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Abstract 

 

This thesis has been broken down into two major parts, in the first one, Iranian and Japanese 

annual electricity consumption data has been analysed with the purpose of developing a viable 

and accurate forecasting model for energy consumption. In case of Iran, the data spans from 

1967 up until 2009. The data concerning Japan however spans from 1963 up until 2015. For 

both data sets, different regression models have been developed while only considering time 

as the main variable that influences the overall trend of electricity consumption. Seven types 

of time series were being compared in terms of their relative mean errors to the actual 

consumption data in order to select the most accurate model. Then we broke down our analysis 

to account for different sectors that has different consumption needs and thus would require 

appropriate analysis. For this matter, a thorough S-curve analysis was conducted for all the 

different sectors in order to assess the development and the growth phase of every single one 

of them.    

In the second part, we have analyzed the learning rates of the different electricity consumption 

sectors in both Iran and Japan in order to measure their progress ratios using both the Linear 

and the Cubic learning curves that have been carefully constructed and brought back to an 

easier manipulation format through a logarithmic transformation. The purpose is then to 

determine if those sectors follow a specific learning behavior different from each other, or is 

there a general trend that seems to engulf everything under the same progress. Then we will 

be able to distinguish which sectors would perform better than the others. Those learning 

patterns have mainly been judged upon various combinations of attributes such as convexity 

or concavity, and assimilation or forgetting throughout the accumulative process of electricity 

production.  

The results show that the best fit model for short term electricity forecasting in both countries 

is the brown model, while the best fit forecasting method for long-term electricity forecasting 

is the logistic model in case of Japan and the quadratic model in case of Iran. The s-curve 

analysis has showed that the studied sectors in Iran are still in their developing stages, while 

Japanese sectors have already reached the stagnating stage. In terms of learning potential, 

Iranian sectors exhibited a great potential for technological learning while the Japanese 

sectors exhibited a somewhat sluggish capacity for sustained learning and growth.



1 
 

 

 

CHAPTER ONE: INTRODUCTION 

 

1.1. Context of the Study 

 

In an era where “Data Mining” and “Data Science” are gaining momentum through the venue 

of the so-called Industry 2.0, predicting the future with a relative accuracy has become one of 

the many main data analytics tools for every organization to have for its strategy and planning. 

In fact, Forecasting has been called upon as “one of the 10 grand challenges of modern science” 

(Cheng, et al., 2015). If it is performed rigorously, forecasting can have a tremendous impact. 

In fact, forecasts are primordial tools for decision making. For instance, they provide foresight 

on the expected production quantity, the resources and capacity needed for such a quantity, 

which products should benefit from more attention, and how much time is required to develop 

them further. It has been showed that a 10% improvement in forecasting accuracy can have 

positive repercussions on revenues by up to 4% (Yu, 2012). The research goes on to say that 

for large companies, even a 1% improvement translates into an increase in millions of dollars 

of revenue, which accentuates even more the impact that forecasting can have on organization’s 

performance. 

In this Thesis, we will not be performing forecasts for companies, but for organizations as wide 

in scope as their respective countries. In fact, we will be attempting to forecast electricity 

consumption in both Iran and Japan, in order to find the best model that can accurately predict 

the needs for the upcoming years which will definitely save huge costs for the organizations 

responsible for electricity purchases, production, and distribution.  

Another scope of this thesis is to be able to assess the accumulated expertize through 

technological capability. Technological capability itself stems from the continuous process of 
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technological learning (Madanmohan, Kumar, & Kumar, 2003) which itself is defined by 

(Kim, 2001) as the ability to put the technological knowledge into effective use in production, 

engineering and innovation so as to maintain high competitive standards in terms of pricing 

and quality. In fact, we will be attempting to perform a learning curve analysis upon the 

aggregate electricity consumption data of all consuming sectors in Iran and Japan in order to 

assess whether electricity prices are going down throughout cumulative consumption or not, 

which in turn will indicate to the respective government which sectors need more attention and 

which sectors are actually benefiting from technological learning. 

 

1.2. Study Contributions 
 

Several contributions are made by this study. First, this is the first study of Iran electricity 

consumption sector that uses seven different forecasting models, and that is based on real world 

data coming from actual electricity bills and not from some widely available data in World 

Bank databases. Second, most studies on electricity forecasting do not take into account the S-

curve analysis to further develop on the idea of stagnation or maturity, studies only provide the 

best forecasting model for the given data set, without further exploring the development stage 

the studied process is witnessing, but this thesis does. Third, the majority of studies that 

research the technological learning always focus on industries and manufacturing, very few of 

them actually apply dynamic technological learning rates to analyse electricity consumption 

patterns this study fills the literature gap on technological learning for electricity consumption 

Plus it offers a unique comparison of two very different countries, a developing country that is 

member of OPEC (Iran) and a developed country that is not a member of OPEC (Japan), OPEC 

membership will play an important role while analysing price learning curves.  
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1.3. Iran’s Electricity Sector 
 

Iran’s electricity demand is still growing. In fact, Iran is experiencing a steady increase in 

electricity domestic demand, which has led to some supply shortcomings especially when 

electricity demand was at its peak. Moreover, Iran has recently pumped up the price of 

electricity which is part of its reform concerning energy subsidy in order to hinder the impact 

of the growing demand. Iran relies heavily on natural gas as its primary fuel source for 

electricity production, it almost engulfs two thirds of the total production capacity in 2013 as 

seen in figure 1.1. 

Figure 1.1. Iran’s Electricity Generation Capacity, by fuel in 2013 

 

In 2013, Iran has produced 224 billion kWh worth of electricity, 92% of this amount was 

generated using fossil-fuel sources (EIA, March 2015). Coal, nuclear, hydropower, and non-

hydropower renewables make up for the remainder of the other sources utilized to produce 

electricity. Following that year, early in 2014, the Iranian government made it clear that the 

price of electricity would go up approximately by 25% and that later on during 2015, price 

would experience another increase of another 20%, which is part of Iran’s energy reform to 

scale back subsidies (EIA, March 2015). The government seems to believe that increasing the 

price would balance out the demand growth and relieve a good amount of pressure on its 

production ecosystem, especially during the climax of electricity demand. Nevertheless, it is 
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highly anticipated that Iran’s electricity consumption will still experience growth that has to be 

met by both fossil-oil sources and other renewable energy sources. 

Iran’s energy ministry offered as a solution to build 35 new scattered power generating plants, 

for which the cost has been estimated at $250 million. It is expected that is surplus in electricity 

production will mainly be targeted for the domestic consumption market, but Iran has bigger 

plans to also expand its electricity exports to the neighbouring countries. Iran exported 11 

billion kWh worth of electricity during 2012, which was 25% more than the previous year of 

2011. The main countries to which Iran exports electric power are Armenia, Turkey, Iraq, 

Pakistan, and Afghanistan. On the other hand, Azerbaijan and Armenia provide electric power 

to Iran following the formalities of a swap contract. 

Electricity generated through nuclear power is a very recent practice in Iran, it is achieved by 

Bushehr power plant that has a capacity of 700 MW and that started production at the end of 

2013 (EIA, March 2015). Initially, the construction has begun during the 1970s, but operations 

were postponed several times because of external coercive reasons, such as the Iranian 

Revolution, the war between Iran and Iraq, and very recently because of problems emanating 

from the Russian consortium that was given the contract of the project. When Iran’s 

government has taking over the plant in late 2013, the nuclear power plant immediately begun 

generating power for commercial purposes. Two more power stations are planned at the same 

location, each single one of them is expected to have a capacity of 1000 MW, which contracts 

are again expected to be handed over to the Russians (EIA, March 2015). Even if Iran is trying 

to expand its nuclear power plants, the international sanctions forced on Iran might hinder the 

ambitions of the country to develop its nuclear program (World Nuclear Association, April 

2015). 
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1.4. Japan’s Electricity Sector 
 

Before the big incident of Fukushima nuclear reactor in May 2011, Japan was the third biggest 

producer of nuclear power in the world just behind the United States and France. However, and 

after the Fukushima disaster, Japan has radically shifted its composition of energy sources used 

to generate power to fossil fuels, especially LNG as a prime substitute to nuclear power, as we 

can see in figure 1.2. 

Figure 1.2. Japan’s Electricity Generation by fuel, 2000-2015 in terawatt hours (TWh) 

 

Despite Japan having the third highest electricity demand in Asia, its demand growth rate is 

counted amongst the lowest in the region. During the last decade, Electricity generation was 

on average steady around 1000 terawatt hours (TWh), but in 2015, Japan registered a drop of 

pace to 935 TWh. Now Japan is very dependent upon fuel imports to satisfy its electricity 

production needs. However, it stills strives to pursue an optimal energy mix of sources that can 

strike an optimal balance between cost, security and environment. It is good to mention that 

before the Fukushima disaster, Japan enjoyed one of the best energy mix models for power 
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generation amongst the top power consumers of the world (The Federation of Electric Power 

Companies of Japan, 2014).  In fact, Japan never had any particular energy source account for 

more than a third of all of its power generating fuel sources. 

Once Japan dropped nuclear power generation vocation, other source of fuel such as LNG, oil, 

and coil started gradually replacing it. Some Financial incentives targeted towards clean energy 

projects ignited the growth and the interest on renewable energy which has definitely shacked 

the composition of Japan’s energy generation portfolio. Although Japan doesn’t have clear 

ideas on how much nuclear fuel will weight in the future country’s portfolio, the government 

still aspires to incorporate it within the energy mix pretexting that it will have an optimal 

balance concerning cost, safety, and environment (Japan's Ministry of Economy, Trade, and 

Industry, 2014). As of now, government’s targets for 2030 of the energy mix portfolio are as 

follows: 27% of LNG, 26% of coal, 22-24% of renewable energy, 20-22% of nuclear, and 3% 

of oil (FACTS Global Energy, 2015). 

In 2014, electricity generating capacity in Japan toped at 313 GW, most of this capacity was 

accounted for at 62% by fossil fuel power plants at around 193 GW. Nuclear capacity was 42 

GW in that same year, which is 13% of the total capacity. However, nuclear capacity is 

expected to drop by approximately 2 GW by 2017 because there are still plenty of reactors that 

are still scheduled for withdrawal from service. Hydroelectric plants accounted for 16% of the 

total capacity, while the remainder came from renewable energy facilities such as solar, wind, 

and geothermal (International Atomic Energy Agency, 2016).  

In terms of electricity pricing, Japan has experienced some reforms in order to achieve lower 

electricity prices for consumers through fostering competition between the main actors of the 

sector, and through enhancing the sector’s operations and investments.  The goal of the 

Japanese government through those electricity reforms are mainly target for end consumers, 

which are meant to be able to choose their suppliers in order to dismantle the monopolies that 
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exist in each major region of the country and that are vertically integrated. This reform will go 

through several steps, the last of which is to deprive the transmission and distribution divisions 

from the generating divisions so as to replace the fuel cost-recovery scheme with a market 

based pricing system by April 2020 (METI, 2015). Since Japan in now increasing its purchases 

of fossil fuel, the cost of electricity generation is also increasing. Therefore, Japan seems to 

pursue the same strategy of increasing electricity prices in order to cover the ever higher 

generating costs. In fact, retail electricity tariffs has gone up by 20% and 30% for residential 

and industrial customers respectively since 2011 (World Nuclear Association, 2014). 

 

1.5. Statement of Problem 
 

On the one hand, Iran’s electricity demand has been increasing tremendously throughout the 

last decade, which indicates a real economic prosperity and growth. Nonetheless, it is important 

to be able to assess the future development of such growth, for how long would it keep on 

growing, and what is the best model we can use to capture this development process. Another 

problematic is the repercussion of the increased demand on electricity prices, whether or not 

this growth translates into cheaper energy for Iranian consumers. And finally, we would like 

to shed the light on whether or not Iran benefits from being an OPEC member when it comes 

to technological learning and experience curve. 

On the other hand, Japan’s electricity growth rate is one of the lowest amongst Asian countries, 

which indicates an economy that is out of breath. The problematic here is to be able to construct 

a forecasting model that might give us an insight on whether Japan’s electricity demand will 

increase in the future or will it continue stagnating. Another issue here is the Fukushima 

disaster that might have a great impact on electricity prices which might hinder the capacity of 

Japanese consumers to benefit from cheaper energy that originates from technological 
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capability especially when the government intends to bring the prices higher to cover the 

increasing generating costs. Finally, we would also like to generally assess the impact of OPEC 

decisions on Japan’s energy prices, especially during the 1973 oil crisis and could Japan use 

technological learning to bring the prices down after such major incident.     

 

1.6. Research Questions 
 

Being able to accurately forecast energy consumption will lead into huge cost savings in the 

electricity production sector and will provide an insight on how the economy of the country 

will perform in the future as electricity consumption and economic health are closely related. 

Also, being able to assess the accumulated knowledge throughout any productive process is an 

important aspect not only for designing the technological framework of that process, but also 

for providing insights about policy management. In that regard, this thesis’s research questions 

are as follows: 

• What is(are) the best forecasting model(s) for electricity consumption patterns in both 

countries? 

• Which sector(s) have already reached its(their) full development capacity and which 

is(are) still in its(their) early developing stages? 

• Which sectors are experiencing a reduction in electricity cost throughout their 

cumulative consumption (a favourable learning process), and which are not (an 

unfavourable forgetting process)? 
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CHAPTER TWO: LITERATURE REVIEW 

 

2.1. Forecasting Background 
 

 

There are mainly two separate types of forecasting methods: qualitative and quantitative 

techniques. On one hand, quantitative forecasting engulfs the study of time series and analysis 

of different predicting models that are mainly backed up by consistent historical data. For 

example, moving average forecasting method is one of the many models that are considered 

quantitative forecasting techniques. On the other hand, qualitative forecasting engulfs 

techniques that don’t rely that much on methodical approaches, but rather are based on 

judgement. For example, the Delphi method can be considered as a quantitative forecasting 

technique. In this thesis, we will mainly be using qualitative forecasting techniques as it suits 

our approach of time series analysis and use of historical data.     

In this study, we will be using seven different forecasting models that will be detailed later on 

in the next chapter. One of these models is autoregressive moving average, or ARMA for short. 

