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Abstract

In many fields of applied science and mathematics, prediction of the time a ran-
dom event takes place is very important. The prediction is mostly based on a
numerical calculation of mathematical expectation. Further, the random time is
often modeled as the time a stochastic process reaches to a threshold. In financial
engineering, this is the case in the pricing of barrier options.

In the present paper, we propose a numerical scheme to calculate expectations
with first hitting time to a given boundary, in view of the application to the pricing
of options with non-linear barriers. In financial practice, the numerical calcula-
tions are in most case based on discretization of the process in question, together
with Monte-Carlo simulation. The path-dependence nature of the problem, how-
ever, make the procedure rather slow. Aiming to resolve the problem, the author,
together with Y. Imamura and Y. Ishigaki, proposed a new numerical scheme in
[18], which is based on ”symmetrization” of a diffusion process. Chapter 2 of the
present paper is taken from [18].

The scheme is extended in [1] to multi-dimensional settings, where the bound-
ary is yet a hyperplane. Chapter 3 is devoted to an extension of the scheme to a
more general boundary. which is taken from [12].

Chapter 4 is taken from [26], where a new construction of a unique strong
solution under non-Lipshitz coefficient condition is discussed.
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Chapter 1

Introduction

The present thesis consists of three parts. Two of them are based on Imamura-
Ishigaki-Okumura [18] and Hishida-Ishigaki-Okumura [12]. The other one is based
on Okumura [26].

The first part (Chapter 2 and Chapter 3) consists of researches regarding to
a numerical scheme for the pricing of a barrier option. In financial practice, the
pricing and hedging of barrier type derivatives becomes more and more important.
In the Black-Scholes environment, some analytic formulas are available (see [24]).
If the underlying process is a diffusion process which is more complicated than a
Geometric Brownian Motion, it will not be able, basically, to rely on anymore an
analytic formula. Instead one should resort to some numerical analysis. There is a
problem, however, arising from the path-dependence of the pay-off function. As E.
Gobet [7] pointed out, the weak convergence rate against the time-discretization
gets worse compared with the standard path-independent pay-off cases due to the
failure in the observation of hitting between two time steps. He showed that the
weak order of Euler-Maruyama approximation is 1

2
, which is much slower than the

standard case where the order is 1.
In Chapter 2, introduced is a new numerical scheme where the pricing (and

hedging) of barrier options are reduced to that of plain (path-independent) ones.
The scheme is based on an observation made by [3] which we will refer to as
“arithmetic put-call symmetry” (APCS). In the Black-Scholes economy, it is well-
recognized that the reduction is possible due to the reflection principle (see [16]).
The put-call symmetry is an extension of the reflection principle, with which a
semi-static hedge is still possible.

There are two keys in our scheme;

1. For a given diffusion X and a real number K, we can find another diffusion
X̃ which satisfies the APCS at K (see section 2.1.3). We call this procedure
“symmetrization”.

2. For T > 0, the expectations E[f(XT )1{τ>T}] and E[f(X̃T )1{τ̃>T}] coincides,
where τ and τ̃ are the first hitting time at K of X and X̃, respectively.

We do not anymore regard the equation for semi-static hedging but just a relation
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to calculate the expectation of the diffusion with a Dirichlet boundary condition in
terms of those without boundary conditions. In other words, the pricing is reduced
to path-independent ones, where many stable techniques are available.

Presented will be some numerical results of applying (path-independent) Euler-
Maruyama (EM) approximation to our scheme, comparing them with the path-
dependent EM under Constant Elasticity of Volatility (CEV) models ([4]) including
as a special case the Black-Scholes (BS) model, and stochastic volatility models of
Heston’s ([11] ) and (λ)-SABR ([8, 10]).

Chapter 2 consists of two parts. In the first part, the discussion of our new
scheme is concentrated on one-dimensional diffusion models, while the latter part
deals with applications to the stochastic volatility models. Mathematically, the
first part is somehow self-contained, while one may think the latter part to be
dependent on the result in [1]. The fact is that we have found, in advance of [1],
through numerical experiments how it should be applied to stochastic volatility
models (see [18]).

In anyway, the main aim of Chapter 2 is to introduce the new scheme and to
report numerical results which show the effectiveness of the scheme. In order to
ensure the consistency of the experiments, we present detailed descriptions.

In Section 2.1, we recall the APCS and how it is applied to the pricing and
semi-static hedging of barrier options. In section 2.1.2 we give a sufficient condi-
tion shown by [3] under which APCS holds. In Section 2.1.3, we introduce a way
to “symmetrize” a given diffusion process. We then show that by using the sym-
metrized process which satisfies APCS, the pricing of a barrier option is reduced
to that of two plain options. In section 2.2, we give numerical examples under
our symmetrized approximation method. The results of the path-wise EM scheme
(in section 2.2.1) and our new scheme are given when the underlying asset price
process follows CEV with the volatility elasticity β = 1 which is nothing but a BS
model and other elasticities. From Section 2.3, we discuss applications to stochas-
tic volatility models. The symmetrized method is also applicable to the stochastic
volatility models where the underlying price process and its volatility follows a
(degenerate) 2-dimensional diffusion process. In section 2.3.1, we give numerical
results under Heston model and λ-SABR model. In section 2.3.2, we show that the
symmetrization scheme also works for the pricing of double barrier option. One
will find that our scheme overwhelms the path-wise EM in all numerical results.

Chapter 3 is devoted to a research regarding to a numerical scheme to calculate
expectations with first hitting time to a given smooth boundary, in view of the
application to the pricing of options with non-linear barriers. We propose a new
method to deal with curved boundary cases, which is totally different from the
method suggested in [1], but still based on Akahori-Imamura’s multi-dimensional
symmetrization of the diffusion process. Very roughly speaking, we “lift” a given
diffusion to the line bundle of the invariant manifold of the process. Then the first
hitting time of the original diffusion process to a domain is equivalently formu-
lated as the first hitting time of the lifted diffusion to a hyperplane. The lifted
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problem can be handled by Akahori-Imamura’s symmetrization. The method is
introduced in section 3.1. We first recall Akahori-Imamura’s multi-dimensional
symmetrization scheme in section 3.1.1, which we will use in section 3.1.2, where
we introduce our new framework. In subsection 3.2, we present some results of
several numerical experiments that support effectiveness of our scheme. In subsec-
tion 3.2.2, we compare a numerical experiment of 1-dimensional symmetrization
and multi-dimensional one. Moreover, we give numerical results for hyperbolic
reflection principle in subsection 3.2.3. Section 3.3 concludes the chapter.

Chapter 4 is devoted to a related study on stochastic differential equations.
In Chapter 4, we proposes concrete and direct constructions of strong solutions
for stochastic differential equations (SDEs) with non-Lipschitz coefficients. It is
well known that in Ito’s classical theory on SDEs (see Ito [19]) under the global
Lipschitz condition for coefficients, the existence and the uniqueness hold for their
strong solutions. The theory is based on the Picard’s iteration method and then the
existence and the uniqueness follow naturally by Picard’s successive approximation
procedure of strong solutions. Although Ito theory is beautifully established, the
global Lipschitz condition imposed on coefficients is too strict and too restrictive
for the purpose of discussing various SDEs raised both in the theory of stochastic
calculus and in its applications. Consider for examples, the SDE associated to
square Bessel processes, to Wright-Fischer model in population genetics, to Cox-
Ingersoll-Ross (CIR) model in mathematical finance, and also to skewed symmetric
Brownian motions. The classical Ito theory covers none of these examples. As is
well known that the frame of the weak existence theory [29] [30] is wide enough to
cover the all examples cited in the above. We know also that the pathwise unique-
ness holds for solutions of SDEs in the above by Yamada-Watanabe condition [32],
or by that of Nakao-Le Gall [23][25]. Then the existence of strong solutions for
them follows immediately by Yamada-Watanabe Theorem [32].

However, we would like to point out that the proof of the existence by Yamada-
Watanabe involves no construction procedure of strong solutions. In this situation,
the investigation on concrete construction of strong solutions under non-Lipschitz
conditions appears to be interesting. Chapter 4 is motivated by a construction
of strong solutions given by Stefan Ebenfeld [5]. His method covers CIR model
in mathematical finance. The method is based on a priori estimates and also
on Ito classical theory. The benefit of this approach is that the argument only
requires some fundamental knowledge about stochastic and functional analysis.
The first part of Chapter 4 is devoted to the improvement of the result by Ste-
fan Ebenfeld [5]. We show a concrete construction procedure of strong solutions
under Yamada-Watanabe condition. Although our construction method based on
a priori estimates is new, the Euler-Maruyama approximation method gives an
another construction of strong solutions under the same condition (see Yamada
[31], Kaneko-Nakao [21]).

In the final part of Chapter 4, we discuss the existence of strong solutions under
Nakao-Le Gall condition. Since coefficients are allowed to be discontinuous, the
Euler-Maruyama method based on the continuity of coefficients does not cover this
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case. Discontinuous points of coefficient raise various difficulties to be discussed
carefully in the proof. The stochastic calculus based on local times and their
occupation formulas plays important roles to overcome these difficulties.
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Chapter 2

A Numerical Scheme Based on
Semi-Static Hedging Strategy

In this chapter, we introduce a numerical scheme for the price of a barrier option
when the price of the underlying follows a diffusion process. The numerical scheme
is based on an extension of a static hedging formula of barrier options. For getting
the static hedging formula, the underlying process needs to have a symmetry.
We introduce a way to “symmetrize” a given diffusion process. Then the pricing
of a barrier option is reduced to that of plain options under the symmetrized
process. To show how our symmetrization scheme works, we will present some
numerical results applying (path-independent) Euler-Maruyama approximation to
our scheme, comparing them with the path-dependent Euler-Maruyama scheme
when the model is of the Black-Scholes, CEV, Heston, and (λ)-SABR, respectively.
The results show the effectiveness of our scheme.

2.1 The Put-Call Symmetry Method for One Di-
mensional Diffusions

2.1.1 Arithmetic Put-Call Symmetry
Let X be a real valued diffusion process defined on a complete filtered probability
space (Ω,F ,P, {Ft}) which satisfies the usual conditions. For fixed K > 0, we
say that arithmetic put-call symmetry (APCS) at K holds for X if the following
equation is satisfied ;

E[G(Xt −K)
∣∣ X0 = K] = E[G(K −Xt)

∣∣ X0 = K],

for any bounded measurable function G and t ≥ 0. The APCS at K is alternatively
defined to be the equivalence in law between Xt−Xt∧τ and Xt∧τ −Xt for any t ≥ 0
and stopping time τ with Xτ = K. Intuitively, the APCS means the following.
For every path of X which crosses the level K and is found at time t at a point
below K, there is a “shadow path” obtained from the reflection with respect to
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the level K which exceeds this level at time t, and these two paths have the same
probability. For one-dimensional Brownian motion, APCS holds for any K > 0
since the reflection principle holds. In [3], the APCS, or more precisely, PCS1,
is applied to the pricing and semi-static hedging of a barrier options. Semi-static
hedging means replication of the barrier contract by trading European-style claims
at no more than two times after inception. In more detail, we have the following;
if X satisfies APCS at K, then for any bounded measurable f and T > 0,

E[f(XT )I{τ>T}] = E[f(XT )I{XT>K, τ>T}]

= E[f(XT )I{XT>K}]− E[f(XT )I{XT>K, τ≤T}],

where
τ = inf{t ≥ 0 : XT ≤ K}. (2.1)

By APCS of X, we see that

E[f(XT )I{XT>K, τ≤T}] = E[E[f(XT )I{XT>K}|Fτ ]I{τ≤T}]

= E[E[f(2K −XT )I{XT<K}|Fτ ]I{τ≤T}].

Hence we obtain the following equation;

E[f(XT )I{τ>T}] = E[f(XT )I{XT>K}]

− E[f(2K −XT )I{XT<K}].
(2.2)

Of the equation (2.2), the left-hand-side reads the price of a barrier option written
on X, whose pay-off is f , knocked out at K, and the right-hand-side is the price
of a combination of two plain-vanilla options. Here is a description of the hedging
strategy of a barrier option implied from the right-hand-side of (2.2);

1. Hold a plain-vanilla options whose pay-off is f(XT ) if the price at the matu-
rity is less than K, and is nothing if the price at the maturity is greater than
K. Moreover short-sell a plain-vanilla options whose pay-off is f(2K −XT )
if the price at the maturity is greater than K, and is nothing if the price at
the maturity is less than K.

2. Keep the above position until the price hits the barrier K. If the price never
hits K until the maturity, the pay-off is f(XT ).

3. If the price hits K, clear both plain-vanilla positions at the hitting time.
Indeed, the value of two options are exactly the same at τ .

1They defined PCS as the equality of the distribution between XT

X0
under P and X0

XT
under

Q, where dQ
dP = XT

X0
.
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2.1.2 APCS of diffusion process
Let X be a solution to the following one-dimensional stochastic differential equa-
tion (SDE) driven by a Brownian motion W in R,

dXt = σ(Xt)dWt + µ(Xt)dt. (2.3)

Here we assume the following hypotheses;

(H1) σ : R → R and µ : R → R are locally bounded measurable functions such
that the linear growth condition is satisfied, ie, for a constant C, |σ(x)| +
|µ(x)| ≤ C(1 + |x|) for any x ∈ R.

(H2) The following condition is satisfied;

σ(y) ̸= 0 ⇐⇒ σ−2 is integrable in a neighborhood of y.

Then we have the following result on the uniqueness of the solution to (2.3);

Theorem 2.1.1 (Theorem 4, [6]). Under (H2), there exists a unique (in law)
solution satisfying SDE (2.3).

Moreover, by the linear growth condition (H1), the unique (in law) solution
will not explode in finite time. [3] gave a sufficient condition for a solution to (2.3)
to satisfy PCS at 0 ∈ R. The following Proposition is essentially a corollary to
Theorem 3.1 in [3].

Proposition 2.1.2. If the coefficients further satisfy the following conditions;

σ(x) = ε(x)σ(2K − x) (x ∈ R \ {K}), (2.4)

for a measurable ε : R → {−1, 1} and

µ(x) = −µ(2K − x) (x ∈ R \ {K}), (2.5)

then APCS at K holds for X.

