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Summary 

Background 

 Against the backdrop of the global financial crisis, the digital currency has 

recently attracted substantial public attention. On the contrary to the existing centralized 

financial market infrastructure, bitcoin uses peer-to-peer technology to operate without 

central authotiry or banks (Nakamoto, 2008). The transparent and decentralized natures 

of bitcoin enable to become the most popular alternative currency. 

Recent policital and economic events in Japan make plausible for the digital 

currency trading to be attractive. The Japanese government accepted bitcoin as a virtual 

currency to protect users. Moreover, Japan looks to end sales-tax collection on 

purchases of virtual currencies in spring, 2017 (Nikkei, 2016). 

The global economic uncertainty also influenced on purchasing bitcoin. In 2016, 

the price of bitcoin surged more than 50% in July over January, which has benefited 

from recent economic events. For example, China devalued the yuan and the UK 

dramatically exited the European Union (Bovaird, 2016). Furthermore, a zero interest-

rate policy has led the Japanese to find a better opportunity for investment as well as for 

protection from diminishing their assets (Dhaliwal, 2016).   

 In the academic world, bitcoin also has drawn significant attention from law and 

computer science scholars. However, few scientific studies have yet focused on 

examining bitcoin from an investment point of view. The absence of empirical works 

addressing bitcoin as an investment vehicle is the motive for this study. Therefore, in 

this paper, we extend the literature on bitcoin as an investment feature in view of a 

Japan investor. 
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Objective 

 This research aims to address the following questions: “Can bitcoin improve 

portfolio’s efficiency” and “Which portfolio optimization strategy can make the best 

risk-return profile for portfolio including bitcoin”. 

Due to the lack of understanding about the influence of bitcoin on portfolio 

efficiency among Japan society and in general, this research examines the effect of 

bitcoin on a Japan investor’s portfolio. After then, we figure out the best portfolio 

optimization strategy by comparing various models which have different objectives. 

This study will contribute to the understanding of bitcoin in the portflio 

management for investors who are  both individual investors and institutional investors. 

In addtion, this study will facilitate future researchers to use this ideas as reference in 

conducting other related literature and to consider bitcoin as an alternative investment to 

enhance portfolio value. 

Methods 

This paper adopted the view point of a Japan investor and constructed well-

diversified portfolios including various indices such as bond, bond, equity, currency, 

real-estate and commodity. Then, we developed three portfolio optimization 

frameworks originated from the risk-based allocation and modern portfolio theory such 

as maximum efficient portfolio approach, minimum risk portfolio approach and risk 

budgeting portfolio approach. In addition, we used the robust risk measures (e.g. VaR, 

CVaR) to account for the bitcoin’s non-normality and the investor’s aversion toward 

downside risk.  
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In order to calculate the performance of a portfolio strategy, we applied the out-

of-sample backtesting technique over the sample period, from July 30, 2010 to 

September 30, 2010, to assess the performance of models by comparing the risk-return 

ratios (e.g. sharpe ratio and sortino ratio). 

Conclusions 

First, this paper illustrated that bitcoin exhibits fat-tailed distribution with very 

high kurtosis but relatively low skewness. This symmetric heavy-tailed distribution was 

compensated not only by low correlations with other assets, but also high returns. 

Overall risk-return ratios were thus increased after adding bitcoin into the three different 

frameworks. Especially, the result showed that bitcoin increased sortino ratio in all 

frameworks, which means that bitcoin significantly decreased downside risk. As a result, 

the effect of adding bitcoin into the portfolio demonstrated the improvement in the 

portfolio’s efficiency by increasing positive returns and decreasing negative returns. 

Second, considering bitcoin invested into the portfolio, the framework 1, 

maximum efficient portfolio approach, achieved the highest sharpe ratio and sortino 

ratio. The weights of bitcoin illustrated that framework 1 which had the largest average 

bitcoin weights also gained the highest sortino ratio. The findings suggest that 

framework 1 was designed effectively for bitcoin to increase both sharpe ratio and 

sortino ratio. In other words, the objective to maximize reward to risk of framework 1 

caused the higher average weights of bitcoin and resulted in the highest sortino ratio. As 

a result, framework 1, maximum efficient portfolio approach, could make the best risk-

return profile for the portfolio including bitcoin. 
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Abstract 

As an open source peer-to-peer electronic cash system which operates without 

any central authority, bitcoin has attracted users and investors who understand the risk 

of existing financial system such as negative interest rate policies and high levels of 

government debt, and concern the next global economic crisis (Nakamoto, 2008) 

 The incentive for the investment of bitcoin is high among Japan investors in 

terms of increasing bitcoin accepted shop, bitcoin-friendly regulation, unprecedented 

stability of bitcoin price. As Japanese are more interested in bitcoin as an investment 

and alternative currency, Japan is now the world’s third-largest bitcoin market in the 

world after China and United Stated. However, few papers have emphasized on bitcoin 

as an investment aspect. Yermack (2013) argued that bitcoin behaves like an investment 

vehicle. Brière, Oosterlinck and Szafarz (2013) provided a tentative first look at how 

bitcoin might be of value in an investment portfolio optimization process. 

 Therefore, this research examines how bitcoin can increase the efficiency of a 

Japan investor’s portfolio and finds which portfolio optimization strategy can make the 

best risk-return profile for a well-diversified portfolio including bitcoin. 

By using out-of-sampling backtesting over the period from July 30, 2010 to 

September 30, 2016, we analyze a bitcoin investment from a Japan investor’s standpoint 

with a well-diversified portfolio including both broad range of asset classes (equity, 

bond, commodity, real-estate and currencies) and Japan’s investment market trends 

(domestic equities, high-yield bond and REITs). This study develops three different 

frameworks based on modern portfolio theory and risk-based allocation which have 
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genuinely different objectives (framework 1: maximum efficient portfolio approach, 

framework 2: minimum risk portfolio approach, framework 3: risk budgeting portfolio 

approach). 

Distribution of the returns for bitcoin shows highly distinctive features, 

including exceptionally high average return and volatility. Its correlation with other 

assets is remarkably low, which makes bitcoin valuable as an investment. 

The backtesting results confirm that overall risk-return ratios were increased 

after adding bitcoin into the three different frameworks. Especially, bitcoin offered 

significant improvement in the portfolio efficiency by reducing downside risk and 

increasing returns.  

Results also illustrate that that bitcoin significantly contributed to the increase of 

risk-return profile efficiently in the framework 1, maximum efficient portfolio approach. 

In other words, the objective to maximize reward to risk of framework 1 caused the 

higher average weights of bitcoin and resulted in the highest sortino ratio.  

Consequently, considering the features of bitcoin (e.g. low correlation with other 

assets, high return and heavy-tailed distribution), the approach concerning not only 

more robust risk measures, but also return is suitable for building the optimal portfolio 

model.  

Keywords Bitcoin, Portfolio Theory, Investment, Efficiency, Optimization, Japan, VaR, 

CVaR, Risk Parity, Mean-Variance   
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CHAPTER1 Introduction 

1.1 Background 

 As the recent financial system crumbles, an alternative concept of the financial 

system has become more relevant and credible. On the contrary to the discretionary 

decision-making of a central bank, bitcoin system is transparently operated by a peer-to-

peer network without a central authority. These tasks are managed by an open-source 

computer algorithm, which facilitates the reliability of expectations about the future 

supply of bitcoin and maintains its integrity (Nakamoto, 2008).  

 Japan was once one of the largest bitcoin markets before Mt.Gox filed for 

bankruptcy due to unprofessional conduct, deception, and theft.  This experience has put 

most people in fear about trading in any crypto-currency in Japan. However, recent 

political and economic events make it plausible for this digital currency trading to be 

attractive and rebound back to the true value (Coincheck, 2016).  

 One of the reasons is that regulations have been more bitcoin-friendly. For 

example, the government of Japan had passed a bill about virtual currency exchanges to 

protect users. Moreover, Japan looks to end sales-tax collection on purchases of virtual 

currencies in spring, 2017 (Nikkei, 2016). 

The global economic uncertainty also influences on purchasing bitcoin. In 2016, 

the price of bitcoin surged more than 50% in July over January, which has benefited 

from recent economic events. For example, China devalued the yuan and the UK 

dramatically exited the European Union (Bovaird, 2016). In addition, the Japanese 

government, led by prime minister Shinzo Abe, has struggled with deflation and 
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stimulating domestic demand. The economic stimulus package, known as “Abenomics”, 

has recently regarded by economic financial experts as underwhelming. This economic 

policy uncertainty causes investors and users to find alternative financial system. 

Furthermore, a zero interest-rate policy has led Japanese to find a better opportunity for 

investment as well as for protection from diminishing their assets (Dhaliwal, 2016). 

Actually, according to Brian (2016), 80% of users are using bitcoin as an investment, 

and 20% of users are using it as a wallet for daily spending. 

As Japanese are more interested in bitcoin for investment and alternative 

currency, Japan is now the world’s third-largest bitcoin market in the world after China 

and United States of America. At the beginning of 2016, one bitcoin was trading at 

around 38,000 JPY, where now one bitcoin is worth almost 60,000 JPY. Furthermore, 

the number of shops in Japan that has accepted bitcoin reached around 2,500 stores 

(Nikkei, 2016). 

 In the academic world, bitcoin also has drawn significant attention from law and 

computer science scholars. Many papers have been published focusing on descriptive 

analysis of the bitcoin network (Ron and Shamir, 2013), the potential risk of double-

spending (Karame, Androulaki & Capkun, 2012), as well as the implications of the 

availability of a public ledger containing all bitcoin transaction ever made (Meiklejohn, 

Pomarole, Jordan, Levchenko, McCoy, Voelker & Savage, 2013). However, few 

scientific studies have yet focused on examining bitcoin from an investment point of 

view. Yermack (2013) argued that bitcoin behaves like an investment vehicle. Brière et 

al. (2013) provided a tentative first look at how bitcoin might be of value in an 

investment portfolio optimization process. Wu and Pandey (2014) found out that bitcoin 
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could play an important role in enhancing the efficiency of an investor’s portfolio. Eisl, 

Gasser and Weinmayer (2015) indicated that bitcoin could contribute to the risk-return 

ratios of optimal portfolios by adopting a Conditional Value-at-Risk framework. 

 The absence of empirical works addressing bitcoins as an investment vehicle is 

the motive for this study. Therefore, in this paper, we extend the literature on bitcoin as 

an investment feature in a Japan investor’s standpoint. We, therefore, look at the impact 

of bitcoin on the portfolio by comparing the results of different strategy and find the 

best strategy to maximize portfolio performance. 

1.2 Research Questions and Objectives 

 This research aims to address the following questions: “Can bitcoin improve 

portfolio’s efficiency” and “Which portfolio optimization strategy can make the best 

risk-return profile for portfolio including bitcoin”. 

Due to the lack of understanding about the influence of bitcoin on portfolio 

efficiency among Japan society and in general, therefore, this study considers on this 

aspect. Therefore, this research examines the effect of bitcoin on an investor’s portfolio 

in Japan where the demand and opportunities of bitcoin as an investment are rising. 

After then, we figure out the best portfolio optimization strategy by comparing various 

models which have different objectives. These results can be used as practical 

information for Japan investors who consider bitcoin as an investment opportunity.  

 This study will contribute to the understanding of bitcoin in the portfolio 

management for investors who are both individual investors and institutional investors. 

I hope that this research will encourage them to be drawn to the frameworks of stretegy 

and to adapt it as an effective investment strategy that will benefit the Japan investors. 
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 In addition, this study will facilitate future researchers to use theses ideas as a 

reference in conducting other related literature and to consider bitcoin as an alternative 

investment to enhance portfolio value. 