It is very popular amongst researchers and is very much widely used, its popularity stems not 

only from its statistical attributes but also from the famous Box-Jenkins methodology (G.E.P. 

Box, 1970) that is used as a process for constructing the ARMA model. But since we have 

chosen to perform a relatively simple ARMA model with lower degrees of seasonality, there 

is no need in using the Box-Jenkins method in our case. In fact, various exponential smoothing 

models can be derived from ARMA models (McKenzie, 1984), which allow researchers to 

implement different time series models using the same technique, i.e., pure autoregressive 

(AR), pure moving average (MA), combined AR and MA (ARMA) series, and double 
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exponential smoothing called Brown model. We will be using the later three models in this 

thesis. 

There are several challenges when performing time series forecasting. Indeed, it is often hard 

to spot whether or not a time series being studied is originated from a linear or nonlinear 

process, or whether or not a specific model is in general better than all the others when applied 

to data that is outside the sample used data. Therefore, it is laborious for researchers in general 

and forecasters in particular to decide on the right model for their particular situations. 

Normally, a bunch of various techniques are used, and the one that presents the least amount 

of error or the best degree of accuracy is chosen. However, that selected model is not always 

the best for never-before seen situations, because of many issues such as model uncertainty, 

structural change, and sampling variation. That is why it is unanimously agreed in the science 

literature that there is no single best forecasting model for every situation (Chat/eld, 1988) 

(Jenkins, 1982) (S. Makridakis, 1982). 

Some researchers have tried to work out methods to improve the performance of the forecasts. 

(Bates & Gramger, 1969), (Granger, 1977), and (Granger C. a., 1984) proved that taking the 

average of various models has the potential to refine the results given by the forecasts when all 

the models are approximations. The procedure of aggregating varies by the value of the weight 

that has been assigned to the model with the actual best performance, which also considers 

giving the same weight to all models, giving weights in way that is reversely proportional to 

their actual MSE, using median forecasts, and giving weights to the forecasting models with 

the least value of simulated MSE. In this thesis, we will not only use MSE as our decision-

making tool, we will use two more error measurement metrics that will be defined and 

explained in detail in the next chapter. 

Many studies in the forecasting literature yielded many different results as of which is the best 

forecasting model for the given data set. (S. Makridakis, 1982) has put many univariate models 
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in various series into the test in order to study their performance, some of those series were 

economic time series at the same country-like scale as the data sets used in this thesis. Their 

study concluded that more often than not, exponential smoothing was yielding the best results. 

(Meese, 1984) has made a comparison of different linear techniques by using approximately 

150 macroeconomic time series, and discovered that the best model was the AR model with 

lag lengths selected by the Akaike Information Criterion (AIC). Which again stresses the idea 

that there is no single best solution for one type of data. 

Recently, during the last couple of decades, a new forecasting method has emerged and has 

benefited from much attention and effort to its development and enhancement. This is new time 

series forecasting model is called artificial neural network (ANN) model (Zhang, Patuwo, & 

Hu, 1998). ANNs are one of the most interesting types of nonparametric nonlinear time series 

models. A set of various researches concerning large-scale forecasting models have 

demonstrated that combining different forecasting methods, for example an ANN with ARMA, 

would improve the accuracy of the forecasts compared to performance each individual method 

when performed separately, which eliminates the need to find the “best” forecasting model 

(Clemen, 1989) (S. Makridakis C. C., 1993) (P. Newbold, 1974). Which somehow indicates that 

ANNs might be a better model than all the other linear forecasting methods. However, in a 

comparison study performed under the auspices of the Santa Fe Institute, (Weignad & 

Gershenfeld, 1994) has compared the performance of the linear forecasting models against a 

lot of other nonlinear models such as ANNs; even though they have seen that nonlinear models 

are much more dynamic in different non-economic time series, the nonlinear models had poor 

results for the economic time series that has been studied that consisted of a data set of 

exchange rates. Moreover, (Swanson, 1997) made another comparison analysis between 

multivariate ANN models and other linear auto regression models, and concluded that the auto 

regression linear models present less forecasting errors, and thus have smaller values of MSEs 
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when compared to the ANN models in simulated real time. Which means that the linear 

forecasting models that have been selected for this thesis can still yield better results than their 

nonlinear counterparts. Thus, we have decided to drop the ANN model in favour of the linear 

forecasting techniques. 

 

2.2. S-Curve Analysis Review 
 

Amongst all the studies published in the field of technology management, several pathways 

have been explored about methods to smooth the relation between technology and strategy. 

One of the pathways that have been proposed, and that has been widely used since then, is the 

S-Curve analysis model that allows researchers to assess the performance development of any 

given technology throughout time. For instance, a wide variety of manuals and textbooks rely 

on this model for their strategy and technology management contributions. (Betz, 1993); 

(Dussauge, Hart, & Ramanantsoa, 1992); (Goodman, 1994); and (Twiss, 1986) all have used 

this model and recommend it in order to have insights on how the rate of technological change 

evolves throughout time, how to spot potential technological failures, and how to predict the 

saturation capacity of a given technology. 

In fact, S-curve models have not only been used to assess technological progress, but have also 

been used in various management areas, such as marketing and production, so as to shape up 

the evolution of industries and/or their products. The most famous area of application is the 

attempt to depict product sales evolution throughout time by assessing the different stages of 

development through the lenses of a life cycle model. Indeed, using this framework of life cycle 

analysis, some researchers came up with various models that describe the performance 

evolution of the studied phenomenon (Abernathy & Utterback, 1975); (Ford & Ryan, 1981); 

(Roussel, 1991). These models are heavily inspired by the concept of biological life cycle. They 
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make the assumption that industries and products have similar patterns when compared to a 

biological cycle of a living being, and thus technological evolution can be predicted in a 

straightforward manner.  

The technological evolution theory stipulates that the performance progress rate is in general 

quite sluggish during the preliminary stage of the technology’s development. When the 

technology has got time to improve through better management and control, the performance 

progress rate soars significantly (Sahal, 1981). However, as shown in the figure 2.1, the theory 

also states that when the technology arrives to a certain level, called the maturity stage, the 

progress rate declines drastically as the technology reaches its own saturation capacity. Thus, 

at maturity stage, in order to improve the performance of the technology, more efforts have to 

be deployed compared to the efforts needed to achieve the same amount of increase whilst in 

the early development stages.  

Figure 2.1. S-Curve Graphical Representation (Source: Authors Concept) 

 

Practically speaking, S-curve analysis has been applied at the industry level in order to assess 

technology maturity. For example, (Constant & W., 1980) studied the aircraft industry, 
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especially by focusing on aircraft engines, (Roussel P. A., 1984) studied the rubber industry by 

having a closer look at the foam products, (Foster, 1986) studied various industries 

simultaneously, and (Van Wyk, Haour, & Japp, 1991) studied the utilities industries, especially 

the permanent magnets line of products. In this thesis, we intend to apply the S-curve model to 

a country level, not only to an industry level. Indeed, we will perform S-curve analysis in order 

to assess the different evolution stages of different electricity consumption sectors in both Iran 

and Japan. This will allow us to spot the sectors that need more attention and care by the 

government in order to squeeze better performance out of them by implementing sound strategy 

and technology management practices. Literature in s-curve analysis applied to electricity 

consumption process is very scarce, as the majority of S-curve analysis studies that have been 

conducted so far mainly focus on service and manufacturing industries. Nonetheless, we have 

been able to find a valuable study conducted in New Zealand by (Bodger & Tay, 1987). In this 

study, a logistic curve model has been developed to analyse electricity consumption patterns 

with reference to New Zealand sectorial data. The fitting method used to construct the model 

is based on the Fibonacci search technique in order to allow the historical consumption data to 

produce optimal curve asymptotes. By the end of the study, it has been concluded that overall 

electricity consumption in New Zealand is in the arc that is near the maturity stage. That logistic 

s-curve model has been used to describe the historical time trends of electricity consumption 

data, such a model has proven itself to be the best model to use in order to perform 

technological forecasting (Baines & Bodger, 1984). In our study of Iran and Japan electricity 

consumption sectors, we will be using the same logistic s-curve model, but instead of the 

Fibonacci fitting technique, we will construct our model based on the Monte-Carlo fitting 

method. 
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2.3. Technological Learning Literature 
 

According to many studies that has been carried throughout a wide set of different industries, 

it has been proved that technology performance gets better while production increases, which 

leads to reduced unit cost and decreased prices. This concept is usually referred to as the 

“Learning Curve”. This fruitful observation was first made by (Wright, 1936) in the aircraft 

industry. As shown in figure 2.2, the curve points to a reduction of unit cost as the cumulative 

produced volume doubles (Jackson, 1998). 

Figure 2.2. An Illustration of the Learning Curve Effect (Source: Authors Concept) 

The learning curve theory has been adjusted to the likings of the (Boston Consulting Group, 

1970) which resulted in the emergence of the experience curve. The main difference is that the 

original learning curve puts the emphasise on individual inputs during the production process, 

while the experience curve takes into account various inputs in order to describe the learning 

phenomenon throughout cumulative production. This variation has allowed the learning 

concept to be applied to the industry level rather than single plants or factories, which has 

created a new tool for managers that will help them deciding on long-term strategic matters. 
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Table 2.1 gives the historical review of the articles so far written on the concept of learning-

by-doing. The list is by no mean exhaustive. This suggest the relevancy of this very important 

phenomenon in cost saving and technological progress review. 

 

Table 2.1. List of Articles focusing on Learning Curve Theory (Source: Asgari & Jose Luis Gonzalez-

Cortex, 2012) 

Year Researcher Publication 

1936 Wright, T. P. Factors affecting the cost of airplanes 

1953 Wyer, R. Learning curve helps figure profits, control costs 

1954 Andress, F. J. The learning curve as a production tool 

1961 Taylor, M. L. The learning curve - A basic cost prediction tool 

1962 Arrow, K. The Economic Implications of Learning by Doing 

1966 Baloff, N. The learning curve - Some controversial issues 

1967 Baloff, N. and J. W. Kennelly. 
Accounting implications of product and process start-

ups 

1972 Consulting, Boston. Perspectives on Experience 

1974 Henderson, B. The experience curve reviewed: V. price stability 

1978 
Harris, L. C. and W. L 

Stephens. 
The learning curve: A case study 

1979 Yelle, L. E. 
The learning curve: Historical review and 

comprehensive survey 

1982 Ramanathan, R. 
Lecture Notes in Economics and Mathematical 

Systems 

1986 Belkaoui, A. The Learning Curve 

1989 Bailey, C. D. Forgetting and the learning curve 

1991 Adler, P. S., & Clark, K. B. 
Behind the Learning Curve: A Sketch of the Learning 

Process 

1992 Badiru, A. B. 
Computational Survey of Univariate and Multivariate 

Learning Curve Models 

1997 Hornstein, A., & Peled, D. 
External vs. Internal Learning-by-Doing in an R&D 

Based Growth Model 

2000 
Pramongkit, P., Shawyun, T., &   

Sirinaovakul, B. 

Analysis of Technological Learning for the Thai 

Manufacturing Industry 

2001 Ruttan, V. W. 
Technology, Growth, and Development. An Induced 

Innovation Perspective 

2005 Karaoz, M., & Albeni, M. 
Dynamic Technological Learning Trends in Turkish 

Manufacturing Industries 

2009 Asgari, B., & Yen, L. W. 

Accumulated Knowledge and Technological Progress 

in Terms of Learning Rates:  A Comparative Analysis 

on the Manufacturing Industry and the Service 

Industry in Malaysia 

2012 
Behrooz Asgari, Jose Luis 
Gonzalez-Cortez 

Measurement of Technological Progress through 

Analysis of Learning Rates; the Case of 

Manufacturing Industry in Mexico 
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Different studies suggest that technological learning is needed in order to achieve technological 

capability enhancement (Arrow, 1962). Technological learning refers to the process of 

accumulation of information, skills, experience, and competencies so as to create some positive 

changes in the production system (Platt & Wilson, 1999). It also embodies the pathway through 

which the technological capability is being accumulated. In fact, this trajectory is not constant 

and is subject to variation, which means that technological capability accumulation might 

happen in various paths and at various rates (Figueiredo, 2002).  

Many scholars claim that technological knowledge gain is a cumulative and costly process. 

First, it is cumulative because it uses the already existing knowledge foundation which lies not 

only in the organization’s human resources but also in its non-formal documents, its machinery, 

and its organizational structure in a different ways that are all considered inputs for the 

experience curve model. Which means that technological learning process will be faster and 

deeply rooted when the existing knowledge foundation and the provided efforts present high 

standards of operations (Kim, 2001). Second, it is a costly process because it needs a 

considerable amount of financial backing in order to obtain the required inputs such as 

materials and working hours that will foster the creation of various needed tangible and 

intangible resources for building a solid technological capability. The ability to learn is always 

mentioned as the main reason for long-term sustainable growth, especially if it occurs at 

different levels such as the individual level, the firm level, and the country level. (P. Conceicao, 

2003). 

There are various internal and external factors that directly impact the capacity of an 

organization to benefit from technological learning (Rothwell, 1996). On the one hand, internal 

elements are all those factors that consist of practical efforts that are deployed inside the 

organization, such as research and development, management approach, and production 
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process. On the other hand, external technological elements occur when the organization 

interacts with the other ones within its operations reach through complementarity and 

networking, such as the customers, the consultants, the competitors, the suppliers of capitals, 

and the research institutions. Many of those interactions are very important and are based on 

formal relational skills, others are informal are solely based on trust (Malecki, 1997). 