Proof. By the uniqueness in law, it is sufficient to show that (Xt∧τ−(Xt−Xt∧τ ))t≥0

solves the SDE (2.3). By the assumptions (2.4) and (2.5), we obtain that

Xt∧τ − (Xt −Xt∧τ ) = Xt∧τ −
∫ t

t∧τ
σ(Xs)dWs −

∫ t

t∧τ
µ(Xs)ds

= Xt∧τ −
∫ t

t∧τ
ε(Xs)σ(2K −Xs)dWs

+

∫ t

t∧τ
µ(2K −Xs)ds

= Xt∧τ −
∫ t

t∧τ
ε(Xs)σ(Xτ − (Xs −Xτ ))dWs

+

∫ t

t∧τ
µ(Xτ − (Xs −Xτ ))ds.
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We set W ′
t = Wt∧τ −

∫ t

t∧τ ε(Xs)dWs. Sce we obtain that

⟨W ′⟩(t) = ⟨W ⟩(t)
= t,

W ′ is a Brownian motion (cf. [15] Chapter II, Theorem 6.1.). Therefore we see
that

Xt∧τ − (Xt −Xt∧τ ) = X0 +

∫ t

0

σ(Xs∧τ − (Xs −Xs∧τ ))dW
′
s

+

∫ t

0

µ(Xs∧τ − (Xs −Xs∧τ ))ds.

Hence APCS at K holds.

2.1.3 Symmetrization of Diffusion Processes
We introduce a way to “symmetrize” a given diffusion to satisfy APCS. By using
this symmetrized process satisfying APCS, the pricing of a barrier option is reduced
to that of plain options. We start with a diffusion process X given as a unique
solution to SDE (2.3). We do not assume that the coefficients have the symmetric
conditions (2.4) and (2.5). We then construct another diffusion X̃ that satisfies
APCS at K in the following way. Put

σ̃(x) :=

{
σ(x) x > K

σ(2K − x) x ≤ K,
(2.6)

µ̃(x) :=

{
µ(x) x > K

−µ(2K − x) x ≤ K,
(2.7)

and consider the following SDE;

dX̃t = σ̃(X̃t)dWt + µ̃(X̃t)dt. (2.8)

Again by Theorem 2.1.1, there is a unique (in law) solution X̃t. Then we obtain
the following result;
Theorem 2.1.3. It holds that

E[f(XT )I{τ>T}] = E[f(X̃T )I{X̃T>K}]

− E[f(2K − X̃T )I{X̃T<K}].
(2.9)

Proof. Since σ̃ and µ̃ satisfy the condition (2.4) and (2.5), APCS at K holds for
X̃ by Proposition 2.1.2. Then the equation (2.2) is valid for X̃. Moreover, by the
definition of σ̃ and µ̃, we have σ(x) = σ̃(x) and µ(x) = µ̃(x) for x > K. Therefore
by the uniqueness in law of the SDE, we have that {Xt}t≤τ = {X̃t}t≤τ pathwisely.
Then we see that τ = τ̃ where τ̃ = inf{t > 0 : X̃t ≤ K}. Hence we have

E[f(X̃T )I{τ̃>T}] = E[f(XT )I{τ>T}].
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2.1.4 Important Remark
We do not anymore regard (2.9) as an equation for semi-static hedging but a
relation to give a numerical scheme to calculate the expectation of the diffusion
with a Dirichlet boundary condition in terms of those without boundary conditions.
The former is very difficult while the latter is rather easier using rapidly developing
technique from numerical finance. In the following sections, we will present some
results of numerical examples to show the effectivity of the new scheme.

2.2 Numerical Experiments for One Dimensional
Models

2.2.1 The Euler-Maruyama Scheme
Here we briefly recall the Euler-Maruyama scheme for a diffusion process given as
a solution to SDE (2.3). Fix T > 0. For n ≥ 1, we set a subdivision of the interval
[0, T ];

0 = t0 < t1 < · · · < tn = T,

where tk := kT
n

for 0 ≤ k ≤ n, and we denote this net by △n. The Euler-Maruyama
scheme is a general method for numerically solving (2.3) by a discretized stochastic
process which is given by

Xn
t0
= X0,

Xn
tk+1

= Xn
tk
+ σ(Xn

tk
)(tk+1 − tk) + µ(Xn

tk
)(Wtk+1

−Wtk),
(2.10)

k = 0, 1, 2, · · · , n− 1, and for tk < t < tk+1, Xt is given by an interpolation. The
approximating process (Xn

T ) is simulated by using independent Gaussian random
variables for the increments (Wtk+1

−Wtk)0≤k≤n−1.
We rely on the following result;

Theorem 2.2.1 (Theorem 3.1, [33]). If the set of discontinuous points of σ and
µ is countable, then the Euler scheme (2.10) converges weakly to the unique weak
solution to SDE (2.3) as n→ ∞.

From now on, in addition to (H1) and (H2), we assume that σ and µ are
piece-wise continuous.

Path-wise Method

Since the convergence is in the space of probability measures on continuous func-
tions, we see that this algorithm can also be used to simulate a path-dependent
functional of the process; in particular, f(XT )I{τ>T}, where f is a (bounded) con-
tinuous function and τ is the first hitting time defined by (2.1). The functional is
approximated by f(Xn

T )I{τn>T}, where τn := inf{tk : Xn
tk

≤ K} is the discretized
first hitting time to K. Then the expectation E[f(XT )I{τ>T}] is approximated
with a Monte-Carlo algorithm by
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Method 1. (Path-wise EM scheme)

1

M

M∑
i=1

f(Xn
T (ωi))I{τn(ωi)>T}. (2.11)

By the strong law of large numbers, (2.11) converges to E[f(Xn
T )I{τn>T}] as

M goes to infinity. Moreover, as the index n of the net △n goes to infinity,
E[f(Xn

t )I{τn>T}] converges to E[f(XT )I{τ>T}]. According to [7], the following
convergence rate was given;
Theorem 2.2.2 (Theorem 2.3, [7]). Assume that σ and µ are in C∞

b , σ is bounded
below from zero and a solution is non-explosion. Then for a bounded measurable
function f such that d(suppf,K) > 0, there is a constant C such that

|E[f(Xn
t )I{τn>T}]− E[f(XT )I{τ>T}]| < C

1√
n
.

Put-Call Symmetry Method

Let X̃ be a solution with coefficients σ̃ and µ̃ given by (2.6) and (2.7), and (X̃n
t )

be the discretized Euler-Maruyama process with respect to the net △n. Namely,
X̃n

tk+1
= X̃n

tk
+ (σ(X̃n

tk
)(tk+1 − tk) + µ(X̃n

tk
)(Wtk+1

−Wtk))I{X̃n
tk
>K}

+ (σ(2K − X̃n
tk
)(t− tk)− µ(2K − X̃n

tk
)(Wt −Wtk))I{X̃n

tk
≤K}

for k = 0, 1, 2, · · · , n− 1. With an interpolation, X̃n
t for tk ≤ t ≤ tk+1 is obtained

as well. Since the set of the discontinuous points in the coefficients has a null
Lebesgue measure, X̃n also converges weakly to X̃ by Theorem 2.2.1.

Combining Theorem 2.1.3 and 2.2.1, we may rely on the following algorithm;
the expectation E[f(XT )I{τ>T}] is approximated with a Monte-Carlo algorithm by
Method 2. (Put-Call symmetry method)

1

M

M∑
i=1

{
f(X̃n

T (ωi))I{X̃n
T (ωi)>K} − f(2K − X̃n

T (ωi))I{X̃n
T (ωi)<K}

}
. (2.12)

As M goes to ∞, (2.12) converges to
E[f(X̃n

T )I{X̃n
T>K}]− E[f(2K − X̃n

T )I{X̃n
T≤K}]. (2.13)

By the weak convergence of Xn, (2.13) converges to
E[f(X̃T )I{X̃T>K}]− E[f(2K − X̃T )I{X̃T≤K}],

as n→ ∞. However, we don’t know the exact rate of convergence in this algorithm
since the coefficients are inevitably non-smooth at K 2

The numerical results in the next section, however, may imply that the con-
vergence rate of Put-Call symmetry method is better than that of the path-wise
EM scheme. To prove this conjecture would be a very interesting mathematical
challenge.

2There are many results on the rate of convergence when σ and µ are smooth. For example,
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2.2.2 Numerical Results
In this section, we give numerical examples using method 1 (path-wise EM method)
and method 2 (Put-Call symmetry method) under Black-Scholes model and other
CEV models. Let us consider the value of a barrier call option with strike price S
and knockout barrier K.

Black-Scholes Model

The underlying price process of Black-Scholes model is the unique solution to the
following SDE;

dXt = rXtdt+ σXtdWt, (2.14)

for r, σ ≥ 0. Then the value of a barrier option is accurately-calculable since the
joint distribution of Brownian motion and the hitting time of Brownian motion to
a point is computable by using the reflection principle. The exact option price is
given by the following;

e−rTE[(XT − S)+I{τ>T}] = Vcall(X0)−
(
K

X0

) 2r
σ2−1

Vcall

(
K2

X0

)
,

where

Vcall(x) = x (1− Φ(d+(x)))− Se−rT (1− Φ(d−(x))) ,

d±(x) =
log(S

x
)−

(
r ± σ2

2

)
T

σ
√
T

,

and Φ is the distribution function of the standard normal distribution.
Fix a maturity time T > 0. Tables 2.1 - 2.4 give simulation results for the

value of down-and-out call option E[(XT − S)+I{τ>T}] under the path-wise Euler-
Maruyama method (EM) and the Put-Call symmetry method (PCM). We take
[X0 = 100, S = 95, K = 90, T = 1], and

Table 2.1: σ = 0.2, r = 0,

Table 2.2: σ = 0.2, r = 0.02,

Table 2.3: σ = 0.5, r = 0,

Table 2.4: σ = 0.5, r = 0.02.

when σ and µ are in C4
p, the space of functions such that 4-th derivative exists and have a

polynomial growth, we have

|E[g(Xn
T )]− E[g(XT )]| = O(n),

for any g ∈ C4
p (See [22], pp. 476).
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In the PCM, we symmetrize the functions µ(x) = rx and σ(x) = σx at K. The
errors in the last two columns are calculated as

EM(PCM)− true option price
true option price .

One sees that, in the experiments, the Put-Call symmetry method always beats
the path-wise EM method.

Table 2.1: Black-Scholes model; X0 = 100, S = 95, K = 90, σ = 0.2, r = 0, T = 1,
true option price = 8.17140

Table 2.2: Black-Scholes model; X0 = 100, S = 95, K = 90, σ = 0.2, r = 0.02,
T = 1, true option price= 9.31138
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Table 2.3: Black-Scholes model; X0 = 100, S = 95, K = 90, σ = 0.5, r = 0, T = 1,
true option price = 9.37170

Table 2.4: Black-Scholes model; X0 = 100, S = 95, K = 90, σ = 0.5, r = 0.02,
T = 1, true option price = 10.02470
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CEV Model

Here the underlying price process is a solution to the following SDE;

dXt = rXtdt+ σXβ
t dWt, (2.15)

for r, σ ≥ 0 and β ≥ 1
2
. Tables 2.5 - 2.6 are simulation results for down-and-out

call options with EM and PCM. We set parameters to [X0 = 100, S = 95, K =
90, β = 0.75, σ = 0.45, T = 1], and

Table 2.5: r = 0,

Table 2.6: r = 0.02,

in the experiments. For CEV model, we do not have an analytic formula. So, as a
benchmark, we used numerical results by the path-wise Euler-Maruyama scheme
where the number of time steps for the Euler discretization is 5, 000 and that of
a Monte-Carlo simulation is 50, 000, 000. Note that since we are calculating the
prices of down-and-out call options, we do not need to care about the singularity
at x = 0 in the SDE.

Table 2.5: CEV model; X0 = 100, S = 95, K = 90, β = 0.75, σ = 0.45, r = 0,
T = 1, benchmark = 7.50095
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Table 2.6: CEV model; X0 = 100, S = 95, K = 90, β = 0.75, σ = 0.45, r = 0.02,
T = 1, benchmark = 8.82718

2.3 Put-Call Symmetry Method Applied to Stochas-
tic Volatility Models

In this section, we slightly extend the put-call symmetry method to apply it to
stochastic volatility models which are described by two-dimensional SDE. Theo-
retical backgrounds of the extension is given in [1].

A generic stochastic volatility model is given as follows;

dXt = σ11(Xt, Vt)dWt + µ1(Xt, Vt) dt

dVt = σ21(Vt)dWt + σ22(Vt)dBt + µ2(Vt) dt,
(2.16)

where W and B are mutually independent (1-dim) Wiener processes,

σ(x, v) =

(
σ11(x, v) 0
σ21(v) σ22(v)

)
and µ(x, v) = (µ1(x, v), µ2(v)) are continuous functions on R2. Here we simply
assume that σ and µ are sufficiently regular (not so irregular) to allow a unique
weak solution to (2.16). The independence of V against X plays an important role
in applying our scheme. In fact, thanks to the property, we may simply work on
the symmetrization with respect to the reflection (x, y) 7→ (2K − x, y). Let us be
more precise. Let (X,V ) be a 2-dimensional diffusion process given as a (weak)
unique solution to SDE (2.16), and τ be the first passage time of X to K. We say
that arithmetic put-call symmetry at K holds for (X,V ) if

(Xt, Vt)1{τ≤t}
d= (2K −Xt, Vt)1{τ≤t}
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for any t > 0.
Mathematically, we rely on the following result from [1].

Proposition 2.3.1 ([1]). If the coefficients satisfy the following conditions;
σ11(x, v) = −σ11(2K − x, v), (2.17)

µ1(x, v) = −µ1(2K − x, v), (2.18)
for (x, v) ∈ (R \ {K})× R, then APCS at K holds for (X,V ).

