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Abstract 

 

The vast increase in demand in recent years and the predicted future growth in demand for 

cooling in developing and developed markets is jeopardizing the future energy supply stability.  

Thermal energy storage technology has the potential to help stabilize cooling demand by leveling 

peak load demand.  Paraffin Phase Change Slurries have been studied as solutions to providing 

thermal energy storage for cooling demand. Phase Change Slurries are of great interest due to 

their ability to capitalize on the latent heat storage over a small temperature range.   

It is the purpose of this thesis to develop a pragmatic strategy for the selection process of suitable 

emulsifiers for applications in paraffin/water emulsions for cooling application in a temperature 

range of 0-30°C. Paraffin in water emulsions consist of small paraffin droplets suspended in 

water carrier fluid.  The emulsifier acts as a stabilizer for the water/oil interface.  This research 

seeks to study the impacts of emulsifiers on droplet size /dispersion and thermal properties.   

This research recommends the use of and emulsifier mixture that has an HLB value of 12, 

prepared at a temperature of 80°C, using a mixing speed of 11,000 rpm for 3 min., with a 1.5 wt. 

% emulsifier concentration and 30 wt. % paraffin concentration in order to form a kinetically 

stable emulsion.  This emulsion exhibits monodispersed droplet distributions and droplets sizes 

ranging from 1-10 μm, while also having limited degrees of subcooling, as defined by less than 

5K. This emulsion also exhibited a steady viscosity of less than 10 mPas during 20 

cooling/heating cycles and a semi-steady viscosity of less than 36 mPas during 60 

cooling/heating cycles.   
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1.  Introduction 
Scientist and economists have linked growth in world energy demand and global and personal 

economical growth. Despite the recession that began in 2008, energy demand has continued to 

grow, especially in developing countries. However, the economic growth distribution and energy 

growth distribution have been disproportionately in favor of developing countries. Throughout 

the recession developing countries’ economies and energy demand has been more robust, 

whereas developed countries have seen slower economic recovery and energy demand growth 

[IEO11].   

In 2010, global energy consumption was estimated to be 12,800 Mtoe
1
 or 148 billion

2
 kWh

3
, a 

5.5% increase from 2009 [Ener11]. The United States Energy Information Administration 

predicts that energy demand could increase to 181 billion kWh by 2020 and 211 billion kWh by 

2030 [IEO11]. Of this global energy demand the International Energy Agency (IEA) estimates 

that one-third is from building energy demand. Space heating and cooling and water heating are 

estimated to account for roughly half of the energy demand from buildings [IEA11]. This 

translates into more than 2,000 Mtoe or 23 billion kWh per year being used for space heating and 

cooling. Cooling demand is an especially important topic in connection with grid staiblity due to 

the high energy demand of current cooling systems and the disproportionate effects cooling units 

have on peak energy demand [McNe07]. Energy demand from cooling units contribute to daily 

and seasonal energy peaks. Energy demand for cooling has increased in recent years due to 

several factors, which include, global warming, use of light building materials, and a global rise 

in indoor comfort expectations.   

1.1. Developed World 

In the developed world the cooling industry can be divided into two major markets, the 

American and the European market. The American market has seen only slight growth in the last 

two decades from 68%-87% of households owning a cooling unit [RCES11]. Since the market is 

nearing saturation, growth in the American market is expected to be slow in the future. However, 

regional usage varies greatly from almost 67% of household using units daily during warm 

                                                 
1
 Mtoe stands for million metric tons of oil equivalent. 

2
 billion refers to the long scale used in Europe and is equivalent to 10

12
, in the American short scale version this 

would be called trillion 
3
 kWh stands for kilowatt-hour, 1kWh= 3600 kilojoules=3412.3 Btu 
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months in the south to only 35% in the northeast [RCES11]. However, as climate change effects 

increases and warm periods intensify, there is a potential for drastic increases in energy 

consumption from the cooling sector due to increased usage in more temperate climates like the 

northeast and higher energy consmuption from southern regions due to increased degrees of 

cooling. The European market, unlike its American counterpart has recently seen significant 

growth. Even in the more moderate temperature areas like Central and Northern Europe, cooling 

demand has seen significant growth. Much of this demand is due to lightweight building 

materials and increased indoor comfort level expectations [Artm06]. In a study on increased air 

conditioning usage in Europe in 2005, Henderson concluded that even with an increase in 

households owning cooling units, overall electrical consumption would only modestly increase. 

However, Henderson also concluded that peak electrical demand, especially in mediterranean 

countries would be a great cause for concern. This study also concluded that there is a correlation 

between cooling degree days and electricity consumption from air conditioning. This means that 

energy demand will rise as climate change impacts increase and days where cooling is needed 

increase [Hend05]. Energy demand by the cooling sector in temperate European coutnries like 

Switzerland, Germany, France, ect., could potentially increase by 13%, with 7.5% of this due to 

climate change temperature increases [Aebi07]. In Southern European countries, with warmer 

climates, the increase in summer peak cooling demand is so great that new electricity generation 

plants are being considered just to cover this peak demand [Papa03].   

1.2. Developing World 

In the developing world, an increase in air conditioning usage could have an even larger impact 

on global energy demand and peak demand load. There are three main reasons that developing 

nations are of such high interest to future energy stability. First, the developing world consists of 

countries that are located in warmer climates where these is a large cooling degree days demand 

(e.g. India, Brazil, Indonesia, Mexico) [McNe07 & Siva09]. Secondly, many of these countries 

have in recent years shown a tendency for resiliance to economic recessions. Unlike their 

developed nation counterparts many of these countries have seen improvements in their 

populations average personal incomes. This has lead to a tendency for more electrical appliance 

consumption and usage. A previous study conducted by McNeil and Letschert suggests that as 

incomes rise in developing countries, there is a direct increase in rate of appliances owned, 

including cooling units, and electricity consumption. Developing countries with a high 
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electrification rate and a high urban population tend to show the strongest correlation between 

rising incomes and increased appliance ownership and energy demand [McNe05]. In India air 

conditioning purchases are growing at a average rate of 20% per year. McNeil and Letschert’s 

model of air conditioning growth in developing countries and increase energy demand can be 

found in figure 1[McNe07]. The market for cooling is rapidly expanding in developing countries 

and with large portions of the world’s population residing in these countries this could put 

extreme pressure on energy demand. Of the fifty largest metropolitans in the world, thirty-eight 

of them are located in developing countries [Siva09]. Third, the developing world’s electricity 

markets are already unstable and experienceing chronic power shortages. If there are massive 

increases in peak demand due to cooling this can only worsen. An increase in chronic power 

shortages has the potential to cause significant economic and social impacts within developing 

nations.  

Cooling demand, whether in the developed or developing world, is a growing concerns in respect 

to future energy systems. Thermal energy storage (TES) technology has the potential to help 

create stablility for energy systems. TES shifts peak load demand by providing off-peak cooling 

production/storage for use during daytime peak-demand. A variety of different storage materials 

Figure 1: Future Energy demand from cooling in developing countries (IND-India, SSA-Sub-Sahara Africa, INDO-Indonesia, 

CPA-Centrally-Planned Asia, SAS-PAS-Other Asia, NAF-North Africa, BRA-Brazil, LAM-Latin America, MEA-Middle East, 

MEX-Mexico) [McNe07] 



Introduction and Research Objective 

 

4 

 

have previously been investigated. Convential TES systems use water as a storage medium 

because of its relatively high sensible heat capacity over a small temperature range. Research 

indicates that storage capacity can be increased by capitalizing on the latent heat storage of Phase 

Change Materials (PCMs). In a PCM storage system, the energy is stored during a phase change 

e.g. solid-liquid transition. PCM systems, and like water offer a high storage capacity over a 

relatively small temperature range. However, there are two main disadvantages of PCM systems. 

First, for the heat transfer between the PCM and the heat/cold source, PCM systems require an 

additional transfer fluid due to their phase change. Secondly, most PCMs have low thermal 

conductivity. Due to these disadvantages, Phase Change Slurries (PCSs) have been investigated. 

PCSs consist of two major components, a PCM as the dispered phase and a carrier fluid, usually 

water, as the continuous phase. PCS systems can be continually pumped in a charging and 

discharging cycle without needing an additional fluid. PCSs also have a high thermal 

conductivity because of the large surface area to volume ratio of the dispersed phase. Not only 

are PCS systems able to avoid the disadvantage presented by PCM systems, but they also 

increase storage capacity by using the sensible heat capacity of the carrier fluid and the latent 

heat capacity of the disperesed phase. PCS systems are an excellent choice for cool thermal 

energy storage (CTES) because of their increase storage capacity and ability to avoid the 

disadvantages of PCMs. 

 A variety of materials have been studied for the dispersed phase of a PCS, including ice slurries, 

hydrate slurries (organic or non-organic solutoins), PCM microcapsule slurries, PCM emulsion 

slurries, diphasic slurries of carbonic anhydride, and shape-stabilized laten heat material 

[Inab03]. This research focuses on PCM emulsions, with the objective of developing and 

characterizing kinetically and mechanical-thermally stable paraffin/water emulsions that exhibit 

small subcooling effects within a temperature range of 0-30 ºC. The goal of this research is to 

characterize the effects of temperature, concentration, preparation method, and emulsifier 

chemical properties on the kinetic and mechanical-thermal stability of emulsions.  
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2.  State of the Art 

2.1.  Energy Storage 

Due to recent developments in technology and the field of material science, energy storage has 

been developed to a point where it could significantly impact the future of the energy supply 

chain. Energy storage (ES) is especially important in energy systems that rely on intermittent 

supplies like solar and other renewable energy sources. ES systems are also important because of 

their potential to decrease initial investments costs and increase efficiency for energy supply 

Figure 2: Classification of energy storage [Gil10] 

Figure 3: Peak load energy demand (a) without CTES (b) with CTES [Dinc11, pg. 484] 
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Figure 4: Latent and sensible heat energy storage potential of water [Blan85] 

plants. As shown in figure 3 power demand is not steady, but fluctuating with time of day 

[Dinc11, pg. 484]. This same peak demand fluctuation occurs seasonally, with demand being 

greater during warm months due to cooling. Power generation systems must be built to meet the 

peak demand, and at non-peak daily and seasonal times these systems operate inefficinelty and 

below their full capacity. With a ES system a smaller generation capacity can be built and at non-

peak times, the energy can be stored for use during peak intervals. There are four main types of 

ES systems as shown in figure 2 [Gil10]. Even with energy efficiency losses due to conversion, 

load management techniques like ES systems can sometimes reduce the intial investment costs 

of power generation by allowing smaller capacity generation plants to be built. ES systems can 

also be introduced at the source of consumption in residential or commercial buildings. ES 

systems can be used as a load management technique to reduce the space-heating or cooling 

demand of a building [Dinc11].   

2.2 Thermal Energy Storage 

Thermal energy storage is an important component of ES technology because the majority of 

global energy produced and transferred is from heat [Dinc11]. TES functions by reversibly 

changing the physical properties (temperature or phase) of a material. These reversible processes 
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include heating, cooling, solidifying, melting, and vaporizing [Dinc11].  

As previously shown in figure 2 there are three types of TES sensible heat, latent heat and 

chemical energy. Sensible heat storage functions by raising or lowering the temperature of a 

material; the effectiveness depends on the specific heat of the storage material. Storage/release 

by phase change is known as latent heat storage [Dinc11]. As can be observed in Figure 4, higher 

amounts of energy can be stored or released over a shorter temperature range with latent heat 

transitions rather than during senesible heat transitions [Shar04 & Blan85].   