Government policy support is a pivotal external element. Indeed, all the regulations and 

institutions that consist of local and global innovation systems directly impacting the pathway 

of technological advancement, are crucial and directly concerned by the standardization and 

acceleration of the technological learning capability of all the players that are under its 

authority, from individuals to nations passing by firms and other organizations. In this study, 

we will try to assess the technological capability of the electricity production sector, by 

measuring the experience curve of the electricity cost against the cumulative production. The 

results are expected to comprise a solid guideline for policy makers that seek reinforcement of 

technological learning. In fact, this thesis will underline the electricity consumption sectors that 

need more development and attention, in order to foster the creation of new policies from 

government and management practices from organizations so as to enhance the technological 

learning capability of the various electricity consumption sectors in both Iran and Japan. 
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 CHAPTER THREE: RESEARCH METHODOLOGY 
 

3.1. Data Collection 
 

In this study, four sets of data have been used to conduct our research. The first set of data 

consists of the National Electricity Consumption Data in Iran that spans from 1967 up until 

2010, which is 44 years of historical data. This data has been carefully collected by Pr. Asgari 

directly from the final bills that consumers had to pay for their electricity expenses, which 

means that the data is reliable and doesn’t include any sort of electrical distribution and/or 

transmission losses. Therefore, the data only comprises the real net electricity consumption 

figures thanks to Pr. Asgari, which means the data doesn’t need further processing in order to 

account for the losses that would have occurred during electricity distribution. The data is also 

carefully split into 6 different sectors namely Industrial Sector, Agriculture Sector, Street 

Lighting Sector, Residential Sector, Public Service Sector, and Other sectors. The second set 

of data consists of Electricity Prices Data in Iran from 1968 to 2007. However this data requires 

more processing, which we will discuss in the upcoming section of this chapter. 

The second set of data consists of the National Electricity Consumption Data in Japan that 

spans from 1963 up until 2015, which is slightly more consistent than the first set since it 

comprises 53 years of historical data. This data was collected from Federation of Electric Power 

Companies of Japan (FEPCJ) official website (FEPC, 2017). This set of data also accounted 

for the distribution and/or transmissions losses that could occur when dispatching electricity to 

final consumers. Therefore, no further processing of this set of data is needed. This data is also 

split into 6 different sectors namely Lighting Sector, Power sector, Manufacturing Sector, 

Mining Sector, Railways sector, and other sectors. The fourth and last set of data used in this 

study is the Electricity Prices Data in Japan from 1970 to 2015. However, and similarly to the 

http://www.fepc.or.jp/english/
http://www.fepc.or.jp/english/
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second set of data, it requires more processing, which mainly consists of deflating the price 

values. 

 

3.2. Data Processing 
 

To stabilize the variance of random or seasonal fluctuation in price inputs that are mainly due 

to the process of inflation, the data sets that comprise electricity prices for both Iran and Japan 

were deflated using consumer price index (CPI). The advantage being that it will enable us to 

uncover the real tendency of electricity price changes over time in these consumption sectors 

during the different periods under consideration. Due to the long period considered, the time 

series CPI for all items published by International Monetary Fund, International Financial 

Statistics with 2010 as the base year, were used to deflate the second and the forth sets of data. 

For the third data set, the data was aggregate into six sectors, two of them are power sector and 

lighting sector. This aggregation is the same one adopted by the FEPCJ in order to 

conglomerate the data into big clusters. According to FEPCJ, the power sector comprises 

several subsectors namely temporary power, agricultural power, construction power, business 

use power, and residential use power.  The lighting sector on the other hand consists of 

temporary lighting, agricultural lighting, and public street lighting. This aggregation is not 

exactly similar to the one used for the first data set, but it is still valuable because it will allow 

us to perform a comparison between the sectors in Iran to those in Japan. 

It is also good to mention that the data has been processed through different applications. The 

benefit of which is to compare the validity of the results yielded by standard software that are 

widely used (such as MS Excel) to the results given by more specialized software (Such as 

Minitab). 
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3.3. Forecasting Models 
 

Before advancing any further in this thesis, we have to mention that the only variable that has 

been taken into account in our regressions analysis is the time variable. We are aware that there 

are a lot of factors that heavily influence energy consumption trends, and that time alone is not 

representative of a deterministic variation that can capture the overall picture of energy 

consumption patterns. A country’s Gross Domestic Product (GDP) growth, population growth, 

Technology diffusion, households income, government policy, all impact at different levels the 

expected upcoming energy consumption that will occur in the years to come. Incorporating 

those kind of parameters to accurately model with higher certitude the exact trend that 

electricity consumption is following is way beyond the scope of this study, this would imply 

more regression analysis work with multiple parameters and would even yield distorted results 

as more than 3 parameters in a regressions analysis isn’t famous for its results’ robustness. Our 

goal here is to identify, using only time as out independent variable, the best time series model 

that yields the minimum amount of forecasting error. 

The data that has been explained earlier will be used to conduct our time series analysis as 

explained below. From now on we will refer to the energy consumption data as Y, and we will 

refer to time as t. We will also use the symbol “Y-hat” to stand for a forecast of the time series 

Y made at the earliest possible prior date by a given model. The formulas that will be displayed 

in this section are from the work of Mr Robert F. Nau, professor in Duke University: The Fuqua 

School of Business, retrieved from his official webpage (Nau, 2017). 

3.3.1.      Linear Model 

 

The linear forecasting model, also called the trend-line model is a simple regression model in 

which the dependent variable is modeled through a linear equation with an intercept and a slope 

multiplied by the independent variable. This model is usually evaluated by regression, which 



22 
 

means that the trend line corresponds to the only possible line that minimizes the squared errors 

when compared against the actual data. The model equation is as follows: 

�̂�𝑡 = 𝑎 × 𝑡 + 𝑏                                                                                                                        (1) 

Where “a” is the slope and the “b” is the intercept. 

3.3.2.      Quadratic Model 

 

The quadratic forecasting model is a subset of the polynomial models. It is a more advanced 

regression model in which the independent variable is modelled as the 2nd degree polynomial 

of the dependent variable. Similarly to the linear model, the quadratic model is also evaluated 

by regression, which tries to find the equation of the parabola (2nd degree polynomial) that 

minimizes the deviation from the actual data and thus fits the overall quadratic trend. The model 

equation is as follows: 

�̂�𝑡 = 𝑎 × 𝑡2 + 𝑏 × 𝑡 + 𝑐                                                                                                                        (2) 

 Where “a” is necessarily non null, however “b” and “c” can still equate to zero.  

3.3.3.      Exponential Model 

 

The exponential forecasting model is a nonlinear model that shouldn’t be confused with the 

exponential smoothing model that will be explained later in section 3.3.6of this chapter. The 

exponential model is often used in growth or decay events because it captures perfectly both 

the upward and the downward trends of an event’s evolution throughout time. The model 

equation is as follows: 

�̂�𝑡 = 𝐴 × 𝑒𝑟𝑡                                                                                                                        (3) 

Where “A” is the intercept, and “r” is the growth or decay rate of the observed 

phenomenon.  
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3.3.4.      Logistic Curve 

 

The forecast for the value of Y at time t+1 that is made at time t equals: 

𝑌𝑡+1
̂ =

K

1+𝑒−𝑎−𝑏𝑡
                                                                                                            (4)                                                                                                                         

Where K represents the curve’s maximum value or commonly known as the optimum capacity 

of the logistic curve. The parameters “a” and “b” are linear equation parameters that hold some 

information about the Sigmoid midpoint and the steepness of the logistic curve.  

In this thesis, K will be determined by utilizing Excel Solver in order to minimize the Mean 

Squared Error (MSE, which formula will be seen later). Both parameters “a” and “b” will be 

determined by operating a logarithmic transformation on consumption data and then using two 

Excel functions “INDEX” and “LINEST” in order to get the exact values of those two 

parameters. This logistic time series curve is very useful to describe phenomenon’s that tend 

to rise quickly at early stage of development, then starts to deteriorate or slow down at advanced 

stages of its development. We think that energy consumption can follow this kind of trend, and 

thus the forecasting of its future values might be well approximated by logistic time series 

analysis. 

3.3.5.      5-Period Moving Average 

 

The forecast for the value of Y at time t+1 that is made at time t equals the simple average of 

the most recent m observations: 

𝑌𝑡+1
̂ =

𝑌𝑡+𝑌𝑡−1+⋯𝑌𝑡−𝑚+1

m
                                                                                                 (5)                                        

Note that if m=1, the simple moving average (SMA) model is equivalent to the random walk 

model (without growth). If m is very large (comparable to the length of the estimation period), 

the SMA model is equivalent to the mean model. As with any parameter of a forecasting model, 
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it is usual to adjust the value of m in order to obtain the best "fit" to the data, i.e., the smallest 

forecast errors on average. But since we will deal with this kind of error later, for now, we will 

set m=5, which means if we use a simple moving average of 5 terms, we get a smoother-looking 

set of forecasts. The 5-term simple moving average yields significantly smaller errors than the 

random walk model in this case. The average age of the data in this forecast is 3 (= (5+1)/2), 

so that it tends to lag behind turning points by about three periods. 

3.3.6.      ARMA (0, 1, 1) Time Series 

 

The simple moving average model described above has the undesirable property that it treats 

the last m observations equally and completely ignores all preceding observations. Which 

means that the most recent observation should get a little more weight than 2nd most recent, 

and the 2nd most recent should get a little more weight than the 3rd most recent, and so on. 

The simple exponential smoothing (SES) model accomplishes this. 

Let α denote a "smoothing constant" (a number between 0 and 1). We can express the next 

forecast directly in terms of previous forecasts and previous observations, in any of the 

following equivalent versions. The forecast is an interpolation between previous forecast and 

previous observation, as shown in the equation (6) above: 

𝑌𝑡+1
̂ = 𝛼𝑌𝑡 + (1 − 𝛼)𝑌�̂�                                                                                               (6) 

A SES model is actually a special case of an ARIMA model, so the statistical theory of ARIMA 

models provides a sound basis for calculating confidence intervals for the SES model. In 

particular, a SES model is an ARIMA model with one non-seasonal difference, an MA(1) term, 

and no constant term, otherwise known as an "ARIMA(0,1,1) model without constant". The 

MA(1) coefficient in the ARIMA model corresponds to the quantity 1-α in the SES model. 

Where α can be greater or equal to 1. In this study, α will be determined by using Excel Solver 

http://people.duke.edu/~rnau/411arim.htm
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in order to minimize the Mean Squared Error (MSE) as it is the case in the maximum capacity 

of the logistic time series analysis. 

3.3.7.      Brown Model 

 

The SMA models and SES models seen earlier, assume that there is no trend of any kind in the 

data.  But what about short-term trends?  If a series displays a varying rate of growth or a 

cyclical pattern that stands out clearly against the noise, and if there is a need to forecast more 

than 1 period ahead, then estimation of a local trend might also be an issue.  The simple 

exponential smoothing model can be generalized to obtain a linear exponential 

smoothing (LES) model that computes local estimates of both level and trend. 

The simplest time-varying trend model is Brown's linear exponential smoothing model, which 

uses two different smoothed series that are centered at different points in time.  The forecasting 

formula is based on an extrapolation of a line through the two centers.     

The algebraic form of Brown’s linear exponential smoothing model, like that of the simple 

exponential smoothing model, can be expressed in a number of different but equivalent forms. 

The "standard" form of this model is usually expressed as follows: Let S' denote the singly-

smoothed series obtained by applying simple exponential smoothing to series Y. That is, the 

value of S' at period t is given by: 

𝑆′𝑡 = 𝛼𝑌𝑡 + (1 − 𝛼)𝑆′𝑡−1                                                                                               (7)                                                                                                                             

Under The ARMA (0, 1, 1), this would be the forecast for Y at period t+1. 

 Then let S" denote the doubly-smoothed series obtained by applying simple exponential 

smoothing (using the same α) to series S': 

              𝑆′′𝑡 = 𝛼𝑆′𝑡 + (1 − 𝛼)𝑆′′𝑡−1                                                                                           (8) 

Finally, the forecast for Yt+k, for any k>1, is given by: 
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𝑌𝑡+�̂� = 𝐿𝑡 + 𝑘𝑇𝑡                                                                                                             (9) 

Where:       𝐿𝑡 = 2𝑆′𝑡 − 𝑆′′𝑡−1  is the estimated level at period t, and 

                   𝑇𝑡 = (
𝛼

1−𝛼
)(𝑆′𝑡 − 𝑆′′

𝑡−1)  is the estimated trend at period t. 

A mathematically equivalent form of Brown's linear exponential smoothing model, which 

emphasizes its non-stationary character and is easier to implement on a spreadsheet, is 

represented in the following equation: 

             𝑌�̂� = 2𝑌𝑡−1 − 𝑌𝑡−2 − 2(1 − 𝛼)𝑒𝑡−1 + ((1 − 𝛼)2)𝑒𝑡−2                                                           (10) 

Where:     𝑒𝑡 = 𝑌𝑡 − 𝑌�̂�   (called the forecast error) 

In other words, the predicted difference at period t is equal to the previous observed 

difference minus a weighted difference of the two previous forecast errors. In this study, α will 

be determined by using Excel Solver in order to minimize the Mean Squared Error (MSE). 

3.3.8.      Error Formulas 

 

Once all seven forecasting models constructed, we will calculate for each one of them three 

types of deviations and errors in order to estimate the degree of accuracy that each forecasting 

model exhibits when compared to the other. The formulas are as follow: 

➢ Mean absolute percentage error (MAPE) 

                                                                                                                                               (11)  

➢ Mean absolute deviation (MAD) 

                                                                                                                                               (12) 

➢ Mean squared error (MSE) 

 

                                                                                                                                   (13) 
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In order to recognize the model that best fits the electricity consumption data, we will use these 

three error values to select the forecasting model that exhibits the least amount of deviation 

from the actual data across all three of these error measures. However, we will make sure to 

weight our decision by relying on some insights on the common error of “over fitting”, 

especially when selecting the best models that are best suited for short term forecasting and 

those that are convenient for long term forecasting. 

 

3.4. The Logistic S-Curve Model 
 

The logistic function or logistic curve that is being constructed is a common "S" shape curve, 

with the following equation: 

Y =
K−d

1+𝑒−𝑟(𝑡−𝑡𝑚) + 𝑑                                                                                                                   (14) 

Where: 

e   = the natural logarithm base (also known as Euler's number), 

𝑡m = the time value of the s-shape’s midpoint, 

K  = the curve's maximum value (saturation point), 

r    = the steepness of the curve, 

d   = an adjustment parameter. 