On the basis of Proposition 2.3.1, we construct another diffusion (X̃, V ) that
satisfies APCS at K in a totally similar way as the one dimensional case, and we
obtain a static hedging formula corresponding to Theorem 2.1.3.
Proposition 2.3.2. Let K > 0 and put

σ̃11(x, v) =

{
σ11(x, v) x ≥ K

−σ11(2K − x, v) x < K
,

µ̃1(x, v) =

{
µ1(x, v) x ≥ K

−µ1(2K − x, v) x < K
,

and let X̃ be the unique (weak) solution to
dX̃t = σ̃11(X̃t, Vt)dWt + µ̃1(X̃t, Vt) dt,

where V is the solution to (2.16). Then, it holds for any bounded Borel function
f and t > 0 that

E[f(Xt)1{Xt>K}1{τK>t}]

= E[f(X̃t)1{X̃t>K}]− E[f(2K − X̃t)1{X̃t<K}],
(2.19)

where X is the solution to (2.16) with X0 > K.
Proof. Omitted.

2.3.1 Numerical Results on Single Barrier Options under
Stochastic Volatility Models

In this section we give numerical examples of the price of a single barrier option un-
der Heston’s and SABR type stochastic volatility models, using numerical method
based on (2.19).

The Euler-Maruyama scheme of the solution to SDE (2.16) with respect to the
net △n = {t0, t1, · · · , tn} is given by the following;

Xn
t0
= X0,

V n
t0
= V0

Xn
tk+1

= Xn
tk
+ σ11(X

n
tk
, V n

tk
)(Wtk+1

−Wtk) + µ1(X
n
tk
, V n

tk
)(tk+1 − tk),

V n
tk+1

= V n
tk
+ σ21(V

n
tk
)(Wtk+1

−Wtk) + σ22(V
n
tk
)(Btk+1

−Btk)

+ µ2(V
n
tk
)(tk+1 − tk),
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for k = 0, 1, 2, · · · , n − 1. With an interpolation, Xt for tk < t ≤ tk+1 is obtained
as well. Here W and B denotes two independent 1-dimensional Brownian motions.
The increments Wtk+1

−Wtk and Btk+1
−Btk are simulated by independent Gaussian

random variables. The underlying price process of Heston model is given as follows;{
dXt = rXtdt+

√
VtXtdWt,

dVt = κ(θ − Vt)dt+ ν
√
Vt(ρdWt +

√
1− ρ2dBt)

(2.20)

for r, κ, θ, ν > 0 and −1 ≤ ρ ≤ 1. Then the symmetrized path X̃ is constructed
as a solution to the following SDE;

dX̃t =
(
rX̃tI{X̃t>K} − r(2K − X̃t)I{X̃t<K}

)
dt

+
(√

VtX̃tI{X̃t>K} −
√
Vt(2K − X̃t)I{X̃t<K}

)
dWt,

where V is the solution to SDE (2.20).
The underlying asset price of λ-SABR model is described as{

dXt = rXtdt+ VtX
β
t dWt,

dVt = λ(θ − Vt)dt+ νVt(ρdWt +
√

1− ρ2dBt)
(2.21)

for r, λ, θ, ν > 0, β ≥ 1
2

and −1 ≤ ρ ≤ 1. Then the symmetrized process X̃ is
given by the following SDE;

dX̃t =
(
rX̃tI{X̃t>K} − r(2K − X̃t)I{X̃t<K}

)
dt

+
(
VtX̃t

β
I{X̃t>K} − Vt(2K − X̃t)

βI{X̃t<K}

)
dW1,t,

where V is the solution to SDE (2.21).
Tables 2.7 - 2.10 below are simulation results of the price of a single barrier call

option under Heston’s and λ-SABR model, respectively. We set the parameters
as [X0 = 100, V0 = 0.03, K = 95, H = 90, θ = 0.03, r = 0, T = 1, κ = 1, ρ =
−0.7, ν = 0.03] in Heston model (Table 2.7 and Table 2.8), and [X0 = 100, V0 =
0.5, S = 95, K = 90, θ = 0.03, r = 0, T = 1, β = 0.75, λ = 1.0, ρ = −0.7, ν =
0.3] in λ-SABR model (Table 2.9 and Table 2.10), and

Table 2.7 and 2.9: r = 0,

Table 2.8 and 2.10: r = 0.02,

in the experiments. Benchmark is given in the same setting of Section 2.2.2. We
again observe the superiority of our scheme.
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Table 2.7: Heston model; X0 = 100, V0 = 0.03, K = 95, H = 90, θ = 0.03, r = 0,
T = 1, κ = 1, ρ = −0.7, ν = 0.03, benchmark = 7.92706

Table 2.8: Heston model; X0 = 100, V0 = 0.03, K = 95, H = 90, θ = 0.03,
r = 0.02, T = 1, κ = 1, ρ = −0.7, ν = 0.03, benchmark = 9.15602

26



Table 2.9: λ-SABR model; X0 = 100, V0 = 0.5, S = 95, K = 90, θ = 0.03, r = 0,
T = 1, β = 0.75, λ = 1.0, ρ = −0.7, ν = 0.3, benchmark = 6.59534

Table 2.10: λ-SABR model; X0 = 100, V0 = 0.5, S = 95, K = 90, θ = 0.03,
r = 0.02, T = 1, β = 0.75, λ = 1.0, ρ = −0.7, ν = 0.3, benchmark = 8.71005
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2.3.2 Application to Pricing Double Barrier Options under
the Stochastic Volatility Models

Fix K,K ′ > 0. Let us consider a double barrier option knocked out if price process
X hit either the boundary K or K+K ′. The price of a double barrier option with
payoff function f and barriers K and K +K ′ is given by E[f(XT )I{τ(K,K+K′)>T}],
where τ(K,K+K′) is the first exit time of X from (K,K +K ′). In a similar way as
the static hedging formula of a single barrier option, we obtain a static hedging
formula if the price process satisfies APCS both at K and K +K ′.

Proposition 2.3.3 ([1]). If X satisfies APCS at K + nK ′ (n ∈ Z), then for any
bounded Borel function f and T > 0, we have

E[f(XT )I{τ(K,K+K′)>T}]

=
∑
n∈Z

E[f(XT − 2nK ′)I[K+2nK′,K+(2n+1)K′)(XT )]

−
∑
n∈Z

Ef(2K − (XT − 2nK ′))I[K+(2n−1)K′,K+2nK′)(XT )],

(2.22)

In formula (2.22), the left-hand-side is the price of a barrier option, and the
right-hand-side is an infinite series of the prices of plain-vanilla options. It means
that a double barrier option can be hedged by infinite plain-vanilla options. Practi-
cally, the series should be approximated by finite terms. In our numerical scheme,
however, finite sum approximation is not necessary as we will explain later in
Remark 2.3.5.

We give a numerical scheme of a double barrier option under stochastic volatil-
ity model by using the symmetrized process which satisfies APCS at K + nK ′

(n ∈ Z). The scheme is summarized as

Proposition 2.3.4. Set

σ̂11(x, v)

=
∑
n∈Z

σ11(x− 2nK ′, v)I[K+2nK′,K+(2n+1)K′)(x)

−
∑
n∈Z

σ11(2K − (x− 2nK ′), v)I[K+(2n−1)K′,K+2nK′)(x),

(2.23)

µ̂1(x, v)

=
∑
n∈Z

µ1(x− 2nK ′, v)I[K+2nK′,K+(2n+1)K′)(x)

−
∑
n∈Z

µ1(2K − (x− 2nK ′), v)I[K+(2n−1)K′,K+2nK′)(x),

(2.24)

and let X̂ be the unique (weak) solution to

dX̂t = σ̂11(X̂t, Vt)dWt + µ̂1(X̂t, Vt) dt,
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where V is the solution to SDE (2.16). Then, it holds for any bounded Borel
function f and t > 0 that

E[f(Xt)1{τ(K,K+K′)>t}]

=
∑
n∈Z

E[f(X̂t − 2nK ′)I[K+2nK′,K+(2n+1)K′)(X̂t)]

−
∑
n∈Z

E[f(2K − (X̂t − 2nK ′))I[K+(2n−1)K′,K+2nK′)(X̂t)].

(2.25)

Proof. This is an easy consequence of Proposition 2.3.3.

Remark 2.3.5. The infinite series of the right hand side in (2.23) and (2.24) is
expressed by the following;

(the right hand side of (2.23))

=

{
σ11(x− [x−K

K′ ]K
′, v) if [x−K

K′ ] ≡ 0 mod 2,
−σ11(2K − (x− ([x−K

K′ ]− 1)K ′), v) if [x−K
K′ ] ≡ 1 mod 2,

and

(the right hand side of (2.24))

=

{
µ1(x− [x−K

K′ ]K
′, v) if [x−K

K′ ] ≡ 0 mod 2,
−µ1(2K − (x− ([x−K

K′ ]− 1)K ′), v) if [x−K
K′ ] ≡ 1 mod 2,

where [·] is floor function, i.e. [x] is the largest integer not greater than x. Therefore
the discretized process of (X̂, V ) by Euler-Maruyama scheme can be simulated
without approximating the infinite series by finite sums. Similarly, we have

(the right hand side of (2.25))

= E
[
f(X̂t − [

X̂t −K

K ′ ]K ′, Vt)I{[ X̂t−K

K′ ]≡0 mod 2}

−f(2K − (X̂t − ([
X̂t −K

K ′ ]− 1)K ′), Vt)I{[ X̂t−K

K′ ]≡1 mod 2}

]
.

Therefore Put-Call symmetry method is available for the pricing of a barrier option.

Table 2.11 and Table 2.12 below are numerical results of the price of a double
barrier call option under Heston model and λ-SABR model, respectively. We take

Table 2.11: X0 = 100, V0 = 0.03, S = 95, K +K ′ = 115, K = 85, θ = 0.03, r =
0.02, T = 1, κ = 1, ρ = −0.7, ν = 0.03,

Table 2.12:X0 = 100, V0 = 0.3, S = 95, K + K ′ = 110, K = 90, θ = 0.3, r =
0.02, T = 1, β = 0.75, λ = 1, ρ = −0.7, ν = 0.3,

in the experiments. Benchmark is given by the same setting of Section 2.2.2.
We still see that the put-call symmetry method beats the path-wise EM.
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Table 2.11: Heston model; X0 = 100, V0 = 0.03, S = 95, K +K� = 115, K = 85,
θ = 0.03, r = 0.02, T = 1, κ = 1, ρ = −0.7, ν = 0.03, benchmark = 1.40319930

Table 2.12: λ-SABR model; X0 = 100, V0 = 0.3, S = 95, K +K� = 110, K = 90,
θ = 0.3, r = 0.02, T = 1, β = 0.75, λ = 1, ρ = −0.7, ν = 0.3, benchmark
= 2.46950606
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2.4 Concluding Remark
The new scheme, which is based on the symmetrization of diffusion process, is,
though not theoretically, experimentally proven to be more effective than the path-
wise Euler-Maruyama approximation scheme. The scheme is also applicable to
stochastic volatility models including Heston’s and SABR type.
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Chapter 3

A Numerical Scheme for
Expectations with First Hitting
Time to Smooth Boundary

In this chapter, we propose a numerical scheme to calculate expectations with
first hitting time to a given smooth boundary, in view of the application to the
pricing of options with non-linear barriers. To attack the problem, we rely on
the symmetrization technique in [1] and [18], with some modifications. To see the
effectiveness, we perform some numerical experiments.

3.1 The Framework

3.1.1 Symmetrization in Rd

We begin with a quick review of (a reduced version of) Akahori-Imamura’s multi-
dimensional symmetrization scheme [1].

We suppose that the following d dimensional stochastic differential equation
(often abbreviated as SDE)

Xt = X0 +

∫ t

0

σ(Xs)dWs +

∫ t

0

µ(Xs)ds (3.1)

has a law-unique solution for each initial point X0 in a domain in Rd. Here, for
d′ ≤ d, W ≡ (Wt)t≥0 is a d′-dimensional Wiener process, σ : Rd → Rd ⊗ Rd′ ,
µ : Rd → Rd, are piecewise smooth and at most linear growth. For α ∈ Rd\{0}
and h ∈ R, let

Hα,h := {x ∈ Rd : ⟨α, x⟩ = h},

and sα,h : Rd → Rd be the reflection associated with Hα,h;

sα,h(x) := x− (⟨x, α⟩ − h)
2α

|α|2
=

(
I − 2

|α|2
α⊗ α

)
x+

2h

|α|2
α.
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Denote
Tα := I − 2

|α|2
α⊗ α.

Then, Tα is a d × d orthogonal matrix such that T 2
α = I and Tαα = −α, and

therefore s2α,h : Rd → Rd is an identity map. We write

H+
α,h := {x ∈ Rd : ⟨α, x⟩ > h },

then
Rd = H+

α,h ⊎ sα,h(H
+
α,h).

For a piecewise smooth map U• : Rd → O(d′), define

σ̃(x) := σ(x)Ux1H+
α,h

(x) + Tασ(sα,h(x))Ux1sα,h(H
+
α,h)

(x)

µ̃(x) := µ(x)1
H+

α,h

(x) + Tαµ(sα,h(x))1sα,h(H
+
α,h)

(x),
(3.2)

and consider the following stochastic differential equation with starting point X0 ∈
Rd:

X̃t = X0 +

∫ t

0

σ̃(X̃s)dWs +

∫ t

0

µ̃(X̃s)ds, (3.3)

which we call symmetrization of X with respect to Hα,h.
Let

τα,h := inf
{
t > 0 : Xt /∈ H+

α,h

}
.

Theorem 3.1.1 (Akahori and Imamura [1]). Suppose that (3.3) has a law-unique
solution. Then, for any f ∈ bB(Rd) with supp(f) ≡ {x ∈ Rd; f (x) ̸= 0} ⊂ H+

α,h,
it holds that

E[f(Xt)1{τα,h>t}] = E[f(X̃t)]− E[f(sα,h(X̃t))]. (3.4)

Remark 3.1.2. We can easily extend the validity of the formula (3.4) for any
positive f such that both of the expectations in the right-hand-side are finite. Our
experiments below are based on this observation.

3.1.2 Symmetrization over a line bundle
Let d(≥ 2), and consider a solution to the following d-dimensional stochastic dif-
ferential equation:

Vt = V0 +

∫ t

0

σ(Vs)dWs +

∫ t

0

µ(Vs)ds. (3.5)

For g ∈ C2(Rd) and c ∈ R, define

τ = inf{t > 0 : g(Vt) < c}.