Cooling thermal energy storage (CTES) is the application of TES technology for cooling 

purposes. An example of CTES is the storage of ice created during evening (off-peak hours), 

then melted during the daytime peak demand to be used for cooling [Hasn98]. This nighttime 

generation of cooling is more efficient due to lower ambient temperatures [Zhan11]. This higher 

efficiency combined with cheaper off-peak electricity production makes CTES systems 

economically attractive. By using CTES systems energy peak load cooling demand is shifted 

from daytime to nighttime. As pictured in figure 5, there are three main strategies for 

accomplishing this, full-storage, partial storage load-leveling and partial storage load limiting 

[Dinc11, pg. 143]. Full-storage is designed to fully decouple the generation and the peak load. In 

partial-storage, the CTES system is designed to level the load and meet part of the peak-period 

cooling demand, while the other part is met from a normal chiller. In load leveling, the chiller is 

Figure 5: CTES system types (a) full-storage (b) partial storage load leveling (c) partial storage demand-limiting [Dinc11, pg. 143] 
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sized to meet full capacity for 24 hrs on the hottest days. In the demand-limiting system, the 

chiller is designed to run at a reduced capacity during peak hours to reduce a facilities peak 

demand energy costs. Demand-limiting systems have a higher equipment cost than for load-

leveling systems, but lower than for a full-storage system [Dinc11, pg. 1143]. When using water 

as a CTES medium, only the sensible heat can be used for storage. Therefore, phase change 

materials (PCMs) have been investigated in order to take advanatage of the greater storage 

capapcity of latent heat storage.  

2.3  Thermal Energy Storage Media 

Sensible Energy Storage Materials 

Traditional sensible energy storage materials include fluids like water, inorganic molten salts, 

and oils, and solids such as rocks, pebbles and refractory [Atae06]. Materials are selected based 

on the temperature level of the application. Water is usually used for temperatures below 100°C, 

while refractory bricks are used for temperatures around 1,000°C. Sensible heat storage systems 

have the disadvantage of being larger in size than latent heat storage systems; however, they do 

have the advantage of being simpler systems and being capable of storing energy over a larger 

range [Atae06]. The size of a sensible heat system depends on the temperature range. Sensible 

heat storage capacity is directly linked to the heat capacity of the fluid/solid being used and the 

volume, as shown in equation 1[Shar09].   

  ∫          (     )
  

  

 

Equation 1: Sensible heat storage capacity [Shar09] 

Water is the most common type of media for cold storage/transfer because of its low cost, 

environmentally friendliness, and high specific heat capacity.   

Phase Change Materials 

Classification 

Latent heat storage is used because of its high energy storage density with a small temperature 

swing. PCMs can be categorized as organic, inorganic, or eutectic materials that store energy 

mainly during a phase change process, usually a solid-liquid transition. Figure 6 details the 

different material categories of solid-liquid transition PCMs [Zalb03 & Zhou12]. All PCMs are 

selected based on thermodynamic, kinetic, chemical and economical properties. PCMs should 
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exhibit the following thermodynamic properties: melting temperature within set range, high 

thermal conductivity, high heat of fusion per unit volume, high specific heat, high density, small 

volume changes during phase transitions, and congruent melting. PCMs are expected to have the 

following kinetic properties: high nucleation rate and high rate of crystal growth. When selecting 

a PCM, materials should be non-corrosive, non-toxic, non-flammable, chemically stable, have a 

reversible freezing/melting cycle, and not degrade after repeated cooling/heating cycles. They 

should also be low cost and readily available materials [Abha83]. Initially inorganic PCMs were 

studied in great detail due to their low cost, availability, high heat of fusion and high thermal 

conductivity. However, inorganic PCMs (e.g. salt hydrates) tend to melt incongruently so that 

repeated cooling and heating cycle result in segregation and a drift in the transition zone. In order 

to avoid these problems associated with inorganic PCMs, organic PCMs have been investigated 

[Khud04].  

Inorganics 

Inorganic PCMs can be further classified into salt hydrates and metals, as seen in figure 6. Salt 

hydrates are alloys of inorganic salts and water. They are typically used for their high heat of 

fusion and high thermal conductivity. They also have small volume changes when transitioning 

from solid to liquid form and are typically inexpensive enough to be usable in thermal energy 

storage applications. However, they tend to have poor nucleating properties and thus exhibit 

subcooling, or cooling below the melting temperature without crystallization and many 

inorganics are corrosive. They also tend to melt incongruently or semi-congruently, which 

eventually leads to separation and an irreversible cooling/heating of the salt. Table 1 lists the full 

Figure 6: Thermal energy storage material classification [Zalb03 & Zhou 12] 
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advantages and disadvantages of using inorganic PCMs.  There are very few salt hydrates that 

melt within the range of 0-30ºC, which is required for CTES. Salt hydrides are better suited for 

heating thermal energy storage [Shar09]. Metals on the other hand have not been seriously 

studied due to their low heat of fusion per unit weight. Although metals have a high heat of 

fusion they are extremely heavy and thus present some unusual engineering problems. There are 

also very few metals suited for CTES due to their tendency to have higher melting temperatures 

[Shar09].   

Eutectics 

Eutectics are composed of two or more PCMs that melt and freeze congruently [Shar09]. 

Eutectics can be classified into three categories: organic-organic, inorganic-organic, or 

inorganic-inorganic. There is little to no problem with segregation in concern with eutectics. 

Eutectics are also considered good PCMs because of their narrow melting temperature ranges 

and high volumetric thermal storage density [Abha83]. There is limited information on eutectic 

PCMs in literature due to lack of research focuses. Most research conducted on eutectic PCMs 

focuses on the thermo physical properties of eutectics [Bara03]. For application in CTES systems 

eutectic salts have been commercially used. Eutectic salts used in CTES are usually a 

combination of inorganic salts, water and other elements combined to form a mixture that freezes 

at a desired temperature [Dinc11].   

Organics 

There are two main branches of organic PCMs, non-paraffins and paraffins (alkane mixtures) 

[Zalb03]. The main advantages and disadvantages of using organic PCMs as storage media can 

be found in table 2 [Abha83]. Non-paraffins include fatty acids and other chemicals. Unlike the 

paraffin sub-group, non-paraffin materials have distinct individual properties. Non-paraffins are 

considered the largest category of materials for phase change storage and include alcohols, fatty 

acids, and glycols. One of the major drawbacks of non-paraffins is that many are considered 

flammable materials and cannot be exposed to excessively high heat, flames or oxidizing agents. 

Advantages Disadvantages

1. High latent heat values 1. Corrosiveness

2. Non-flammable 2. Instability 

3. Low-cost and readily available 3. Improper re-solidification

4. Supercooling

Inorganic PCMs

Table 1: Advantages and Disadvantages of Inorganic PCMS [Zalb 03] 
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Fatty acids are chemically considered to be better suited than paraffins for energy storage due to 

their lack of subcooling and generally higher heat of fusion values. However, they tend to be 

around 2-2.5 times more expensive than paraffins and mildly corrosive, thus limiting their 

commerciality [Shar09].  

Paraffin PCMs are mostly alkanes or mixtures of alkanes. The melting point and heat of fusion 

increase with respect to increasing chain length, thus most paraffins used as PCMs range from 

14-34 carbons in chain length [Shar09]. Due to cost considerations polymer blends are preferred. 

Paraffins with even numbered chain lengths are also preferred due to their higher heat of fusion 

and better suitability as PCMs. PCMs tend to have poor thermal conductivity and thus require a 

carrier fluid. Therefore, phase change slurries (PCSs) have been investigated. 

Phase Change Slurries 

PCSs consist of two main components, a dispersed phase consisting of a PCM and a carrier fluid 

[Huan10c]. PCSs are desirable for commercial applications because they are able to combine the 

latent heat storage of a PCM and the sensible heat storage of the carrier fluid (usually water) to 

produce a larger overall heat storage, while still remaining pump-able during phase transitions 

[Huan09b & Huan10a]. The introduction of a carrier fluid helps improve the poor thermal 

conductivity of pure PCMs. A PCS has a much larger surface area between the PCM and the 

carrier fluid and is thus able to increase the heat transfer. Desirable characteristics of PSCs can 

be categorized in the following way: thermophysical properties, rheological properties, 

manageability, ecological properties and economical properties. The following characteristics 

shown in table 3 are desirable PCS characteristics [Noer03 and Shar04 as cited in Huan09a]. 

Advanatages Disadvantages

1. Availability over large temperature range 1. Low thermal conductivity

PCMs 2. High heat of fusion 2. Relatively large volume change

3. Chemically stable 3. Flammable

4. Recyclable

5. Compatability with other materials

6. Little to no supercooling

Inorganic 1. High heat of fusion 1. Corrosive

PCMs 2. High thermal conductivity 2. Exhibit supercooling

3. Low volume change

4. Low cost and high availability

Eutectics 1. Sharp melting temperature 1. Expensive

2. High volumetric thermal storage density

Organic

Table 2: Advantages and Disadvantages of Organic PCMs [Abha83] 
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PCSs can be organized into the categories: ice slurries, hydrate slurries (organic or non-organic 

solutions), PCM microcapsule slurries, PCM microemulsion slurries, shape-stabilized latent heat 

material, and diphasic slurries of carbonic anhydride [Inab03]. Three of these categories are 

PCSs based on paraffin: PCM microcapsulated paraffin-in-water suspension, paraffin-in-water 

emulsions, and paraffin-in-water shape-stabilized suspensions [Huan09b]. This research focuses 

only on paraffin-in-water emulsion.  

2.4. Emulsions 

2.4.1. Classifications 

Colloid dispersions are systems that consist of small particles between the ranges of 1-1000 nm 

[Moll01, pg. 1]. Simple colloid dispersions are two-phase systems consisting of a dispersed 

phase and a continuous phase. Figure 7 shows the different classifications of simple colloidal 

dispersions [Moll01, pg. 5]. Emulsions are liquid-liquid dispersions comprised of two 

“insoluble” liquids that are thermodynamically unstable [Moll01, pg. 62]. In emulsions, the two 

liquids are present in two different forms. One forms the continuous phase in which the other 

dispersed phase forms spherical droplets. There are two main types of emulsions that can be 

 High heat capacity (>2 times that of water)

 Melting temperature within operating range

Small temperature swing during phase transition, little subcooling

High heat transfer

Stable during storage

 Stable during freezing/melting cycles (in pump system)

Low pressure drop (pumpable)

Non-corrosive to system

Applicable in current systems, compatible with current technology

Non-toxic, inflammable or low flammability and non-explosive

Biodegradable, no or low hazard to water

Low cost

Available for large scale production

 Thermophysical properties

Manageability

 Rheology

 Ecological properties

Economic properties

Table 3: Desirable characteristics of PCS [Noer03 & Shar04 as cited in Huan09a] 
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Figure 7: Simple colloid dispersion classifications [Moll01, pg. 5] 

formed: oil-in-water (o/w) or water-in-oil (w/o). In PCS paraffin emulsions for application in 