The software used to plot the s-shape curve is called “Loglet Lab” which is a software package 

for analysing logistic behaviour in time-series data. It was part of the Program for the Human 

Environment that was undergone by The Rockefeller University, the software is available to 

access for free from the university’s website (Program for the Human Environment, 2017).  

https://en.wikipedia.org/wiki/Natural_logarithm
https://en.wikipedia.org/wiki/E_(mathematical_constant)
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While using the Loglet lab software, we will mainly focus on  𝑡𝑚 the midpoint and K the 

saturation level. Loglet lab also displays a very good attribute referred to as “a” which indicates 

the time needed for the curve to go from 10% of its saturation point to reach 90% of the same 

saturation level, it indicates the expected lifecycle of the studied time series.  

 

3.5. The Learning Curve Model 
 

  3.5.1. Linear Model of the Learning Curve 

 

The linear learning curve estimation will be used to estimate the progress ratio under the 

traditional linear experience curve assumption. The measure the level of learning, the following 

mathematical formula is used: 

𝐶𝑡 = 𝐶1𝑋𝑡
−𝛼,                                (15) 

Which can be written in logarithmic form as follows: 

𝑙𝑛𝐶𝑡 = 𝑙𝑛𝐶1 − 𝛼𝑙𝑛𝑋𝑡                              (16) 

Where 

Ct is the current level of time cost as time t, C1 is the production cost of the first unit of output, 

Xt is the cumulative production of units produced up until time t, and 𝛼 is the learning elasticity 

or progress index to be estimated. 

Equation 16 suggests that the current level of unit cost at time t (Ct), is a function of cumulative 

production level Xt, and the cost of producing the first unit C1 in the production process 

(Karaoz & Albeni, 2005).   
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A vey import parameter that doesn’t appear in equation 16 is called “progress ratio” (d) and is 

derived from the learning elasticity 𝛼. The progress indicates that every doubling of total 

production reduces unit production by a factor of  2−𝛼. This is expressed as; 

d=2−𝛼                                (17) 

When the process of learning takes in place into the production system, “d” is expected to vary 

between 0 and slightly less than 1 (i.e. 0≤d<1). When the value of “d” approaches 0, the 

learning potential is improving, however when the value of d is closer to 1, it implies that the 

production process exhibits a low learning rate.  

When d=1, it has a specific connotation of stagnation, which means that there is neither learning 

nor forgetting, i.e. no cost saving at doubling of unit production or equivalently in economic 

terms, it means there is neither improvement nor worsening of unit production cost (Karaoz & 

Albeni, 2005) .  

Finally, when the value of d is strictly superior to 1, it implies a forgetting process which means 

an increase in the unit cost of production whenever production is twice its previous scale. 

As an example, if d=0.7, this means that value of per unit production cost would decrease by 

30% when the production is doubled. A value of d superior to 1, say d=1.2, means that the 

value of per unit production cost would increase by 20% whenever the production is doubled.  

The interpretation of the progress ratio d, is somewhat straightforward. Table 3.1 summarises 

all the possible values of the progress ratio “d” and all its possible implications on the learning 

process. 
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Table 3.1. Boundary of Progress Ratio and its Meaning (Source: Behrooz Asgari 2012) 

d<1 d=1 d>1 

Learning state No learning, no forgetting Forgetting stage 

Unit production cost 

decrease as output 

decreases 

Unit production cost remains 

the same as output increases 

Unit production cost 

increases as output increases 

Efficiency increases No change in efficiency Efficiency decreases 

Productivity increases No change in productivity Productivity increases 

 

In the learning literature, the neoclassical production function is readily used to quantify the 

learning curve effect, following the assumption that learning is part of productivity 

(Pramongkit, Shawyun , & Boonmark , 2000), (Karaoz & Albeni, 2005).  

As stated by the neoclassical production function, the production level Qt in time t, is a function 

of labor Lt, employed at time t, and capital Kt, invested at time t. This can be expressed as: 

𝑄 = 𝐴𝑡. 𝐿𝛽 . 𝐾𝛾                    (18) 

Where 𝛽 and 𝛾 define the elasticity of labor and capital respectively, the parameter At is called 

multifactor productivity. It encompasses the actual level of technology or advances in 

knowledge base in a given time t. 

The logarithmic form of equation 18 is expressed as: 

𝑙𝑛𝑄𝑡 = 𝑙𝑛𝐴𝑡 + 𝛽𝑙𝑛𝐿𝑡 + 𝛾𝑙𝑛𝐾𝑡                  (19) 
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Equation 18 assumes existence of a functional relationship between At and cumulative 

production Xt which is formulated as follows: 

𝐴𝑡 = 𝐻𝑋𝑡
𝛼                     (20) 

Where H represent the proportionality constant, and 𝑋𝑡
𝛼 is the inverse of 𝑋𝑡

−𝛼 expressed in 

equation 15. The natural logarithmic form of equation 20 can be expressed as: 

𝑙𝑛𝐴𝑡 = 𝑙𝑛𝐻 + 𝛼𝑙𝑛𝑋𝑡                   (21) 

Moreover, we can rearrange equation 15 and equation 20 to obtain: 

 𝑋𝑡
𝛼 =

𝐶1

𝐶𝑡
,                                                                                                                    (22) 

𝐴𝑡 = 𝐻
𝐶1

𝐶𝑡
,                     (23) 

When applying the natural logarithmic transform, equation 23 can be written in a linear form: 

𝑙𝑛𝐴𝑡 = 𝑙𝑛𝐻 + ln (
𝐶1

𝐶𝑡
)                               (24) 

If we combine both equations number 24 and 21, by substituting for 𝐴𝑡, we have: 

𝑙𝑛𝑄𝑡 = 𝑙𝑛𝐻 + 𝛼𝑙𝑛𝑋𝑡 + 𝛽𝑙𝑛𝐿𝑡 + 𝛾𝑙𝑛𝐾𝑡                (25) 

By adding 𝑙𝑛𝐿𝑡 from both sides of equation 25 and multiplying the results by -1, the following 

algebraic expressions ensues; 

𝑙𝑛𝑄𝑡 − 𝑙𝑛𝐿𝑡 = 𝑙𝑛𝐻 + 𝛼𝑙𝑛𝑋𝑡 + 𝛽𝑙𝑛𝐿𝑡 + 𝛾𝑙𝑛𝐾𝑡 − 𝑙𝑛𝐿𝑡  

(𝑙𝑛𝑄𝑡 − 𝑙𝑛𝐿𝑡 = 𝑙𝑛𝐻 + 𝛼𝑙𝑛𝑋𝑡 + 𝛽𝑙𝑛𝐿𝑡 + 𝛾𝑙𝑛𝐾𝑡 − 𝑙𝑛𝐿𝑡) × −1  

𝑙𝑛𝐿𝑡 − 𝑙𝑛𝑄𝑡 = −𝑙𝑛𝐻 − 𝛼𝑙𝑛𝑋𝑡 − 𝛽𝑙𝑛𝐿𝑡 − 𝛾𝑙𝑛𝐾𝑡 + 𝑙𝑛𝐿𝑡  or equivalently as; 

𝑙𝑛 (
𝐿

𝑄
)

𝑡
= −𝑙𝑛𝐻 − 𝛼𝑙𝑛𝑋𝑡 + (1 − 𝛽𝑙𝑛𝐿𝑡) − 𝛾𝑙𝑛𝐾𝑡               (26) 

The relation between capital and labor is assumed to be as follows: 
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𝐾𝑡 = 𝜇𝐿𝑡
λ                     (27) 

Where the parameters 𝜇 𝑎𝑛𝑑 λ are constants.   

Again, by applying the logarithm form to equation 27, we get: 

𝑙𝑛𝐾𝑡 = 𝑙𝑛𝜇 + λ𝑙𝑛𝐿𝑡                   (28) 

Combining 26 and 28, and substituting for 𝑙𝑛𝐾𝑡 will result to 29 in the form; 

𝑙𝑛(
𝐿

𝑄
)𝑡 = −𝑙𝑛𝐻 − 𝛾𝑙𝑛𝜇 − 𝛼𝑙𝑛𝑋𝑡 + (1 − 𝛽 − 𝛾λ)𝑙𝑛𝐿𝑡                         (29) 

Equation 29 is the equation for empirical estimation of the learning curve. It can be expressed 

in a simpler way as follows: 

𝑙𝑛𝐶𝑡 = 𝜃0 + 𝜃1𝑙𝑛𝑋𝑡 + 𝜃2𝑙𝑛𝐿𝑡 + 𝜀𝑡                             (30) 

Where 𝑙𝑛𝐶𝑡 = 𝑙𝑛(
𝐿

𝑄
)𝑡, 𝜃0 = −𝑙𝑛𝐻 − 𝛾𝑙𝑛𝜇, 𝜃1 = −𝛼, 𝜃2 = 1 − 𝛽 − 𝛾λ, and 𝜀𝑡 is the 

stochastic term. 

3.5.2. The Cubic Learning Model Construction 

 

There is a significant drawback to the linear curve model. Indeed, it only offer a single learning 

rate value for a given event and thus fails to capture the variability of the learning potential 

throughout time. To bypass this weakness, some scholars have developed and used the cubic 

learning models (Karaoz & Albeni, 2005),  (Behrooz Asgari, 2012). The cubic learning model 

take its root from the more generic S curve learning model since it is assumed to vary over 

time, and can be approximated using cubic cost function. Carlson, 1973 justifies the use of S 

curve function to estimate cubic learning rates as, improvement in tooling, methods of work, 

materials, design and workers experience.  The cubic function states that; per unit cost of output 

at time t is a function of a cumulative production up to a third order polynomials (cubic term) 

(Badiru, 1992).This form of cubic cost function can be expressed as; 
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𝑙𝑛𝐶𝑡 = 𝑙𝑛𝐶1 + B𝑙𝑛𝑋𝑡 + C(𝑙𝑛𝑋𝑡)2 + 𝐷(𝑙𝑛𝑋𝑡)3               (31) 

If we derive equation 31, we get the learning elasticity for the cubic models which can be 

expressed as: 

−𝛼 =
𝑑𝑙𝑛𝐶𝑡

𝑑𝑙𝑛𝑋𝑡
= 𝐵 + 2C(𝑙𝑛𝑋𝑡) + 3𝐷(𝑙𝑛𝑋𝑡)2                           (32) 

The proof of equation 32 was explained in detail by (Karaoz & Albeni, 2005). 

To proceed, we expressed 32 in a ratio between a unit cost of producing the first unit (C1) and 

the unit production cost in time t (Ct). To do this, we subtract lnC1 from both side of 32 and 

rearrange as follows: 

𝑙𝑛𝐶𝑡 − 𝑙𝑛𝐶1 = 𝑙𝑛𝐶1 + B𝑙𝑛𝑋𝑡 + C(𝑙𝑛𝑋𝑡)2 + 𝐷(𝑙𝑛𝑋𝑡)3 − 𝑙𝑛𝐶1             (33) 

Or equivalently as: 

𝑙𝑛 (
𝐶1

𝐶𝑡
) = −(B𝑙𝑛𝑋𝑡 + C(𝑙𝑛𝑋𝑡)2 + 𝐷(𝑙𝑛𝑋𝑡)3)               (34) 

Recall from 24 that 𝑙𝑛𝐴𝑡 = 𝑙𝑛𝐻 + ln (
𝐶1

𝐶𝑡
), hence by substituting for ln (

𝐶1

𝐶𝑡
), we have a new 

relation as: 

𝑙𝑛𝐴𝑡 = 𝑙𝑛𝐻 − B𝑙𝑛𝑋𝑡 − C(𝑙𝑛𝑋𝑡)2 − 𝐷(𝑙𝑛𝑋𝑡)3               (35) 

Furthermore, by substituting for 𝑙𝑛𝐴𝑡, we have the following expression: 

𝑙𝑛𝑄𝑡 = 𝑙𝑛𝐻 − B𝑙𝑛𝑋𝑡 − C(𝑙𝑛𝑋𝑡)2 − 𝐷(𝑙𝑛𝑋𝑡)3 + 𝛽𝑙𝑛𝐿𝑡 + 𝛾𝑙𝑛𝐾𝑡             (36) 

By using the already established relation between labor and capital, we can express equation 

36 entirely in terms of labor, which will lead us to a new relation in the form: 

𝑙𝑛𝑄𝑡 = 𝑙𝑛𝐻 − B𝑙𝑛𝑋𝑡 − C(𝑙𝑛𝑋𝑡)2 − 𝐷(𝑙𝑛𝑋𝑡)3 + 𝛽𝑙𝑛𝐿𝑡 + 𝛾 (𝑙𝑛𝜇 + λ𝑙𝑛𝐿𝑡)            (37) 
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And by adding 𝑙𝑛𝐿𝑡 to both sides of 30 and rearranging in terms, we have a final empirical 

model for cubic learning model as follows: 

𝑙𝑛 (
𝐿

𝑄
)

𝑡
= −𝑙𝑛𝐻 − 𝛾𝑙𝑛𝜇 + B𝑙𝑛𝑋𝑡 + C(𝑙𝑛𝑋𝑡)2 + 𝐷(𝑙𝑛𝑋𝑡)3 (1 − 𝛽 − λ)𝑙𝑛𝐿𝑡         (38) 

or equivalently in a simpler form as: 

𝑙𝑛𝐶𝑡 = 𝜃1 + B𝑙𝑛𝑋𝑡 + C(𝑙𝑛𝑋𝑡)2 + 𝐷(𝑙𝑛𝑋𝑡)3 + 𝜃2𝑙𝑛𝐿𝑡              (39) 

Where 𝜃1 = −𝑙𝑛𝐻 − 𝛾𝑙𝑛𝜇, 𝜃2 = (1 − 𝛽 − λ) and 𝑙𝑛𝐶𝑡 = 𝑙𝑛 (
𝐿

𝑄
)

𝑡
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CHAPTER FOUR: RESULTS AND DISCUSSION 
 

4.1. Preliminary Data Analysis 
 

4.1.1. Total Electricity Consumption in both Countries  

 

Iran and Japan are two very different countries. Not only in terms of geographic, religious, 

cultural, and historical ties, but also in terms of economics, population, political alignment, and 

technology development.  