Our target is to obtain a numerical approximation of

π = E
[
F (VT )1{τ>T}

]
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for a bounded measurable function F with
suppF ⊂ {v ∈ Rd : g(v) ≥ c}.

Our scheme consists of lifting it to the following d + 1 dimensional stochastic
differential equation:

Vt = V0 +

∫ t

0

σ(Vs)dWs +

∫ t

0

µ(Vs)ds

Zt = g(V0) +

∫ t

0

∇g(Vs)σ(Vs)dWs

+
1

2

∫ t

0

(2∇g · µ(Vs) +∇⊗∇g · σ ⊗ σ(Vs)) ds,

(3.6)

to which we apply Akahori-Imamura’s symmetrization. It is possible because the
hitting time is now lifted to the one to a hyperplane:

H := {(x1, · · · , xd+1) ∈ Rd+1 : xd+1 = c}.

The reflection associated with H is now obtained as

sα,c


x1
...
xd
xd+1

 :=


x1
...
xd
xd+1

− 2(xd+1 − c)


0
...
0
1

 =


x1
...
xd

2c− xd+1

 .

Let

Tα := I − 2

|α|2
α⊗ α =


1 O

. . .
1

O −1

 ,

where

α =

 0
...
1

 .

By putting

σ2(x1, · · · , xd, xd+1) :=

(
Id

∇g(x1, · · · , xd)

)(
σ(x1, · · · , xd) 0

)
=

(
σ(x1, · · · , xd) 0

∇g · σ(x1, · · · , xd) 0

)
,

and
µ2(x1, · · · , xd, xd+1)

:=

(
Id

∇g(x1, · · · , xd)

)
µ(x1, · · · , xd)

+
1

2

(
0

∇⊗∇g · σ ⊗ σ(x1, · · · , xd)

)
,
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the stochastic differential equation (3.6) is now rewritten as

dXt = σ2(Xt)dWt + µ2(Xt)dt, X0 = (V0, g(V0)) (3.7)

with X = (V, Z).
The symmetrization of (3.7) is

X̃t = X0 +

∫ t

0

σ̃2(X̃s)dWs +

∫ t

0

µ̃2(X̃s)ds, (3.8)

where

σ̃2(x) =

{
σ2(x) xd+1 > c

Tασ2(sα,c(x)) xd+1 ≤ c

=


σ2(x) xd+1 > c(

σ(x) 0

−∇g(x) · σ(x) 0

)
xd+1 ≤ c

and

µ̃2(x) =

{
µ2(x) xd+1 > c

Tαµ(sα,c(x)) xd+1 ≤ c

=


µ2(x) xd+1 > c(

µ(x)

−∇g(x) · µ2(x)− 1
2
∇⊗∇g(x) · σ ⊗ σ(x)

)
xd+1 ≤ c.

Theorem 3.1.1 could imply

π = E
[
F (ṼT )1{Z̃T≥c}

]
− E

[
F (ṼT )1{c≥Z̃T }

]
, (3.9)

where X̃ = (Ṽ , Z̃), provided that the SDE of (3.8) has a law-unique solution.

Remark 3.1.3. The above procedure, that is, symmetrization of (3.5) by way
of (3.6), may well be called symmetrization over a line bundle, since the process
defined by (3.6) can be regarded as one in the line bundle of the invariant manifold
of the process V .

3.2 Numerical Experiments
3.2.1 Description of Experiments
As mentioned, the mathematical validity of (3.9) is dependent of the law-uniqueness
of (3.8). Instead of proving it mathematically, in this section we give some results
of numerical experiments that convince us the validity. We work on two examples
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where the expectation with hitting time can be calculated in a direct way. Then
we compare it with the one by Euler-Maruyama approximation of the symmetrized
process, to see if the formula (3.9) is valid or not.

The results show that the “symmetrization over a line bundle” works properly,
and even as efficient as the standard symmetrization whose efficiency is confirmed
in [18]. in the sense that it is much more efficient than the order-1/2 scheme of
the path-wise Euler-Maruyama approximation of the original process.

Our experiments are done with Euler-Maruyama discretization scheme with
Monte-Carlo simulation, described below.

Let n be the number of discretization and M be the number of simulations.
For a generic SDE (3.1) and a function f and a hitting time τ to a domain D, we
obtain PW-EM(n,M) and EM(n,M) as an approximation of E[f(X1)1{τ>1}] and
E[f(X1)] respectively, in the following way. We set Xn

0 = X0 and for tk = k/n,
k = 1, · · · , n,

Xn
tk
= Xn

tk−1
+ σ(Xn

tk−1
)∆W n

tk
+ µ(Xn

tk−1
)n−1,

where {∆W n
tk

: k = 1, 2, · · · , n} simulates, by pseudo random numbers, indepen-
dent copies of d-dimensional centered Gaussian random variables with variance
n−1×(identity matrix). The approximation values are given by

EM(n,M) :=
1

M

M∑
m=1

f(Xn,m)

and

PW-EM(n,M) :=
1

M

M∑
m=1

f(Xn,m
1 )1{τn,m>1},

where Xn,m stands for the m-th simulation of Xn, and

τn,m = min
{
tk : X

n,m
tk

∈ D
}
.

In each experiment, a benchmark value is calculated by a “direct” method,
described in each subsection. The errors are calculated accordingly as

EM Error(n,M) =
EM(n,M)− Benchmark Value

Benchmark Value , (3.10)

and

PW-EM Error(n,M) =
PW-EM(n,M)− Benchmark Value

Benchmark Value , (3.11)

respectively.
The number of simulation trials M is set to be 10, 000 when the number of time

steps for the Euler discretization n is less than 30, and otherwise we set M = n3.
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3.2.2 Comparison with 1-dimensional symmetrization
Let

Xt = |W x
t |2,

where W x is a 2-dimensional Wiener process starting from x ∈ R2. We assume
|x| > 1. Let

τ := inf{s > 0 : Xs < 1}. (3.12)
There are two ways to symmetrizeX to obtain numerical value of E[f(Xt)1{τ>t}](say).

The first one is based on the framework in section 3.1.2. We consider 3-
dimensional diffusion process (Y 1, Y 2, Y 3) given by

dY 1
t = dW 1

t

dY 2
t = dW 2

t

dY 3
t = 2Y 1

t dW
1
t + 2Y 2

t dW
2
t + 2dt.

(3.13)

The associated symmetrization is then, by letting

σ̃(y1, y2, y3) =



 1 0 0

0 1 0

2y1 2y2 0

 (y3 ≥ 1)

 1 0 0

0 1 0

−2y1 −2y2 0

 (y3 < 1)

and

µ̃(y1, y2, y3) =



0

0

2

 (y3 ≥ 1)

 0

0

−2

 (y3 < 1),

given by
dYt = σ̃(Yt) dWt + µ̃(Yt) dt. (3.14)

Then, by (3.9), we have that

E[f(Xt)1{τ>t}]

= E[f((Y 1
t )

2 + (Y 2
t )

2)1{Y 3
t >1}]− E[f((Y 1

t )
2 + (Y 2

t )
2)1{Y 3

t ≤1}]
(3.15)

for any bounded continuous function f which is zero if |x| ≤ 1.
The second one is based on the following reduction to one dimensional case.

As is well-known (see e.g.[27]), Xt can be realized as a strong solution to

dXt = 2
√
XtdBt + 2dt. (3.16)
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Therefore, to calculate E[f(Xt)1{τ>t}], we can rely on the original one dimensional
symmetrization [18]:

dX̃t = 2

√
X̃tdBt + ν̃(X̃t)dt, (3.17)

where

ν(x) =

{
2 x > 1

−2 x ≤ 1.

By the conversion formula (see [18]), we have that

E[f(Xt)1{τ>t}] = E[f(Xt)]− E[f(1−Xt)]. (3.18)

The benchmark value is set to be EM(500, 5003) for (3.17) with (3.18). Table 3.1
shows the results for the experiments with f(x) = max(x − 1.1, 0) and X0 = 2.
There “1-dim PW-EM” refers to the results from PW-EM(n,M) for the discretiza-
tion of (3.16), “3-dim PW-EM” are PW-EM(n,M) for (3.13), and “3-dim Sym”
stands for EM(n,M) for the discretization (3.14) with (3.15). Errors are calculated
accordingly by (3.10) or (3.11). The results convince us that the symmetrization
over a line bundle works well, and much more efficient than the path-wise method.

Table 3.1: Simulation results for the setting described in Section 3.2.2.

3.2.3 Comparison with hyperbolic reflection principle
Let X = (X1, X2) be the unique solution to

dX1
t = X2

t dW
1
t

dX2
t = X2

t dW
2
t ,

X0 = x = (x1, x2),

(3.19)

which is so-called Hyperbolic Brownian motion. We again assume |x| > 1 and let τ
be as (3.12). Like above, there are two ways to symmetrize X to obtain numerical
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value of E[f(Xt)1{τ>t}](say). The first one is, as above, based on the framework in
section 3.1.2. We consider 3-dimensional diffusion process (Y 1, Y 2, Y 3) given by

dY 1
t = Y 2

t dW
1
t

dY 2
t = Y 2

t dW
2
t

dY 3
t = 2Y 1

t dY
1
t + 2Y 2

t dY
2
t + 2(Y 2

t )
2dt

= 2Y 1
t Y

2
t dW

1
t + 2(Y 2

t )
2dW 2

t + 2(Y 2
t )

2dt.

(3.20)

The associated symmetrization is, by letting

σ̃(y1, y2, y3) =



 y2 0 0

0 y2 0

2y1y2 2(y2)
2 0

 (y3 ≥ 1)

 y2 0 0

0 y2 0

−2y1y2 −2(y2)
2 0

 (y3 < 1)

and

µ̃(y1, y2, y3) =



 0

0

2(y2)
2

 (y3 ≥ 1)

 0

0

−2(y2)
2

 (y3 < 1),

given by
dYt = σ̃(Yt) dWt + µ̃(Yt) dt. (3.21)

Then, as above, we obtain the same equation (3.15).
The second one is hyperbolic reflection principle (see Appendix 3.4 for detail)

diffusion (3.19). In this case, actually we do not need to symmetrize, but we have
readily

(X1
t , X

2
t )

law
=

(
X1

t

(X1
t )

2 + (X2
t )

2
,

X2
t

(X1
t )

2 + (X2
t )

2

)
(3.22)

as a stochastic process provided that (X1
0 )

2 + (X2
0 )

2 = 1. Here

(x1, x2) 7→
(

x1
(x1)2 + (x2)2

,
x2

(x1)2 + (x2)2

)
is the reflection with respect to the (semi) circle |x| = 1. Thanks to the reflection
principle (3.22), we have that

E[f(Xt)1{τ>t}] = E[f(Xt)]− E
[
f

(
X1

t

(X1
t )

2 + (X2
t )

2
,

X2
t

(X1
t )

2 + (X2
t )

2

)]
, (3.23)
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for any bounded continuous function f which is zero if |x| ≤ 1.
The benchmark value is set to be EM(500, 5003) for (3.19) with (3.23). Ta-

ble 3.2 shows the results for the experiments with f(x) = max(|x| − 1.1, 0) and
(X0, Y0) = (1, 1). There “2-dim PW-EM” refers to the results from PW-EM(n,M)
for the discretization of (3.19), “3-dim PW-EM” are PW-EM(n,M) for (3.20), and
“3-dim Sym” stands for EM(n,M) for the discretization (3.21) with (3.15). Errors
are calculated accordingly by (3.10) or (3.11). The results again convince us that
our new scheme works well, and much more efficient than the path-wise method.

Table 3.2: Simulation result for the setting described in Section 3.2.3.

3.3 Conclusion
This paper proposed a numerical scheme to calculate the expectation with hitting
time to a domain with smooth boundary. The new scheme is not theoretically
valid, but experimentally shown to be robust and more efficient than the path-
wise Euler-Maruyama approximation scheme.

3.4 Appendix to Chapter 3: Hyperbolic Reflec-
tion Principle

In the complex coordinate Z = X + iY , its law is invariant under the action of
SL(2,R); for (

a b
c d

)
=: A ∈ SL(2,R),

(Zt)
law
=

(
aZt + b

cZt + d

)
=: ΦA(Zt)
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provided Z0 = (aZ0 + b)/(cZ0 + d). More generally, it is invariant under isometry
(a map preserving distance of any two given points) of the hyperbolic space H2 :=
{z ∈ C : Imz > 0}, which is equipped with the distance given by

d(z1, z2) = arcosh
(
1 +

|z1 − z2|2

2Im(z1)Im(z2)

)
.

Thus the Hyperbolic Brownian motion to the hyperbolic space H2 is the stan-
dard Brownian motion to the Euclidean space. We can then define “reflection” in
H2 and then associated reflection principle holds. Associated symmetrization has
been introduced by Y. Ida and her collaborators in [13], see also [14].
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Chapter 4

On a construction of strong
solutions for stochastic
differential equations with
non-Lipschitz coefficients; a priori
estimates approach

Given a stochastic differential equation of which coefficients satisfy Yamada-Watanabe
condition or Nakao-Le Gall condition. We prove that its strong solution can be
constructed on any probability space using a priori estimates and also using Ito
theory based on Picard’s approximation scheme.

4.1 The Main Result under Yamada-Watanabe
condition

4.1.1 Assumptions
We discuss under the following assumptions.

1. Let (Ω,F , {Ft},P) be a filtered probability space where the filtration satisfies
the usual conditions.

2. Let W be a Brownian motion with respect to (Ω,F , {Ft},P).

3. Let T > 0, and let X0 ∈ R.

4. Let b ∈ C([0, T ]× R,R), and let σ ∈ C([0, T ]× R,R).

5. Let b and σ satisfy the following linear growth condition

∃C > 0 ∀t ∈ [0, T ] ∀x ∈ R,
|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|).
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6. Let b satisfy the following Lipschitz continuity condition

∃C > 0 ∀t ∈ [0, T ] ∀x, y ∈ R,
|b(t, x)− b(t, y)| ≤ C|x− y|.