 The outcomes to be considered consist of the following: understanding statistical 

properties of bitcoin; the improvement of portfolio efficiency by adding bitocin in three 

frameworks; enhancing portfolio’s returns; the level of weights of bitcoin to make the 

best risk-return profile, and eventually the development of a positive attitude towards 

bitcoin as an investment. 

1.3 Structure of the Paper 

 The structure of the paper is following. Introduction chapter explains the 

background of the subject in hand. Chapter 2 and Chapter 3 review the theoretical 

background for an understanding of bitcoin and portfolio theory respectively. Chapter 4 

explains the methodology. In Chapter 5, data is examined and empirical results are 

presented and interpreted. Chapter 6 presents the conclusion, limitation and managerial 

implication. 
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CHAPTER2  Introduction to Bitcoin 

2.1 History of Bitcoin 

 Bitcoin is a form of digital currency and system released as open source 

software in January 2009. Satoshi Nakamoto is known as the pseudonymous creator of 

bitcoin, who continues to this day to remain unknown. bitcoin was first introduced in a 

paper entitled “Bitcoin: A Peer-to-Peer Electronic Cash System” in 2008 (Nakamoto, 

2008) 

 The main advantage of this digital currency is the lack of centralized third-

parties or authorities such as a bank or credit card company who is keeping track of 

users’ deposits and withdrawals. Bitcoin system allows users to share and process 

transactions, which greatly reduce transaction costs and time lag compared to traditional 

currency systems where banks require more time and charge fee for transactions. This 

peer-to-peer system is also designed to verify and record all transactions in a public 

ledger known as the blockchain (Velde 2013). However, it is described as an 

anonymous currency because users are identified by “bitcoin address” only (Doguet, 

2012).  

 In many ways, bitcoin, commonly referred to as a “virtual currency” or 

“cryptocurrency”, has been used as a currency which can buy goods and service. Users 

can purchase bitcoin from either an online exchange or directly from other users. The 

exchange is acting similar to a foreign currency exchange where individual bitcoin 

buyers and sellers can find each other.  
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In February 2010, the very first of bitcoin exchange was established by 

Dwdollar who was a member of bitcoin online forums. After the first bitcoin exchange, 

a Tokyo-based online exchange, Mt.Gox, was officially launched in July 2010. Growing 

trading volume of bitcoin on the Mt.Gox led to $1 million market capitalization of 

bitcoin by November 2010. By 2013, it handled approximately 70% of the world’s 

bitcoin trades (Jossep, 2015). 

In 2013, some mainstream websites began to accept bitcoin as a currency such 

as WordPress, Expedia, Dell, Microsoft and so on. In October 2013, Baidu, China-

based search engine, accepted bitcoin as a payment method. By November 2013, China-

based bitcoin exchange reached the world’s largest bitcoin trading exchange. On the 

other hand, bitcoin’s anonymity made it powerful currency for online black markets. In 

October 2013, the U.S Federal Bureau of Investigation (FBI) shut down the Silk Road 

website which was an online market for selling illicit drugs by bitcoin (Chwierut, 2016). 

 In February 2014, another crisis of bitcoin occurred. Mt.Gox collapsed and lost 

a reported 850 thousand bitcoin, which led the value of bitcoin to fell close to 23% 

(Böhme, Christin, Edelman & Moore, 2015; Yermack, 2013). However, the price 

recovered after six months following the bitcoin crash (Ngo, 2015). After its biggest 

exchange’s collapse, governments began to pass regulation to control bitcoin. The 

Internal Revenue Service (IRS) declared to consider bitcoin as property to be taxed and 

the People’s Bank of China (PBOC) required Chinese banks to close the accounts of 

bitcoin exchanges (Chwierut, 2016). 

  Since 2015, interest in the bitcoin technology, “blockchain”, surged in banks 

and financial industry. For example, Microsoft launched blockchain-as-a-service (BaaS) 
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within its Azure service portfolio, and Barclays announced that it would become the 

first UK bank to start accepting bitcoin for users to make charitable donations 

(Macfarlan, 2015). On the other hand, there was also a debate on the expansion in block 

size. The limited block size of bitcoin is not enough to supply block space according to 

the increasing demands of users. 

 Many of trends in 2015 are continuing in 2016. More companies are interested 

in blockchain technology, uncertainty over the block size is still in debate and the 

development of alternative cryptocurrencies is emerging such as Ethereum, Ripple, 

Litecoin, and so on. However, bitcoin maintains its reputation as the pioneer of 

cryptocurrency with the largest market capitalization and monthly trade volume among 

cryptocurrencies, which is exhibited in Table 2.1 and Table 2.2. 

Table 2.1. Top10 Cryptocurrency Market Capitalizations (November 2, 2016) 

Rank Name Market Cap (USD) 

1 Bitcoin $11,683,126,523 

2 Ethereum $918,655,230 

3 Ripple $291,158,743 

4 Litecoin $197,222,743 

5 Ethereum Classic $75,731,299 

6 Monero $61,359,241 

7 Dash $61,076,190 

8 Augur $48,823,830 

9 NEM $34,568,460 

10 Waves $34,370,000 
Note: Adapted from “Crypto-Currency Market Capitalizations,” by CoinMarketCap, 2016, Retrieved   

from http://coinmarketcap.com/ 

 

 

 

 

 

 

 

 

 

 

 

 

http://coinmarketcap.com/
http://coinmarketcap.com/
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Table 2.2. Top 10 Monthly Trade Volume Rankings (November 2, 2016) 

Rank Name Volume (30days) 

1 Bitcoin $2,098,122,432 

2 Ethereum $319,789,879 

3 Monero $94,020,646 

4 Litecoin $86,461,275 

5 Ripple $83,670,810 

6 Augur  $50,169,162 

7 Ethereum Classic $39,903,922 

8 Dash $24,051,127 

9 PotCoin $22,056,849 

10 Factom $21,457,598 
Note: Adapted from “Monthly Volume Rankings (Currency),” by CoinMarketCap, 2016, Retrieved 

from http://coinmarketcap.com/ 

2.2 Bitcoin in Japan 

 Japan now has 11 bitcoin exchanges and the world’s third largest market. The 

total market exchanging volume in Japan is 17.8 million BTC over the period from 

February 2011 to July 2016, which is the third largest amount after China and United 

States of America, which is shown in Figure 2.1 (Bitcoin日本情報サイト, 2016). 

 

Figure 2.1. Monthly Exchanging Volume (Bitcoin日本情報サイト, 2016)  

 Bitcoin trading volume and price are sharply increased recently.  

As showed in Figure 2.2, 430 million yen ($4.25 billion) in bitcoin were traded in Japan 

from January to Jun 2016 which is 50 times more than the trading volume in the same 

http://coinmarketcap.com/
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period of the previous year. As the trading volume of JPY is increasing, bitcoin price is 

also steadily increasing from 38,316 yen on January 1, 2015, to 61,876 yen on 

September 15, 2016 (BitcoinCharts, 2016). 

 

Figure 2.2. Bitcoin Trading Volume and Price (JPY) (BitcoinCharts, 2016) 

 One of the factors for investors and users to exchange bitcoin actively is that the 

government made it acceptable as a currency. The introduction of the rules and 

regulatory have been instrumental in the recovery process from the Mt.Gox scandal 

which was hacked and eventually filed for bankruptcy in February 2015. In February 

2016, Japanese regulators proposed a draft which defines cryptocurrencies as digital 

currencies rather than commodities. In May 2016, Japan has passed a bill that mandated 

the rules and regulations of the bitcoin and the virtual currency exchanges by the 

Financial Services Agency. Moreover, Japan looks to end sales-tax collection on 

purchases of virtual currencies in spring 2017. This change would not only reduce 

burden of costs for buyers and operators, but also encourage bitcoin adoption among 
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investors and adopters who will see the cryptocurrency as a store of value or a 

transactional currency used as an alternative to the fiat money (Nikkei, 2016). 

 Another factor to boost bitcoin price is macroeconomic uncertainty. The 

incumbent government, ruled by Prime Minister Shinzo Abe, has struggled with 

deflation and stimulating domestic demand by the radical action to end economic 

stagnation, called “Abenomics”. The uncertainty in economic policy causes instability 

in economic. These factors attract users and investors who are wary of traditional 

financial systems and who are like the volatility as an investment opportunity. Actually, 

Yuzo Kano, chief executive of bitFlyer which is one of the bitcoin exchanges in Japan, 

mentioned that the number of customers has already surpassed 200,000 by August 2016 

(Solana, 2016). 

 As the prevalence of bitcoin in Japan has increased, the number of shops in 

Japan that accept bitcoin payments has been increased. Currently, around 2,500 stores in 

Japan have accepted bitcoin as a payment currency. One example is DMM.com which 

is one of the most well-known online content platforms in Japan. In March 2016, 

it started accepting bitcoin payment through coinceck’s processing service. The bitcoin 

start-up ResuPress also plans to accept the cryptocurrency as payment for electricity 

charges, which is expected to reduce the payment owed by from 4% to 6%. Similarly, 

bitcoin exchange and service firm, Coincheck, will enable Japanese citizens to pay 

utility bills by bitcoin in November 2016. Bills will be cheaper, compared to payments 

made through traditional means. There are now more than 2,500 merchants and online 

businesses that accept bitcoin in Japan and merchant adoption is accelerating by the day 

(Southurst, 2016). 

https://news.bitcoin.com/japanese-entertainment-giant-dmm-accepts-bitcoin/
http://www.japantimes.co.jp/news/2016/09/26/business/utility-venture-promote-cheaper-electricity-payments-via-bitcoin/#.V_93naNh3ow
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 In business aspect, many corporations are also interested in bitcoin as an 

opportunity to growth. For example, Japan’s biggest financial group, Mitsubishi UFJ 

Group, announced to invest Coinbase which is the bitcoin venture company offering a 

service for users to store the virtual currency and make payment with it (Fukase, 2016). 

2.3 Bitcoin as investment 

 Users can use bitcoin either as payment for goods and services or alternative 

currency converted to fiat currencies in various exchanges. Because the value of bitcoin 

is not controlled by any central bank, nor is it backed by any government, the price of 

bitcoin fluctuates freely based on supply and demand and the public’s perception of 

bitcoin as a store of wealth. The Bank of America Merrill Lynch (BAML) also 

predicted that, as both “a medium of exchange as well as a store of value,” bitcoin can 

become “a major means of payment for e-commerce and may emerge as a serious 

competitor to traditional money transfer providers”. In the report, Woo, Gordon and 

Iaralov (2013) analyzed Cost-Benefit of Bitcoin, which is showed in Table 2.3. 

Table 2.3. Cost-Benefit Analysis of Bitcoin 

 
Medium of Exchange Store of Value 

A
d
v
an

ta
g
es

 Low transaction costs Value protected by finite supply 

More secure, transparent, and portable 

than cash 
Evasion of capital controls 

Disincentives experimentation with 

alternate digital currencies 

Like gold, large benefits given 

negative correlation with risk sensitive 

assets 

D
is

ad
v
an

ta
g
es

 Further regulation would increase 

transaction costs 
Price volatility 

Bitcoin exchanges vulnerable to 

hacking 

Seigniorage accrues to bitcoin miners, 

incentivizing government crackdown 

Payment confirmation delays Status as non-fiat currency 

Note: Adapted from “Bitcoin: a first assessment,” by Woo, Gordon and Iaralov, 2013, Retrieved from 

http://www.pequenocerdocapitalista.com/wp-content/uploads/2015/07/banks-research-report-on-

Bitcoin.pdf 
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 Glaser, Zimmermann, Haferkorn, Weber and Siering (2014) studied bitcoin in 

the view point of user perspective. In this paper, they revealed bitcoin users use it as an 

asset than as a currency. In addition, the new bitcoin users tend to trade bitcoin for 

speculation purposes. Actually, Brian (2016) indicated that 80% of users are using 

bitcoin as an investment, and 20% of users are using it as a wallet for daily spending. 