CTES o/w emulsions are ideal. Determining the type of emulsion produced is difficult to do with 

the naked eye. Therefore, to determine the type of emulsion created there are five simple tests: 

dilution, dye-solubility, filter paper (CoCl2), fluorescence and conductivity. The dilution 

technique is based on the solubility of the continuous phase. O/w emulsions can be diluted with 

water and w/o emulsions can be diluted with oil. The dye-solubility test uses either a water-

soluble or oil-soluble dye and then observes the emulsion. If a water-soluble dye is used then an 

o/w emulsion will have a dyed continuous phase and a w/o will have a dyed dispersed phase. The 

filter paper tests involve impregnating filter paper with CoCl2. After the paper is dried it should 

be a blue tint, if dipped in an o/w emulsion the filter paper will change from blue to pink. The 

fluorescence test operates on the idea that under UV light some oils are fluorescent. When using 

this test o/w emulsions show spotty patterns, while w/o emulsions are fluorescent. The 

conductivity test requires a light bulb attached with wires to two electrodes. When the electrodes 

are dipped in the emulsion a o/w emulsion will cause the bulb to glow due to waters ability to be 

a good conductor, while a w/o emulsion will not glow due to oils low conductivity [Taue06]. 
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2.4.2. Formulation 

How Emulsions Are Formed 

To form a stable emulsion, in addition to oil and water an emulsifier must be present. Due to the 

immiscibility of oil and water the emulsion is naturally unstable. However, if an emulsifier is 

added the emulsion can become kinetically stabilized. Emulsifiers improve stability by lowering 

the interfacial tension. The lower the interfacial tension is the less energy required to form the 

emulsion [Ever88, pg. 182]. Emulsifiers are structured to have a hydrophilic head that is 

attracted to the water phase and a hydrophobic or lipophilic tail attracted to the oil phase, 

pictured at the top of figure 8. Emulsifiers act as a protective layer between the droplet phase and 

the continuous phase that prevents the droplet from being broken [Moll01, pg. 62]. The 

composition, type of emulsifier, and formulation process all help determine the type of emulsion 

produced. If the ratio of the two phase volumes is low, the phase that has the lowest volume is 

typically the dispersed phase, while the phase with the larger volume is the continuous phase. 

However, if the phases are roughly equal in volume, than other factors can influence which 

phase is the continuous and which phase is the dispersed phase [Ever88, pg. 182]. For CTES 

applications oil-in-water emulsions are desired. 

Figure 8: Structure of o/w and w/o emulsions 
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The process of emulsification, or droplet break-up is governed by surface forces. The energy 

required to form droplets from a bulk liquid can be described by the free energy formation, 

illustrated in figure 9 and given by equation 2Equation 2, where    is the increase in interfacial 

area,   is the interfacial tension and        is the entropy increase when large numbers of 

droplets are formed [Isaa92, pg. 51-52]. 

 

                   

Equation 2: Free energy of formation [Isaa92, pg. 51] 

Normally      >>         , and thus emulsification is non-spontaneous. However, the actual 

energy required for emulsification is much larger than    . This is because there is an additional 

energy requirement for creating a curved interface with a smaller radius. This additional energy 

can be described by the Young-Laplace equation given in equation 3,  

    [
 

 
] 

Equation 3: Young-Laplace equation [Isaa92, pg. 52] 

Figure 9: Emulsion formation  through breakdown in (b) 1 is the continuous phase and 2 is the dispersed phase [Isaa92, pg. 52] 
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where    is the Laplace pressure difference and   is the principle radius of the curvature. 

However, in the presence of an emulsifier the emulsification energy can be significantly lowered. 

In emulsion preparation the phenomenon of droplet breakup plays a very important role. The 

energy provided for emulsion formation highly influences the droplet size. As shown in figure 

10, if a liquid is introduced into another liquid in which it is immiscible, it may form an unstable 

cylinder that breaks up into droplets. If the introduction rate is high enough to produce 

turbulence or if the liquid impinges against a surface, then smaller droplets are produced. The 

dispersion process is also influenced by the shear in the system, viscosity of the phases, 

interfacial energy, the pressure of solid particles, and dissolved substances [Isaa92, pg. 53]. 

Droplet breakup can be determined by the critical Weber number. The critical Weber number for 

turbulent flow is also dependent on the density and viscosity of the dispersed phase, as well as, 

the droplet diameter and interfacial tension. The Weber dimension is defined by equation 4, 

where      is the deformation stress, r is the radius of the droplet, and    

   
     

 
 

Equation 4: Weber number [Isaa92, pg. 53] 

Figure 10: Droplet formation, influence of turbulence [Isaa92, pg. 53] 
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is the interfacial tension. When the following two conditions are met droplet break up takes place 

[Isaa92, pg.53]. Frist, when the Weber number is greater than the critical Weber number. The 

second condition is that the deformation time must be longer than the critical deformation time. 

The critical deformation time is shown in equation 5, where    is the viscosity of the dispersed 

phase and    is the Laplace pressure difference [Isaa92, pg. 54]. 

        
  

       
 

 

Equation 5: Critical deformation time [Isaa92, pg. 54] 

Emulsions formulation and droplet size are heavily dependent on the method used, the emulsifier 

concentration, dispersed phase concentration, energy input, and temperature. The influence of 

these factors will be discussed in more detail in the following section. 

Emulsion Preparation Methods 

High-Pressure Homogenization 

High-pressure homogenization is a method typically used in the food and dairy industries to 

produce emulsions. It consists of forcing two fluids into a mixing chamber through an inlet valve 

under high pressure. The average droplet size produced is between 50 nm and 5 µm [Leal07, pg. 

6]. There are two types of regimes that can exist when producing an emulsion with high-pressure 

homogenization, emulsifier rich and emulsifier poor regimes. An emulsifier poor regime is 

defined by the emulsifier concentration being less than ten percent of the critical micelle 

concentration. In an emulsifier poor regime the average droplet size is weakly dependent on the 

pressure of the system. Instead this regime has a high level of coalescence of droplets, which 

leads to average droplet diameters of .3 – 2 µm. Emulsifier rich regimes are defined as having 

emulsifier concentrations greater than ten times the critical micelle concentration and have a 

much smaller droplet diameter, typically varying from 50-250 nm [Leal07, pg. 6]. Although, 

coalescence still 

      
   

Equation 6: Emulsifier rich regime droplet diameter [Leal07, pg. 6] 

occurs, recombination is at a low level and the droplet diameter being defined by equation 6, 

where   is the droplet diameter,      is the homiginizer pressure and   is a power law constant. 
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Membrane Emulsification 

A membrane emulsification preparation method consists of using pressure to force the dispersed 

phase to permeate through a membrane with a uniform pore size into the continuous phase. 

Figure 11Figure 11 is a schematic of membrane emulsification [Leal07, pg. 7]. Membrane 

emulsification is much more complex due to the droplet size dependency on many parameters, 

such as membrane properties, fluxes, and formulation. Usually the drop size formed is 

proportional to the pore size, but if the pore density is too large, coalescence of newly formed 

drops occurs.  However, if pore density is too low, then the speed of production is insufficient. 

For an oil-in-water emulsion to be formed a hydrophilic membrane should be used. Low 

interfacial tension and high velocity of the continuous phase help promote small droplet sizes. 

Membrane emulsification requires finding a balance between high pressure, which promotes 

large droplets, or a dispersed phase jet and low pressure, which decreases the production rate 

[Leal07, pg. 7]. 

Microchannel Emulsification 

Microchannel emulsification technology is similar to membrane emulsification in that the 

dispersed phase is forced through small openings into the continuous phase. Microchannel 

emulsification requires the dispersed phase to flow through a microchannel. Once it reaches the 

opening into the continuous phase there is a terrace where the dispersed phase inflates into a 

disk-like shape. At the end of the terrace, the disk-like shape falls onto the well and a drop 

detaches. A schematic of microchannel emulsification is shown in figure 12 [Leal07, pg8]. The 

spherical shape and detachment of the dispersed phase from the well depend on the interfacial 

tension. A key advantage of using microchannel emulsification is the ability to control the 

geometry of the emulsification.    

Figure 11: Membrane emulsification schematic [Leal07, pg. 7] 
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Spontaneous Emulsification 

Spontaneous emulsification is the process of emulsification without any external energy supply. 

In this process, two immiscible fluids are emulsified due to very low interfacial tension. 

Spontaneous emulsification was first reported in 1878 by Johannes Gad. Despite its historic 

discovery, spontaneous emulsification is still not fully understood. Currently there are three main 

theories on the mechanisms for spontaneous emulsification, interfacial turbulence, negative 

interfacial tension, and diffusion and stranding. Interfacial turbulence attributes spontaneous 

emulsification to a non-uniform distribution of emulsifier molecules on the shared surface. This 

instability of the interface produces small droplets. Negative interfacial tension credits the ability 

to adsorb emulsifier molecules at the interfacial surface in order to create ultra-low interfacial 

tension and eventually a negative interfacial tension. Therefore, the interfacial tension is able to 

increase and the fluctuation causes a break-up of the dispersed phase. Both of these mechanisms 

attribute emulsification to mechanical instability. Diffusion and stranding is based on chemical 

stability and can take place for high or low interfacial tensions. An example of diffusion and 

stranding is when alcohol and oil are combined and then added to water. The alcohol diffuses 

from the oil phase into the water. However, as it diffuses it carries small amounts of oil with it 

that then form droplets. Diffusion and stranding occurs when a solvent is used that is soluble in 

Figure 12: Microchannel schematic (a) top view (b) side view [Leal07, pg. 8] 
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both phases. Spontaneous emulsification applies to volume fractions of less than 10% [Leal07, 

pg. 10-11]. 

Phase Inversion 

Phase inversion is most often considered a type of spontaneous emulsification because of its low 

input energy. However, unlike the previously mentioned spontaneous emulsification mechanisms 

phase inversion has the advantage of producing concentrated emulsions. Emulsions from phase 

inversion tend to be fine and monodispersed. Phase inversion occurs when the structure of the 

emulsion inverts and the continuous phase becomes the dispersed phase or vice versa. Phase 

inversion can occur when changing the temperature, pressure, salinity, by introducing a co-

emulsifier, or increasing the volume of the dispersed phase. Figure 13, shows a molecular 

representation of the change that occurs during phase inversion from an oil-in-water emulsion to 

a water-in-oil emulsion [Leal07, pg 12]. The most common method of phase inversion is the 

phase inversion temperature method (PIT). In nonionic emulsifiers as the temperature increases, 

the emulsifier head group becomes less soluble in water due to decreased hydration. Phase 

inversion is controlled by changing the spontaneous curvature. This can be achieved by changing 

the properties of the emulsion, such as temperature, salinity, pressure, etc.  Shinoda and Saito 

found that when creating an emulsion the preparation temperature has a significant effect on the 

average droplet diameter of the emulsion.   

Figure 13: Phase inversion (a) emulsifier morphology, (b) type of assembly, (c) emulsion type [Leal07, pg. 12] 
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Controlled Shear 

Emulsion creation through controlled shear stress involves adding energy to two immiscible 

fluids by stirring. Ideally, a monodispersed system will be created through control of the 

parameters controlling droplet formation. In 1934, Taylor published an experimental work on 

droplet deformation. This experimentation proved that droplets submitted to quasi-static flow 

deform and burst under well-defined parameters. The droplet will burst if the Ca, capillary  

number, exceeds some critical value Cacr critical. The Cacr is defined by the shear stress over half 

of the Laplace pressure as shown in equation 7, where    is the Laplace pressure and   is the 

surface tension [Leal07, pg. 19]. 