Iran is a Middle East country that is a member of the OPEC, and accordingly to the International 

Monetary Fund predictions, it will enjoy in 2017 a GDP of $1.551 trillion in purchasing power 

parity standard (International Monetary Fund, 2017). Its population is estimated at 82.8 million 

people by (World FactBook, 2016). Overall, Iran is categorised as an upper-middle income 

economy by the World Bank (World Bank, 2013). In the early 21st century, Iran’s economy 

was mainly lead by the service sector, which had the lion share in terms of GDP contribution, 

then comes the industry (mining and manufacturing) and agriculture in second and third places 

respectively (Turquoise Partners, 2012). 

Japan on the other hand is a north-east Asian archipelago that doesn’t belong to any 

international energy consortium. Accordingly to the IMF, it will enjoy a GDP of $5.420 trillion 

in purchasing power parity standard (International Monetary Fund, 2017). Japan population is 

estimated at 126,76 million people by (Statistics Bureau of Japan, 2016). The service 

sector accounts for three quarters of the GDP (Statistical Handbook of Japan., 2011). 

All those reports that offer valuable analysis about the macroeconomic health of country, seem 

to have omitted one econometric parameter that is as valuable as the standard GDP 

econometric. That parameter is “electricity consumption”. In fact, electricity consumption is a 

very powerful indicator of the macroeconomic development of a country, of a sector, of and 

https://en.wikipedia.org/wiki/Service_sector
https://en.wikipedia.org/wiki/Service_sector
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industry or even of a factory. The standard GDP measure focuses on the output of an entity to 

measure its economic progress. However, there will be no output without a substantial input to 

support it, indeed, energy is the main driver of the output, and it can be a good indicator of 

predictions for the upcoming expected output. Here we focus on electricity consumption as the 

main energy input that drives the economic output, figure 4.1 shows the total electricity 

consumption in both studied countries, each in its respective study time span. 

Figure 4.1. Total Electricity Consumption in GWh 

Having a quick preliminary look at figure 4.1, we immediately understand that Japan is a 

country that consumes electricity much more than Iran, and it has been enjoying and upward 

trend from 1963 until 2005, which means that Japan enjoyed economic prosperity of 

sustainable output during that period. However, we can see that after 2005, Japan’s upward 

electricity consumption trend has slowed down in recent years, which means a stagnation 

economy that is finding difficulties pursuing more growth rates. On the other hand, Iran 

experienced a relatively flat electricity consumption trend from 1967 until the mid-1980s, 

which indicate a state of non-economic-improvement throughout the years. However, Iran 
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started enjoying an upward trend from the early 1990s that is still going forward up until now, 

which indicates that Iran is enjoying economic growth at a sustainable rate. 

All in all, forecasting electricity consumption will not only yield precise values of the energy 

needed for a future prospect period of consumption and thus help tailor down the costs of 

electricity production and/or consumption, but it will also yield a concise idea about the 

economic performance of the countries in general and the specific sectors in particular.   

4.1.2. Electricity Consumption per Sector in Iran  

 

As said in earlier chapters, we will not only study electricity consumption is Iran as a whole, 

but we will also break down the trend to account for the different sectors that has the lion share 

in energy consumption. Indeed, our data allows us to divide Iran’s overall electricity 

consumption into 5 different sectors, plus a sixth one that represents all the other unlabeled 

sectors. The sectors considered are shown in figure 4.2 along with their respective electricity 

consumption.  

Figure 4.2. Electricity consumption per sector in Iran (from 1967 until 2009) 
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As expected, the industrial and the households sectors are the ones that account for the largest 

consumption amounts amongst all the different sectors. The street lighting sector is the lowest 

consuming sector in Iran, it experiences a constant trend throughout the duration of the study 

time span. The agriculture sector is also enjoying a constant growth rate but not as steep as the 

industrial and households sectors. We notice a sudden drop of electricity consumption in the 

public services sector going from 1993 to 1994. The consumption dropped by more than half 

from 14984 GWh to 6060 GWh, which is mainly attributed to changing some sub-sectors 

within the public service category to another sector.  

4.1.3. Electricity Consumption per Sector in Japan  

 

The sectors considered for Japan are not completely similar to those considered for Iran, and 

that is understandable. For example Railways in Japan are a major sector and consumes power 

as much as the other sectors do. However in Iran, the railways sector is a subsector included in 

the sector labeled as “other sectors”. Figure 4.3 shows all the sectors considered along with 

their respective electricity consumption.  

Figure 4.3. Electricity consumption per sector in japan (from 1963 until 2015) 
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The power sector which comprises several subsectors; namely temporary power, agricultural 

power, construction power, business use power, and residential use power; is the main driver 

of electricity consumption is Japan. The second driver is the lighting sector that consists of 

temporary lighting, agricultural lighting, and public street lighting. Although, before the mid-

1990s, the manufacturing sector was the second most energy hungry sector in the country. 

However after the mid-1990s, we can see that the lighting sector overtook the manufacturing 

sector as the second electricity consumption driver in Japan. Even though the railways sector 

consumes much more energy than the mining sectors, both of them are at the bottom of the 

chart with relatively constant trends. 

4.1.4. Electricity Prices in Iran and Japan  

 

As explained in Chapter 3, the third data set is comprised of nominal electricity prices in Iran 

from 1968 until 2007 in Rial/GWh, while the fourth data set consists of nominal electricity 

prices in Japan from 1970 to 2015 in JPY/KWh. This data needs further processing. In fact, we 

have to account for inflation before starting our learning curve analysis. Indeed, we will use 

the Consumer Price Index (CPI) retrieved from the official website of the IMF (IMF, 2016)in 

order to deflate all the values to obtain the real value of electricity prices. Table 4.1 and 4.2 

shows the deflated values using the price index adjusted to 2010 (2010=100). 

Table 4.1. Real Electricity Prices in Iran (Rial/GWh) 

Year Nominal 

Electricity 

Price 

(Rial/GWH) 

Price 

Index 

Adjusted to 

2010 

(2010=100) 

Decimal 

Form 

Real 

Electricity 

Price 

(Rial/GWH) 

1968 289 0.16 0.0016 180625.00 

1969 221 0.16 0.0016 138125.00 

1970 166 0.17 0.0017 97647.06 

1971 183 0.17 0.0017 107647.06 

1972 168 0.18 0.0018 93333.33 
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1973 147 0.2 0.002 73500.00 

1974 142 0.23 0.0023 61739.13 

1975 153 0.26 0.0026 58846.15 

1976 170 0.29 0.0029 58620.69 

1977 217 0.37 0.0037 58648.65 

1978 228 0.41 0.0041 55609.76 

1979 234 0.45 0.0045 52000.00 

1980 282 0.55 0.0055 51272.73 

1981 316 0.68 0.0068 46470.59 

1982 386 0.81 0.0081 47654.32 

1983 354 0.96 0.0096 36875.00 

1984 353 1.09 0.0109 32385.32 

1985 359 1.13 0.0113 31769.91 

1986 385 1.34 0.0134 28731.34 

1987 517 1.73 0.0173 29884.39 

1988 535 2.22 0.0222 24099.10 

1989 537 2.72 0.0272 19742.65 

1990 568 2.92 0.0292 19452.05 

1991 849 3.42 0.0342 24824.56 

1992 1050 4.31 0.0431 24361.95 

1993 1706 5.22 0.0522 32681.99 

1994 3240 6.86 0.0686 47230.32 

1995 3882 10.27 0.1027 37799.42 

1996 4656 13.24 0.1324 35166.16 

1997 5593 15.54 0.1554 35990.99 

1998 6706 18.32 0.1832 36604.80 

1999 8030 21.99 0.2199 36516.60 

2000 8935 25.18 0.2518 35484.51 

2001 9852 28.01 0.2801 35173.15 

2002 11410 32.03 0.3203 35622.85 

2003 13176 37.3 0.373 35324.40 

2004 15106 42.81 0.4281 35286.15 

2005 15208 48.56 0.4856 31317.96 

2006 15278 54.36 0.5436 28105.22 

2007 16498 63.72 0.6372 25891.40 

 

The real value is obtained by dividing the nominal value by the price index in its decimal form. 
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Year Nominal 
Electricity 

Price 

(JPY/KWH) 

Price Index 
Adjusted to 

2010 

(2010=100) 

Decimal 
Form 

Real 
Electricity 

Price 

(JPY/KWH) 

1970 6.69 32.68 0.3268 20.47 
1971 6.83 34.75 0.3475 19.66 
1972 6.91 36.43 0.3643 18.98 
1973 7.29 40.67 0.4067 17.93 
1974 11.25 50.09 0.5009 22.47 
1975 12.27 55.99 0.5599 21.92 
1976 13.85 61.25 0.6125 22.62 
1977 15.15 66.23 0.6623 22.87 
1978 14.65 69.03 0.6903 21.22 
1979 15.39 71.58 0.7158 21.49 
1980 23.51 77.17 0.7717 30.46 
1981 24.28 80.96 0.8096 29.99 
1982 24.13 83.16 0.8316 29.01 
1983 24.51 84.72 0.8472 28.93 
1984 24.37 86.66 0.8666 28.12 
1985 24.73 88.43 0.8843 27.97 
1986 22.87 88.96 0.8896 25.71 
1987 21.36 89.08 0.8908 23.98 
1988 20.46 89.68 0.8968 22.81 
1989 19.90 91.72 0.9172 21.69 
1990 20.00 94.5 0.945 21.16 
1991 20.38 97.62 0.9762 20.88 
1992 20.64 99.28 0.9928 20.79 
1993 20.66 100.54 1.0054 20.55 
1994 20.28 101.23 1.0123 20.04 
1995 20.26 101.11 1.0111 20.04 
1996 19.77 101.24 1.0124 19.53 
1997 20.04 103.03 1.0303 19.45 
1998 19.22 103.71 1.0371 18.53 
1999 18.82 103.37 1.0337 18.21 
2000 18.81 102.69 1.0269 18.31 
2001 18.83 101.87 1.0187 18.49 
2002 17.74 100.53 1.0053 17.65 
2003 17.35 100.70 1.007 17.23 
2004 17.10 100.69 1.0069 16.98 
2005 17.01 100.42 1.0042 16.94 
2006 17.17 100.66 1.0066 17.05 
2007 17.19 100.72 1.0072 17.06 
2008 18.80 102.1 1.021 18.41 
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Table 4.2. Real 

Electricity Prices in 

Japan (JPY/KWh) 

 

 

Once the real electricity prices obtained, we plot them against time to observe the evolution 

trend of electricity cost in both countries. Figure 4.4 and 4.5 show both trends of nominal and 

real electricity price. 

Figure 4.4. Trend of Electricity Price Change in Iran (from 1968 to 2007) 

 

 

 

 

 

 

 

Real and nominal electricity prices in Iran have very different values and trends, because the 

inflation rate in Iran has been quite high throughout the years fluctuating widely around 20% 

since the early 1990s, with a peak of 30% in 2009 and another peak of 44% in 2013 (Trading 

Economics, 2017). We can clearly see that the overall trend of real electricity prices in Iran is 

a downward slopped trend. Which is a good sign indicating that Iran benefits from sound 

electricity production management and that both economies of scale and technological learning 
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are helping the prices the decrease. We will explain in detail the role of technological learning 

in the next sections of this chapter. 

Figure 4.5. Trend of Electricity Price Change in Japan from (from 1970 to 2015)  
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with the first oil-crisis in 1973, while the dashed-line circle coincides with the second oil-crisis 

in 1979. Although both oil-crisis had a worldwide reach, so practically every country was 

affected by its repercussions. Except Iran, as the smooth downward slope of figure 4.4 suggests. 

This is mainly due to the international consortiums that each country belongs to. Iran belongs 

to the OPEC, so it is one of the countries that produce and provide oil all over the world, thus 

Iran can dictate the oil prices, and therefore it cannot be affected by any crisis related to fuel 

shortage. However, Japan doesn’t belong to OPEC, and thus it undergoes all the fluctuations 

in price that the producing countries place on it. This will have an impact when performing the 

learning curve analysis, as it will hinder the technological learning potential of each electricity 

consuming sector in Japan. 

 

4.2. Forecasting Results 
 

4.2.1. Electricity Consumption Forecasting  

 

After fitting the data of electricity consumption from Iran and Japan to all the forecasting 

models developed in the methodology section, we have calculated the three error and deviation 

errors in order to evaluate the model that is best fit for the studied data. In fact, the model that 

will yield the least amount of square error, would be the best fit model for forecasting future 

values of electricity consumption in the upcoming years.  

Refer to Appendix 1 and Appendix 2 for the full graphical plot of all the constructed forecasting 

models for both Iran and Japan respectively. We have made sure to also display the actual 

consumption data alongside the time series forecasting model in order to judge the fitness of 

the model. Table 4.3 and 4.4 show the calculated error measurement of the constructed models. 
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Table 4.3. Squared Error values of the constructed Forecasting Models for Electricity Consumption 

Data in Iran  

Type Model MAPE MAD MSE 

Independent 

from actual 

consumption 

data 

Logistic 14.69 4057.18 25021825.35 

Linear 63.24 14510.86 283982891.58 

Quadratic 16.83 3402.30 17163541.64 

Exponential 22.38 11216.49 383789287.42 

Dependent 

from actual 

consumption 

data 

5 Period Moving 

Average 

35.28 12716.27 235974854.91 

ARMA(0,1,1) 6.69 2533.09 14353745.29 

Brown 3.64 1149.22 3140082.72 

 

Amongst these seven constructed models, we can see that “Brown Model” presents the least 

amount of deviation across all three measurements of squared errors. Which means that the 

best forecasting model that will yield the most accurate electricity consumption prediction for 

the upcoming years is the “Brown Model”. It is also worth noting that the model that yields the 

highest amount of squared error is the linear model, which implies that electricity consumption 

in Iran doesn’t follow a linear trend at all, in fact, it follows a quadratic trend which best 

explains its overall growth rate. 

In order to forecast electricity consumption for a short term period, say two or three years, 

Brown model is the best suited model for this operation, because it is the most accurate model 

amongst those that are dependent from the actual consumption data and thus can’t accurately 

predict far ahead in the future from the set of data that it has been given. However, the models 

that are independent from the actual consumption data can forecast for long term periods, as 

they can capture the overall development trend of the consumption and are not locked down 

by previously available data. This observation yields some balanced contrasts in our results:       

• The models that are dependent from actual consumption data yield the least amount of 

squared errors, but are only best fit for short-term forecasting. 
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• The models that are independent from actual consumption data yield the highest amount 

of squared errors, but are still best fit for long-term forecasting. 