Notably, a proposed bitcoin Exchange-traded Fund (ETF) of Winklevoss bitcoin trust 

shows that Bitcoin is now a credible investment vehicle (Higgins, 2014).  

 One of the reasons to attract investors to buy bitcoin is that the price of Bitocin 

has been more stable than ever before. In the recent 5 years, bitcoin has shown the 

unprecedented stability as a financial instrument. The bitcoin volatility and  a downward 

linear trend are exhibited in Figure 2.3. 

 

Figure 2.3. Bitcoin Volatility (Brade, 2016) 

 With the increase of bitcoin usage, a single trade has a lesser effect on the price, 

which results in decreasing volatility and attracting investors to the market. Another 

reason is the value of bitocin is not closely correlated with the equity and currencies. 
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(Brade, 2016). Therefore, bitcoin can offer significant diversification benefits for 

investors (Brière et al., 2015). Weak national currencies are also a great basis of 

demand for bitcoin. The growth of bitcoin trading volume is high in countries such as 

China, Latin America, South Africa and India. People in these countries are increasingly 

exchanging their traditional currency into bitcoin because of the weak valuation of local 

currencies (Bitcoinist, 2016; Durben, 2016; Redman, 2016; Singh and Vega, 2016). 

 In particular, these factors also seem to attract Japanese investors who are 

considering bitcoin as an investment. A zero interest-rate policy has led the Japanese to 

find a better opportunity for investment as well as for protection from diminishing their 

assets (Dhaliwal, 2016). Increasing trade volume of bitcoin in Japan (exhibited in 

Figure 2.2) does not mean that potential users are suddenly rushing into bitcoin trading 

for protecting a fall in the value of Japanese yen. However, it seems that traders and 

investors are seeking alternative investments to find yield against volatility. 
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CHAPTER3 Portfolio Optimization 

3.1 Asset allocation 

This chapter reviews the theoretical background for an understanding of the 

subject. In order to create frameworks for asset allocation, we need to know relevant 

portfolio optimization theory and understand the theoretical foundation that this paper 

builds upon. Frameworks adopt different approaches from the traditional strategies of 

asset allocation to recently highlighted strategies. 

Asset allocation refers to the set of weights of broad asset classes within a 

portfolio so as to achieve an investment objective and goal. Once an investor has 

defined an investment goal and objective, the investor selects universe of investable 

assets in developing an investment program. Allocating the weight of each asset will 

define the overall behavior of the portfolio, which should be matched with the risk and 

return targets for the investor. Once the model portfolio has been chosen, the portfolio 

should be evaluated in order to examine whether the model meets the investor’s criteria 

for performance and volatility.  

Here we have a simple portfolio with multiply assets. We have  𝑛  risky assets. 

Let  𝑅𝑛  represent the return on asset i. We will allocate 𝑤𝑖 to asset i. The total expected 

return of portfolio P is the weighted average of the returns on individual assets in 

portfolio, which is defined as:  

 

 

 

𝐸[𝑅𝑃] = 𝑤1 𝑅1 + 𝑤2 𝑅2…+𝑤𝑛 𝑅𝑛 =∑𝑤𝑖 𝑅𝑖

𝑛

𝑖=1

 (1) 
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 By definition, the sum of 𝑤𝑖 , called “weight” in the portfolio allocation 

problem, which must be equal to 1  

 

 

 On the other hand, one of the most commonly used risk measures is variability. 

Variance is a deviation of a set of expected returns, which is defended as: 

 

 

 Covariance is then: 

 

 

 We can also express variance using matrix notation as: 

 

 

where 𝜔 is a column vector whose components are the 𝜔𝑖, 𝜔
𝑡 is the row vector that is 

the transpose of 𝜔, and 𝛴 is the covariance matrix whose entries are the variance (3) 

and covariance (4).  

 

 

𝑤1 + 𝑤2…𝑤𝑛 =∑𝑤𝑖

𝑛

𝑖=1

= 1 

𝜎𝑃
2 = 𝑣𝑎𝑟[𝑅𝑃] = 𝑣𝑎𝑟 (∑𝑤𝑖 𝑅𝑖

𝑛

𝑖=1

) = ∑ 𝑤𝑖𝑤𝑗𝐶𝑜𝑣(𝑅𝑖, 𝑅𝑖)

𝑛

𝑖,𝑗=1

 

𝑐𝑜𝑣[𝑅𝑖, 𝑅𝑗] = 𝐸[(𝑅𝑖 − 𝐸[𝑅𝑖])(𝑅𝑗 − 𝐸[𝑅𝑗])] 

 

𝜎𝑖𝑗 = 𝑐𝑜𝑣[𝑅𝑖, 𝑅𝑗] = 𝐸[(𝑅𝑖 − 𝜇𝑖)(𝑅𝑗 − 𝜇𝑗)], 

𝜎𝑃
2 = 𝑣𝑎𝑟[𝑅𝑃] = ∑ 𝑤𝑖𝑤𝑗𝐶𝑜𝑣(𝑅𝑖, 𝑅𝑖)

𝑛

𝑖,𝑗=1

= 𝜔𝑡Σω 

 

𝜎𝑅
2 = 𝑣𝑎𝑟[𝑅] =∑∑𝜔𝑖 𝜔𝑗 𝜎𝑖𝑗

𝑛

𝑗=1

= 𝜔𝑡Σ

𝑛

𝑖=1

ω 

(2) 

(3) 

(4) 

(5) 
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3.2 Mean-Variance Framework 

 Harry Markowitz is regarded as the cornerstone of modern portfolio theory. He 

was awarded the 1990 Noble Prize for his contributions to financial economics and 

corporate finance field, supported in his “Portfolio Selection” (1952) essay and more 

extensively in his book “Portfolio Selection: Efficient Diversification” (1959). Starting 

with the historic work of Markowitz, past historical research includes many attempts to 

optimize portfolio using the risk-return analysis.  

 One of the most common approaches to practical asset allocation decisions is the 

mean-variance approach, developed by Markowitz (1952), for analyzing the trade-off 

between risk and return for portfolios comprising several assets. In the context of mean-

variance analysis, a portfolio is called “efficient” if the portfolio offers the highest 

expected return for each level of risk. The efficient frontier consists of the set of 

efficient portfolios, which is showed in Figure 3.1 (Bodie and Marcus, 2008). 

 
Figure 3.1. Markowitz Efficient Frontier of Risky Asset (Bodie and Marcus, 2008) 

M 

Minimum Variance Portfolio 

Expected Return(E(R)) 

Standard Deviation (𝝈) 

CML 

CAL 

Global Feasible Set of Risky Assets 

Efficient Frontier of  

Risky Assets 

Risk-free 

rate of return 
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 The efficient frontier considers a portfolio which is comprised of risky assets. 

However, investors also can choose to invest a risk-free asset whose standard deviation 

and correlation with risky assets are zero. Any combination of risky portfolio and the 

risk-free asset in an investor’s portfolio can change the efficient frontier into a straight 

line, which is called Capital Allocation Line (CAL) drawn from the risk-free rate of 

return through a risky portfolio, which is shown in Figure 3.1 

 The ultimate CAL tangent to the optimal risk portfolio is called Capital Market 

Line (CML), which offers the highest expected return for all level of risk, and the 

lowest risk for all level of expected return. The equation describing the CML can be 

written as:  

 

 

where  𝐸(𝑅𝑖) is the expected return on asset i. 𝐸(𝑅𝑚) is the expected return of the 

market portfolio, 𝑅𝑓 is the risk-free return, 𝜎𝑖 is the standard deviation on asset i, and 

𝜎𝑚 is the standard deviation of the market portfolio. 

 The graph of CML (shown in Figure 3.1) states that the intercept is the risk-free 

rate (𝑅𝑓) and the slope represents the market premium (𝐸[𝑅𝑚] − 𝑅𝑓).  

3.3 Sharpe ratio 

 The portfolio optimization is based on the Tobin’s Separation Theorem, which 

explains that finding an optimal portfolio can be separated into two problems. The first 

is to find an optimal combination of risky assets and risk-free asset, which does not vary 

with the risk tolerance of investors, and second is to decide whether to lend or borrow 

𝐸[𝑅𝑖] = 𝑅𝑓 + 𝜎𝑖×(
𝐸[𝑅𝑚] − 𝑅𝑓

𝜎𝑚
) (6) 
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based on an investor’ attitude toward risk. Within this framework, the tangent portfolio, 

CML, is regarded as the optimal risk portfolio on the Markowitz efficient frontier, 

which dominates all other risky portfolios regardless of risk preferences (Tobin, 1958). 

  The optimal portfolio chooses the highest expected return-to-risk ratio which is 

called sharpe ratio:  

 

 

where 𝐸[𝑅𝑃] is expected return of portfolio P, 𝑅𝑓 is risk-free return, and 𝜎𝑃 is standard 

deviation of portfolio P. 

 Sharpe ratio indicates how well the portfolio performs in comparison to the risk-

free rate by measuring the reward per unit of risk, which is also called as “risk-efficient”. 

Thus, it is often used to evaluate the performance of a portfolio (Sharpe, 1966, 1994). 

3.4 Risk-based allocations 

 The mean-variance framework from Markowitz’s (1952) modern portfolio 

theory indicates the method to construct a portfolio having the balance between risk and 

return. However, the interest has shifted towards risk-based allocation schemes due to 

unrealistic assumptions of the mean-variance framework, (i.e. returns from normally 

distributed assets). Risk-based allocation schemes do not require an explicit estimation 

for returns on assets. This approach relies mostly on the estimation of asset variances 

and covariance for managing portfolio risk and increasing diversification. The 

followings are the major weaknesses of the mean-variance framework. 

 

𝑆ℎ𝑎𝑟𝑝𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝐸[𝑅𝑃] − 𝑅𝑓

𝜎𝑃
 (7) 
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1) Returns from normally distributed assets 

 The assumption of Markowitz's mean-variance model is a normal 

distribution of returns, which is an unrealistic estimate of the actual 

performance of financial assets. Selecting variance as a risk measure is also 

reasonable if asset returns follow a normal distribution as the loss is distributed 

entirely by the expectation and variance of the returns in the man-variance 

framework. However, practically, two distributions having the same variance do 

not demonstrate the same loss profiles as variance does not incorporate the 

skewness of the returns. 

2) Portfolio concentration 

 In the mean-variance framework, allocation of assets is often biased to 

the few assets in the investment universe in order to make the highest sharpe 

ratio. The high concentration of assets results in the high sensitivity of limited 

assets and the potential for a loss.  

3) Lack of robustness and stability 

 As shown by Black and Litterman (1992), the optimal portfolio selected 

with mean-variance optimization is not robust with respect to the significant 

change of results which is caused by a minor change in inputs such as the 

expected returns, variance of the assets, and their correlation matrix. Chopra and 

Ziemba (1993) explained that the impact of an error in returns is greater than 

that of an error in variances and correlations. Therefore, the emphasis on the 

improvement of mean-variance framework has been placed on a more accurate 

estimation of variance and correlations while shrinking the estimation of returns. 
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3.4.1 Risk-Budgeting approach 

  The period selected to define the expected return and its underlying risk does 

not necessarily present a profile that will be consistent with future events. In addition, 

the assumption, returns are normally distributed, is not always the case. Risk-budgeting 

approach based on risk-based allocations allocates a risk budget to assets and requires 

only the estimation of volatilities. This style puts diversification at the heart of the 

investment process.  