7. Let σ satisfy the following continuity condition

∀ϵ > 0 ∀t ∈ [0, T ] ∀x, y ∈ R,
|σ(t, x)− σ(t, y)| ≤ h(|x− y|),

where h is a strictly increasing continuous function defined on [0,∞) with
h(0) = 0 such that

(a)
h(x) ≤ C(1 + x); ∃C > 0 ∀x ∈ [0,∞),

(b) ∫
(0,ϵ)

h−2(u)du = ∞; ∀ϵ > 0.

We consider the following SDE

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs. (4.1)

The following result shows that the assumptions are sufficient to guarantee path-
wise uniqueness of solutions.

Proposition 4.1.1 (Yamada-Watanabe(1971)[32]). Under the assumptions (1-7),
pathwise uniqueness holds for SDE (4.1).

A detailed proof of Proposition 4.1.1 can be found for example in the book of
Karatzas and Shreve [20], Proposition 5.3.20.

4.1.2 Main Theorem
Here, we present the main theorem. The proof of the main theorem is discussed
along the lines of Stefan Ebenfeld [5].

Theorem 4.1.2 (Strong Existence). Under the assumptions (1-7), the SDE (4.1)
has a strong solution.

The proof of the theorem is based on a particular approximation of the SDE
(4.1). Let χϵ(x) be a function in C∞(R), such that

χϵ(x) :=


0 ;x ≤ −ϵ,
positive ;−ϵ < x < ϵ,

0 ;x ≥ ϵ,
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and ∫ ∞

−∞
χϵ(x)dx = 1.

Moreover, we define that

σϵ(t, x) :=

∫ ∞

−∞
σ(t, x− y)χϵ(y)dy = (σ ∗ χϵ)(x),

where the symbol ∗ stands for the convolution operator. Consider the following
approximated SDE

X
(ϵ)
t = X0 +

∫ t

0

b(s,X(ϵ)
s )ds+

∫ t

0

σϵ(s,X
(ϵ)
s )dWs. (4.2)

First, we mention that σϵ belongs to C∞(R) and satisfies following properties.

Lemma 4.1.3. Under the assumption 7 for σ,
(i) for any 0 < δ < 1, there exists a constant ϵ(δ) > 0 such that

|σϵ(t, x)− σ(t, x)| ≤ δ holds; ∀ϵ ∈ (0, ϵ(δ)] ∀t ∈ [0, T ] ∀x ∈ R,

(ii) for any ϵ > 0,

|σϵ(t, x)− σ(t, x)| ≤ h(ϵ) holds; ∀t ∈ [0, T ] ∀x ∈ R,

(iii) for σϵ,

|σϵ(t, x)− σϵ(t, y)| ≤ h(|x− y|) holds; ∀t ∈ [0, T ] ∀x, y ∈ R.

Proof of (i). Since h(t) is continuous and h(0) = 0, there exists ϵ(δ) > 0 such that

h(|u|) ≤ δ; 0 ≤ |u| ≤ ϵ(δ).

Therefore, we have for 0 ≤ ϵ ≤ ϵ(δ),

|σϵ(t, x)− σ(t, x)| = |
∫ ∞

−∞
σ(t, x− y)χϵ(y)dy −

∫ ∞

−∞
σ(t, x)χϵ(y)dy|

≤
∫ ∞

−∞
h(|y|)χϵ(y)dy

=

∫ ϵ

−ϵ

h(|y|)χϵ(y)dy

≤ δ

∫ ϵ

−ϵ

χϵ(y)dy

= δ.

Proof of (ii). (ii) can be proved in the same way as (i).
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Proof of (iii). From the assumption 7 and the definition of χϵ, we have

|σϵ(t, x)− σϵ(t, y)| = |
∫ ∞

−∞
σ(t, x− u)χϵ(u)du−

∫ ∞

−∞
σ(t, y − u)χϵ(u)du|

= |
∫ ∞

−∞
χϵ(u)[σ(t, x− u)− σ(t, y − u)]du|

≤
∫ ∞

−∞
χϵ(u)|σ(t, x− u)− σ(t, y − u)|du

≤
∫ ∞

−∞
χϵ(u)h(|(x− u)− (y − u)|)du

=

∫ ∞

−∞
χϵ(u)h(|x− y|)du

= h(|x− y|)
∫ ∞

−∞
χϵ(u)du

= h(|x− y|).

Remark 4.1.4. From Lemma 4.1.3, there exists C > 0 such that

|b(t, x)|+ |σϵ(t, x)| ≤ C(1 + |x|)

holds for any t ∈ [0, T ], x ∈ R, ϵ > 0.

Since σϵ belongs to C∞(R) and satisfies obviously local Lipschitz condition, it
is shown that the approximated SDE (4.2) has a unique strong solution. See, for
example, Theorem 5.12.1 in the book of Rogers and Williams [28].

4.2 A priori estimates
4.2.1 The High Norm
We will mention the well known result on the boundedness of solutions for approx-
imated SDE (4.2) in the sense of the high norm.

Lemma 4.2.1 (A priori estimate in The High Norm). Solutions of the approxi-
mated SDE (4.2) satisfy the following estimate

∃C > 0 ∀ϵ ≤ 1,

sup
t∈[0,T ]

E[|X(ϵ)
t |4] ≤ C. (4.3)

A detailed proof of the lemma can be found, for example, in the book of
Karatzas and Shreve [20], Problem 5.3.15.
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4.2.2 The Low Norm
The next lemma on a priori estimate in the low norm for the approximated SDE
(4.2) will play essential roles in the proof of our main theorem. The lemma requires
a smooth approximation of the function |x|. Therefore, we introduce a sequence
(an)n∈N of positive numbers by

a0 := 1;

∫ an−1

an

1

nh2(x)
dx = 1.

Next, we choose a sequence (ρn)n∈N of smooth mollifiers with the following prop-
erties

supp(ρn) ⊂ [an, an−1]; 0 ≤ ρn(x) ≤
2

nh2(x)
;

∫ an−1

an

ρn(x)dx = 1.

Finally, we define a sequence (φn)n∈N of smooth functions by

φn(x) :=

∫ |x|

0

∫ y

0

ρn(z)dzdy + an−1.

Then, (φn)n∈N has the following properties

φn(x) ≥ |x|; |φ′
n(x)| ≤ 1; φ′′

n(x) = ρn(|x|).

In other words, φn is a smooth approximation of the function |x| from above with
a bounded first-order derivative and a second-order derivative having support in
the interval [an, an−1].

Lemma 4.2.2 (A priori estimate in The Low Norm). Solutions of the approximated
SDE (4.2) satisfy the following a priori estimate

∀α > 0 ∃0 < β ≤ 1 ∀0 < ϵ1, ϵ2 ≤ β,

sup
t∈[0,T ]

E[|X(ϵ1)
t −X

(ϵ2)
t |] ≤ α. (4.4)

Proof. Put

∆
(ϵ1,ϵ2)
t : = X

(ϵ1)
t −X

(ϵ2)
t

=

∫ t

0

[b(s,X(ϵ1)
s )− b(s,X(ϵ2)

s )]ds+

∫ t

0

[σϵ1(s,X
(ϵ1)
s )− σϵ2(s,X

(ϵ2)
s )]dWs.

Applying Ito formula to the approximated SDE (4.2), we obtain the following
representation

φn(∆
(ϵ1,ϵ2)
t ) = φn(0) +

∫ t

0

φ′
n(∆

(ϵ1,ϵ2)
s )[b(s,X(ϵ1)

s )− b(s,X(ϵ2)
s )]ds

+
1

2

∫ t

0

φ′′
n(∆

(ϵ1,ϵ2)
s )[σϵ1(s,X

(ϵ1)
s )− σϵ2(s,X

(ϵ2)
s )]2ds

+

∫ t

0

φ′
n(∆

(ϵ1,ϵ2)
s )[σϵ1(s,X

(ϵ1)
s )− σϵ2(s,X

(ϵ2)
s )]dWs.
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We note that due to the uniform boundedness of φ′
n and the linear growth condition

(see Remark 4.1.4), the Ito integral in the above is a martingale with mean 0. Let
0 < β ≤ 1, 0 < ϵ1, ϵ2 ≤ β. By Ito formula, we have

E[|∆(ϵ1,ϵ2)
t |] ≤ E[φn(∆

(ϵ1,ϵ2)
t )]

= E[φn(0)] + E[

∫ t

0

φ′
n(∆

(ϵ1,ϵ2)
s )[b(s,X(ϵ1)

s )− b(s,X(ϵ2)
s )]ds]

+
1

2
E[

∫ t

0

φ′′
n(∆

(ϵ1,ϵ2)
s )[σϵ1(s,X

(ϵ1)
s )− σϵ2(s,X

(ϵ2)
s )]2ds]

+ E[

∫ t

0

φ′
n(∆

(ϵ1,ϵ2)
s )[σϵ1(s,X

(ϵ1)
s )− σϵ2(s,X

(ϵ2)
s )]dWs]

= an−1 + E[

∫ t

0

φ′
n(∆

(ϵ1,ϵ2)
s )[b(s,X(ϵ1)

s )− b(s,X(ϵ2)
s )]ds]

+
1

2
E[

∫ t

0

φ′′
n(∆

(ϵ1,ϵ2)
s )[σϵ1(s,X

(ϵ1)
s )− σϵ2(s,X

(ϵ2)
s )]2ds],

using φ′′
n(x) = ρn(|x|);

≤ an−1 + E[

∫ t

0

|φ′
n(∆

(ϵ1,ϵ2)
s )[b(s,X(ϵ1)

s )− b(s,X(ϵ2)
s )]|ds]

+
1

2
E[

∫ t

0

ρn(|∆(ϵ1,ϵ2)
s |)[σϵ1(s,X(ϵ1)

s )− σϵ2(s,X
(ϵ2)
s )]2ds],

using |φ′
n(x)| ≤ 1;

≤ an−1 + E[

∫ t

0

|[b(s,X(ϵ1)
s )− b(s,X(ϵ2)

s )]|ds]

+
1

2
E[

∫ t

0

ρn(|∆(ϵ1,ϵ2)
s |)|σϵ1(s,X(ϵ1)

s )− σϵ2(s,X
(ϵ2)
s )|2ds]

= an−1 + E[

∫ t

0

|[b(s,X(ϵ1)
s )− b(s,X(ϵ2)

s )]|ds]

+
1

2
E[

∫ t

0

ρn(|∆(ϵ1,ϵ2)
s |)|σϵ1(s,X(ϵ1)

s )− σϵ2(s,X
(ϵ2)
s )

− σ(s,X(ϵ1)
s ) + σ(s,X(ϵ1)

s ) + σ(s,X(ϵ2)
s )− σ(s,X(ϵ2)

s )|2ds]

≤ an−1 + E[

∫ t

0

|[b(s,X(ϵ1)
s )− b(s,X(ϵ2)

s )]|ds]

+
1

2
E[

∫ t

0

ρn(|∆(ϵ1,ϵ2)
s |)(3|σ(s,X(ϵ1)

s )− σ(s,X(ϵ2)
s )|2

+ 3|σϵ1(s,X(ϵ1)
s )− σ(s,X(ϵ1)

s )|2 + 3|σ(s,X(ϵ2)
s )− σϵ2(s,X

(ϵ2)
s )|2)ds].

Here, we give 0 < δ < 1. Then, by the assumption 7 and Lemma 4.1.3, we have

48



for any 0 < ϵ1, ϵ2 ≤ β ≤ ϵ(δ),

E[|∆(ϵ1,ϵ2)
t |] ≤ an−1 + E[

∫ t

0

|[b(s,X(ϵ1)
s )− b(s,X(ϵ2)

s )]|ds]

+
1

2
E[

∫ t

0

ρn(|∆(ϵ1,ϵ2)
s |)(3[h(|∆(ϵ1,ϵ2)

s |)]2 + 3δ2 + 3δ2)ds]

≤ an−1 + E[

∫ t

0

|[b(s,X(ϵ1)
s )− b(s,X(ϵ2)

s )]|ds]

+
1

2
E[

∫ t

0

ρn(|∆(ϵ1,ϵ2)
s |)(3[h(|∆(ϵ1,ϵ2)

s |)]2 + 3δ + 3δ)ds],

using 0 ≤ ρn(x) ≤ 2
nh2(x)

;

≤ an−1 + E[

∫ t

0

|[b(s,X(ϵ1)
s )− b(s,X(ϵ2)

s )]|ds]

+
1

2
E[

∫ t

0

2I[an,an−1](|∆
(ϵ1,ϵ2)
s |)

nh2(|∆(ϵ1,ϵ2)
s |)

(3[h(|∆(ϵ1,ϵ2)
s |)]2 + 6δ)ds]

≤ an−1 + E[

∫ t

0

|[b(s,X(ϵ1)
s )− b(s,X(ϵ2)

s )]|ds]

+
1

2
T

2 · 6δ
nh2(an)

+
1

2
E[

∫ t

0

2

nh2(|∆(ϵ1,ϵ2)
s |)

· 3|h(|∆(ϵ1,ϵ2)
s |)|2ds]

= an−1 + E[

∫ t

0

|[b(s,X(ϵ1)
s )− b(s,X(ϵ2)

s )]|ds]

+ T
6δ

nh2(an)
+

3

n
E[

∫ t

0

1ds],

with t ∈ [0, T ];

≤ an−1 + E[

∫ t

0

|[b(s,X(ϵ1)
s )− b(s,X(ϵ2)

s )]|ds]

+ T
6δ

nh2(an)
+

3

n
E[

∫ T

0

1ds]

= an−1 + E[

∫ t

0

|[b(s,X(ϵ1)
s )− b(s,X(ϵ2)

s )]|ds]

+ T
6δ

nh2(an)
+

3

n
T,

by the assumption 6;

≤ an−1 + E[

∫ t

0

C|∆(ϵ1,ϵ2)
s |ds] + T

6δ

nh2(an)
+

3

n
T

= an−1 +
T

n
(

6δ

h2(an)
+ 3) + C

∫ t

0

E[|∆(ϵ1,ϵ2)
s |]ds.
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Combining all the estimates stated earlier we obtain our final estimate

E[|∆(ϵ1,ϵ2)
t |] ≤ γ(n, δ) + C

∫ t

0

E[|∆(ϵ1,ϵ2)
s |]ds, (4.5)

γ(n, δ) := an−1 +
T

n
(

6δ

h2(an)
+ 3).