   
  

  
 

Equation 7: Capillary number [Leal07, pg. 19] 

Cacr is dependent on the ratio of the viscosities of the dispersed and continuous phases as shown 

in equation 8 [Leal07, pg. 19].   

  
  

  
 

Equation 8: Viscosity ratio [Leal07, pg. 19] 

Cacr as a function of the density under conditions of simple shear flow and extensional flow is 

shown in figure 14. Rupturing of a droplet has been contributed to the following mechanisms 

[Leal07, pg. 19]. First, development of a Rayleigh instability, in which an undulation at the 

surface of the droplet is developed and continues to grow until it deforms the droplet into a 

cylinder shape and then breaks the droplet. Secondly, tip streaming, where a droplet is deformed 

and comes to a pointed end. This pointed end then produces very small droplets. The third 

mechanism is end pinching, which is where the ends of the original droplet that has been 

deformed into a cylinder are progressively pinched into smaller droplets [Leal07, pg. 19]. 

However, under normal controlled shear emulsion formation, the conditions would be described 

as non-quasi-static conditions [Leal07, pg. 20].  
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It has been shown that the droplet diameter is a function of the shearing time and rate. Different 

shear rates influence the droplet size. Mabille showed that by submitting a heterodispersed 

emulsion to a shear rate of 500s
-1

 for a duration ranging from 1 to 1500s monodispersed 

emulsions could be formed. Mabille also showed that the droplet size decreases over time until at 

a characteristic time, the droplet will reach an asymptotic diameter [Leal07, pg. 21]. Thus 

different shearing rates can create droplets with different diameter ranges, as long as the droplet 

is submitted to shear flow for a time period equal to or greater than the characteristic time for 

that specific shear rate.  

During droplet breakup there are two main regimes, the fast regime which occurs due to 

Rayleigh instability under shear flow and the slow regime, which has little effect on the droplet 

in comparison to the fast regime [Leal07, pg. 21 &25]. During the first regime which is 

controlled by the Rayleigh instability, certain parameters control the mean droplet diameter, the 

applied stress σ, the viscosity ratio ρ, the way the shear is applied, and the rheological behavior. 

Through experimentation the influence of σ on the droplet size and distribution was studied 

[Leal07, pg. 26]. An empirical law, equation 9 was determined to be useful in predicting the 

droplet size resulting from monodispersed fragmentation [Schm03, pg. 201]. 

   
  

 
 

Figure 14: Critical capillary number under quasi-static deformation (a) as a function of simple shear flow (b) as a function of 

extensional flow [Leal07, pg. 19] 
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Equation 9: Mean droplet diameter, influence of the applied stress [Schm03, pg. 201] 

α is a dimensionless constant that essentially is dependent on ρ (the density),   is the surface 

tension and   shear rate. When shear stress is applied suddenly, the Laplace pressure is 

proportional to the stress and the Cacr (Cacr ≈ 2α) is similar to the Cacr (Cacr ≈ 2α) determined for 

quasi-static conditions. The influence of the viscosity ratio was also experimentally studied. It 

was discovered that the mean droplet diameter is only weakly dependent on the viscosity ratio. 

However, the monodispersity is heavily dependent on the viscosity ratio of the emulsion 

[Schm03, pg. 195-201]. For quasi-static conditions, the Cacr diverges for a viscosity ratio greater 

than three, meaning that when the dispersed phase is at least three times as viscous as the 

continuous phase fragmentation no longer occurs. However, if shear is applied even solutions 

with high viscosity ratios can be broken into droplets. 

2.4.3. Emulsion Components 

Emulsions are created when two immiscible fluids are mixed using an input of energy to create 

droplets. Stable emulsions are formed when a third component, an emulsifier is used to stabilize 

the droplets created by forming a thin film around the interfacial surface between the droplet and 

the continuous phase. In these studies the two immiscible fluids are paraffin and water.  

Paraffin 

When a PCM is selected for use in CTES applications it should melt within the temperature 

range of 0 and 30 ºC [Huan09b]. There are five pure paraffin forms that have melting points 

within this range, tetradecane, pentadecane, hexadecane, heptadecane and octadecane. However, 

due to their higher latent heat of fusions, paraffins with even number chain lengths are 

considered better for use in CTES technology [Shar09]. Due to costs polymers blends are 

preferred. This research will focus on octadecane and commercially available blends from 

different suppliers.   

Paraffin Concentration 

Concentration of the dispersed phase influences droplet size, with large fractions favoring 

collisions and coalescence. The volume fraction, ϕ has a reduced influence on the average 

droplet size for concentrations where ϕ < 30% [Leal07, pg.]. 
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Emulsifier 

In an emulsion the emulsifier plays a very important role. The type and properties of the 

emulsifier greatly impact the stability, both mechanical and kinetic. There are currently different 

methods for selecting emulsifiers. However, even with previous research there are gaps of 

knowledge on the exact role the emulsifier plays in creating a stable emulsion with the desired 

PCS properties listed in figure 8. Therefore, more research needs to be conducted relating 

physical and chemical properties that are used in selection methods to desired PCS properties. 

Classification 

Commercially, emulsifiers are usually classified according to their use. However, this causes 

confusion due to multiple uses for the same emulsifier. From a scientific standpoint, most 

emulsifiers are classified based on their dissociation in water. There are four main groups of 

emulsifiers: nonionic, anionic, cationic and amphoteric (zwitterionic) [Moll01, pg. 68]. 

Nonionic Emulsifiers 

Nonionic emulsifiers do not ionize in aqueous solution due to the hydrophilic group being non-

dissociable. Nonionic emulsifiers are the second most used emulsifiers, making up roughly forty 

percent of the world’s emulsifier production. The hydrophilic portion usually has a polyethylene 

chain formed from a polycondensed ethylene oxide. The presence of the chain makes the head 

group hydrophilic. The lipophilic group is usually an alkyl or alkylbenzene created from a 

polycondensed propylene oxide [Sala02]. Some nonionic emulsifiers exhibit very low toxicity 

levels. There are four main types of nonionic emulsifiers, ethoxylated linear alcohols, 

ethoxylated alkyl phenols, fatty acid esters and amine and amide derivatives. Many nonionic 

emulsifiers including the polyoxyethylene family exhibit an inverse temperature-solubility 

relationship. This means that as the temperature of the emulsion increases the solubility will 

decrease due to decreased solubility in water. The temperature where the emulsifier will begin to 

precipitate out of the solution is called the cloud point temperature. 

Anionic Emulsifiers 

Anionic emulsifiers dissociate into an anion
4
 and a cation

5
 in water. The cation is usually either 

an alkaline metal or a quaternary ammonium. Anionic emulsifiers are the most commonly used 

                                                 
4
 Anion: negatively (-) charged ion, moves toward an anode during electrolysis 

5
 Cation: positively (+) charged ion, moves toward a cathode during electrolysis 
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emulsifiers, accounting for about fifty percent of the world’s production of emulsifiers [Sala02]. 

Cationic Emulsifiers 

Cationic emulsifiers dissociate into a cation and an anion in water. They generally correspond to 

nitrogen compounds like fatty amine salts and quaternary ammoniums. Cationic emulsifiers tend 

to be more expensive than anionic emulsifiers because during their synthesis a high pressure 

hydrogenation reaction must be carried out [Sala02].   

Amphoteric (Zwitterionic) 

Amphoteric emulsifiers exhibit both cationic and anionic dissociation. Some amphoteric 

emulsifiers are insensitive to pH, while others change between cationic dissociation at low pH 

and anionic dissociation at high pH. Amphoteric emulsifiers are generally very expensive and 

thus only used in specialized cosmetics [Sala02]. 

In general the hydrophobic group of an emulsifier can be more varied than the hydrophile group. 

Typical hydrophile groups can include structures such as those shown in table 4, where R stands 

for a suitable hydrophobic group, M
+
 is an organic or inorganic cation, and X

-
 is an anion. The 

most common hydrophobic groups are hydrocarbon radicals having between 8-22 carbon atoms 

[Myer06, pg. 38-39].     

Selection Process 

Choosing a suitable emulsifier is a difficult due to a wide variety of choices and the many factors 

that help determine what makes a potential emulsifier a good candidate. Factors include the 

General Class Name General Solubilizing Structure

Sulfonate

Sulfate

Carboxylate

Phosphate

Ammonium

Quaternary ammonium

Betaines

Sulfobetaines

Polyoxyethylene (POE)

Polyoxyethylene sulfates

Polyols

Sucrose esters

Polyglycidyl esters

     
   

      
   

        

      
   

      
     (           )

      
  

    (   )        

    (   )          
 

         (       )   

         (       )     
   

         (  )        (  ) 

               OH

  (              )                       

Table 4: Commonly used hydrophilic groups for commercially available emulsifiers [Myer06] 
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chemical structure, economics, regulations, ecological impacts, input energy. It is important to 

evaluate the relative role of the emulsifier in the emulsion and the emulsifier’s physicochemical 

characteristics. Things to consider when selecting an emulsifier are 

1. The surface and interfacial properties that must be controlled in the specific application 

2. Relationships between structural properties of the emulsifiers and their effects on the 

interfacial surface properties 

3. The chemical and physical properties of available emulsifiers 

4. Specific biological or chemical compatibility requirements 

5. Regulations that might prohibit the use of certain materials due to toxicity, ecological 

impacts, or allergenic reactions) [Myer06, pg. 33] 

Hydrophilic-Lipophilic Balance 

Hydrophilic-lipophilic balance (HLB) is a quantitative characterization of the hydrophilic versus 

the lipophilic sections of a nonionic emulsifier. In 1948, the first ever quantitative 

characterization of the HLB was introduced by William C. Griffin [Krug00, pg. 146]. This 

characterization used arbitrary numbers to describe the ratio between the hydrophile and 

lipophile of various classes of emulsifiers. Each emulsifier is designated a dimensionless number 

ranging from 0 to 20, where zero represents emulsifiers that are oil-soluble and hydrophobic and 

20 are water-soluble and hydrophilic [Moll01, pg. 69]. Nonionic emulsifiers can me combined 

when two emulsifiers with the same chemical type are used [Moll01, pg. 73]. HLB values help 

enable one to make certain predictions of the behavior of the emulsifier. HLB numbering was 

introduced to help classify emulsifiers in a way to improve choice selection of emulsifying 

agents [Krug00, pg. 146-147]. Literature suggests that to form oil-in-water paraffin emulsions an 

emulsifier with a HLB value ranging from 10-15 should be used [Moll01, pg. 75]. Further 

research by Orafidiya and Oladimeji suggests that liquid paraffin emulsions are most stable when 

mixed with nonionic emulsifiers with an HLB from 11.8-12 [Oraf02]. According to Griffin’s 

scale, HLB values are calculated using equation 10 [Moll01, pg. 70].  

           
                                  

                            
    

  

 
    

Equation 10: Griffin's HLB value equation for nonionic emulsifiers [Moll01, pg. 70] 
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Griffin’s equation is suitable for nonionic emulsifiers. Many correctional factors have been 

proposed for ionic emulsifiers [Moll01, pg. 70-71]. However, since this research deals with 

nonionic emulsifiers, these correctional factors will not be discussed. There are also scientific 

debates on the validity of the HLB scale the Griffin’s assigned HLB values of emulsifiers. 

However, in this research HLB values from the Griffin scale were used for all calculations. 

Previous research by Shinoda and Saito indicates that the HLB value greatly influences the 

stability of an emulsion; therefore it is important to find the correct HLB value for a given oil 

[Shin69].   