3.4.1.1 Diversification Ratio 

 Choueifaty and Coignard (2008) introduced how to achieve “maximum 

diversification portfolio” with different finance assets. They introduced a ratio of 

weighted average asset volatilities to portfolio volatility, called diversification ratio: 

 

 

where  𝑤𝑖 is weight of asset i, 𝜎𝑃 is standard deviation of portfolio P and 𝜎𝑖 is standard 

deviation of asset i. 

It represents that the higher the ratio is, the more the portfolio is diversified. The 

Maximum Diversified Portfolio (MDP) is the portfolio with weights of assets that 

maximize the diversification ratio. 

3.4.1.2 Risk Parity 

 The concept of risk parity was introduced from Bridgewater embedded in 

research in the 1990s. Risk parity aims to equate the weighted marginal contribution to 

risk within across all portfolio constituents for a certain level of portfolio volatility. 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝜎𝑃

 

 
∑  𝑤𝑖𝜎𝑖

𝑛

𝑖=1

 

(8) 
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Both of risk parity and MDP seeks to reduce risks based on the maximizing 

diversification. However, risk parity takes into consideration of the covariance which is 

the interactions that exist between different assets of portfolio, while MDP emphasis on 

the variance of assets. In other words, this approach considers not only the volatility of 

each asset, but also their correlation. It aims to balance risk exposures in a given 

portfolio, so as to avoid risk concentration. 

 The contribution of each asset class to the total risk of the portfolio is defined as 

Marginal Risk (MR). The general definition of MR of asset i to the total risk of portfolio 

P is given by the following expression:  

 

 

where 𝑤i  represents the weight of asset i in the portfolio, 𝜎𝑃  is the volatility of 

portfolio P, 𝜔 is the vector of weights, 𝜔𝑡 is the row vector that is the transpose of 𝜔, 

and Σ is the covariance matrix.  

 The risk contribution is as follows: 

 

  

 Then, the total risk of portfolio P will be:  

 

 

𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑅𝑖𝑠𝑘 (𝑀𝑅𝑖) =
𝜕𝜎𝑃

𝜕𝑤𝑖
=
(Σ 𝜔)

𝑖

√𝜔𝑡Σ 𝜔
 (9) 

𝑅𝑖𝑠𝑘 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝑅𝐶𝑖) = 𝑤𝑖
𝜕𝜎𝑃

𝜕𝑤𝑖
= 𝑤𝑖

(Σ 𝜔)
𝑖

√𝜔𝑡Σ 𝜔
 (10) 

𝑇𝑜𝑡𝑎𝑙 𝑅𝑖𝑠𝑘(𝑇𝑅) = 𝜎𝑃 =∑𝑅𝐶𝑖

𝑛

𝑖=1

=∑𝜔𝑖
𝜕𝜎𝑃

𝜕𝜔𝑖

𝑛

𝑖=1

=∑𝜔𝑖  
(Σ 𝜔)

𝑖

√𝜔𝑡Σ 𝜔

𝑛

𝑖=1

 (11) 
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(12) 

 The most formal and widely recognized approach to robust risk parity approach 

is Equal Risk Contribution (ERC) model, which aims to equalize the RC from each 

asset class (Maillard, Thierry & Jérôme, 2010). The equation describing ERC allocation 

method can be written: 

 

3.4.2 Downside risk approach 

 The main concern for investors may not be the variance but the downside risk as 

the general assumption is that if a return is below their expected value, investors will 

become more unsatisfied than if the return is above their expected value. Because of this 

aversion to downside risk, Value at Risk (VaR) and Conditional Value at Risk (CVaR) 

were introduced as an alternative method of variance which does not capture extreme 

risks adequately. These two concepts are also used to build the portfolio optimization 

models under the framework of risk-based allocation.  

 

Figure 3.2. VaR, CVaR, Deviations (Sarykalin, Serraino & Uryasev, 2008) 

 

𝑅𝐶𝑖 = 𝑅𝐶𝑗 = 𝑤𝑖
𝜕𝜎𝑃
𝜕𝑤𝑖

= 𝑤𝑗
𝜕𝜎𝑃
𝜕𝑤𝑗
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3.4.2.1 VaR 

 Value at Risk (VaR) is a general risk measure that can be used for a portfolio 

regardless of its return distribution, which is shown in Figure 3.2. It represents an 

amount of loss to be exceeded with a probability 1 − 𝑝 in a given time horizon t and 

confidence level α (Choudhry, 2013). For example, the VaR at level 95% is defined as 

the minimal amount of capital which is required to cover the losses in 95% of cases.  

 The VaR of X given parameter 0 < α < 1 is: 

 

 

where L is a random variable representing loss and 𝛼 is the confidence level. 

 The advantage of using VaR is that it can incorporate skewness and kurtosis in 

the measure of total risk. In addition, VaR is easy to interpret and use in analysis as it is 

measured in price units or as percentage of portfolio value. This is why many financial 

institutions adopted it as a risk measurement. For example, the Basle Committee on 

banking supervision announced in 1995 that capital adequacy requirements for 

commercial banks were to be based on VaR (Jorion, 1996). 

 Despite of popularity of VaR, it VaR shows various limits. For example, VaR 

assumes that returns are normally distributed and VaR does not explain any information 

about the shape of the left tail of the distribution (Rockafellar and Uryasev, 2002). 

Additionally, Artzner, Delbaen, Eber and Heath (1999) show that VaR does not fully 

consider the benefit of diversification, which is not a coherent risk measure.  

 

𝑉𝑎𝑅𝛼(𝑋) = inf{𝑥 ∶ Pr(𝐿 ≥ 𝑥) > 1 − 𝛼} (13) 
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3.4.2.2 CVaR 

 The criticisms of VaR resulted in the emerging CVaR which is a coherent risk 

measure for any type of loss distribution (Rockafellar and Uryasev, 2002). Conditional 

value-at-risk, CVaR, also known as “expected shortfall” or “average value-at-risk” or 

“tail value-at-risk”, is defined as the expected loss exceeding VaR. VaR is concerned 

with the (1 – α) percentiles of the distribution, while CVaR focuses on the tail of the 

loss distribution, which is shown in Figure 3.2 (Sarykalin et al., 2008). 

 Mathematically, CVaR is defined as: 

 

 

where L is a random variable representing loss and 𝛼 is the confidence level. 

 

 

 

 

 

 

 

 

 

𝐶𝑉𝑎𝑅𝛼(𝑋) = 𝐸(𝐿|𝐿 >> 𝑉𝑎𝑅𝛼(𝑋)) (14) 
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CHAPTER4 Methodology 

4.1 Out-of-sample Backtesting 

 This paper adopts the view of a Japan investor and constructs a well-diversified 

portfolio including various indices such as bond, equity, currency, real-estate, and 

commodity. Then, in order to calculate the performance of portfolio strategies based on 

the optimal weights 𝑤𝑖  of each asset 𝑖 given objectives of frameworks, this research 

uses out-of-sample backtesting which is a process of assessing a trading strategy using 

historical data.   

This process applies a two-month rolling horizon to estimate portfolio weights 

throughout the sample period. For example, the first two months, from July 30, 2010 to 

September 30, 2010, estimates for the initial weights estimation. Thus, the weight 

optimization process for each optimal portfolio is thereby subject to various parameters 

defined in three different portfolio optimization frameworks described below. 

4.2 Frameworks 

 In order to answer the two questions of this study, this paper develops three 

different frameworks based on modern portfolio theory and various portfolio 

optimization theories which are discussed in Chapter 3. The objectives of three 

weighting schemes are genuinely different. Framework 1, “maximum efficient 

portfolio”, optimizes the balance between risk and return, whereas framework 2, 

“minimum risk portfolio” only focuses on the risk side of the portfolio. On the other 

hand, framework 3, “risk budgeting portfolio” puts an emphasis on diversification 

effects of assets (described in Figure 4.1). 
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 To answer the first question, “Can bitcoin improve portfolio’s efficiency”, this 

research compares the result of two different portfolios which are a portfolio with 

bitcoin (with BTC) and a portfolio without Bitcoin (without BTC), given each 

framework. In addition, comparing the performance of the with BTC with three 

different frameworks explains the second question, “Which portfolio optimization 

strategy can make the best risk-return profile for portfolio including bitcoin”.  

 

Figure 4.1. Frameworks 

 To evaluate the performance of portfolios, sharpe ratio is used with variance as a 

risk measure (Sharpe, 1966). However, the variance puts equal weights on positive and 

negative returns even though investors’ attitudes towards risk are different. Investors 

generally are more concerned about the downside variability of their investments than 

the upside gains (Kahneman & Tversky, 1979). Moreover, since the global financial 

crisis in 2008 to Brexit in 2016, the desire to protect assets against “left tail” events, or 

significant portfolio losses, has increased considerably (Harrison, 2016; Schroder, 2016). 
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This study thus adopts the sortino ratio as a performance measure, which considers 

downside risk. In the early 1980s, Dr. Frank Sortino had undertaken research to come 

up with an improved measure for risk-adjusted returns, which is called sortino ratio. The 

sortino ratio is a modification of the sharpe ratio but uses downside deviation rather 

than standard deviation as the measure of risk (Sortino & Van Der Meer, 1991).  

 The sortino ratio is defined as: 

 

 

where 𝑅𝑡 < 𝑀𝐴𝑅, MAR is minimum acceptable return, 𝑅𝑡 is the return on the portfolio 

for sub-period t. 

4.2.1 Framework 1: Maximum Efficient Portfolio Approach 

 Maximum efficient portfolio approach is based on return and risk management 

framework, which is called mean-variance model from Markowitz (1952). In the return 

and risk management framework, a measure of financial performance is sharpe ratio, 

equation (7), which represents the expected return per unit of risk. Therefore, the 

portfolio with maximum sharpe ratio gives the highest expected return per unit of risk, 

and is the most “risk-efficient” portfolio. However, sharpe ratio based on mean-variance 

model is a meaningful measure of risk when risk can be sufficiently measured by the 

standard deviation and return can be distributed normally, which is an unrealistic 

assumption. Thus, Campbell, Huisman and Koedijk (2011) developed the concept of 

mean-VaR which maximizes expected return subject to a downside risk constraint 

rather than standard deviation. In addition, to build comparable sharpe ratio of mean-

𝑆𝑜𝑟𝑡𝑖𝑛𝑜 𝑅𝑎𝑡𝑖𝑜 =
𝐸[𝑅] − 𝑀𝐴𝑅

𝐷𝑜𝑤𝑛𝑠𝑖𝑑𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
=

𝐸[𝑅] − 𝑀𝐴𝑅
  

 

 
1

𝑁
∑(𝑅𝑡 −𝑀𝐴𝑅  )2

𝑛

𝑖=1

 

(15) 
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variance strategy, Dowd (1998), Alexander and Baptista (2003) suggested Reward to 

VaR (RTV) which uses VaR as the risk measurement: 

 

 

where 𝑉𝑎𝑅𝛼 is the Value at Risk with 𝛼 confidence.  

 Likewise, Martin, Rachev and Siboulet (2003) introduced the STARR (Stable 

Tail Adjust Return Ratio) and Sigmundsdóttir and Ren (2012) developed the concept of 

downside risk ratio which uses the same approach of sharpe ratio except using expected 

shortfall (CVaR) as the risk measure.  

 The downside risk ratio is: 

 

 

where ES is expected shortfall of the portfolio 

 Similar to mean-variance model, maximization of RTV and the downside risk 

ratio can be interpreted as the most efficient risk-return portfolio under the risk measure 

of VaR and CVaR. Therefore, this framework adopts two models with different risk 

measures, which are mean-VaR and mean-CVaR. 