Table 4.4. Squared Error values of the constructed Forecasting Models for Electricity Consumption 

Data in Japan 

Type    Model MAPE MAD MSE 
 Independ

ent from actual 

consumption 

data 

   Logistic 5.17 34823605.44 1.78E+15 

   Linear 7.95 58107730.86 6.03E+15 

   Quadratic 5.19 37318825.54 2.10E+15 

   Exponential 15.31 115138738.93 2.22E+16 

Dependent from 

actual 

consumption 

data 

   5 Period Moving 
Average 

10.97 64660487.12 5.07E+15 

   ARMA(0,1,1) 3.78 25088494.94 9.64E+14 

   Brown 3.10 21789019.53 7.53E+14 

 

In the case of Japan, we can also conclude that the “Brown Model” presents the least amount 

of deviation across all three measurements of squared errors. Which means that brown model 

will yield the most accurate predictions when forecasting electricity consumption in Japan. It 

is the same model that was selected as the best fit forecasting model in Iran. However, there is 

a difference between Iran and Japan in terms of global trends, which means that the best 

forecasting model for long term periods won’t be the same. Indeed, from table 4.4, we can see 

that the model with the highest squared error measurement is the exponential model, which 

indicates that the rate of growth of electricity consumption in Japan is decreasing and doesn’t 

have the potential to grow exponentially any longer. 

In terms of long term forecasting, the best model that captures Japan’s electricity consumption 

overall trend is the logistic model. Indeed, as mentioned earlier, Japan’s electricity 

consumption potential to grow exponentially has reached a ceiling, and logistic curves are the 

best models that can capture this kind of situation for the long run. Table 4.5 summaries these 

findings.    
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Table 4.5. Summary of the Best fit Models for each Forecasting Scenario 

 Best fit model for short term 

Forecasting 

Best fit model for long term 

Forecasting 

Iran Brown Model Quadratic Model 

Japan Brown Model Logistic Model 

  

4.2.2. Validity of using Excel for Constructing the Models  

 

In order to study all the seven models, we have constructed them using Microsoft Excel with 

manual manipulation and linear programing in order to calculate the parameter values of the 

different forecasting models. However, these values might be biased and could be different 

from the optimal values, especially for the two most complex constructed models namely 

ARMA(0,1,1) and Brown. Therefore, we decided to construct those models using more 

specialized data processing software in order to check the validity of the results given by 

Microsoft Excel. The software that has been used is Minitab version 17, the student trial 

edition. 

We have decided to check the validity of those two models only, because they are the ones that 

present the highest amount of complexity within all he studied models. Moreover, the algorithm 

that is build inside Minitab and which purpose is to find the best parameters for each model, 

tries to minimize all squared errors at once. Our linear program that we wrote in Excel Solver 

only minimizes the MSE, which only partially mimics the process of a specialized software 

and might not yield optimal results.  

We have constructed the exact same models in Minitab 17. ARMA(0,0,1) model is referred to 

in Minitab as “Single Exponential Smoothing”, while Brown model is referred to as “Double 

Exponential Smoothing”. Refer to Appendix 3 for the plots of constructed models in Minitab. 

Table 4.6 shows a comparison between the results obtained in Excel and those obtained in 

Minitab. 
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Table 4.6. Minitab Results for Electricity consumption data in Iran 

  Excel Results Minitab Results 

 Models Parameters Squared Errors Parameters Squared Errors 

Iran’s 

Consumption 

Data 

ARMA(0,1,1) 

Model 

α = 1.75133 MAPE= 6.69 

MAD=2533.09 

MSE=1.44E+07 

α = 1.75133 

 

MAPE=6 

MAD=2534 

MSE=1.40E+07 

Brown Model α = 0.911165 

γ = 0.596103 

MAPE=3.64 

MAD=1149.22 

MSE=3.14E+06 

α = 0.920804 

γ = 0.523457 

MAPE=3 

MAD=1134 

MSE=3.05E+06 

Japan’s 

Consumption 

Data 

ARMA(0,1,1) 

Model 

α = 1.29035 MAPE=3.78 

MAD=2.51E+07 

MSE=9.64E+14 

α = 1.29321 MAPE= 3.72 

MAD= 2.51E+07 

MSE= 9.45E+14 

Brown Model α = 0.752481 

γ = 0.995023 

MAPE=3.10 

MAD=2.18E+07 

MSE=7.53E+14 

α = 0.817326 

γ = 0.209057 

MAPE= 2.71 

MAD= 2.03E+07 

MSE= 6.93E+14 

 

Table 4.6 shows the accuracy of Microsoft Excel results when compared to Minitab ones. In 

fact, Excel yields very accurate results that are very close to those given by the specialized 

software. Although Minitab might yield slightly better results in terms of goodness of fit, it 

doesn’t justify the purchase of the software, as Excel’s performance is still viable and can be 

used to construct the forecasting models with confidence. The only minor discrepancy that can 

be noticed, is the significant difference in the value of brown’s model trend parameter gamma 

(γ) in the case of Japan’s electricity consumption data. Indeed, Excel yields a value of γ = 

0.995023 while Minitab gives a value of γ = 0.209057. These different values didn’t seem to 

wildly affect the squared error results. Despite Minitab yielding inferior values for the 

measurement of squared errors, the difference is not significant enough to completely 

disapprove Excel results.  
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4.3. S-Curve Analysis  
 

In this section, we will showcase the results of the S-Shape curve Analysis in order to assess 

the life span of each electricity consumption sector and observe their future development 

patterns. This analysis mainly consists of spotting which stage of the s-shape curve each sector 

belongs to. There are 4 distinct stages in an S-shape curve, the infant stage, the developing 

stage, the stagnating stage and then the maturity stage.  The main measurements are the 

midpoint, the saturation level and the lifecycle timespan. Based on those measurements, one 

can be able to judge whether a consumption sector is still performing well and thus has many 

years to continue flourishing, or is it lagging behind and is losing its momentum and thus going 

straight through stagnation, maturity or even decline. 

Recall that in equation 14, we have previously defined the parameters that we will have to 

estimate in order to construct the s-curve model. The results of this study were obtained by 

setting the value of “d” (the adjustment parameter) to zero, because we don’t see the need to 

include an adjustment parameter that will bias the value of the model’s saturation capacity. We 

have also set the fitting method to “Monte-Carlo” method, and made sure to set a high value 

for the number of iterations needed to converge towards the best fit s-curve that matches our 

cumulative data, in fact we have set the iteration setting to 1000 iterations, any higher value 

would only use more computational power for practically the same result. Finally, we have set 

the objective function setting to “sum of squares” which means that the software tries to find 

the s-curve that minimizes the sum of all the squared error measurements. Table 4.7 and table 

4.9 show a quick overview of all the resulting parameters for the different electricity 

consumption sectors in Iran and Japan respectively. Refer to Appendix 4 and Appendix 5 to 

check all the plots and detailed parameters yielded by the Logletlab software for Iran and Japan 

consumption sectors respectively. 
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Table 4.7. Summary of the S-Curve Model Parameters for Electricity Consumption sectors in Iran 

Sector Saturation 

Production 

(GWh) 

Dt (Life Time in 

Years) 

Midpoint 

(Year) 

Saturation Date 

(Year) 

Other Sectors 177759.1 20.98 2004.76 2015.25 

Public Service 458836.14 36.59 2001.19 2019.485 

Residential 1372521.97 34.17 2007.04 2024.125 

Street Lighting 181964.12 40.56 2010.1 2030.38 

Agriculture 799928.46 32.51 2015.67 2031.925 

Industry 2762540.45 41.72 2018.67 2039.53 

All sectors 5131248.52 37.68 2010.91 2029.75 

 

The majority of electricity consumptions sectors in Iran, have reached their cumulative 

development midpoint within the recent years. The industry sector is the only consuming sector 

that hasn’t reached its midpoint yet, but will soon attain it within the second half of the year 

2018. This indicates that these studied Iranian sectors are relatively “young”, in the sense that 

they still have big development potential ahead and can still sustain a significant growth rate 

for the years to come. The average life time of electricity consuming sectors in Iran is around 

35 years. The sector that enjoys the longest lifetime is the industry sector with nearly 42 years 

of development and growth after which it will reach a state of maturity at the year 2039 where 

further production will not yield any more growth and where the inner processes that previously 

drove this production would have to be changed in order to start a new cycle of sustained 

growth. Table 4.8 depicts the different development stages that every single consumption 

sector in Iran belongs to. 

Table 4.8. Summary of the S-Curve Model Development Stages for Electricity Consumption sectors 

in Iran 

Infant Stage Developing Stage Stagnating Stage Maturity Stage 

Industry Sector Agriculture Sector Public Service Sector Other Sectors 

  Street Lighting Sector     

  Residential Sector     

  All sectors     
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If we compound each cumulative electricity consumption data for all the sectors in one general 

cumulative data, we can perform the s-curve analysis for this data that will account for all the 

sectors at once. Table 4.8 shows that “All sectors” belongs to the “developing stage”, which 

means that those studied sectors in Iran are still in their early stages of development, and their 

production and management processes are relatively. Therefore, apart from the Public Service 

sector, the majority of the sectors can still maintain a relatively high growth rate and won’t 

reach maturity until the year 2030.  

Table 4.9. Summary of the S-Curve Model Parameters for Electricity Consumption sectors in Japan 

Sector Saturation 

Production (MWh) 

Dt (Life Time in 

Years) 

Midpoint 

(Year) 

Saturation 

Date (Year) 

Mining 92289421.05 43.98 1979.8 2001.79 

Manufacturing 11053699924.75 50.15 1997.18 2022.255 

Railways 551737624.60 27.49 2002.08 2015.825 

Others 1380921489.27 50.81 1996.32 2021.725 

Agricultural  69895482.45 41.97 1990.85 2011.835 

Public Lighting  260654057.64 35.49 1999.18 2016.925 

Residential 1575566765.42 37.61 1998.37 2017.175 

All sectors 52814921830.67 49.15 2000.83 2025.405 

 

In contrast to Iran’s studied sectors, some of the electricity consumptions sectors in Japan have 

already reached their cumulative development midpoint before the 21st century, while only the 

railways sector have reached its midpoint in the year 2002. Moreover, the mining sector is the 

first sector to reach its maturity stage of development, it has done so in 2001. This indicates 

that these studied Japanese sectors are somewhat “old”, in the sense that their development 

potential is becoming rusty and they can no longer sustain a significant growth rate for the 

years to come. The average life time of electricity consuming sectors in Japan is around 45 

years, which is higher than its Iranian counterpart, about 35 years. This means that Japan can 

sustain growth with the same production processes and management styles for a much longer 

time span than Iran can. This is an indication of how efficient Japanese production and 
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management systems are, when compared to the Iranian ones. Table 4.10 depicts the different 

development stages that every single consumption sector in Japan belongs to. 

Table 4.10. Summary of the S-Curve Model Development Stages for Electricity Consumption sectors 

in Japan 

Infant Stage Developing Stage Stagnating Stage Maturity Stage 

    Residential Mining 

    Manufacturing Railways 

    Others Agriculture 

    All sectors Public Lighting 

 

Right away from table 4.10, we can see that all the Japanese sectors belong to the second half 

of the development spectrum. Mining, railways, agriculture, and public lighting sectors have 

already reached maturity in 2001, 2015, 2011, and 2016 respectively, all the other sectors are 

in the stagnating stage and will reach the maturity stage within the year 2020 on average. It is 

worth noting that the shortest lifetime is attributed to the railways sector, indeed, it has only 

lasted for 27 years compared to the 45 years of average lifetime of all the other sectors. Which 

means that railways in Japan have practically been well established and can’t grow anymore. 

In order to foster a new cycle of sustained growth, a new technology should take over. That’s 

why the Shinkansen makes its entry into the railway sector to reignite the industry. The same 

can be said about the mining sector, although there has been no new innovation in the mining 

processes, therefore, we might observe a severe stagnation in the growth of the mining sector 

of the years to come. 

 

4.4. Learning Curve Findings  
 

Recall in figure 2.2 when a graph definition of a learning curve has been presented, the plot 

exhibited is a downward slopped curve that shows the decrease of the unit production cost 

through cumulative production. The plot of the learning curve as portrayed earlier is displayed 
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by figures 4.6 And 4.7. Both figures show the polynomial form of the learning curve that will 

be subject to a logarithmic transformation in order to extract the learning elasticity information. 

The polynomial form of the learning curve is written as:  Price= 𝐴 × 𝐶𝑢𝑚𝑢𝑙, 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛−𝛼. 

This polynomial curve is shown in figures 4.6 and 4.7 by the dotted line curve referred to in 

the graph legend as “Power (learning Curve).” 

Figure 4.6. Learning Curve of Electricity Consumption Process in Iran 

 

 

Figure 4.7. Learning Curve of Electricity Consumption Process in Japan 
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We can see that figure 4.6 matches the concept explained using figure 2.2, which means that 

Iran experiences an electricity cost drop for every doubling of the amount consumed. However, 

figure 4.7 doesn’t portray the same decreasing pattern as figure 2.2, we observe a lot of 

fluctuations in the learning curve. In fact, the slope is a decreasing one, but it is not as steep as 

the slope in figure 4.6. This is mainly due to external factors, such as the two oil-crisis in 1973 

and 1979 and the Fukushima disaster in 2011.  Which means that the learning curve doesn’t 

only depend from the internal capacity of the studied entity to learn and to foster technological 

advances, but it also depends from external non-controllable factors such as fuel shortages and 

natural disasters. 

4.4.1. The Linear Elasticity Model Estimation 

 

This section focuses on the estimation of annual technological learning elasticities (learning 

coefficient) and the progress ratio (d) or learning levels in Iranian and Japanese electricity 

consumption sectors. This study will enable us to uncover the trend and pattern of technological 

learning in different sectors in both countries. To achieve this, we utilized the various models 

constructed for learning elasticity and progress ratio (for linear and cubic respectively) as 

earlier shown in the methodology section.  The results are presented hereunder. 