Determining the HLB Value of an Oil 

The method for determining the optimum HLB value for a paraffin requires mixing two 

emulsifiers. Two emulsifiers, one lipophilic (with a high HLB) and one hydrophilic (with a low 

HLB), must be used to prepare different emulsion with HLB values over a broad range. When 

mixing the emulsifiers the new HLB value is determined using the equation 11 [Moll01, pg. 76].   

       
               

     
 

Equation 11: Equation for finding the optimum HLB value [Moll01, pg. 76] 

Once several solutions have been prepared, then the stability of the different solutions should be 

determined. The more stable emulsions are closer to the optimum HLB value. The HLB value 

range can then be narrowed between the more stable HLB values until an optimum value is 

found [Moll01, pg. 73-76]. It should be noted that previous works indicate temperature has an 

influence on the HLB values. There are several methods for determining the optimal HLB value. 

One method is to prepare the emulsions and then leave the emulsions to stand for a time and then 

compare the emulsions for transparency, creaming, sedimentation, and turbidity [Moll01, pg. 

73]. In this method one must rely on visual signs of emulsion instability. For experimentation 

optimum HLB value was decided upon by preparing emulsions over a range of HLB values and 

then testing the droplet size. Kinetic stability can be directly linked to the droplet size, as will be 

discussed further in the section 2.2.4 Emulsion Stability.  

Previous studies conducted by Orafidiya and Oladimeji have estimated the HLB value of 

paraffin to be between 11.8 and 12 [Oraf02]. Xu tested emulsions of Tween and Span 60 for 

storage life and showed that kinetically stable emulsion with a shelf life of at least 1 week could 
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be produced [Xu05]. Lu was also able to show that by using Tween 60 in conjunction with a co-

emulsifier the subcooling effect can be reduced [Lu12]. Lui also found that when working with 

paraffin o/w nano-emulsions composed of 20 wt. % paraffin and 5 wt. % emulsifier (Tween 80 

and Span 80 mixture), the optimum HLB value decreased as the emperature was increased 

[Liu06].    

Phase Inversion Temperature 

Another newer method of relating physical and chemical characteristics is to use the phase 

inversion temperature (PIT) method. It has been shown that the phase version temperature has an 

almost linear correlation with the HLB value. Phase inversion temperature method is based on 

the fact that rate of coalescence increases, and stability increases as temperature of an emulsion 

increases. The rate is influenced by factors such as the size and type of hydrophilic and 

hydrophobic groups, emulsifier concentration, length of hydrocarbon chain, and other chemical 

characteristics. With nonionic emulsifiers, as the temperature is raised, the hydrophilic group 

becomes less hydrophilic and the emulsifier is prevented from creating a stabile interface 

between water and the oil. In the PIT method, emulsions are prepared over a range of HLB 

values at room temperature. The emulsion is then subjected to heat until it inverts. For oil in 

water emulsion, this means converting to water in oil emulsions and vice versa. The temperature 

at which this inversion occurs is the phase inversion temperature, and should be observable 

visually. Since the interfacial tension reaches a minimum in the region of the PIT, the emulsion 

with the lowest PIT should also have the corresponding optimal HLB value [Moll01, 87]. 

However, the PIT method relies on visual indicators.  

Chemical Structure 

When selecting an emulsifier the chemical structure is important. The chemical structure of an 

emulsifier can be divided into the lipophilic tail and the hydrophilic head group. Both of these 

sections of the emulsifier can impact the stability of the emulsion. Previous research has 

indicated that selecting an emulsifier with a lipophilic tail with a similar number of hydrocarbons 

as the oil can improve the emulsion stability. Literature also suggests that the selection of the 

hydrophilic head group can impact the emulsion stability. As shown in figure 15 the stability of 

an emulsion can significantly increase depending on the chemical structure of the emulsifier   

[Moll01, pg. 76-77].  In the figure, all emulsions exhibit a peak stability at HLB value 12, but 

structure A has a much higher stability, indicating that different chemical structures impact 
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kinetic stability.  It can also be observed that different structures can have a stability over a 

greater or smaller range of HLB.  For example in figure 15, emulsifier B exhibits stability over 

the largest range of HLB values, while C exhibits stability over a very narrow range of HLB 

values. 

Temperature 

A variety of previous works suggest that temperature has a profound influence on the 

formulation of a stable emulsion. The exact influence temperature has and the reasons for this 

influence vary greatly. Shinoda and Saito studied the emulsification temperatures influence on 

the mean volume diameter of oil and water emulsions. In this study emulsions were prepared 

using 3 wt. % emulsifier. Shinoda and Saito showed that as an emulsion approaches the phase 

inversion temperature (PIT) the droplet diameter rapidly decreases. PIT of an emulsion varies 

with the type of oil and the nonionic emulsifier chain length [Shin69]. This research suggests that 

if emulsions are prepared near the PIT will produce the smallest droplets. Shindoa and Arai 

found that PIT increased with increasing hydrocarbon chain length of the oil and emulsifier. 

Shindoa and Arai also found that the cloud point and the PIT are parallel values, thus the cloud 

point increases with increased hydrocarbon chain length or moles of ethylene oxide (EO) 

[Shin64]. According to Shinoda and Saito, emulsion components should be heated to a 

temperature within 2-4°C below the PIT, shaken and then rapidly cooled to obtain minimize 

droplet size, however as the PIT is approached the rate of coalescence increases [Shin69]. Mitsui 

suggests that the reason for the temperature influence is related to the moles of EO. For 

emlsifiers with more than 10 moles of EO, as the temperature increases the droplet diameter 

Figure 15: Emulsion stabilization by different chemical classifications as a function of the HLB value of the emulsifier [Moll01, 

pg. 77] 
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decreases. For emulsifiers with less than 10 moles of EO the exact opposite is true and for 

emulsifiers with 10 moles EO there is little to no influence with temperature variations [Mits72]. 

2.2.4. Emulsion Stability 

With PCS emulsions there are two main types of stability: kinetic stability and mechanical-

thermal load stability. Kinetic stability is related to the stability of emulsion during storage 

periods. PCS emulsions should have the ability to be stored for long periods. Mechanical-thermal 

load stability is associated with the ability to maintain stability during phase changes and pump 

cycles. PCS emulsions must be stable through repeated freezing and melting phase changes and 

during circulation. Stability of an emulsion is measured by studying droplet size, droplet 

dispersion, subcooling, and/or phase separation. 

Kinetic Stability 

Emulsion stability is directly linked to the chemical compounds used in producing the emulsion, 

specifically the emulsifier its similarity to the paraffin. Figure 16 is a pictorial representation of 

the six different types of instability of emulsions due to five mechanisms [Todr05]. Creaming 

and sedimentation present in emulsions when the dispersed and continuous phases have density 

differences. As the emulsions set for long periods of time gravity acts upon the emulsion and it 

becomes unstable. Flocculation is exhibited when droplets aggregate without rupturing the stable 

protective layer of the emulsifier. Creaming, sedimentation and flocculation are reversible and do 

not contribute to a change in droplet size distribution. Coalescence is when two or more droplets 

form one single droplet due to droplet density. Ostwald ripening is due to solubility differences 

between the oil droplets of different sizes. Ostwald ripening and coalescence result in an overall 

increase in droplet size, an increase in droplet dispersion, and a decrease in interfacial area. Both 

forms of instability are irreversible. Phase inversion where the original continuous phase inverts 

 and becomes the dispersed phase, while the dispersed phase becomes the continuous phase 

[Huan09b].  
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Figure 16: Types of emulsion instability [Todr05] 

 

Subcooling 

For PCS emulsions subcooling effects are a concern. Subcooling is when a liquid can be cooled 

below its melting point without showing crystallization, thus to counterbalance this phenomenon 

in emulsions nucleating agents are used. Previous studies have indicated that the droplet size has 

a direct effect on the subcooling of an emulsion. It has been shown that a decrease in the droplet 

Figure 17: Example of small droplets lacking nucleation sites decreasing the overall ability of the emulsion to crystalize [Günt11] 
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size is drastically impacts the melting and nucleation temperature of an emulsion. Reductions in 

droplet size decrease both temperatures in comparison with pure PCMs. The effect on melting 

temperature is in the range of 2K, whereas the impact on nucleation temperature can reach as 

high as 15K. This large subcooling effect should be avoided because it leads to an extended 

charging/discharging temperature range of the PCM [Huan10b]. However, decreased droplet size 

leads to more stable emulsions. In a stable emulsion there is no direct contact between droplets. 

This affects the ability of nucleation of the droplets through two main mechanisms. The first is 

that small droplets isolate the nucleation sites, in contrast to bulky situations were one nucleation 

site causes the whole volume to solidify through crystal growth. In an emulsion individual 

droplets must be nucleated in order for solidification of the whole volume. If the number of 

nucleation sites is low in comparison with the droplet volume then only some of the droplets will 

contain nucleation seeds and these will be virtually deactivated. This is visually represented in 

figure 17, where the smaller squares represent the small droplet size present in kinetically stable 

emulsions [Günt11]. The other effect is the deactivation of primary nucleation seeds through 

solid impurities [Günt11]. This can cause the nucleation mechanism to shift to secondary seeds 

that are not found in pure bulk situations. In the worst case scenario, all the heterogeneous seed 

sites are deactivated and nucleation is solely dependent on homogenous nucleation at much 

lower temperatures. To combat this wider range of nucleation temperature due to a decrease in 

nucleation sites, new nucleation sites can be created on the increased surface are of the droplets 

in emulsions. The possibility of this increase inner surface to improve the nucleation rate 

depends on the interface energy between the emulsifier and the solid of the dispersed phase. As 

shown in figure 18 the pattern of the hydrophobic tails on the inner surface of the droplet could 

act as a crystal template to facilitate crystallization of the PCM molecules [Günt11]. This effect 

Figure 18: Increase nucleation sties on droplet surface due to emulsifier [Günt11] 
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Figure 19: Variation in droplet size after mechanical-thermal testing [Huan10a] 

(a) Droplet size distribution of RT20 mixture 

before and after mechanical-thermal testing 
(b) Droplet size distribution of RT10 mixture 

before and after mechanical-thermal testing 

is suspected to be highly dependent on the PCM and the emulsifier used. Other influencing 

factors include the paraffin, emulsifier and nucleating agent used [Günt11]. Effective nucleating 

agents have higher phase change temperatures than the PCM [Huan10b]. Nucleating agents used 

in previous studies include using paraffin wax with a higher freezing temperature [Huan10a].   

Thermal Mechanical Stability and viscosity 

Studies on the mechanical-thermal load stability for paraffin/water emulsions have shown that 

emulsion stability is linked with the emulsifier. This means that here is no one optimal emulsifier 

for all paraffins; each paraffin has an optimal emulsifier. Huang tested two emulsions using 

RT10 and RT20 for mechanical-thermal stability. Both of these are trademarked paraffin blends 

 from the company Rubitherm Technologies GmbH. In this experiment the different emulsions 

are called Cryosol 20 for the emulsion using RT20 and Cryosol 10 for the emulsion containing 

RT10. The same emulsifier and nucleating agent and wt. %
6
 were used in creating the emulsions. 

The experiments showed that RT20 showed very little change in droplet size distribution, while 

the RT10 emulsion showed slight increases in droplet sizes due to the mechanical-thermal 

repetitions, as pictured in figure 19 [Huan10a].  

