khue Tran and Tomooki Yuasa for valuable discussions. Discussing with them helped
me write this article and they gave many insightful comments.

References

[1] Applebaum, D.: Lévy Process and Stochastic Calculus, second edition. Cambridge University Press
(2009).

[2] Bass, R. F,, Burdzy, K. and Chen, Z. Q.: Stochastic differential equations driven by stable processes
for which pathwise uniqueness fails. Stochastic processes and their applications, 111(1), 1-15 (2004).

[3] Emery. M: Stabilité des solutions des équations différentialles stochastiques applications aux
intégrales multiplicatives stochastiques. Z. Wahr. 41, 241-262 (1978).

[4] Hashimoto, H.: Approximation and stability of solutions of SDEs driven by a symmetric « stable pro-
cess with non-Lipschitz coefficients. In Séminaire de Probabilités XLV. Springer International Pub-
lishing. 181-199 (2013).

[5] Hashimoto, H. and Tsuchiya, T.: On the convergent rates of Euler-Maruyama schemes for SDEs
driven by rotation invariant a-stable processes, RIMS Kokyuroku, 229-236 (2013), in Japanese.

[6] Jeffrey, A. and Zwillinger, D.: Table of Integrals, Series, and Products, Sixth Edition. Academic Press
(2000).

[7] Kaneko, H. and Nakao, S.: A note on approximation for stochastic differential equations, Séminare
de Probabilitités XXII, Lecture Notes in Mathematics 1321, Springer-Verlag , 155-162 (1998).

[8] Kawabata, S and Yamada, T.: On some limit theorems for solutions of stochastic differential equations,
Séminare de Probabilitités X VI, 412-441, Lecture Notes in Mathematics 920, Springer-Verlag (1982).

[9] Knopova, V. and Kulik, A.: The parametrix method and the weak solution to an SDE driven by an
a-stable noise. arXiv preprint arXiv:1412.8732 (2014).

[10] Kulik, A. M.: On weak uniqueness and distributional properties of a solution to an SDE with a-stable
noise. Stochastic Processes and their Applications, 129(2), 473-506. (2019).

[11] Komatsu, T.: On the pathwise uniqueness of solutions of one-dimensional stochastic differential equa-
tions of jump type. Proceedings of the Japan Academy, Series A, Mathematical Sciences 58.8, 353-356
(1982).

[12] Kurtz, T. G.: Random time changes and convergence in distribution under the Meyer-Zheng condi-
tions. The Annals of Probability, 1010-1034 (1991).

25



[13] Loonker, D. and Banerji, P. K.: The Cauchy representation of integrable and tempered Boehmians.
Kyungpook Mathematical Journal 47.4, 481-493 (2007).

[14] Nakagawa, T.: L~ distance between two one-dimensional stochastic differential equations driven by
a symmetric a-stable process. Japan Journal of Industrial and Applied Mathematics, 37(3), 929-956
(2020).

[15] Protter, P.: Stochastic Integration and Differential Equations, Second Edition, Version 2.1. Springer
(2005).

[16] Tsuchiya, T.: On the pathwise uniqueness of solutions of stochastic differential equations driven by
multi-dimensional symmetric « stable class, Journal of Mathematics of Kyoto University 46.1, 107-
121 (2006).

[17] Williams, D.: Probability with Martingales, first edition (1991), 15th edition. Cambridge University
Press (2012).

[18] Yamada, T.: Sur une Construction des Solutions d’Equations Différentielles Stochastiques dans le Cas
Non-Lipschitzien, Séminare de Probabilitités, Lecture Notes inMathematics 1771, Springer-Verlag,
536-553 (2004).

[19] Yamada, T. and Watanabe, S.: On the uniqueness of solutions of stochastic differential equations.
Journal of Mathematics of Kyoto University, 11(1), 155-167, (1971).

26



	Introduction
	Notation and the density of the weak unique solution for SDE (2)
	Notation
	The transition density function associated to the SDE (2)

	The distance of two solutions in the L-1(,P)-norm
	An approach by Komatsu
	Proof of Theorem 3.1

	The distance between two solutions in probability
	Quasi-martingales and their properties
	Proof of Theorem 4.1

	Appendices
	Proof of the martingale property for M,
	Hölder continuity of 
	The limit of subsequences of solutions (X(n),n)nN
	A more precise estimate for Theorem 3.1 and 4.1