Table 4.11. Learning elasticities and levels (progress ratio) estimated using linear model for all the 

studied sectors in Iran 

Sector φ0 φ1 φ2 R2 Significance 

F 

d 

Households -0.6250 -0.7095 0.9684 0.9652 1.02E-27 0.6115 

Public Service 7.4220 -0.3923 0.3874 0.7997 1.20E-13 0.7619 

Industrial 5.3420 -0.4797 0.5405 0.9734 7.04E-30 0.7171 

Agriculture 2.5881 -0.6659 0.7857 0.9524 3.46E-25 0.6303 

Street Lighting 5.2899 -0.4994 0.5635 0.9141 1.92E-20 0.7074 

All sectors 0.6744 -0.6188 0.8401 0.9885 1.29E-36 0.6512 
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Table 4.12. Learning elasticities and levels (progress ratio) estimated using linear model for all the 

studied sectors in Japan 

Sector φ0 φ1 φ2 R2 F Significance 

F 

d 

Residential -3.4631 -0.1419 0.6216 0.7631 62.8293 6.34E-13 0.9063 

Mining -9.4553 0.5575 0.6149 0.8300 104.9900 2.84E-17 1.4717 

Manufacturing -9.4613 -0.2596 1.0819 0.9010 195.7178 2.54E-22 0.8353 

Public Lighting -5.0288 -0.2799 0.9602 0.8112 83.7667 7.65E-15 0.8236 

Agriculture -0.1756 -0.0311 0.3467 0.7300 39.5430 4.15E-10 0.9787 

Railways -13.3251 -0.0652 1.3410 0.9217 153.1075 4.13E-15 0.9558 

All sectors -8.6658 -0.4327 1.1302 0.8758 151.5407 3.37E-20 0.7409 

 

Tables 4.11 and 4.12 shows the model estimation for linear learning elasticity for each sector 

in Iran and Japan respectively. The regression statistics (R2 and F) suggest a good fitting across 

practically all the sectors in both countries. Although in Iranian sectors, R2 presents much 

higher values when compared to those of their Japanese counterparts. In fact, the lowest R2 

value in table 4.10 is around 0.8 for the Public service sector in Iran, while all the other values 

in the same table are higher than 0.9. However, when compared to table 4.11, the lowest R2 

value is 0.73 for the agriculture sector, while only two sectors presented values that exceeded 

the 0.9 R2 threshold value. This indicates that the linear elasticity model fit the Iranian sectors 

better than the Japanese ones.  

The last column of Tables 4.11 and 4.12, show the estimated progress ratio for each sector in 

both countries. Unshaded cells indicate learning scenario with per unit cost efficiency gain (real 

cost savings) in the energy consumption process by the corresponding sector. Grey shaded cells 

however, indicate forgetting scenario with loss in efficiency and increase in per unit energy 
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cost. As we can see in Table 4.12, only the mining sector presents a progress ratio value that is 

higher than 100%, while all the other sectors in both countries present some learning potential. 

As explained in the methodology chapter, progress ratio gets better when its value gets lower 

and lower. In that regard, Iranian sectors present some very promising progress ratio values 

when compared to the values presented by the Japanese sectors. Indeed, progress ratio values 

in Table 4.11 go as low as 61.15% for the Households sector and only tops out at 76.19% for 

the public services sector. However, in table 4.12, the lowest progress ratio value is at 82.36% 

while the highest is at 147.17% for the mining sector. This indicates that the Iranian sectors 

present much higher learning potential than the Japanese sectors. On aggregate, the same 

conclusion can be made. Indeed, the “all sectors’ rows in both tables present a progress ratio 

of 65.12% and 74.09% respectively. 

Those are some valuable information, but it still doesn’t portray the overall picture as 

accurately as one would expect. Indeed, the weakness of the linear learning curve model is that 

it assumes the learning to be constant and hence ignores the time variance (dynamic) of the 

learning system. Some studies have proven that linear learning curve does not always give the 

true picture of technological learning when time series data is involved, as it lacks the capacity 

to check the dynamism of learning over time. The next section of this thesis will consist of the 

study of technological learning potential within the different sectors in Iran and Japan via non-

linear (log-linear) cubic models. 

4.4.2. The Cubic Learning Model Estimation 

 

Tables 4.13 and 4.14 show the learning elasticities of all the studied sectors in Iran and Japan 

estimated using the cubic model. Similarly to the linear model, the cubic models seem to fit the 

data just as well as the previous models judging by the regression statistics (R2 and F). Most 

sectors had somewhat similar coefficient of determination R2, even though R2 values for the 
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cubic model were slightly higher, implying that higher percentage of the variations in the data 

set was explained by the model. F statistic on the other hand shows that the model significantly 

fit the data at very low percentage levels for all the sectors in both countries. 

Table 4.13. Learning elasticities and levels (progress ratio) estimated using Cubic model for all the 

studied sectors in Iran 

Sector φ1 φ2 B C D R^2 Significance

F 

Households -11.5293 2.8690 0.9243 -0.3570 0.0117 0.9817 7.33E-30 

Public Service 2.1251 3.3028 0.1106 -0.4254 0.0160 0.8642 1.08E-14 

Industrial 15.9985 -4.160 0.6215 0.3636 -0.0118 0.9815 8.54E-30 

Agriculture 0.6940 -0.03 0.8006 -0.0771 0.0030 0.9555 3.95E-23 

Street Lighting -2.2641 2.3755 0.5346 -0.3358 0.0129 0.9187 1.43E-18 

All Sectors 2.2959 -2.008 0.9945 0.1365 -0.0045 0.9941 1.86E-38 

 

 

Table 4.14. Learning elasticities and levels (progress ratio) estimated using Cubic model for all the 

studied sectors in Japan 

Sector φ1 φ2 B C D R^2 Significance 

F 

Residential -46.8225 10.3896 0.723 -0.8718 0.023 0.7969 2.45E-12 

Mining -1049.87 290.477 0.702 -26.9391 0.8339 0.8822 1.74E-18 

Manufacturing -193.379 37.4228 1.105 -2.5733 0.0585 0.9232 2.83E-22 

Public Lighting -25.0539 5.3154 1.107 -0.5574 0.0182 0.8419 2.51E-14 

Agriculture -282.972 82.1430 0.301 -7.9298 0.2546 0.7300 4.37E-10 

Railways -34.1799 6.3400 1.180 -0.5909 0.0180 0.9848 1.99E-21 

All sectors -275.296 49.8531 1.284 -3.1809 0.0668 0.9620 1.61E-28 

 

The annual technological learning level (progress ratio) for all sectors were calculated and 

presented in Tables 4.15 and 4.16 for Iran and Japan respectively. Grey shaded cells emphasize 

a forgetting process during the period under review. Refer to Appendix 6 and Appendix 7 for 

the full display of the cubic model curve plots concerning every studied sector in Iran and Japan 

respectively.  From table 4.15, we can see that only the public service sector exhibits a 

forgetting phenomenon with progress ratio values higher than 1 starting from 1995 up until 
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2007. All the other sectors exhibit a good learning potential throughout the years. However, 

the learning path connoted by the trend of the progress ratio throughout the years differs from 

a sector to the other. Indeed, households sector, agriculture sector, and public lighting sector, 

all exhibit a decreasing trend in the progress ratio in the early periods of the study, then 

experience an increasing trend towards the end periods of the study. During this change in 

progress ratio trend, no forgetting was displayed. We call this learning path a convex learning 

path with a minimum, with no forgetting at any period. On the other hand, the public service 

sector exhibits the same path as those previously mentioned sectors. However, we notice that 

the progress ratio goes beyond 1 at the end of the study periods. In this case, the learning path 

of the public service sector is characterized as a convex learning path with forgetting at some 

end period. Finally, the industrial sector exhibits an increasing trend in the progress ratio in the 

early periods of the study, then experiences a decreasing trend towards the end periods. Yet 

again, during this progress ratio change, all values stayed well below 1. We call this learning 

path a concave learning path with a maximum, with no forgetting at any period. 

From table 4.16, we can see that all the all the sectors follow a convex learning path judging 

from the variation of the progress ratios for each sector during the studied periods. However, 

some sectors exhibit some values of progress ratio that are superior to 1, which means that they 

experience forgetting. Indeed, the residential sector, the mining sector, the manufacturing 

sector, the agricultural sector, and the railways sector, all follow a convex learning path with 

forgetting at some end periods. The remaining sector, namely the public lighting sector exhibits 

a convex learning path with no forgetting at any period. It is worth noting that the mining sector 

exhibited a forgetting pattern not only in some periods, but throughout all the studied timespan. 

Moreover, the mining sector exhibited the highest progress ratios in all the sectors, in fact, in 

2015 the progress ratio was estimated at 2.957, which means that for every doubling of the 

consumed electricity amount in that sector, the cost of electricity becomes 295.7% of the value 
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at which it was valued before, the cost of electricity nearly triples every time the mining sector 

doubles its consumption, which indicates a complete lack of technological learning in that 

sector. 

When compared to the progress ratios from the studied sectors in Iran, the learning potential in 

Japan is clearly inferior to its Iranian counterpart. In fact, when we consider the aggregate 

consumption data for all the sectors at once, we observe that all the compounded sectors in Iran 

follow a concave learning curve with maximum, and with no forgetting at any period.  Which 

means that the cost of electricity was decreasing in the early periods by an increasing cost 

cutting percentage, then it started decreasing at a very early stage, precisely in 1973 when it 

has reached a maximum value of 64.9%. Then from 1974, the progress ratio started decreasing 

rapidly to reach 54.3% in 2007. This indicates that all the studied sectors in Iran have 

experienced electricity cost cuts early on, but those savings were not efficient enough, it only 

started being efficient from 1974 where electricity costs started decreasing at a cascading rate. 

On the other hand, if we consider the aggregate consumption data for all the studied sectors in 

Japan, we observe that they follow a convex learning with minimum, and with no forgetting at 

any period. Which means that the cost of electricity was decreasing very efficiently in the early 

periods, then the progress ratio started increasing when it reached a value of 66% in 1982, and 

the cost savings were not as efficient as they used to be. From 1983, the progress ratio was 

increasing year in year out to reach a value of 98% in 2015. This indicates that all the studied 

sectors in Japan have experienced very efficient electricity cost reductions early on, but those 

savings stopped being efficient since 1983. If the progress ratio keeps on increasing at the same 

momentum, we expect it to go beyond 1, and thus the cost of electricity in Japan would increase 

in the studied sectors for every doubling of electricity consumption. Tables 4.17 and 4.18 show 

a summary of the findings.
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Table 4.15. Annual Technological Learning Level Estimates for the different Iranian Electricity Consumption Sectors 

 

Years House-

holds 

Public 

Service 

Industrial Agriculture Street 

Lighting 

All 

Sectors 

1968 0.750 0.878 0.577 0.689 0.824 0.625 

1969 0.700 0.800 0.626 0.666 0.772 0.636 

1970 0.669 0.760 0.666 0.654 0.745 0.643 

1971 0.647 0.740 0.694 0.645 0.726 0.647 

1972 0.630 0.730 0.714 0.638 0.714 0.648 

1973 0.618 0.725 0.729 0.632 0.703 0.649 

1974 0.609 0.724 0.737 0.627 0.696 0.648 

1975 0.601 0.727 0.740 0.624 0.691 0.646 

1976 0.595 0.732 0.741 0.621 0.689 0.644 

1977 0.591 0.739 0.741 0.619 0.687 0.642 

1978 0.589 0.748 0.739 0.618 0.686 0.640 

1979 0.587 0.758 0.737 0.617 0.685 0.637 

1980 0.588 0.768 0.735 0.616 0.685 0.634 

1981 0.589 0.780 0.732 0.615 0.686 0.632 

1982 0.591 0.793 0.729 0.615 0.687 0.629 

1983 0.594 0.806 0.725 0.615 0.689 0.625 

1984 0.598 0.820 0.721 0.616 0.691 0.622 

1985 0.602 0.834 0.717 0.617 0.694 0.619 

1986 0.607 0.850 0.713 0.618 0.697 0.615 

1987 0.613 0.868 0.710 0.619 0.701 0.612 

1988 0.618 0.885 0.707 0.620 0.705 0.609 

1989 0.624 0.904 0.703 0.622 0.708 0.605 

1990 0.630 0.923 0.699 0.623 0.713 0.602 

1991 0.637 0.944 0.695 0.625 0.717 0.598 

1992 0.644 0.965 0.690 0.626 0.722 0.595 

1993 0.651 0.985 0.684 0.628 0.725 0.591 

 

 

 

 

1994 

 

 

 

 

0.658 

 

 

 

 

0.994 

 

 

 

 

0.677 

 

 

 

 

0.630 

 

 

 

 

0.729 

 

 

 

 

0.588 

1995 0.664 1.002 0.670 0.632 0.732 0.584 

1996 0.671 1.010 0.663 0.633 0.738 0.581 

1997 0.678 1.019 0.657 0.635 0.743 0.577 

1998 0.686 1.028 0.650 0.637 0.748 0.574 

1999 0.693 1.040 0.644 0.639 0.756 0.571 

2000 0.701 1.054 0.637 0.642 0.763 0.567 

2001 0.708 1.068 0.630 0.644 0.771 0.564 

2002 0.716 1.082 0.623 0.647 0.779 0.561 

2003 0.724 1.097 0.616 0.650 0.787 0.557 

2004 0.732 1.112 0.609 0.653 0.795 0.554 

2005 0.741 1.129 0.601 0.656 0.802 0.550 

2006 0.750 1.147 0.594 0.659 0.809 0.547 

2007 0.759 1.166 0.586 0.661 0.815 0.543 
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Table 4.16. Annual Technological Learning Level Estimates for the different Japanese Electricity Consumption Sectors 