Choosing n sufficiently large first and then choosing δ sufficiently small, we can
take γ(n, δ) arbitrarily small. By Gronwall’s inequality, the equation (4.5) implies

E[|∆(ϵ1,ϵ2)
t |] ≤ γ(n, δ)eCt ≤ γ(n, δ)eCT . (4.6)

Thus, for any α > 0, choosing n and δ such that γ(n, δ)eCT < α, we have for any
0 < ϵ1, ϵ2 ≤ β ≤ ϵ(δ),

E[|∆(ϵ1,ϵ2)
t |] ≤ α. (4.7)

4.3 Uniform Integrability
Consider the following Banach spaces (1 ≤ p <∞)

Hp := C([0, T ], Lp(Ω,F ,P)),

||X||p := sup
t∈[0,T ]

(E[|Xt|p])
1
p .

Moreover, we consider the following subsets (1 ≤ p <∞)

Np := {X ∈ Hp|X is adapted with respect to the filtration{Ft}}.

Since Np is a closed subspace of Hp, it is also a Banach space with respect to
the norm || · ||p. We define ϵn := 1

n
and write X(n) instead of X(ϵn). By Lemma

4.2.1, the sequence (X(n))n∈N is bounded in N4. Moreover, according to Lemma
4.2.2, the sequence (X(n))n∈N is a Cauchy sequence in N1. We will show that the
sequence (X(n))n∈N is also a Cauchy sequence in N2.

Lemma 4.3.1. (X(n))n∈N is a Cauchy sequence in N2.

Proof. Lemma 4.2.1 implies immediately

sup
n∈N

||X(n)||2 <∞. (4.8)

If (X(n)) is not a Cauchy sequence in N2, there exist a positive constant C and
some subsequences (pn)n∈N and (qn)n∈N such that

lim
n→∞

sup
0≤s≤T

E[|X(pn)
s −X(qn)

s |2] = C > 0. (4.9)
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Note that

E[

∫ T

0

|X(pn)
s −X(qn)

s |ds] =
∫ T

0

E[|X(pn)
s −X(qn)

s |]ds

≤
∫ T

0

( sup
0≤s≤T

E[|X(pn)
s −X(qn)

s |])ds

= T ||X(pn) −X(qn)||1.

Since (X(n)) is a Cauchy sequence in N1,

lim
n→∞

E[

∫ T

0

|X(pn)
s −X(qn)

s |ds] ≤ lim
n→∞

T ||X(pn) −X(qn)||1 = 0. (4.10)

We can choose subsequences (p
′
n) and (q

′
n) such that

lim
n→∞

|X(p
′
n)

s −X(q
′
n)

s | = 0 (4.11)

almost everywhere on [0, T ]×Ω w.r.t. dt×dP. Assume that for some subsequences
(pn)n∈N and (qn)n∈N,

lim
n→∞

sup
0≤s≤T

E[|X(pn)
s −X(qn)

s |2] = C > 0. (4.12)

Since
lim
n→∞

||X(pn) −X(qn)||1 = 0,

we can choose subsequences (p′n)n∈N, (q′n)n∈N such that

lim
n→∞

|X(p′n)
s −X(q′n)

s | = 0 (4.13)

almost surely on [0, T ]× Ω w.r.t. dt× dP. Let ϵ′n = 1
p′n

and ϵ′′n = 1
q′n

. We have

||X(p′n) −X(q′n)||22 = sup
0≤s≤T

E[|X(p′n)
s −X(q′n)

s |2]

≤ 2E[

∫ T

0

(σϵ′n(s,X
(p′n)
s )− σϵ′′n(s,X

(q′n)
s ))2ds]

+ 2E[

∫ T

0

(b(s,X(p′n)
s )− b(s,X(q′n)

s ))2ds]

Now, we define as follows;

L
(n)
1 (T ) := E[

∫ T

0

(σϵ′n(s,X
(p′n)
s )− σϵ′′n(s,X

(q′n)
s ))2ds], (4.14)

L
(n)
2 (T ) := E[

∫ T

0

(b(s,X(p′n)
s )− b(s,X(q′n)

s ))2ds]. (4.15)

51



For L(n)
1 (T ), we observe that

L
(n)
1 (T ) ≤ 3E[

∫ T

0

(σϵ′n(s,X
(p′n)
s )− σ(s,X(p′n)

s ))2ds]

+ 3E[

∫ T

0

(σ(s,X(p′n)
s )− σ(s,X(q′n)

s ))2ds]

+ 3E[

∫ T

0

(σϵ′′n(s,X
(q′n)
s )− σ(s,X(q′n)

s ))2ds].

Using Lemma 4.1.3 (ii) and the assumption 7, we have

L
(n)
1 (T ) ≤ 3T (h2(ϵ′n) + h2(ϵ′′n))

+ 3E[

∫ T

0

h2(|X(p′n)
s −X(q′n)

s |)ds].

Note that
h2(|X(p′n)

s −X(q′n)
s |) ≤ 2C2 + 2C2|X(p′n)

s −X(q′n)
s |2.

Since
sup
n

||X(p′n) −X(q′n)||4 <∞

holds, the family of processes

h2(|X(p′n)
s −X(q′n)

s |)

is uniformly integrable on [0, T ]×Ω w.r.t. dt× dP. Since h(ϵ) tends to 0 (ϵ ↓ 0),
we have by the equation (4.13),

lim
n→∞

L
(n)
1 (T ) = 0.

For L(n)
2 (T ), we have by the assumption 6 that

L
(n)
2 (T ) ≤ E[

∫ T

0

C2|X(p′n)
s −X(q′n)

s |2ds].

Since the family of processes |X(p′n)
s −X

(q′n)
s |2 is uniformly integrable, the equation

(4.13) implies
lim
n→∞

L
(n)
2 (T ) = 0.

Thus we observe
lim
n→∞

||X(p′n)
s −X(q′n)

s ||22 = 0.

This fact contradicts the equation (4.12).

Therefore, the sequence (X(n))n∈N converges to some X̃ ∈ N2. Since the con-
vergence in N2 implies in N1, we have

lim
n→∞

(||X(n) − X̃||1 + ||X(n) − X̃||2) = 0. (4.16)
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4.4 Proof of The Main Result
Now, we are in a position to prove our main theorem.

Proof of Theorem 4.1.2. We use the following notation for the right-hand sides of
the SDEs under consideration

RHS
(n)
t := X0 +

∫ t

0

b(s,X(n)
s )ds+

∫ t

0

σϵn(s,X
(n)
s )dWs,

R̃HSt := X0 +

∫ t

0

b(s, X̃s)ds+

∫ t

0

σ(s, X̃s)dWs.

Fix N > 0. Since σϵ is C∞-function, it satisfies Lipschitz condition on (t, x) ∈
[0, T ]× [−N,N ]. Let

τN := inf{s : X(n)
s /∈ [−N,N ]}. (4.17)

Note that
|σϵ(t, x)|+ |b(t, x)| ≤ C(1 + |x|), (4.18)

it is well known that
lim

N→∞
T ∧ τN = T (a.s.), (4.19)

see, for example, Theorem 5.12.1 in Rogers and Williams [28]. We know also by
[28] that for the strong solutions X(n) satisfy their respective SDEs in the following
sense

E[ sup
0≤t≤T∧τN

|X(n)
t −RHS

(n)
t |2] ≤ 4E[|X(n)

T∧τN −RHS
(n)
T∧τN |

2] = 0. (4.20)

By Lemma 4.2.1, we know that the family of variables

|X(n)
t −RHS

(n)
t |2, t ∈ [0, T ]

is uniformly integrable. Thus, letting N → ∞, we have

E[ sup
0≤t≤T

|X(n)
t −RHS

(n)
t |2] = 0. (4.21)

This implies the following weaker condition

||X(n) −RHS(n)||2 = 0. (4.22)

In the following, C1, C2 > 0 denotes some generic constants independent of n.
With the help of the linear growth condition (see 5 in 4.1.1 Assumptions), we
obtain the following estimate

E[

∫ T

0

(|b(s, X̃s)|2 + |σ(s, X̃s)|2)ds] ≤ C2T (1 + ||X̃||22) <∞.
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This implies that R̃HS has continuous paths P-a.s. and satisfies the following
regularity condition

E[ sup
t∈[0,T ]

|R̃HSt|2] <∞.

With the help of the Lipschitz continuity condition for b and the modulus of
continuity condition for σ and σϵ (see Lemma 4.1.3), we obtain the following
statement of convergence

lim
n→∞

||RHS(n) − R̃HS||22

≤ 2 lim
n→∞

(sup
[0,T ]

E[|
∫ t

0

(b(s,X(n)
s )− b(s, X̃s))ds|2]

+ sup
[0,T ]

E[|
∫ t

0

(σϵn(s,X
(n)
s )− σ(s, X̃s))dWs|2])

≤ C1( lim
n→∞

E[

∫ T

0

|b(s,X(n)
s )− b(s, X̃s)|2ds]

+ lim
n→∞

E[

∫ T

0

|σϵn(s,X(n)
s )− σ(s, X̃s)|2ds])

= C1( lim
n→∞

E[

∫ T

0

|b(s,X(n)
s )− b(s, X̃s)|2ds]

+ lim
n→∞

E[

∫ T

0

|σϵn(s,X(n)
s )− σ(s,X(n)

s ) + σ(s,X(n)
s )− σ(s, X̃s)|2ds])

≤ C1( lim
n→∞

E[

∫ T

0

|b(s,X(n)
s )− b(s, X̃s)|2ds]

+ lim
n→∞

E[

∫ T

0

|σϵn(s,X(n)
s )− σ(s,X(n)

s )|2 + |σ(s,X(n)
s )− σ(s, X̃s)|2ds]),

using Lemma 4.1.3;

≤ C2( lim
n→∞

E[

∫ T

0

(|X(n)
s − X̃s|)2ds]

+ lim
n→∞

E[

∫ T

0

|δ|2 + |h2(|X(n)
s − X̃s|)|ds]),

using Lemma 4.3.1 and noticing that δ > 0 is arbitrary;

= 0.

Combining the estimates stated earlier, we see that X̃ satisfies the SDE (4.1) in
the following sense

||X̃ − R̃HS||2 = 0. (4.23)

Although R̃HS is a modification of X̃ having continuous path P-a.s., the same
is generally not true for X̃. Therefore, we consider R̃HS instead of X̃ using the
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following notation
X := R̃HS,

RHSt := X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs.

Since X and X̃ coincide as elements of N2, the linear growth condition (see 5 in
4.1.1 Assumptions) yields the following estimate

E[

∫ T

0

(|b(s,Xs)|2 + |σ(s, |Xs|)|2)ds] ≤ C2(1 + ||X||22) <∞. (4.24)

This implies that RHS has continuous paths P-a.s. and satisfies the following
regularity condition

E[ sup
t∈[0,T ]

|RHSt|2] <∞. (4.25)

Finally, with the help of the Lipschitz continuity condition for b (see 6 in 4.1.1
Assumptions), the modulus of continuity condition for σ (see 7 in 4.1.1 Assump-
tions), and Doob’s maximal inequality, we see that X satisfies the SDE (4.1) in
the sense of Ito theory

E[ sup
t∈[0,T ]

|Xt −RHSt|2] = E[ sup
t∈[0,T ]

|R̃HSt −RHSt|2]

≤ 2(E[ sup
t∈[0,T ]

|
∫ t

0

(b(s, X̃s)− b(s,Xs))ds|2]

+ E[ sup
t∈[0,T ]

|
∫ t

0

(σ(s, X̃s)− σ(s,Xs))dWs|2])

≤ C1(E[

∫ T

0

|b(s, X̃s)− b(s,Xs)|2ds]

+ E[

∫ T

0

|σ(s, X̃s)− σ(s,Xs)|2ds])

≤ C1(||X̃ −X||2 +
∫ T

0

E[h2(|X̃s −Xs|)]ds)

= 0.

Thus, X is the desired strong solution. This concludes the proof.

4.5 The Main Result under Nakao-Le Gall con-
dition

In the present section, we construct concretely a strong solution of SDE under
Nakao-Le Gall condition. We consider the following SDE

Xt = X0 +

∫ t

0

σ(Xs)dWs. (4.26)
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We assume that σ satisfies Nakao-Le Gall condition.

Definition 4.5.1 (Nakao-Le Gall condition). σ be R → R, Borel measurable.
There exist two positive constants 0 < k < K <∞ such that

0 < k ≤ σ(x) ≤ K <∞ ∀x ∈ R.

And, there exists bounded increasing function f such that

|σ(x)− σ(y)|2 ≤ |f(x)− f(y)| ∀x, y ∈ R, (4.27)

where f is not necessarily continuous.

The main result in this section is the following theorem. Although the result of
the theorem is known, our proof of the theorem proposes a concrete construction
of strong solution.

Theorem 4.5.2. Under Nakao-Le Gall condition, the SDE (4.26) has a strong
solution.

To prove the theorem, we prepare some approximation techniques. Here, let
f(−∞) and f(∞) be

f(−∞) := lim
x→−∞

f(x), (4.28)

f(∞) := lim
x→∞

f(x), (4.29)

then we obtain −∞ < f(−∞) < f(∞) <∞. Let v(f) be

v(f) := f(∞)− f(−∞), (4.30)

v(f) is called the total variation of f .

Remark 4.5.3. Let D be a set of the discontinuous points of f . Since f is a
bounded increasing function, it is well known that D is a countable set. Let (fl)l∈N
be a sequence of C∞-functions such that

fl ≤ f, (4.31)

lim
l→∞

fl(x) = f(x) for x /∈ D, (4.32)

and
v(fl) ≤ v(f). (4.33)

We will construct an example of such sequence (fl). Let (gl)l∈N be a sequence of
C∞-functions such that

gl(u) =


0 ;u ≤ 0,

g(u) > 0 ; 0 < u < 1
l
,

0 ;u ≥ 1
l
,

56



and ∫ ∞

−∞
gl(u)du = 1.

Put
fl(x) :=

∫ ∞

−∞
f(x− u)gl(u)du. (4.34)

Note that

fl(x) =

∫ ∞

−∞
f(x− u)gl(u)du

≤
∫ ∞

−∞
f(x)gl(u)du

= f(x).