Viscosity is another important parameter of emulsions. With CTES technology the emulsion will 

be continually pumped through a storage system, while undergoing heating and cooling cycles. It 

is important that the viscosity of the fluid be minimized in order for the pump energy to remain 

low. It is also a sign of stability for the emulsion to exhibit a stable viscosity afer many pump 

                                                 
6
 Wt. % is an abbreviation for weight percentage, or a percentage of the whole based on weight 
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cycles.  This shows that the heating/cooling cycles are not causing kinetic instability.  Further 

studies should be done to understand how to properly match a paraffin with the best emulsifier, 

by studying the physical and chemical characteristics (i.e. chemical structure, HLB value, cloud 

point) in order to achieve kinetic stability, a stable viscosity and minimal subcooling.  
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2.5. Previous Phase Change Slurry Studies 

 

No. PCS form Paraffin Interface Component*

Interface 

Component 

Concentration Reference

1 Emulsion Tetradecane C14H30

Surfactant: 

polyethylene 

glycostearylether and 

alkylbenzene-

sulfanate (10:1)

Tetradecane 5-40% [Inab94]

2

Shape-

stabilized 

paraffin

Paraffins               C12 - 

C15 

Support material: 

SEBS (Styrene-

butadiene-styrene)

PCM  75%                    

SEBS 25%

[Royo98 & 

Royo11]

3 Emulsion 
Hexadecane       

C16H34

Surfactant: Titron X-

100

Hexadecane 10-

70%
[Clar03]

4

Shape-

stabilized 

paraffin

Pentacosane C22H52

Support material: 

HDPE (high density 

poly-ethylene)

PCM 74%                    

SEBS 26%
[Inab03]

5

Paraffin 

micro-

capsules

Nonadecane C19H40 -
Nonadecane 10-

40%
[Inab03]

6

Paraffin 

micro-

capsules

Tetradecane C14H30

Capsule material: 

PMMA (polymethyl 

methacrylate) or 

PEMA (polyethyl 

methacrylate)

Tetradecane 

capsule 5-40%
[Yang03]

7

Paraffin 

micro-

capsules

Hexadecane C16H34

Capsule material: 

PMMA (polymethyl 

methacrylate)

Hexadecane 

capsule 10-40%
[Gsch05]

8

Paraffin 

micro-

capsules

Tetradecane C14H30 -
Tetradecane 

capsule 10-30%
[Poll05]

9 Emulsion Tetradecane C14H30

Surfactant: mixture of 

Span and Tween 60

Span 32.4 wt.% 

Tween 67.6 wt.%
[Xu05]

10

Paraffin 

micro-

capsules

Support material: 

HDPE (high density 

poly-ethylene)    

Surfactant material: 

Styrene Maleic 

Anhydride (SMA)

SMA 5 wt.% [Lee06]

11

Shape-

stabilized 

paraffin

Paraffin with a 

melting point of 29 

°C

Support material: 

Inorganic silica gel
Paraffin: 65% [Miao07]

Table 5: Previous PCS studies [Huang 10a] 
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 *Interface component refers to the substance that creates a stable interface between the paraffin and the continuous phase carrier 

fluid  

**Most of these studies use paraffins with phase changes between 0°C and 30°C 

Paraffin PCSs as a viable solution for CTES began to be investigated in the mid-90s. Table 5 

lists the major research data available on the topic of PCSs for use in CTES [Huan10a]. Over the 

last fifteen years, the area of PCSs has become an increasing topic of interest. Although many 

studies have been conducted on paraffin emulsions, there is not much data on the selection 

process for components of paraffin/water dispersions. In recent years, more data has been 

published; however, the selection process for suitable emulsifiers is still not well understood.   

12 Emulsion

Paraffin with 

melting 

temperatures 

between 0 - 20 °C

Paraffin 2.5-15 

wt.%
[Huan09a]

13 Emulsion

Paraffin with 

melting 

temperatures 

between 0 - 20 °C

Paraffin 30-50 wt.% [Huan09b]

14 Emulsion

Paraffin with 

melting 

temperatures 

between 0 - 20 °C

Surfactant:        Alcohol 

ethoxylates

Surfactant 1.5wt.% 

Nucleating Agent 

2.5wt.%         

Paraffin 30 wt.%

[Huan10a & 

Huan10c]

15 Emulsion

Paraffin with 

melting 

temperatures 

between 0 - 20 °C

Surfactant:        sodium 

dodecyl sulfate (SDS)                   

Tween40  

polyethylene 

glycostearylether and 

alkylbenzene-

sulfanate (10:1) 

Nucleating Agent: 

paraffin with freezing 

peak of 50 °C

[Huan10b]

16

Paraffin  

nano-

capsules

Hexadecane 

C16H34

Capsule material: 

Urea-formaldehyde 

resin                                   

Surfactant material: 

Sodium dodecyl 

sulfate

Surfactant .5-2 

wt.%
[Li11]

17 Emulsion

Tetradecane 

C14H30 

Pentadecane 

C15H32

Surfactant : Tween60          

Hexadecanol 

Tween 60 2.5% 

Hexadecanol 0.5%
[Lu12]
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3. Experimental Procedure and Apparatus 

3.1. Experimental Set-up  

All experiments are designed around producing a variety of emulsions by varying the following 

parameters seen in table 6. Emulsions were produced using the following apparatus and methods 

described in sections 3.1.1 Preliminary Preparation Method and 3.1.2 Emulsion Preparation 

Method. After the emulsion is produced, it will be processed using the testing instrumentation 

described in section 3.3 Evaluation Apparatus and Methods. All emulsions are prepared based on 

weight percentages.    

3.1.1. Preliminary Preparation  Method 

Emulsions were prepared using a variety of equipment. For initial experiments designed to 

characterize emulsion kinetic stability, a simple mixing set-up consisting of an IKA RW11B 

stirrer, beakers and IKA heating plate were used. The IKA RW11B, shown in figure 20 (a) stirrer 

is capable of a 0-2000 rpm and producing emulsions with droplet sizes ranging from 10-100 μm. 

The IKA RW11B was used to remove influences on droplet stability from high mixing energy. 

This also allowed for smaller sample quantities to be produced, 150g, and thus limited excess 

material consumption. For a preliminary sample, the water and oil amounts are weighed in 

separate beakers using IKA balances. The emulsifier is added to either the oil or water, 

depending on the HLB value. More hydrophilic emulsifiers are added to the water, whereas more 

lipophilic emulsifiers are added to the oil. Both the oil and water beakers are placed on the IKA 

hot plates and then heated to the mixing temperature. The oil phase is then added to the water 

phase and then stirred for a specific time.      

Lipophilic tail group structure

Mixing speed

Mixing time

Parameters
Emulsifier concentration

Paraffin concentration

Preparation temperature

HLB value

Hydrophilic head group structure

Table 6: Experimental dynamic parameters 
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The preliminary preparation method was used for HLB, concentration, and chemical structure 

experiments. Since the mixing speed has the largest influence on droplet size ranges, by 

preparing at a slower speed this influence was removed and the smaller influence on droplet 

stability exhibited by the concentration, the HLB and the chemical structure could be observed.  

All emulsions prepared with the preliminary preparation method exhibit droplet sizes from 15-50 

μm. 

3.1.2. Emulsion Preparation Method 

For studies on the effect droplet size and distribution have on subcooling, an IKA magic LAB 

with an IKA RW 11B were used. In combination these mixers produce emulsions with droplet 

diameters ranging from 1-10 μm. Emulsions were prepared using the same method as previously 

described in the 3.1.1 Preliminary Preparation. However, after reaching the desired mixing 

temperature on the heating plate, the oil and water were mixed in the holding container pictured 

in figure 20 (b). The water was added first and then the oil and emulsifier mixture. The 

temperature during mixing in the IKA magic LAB set-up was kept constant using a LAUDA 

Integral T 2200. The IKA magic LAB produces speeds ranging from 10,000rpm to 24,000 rpm.  

Figure 20: (a) Preliminary set-up with IKA RW11B (b) IKA magic LAB with IKA RW 11B 
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3.2. Evaluation Apparatus and Methods  

This research focuses on the kinetic and thermal mechanical stability of emulsions. Therefore, 

machines and evaluation methods are based on testing these properties and relating the chemical 

and physical properties of the emulsifier to optimum stability properties.  

3.2.1. Cloud Point 

The cloud point of a emulsifier is important in determining the optimum preparation temperature. 

Shinoda and Saito suggest that mixing an emulsion within a few degrees below the PIT and then 

rapidly cooling to room temperature, smaller droplets or a more kinetically stable emulsion can 

be formed [Shin69]. Through temperature experiments Mistui explains this phenomenon. In 

these temperature experiments emulsifiers with more than 10 moles of ethylene oxide the 

interfacial tension decreases as the temperature rises, until there is a phase inversion. Therefore, 

the lowest interfacial tension would be close to a phase inversion temperature of the emulsifier, 

either at the PIT or the cloud point. The cloud point of nonionic emulsifiers is the temperature at 

which the a mixture of water and emulsifier start to exhibit phase separation. Nonionic 

emulsifiers containing polyoxyethylene chains exhibit decreased solubility with temperature in 

water. These emulsifiers slowly go from hydrophilic to lipophilic as the temperature increases. 

Therefore, right before this phase inversion takes place, the interfacial tension will be at the 

lowest and small kinetically stable droplets can be formed. Therefore, the cloud points of the 

various emulsifiers were determined using IKA Werke thermal bath. Solutions of water and the 

1,5 wt.% emulsifier were heated from 27°C to 98°C at a rate of 1°C/min and then left for 2 min 

before increasing the temperature again.    

3.2.2. Kinetic Stability 

Figure 21: Beckman Coulter LS 13 320 [Beck09] 
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For determining kinetic stability several different methods can be used. First, kinetic stability can 

be visually observed. By determining the amount of flocculation, sedimentation, and creaming or 

by observing phase inversion, kinetic stability can be determined. However, a more quantitative 

approach will be used, so that degree of coalescence and Oswald ripening can be determined. 

This quantitative approach involves using a particle size analyzer machine to determine the 

average droplet size of different emulsions. A Beckman Coulter LS 13 320 particle size analyzer 

machine, pictured in figure 21, will be used to determine the average droplet size of emulsion 

samples. The LS 13 320 Series is a laser diffraction particle size analyzer. For measurements the 

multi-wavelength system of Polarization Intensity Differential Scattering technology was used. 

This system allows for measurements within the range of 0.017 μm to 2,000 μm [Beck09]. The 

light scattering technique is the most widely used for measuring size distribution of particles. 

The method of measurement is as follows. A laser light is used to illuminate particles within a 

sample chamber, as shown in figure 22. The scattered light is then detected by a set of silicon 

photo-detectors. The detectors measure the intensity of the light as a function of the angle of 

refraction. Then using a complex inversion matrix algorithm, the particle distribution is 

displayed as a volume % in a discrete size class. The PIDS is used for sizing small particles since 

sub-micron particles scatter light in similar patterns, thus making it difficult to distinguish the 

differences between the patterns. This leads to inaccurate sizing with low resolution. PIDS relies 

Figure 22: Laser diffraction particle size analyzer [Beck09] 
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on the transverse nature of light. The sample is illuminated with a light of a given polarized 

wavelength. This causes the electrons of the sample to oscillate in the same plane of polarization 

at the light source. The oscillating dipoles in the particles radiate light in every direction except 

that of the light source. PIDS measures the light at different angles as light from three different 

wavelengths (450 nm, 600 nm, and 900 nm) irradiate the sample. The PIDS measures the 

difference between the horizontal and vertical light from each wavelength and is able to gain 

accurate information on the particle size distribution [Beck09].     