Year Residentia

l 

Mining Manufacturing Public 

Lighting 

Agriculture Railways All 

sectors 

1970 - 2.314 0.946 - - - 0.813 

1971 - 1.959 0.904 - - - 0.770 

1972 - 1.732 0.872 - - - 0.737 

1973 - 1.587 0.848 - - - 0.712 

1974 1.139 1.489 0.831 0.985 1.736 - 0.695 

1975 0.978 1.419 0.819 0.858 1.523 - 0.682 

1976 0.917 1.371 0.809 0.813 1.369 - 0.673 

1977 0.886 1.342 0.802 0.790 1.246 - 0.666 

1978 0.867 1.325 0.798 0.778 1.145 - 0.662 

1979 0.857 1.320 0.795 0.771 1.075 - 0.659 

1980 0.853 1.324 0.793 0.767 1.030 - 0.658 

1981 0.850 1.335 0.793 0.766 0.991 - 0.659 

1982 0.850 1.352 0.793 0.766 0.960 - 0.660 

1983 0.851 1.371 0.794 0.767 0.935 - 0.662 

1984 0.853 1.396 0.796 0.769 0.914 - 0.666 

1985 0.856 1.423 0.799 0.771 0.898 - 0.670 

1986 0.860 1.453 0.801 0.774 0.888 - 0.674 

1987 0.864 1.483 0.805 0.778 0.880 0.983 0.679 

1988 0.869 1.514 0.809 0.781 0.876 0.931 0.685 

1989 0.874 1.549 0.813 0.785 0.874 0.917 0.692 

1990 0.880 1.588 0.819 0.789 0.874 0.915 0.699 

1991 0.886 1.630 0.824 0.794 0.876 0.918 0.708 

1992 0.892 1.674 0.830 0.798 0.880 0.924 0.716 

1993 0.898 1.720 0.836 0.803 0.885 0.931 0.725 

1994 0.905 1.770 0.843 0.808 0.895 0.938 0.734 

1995 0.912 1.822 0.849 0.813 0.904 0.946 0.744 

1996 0.918 1.878 0.856 0.818 0.915 0.955 0.754 

1997 0.925 1.934 0.863 0.824 0.927 0.963 0.765 

1998 0.932 1.990 0.870 0.829 0.939 0.971 0.775 

1999 0.939 2.048 0.877 0.834 0.952 0.979 0.787 

2000 0.946 2.108 0.884 0.840 0.966 0.988 0.798 

2001 0.953 2.165 0.891 0.845 0.981 0.996 0.809 

2002 0.960 2.216 0.898 0.851 0.997 1.004 0.821 

2003 0.966 2.263 0.906 0.856 1.011 1.011 0.832 

2004 0.973 2.313 0.913 0.862 1.027 1.019 0.844 

2005 0.979 2.366 0.921 0.867 1.037 1.027 0.857 

2006 0.985 2.424 0.929 0.873 1.047 1.035 0.869 

2007 0.991 2.477 0.938 0.878 1.057 1.042 0.882 

2008 0.996 2.531 0.946 0.883 1.067 1.050 0.895 

2009 1.001 2.583 0.954 0.889 1.078 1.057 0.907 

2010 1.007 2.640 0.962 0.894 1.088 1.064 0.920 

2011 1.012 2.697 0.970 0.898 1.099 1.070 0.932 

2012 1.017 2.757 0.978 0.903 1.110 1.076 0.945 

2013 1.022 2.823 0.986 0.907 1.121 1.083 0.957 

2014 1.026 2.891 0.993 0.912 1.132 1.089 0.969 

2015 1.031 2.957 1.001 0.916 1.142 1.095 0.980 
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Table 4.17. Paths of Learning in Iranian Electricity Consumption from 1968 to 2007 

Paths Shape Forgetting Sector 

Convex learning 

path with a 

minimum 

 With forgetting at 

some end periods 

• Public 

Service  

With no forgetting 

at any period 
• Households 

• Street 

Lighting  

• Agriculture  

Concave learning 

path with 

maximum 

 With forgetting at 

some mid periods 

- 

no forgetting in 

any period 
• Industry 

• Overall 

Compound 

Sectors 

Concave learning 

path that either 

have not reached 

or have no 

maximum 

 With forgetting 

after the beginning 

period 

- 

with forgetting at 

some mid period 

- 

 

 

Table 4.18. Paths of Learning in Japanese Electricity Consumption from 1970 to 2015 

Paths Shape Forgetting Sector 

Convex learning 

path with a 

minimum 

 With forgetting at 

some end periods 

• Residential 

• Mining 

• Manufacturing 

• Agriculture 

• Railways 

With no forgetting 

at any period 

• Public Lighting  

• Overall 

compound 

Sectors 

Concave learning 

path with 

maximum 

 With forgetting at 

some mid periods 

- 

no forgetting in 

any period 

- 

Concave learning 

path that either 

have not reached 

or have no 

maximum 

 With forgetting 

after the 

beginning period 

- 

with forgetting at 

some mid period 

- 
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CHAPTER FIVE: CONCLUSION 
 

5.1. Results of similar Forecasting Studies 
 

This section discusses the results of the data analyses in comparison with the literatures that 

has conducted similar studies concerning electricity demand forecast for Iran and Japan. 

Indeed, our results indicated that the best fit forecasting models for electricity demand differ 

from a country to other and from a forecasting scenario to the other. Indeed, as shown in table 

4.4, the best fit model for electricity consumption forecasting in Iran for a long-term prediction 

scenario is the quadratic model, while the best fit model for the same scenario in the case of 

Japan is the logistic model. This indicates the variability of the concept of “best fit model”. In 

fact, we can’t assess by certainty that a specific model can predict the observed phenomenon 

more accurately than all the others. It depends on so many variables that the studied forecasting 

models can’t always account for. Indeed, some studies has shown that other models are best fit 

for electricity consumption forecasting in Iran and Japan alike.  

A study has used an integrated algorithm based on ANN and time series analysis in order to 

forecast electricity consumption in Iran. In this study, the actual consumption data that has been 

used spans from 1994 to 2005, but instead of counting periods in years, the periods have been 

counted in months, so a total of 130 moths were used to show the performance and eminence 

of the proposed model. In this study, multilayer perceptron networks have been used, from 

which the back propagation algorithm had the best results with a calculated error of 

approximately 0.012 on the test dataset (Azadeh, Ghaderi, & Sohrabkhani, 2008). All in all, 

the results proved that ANN is better performing than both the standard time series models and 

the simulated-based ANN models. This observation was made accordingly to the statistical 

tests that have been conducted during the study, namely MAPE, Duncan's Multiple Range Test 

(DMRT), and Analysis Of Variance (ANOVA F-Test). However, the study has also made sure 
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to mention that the utilization of various models is key in order to construct a better overall 

picture of the predictions. Indeed, the study emphasized on the fact that ANN is the best model, 

but relying solely on it will not enhance the overall validity of the forecasts. Therefore, in order 

to minimize the biases of using only one approach, different models should be considered. This 

was precisely the reason behind our recommendation of more than one model for each data set 

studied, as shown in table 4.4.  

Another study has focused on the short-term load forecasting (STLF) in order to predict future 

values of electricity demand in Iran. The proposed framework is basically an improved version 

of the singular spectral analysis (SSA) in which the time series are broken down to their 

principal components, their tendency, and their oscillation components. The data set that has 

been considered are the total load time series of Iran electricity market, and is considered long 

and consistent enough to yield robust forecasting results. All in all, the results show that the 

proposed model offers great performance in short-term forecasting when put against some 

other models (Afshar & Bigdeli, 2011). However, since this study was only conducted with 

short-term forecasting in mind, no further consideration has been made concerning the 

performance of the model in other forecasting scenarios. 

In the case of Japan, a study has used a Bayesian approach to examine the regional electricity 

demand in Japan. The forecasting model that was proposed is a spatial autoregressive (SAR) 

ARMA model, which parameters were estimated by relying on a Markov Chain Monte Carlo 

(MCMC) method. The results show that the spatial autoregressive ARMA(1,1) model performs 

better than the univariate ARMA model (Ohtsuka, Oga, & Kakamu, 2009). Moreover, a further 

observation has been made about the importance of spatial interaction between different 

regions, as it directly impacts the forecasts of future electricity demand in Japan. 
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5.2. Policy implications of the S-curve Analysis 

 

Comparing tables 4.7 and 4.9, we can conclude that different electricity consuming sectors 

have reached different stages of their developing path in different countries. Indeed, while the 

agriculture sector is still in its developing stage in Iran, the same sector has already reached its 

maturity stage in Japan. The same observation can be made about the residential and the public 

lighting sectors that are still in the developing stage in Iran, but have already reached the 

stagnating stage in Japan. Another sector also belongs to two different ends of the development 

stages spectrum in both countries. Indeed, manufacturing sector is in an infant stage in Iran, 

while it is in a stagnating stage in Japan. Finally, the mining and the railways sectors in Japan, 

which are not represented in our Iranian data set, both have already reached maturity in 2001 

and 2015 respectively. All these observations indicate that Iran is still a developing country 

and has all the potential to experience sustainable growth during the upcoming years, while 

Japan is starting to be economically out of breath, especially in the sectors studied in this thesis. 

Concerning policy recommendations, the Iranian government could focus on starting new 

international campaign about FDI attraction in order to accelerate the development of its 

industry and increase the saturation point capacity level to a higher amount which will 

undoubtedly extend the lifespan of those sectors. Concerning the residential and agriculture 

sectors, population growth will play a great role of fostering growth in these sectors without 

specific government implication. Finally, regarding the public services sector, 

recommendations would concern the infrastructure and the organization of the sector more than 

government policy itself. In fact, reforms should be instituted about the structures and the 

underlying organization of the sector in order to foster more efficiency and growth so as to start 

a new s-curve life cycle. Regarding the Japanese government however, we have a whole 

different set of recommendations to make. The Japanese government should focus on 

improving the export capacity of its agriculture sector, for example Japanese mushroom and 

rice could easily reach the Southeast Asian markets and foster more growth in the sector. For 
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sectors that can’t afford going market extension outside japan, such as the railways sector. A 

new development cycle has to be created by relying on new technologies, and that is exactly 

what Japanese government is fostering, the new Japanese maglev train would start a new 

sustainable growth in the sector. The manufacturing sector however needs a combination of 

outside market extension measures and internal technology innovations. Indeed, Japanese 

manufacturers should seriously consider implementing their businesses abroad in order to 

harness the potential of the new fertile markets of Southeast Asia and Africa. Moreover, the 

government should provide some facility measures to foster this kind of industry globalization, 

in one hand, startups should benefit from less restrictive regulations and incumbents should 

benefit for low interest rate loans provided that the loan will serve the company to expand 

outside of Japan.   

 

5.3. Policy implications of the learning curve Analysis 
 

In this study, electricity consumption data was collected and incorporated in a learning model 

that estimated the dynamic technological progress of different sectors in Iran and Japan alike. 

The findings demonstrated that the learning trend in each sector in both countries behaved in 

two distinct manners: (1) convex with a minimum, (2) concave with a maximum. No studied 

sector behaved in the standard concave with no maximum manner. However there has been 

one exception to this general categorization, indeed the remaining electricity data set that has 

been aggregated under the “other sectors” label in Japan, follows a constant decreasing curve 

that is neither convex nor concave. In the case of Iran, the industry sector presented a concave 

progress ratio with a maximum, while all the other sectors presented a convex progress ratio 

curve, with the public services sector presenting a forgetting pattern at the end of the studied 

periods. This indicates that the industry sector is the better performing sector within Iran in 

terms of technological capability and driving costs down. Surprisingly, the overall progress 
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ration in Iran follows a concave trend with maximum, which means that the industry sector in 

Iran is driving by its own the majority of the technological capability and learning potential in 

the country. In case of Japanese sectors, all sectors seem to have a progress ratio that is 

following a convex shape with a minimum, except the “other sectors” that is exhibiting a 

constant decreasing trend. Agriculture and residential sectors present forgetting patterns at both 

ends, the railways sector presents a forgetting pattern at the right side of the curve, while the 

mining sector presents forgetting pattern throughout the whole curve. We can see that the 

minimum level of progress ratio has been reached unanimously by all the sectors within the 

early 1980s, which shows that the peak of technological learning of the studied Japanese sectors 

has been reached in the early 1980s, and was on a decline since then. 

Concerning policy recommendations, since the industry sector is the main driver of 

technological learning in Iran, the Iranian government could adopt a deregulation strategy for 

the industry sector, which will attracts foreign technologies and boost learning. Moreover, 

Iranian government shouldn’t solely rely on the country’s low labor cost to draw FDI, 

regulation and adoption of new policies are required to attract a constant stream of FDI to 

ensure the proper growth of Iranian industry sector. Regarding Japan, in order to ignite once 

again the economic growth, more focus should be attributed to a cluster of sectors that 

encompass the best learning potential to the detriment of those lacking in technological 

capability. But none of the studied sectors in Japan seems to exhibit this kind of potential. 

Which lead us to the conclusion that further consideration and comprehensive exploration of a 

wider set of parameters that could be behind this lack of technological progress in the sectors 

alike. Some probable factors may include bad industry structures, changing attributes of 

demand, increasing technological barriers, external energy prices fluctuation, great dependency 

from energy import, degradation of efficiency and increase in electricity distribution losses 

within the network grid, not trying to diversify the power generating technologies and so on 
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and so forth. Once all of these parameters are factored in, a proper understanding of the 

electricity demand in Japan will emerge, and can be used in policy frameworks in order to drive 

electricity costs down. All in all, demand and costing are all subject to variation, and comprise 

a significant level of uncertainty within them, that the framework presented in this thesis didn’t 

necessarily take into consideration. As a further development of this learning model that 

measures technological progress, uncertainty can also be incorporate in future models in order 

to take the highly variable and probabilistic nature of demand into consideration. 
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APPENDIX 1: Plots of Forecasting Models for Iran Consumption Data 
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APPENDIX 2: Plots of Forecasting Models for Japan Consumption Data 
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APPENDIX 3: Minitab Plot and Results for ARMA(0,1,1) and Brown 

Forecasting Models 
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APPENDIX 4: S-Curve Analysis Plots for the Studied Sectors in Iran 
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APPENDIX 5: S-Curve Analysis Plots for the Studied Sectors in Japan 
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APPENDIX 6: Learning Curve Analysis Plots for all the Sectors in Iran 
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APPENDIX 7: Learning Curve Analysis Plots for all the Sectors in Japan 
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