This implies (4.31). Let x /∈ D. For any ϵ > 0, there exists l such that

f(x)− ϵ ≤ f(x− u) ≤ f(x) (4.35)

holds for 0 ≤ u ≤ 1
l
. We have

f(x)− ϵ =

∫ ∞

−∞
(f(x)− ϵ)gl(u)du

≤
∫ ∞

−∞
f(x− u)gl(u)du

= fl(x)

≤ f(x).

Thus,
lim
l→∞

fl(x) = f(x) (4.36)

holds for x /∈ D. By the definition of fl(x), we observe that

f(x− 1

l
) ≤ fl(x) ≤ f(x). (4.37)

This implies fl(−∞) = f(−∞), and also fl(∞) ≤ f(∞). Therefore, we have

v(fl) = fl(∞)− fl(−∞) ≤ v(f). (4.38)

Let σϵ(x) be

σϵ(x) :=

∫ ∞

−∞
σ(x− y)χϵ(y)dy = (σ ∗ χϵ)(x), (4.39)

where the function χϵ(x) is given in section 4.1.2. Then, σϵ(x) is C∞(R) function.
Consider the following approximated SDE

X
(ϵ)
t = X0 +

∫ t

0

σϵ(X
(ϵ)
s )dWs. (4.40)

57



Lemma 4.5.4.
(i) σϵ is a function in C∞ and 0 < k ≤ σϵ(x) ≤ K <∞,

(ii) let x be continuous point of σ, then limϵ↓0 σϵ(x) = σ,
(iii) |σϵ(x)−σϵ(y)|2 ≤ |f(x∨ y+ ϵ)− f(x∧ y− ϵ)|, where x∨ y := max(x, y) and

x ∧ y := min(x, y).

Proof of (i).

σϵ(x) =

∫ ∞

−∞
σ(x− y)χϵ(y)dy ≥

∫ ∞

−∞
kχϵ(y)dy = k, (4.41)

and
σϵ(x) =

∫ ∞

−∞
σ(x− y)χϵ(y)dy ≤

∫ ∞

−∞
Kχϵ(y)dy = K. (4.42)

Proof of (ii). Let x be a continuous point of σ. ∀η > 0,∃δ > 0 such that

σ(x)− η ≤ σ(y) ≤ σ(x) + η, (4.43)

for any y such that |x− y| < δ. For 0 < ϵ < δ,

|σ(x)− σϵ(x)| = |
∫ ∞

−∞
[σ(x)− σ(x− y)]χϵ(y)dy|

≤
∫ ∞

−∞
|[σ(x)− σ(x− y)]|χϵ(y)dy

≤ η.

Proof of (iii). Assume that x > y. By Schwarz inequality, we have

|σϵ(x)− σϵ(y)|2 = |
∫ ∞

−∞
σ(x− u)χϵ(u)du−

∫ ∞

−∞
σ(y − u)χϵ(u)du|2

≤
∫ ∞

−∞
|σ(x− u)− σ(y − u)|2χϵ(u)du

≤
∫ ∞

−∞
f(x− u)χϵ(u)du−

∫ ∞

−∞
f(y − u)χϵ(u)du

≤ f(x+ ϵ)− f(y − ϵ).

By similar arguments for y ≥ x, we have (iii).

Here we introduce some local times which play important roles in the proof of
Lemma 4.5.4. Let La

t (X
(ϵ)
• ) be the local time at a of the process X(ϵ)

• such that

La
t (X

(ϵ)
• ) := |X(ϵ)

t − a| − |X(ϵ)
0 − a| −

∫ t

0

sgn(X(ϵ)
s − a)dX(ϵ)

s , (4.44)
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(see Revuz-Yor [27] Chapter 6).
Let Z(ϵ1,ϵ2,θ)

t be

Z
(ϵ1,ϵ2,θ)
t := X

(ϵ1)
t + θ(X

(ϵ2)
t −X

(ϵ1)
t ), 0 < ϵ1, ϵ2 ≤ 1, 0 ≤ θ ≤ 1. (4.45)

Let La
t (Z

(ϵ1,ϵ2,θ)
• ) be the local time at a of the process Z(ϵ1,ϵ2,θ)

• such that

La
t (Z

(ϵ1,ϵ2,θ)
• ) := |Z(ϵ1,ϵ2,θ)

t −a|−|Z(ϵ1,ϵ2,θ)
0 −a|−

∫ t

0

sgn(Z(ϵ1,ϵ2,θ)
s −a)dZ(ϵ1,ϵ2,θ)

s . (4.46)

We have the next lemma.

Lemma 4.5.5.
(i) Let CL be the constant such that

CL := sup
ϵ∈(0,1]

sup
a∈R

E[La
T (X

(ϵ)
• )]. (4.47)

Then, CL <∞ holds and it is independent of ϵ.
(ii) Let C̃L be the constant such that

C̃L := sup
(ϵ1,ϵ2,θ)∈(0,1]×(0,1]×[0,1]

sup
a∈R

E[La
T (Z

(ϵ1,ϵ2,θ)
• )]. (4.48)

Then, C̃L <∞ holds and it is independent of (ϵ1, ϵ2, θ).

Proof of (ii). By the definition of La
t (Z

(ϵ1,ϵ2,θ)
• ), we have

0 ≤ La
t (Z

(ϵ1,ϵ2,θ)
• )

≤ La
T (Z

(ϵ1,ϵ2,θ)
• )

≤ |Z(ϵ1,ϵ2,θ)
T − Z

(ϵ1,ϵ2,θ)
0 | −

∫ T

0

sgn(Z(ϵ1,ϵ2,θ)
s )dZ(ϵ1,ϵ2,θ)

s .

Then,

(La
T (Z

(ϵ1,ϵ2,θ)
• ))2 ≤ 2(

∫ T

0

(σϵ1(X
(ϵ1)
s ) + θ(σϵ2(X

(ϵ2)
s )− σϵ1(X

(ϵ1)
s ))dWs)

2

+ 2(

∫ T

0

sgn(Z(ϵ1,ϵ2,θ)
s − a)(σϵ1(X

(ϵ1)
s )

+ θ(σϵ2(X
(ϵ2)
s )− σϵ1(X

(ϵ1)
s ))dWs)

2.

(4.49)

Therefore, we have

E[(La
T (Z

(ϵ1,ϵ2,θ)
• ))2] ≤ 2E[

∫ T

0

(σϵ1(X
(ϵ1)
s ) + θ(σϵ2(X

(ϵ2)
s )− σϵ1(X

(ϵ1)
s )))2ds]

+ 2E[

∫ T

0

(sgn(Z(ϵ1,ϵ2,θ)
s ))2(σϵ1(X

(ϵ1)
s )

+ θ(σϵ2(X
(ϵ2)
s )− σϵ1(X

(ϵ1)
s )))2ds].

(4.50)
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Using the assumption on σ, we have

E[(La
T (Z

(ϵ1,ϵ2,θ)
• ))2] ≤ 36K2T <∞, (4.51)

where K is independent of (a, ϵ1, ϵ2, θ). This implies immediately (ii).

Now, the proof of (i) is similar. It is well known that we have following occu-
pation formulas. Let g be a non-negative Borel function. We have∫ t

0

g(X(ϵ)
s )d < X(ϵ)

• >s=

∫ ∞

−∞
g(a)La

t (X
(ϵ)
• )da, (4.52)

and also ∫ t

0

g(Z(ϵ1,ϵ2,θ)
s )d < Z(ϵ1,ϵ2,θ)

• >s=

∫ ∞

−∞
g(a)La

t (Z
(ϵ1,ϵ2,θ)
• )da, (4.53)

where < X
(ϵ)
• > is the quadratic variation of the process X(ϵ)

• such that

< X(ϵ)
• >t:=

∫ t

0

(σϵ(X
(ϵ)
s ))2ds. (4.54)

And also, < Z
(ϵ1,ϵ2,θ)
• >t is the quadratic variation of the process Z(ϵ1,ϵ2,θ)

• such that

< Z(ϵ1,ϵ2,θ)
• >t:=

∫ t

0

(σϵ1(X
(ϵ1)
s ) + θ(σϵ2(X

(ϵ2)
s )− σϵ1(X

(ϵ1)
s )))2ds, (4.55)

(see Revuz-Yor [27] Chapter 6).
Here, we state a lemma which is very useful in the rest of the paper. Let B ⊂ [0, T ]
be a Borel set. Leb.B means the Lebesgue measure of the set B.

Lemma 4.5.6. We have
(i) Leb.{s ; 0 ≤ s ≤ T, X

(ϵ)
s ∈ D} = 0 (a.s.),

(ii) Leb.{s ; 0 ≤ s ≤ T, Z
(ϵ1,ϵ2,θ)
s ∈ D} = 0 (a.s.).

Proof of (i). Note that by Lemma 4.5.4,

< X(ϵ)
• >t=

∫ t

0

σϵ1(X
(ϵ1)
s )2ds ≥ k2t, k > 0. (4.56)

Since D is a countable set and a→ La
T is non-negative continuous,

k2
∫ T

0

ID(X
(ϵ)
s )ds ≤

∫ T

0

ID(X
(ϵ)
s )d < X(ϵ) >s

=

∫ ∞

−∞
ID(a)L

a
T (X

(ϵ)
• )da

= 0 (a.s.).

This implies (i).
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Proof of (ii). Note that for k > 0,

< Z(ϵ1,ϵ2,θ)
• >t=

∫ t

0

((1− θ)σϵ1(X
(ϵ1)
s ) + θσϵ2(X

(ϵ2)
s ))2ds ≥ k2t. (4.57)

The similar argument as in the proof of (i) implies (ii), see, for example, Exercise
1.32 p.237 in Revuz-Yor [27]. Closely related technique to Lemma 4.5.6 is employed
in Hashimoto-Tsuchiya [9].

The next lemma is crucial in the proof of Theorem 4.5.2.

Lemma 4.5.7 (A priori estimates). For any α, there exits 0 < β ≤ 1 such that
∀0 < ϵ1, ϵ2 ≤ β,

sup
t∈[0,T ]

E[|X(ϵ1)
t −X

(ϵ2)
t |] ≤ α. (4.58)

Proof. Put
∆

(ϵ1,ϵ2)
t := X

(ϵ1)
t −X

(ϵ2)
t .

Let a0 = 1 > a1 > · · · > an−1 > an · · · , such that∫ an−1

an

dx

x
= n.

We choose a sequence (ρn)n∈N of smooth functions such that

supp(ρn) ⊂ [an, an−1]; 0 ≤ ρn(x) ≤
2

nx
;

∫ an−1

an

ρn(x)dx = 1.

We define a sequence (ψn)n∈N of smooth functions by

ψn(x) :=

∫ |x|

0

∫ y

0

ρn(u)dudy + an−1.

Then, (ψn)n∈N has the following properties

ψn(x) ≥ |x|; |ψ′
n(x)| ≤ 1; ψ′′

n(x) = ρn(|x|).

Moreover, we have

|∆(ϵ1,ϵ2)
t | ≤ ψn(∆

(ϵ1,ϵ2)
t )

= an−1 +

∫ t

0

ψ′
n(∆

(ϵ1,ϵ2)
s )[σϵ1(X

(ϵ1)
s )− σϵ2(X

(ϵ2)
s )]dWs

+
1

2

∫ t

0

ψ′′
n(∆

(ϵ1,ϵ2)
s )[σϵ1(X

(ϵ1)
s )− σϵ2(X

(ϵ2)
s )]2ds.

Since |ψ′
n(x)| ≤ 1, σϵ1 and σϵ2 are bounded, then∫ t

0

ψ′
n(∆

(ϵ1,ϵ2)
s )[σϵ1(X

(ϵ1)
s )− σϵ2(X

(ϵ2)
s )]dWs (4.59)
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is a martingale with mean 0. Therefore, we have

E[|∆(ϵ1,ϵ2)
t |] ≤ an−1 +

1

2
E[ψ′′

n(∆
(ϵ1,ϵ2)
s )[σϵ1(X

(ϵ1)
s )− σϵ2(X

(ϵ2)
s )]2ds]

≤ an−1 +
3

2
E[

∫ t

0

ρn(|∆(ϵ1,ϵ2)
s |)][σϵ1(X(ϵ1)

s )− σ(X(ϵ1)
s )]2ds]

+
3

2
E[

∫ t

0

ρn(|∆(ϵ1,ϵ2)
s |)[σϵ2(X(ϵ2)

s )− σ(X(ϵ2)
s )]2ds]

+
3

2
E[

∫ t

0

ρn(|∆(ϵ1,ϵ2)
s |)[σ(X(ϵ1)

s )− σ(X(ϵ2)
s )]2ds].

Here, we define

J
(ϵ1,ϵ2)
t (1) := E[

∫ t

0

ρn(|∆(ϵ1,ϵ2)
s |)][σϵ1(X(ϵ1)

s )− σ(X(ϵ1)
s )]2ds], (4.60)

J
(ϵ1,ϵ2)
t (2) := E[

∫ t

0

ρn(|∆(ϵ1,ϵ2)
s |)[σϵ2(X(ϵ2)

s )− σ(X(ϵ2)
s )]2ds], (4.61)

and
J
(ϵ1,ϵ2)
t (3) := E[

∫ t

0

ρn(|∆(ϵ1,ϵ2)
s |)[σ(X(ϵ1)

s )− σ(X(ϵ2)
s )]2ds]. (4.62)

Now, we remember that

ρn(|x|) ≤ I[an,an−1](|x|)
2

n|x|
,

and ∫ an−1

an

ρn(u)du = 1.