 3.2.3. Heat Capacity/Subcooling 

 

Materials have a physical property called specific heat capacity, this is the amount of energy/heat 

required to raise a certain mass of the material by one degree and is expressed in units of J / 

kg*K. A differential scanning calorimeter (DSC) can be used to determine the specific heat 

capacity of a substance. In all heat capacity and subcooling experiments a Micro DSC III by 

Peltier 

Reference cell 

Sample 

Figure 24: Internal sample chamber of micro DSC [Seta] 

Figure 23: Setaram micro DSC III 
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Setaram was used, as shown if figure 23. A DSC operates by recording information on the 

thermal changes of a sample during heating and cooling alongside an inert reference. The sample 

chamber of a micro DSC is shown in figure 24.  Theoretically a DSC operates in one of two 

ways. The first is by measuring the differential thermal power input. The DSC monitors the 

temperature of the inert reference cell and the sample cell. When a temperature difference occurs 

then the DSC uses power to eliminate this temperature difference. The DSC records the power 

input required over a heating and cooling period. From this the heat capacity of the sample can 

be calculated. DSCs can also operate by measuring the temperature difference of the sample and 

the reference during a heating and cooling period and then uses software to convert the 

temperature difference into a heat flux [Laye 02]. When taking measurements it is important to 

select a proper heating/cooling rate. High heating rates of materials with low thermal 

conductivity causes error in the measurements due to temperature differences between the 

outside of the chamber and the material within. Temperature readings are taken by a sensor 

attached to the outside of the chamber, thus the readings are not accurate.  This phenomenon 

causes the slopes of the melting and freezing curves to widen and the freezing and melting points 

to shift. In terms of PCMs and PCSs a DSC can be used to determine the degree of subcooling.  

Figure 25 is an example of a DSC reading, labeled with the freezing and melting points of the 

emulsion.  The difference between the two points represents the degrees of subcooling. Typically 

the heat capacity of a paraffin/water emulsion depends heavily on the paraffin concentration.   

Figure 25: DSC measurement 
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3.2.4. Viscosity 

Thermal mechanical stability is very important in PCS systems. During the life of a PCS the 

emulsion will be continuously heated and cooled as it is pumped through a storage system. Due 

to the stress of pumping and the heating and cooling cycles over time the emulsion properties 

change and begin to degrade. A Anton Paar Modular Compact Rheometer MCR 502, as shown 

in figure 26, was used to test the thermal mechanical/pump stability. Experiments were 

conducted only on emulsions that showed potential as kinetically stable emulsions with minimal 

degrees of subcooling. The Anton Paar Rheometer was programed to complete a heating and 

cooling cycle. 

 

Figure 26: Anton Paar Modular Compact Rheometer MCR 502 [Anto12] 
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4. Experimental Results and Discussion 

4.1. Kinetic Stability 

4.1.1. Hydrophile-lipophile Balance 

With many commercially available non-ionic emulsifiers, choosing an emulsifier requires the use 

of a systematic method. The most commonly used method is the Hydrophilic-lipophilic balance 

system (HLB). Created in 1948 by William C. Griffin, the HLB arbitrarily quantifies the ratio of 

the lengths of the hydrophilic head group and the lipophilic tail group. Emulsions with an HLB 

of less than 10 are lipophilic, while HLB values over 10 indicate a hydrophilic emulsifier. The 

HLB value of paraffin 18-97 was determined by measuring the kinetic stability of emulsions 

prepared with a range of HLB values. Emulsions were prepared by mixing two ionic emulsifiers, 

Tween 60 and Span 60. From reference sheets provided by Sigma Aldrich, the HLB value of 

Tween 60 was determined to be 14.9, while the HLB value of Span 60 was determined to be 4.7. 

Using equation 10, emulsions were prepared with HLB values ranging from 10-14.   

Tween 60 was selected due to its use in several previous works.  Span 60 due to literature 

suggestions that a co-emulsifier improves stability and its appearance in Xu’s previous study. In 

Figure 27: HLB versus droplet size 
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Xu work a mixture of Tween and Span 60 were used to create an emulsifier mixture. Xu’s  lists 

the emulsifier concentration as 67.6 wt. % Tween 60 and 32.4 wt. % Span 60.  Using equation 11 

this mixture would result in an HLB value of 11.5.  

In the experiment each of the emulsions was measured for kinetic stability. Kinetic stability was 

determined by measuring the droplet diameter, and the emulsion with the smaller droplet 

diameter is considered more kinetically stable. For this experiment emulsions were prepare using 

the preliminary preparation method at a temperature of 50°C. As shown in figure 27 a minimum 

droplet size or maximum stability was found at HLB 12.  

 In order to determine whether the HLB value varied with preparation temperature and/or 

emulsifier, emulsions were prepared using the method as previously, but varying the emulsifier 

and adjusting the preparation to 80°C. For these experiments two Tween/Span mixtures were 

compared with another group of commerically available nonionic emulsifiers with HLB ranges 

from 11 to 13. The HLB values of the emulsifiers are as follows; Emulsifier A – 11 , Emulsifer B 

– 11.5 Emulsifer C – 12, Emulsifier D- 12 and Emulsifier E – 13.  Using Emulsifier A and E, and 

equation 11  emulsions with HLB values ranging from 11-13 were prepared and compared as 

Figure 28: HLB dependency emulsifier and temperature 
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well. It can be observed in figure 28, that all HLB curves exhibit a minimum at a HLB of 12.  

However, similar to figure 16 the structural differences in emulsifiers is reflected with changes in 

stability. The emulsifier mixture A & E with an HLB value of 12, exhibited the best droplet size 

stability. It should be noted that Emulsifier D is actually a mixture of two emulsifiers   

Both Tween/Span emulsifiers were mixed at a temperature of 50°C, while emulsifier mixtures of 

A & E and emulsifier ranges A-E were prepared at a temperature of 80°C. Figure 28 shows that 

the HLB value of paraffin does not change with preparation temperature. However, it can be 

observed that the temperature has a large influence on the droplet size created. By preparing at a 

temperature of 80°C the average droplet size can be decreased by a magnitude of about two.  

Another aspect that is important with the HLB scale is the mixing/blending of emulsifiers.  It is 

important to note that Emulsifier D is a mixture of two nonionic emulsifiers.  The emulsifier 

blend of A & E with an HLB of 12 can be compared with Emulsifier D.  A & E have an HLB 

difference of 2, while the emulsifiers mixed to form Emulsifier D have a HLB gap of  5.  

Emulsifier A & E is exhibited a slightly smaller droplet size than that of Emulsifier D. This can 

be explained by research conducted by Shinoda, Yoneyama, and Tsutsumi.  Shinoda, Yoneyama, 

and Tsutsumi found that when mixing emulsifiers, better solubility behavior is exhibited when 

the HLB difference in the emulsifiers is small [Shin80]. 

4.1.2. Temperature / Cloud point 

The emulsifiers that were tested for cloud point were emulsifiers A, C, D ,E, G and a mixture of 

A & E.  The mixture of A & E has an HLB value of 12. The cloud point was determined by 

averaging the initial separation temperature and the temperature at complete separation. The 

cloud point for the various emulsifiers was as following: Emulsifier A = 82°C, Emulsifier D = 

91°C, Emulsifier = 92°C, and Emulsifier C, E and mixture of A & E  > 98°C.  Since Emulsifiers 

C, E and mixture A & E all exhibited cloud points of greater than 98°C, a preparation 

temperature above 98°C would be improbable.  Therefore, it was deemed appropriate that when 

preparing emulsions with droplet sizes of less than 10μm a preparation temperature of at least 

80°C should be used.  However, further experimentation on the exact effect of preparing 

emulsions with different emulsifiers at different preparation temperatures closer to the cloud 

point should be conducted. 
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4.1.3. Chemical Strucutre 

It is an established principle of chemistry that the when mixing two solvents the chemical 

structure of the solvents can affect the physical properties of the solution. This principle is 

applicable when mixing emulsifiers with oils to form emulsions. Since emulsifiers have two 

distinct sections, the hydrophilic head and the lipophilic tail, the chemical structures of both of 

these sections have an effect on the stability of an emulsion.   

Lipophilic Tail Group 

To determine the impact the lipophilic tail group has on the overall emulsion kinetic stability 

three emulsion mixtures with an HLB value of 12 were prepared using the preliminary 

preparation method with a mixing temperature of 50°C. Figure 29 shows the droplet distribution 

for three non-ionic emulsifiers with the same hydrophilic head group, but with various lipophilic 

tail lengths. Emulsifier A is an ester with a chain length of 14 hydrocarbons. Emulsifier B is an 

ester with a chain length of 18 hydrocarbons and emulsifier C is an unsaturated ester with a chain 

length of 18 hydrocarbons. It was hypothesized that emulsifiers with hydrocarbon chains similar 

Figure 29: Lipophilic tail group droplet size and distribution 
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in length to the paraffin would exhibit better stability properties. Contrary to the hypothesis 

emulsifier C with an unsaturated chain length exhibited the smallest average droplet size. 

However, emulsifier B with a saturated carbon chain exhibits a more stable monodispersed 

droplet formation. As hypothesized emulsifier A with a shorter chain length exhibits a larger 

average droplet size and is heterodispersed.   

Hydrophilic Head Group 

To measure the effect of the hydrophilic head group, two different head groups were compared. 

In this experiment both emulsions were prepared using the preliminary preparation method with 

a mixing temperature of 50°C. It is also of importance to note that all emulsions have an HLB 

value of 12. Emulsifiers F- H have an ether head group in comparison with the Tween/Span 

mixtures which area all esters. To eliminate effects from the lipophilic chain length, comparisons 

should be made between Emulsifier F and Tween/Span 40, Emulsifier G and Tween/Span 60, 

and Emulsifier H and Tween/Span 80. In figure 30 it can be immediately noticed that the average 

droplet size of the emulsions is decreased by using the emulsifiers with an ether hydrophilic head 

group. When comparing the emulsions with similar lipophilic tail groups (i.e. Emulsifier F and 

Tween/Span 40), it can be observed that they exhibit similar droplet distributions. This indicated 

that the droplet size is more dependent on the head group, while the droplet distribution 

Figure 30: Hydrophilic head group droplet size and distribution 
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influences the droplet distribution. However, the droplet distribution of Emulsifier H, an ether 

with an unsaturated hydrocarbon chain composed of 18 carbons shows a more monodispersed 

droplet distribution than its ester counterpart (Tween/Span 80). Further investigation is needed to 

determine the cause of the shift between heterodispersion and monodispersion.   

4.1.4. Concentration 

For emulsions, concentrations of the emulsifier were based on a weight percentage of the 

paraffin phase.  All emulsifier concentration emulsions were prepared using the preliminary 

preparation method at a mixing temperature of 50°C.   

Emulsifier Concentration 

In these experiments the paraffin and water concentrations were considered constants. The 

paraffin maintained a 30 wt. % concentration, while the emulsifier concentration was varied 

from 0.5-6 wt. % of the paraffin total mass. 0.5 wt. % was chosen as the lower limit for the 

concentration based on the critical micelle concentration in literature. The critical micelle 

concentration is the minimum concentration of an emulsifier that must be used in order for stable 

micelles to be formed. This is the minimum concentration required for the emulsifier to complete 

cover the droplet surface and produce a stabile droplet. From figure 31 it can be observed that as 

the emulsifier concentration increases it impacts the average droplet size and droplet distribution.  