4.2.1.1 Mean-VaR model 

 Based on the research of Stoyanov, Rachev and Fabozzi (2007), Parrák and 

Seidler (2010), mean-variance can be transferred into the optimal portfolio under mean-

VaR model to make the maximize returns with the least amount of risk, which makes 

𝑅𝑒𝑤𝑎𝑟𝑑 𝑡𝑜 𝑉𝑎𝑅(RTV) =
𝐸[𝑅] − 𝑅𝑓

𝑉𝑎𝑅𝛼
 (16) 

𝐷𝑜𝑤𝑛𝑠𝑖𝑑𝑒 𝑟𝑖𝑠𝑘 𝑟𝑎𝑡𝑖𝑜 =
𝐸[𝑅] − 𝑅𝑓

𝐸𝑆
 (17) 
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the maximum RTV. However, a modification is needed into RTV parameter in order to 

take negative excess returns into consideration. One possibility that has been suggested 

is to change the formula to the following:  

 

 

 Then, we form the optimal portfolio model using MRTV under mean-VaR 

model: 

 

 

 

 

 The objective of mean-VaR model is to maximize MRTV under the constraints. 

The maximum of MRTV represents the highest expected return per unit of risk which 

means the most “risk-efficient” portfolio. However, this model uses VaR as a risk 

measure for the advantages, discussed in 3.4.2.1. The portfolio model should therefore, 

yield optimal portfolio with the highest risk-return ratios of all portfolio frameworks.  

All frameworks have the same constraints. One of the constraints is a short-

selling constraint, described as the equation; 𝑤𝑖 ≥ 0.  It reflects possible restrictions 

involved with short-selling certain assets that are included in the portfolio. As of now, it 

is also not clear whether a short position in bitcoin is feasible. Thus, the sum of all asset 

weights is 100%, described as the equation, ∑  𝑤𝑖
𝑛
𝑖=1 = 1. 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒     𝑀𝑅𝑇𝑉 =
𝐸[𝑅]

𝑉𝑎𝑅𝛼
 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑤𝑖 ≥ 0,   ∑  𝑤𝑖

𝑛

𝑖=1

= 1 

(19) 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑅𝑒𝑤𝑎𝑟𝑑 𝑡𝑜 𝑉𝑎𝑅(𝑀𝑅𝑇𝑉) =
𝐸[𝑅]

𝑉𝑎𝑅𝛼
 (18) 
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4.2.1.2 Mean-CVaR model 

 Yu, Sun and Chen (2011) also developed the optimal portfolio under mean-

CVaR model, which the maximize returns while controlling expected shortfall (CVaR). 

However, a modification is also needed into downside risk ratio in order to take 

negative excess returns into consideration. One possibility that has been suggested is to 

change the formula to the following:  

 

 

Then, we form the optimal portfolio model under mean-CVaR model: 

 

 

 

 

 

 Likewise, the objective of mean-CVaR model is to maximize risk-efficiency 

under the constraints. However, this model uses CVaR as a risk measure for some 

advantages, discussed in 3.4.2.2. 

Framework2: Minimum Risk Portfolio approach 

 One of the critiques of mean-variance is that it is very sensitive to the input 

parameters such as the expected returns and covariance matrix of the assets (Chopra and 

Ziemba, 1993). Marton (1980) pointed out that covariance of the assets can be estimated 

more accurately than expected returns from historical data. In addition, most asset 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒   𝑀𝐷𝑅𝑅 =
𝐸[𝑅]

𝐶𝑉𝑎𝑅𝛼
 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑤𝑖 ≥ 0,   ∑  𝑤𝑖

𝑛

𝑖=1

= 1 

 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐷𝑜𝑤𝑛𝑠𝑖𝑑𝑒 𝑟𝑖𝑠𝑘 𝑟𝑎𝑡𝑖𝑜(𝑀𝐷𝑅𝑅) =
𝐸[𝑅]

𝐶𝑉𝑎𝑅𝛼
 (20) 

 (21) 
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returns are non-normally distributed and this can be proved as an extreme tail risk in the 

current crisis. Consequently, the last few decades, the interest on portfolio technique has 

shifted towards risk-based allocation schemes, which ignore estimation of the returns 

(Lee, 2011). Thus, the framework of minimum risk approach also focuses only on the 

risk measure. The framework adopts three models with different risk measures, which 

are minimum-variance model, minimum-VaR model and minimum-CVaR model.  

4.2.1.3 Minimum-variance (MV) model 

 Minimum-variance (MV) portfolio is an optimal portfolio to make the lowest 

risk level. The model is expected to have the lowest possible volatility and that can be 

uniquely determined by a covariance matrix. As reviewed in Chow, Hsu, Kalesnik, and 

Little (2011), MV portfolios have been defined and analyzed from the start of modern 

portfolio theory (i.e., 1960s) as a special case of mean-variance efficient portfolios. In 

Figure 3.1, MV portfolio sits on the efficient frontier with a minimal risk. Although MV 

portfolio generally has the disadvantage of a high concentration ratio, it can be limited 

through diversification (Qian, 2005). Clark, de Silva, and Thorley (2011) showed that 

with the 1,000 largest-capitalization stocks in the U.S. from 1968 to 2005, various 

versions of the MV portfolio are found to have higher returns and lower volatilities. In 

another study, Behr, Güttler, and Miebs (2008) reported that with the entire Center for 

Research in Security Prices (CSRP) dataset from April 1964 to December 2007, many 

different MV portfolios with different constraints on weights outperformed the market 

capitalization.  
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Then, we form the optimal portfolio under MV model:  

 

 

 

where 𝜎2𝑝 is variance of portfolio P. 

The objective of MV model is to minimize variance which is considered as a 

risk. In short, the model only considers risk rather than return as return is hard to be 

estimated. Then, the portfolio model is expected to perform better result with a low risk 

and a high return. 

4.2.1.4 Min VaR (Minimum VaR Portfolio) model 

 Value at Risk (VaR) was popularly embraced for measuring downside risk in a 

portfolio. VaR is defined as the pth percentile of portfolio returns at the end of the 

planning horizon. It can be thought of as identifying the "worst case" outcome of 

portfolio performance. Stambaugh (1996) outlined the uses of VaR as 1) providing a 

common language for risk, 2) allowing for more effective and consistent internal risk 

management, risk limit setting and evaluation, 3) providing an enterprise-wide 

mechanism for external regulation, and 4) providing investors with an understandable 

tool for risk assessment. Moreover, VaR has been accepted by managers of firms as an 

integrated and functional internal risk measure and by investors as an intuitive 

presentation of overall risk using a single currency valued number allowing for easy 

comparison among investment alternatives.  

Then, we form the optimal portfolio under min VaR model: 

   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝜎2𝑝 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑤𝑖 ≥ 0,   ∑  𝑤𝑖

𝑛

𝑖=1

= 1 

 

 (22) 
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Similar to MV model, the objective of VaR model is to minimize risk which is 

VaR. As we discussed the advantages of VaR from Stambaugh (1996), the model is 

expected to bring better outcome than MV model.  

Min CVaR(Minimum CVaR Portfolio)    

 Rockafellar and Uryasev (2000) proposed a scenario-based model for portfolio 

optimization using Conditional Value at Risk (CVaR) which is defined as expected 

value of losses exceeding VaR. Uryasev (2000) showed a simple description of the 

approach for minimization of CVaR and optimization with CVaR constraints.  

Then, we form the optimal portfolio under min CVaR model: 

 

 

  

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑉𝑎𝑅𝛼 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑤𝑖 ≥ 0,   ∑  𝑤𝑖

𝑛

𝑖=1

= 1 

 

 (23) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝐶𝑉𝑎𝑅𝛼 = 𝐸(𝐿|𝐿 >> 𝑉𝑎𝑅𝛼(𝑋)) 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑤𝑖 ≥ 0,   ∑  𝑤𝑖

𝑛

𝑖=1

= 1 

 

 (24) 
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Likewise, the objective of min CVaR model is to minimize risk under the 

constraints. However, this model uses CVaR as a risk measure for some advantages, 

discussed in 3.4.2.2. 

4.2.2 Framework3: Risk Budgeting Portfolio approach 

 Mean-variance approach failed to stand up the reality of the market as real assets 

are not normally distributed (Marton, 1980). The MV portfolios also have the drawback 

of a high concentration (Qian, 2005). As a result, researchers (Booth and Fama, 1992; 

Qian, 2005) suggested the concept of risk budgeting portfolio approach, which puts 

diversification at the heart of the investment process without any consideration of 

returns. Maximum Diversification Portfolio (MDP) and risk parity portfolio are 

examples of adopting the risk budgeting approach on the idea to balance risks.  

4.2.2.1 Risk Parity(RP) 

 Qian (2005) proposed risk parity portfolio which is a portfolio allocation 

strategy by risk contribution to the portfolio. In addition, Maillard et al., (2010) 

proposed an approach to compute an Equal Risk Contribution (ERC) portfolio, which 

achieves a truly diversified portfolio for each asset to contribute the same extent to the 

overall risk.  
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Then, we form the optimal portfolio under risk parity model: 

 

 

 

 

 

where  MR=marginal risk 

            CR= risk contribution  

 

 

 

 

 

 The objective of this model is to minimize standard deviation while each asset 

has the same risk contribution to maximize diversification effect. 

4.2.2.2 Maximum Diversification Portfolio (MDP) 

 Maximum Diversification Portfolio (MDP) is an optimal portfolio model to 

maximize the ratio of weighted average asset volatilities to portfolio volatility which is 

Diversification ratio, introduced by Choueifaty and Coignard (2008).  

 We form the optimal portfolio under MDP model for long-only, constrained 

maximum diversification portfolios, similar to Clarke et al., (2011). 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒     𝜎𝑃 =√𝜔𝑇𝛺𝜔 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝐶𝑅𝑖 = 𝐶𝑅𝑗 =  
𝜎𝑃
𝑛

 

𝑤𝑖 ≥ 0,   ∑  𝑤𝑖

𝑛

𝑖=1

= 1 

 

 (25) 

𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑅𝑖𝑠𝑘 (𝑀𝑅𝑖) =
𝜕𝜎𝑃
𝜕𝑤𝑖

=
(Σ 𝜔)𝑖

√𝜔𝑡Σ 𝜔
 

𝑅𝑖𝑠𝑘 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝑅𝐶𝑖) = 𝑤𝑖𝑀𝑅𝑖 = 𝑤𝑖
𝜕𝜎𝑃
𝜕𝑤𝑖

= 𝑤𝑖
(Σ𝜔)𝑖

√𝜔𝑡Σ 𝜔
 

 (26) 

 (27) 
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Compared to risk parity model, the objective of this model is to maximize 

diversification effects. However, risk parity model makes it by making equal risk 

weight of each asset while MDP model achieves diversification effects by maximizing 

the diversification ratio.    

 

 

 

 

 

 

 

 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝐷𝑅 =
𝜎𝑃

 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑤𝑖 ≥ 0,   ∑  𝑤𝑖

𝑛

𝑖=1

= 1 

 

 
∑  𝑤𝑖𝜎𝑖

𝑛

𝑖=1

 

 (28) 
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CHAPTER5 Data and Analysis 

5.1 Presentation of data 

 Bitcoin data was obtained from CoinDesk’s bitcoin price index, a close price of 

global Bitcoin-USD exchange prices. Since historical data on bitcoin is available 

starting from July 18, 2010 on CoinDesk.com, the sample period in this study covers 

under 74-months from July 30, 2010 to September 30, 2016. 