Consider J (ϵ1,ϵ2)
t (1) and J

(ϵ1,ϵ2)
t (2), we have

J
(ϵ1,ϵ2)
t (1) ≤ 2

nan
E[

∫ t

0

[σϵ1(X
(ϵ1)
s )− σ(X(ϵ1)

s )]2ds], (4.63)

and also
J
(ϵ1,ϵ2)
t (2) ≤ 2

nan
E[

∫ t

0

[σϵ2(X
(ϵ2)
s )− σ(X(ϵ2)

s )]2ds]. (4.64)

Now, we consider the term J
(ϵ1,ϵ2)
• (3). By the equation (4.27), we note that

J
(ϵ1,ϵ2)
t (3) ≤ E[

∫ t

0

ρn(|∆(ϵ1,ϵ2)
s |)|f(X(ϵ1)

s )− f(X(ϵ2)
s )|ds]. (4.65)

Let J̃ l
t = J

(ϵ1,ϵ2,l)
t (3) be

J̃ l
t = J

(ϵ1,ϵ2,l)
t (3) := E[

∫ t

0

ρn(|∆(ϵ1,ϵ2)
s |)|fl(X(ϵ1)

s )− fl(X
(ϵ2)
s )|ds].
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By Hadamard formula;

fl(x)− fl(y) = (x− y)

∫ 1

0

f
′

l (x+ θ(y − x))dθ, (4.66)

we have

J̃ l
t = E[

∫ t

0

ρn(|∆(ϵ1,ϵ2)
s |)|fl(X(ϵ1)

s )− fl(X
(ϵ2)
s )|ds]

≤ 2E[

∫ t

0

I[an,an−1](|∆(ϵ1,ϵ2)
s |) |fl(X

(ϵ1)
s )− fl(X

(ϵ2)
s )|

n|∆(ϵ1,ϵ2)
s |

ds]

=
2

n
E[

∫ t

0

∫ 1

0

f
′

l (X
(ϵ1)
s + θ(X(ϵ2)

s −X(ϵ1)
s ))dθds].

Let g be a non-negative Borel function. We have the occupation formula∫ t

0

g(Z(ϵ1,ϵ2,θ)
s )d < Z(ϵ1,ϵ2,θ)

• >s=

∫ ∞

−∞
g(a)La

t (Z
(ϵ1,ϵ2,θ)
• )da. (4.67)

Since we know that
< Z(ϵ1,ϵ2,θ)

• >t≥ k2t,

we obtain

J̃ l
t ≤

2

n
E[

∫ 1

0

dθ

∫ t

0

f
′

l (Z
(ϵ1,ϵ2,θ)
s )ds]

≤ 2

nk2
E[

∫ 1

0

dθ

∫ ∞

−∞
La
t (Z

(ϵ1,ϵ2,θ)
• )f

′

l (a)da].

For θ ∈ [0, 1], 0 < ϵ1, ϵ2 ≤ 1, we have

J̃ l
t ≤

2

n
· C̃L

k2

∫ ∞

−∞
f

′

l (a)da

≤ 2

n
· C̃L

k2
v(fl)

≤ 2

n
· C̃L

k2
v(f).

(4.68)

Since
lim
l→∞

fl = f(x), x /∈ D (4.69)

and
Leb.{s ; 0 ≤ s ≤ T, X(ϵ1)

s ∈ D or X(ϵ2)
s ∈ D} = 0 (a.s.), (4.70)

we have
lim
l→∞

|fl(X(ϵ1)
s )− fl(X

(ϵ2)
s )| = |f(X(ϵ1)

s )− f(X(ϵ2)
s )| (4.71)
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almost surely on [0, T ] × Ω, w.r.t. dt × dP. Note that f and fl are uniformly
bounded. We have

lim
l→∞

J̃ (ϵ1,ϵ2,l) = E[

∫ t

0

ρn(|∆(ϵ1,ϵ2)
s |)|f(X(ϵ1)

s )− f(X(ϵ2)
s )|ds]. (4.72)

By the inequalities (4.68), we obtain

J
(ϵ1,ϵ2)
t (3) ≤ 2

n
· C̃L

k2
v(f). (4.73)

Finally, we will come back to estimate E[|∆(ϵ1,ϵ2)
t |]. We know that

E[|∆(ϵ1,ϵ2)
t |] ≤ an−1 +

3

2
J
(ϵ1,ϵ2)
t (1) +

3

2
J
(ϵ1,ϵ2)
t (2) +

3

2
J
(ϵ1,ϵ2)
t (3).

By (4.63) and also by (4.64) we obtain that

3

2
J
(ϵ1,ϵ2)
t (1) +

3

2
J
(ϵ1,ϵ2)
t (2) ≤ 3

nan
E[

∫ t

0

[σϵ1(X
(ϵ1)
s )− σ(X(ϵ1)

s )]2ds]

+
3

nan
E[

∫ t

0

[σϵ2(X
(ϵ2)
s )− σ(X(ϵ2)

s )]2ds].

(4.74)

Let α > 0 be given, choose n such that

an−1 <
α

3
,

and also
3

2
J
(ϵ1,ϵ2)
t (3) ≤ 3

n
· C̃L

k2
v(f) <

α

3
. (4.75)

For this n, we have

3

2
J
(ϵ1,ϵ2)
t (1) +

3

2
J
(ϵ1,ϵ2)
t (2) ≤ 3

nan
(E[

∫ t

0

(σϵ1(X
(ϵ1)
s )− σ(X(ϵ1)

s ))2ds]

+ E[

∫ t

0

(σϵ2(X
(ϵ2)
s )− σ(X(ϵ2)

s ))2ds])

≤ 3

nank2
(E[

∫ ∞

−∞
(σϵ1(a)− σ(a))2La

t (X
(ϵ1)
· )da]

+ E[

∫ ∞

−∞
(σϵ2(a)− σ(a))2La

t (X
(ϵ2)
· )da]).

As is well known, the local time La
t (X

(ϵ1)
· ) can be written as La

t (X
(ϵ1)
· ) = La

<X(ϵ1)>t
(B·),

where B is called the Dambis, Dubins-Schwarz Brownian motion. See, Chapter 5
and Chapter 6 in Revuz-Yor [27]. Note that

< X(ϵ1) >t≤ k2t
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and
0 ≤ La

<X(ϵ1)>t
(B·) ≤ La

k2t(B·),

hold. Then we obtain

E[

∫ ∞

−∞
(σϵ1(a)− σ(a))2La

t (X
(ϵ1)
· )da] ≤ E[

∫ ∞

−∞
(σϵ1(a)− σ(a))2La

k2t(B·)da]

≤ 4k2 · k2t.

Since a 7→ La
k2t is a continuous function with a compact support a.s.,

lim
ϵ1→0

∫ ∞

−∞
(σϵ1(a)− σ(a))2La

k2t(B·)da = 0, (4.76)

holds a.s.. By Lebesgue convergence theorem, we obtain

lim
ϵ1→0

E[

∫ ∞

−∞
(σϵ1(a)− σ(a))2La

t (X
(ϵ1)
· )da] ≤ lim

ϵ1→0
E[

∫ ∞

−∞
(σϵ1(a)− σ(a))2La

k2t(B·)da]

= 0.

Thus we have proved Lemma 4.5.7.

Proof of Theorem 4.5.2. In this part, we use the Notation and some basic argu-
ments on functional analysis employed in the section 4. We define ϵn := 1/n and
write X(n) instead of X(ϵn). Since 0 < k ≤ σϵn ≤ K <∞, there exists C > 0 such
that for n ∈ N

sup
t∈[0,T ]

E[|X(n)
t |4] ≤ C. (4.77)

This result is called a priori estimate in the High Norm.

Lemma 4.5.8. (X(n))n∈N is a Cauchy sequence in N2.

Proof. Let for some subsequences (pn)n∈N, (qn)n∈N,

lim
n→∞

sup
0≤t≤T

E[|X(pn)
t −X

(qn)
t |2] = C > 0 (4.78)

holds. Since
lim
n→∞

||X(pn) −X(qn)||1 = 0,

we can choose subsequences (p′n)n∈N, (q′n)n∈N such that

lim
n→∞

|X(p′n)
T −X

(q′n)
T | = 0 (a.s.).

Using
sup
n

E[|X(p′n)
T −X

(q′n)
T |4] <∞,
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the family of variables |X(p′n)
T −X

(q′n)
T |2 is uniformly integrable. Note that X(p′n)

t −
X

(q′n)
t (0 ≤ t ≤ T ) is a martingale, we have by Doob’s maximal inequality

||X(p′n) −X(q′n)||22 ≤ E[ sup
0≤t≤T

|X(p′n)
t −X

(q′n)
t |2]

≤ 4E[|X(p′n)
T −X

(q′n)
T |2].

(4.79)

Thus, we observe that
lim
n→∞

||X(p′n) −X(q′n)||2 = 0. (4.80)

This fact contradicts the equation (4.78).

Therefore, the sequence (X(n))n∈N converges to some X̃ ∈ N2. Moreover, we
observe that

lim
n→∞

(∥ X(n) − X̃ ∥1 + ∥ X(n) − X̃ ∥2) = 0. (4.81)

Let
RHS

(n)
t := X0 +

∫ t

0

σϵn(X
(n)
s )dWs. (4.82)

From Ito theory, we know that the strong solutions X(n) satisfy their respective
SDEs in the following sense

E[ sup
0≤t≤T

|X(n)
t −RHS

(n)
t |2] = 0. (4.83)

This implies
∥ X(n)

t −RHS(n) ∥22= 0. (4.84)

Since X(n) ∈ N2 (n = 1, 2, · · · ) is a sequence of martingales, there exists a mar-
tingale version of the process X̃. Let X be a martingale version of X̃. Here,
let

RHSt := X0 +

∫ t

0

σ(Xs)dWs. (4.85)

Lemma 4.5.9.
Leb.{s ; 0 ≤ s ≤ T, Xs ∈ D} = 0 (a.s.) (4.86)

holds.

Proof. Since the sequence of < X(n) >t

k2t ≤< X(n) >t, n = 1, 2, · · · , (a.s.)

converges to
< X >t, 0 ≤ t ≤ T, (a.s.),

we have
k2t ≤< X >t, 0 ≤ t ≤ T, (a.s.). (4.87)
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Let La
t (X) be the local time at a of X. We have

k2
∫ T

0

ID(Xs)ds ≤
∫ T

0

ID(Xs)d < X >s

=

∫ ∞

−∞
La
T (X)ID(a)da.

(4.88)

Let
ĈL := sup

a∈R
E[La

T (X)]. (4.89)

By the argument employed in the proof of Lemma 4.5.5, we can prove that ĈL <∞
holds. Thus, we have

E[

∫ T

0

ID(Xs)ds] ≤
1

k2
E[

∫ ∞

−∞
La
T (X)ID(a)da]

≤ ĈL

k2

∫ ∞

−∞
ID(a)da

= 0.

This implies
Leb.{s ; 0 ≤ s ≤ T, Xs ∈ D} = 0 (a.s.). (4.90)

Now, we will show that RHS(n) converges RHS in N2. Observe using Lemma
4.5.4 (iii) that

lim
n→∞

∥ RHS(n) −RHS ∥22

= lim
n→∞

sup
t∈[0,T ]

E[|
∫ t

0

σϵn(X
(n)
s )− σ(Xs)dWs|2]

= lim
n→∞

E[

∫ T

0

{
σϵn(X

(n)
s )− σ(Xs)

}2
ds]

= lim
n→∞

E[

∫ T

0

{
σϵn(X

(n)
s )− σϵn(Xs) + σϵn(Xs)− σ(Xs)

}2
ds]

≤ 2 lim
n→∞

E[

∫ T

0

|σϵn(X(n)
s )− σϵn(Xs)|2ds]

+ 2 lim
n→∞

E[

∫ T

0

|σϵn(Xs)− σ(Xs)|2ds]

≤ 2 lim
n→∞

E[

∫ T

0

|f(X(n)
s ∨Xs + ϵn)− f(X(n)

s ∧Xs − ϵn)|ds]

+ 2 lim
n→∞

E[

∫ T

0

(σϵn(Xs)− σ(Xs))
2ds].
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Let

S
(n)
1 (T ) := E[

∫ T

0

|f(X(n)
s ∨Xs + ϵn)− f(X(n)

s ∧Xs − ϵn)|ds], (4.91)

and also
S
(n)
2 (T ) := E[

∫ T

0

(σϵn(Xs)− σ(Xs))
2ds]. (4.92)

By Doob’s maximal inequality, we have

E[ sup
0≤s≤T

|X(n)
s −Xs|2] ≤ E[|X(n)

T −XT |2]

≤ 4||X(n) −X||22.
(4.93)

This implies
lim
n→∞

sup
0≤s≤T

|X(n)
s −Xs| = 0 (a.s.). (4.94)

By Lemma 4.5.9, we have

Leb.{s ; 0 ≤ s ≤ T, Xs ∈ D} = 0 (a.s.). (4.95)

Note that X(n)
s ∨Xs + ϵn and X

(n)
s ∧Xs − ϵn converge to Xs. We observe that

Leb.{s ; 0 ≤ s ≤ T, lim
n→∞

|f(X(n)
s ∨Xs + ϵn)− f(X(n)

s ∧Xs − ϵn)|

does not converge to 0} = 0 (a.s.).

Since f is a bounded function, we have

lim
n→∞

S
(n)
1 (T ) = 0. (4.96)

For S(n)
2 (T ), we have

S
(n)
2 (T ) = E[

∫ T

0

(σϵn(Xs)− σ(Xs))
2ds]

≤ 1

k2
E[

∫ T

0

(σϵn(Xs)− σ(Xs))
2d < X >s]

≤ 1

k2
E[

∫ ∞

−∞
(σϵn(a)− σ(a))2La

T (X·)da].

Since (σϵn(a)−σ(a))2 is uniformly bounded by 4k2, and a 7→ La
T (X·) is a continuous

function with a compact support a.s., we have

lim
n→∞

∫ ∞

−∞
(σϵn(a)− σ(a))2La

T (X·)da = 0 (a.s.).

By Lebesgue convergence theorem, we can conclude

lim
n→∞

S
(n)
2 (T ) = 0. (4.97)
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Therefore, we have
lim
n→∞

||RHS(n) −RHS||22 = 0. (4.98)

Since X(n) = RHS(n) converges to X̃ in N2, X(n) = RHS(n) converges to X in
N2. We have

||X −RHS||22 = 0. (4.99)
Note that X is a martingale having continuous paths,

E[ sup
0≤s≤T

|Xt −RHSt|2] ≤ 4E[|XT −RHST |2]

≤ 4||X −RHS||22
= 0.

(4.100)

Thus, X is the desired strong solution. This concludes the proof of Theorem
4.5.2.
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