Figure 31: Concentration particle dispersion and droplet size 
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Low and high concentrations tend to exhibit a more heterodispersed droplet distribution, with 

tails, that denote the existence of larger droplets. The increasing concentration does tend to 

decrease the average droplet size. However, to determine droplet stability, the dispersion and the 

Figure 32: Concentration versus droplet size (narrow range) 

Figure 33: Average droplet diameter versus Concentration 
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droplet size must both be considered. In the instance of concentration, since other parameters can 

be varied to decrease the average droplet size, the most stable concentration would be around 1.5 

wt. %. Figure 32 shows emulsions with concentrations within the range of 1-2 wt. % to better 

determine a more precise optimum concentration. From figure 32 it can be determined that the 

best droplet dispersions are monodispersed between ranges of 1.25-1.75 wt. %. However, with a 

concentration ranging from 1.25 – 1.5 wt. % appear to have the best droplet distribution. By 

plotting the average droplet size for the different concentrations, as seen in figure 33, it can be 

observed that as the concentration increases from 0.5 – 2 wt. % there is a large decrease in the 

droplet diameter. However, after reaching 3 wt. %, the droplet size decrease with concentration 

reaches a plateau. This indicates that using the concentration to influence droplet size not 

efficient. Emulsifier concentrations over 3 wt. % should not be used because they do not 

significantly improve the droplet stability.   

4.2. Subcooling/heat capacity 

Paraffin/water emulsions tend to exhibit subcooling effects. Subcooling is when a liquid can be 

cooled below its melting point without showing crystallization. To counterbalance subcooling 

nucleating agents can be used. However, previous research has indicated that by optimizing the 

Figure 34: Temperature heating/cooling rate 
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emulsifier the degree of subcooling can be minimized. An initial testing was done on the 

different heating /cooling rates to determine the maximum heating/cooling rate to be used to gain 

accurate data. The degrees of subcooling are determined by observing the degrees difference in 

the heat capacity curve of the heating cycle with that of the cooling cycle. Figure 34 shows a 

graph where the same emulsion went through repeated measurements on the micro DSC, where 

only the heating/cooling rate was changed. From this graph it was determined that the maximum 

heating/cooling rate that would achieve an accurate subcooling measurement was 0.1 

Kelvin/min.  The 0.5 Kelvin/min rate showed signs of being too quick and causing a temperature 

difference between the inside of the sample chamber and the outside. The slower heating/cooling 

rate of 0.05 Kelvin/min shows a deviation from the 0.1 Kelvin/min rate, but the time duration for 

one measurement was considered too long for the large number of samples. However, it could be 

considered if more accurate readings are necessary. Figure 35 shows the subcooling associated 

with a pure sample of paraffin.  The subcooling was determined to be around 3°C.  Figure 35 

will be used as a baseline for all other subcooling graphs.  All other subcooling graphs can be 

compared for similar melting, freezing temperatures, and degrees of subcooling.  

Throughout the subcooling results, there are variances in the heat capacity of different samples.  

This can be explained by either two main causes.  The first is that over time as samples were left 

Figure 35: Pure paraffin (baseline) subcooling 
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out they may have been subject to evaporation.  As the water content in the sample decreases, the 

paraffin concentration would increase and result in a larger heat capacity. The other possible 

explanation would be that many samples showed signs of physical separation within hours.  

When left standing overnight, samples tended to separate and the paraffin phase would re-

solidify.  Since measurements were taken sometimes day or weeks after samples were prepared, 

the emulsions had to be reheated and shaken.  It is possible that emulsions were not completely 

re-liquefied and that this caused variations in the paraffin concentration.     

4.2.1. Hydrophile-Lipophile Balance 

Emulsions over a variety of HLB values were tested to determine if the HLB value had any 

significant effect on the subcooling. For this experiment emulsions made from a Tween/Span 60 

mixture with a mixing temperature of 50°C were used. The subcooling as shown in figure 36, 

was for all samples deemed to be between 2.5-3°C, and unaffected by the HLB value of the 

emulsion. The melting point for all emulsions was seen at being near 29.5°C and the freezing 

point around 26.5°C. 

 

Figure 36: HLB subcooling 
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4.2.2. Chemical Structure 

Lipophilic Tail  

Figure 37 shows the subcooling variation related to different tail lengths.  Subcooling is observed 

to be between 1-3 degrees Celsius for all samples, showing that the chemical structure of the 

emulsifier does not greatly impact the degree of subcooling. For this experiment the melting 

point was determined to be at 29.5°C, while the freezing point was between 26 and 26.5°C. 

 

4.2.3. Concentration 

The subcooling of the emulsion in connection with variations of concentration can be observed 

in figure 38. There is a slight variation in the freezing temperature; it is not a significant change. 

The melting temperature is observed to remain for all concentrations at 29.5°C and the freezing 

point was determined to be between 26.3 and 26.7°C. The degree of subcooling ranges from 

about 2.5-3°C. This shows that varying the concentration does not significantly impact the 

subcooling.   

Figure 37:  Lipophilic tail group and  
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4.2.4. Dispersion 

In previous studies it has been observed that as the droplet size of an emulsion decreases the 

degrees of subcooling increases. Therefore, experiments were conducted on the droplet size and 

distribution of different emulsions to determine influence on the subcooling of the emulsion.  

Figure 39: Droplet dispersion 

Figure 38: Subcooling due to Concentration 
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Two experiments were conducted, both using the emulsion preparation method. The first 

experiment the speed of mixing was varied from 10,000 rpm to 24,000 rpm and the other the 

time of mixing was varied. The droplet dispersions were recorded, figure 39. It can be observed 

that as the mixing time and the speed increase the droplets become less monodispersed. The 

subcooling was measured for emulsions with narrow distributions (60 seconds) against that of an 

emulsion with a broad distribution (600 seconds). The subcooling for these different droplet 

dispersions was measured, shown in figure 40. 

It can be observed that even though the droplet dispersion varies, the subcooling does not. The 

subcooling again measured at roughly 3°C. The melting point and freezing point are observed at 

29.5 and 26.5°C, respectively. The more heterodispersed emulsions do not significantly change 

the subcooling. However, the droplet size during these experiments does not vary greatly. 

Therefore, another comparison should be done where the droplet size not the distribution is 

varied.   

4.2. Thermal Mechanical Stability / Viscosity 

Experiments were conducted only on emulsions that showed potential as kinetically stable 

emulsions with minimal degrees of subcooling. The Anton Paar Rheometer was programed to 

complete a heating and cooling cycle. Short cycles were conducted of 20 heating and cooling 

Figure 40: Droplet dispersion subcooling 



 

Experimental Results 

57 

 

cycles for emulsions. The Rheometer was programmed for longer cycles for emulsions that 

showed stable viscosities during the short cycles.  

Results for the emulsifiers F, G, H and their derivatives exhibited unstable viscosities during the 

Figure 42: Viscosity profile of sample TO_6_8_1,5wt%_HLB12_11,000_rpm after long cycle 

Figure 41: Viscosity profile of sampel TO6_8_1,5wt%_HLB12_11,000_rpm after short cycle 
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short cycles, regardless of emulsifier concentration variations between 1,5wt% and 3wt%. 

Emulsifiers C and D also exhibited unstable viscosities during short cycles. Emulsifier mixture 

of emulsifiers A & E with a HLB value of 12, prepared at a mixing temperature of 80°C and 

speed of 11,000 rpm for 3 min, exhibited a stable viscosity for short cycles and a semi-stable 

viscosity over long cycles. It can be observed that the visocisty slowly increases during the long 

cycles, with the last few cycles showing an unpatterned unstability.  Figures 41 and 42 show the 

viscosity profile of the short and long cycles, respectively, while figure 43 shows the droplet 

distribution and size before and after the short cycles.  

 

Figure 43: Droplet size and distribution before and after short cycle 
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5. Conclusion and Future Recommendations 
From these experiments it can be concluded that the chemical structure, preparation method, 

emulsifier concentration, and HLB have a significant impact on the droplet size and distribution 

of an emulsion. These parameters greatly influence the kinetic stability of an emulsion; however, 

these parameters do not have a significant impact on the thermal properties of an emulsion. It 

should be also be noted that for all emulsions prepared with the preliminary emulsion method, 

clumping and separation were observed usually within 24 hours. However, for emulsions 

prepared with the emulsion preparation method, this clumping and separation was not always 

observed. Thus for future studies it is important to use the emulsion preparation method to avoid 

kinetic instability.   

From the kinetic stability studies it can be concluded that the octadecane used has an optimal 

HLB value of 12. It can be concluded that to produce a kinetically stable emulsion the following 

parameters should be used. The emulsifier should have an HLB value of 12. The emulsifier 

concentration should be between 1.25 – 1.5 wt. %. The lipophilic chain length should be similar 

to the chain length of the oil, in this case 18 hydrocarbons. The stir time should not exceed 3 min 

and to produce emulsions with droplet diameters between 1-10 μm a pump speed no greater than 

11,000 rpm should be used.  It can also be concluded that the hydrophilic head group impacts the 

kinetic stability of an emulsion and that in these studies a ether head group produced more stable 

emulsions than an ester head group. However, since not every commercially available nonionic 

emulsifier head group was tested the best head group cannot be determined.     

After analyzing the mechanical thermal stability, future research should be concentrated on 

determining the optimal properties exhibited by a mixture of emulsifiers A & E with a HLB of 

12. This was the only emulsion that exhibited a stable viscosity after repeated cycles. By 

determining the properties of this emulsion that enable a stable viscosity and minimal 

degradation of droplets over cycles, other potential emulsifiers can be identified. 

Although this research has characterized the impact of certain parameters on the kinetic stability 

and thermal properties of emulsions in an effort to improve the understanding of selecting a 

suitable emulsifier for use as a PCS, there are still significant gaps of knowledge. The following 

section discusses recommendations for future work in order to close these gaps of knowledge. 

In the area of kinetic stability, further studies on different hydrophilic head groups should be 

conducted to better understand how each head group interacts in the emulsion. It should be noted 



 

Future Recommendations 

60 

 

that several other types of head groups are available. Since it was observed that esters and ethers 

interact differently, it would be recommended to conduct further experiments on other head 

groups. It is recommended to conduct surface tension measurements in order to obtain the 

critical micelle concentration and determine the minimum concentration required to produce a 

stable emulsion. 

In the area of thermal physical properties, it would be of interest to conduct experiments relating 

the subcooling. This would include conducting experiments on emulsions with smaller droplet 

sizes in order to know the smallest droplet size possible with the least amount of subcooling. It 

would also be of interest to conduct experiments on the effects emulsifiers have on the viscosity 

of emulsions. In these studies no experiments were conducted on the viscosity, but achieving 

emulsions with low viscosity is important for future use in a pump system and therefore would 

be of significant interest to future research works. 

From the conclusions drawn from these experiments on how to optimize kinetic stability of an 

emulsion, emulsions with a droplet size of less than 10 μm should be produced and tested for 

rheological properties. Emulsions should also undergo testing for thermal-mechanical pump 

stability. Thermal-mechanical pump stability should first be tested in a laboratory setting and 

then in a pilot test apparatus to determine the difference between measurements in the lab and 

operational functionality.  
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