 In the process of portfolio optimization, this study adopted the viewpoint of a 

Japan investor. In order to allow a well-diversified portfolio, this paper considered not 

only a broad range of assets classes from global market indices, but also Japan’s 

investment market trends. Figure 5.1 shows the product market trends of Japanese 

investors. In the map, domestic equities place high ranked on the demand scale, together 

with domestic and foreign REITs. According to the Nomura research Institute (NRI) 

(2015), high-yield bond products have also been high ranked since 2015. Therefore, we 

added domestic equities, high-yield bond and domestic and foreign REITs to globally 

well-diversified portfolio. 

 

Figure 5.1. Product Supply and Demand Maps by Client Segment (NRI, 2015) 
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The line-up of asset classes in the portfolio therefore comprised equity, bond, 

high-yield bond, commodity, real-estate and currencies, represented by at least one or 

some broad and liquid financial indices. The data is gathered using Federal Reserve 

Economic Data (FRED) and Bloomberg. A detailed overview of all assets is shown in 

Table 5.1. 

Table 5.1. Asset Class in the Portfolio 

Asset class Region Mnemonic Index 

Bond Japan JBI S&P Japan Bond Index  

Bond Global GBI S&P Global Developed Sovereign Bond Index  

High yield bond Global HYBI S&P Municipal Bond High Yield Index  

Equity Japan NK225 Nikkei 225  

Equity Japan J500 S&P Japan 500  

Equity Global MSCI MSCI world Index  

Currency Japan BTP Bitcoin (JPY/BTC)  

Currency Euro EUR Euro (JPY/EUR)  

Currency USA USD US Dollar (JPY/USD)  

Currency UK GBP British Pound (JPY/GBP)  

Real estate Japan JREIT TSE REIT Index  

Real estate Global GREIT S&P Global REIT  

Commodity Global COMD S&P GSCI Commodity Index  

5.2 Data description 

 To make a better understanding of the final results, data statistics will be 

presented in this section. The summary of the data statistics for the observed time zone, 

30th of July 2010 to 30th of September 2016, is shown in Table 5.2. 

Table 5.2. Data Statistics (from 30th of July 2010 to 30th of September 2016) 

 BTP JBI JREIT MSCI NK225 USD EUR GBP GREIT GBI COMD HYB 

Mean (%) 0.63 0.01 0.05 0.07 0.04 0.01 0.00 0.00 0.05 0.01 -0.04 0.03 

Standard 

deviation (%) 
7.07 0.11 1.18 1.80 1.46 0.62 0.74 0.80 0.94 0.37 1.30 0.19 

Kurtosis 7.83 9.18 7.62 64.51 5.01 4.03 4.24 31.58 6.03 2.26 5.29 31.58 

Skewness 0.25 -0.49 -0.03 -3.54 -0.56 0.23 -0.13 -1.97 -0.56 -0.17 -0.61 -2.81 

Max (%) 49.8 0.7 7.5 10.4 7.4 3.3 3.9 3.9 6.0 1.8 5.5 1.4 

Min (%) -45.1 -1.0 -8.2 -31.2 -11.2 -3.5 -5.7 -11.7 -7.3 -2.2 -11.3 -2.2 

Sharpe ratio (%) 8.9 7.4 3.9 3.8 2.5 1.7 0.0 -0.2 5.2 1.9 -3.2 16.6 

VaR (%) -11.0 -0.2 -1.9 -2.9 -2.4 -1.0 -1.2 -1.3 -1.5 -0.6 -2.2 -0.3 

CVaR (%) -9.4 -0.2 -1.6 -2.4 -2.2 -1.0 -1.2 -1.2 -1.5 -0.6 -2.1 -0.2 

Note: VaR: value at risk at level 95%, CVaR: conditional value at risk at level 95% 
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 The results show that most of the assets described high kurtosis ranged from 

4.03 to 64.51 and negative and positive skewness of returns ranged from -3.51 to +0.25. 

Since the basic assumption of mean-variance framework is the normally distributed 

returns, we conducted normality test, which are jarque-bera tests and shapiro-wilk test, 

to determine whether data has been drawn from a normally distributed population. 

 Jarque-bera tests and shapiro-wilk test were performed to test for normality of 

the results for all the indices. The results (described in appendix 3,4) show that p-value 

is less than 0.001 for all the indices. The null hypothesis, which is returns follow the 

normal distribution, is rejected.   

 In the case of bitcoin, many researchers demonstrated that bitcoin returns have 

substantially high negative skewness and very high kurtosis (Baek & Elbeck, 2015; 

Baur, Hong & Lee, 2015). However, the skewness of bitcoin is 0.25 which is relatively 

small while kurtosis is 7.83 which is relatively high compared to other indices such as 

MSCI index (64.51), high-yield bond (31.58).  

To present the results in detail, we adopted the Q-Q plots, which are useful in 

highlighting distributional asymmetry, heavy tails, outliers, multi-modality, or other 

data anomalies, which is shown in Figure 5.2. The Q-Q plots of bitcoin returns illustrate 

that both tails of the distribution lie above the reference line, which produced frequent 

outliers than those of a normal distribution, called “heavy tail”. 
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Figure 5.2. Normal Q-Q plot of bitcoin 

 One of the attractive factors on bitcoin as an investment is that it delivers high 

diversification benefits from low correlation with the other assets (Brière et al, 2013,  

Gasser, 2014). This paper also figured out that the correlation of bitcoin is substantially 

low compared to other assets, which is shown in Table 5.3.  

Table 5.3. Correlation Matrix 
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BITCO            
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JPREIT 0.04 0.07          
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USD 0.11 -0.10 0.21 0.16 0.39       

EUR 0.08 -0.07 0.17 0.23 0.33 0.61      

GBP 0.08 -0.13 0.22 0.22 0.37 0.70 0.75     

GRI 0.07 0.02 0.25 0.49 0.24 0.04 0.30 0.26    
GBI -0.09 0.23 -0.07 -0.08 -0.23 -0.79 -0.14 -0.33 0.18   

COM 0.03 -0.06 0.08 0.20 0.13 0.04 0.26 0.24 0.35 0.07  

HYB -0.02 0.16 0.02 -0.02 -0.04 -0.10 -0.12 -0.12 0.05 0.17 -0.07 
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5.3 Empirical Results  

 Previously, two portfolios (the with BTC and the without BTC) with three 

different frameworks were constructed. Table 5.4 displays an overview of the main 

results for the portfolio without bitcoin.  

Table 5.4.  Optimal Portfolio without Bitcoin 

without BTC 
Framework 1 

Maximum Efficient 

Framework2  

Minimum Risk 

Framework3 

Risk Budgeting 

 

Mean-

VaR 

Mean-

CVaR 
MV 

Min 

VaR 

Min 

CvaR 
RP MDP 

Return 10.2% 9.1% 3.5% 4.7% 4.8% 4.9% 3.8% 

Variance 0.6% 0.6% 0.3% 0.3% 0.3% 0.1% 0.1% 

Standard 

Deviation 
7.9% 7.6% 5.0% 5.7% 5.4% 3.7% 3.4% 

Downside 

Deviation 
7.0% 6.8% 6.8% 7.4% 8.3% 2.8% 2.0% 

Max 

Drawdown 
-6.6% -6.4% -6.2% -6.8% -6.3% -2.5% -1.7% 

Sharpe ratio 1.28 1.19 0.69 0.84 0.88 1.30 1.12 

Sortino ratio 1.44 1.33 0.51 0.64 0.58 1.74 1.88 

The results show that framework 1 has the highest returns, with 10.2% in mean-

VaR model and 9.1% in mean-CVaR model, and the highest variances with 0.6% in 

both models. As we designed the models of framework 1 to maximize the efficiency of 

reward to risks (see Section 4), the objective of these models contributed to increasing 

not only return but also variance. Therefore, sharpe ratio which is the measurement of 

risk-efficiency also shows relatively high rate in framework 1. On the other hands, 

framework 2 and 3 indicate similarly low returns from 3.5% to 4.9%, while variances of 

framework 3 (0.1%) is relatively lower compared to framework 2 (0.3%), which means 

that the diversification effects of framework 3 on the without BTC contributed 

significantly to reducing risk then framework 2 which concentrated on minimum risk 

itself. This low risk of framework 3 caused the highest sharpe ratio with 1.30 in RP 
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model. Moreover, in terms of downside risk, framework 3 was also proved to have the 

lowest risks which are 2.8% in RP model and 2.0% in MDP model. As a result, 

framework 3, the risk budgeting portfolio approach, demonstrated to be benefited not 

only from the efficiency with the highest sharpe ratio, but also from the downside risk 

management with the highest sortino ratio.  

 Table 5.5 describes the results of the with BTC for all three portfolio 

optimization frameworks.  

Table 5.5. Optimal Portfolio with Bitcoin 

with BTC 
Framework 1 

Maximum Efficient 

Framework2  

Minimum Risk 

Framework3 

Risk Budgeting 

 

Mean-

VaR 

Mean-

CVaR 
MV 

Min 

VaR 

Min 

CvaR 
RP MDP 

Return 29.8% 28.2% 4.7% 7.1% 7.0% 10.5% 8.6% 

Variance 5.5% 5.4% 0.3% 0.5% 0.3% 1.1% 1.0% 

Standard 

Deviation 
23.4% 23.2% 5.6% 6.7% 5.4% 10.6% 9.9% 

Downside 

Deviation 
7.2% 7.7% 7.2% 6.9% 4.6% 2.9% 2.2% 

Max 

Drawdown 
-6.6% -6.5% -6.1% -6.1% -3.9% -2.6% -1.9% 

Sharpe ratio 1.27 1.22 0.84 1.05 1.28 0.99 0.87 

Sortino ratio 4.16 3.68 0.66 1.02 1.53 3.62 3.89 

 The results show that framework 1 has the highest returns, with 29.8% in mean-

VaR model and 28.2% in mean-CVaR model, and the highest variances with 5.5% in 

mean-VaR model and 5.4% in mean-CVaR model, which resulted in relatively high 

sharpe ratio with 1.27 in mean-VaR and 1.22 in mean-CVaR model as the increase rate 

of returns is higher than those of variance. Compared to the results of without BTC, a 

large increase in returns indicates that bitcoin in the portfolio contributed significantly 

to increasing returns than variance, which resulted in the more efficient portfolio. On 
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the other hands, framework 2 and 3 indicated relatively small returns from 4.7% to 10.5% 

compared to framework 1, while variances of framework 2, 0.3% in MV and min-CVaR 

models and 0.5% in min-VaR model, are slightly lower than those of framework 3, 1.0% 

in MDP model and 1.1% in RP model. Whereas, the framework 3 has considerably 

lower downside deviation, 2.2% in RP model and 2.9% in MDP model, which is the 

same result of the without BTC. The results of the low downside deviation in the 

framework 3 of without BTC and with BTC show that risk budgeting approach is 

superior to reduce downside risk regardless of including bitcoin. Thus, considering the 

risk of including bitcoin into the portfolio, the framework 3 is effective to reduce 

downside risk than the framework 2. However, when it comes to returns, the results of 

the with BTC and without BTC are different. Unlike the results of the without BTC, 

framework 1 demonstrated that the maximum efficient approach benefited not only 

from the efficiency with the highest sharpe ratio, but also from the downside risk 

management with the highest sortino ratio. This result shows that framework 1 is 

designed effectively for bitcoin to increase return and decrease risk. 

5.4 Analysis of results 

 The first question, “Can bitcoin improve portfolio’s efficiency”, was studied 

comparing sharpe ratio and sortino ratio of the without BTC and with BTC in all three 

frameworks, which is shown in Table 5.6. 
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Table 5.6 Sharp Ratio and Sortino ratio 

The difference of sharpe ratio between two portfolios shows the effect of bitcoin 

is most prominent in framework 2, where the sharpe ratio increased by 0.40 from 0.58 

to 0.88 in Min-CVaR model, while decreasing in framework 3 by 0.32 from 1.74 to 1.3. 

Comparing the cumulative returns of the with BTC and the without BTC across 

all model illustrates that adding bitcoin increased the overall returns throughout all 

investment period (described in appendix 5).  

While sharpe ratio is increased or decreased depend on the framework, sortino 

ratio increased in all frameworks from 0.14 to 2.72. It means that bitcoin increased 

positive returns which affect sharpe ratio to increase risk and return, but decreased 

negative return which affect sortino ratio to decrease downside risk. As a result, the 

effect of adding bitcoin into the portfolio shows significant improvement in the 

portfolio’s efficiency. 

  

Framework 1 

Maximum 

Efficient 

Framework2  

Maximum Risk 

Framework3 

Risk Budgeting 

Mean-

VaR 

Mean-

CVaR 
MV Min VaR 

Min 

CvaR 
RP MDP 

(a) Sharp Ratio 

      (without BTC) 
1.28 1.19 0.69 0.84 0.88 1.30 1.12 

(b) Sharp Ratio 

      (with BTC) 
1.27 1.22 0.84 1.05 1.28 0.99 0.87 

        (a') Sortino ratio 1.44 1.33 0.51 0.64 0.58 1.74 1.88 

(b') Sortino ratio 4.16 3.68 0.66 1.02 1.53 3.62 3.89 

        
Sharp Ratio (b-a) -0.003 0.03 0.15 0.21 0.40 -0.32 -0.24 

Sortino ratio (b'-a') 2.72 2.35 0.14 0.38 0.95 1.88 2.01 
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 The second question, “Which portfolio optimization strategy can make the 

best risk-return profile for portfolio including bitcoin”, was studied comparing all 

three frameworks of the with BTC, which is shown in Table 5.5. 

 As we discussed the results of the with BTC (see chapter 5.3), framework 1, 

maximum efficient portfolio approach, achieved the highest sharpe ratio and sortino 

ratio, which is the different result of the without BTC. In order to examine what made 

the difference, Table 5.7 provides maximum, minimum and average bitcoin weights 

across all frameworks. The results show that framework 1 which had the largest average 

bitcoin weights with 1.0% in mean-VaR model and 1.2% in mean-CVaR model also 

gained the highest sortino ratio with 4.16 in mean-VaR model and 3.68 in mean-CVaR 

model. The findings suggest that framework 1 was designed effectively for bitcoin to 

increase both sharpe ratio and sortino ratio. In other words, the objective to maximize 

reward to risk of framework 1 caused the higher average weights of bitcoin and resulted 

in the highest sortino ratio. As a result, framework 1, maximum efficient approach, can 

make the best risk-return profile for the with BTC. 

Table 5.7. Bitcoin Weights  

 
Framework 1 

Maximum Efficient 

Framework2 Maximum 

Risk 

Framework3 Risk 

Budgeting 

 
Mean-

VaR 

Mean-

CVaR 
MV 

Min 

VaR 

Min 

CvaR 
RP MDP 

Max 9.6% 12.8% 0.4% 1.2% 1.1% 2.0% 2.5% 

Min 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 

Average 1.0% 1.2% 0.1% 0.1% 0.1% 0.7% 0.6% 

 Additionally, Figure 5.3 depicts that the weights of bitcoin under all frameworks 

which we applied in this paper. Overall weights of bitcoin are more or less stable in the 

three different frameworks, hovering in the low range from 0.1% to 1.2% throughout 
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the entire investment period. The exceptions of these results are the mean-VaR and 

mean-CVaR model under the framework 1.  

The relatively low and stable weights of bitcoin might be beneficial for investors 

from a liquidity point of view and more feasible to invest for investors who are 

concerned about risks of bitcoin. 

 

Figure 5.3. Bitcoin Weights Overview 
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CHAPTER6 Conclusion and limitation 

6.1 Conclusions 

As the open source peer-to-peer electronic cash system which operates without 

any central authority, bitcoin has attracted users and investors who understand the risk 

of existing financial system with extremely low interest rate policies and high levels of 

government debt, and concerns on the next global economic crisis (Nakamoto, 2008).  

Especially, from the Japan investors’ standpoint, the features of the bitcoin and a 

favorable environment for bitcoin encourage them to consider bitcoin as an investment 

asset and alternative currency. However, given the lack of economically-motivated 

literature on bitcoin, we aimed to answer two research questions on bitcoin: “Can 

bitcoin improve portfolio’s efficiency” (Q1), and “Which portfolio optimization 

strategy can make the best risk-return profile for portfolio including bitcoin” (Q2).  

In order to answer to our research questions, we adopted the three portfolio 

optimization frameworks originated from the risk-based allocation and modern portfolio 

theory such as maximum efficient portfolio approach, minimum risk portfolio approach 

and risk budgeting portfolio approach. In addition, we used the more robust risk 

measures (e.g. VaR, CVaR) to account for the bitcoin’s non-normality and the 

investor’s aversion toward downside risk. We applied the out-of-sample backtesting 

technique over the sample period, from July 30, 2010 to September 30, 2010, to assess 

the performance of models by comparing the risk-return ratios (e.g. sharpe ratio and 

sortino ratio). 

First, this paper illustrated that bitcoin exhibits fat-tailed distribution with very 

high kurtosis but relatively low skewness. This symmetric heavy-tailed distribution was 
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compensated not only by low correlations with other assets, but also high returns. 

Overall risk-return ratios were thus increased after adding bitcoin into the three different 

frameworks. The exceptions of lower sharpe ratio are the RP and MDP models under 

the framework 3 which is substantially influenced by positive volatility of bitcoin due to 

high diversification effect. Whereas, the result showed that bitcoin increased sortino 

ratio in all frameworks from 0.14 to 2.72, which means that bitcoin significantly 

decreased downside risk. As a result, the effect of adding bitcoin into the portfolio 

demonstrated the improvement in the portfolio’s efficiency by increasing positive 

returns and decreasing negative returns. 

Second, considering investing bitcoin into the portfolio, framework 1, maximum 

efficient portfolio approach, achieved the highest sharpe ratio and sortino ratio. The 

weights of bitcoin illustrated that framework 1 had the largest average bitcoin weights 

with 1.0% in mean-VaR model and 1.2% in mean-CVaR model and also gained the 

highest sortino ratio with 4.16 in mean-VaR model and 3.68 in mean-CVaR model. The 

findings suggested that framework 1 was designed effectively for bitcoin to increase 

both sharpe ratio and sortino ratio. In other words, the objective to maximize reward to 

risk caused the higher average weights of bitcoin and resulted in the highest sortino 

ratio. As a result, framework 1, maximum efficient approach, could make the best risk-

return profile for the portfolio with bitcoin. 
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6.2 Managerial Implication 

In this paper, the relationship between bitcoin and the portfolio efficiency of a 

Japan investor was investigated. The results show that bitcoin is able to improve the 

efficiency of well-diversified portfolio by reducing risks and increasing returns, which 

is mainly caused by bitcoin’s features, low correlations with other assets, fat-tailed 

distribution. These features also make bitcoin more attractive for corporations in Japan.    

Many Japanese multinational companies have struggled with volatility in 

Japanese yen and the failure of the traditional financial system. For these reasons, 

bitcoin as an alternative concept of the financial system has become more relevant and 

credible. Moreover, bitcoin has returned to Japan with reliability and stability after the 

Mt.Gox scandal. First, Japan has passed a law regulating virtual currency and accepted 

bitcoin under the regulatory system. In addition, according to the increase of users and 

the total number of bitcoins, the high volatility which was the biggest obstacle to use 

bitcoin as an investment and currency was solved. Currently, the price of bitocin has 

been more stable than ever before (shown in Figure 2.1). Therefore, bticoin has a 

potential to be an alternative investment to protect corporations’ assets against high 

correlations of other assets and uncertainty on monetary policies.  

The relatively low and stable average weights of bitcoin in optimal portflios 

(exhibited in Table 2.1) is also practicable and beneficial for managers to consider 

bitcoin as an investment.  

Moreover, for the investment managers or institutional investors, the results of 

the best framwork achieving the best risk-return profile on the bitcoin investment could 

be a helpful information. A growing amount of literature on portflio optimization 
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approaches focused on risks and diversification effects rather than on estimating 

expected returns. They have achievd many improvement in the field of the risk 

measurement (e.g. VaR and CVaR). However, the porftlio performance is evaluated by 

both returns and risks. Maximum efficient portflio approach which achieved the best 

risk-return profile of bticoin investment indicates that we should take into account 

returns in modeling the portflio including bitcoin. This finding can also support them to 

build or design a more developed model for bitcoin investment. 

6.3 Limitation of the study 

The major limitation of the study was based on the modeling and empirical 

study. In the optimization modeling, the asset classes might not be adequate to bring out 

the true and correct picture of the Japan investors. In addition, the results may change 

when considering the different assumptions such as allowing short selling, different 

rebalancing periods and limited range of asset weights. Even though this paper ignored 

transaction costs, turnover constrains and other legal frameworks to make it simple, 

these factors must be considered in the real world. 

Empirical study has an inherent limitation which is an estimation error. The 

estimation error is the difference between actual results and estimated results. While 

theoretical models focus on the estimation of parameters such as expected returns 

standard deviation and correlation, practical implementation of models aim to predict 

future. The real world may show different results compared to expected results based on 

the historical data. In other words, if we know exactly the parameters of the 

distributions, we can form a portfolio that provides the highest level of returns for a 

given level of risk. Unfortunately, in the world we never know this information. We 
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only have estimates of this information for the uncertain future. Thus, improving the 

accuracy on the estimation of parameters need to be continued.  

Lastly, the performance measurements, sharpe ratio and the sortino ratio, are 

quite sensitive to sample data as they vary from period to period, implying that the 

forecasting ability of these optimal weights might be limited.  

Therefore, further studies may consider these factors to build the portfolio 

optimization models, and to select data. Besides, further researches may also adopt the 

different assumptions to reflect the real-world environment. 
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Appendix 

Appendix 1: Description of the returns for the indexes 

 

The graph above shows the daily log returns for the BTP index for the observed time 

zone (horizontal line: the daily log returns, vertical line: time period, 30th of July 2010 

to 30th of September 2016). The graph beneath shows the density distribution of the 

returns for the BTP index. 
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The graph above shows the daily log returns for the JREIT index for the observed time 

zone (horizontal line: the daily log returns, vertical line: time period, 30th of July 2010 

to 30th of September 2016). The graph beneath shows the density distribution of the 

returns for the JREIT index. 
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The graph above shows the daily log returns for the MSCI index for the observed time 

zone (horizontal line: the daily log returns, vertical line: time period, 30th of July 2010 

to 30th of September 2016). The graph beneath shows the density distribution of the 

returns for the MSCI index. 
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The graph above shows the daily log returns for the NK225 index for the observed time 

zone (horizontal line: the daily log returns, vertical line: time period, 30th of July 2010 

to 30th of September 2016). The graph beneath shows the density distribution of the 

returns for the NK225 index. 
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The graph above shows the daily log returns for the USD index for the observed time 

zone (horizontal line: the daily log returns, vertical line: time period, 30th of July 2010 

to 30th of September 2016). (30th of July 2010 to 30th of September 2016). The graph 

beneath shows the density distribution of the returns for the USD index. 
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The graph above shows the daily log returns for the EUR index for the observed time 

zone (horizontal line: the daily log returns, vertical line: time period, 30th of July 2010 

to 30th of September 2016).). The graph beneath shows the density distribution of the 

returns for the EUR index. 
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The graph above shows the daily log returns for the GBP index for the observed time 

zone (horizontal line: the daily log returns, vertical line: time period, 30th of July 2010 

to 30th of September 2016). The graph beneath shows the density distribution of the 

returns for the GBP index. 
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The graph above shows the daily log returns for the GREIT index for the observed time 

zone (horizontal line: the daily log returns, vertical line: time period, 30th of July 2010 

to 30th of September 2016). The graph beneath shows the density distribution of the 

returns for the GREIT index. 
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The graph above shows the daily log returns for the GBI index for the observed time 

zone (horizontal line: the daily log returns, vertical line: time period, 30th of July 2010 

to 30th of September 2016). The graph beneath shows the density distribution of the 

returns for the GBI index. 
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The graph above shows the daily log returns for the COMD index for the observed time 

zone (horizontal line: the daily log returns, vertical line: time period, 30th of July 2010 

to 30th of September 2016). The graph beneath shows the density distribution of the 

returns for the COMD index. 
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The graph above shows the daily log returns for the HYB index for the observed time 

zone (horizontal line: the daily log returns, vertical line: time period, 30th of July 2010 

to 30th of September 2016). The graph beneath shows the density distribution of the 

returns for the HYB index. 
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Appendix 2: Normal Q-Q Plot 

 

The graph above shows the Normal Quantile-Quantile plot of daily log returns for the 

BTP index from 30th of July 2010 to 30th of September 2016. 
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The graph above shows the quantile-quantile plot of daily log returns for the JREIT 

index from 30th of July 2010 to 30th of September 2016. 
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The graph above shows the quantile-quantile plot of daily log returns for the MSCI 

index from 30th of July 2010 to 30th of September 2016. 
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The graph above shows the quantile-quantile plot of daily log returns for the NK225 

index from 30th of July 2010 to 30th of September 2016. 
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The graph above shows the quantile-quantile plot of daily log returns for the USD index 

from 30th of July 2010 to 30th of September 2016. 
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The graph above shows the quantile-quantile plot of daily log returns for the EUR index 

from 30th of July 2010 to 30th of September 2016. 

-3 -2 -1 0 1 2 3

-0
.0

6
-0

.0
4

-0
.0

2
0

.0
0

0
.0

2
0

.0
4

EUR Index

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s



74 

 

 

The graph above shows the quantile-quantile plot of daily log returns for the GBP index 

from 30th of July 2010 to 30th of September 2016. 
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The graph above shows the quantile-quantile plot of daily log returns for the GREIT 

index from 30th of July 2010 to 30th of September 2016. 
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The graph above shows the quantile-quantile plot of daily log returns for the GBI index 

from 30th of July 2010 to 30th of September 2016. 
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The graph above shows the quantile-quantile plot of daily log returns for the COMD 

index from 30th of July 2010 to 30th of September 2016. 
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The graph above shows the quantile-quantile plot of daily log returns for the HYB index 

from 30th of July 2010 to 30th of September 2016. 

 

Appendix 3: Description of Jarque Bera Test 

Jarque Bera Test 

data:  BTC 

W = 0.84414, p-value < 2.2e-16 
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data:  JREIT 

X-squared = 3534.7, df = 2, p-value < 2.2e-16 

data:  MSCI 

X-squared = 248960, df = 2, p-value < 2.2e-16 

data:  NK225 

X-squared = 1591.5, df = 2, p-value < 2.2e-16 

data:  USD 

X-squared = 1000.4, df = 2, p-value < 2.2e-16 

data:  EUR 

X-squared = 1101.3, df = 2, p-value < 2.2e-16 

data:  GBP 

X-squared = 61210, df = 2, p-value < 2.2e-16 

data:  GREIT 

X-squared = 2226.4, df = 2, p-value < 2.2e-16 

data:  GBI 

X-squared = 316.76, df = 2, p-value < 2.2e-16 

data:  COMD 

X-squared = 1777.2, df = 2, p-value < 2.2e-16 

data:  HYB 

X-squared = 63233, df = 2, p-value < 2.2e-16 

Appendix 4: Description of Shapiro-Wilk normality test 

Shapiro-Wilk normality test 

data:  BTP 

W = 0.84414, p-value < 2.2e-16 

data:  JREIT 



80 

 

W = 0.90975, p-value < 2.2e-16 

data:  MSCI 

W = 0.82818, p-value < 2.2e-16 

data:  NK225 

W = 0.95601, p-value < 2.2e-16 

data:  USD 

W = 0.95318, p-value < 2.2e-16 

data:  EUR 

W = 0.96338, p-value < 2.2e-16 

data:  GBP 

W = 0.88867, p-value < 2.2e-16 

data:  GREIT 

W = 0.93697, p-value < 2.2e-16 

data:  GBI 

W = 0.97751, p-value = 2.117e-14 

data:  COMD 

W = 0.95583, p-value < 2.2e-16 

data:  HYB 

W = 0.74399, p-value < 2.2e-16 

Appendix 5: Programming scripts 

The following codes are programmed in Rgui 

Code 1 - Used to describe the data 

 

data=read.csv("d://data.csv")  

attach(data)  

btpreturn=diff(log(BTP)) 

jreitreturn=diff(log(JREIT)) 

mscireturn=diff(log(MSCI)) 

nk225return=diff(log(NK225)) 

usdreturn=diff(log(USD)) 
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eurreturn=diff(log(EUR)) 

gbpreturn=diff(log(GBP)) 

greitreturn=diff(log(GREIT)) 

gbireturn=diff(log(GBI)) 

comdreturn=diff(log(COMD)) 

hybreturn=diff(log(HYB)) 

 

par(mfrow=c(2,1)) 

plot(btpreturn, xaxt="n",yaxt="n",xlab="",ylab="",type ="l",main="BTP Index") 

hist(btpreturn,freq=F,ylim=c(0,15),xlab=" ",main="Probability Distribution - BTP 

Index")  

lines(density(btpreturn),col="blue")  

 

par(mfrow=c(2,1)) 

plot(jreitreturn, xaxt="n",yaxt="n",xlab="",ylab="",type ="l",main="JREIT Index") 

hist(jreitreturn,freq=F,ylim=c(0,60),xlab=" ",main="Probability Distribution - JREIT 

Index")  

lines(density(jreitreturn),col="blue")  

 

par(mfrow=c(2,1)) 

plot(mscireturn, xaxt="n",yaxt="n",xlab="",ylab="",type ="l",main="MSCI Index") 

hist(mscireturn,freq=F,ylim=c(0,40),xlab=" ",main="Probability Distribution - MSCI 

Index")  

lines(density(mscireturn),col="blue")  

 

par(mfrow=c(2,1)) 

plot(nk225return, xaxt="n",yaxt="n",xlab="",ylab="",type ="l",main="NK225 Index") 

hist(nk225return,freq=F,ylim=c(0,40),xlab=" ",main="Probability Distribution - NK225 

Index")  

lines(density(nk225return),col="blue")  

 

par(mfrow=c(2,1)) 

plot(usdreturn, xaxt="n",yaxt="n",xlab="",ylab="",type ="l",main="USD Index") 

hist(usdreturn,freq=F,ylim=c(0,100),xlab=" ",main="Probability Distribution - USD 

Index")  

lines(density(usdreturn),col="blue")  

 

par(mfrow=c(2,1)) 

plot(eurreturn, xaxt="n",yaxt="n",xlab="",ylab="",type ="l",main="EUR Index") 

hist(eurreturn,freq=F,ylim=c(0,70),xlab=" ",main="Probability Distribution - EUR 

Index")  

lines(density(eurreturn),col="blue")  

 

par(mfrow=c(2,1)) 

plot(gbpreturn, xaxt="n",yaxt="n",xlab="",ylab="",type ="l",main="GBP Index") 

hist(gbpreturn,freq=F,ylim=c(0,80),xlab=" ",main="Probability Distribution - GBP 

Index")  
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lines(density(gbpreturn),col="blue")  

 

par(mfrow=c(2,1)) 

plot(greitreturn, xaxt="n",yaxt="n",xlab="",ylab="",type ="l",main="GREIT Index") 

hist(greitreturn,freq=F,ylim=c(0,60),xlab=" ",main="Probability Distribution - GREIT 

Index")  

lines(density(greitreturn),col="blue")  

 

par(mfrow=c(2,1)) 

plot(gbireturn, xaxt="n",yaxt="n",xlab="",ylab="",type ="l",main="GBI Index") 

hist(gbireturn,freq=F,ylim=c(0,130),xlab=" ",main="Probability Distribution - GBI 

Index")  

lines(density(gbireturn),col="blue")  

 

plot(comdreturn, xaxt="n",yaxt="n",xlab="",ylab="",type ="l",main="COMD Index")  

hist(comdreturn,freq=F,ylim=c(0,50),xlab=" ",main="Probability Distribution - COMD 

Index")  

lines(density(comdreturn),col="blue")  

 

plot(hybreturn, xaxt="n",yaxt="n",xlab="",ylab="",type ="l",main="HYB Index") 

hist(hybreturn,freq=F,ylim=c(0,500),xlab ="",main="Probability Distribution - HYB 

Index")  

lines(density(hybreturn),col="blue")  

 

Code 2 - Used to Normality test (Jarque-Bera test, Shapiro-Wilk normality test, Q-

Q  plot) 

 

data=read.csv("d://data.csv")  

attach(data)  

btpreturn=diff(log(BTP)) 

jreitreturn=diff(log(JREIT)) 

mscireturn=diff(log(MSCI)) 

nk225return=diff(log(NK225)) 

usdreturn=diff(log(USD)) 

eurreturn=diff(log(EUR)) 

gbpreturn=diff(log(GBP)) 

greitreturn=diff(log(GREIT)) 

gbireturn=diff(log(GBI)) 

comdreturn=diff(log(COMD)) 

hybreturn=diff(log(HYB)) 

 

 

jarque.bera.test(btpreturn) 

jarque.bera.test(jreitreturn) 

jarque.bera.test(mscireturn) 

jarque.bera.test(nk225return) 

jarque.bera.test(usdreturn) 
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jarque.bera.test(eurreturn) 

jarque.bera.test(gbpreturn) 

jarque.bera.test(greitreturn) 

jarque.bera.test(gbireturn) 

jarque.bera.test(comdreturn) 

jarque.bera.test(hybreturn) 

 

shapiro.test(btpreturn) 

shapiro.test(jreitreturn) 

shapiro.test(mscireturn) 

shapiro.test(nk225return) 

shapiro.test(usdreturn) 

shapiro.test(eurreturn) 

shapiro.test(gbpreturn) 

shapiro.test(greitreturn) 

shapiro.test(gbireturn) 

shapiro.test(comdreturn) 

shapiro.test(hybreturn) 

 

qqnorm(btpreturn,main="BTP Index") 

qqline(btpreturn) 

qqnorm(jreitreturn,main="JREIT Index") 

qqline(jreitreturn) 

qqnorm(mscireturn,main="MSCI Index") 

qqline(mscireturn) 

qqnorm(nk225return,main="NK225 Index") 

qqline(nk225return) 

qqnorm(usdreturn,main="USD Index") 

qqline(usdreturn) 

qqnorm(eurreturn,main="EUR Index") 

qqline(eurreturn) 

qqnorm(gbpreturn,main="GBP Index") 

qqline(gbpreturn) 

qqnorm(greitreturn,main="GREIT Index") 

qqline(greitreturn) 

qqnorm(gbireturn,main="GBI Index") 

qqline(gbireturn) 

qqnorm(comdreturn,main="COMD Index") 

qqline(comdreturn) 

qqnorm(hybreturn,main="HYB Index") 

qqline(hybreturn) 
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Appendix 6: Monthly Cumulative Returns 
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