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Abstract

In this doctoral thesis, we present the results related to the eigenvalues of the
Zakharov-Shabat operator in the semiclassical limit. The Zakharov-Shabat
operator is a kind of the one-dimensional Dirac operator and appears as one
of the Lax pair for the defocusing or focusing nonlinear Schrödinger equa-
tion. This operator is self-adjoint in the defocusing case and non-self-adjoint
in the focusing case provided the potential is real-valued.

First, we consider the self-adjoint Zakharov-Shabat operator. Real eigen-
values exist when the square of the potential has a simple well. We derive the
distribution for the eigenvalues by using the exact WKB method. Moreover
we show that the eigenvalues stay real for a sufficiently small non-self-adjoint
perturbation when the potential has some PT -like symmetry.

Second, we consider the distribution of eigenvalues of the non-self-adjoint
Zakharov-Shabat operator with a simple well type potential and a double
well type potential. In the simple well case, we show that all of the eigenval-
ues are purely imaginary for sufficiently small semiclassical parameter. In
the symmetric double well case, we observe the eigenvalue splitting with an
exponential estimate described by the action between the two wells.
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Chapter 1

Introduction

Our aim is the study of the eigenvalues of non-self-adjoint differential opera-
tors. The spectral theory for the self-adjoint differential operators has been
established since the beginning of 20th century (e.g., by von Neumann in
[24]) with the development of the quantum mechanics. On the contrary, the
spectral theory for the non-self-adjoint operators is still under developing
in spite of its importance. It is now one of the central problems in math-
ematics and physics. For example the pseudo-spectrum of non-self-adjoint
operators is studied in connection with the numerical analysis (see for ex-
ample Davies [5, 6], Trefethen [21], Dencker-Sjöstrand-Zworski [8] etc.), and
the real-valuedness of eigenvalues of PT -symmetric operators is studied for
non-self adjoint Schrödinger operators (for example Bender and Boettcher
[2], Boussekkine, Mecherout, Ramond and Sjöstrand [3], [23] etc.).

We are interested in the eigenvalues of the non-self-adjoint first order sys-
tems. Dencker studied the pseudospectrum for such operators in 2008, and
established some basic theory in [7]. Under this background, we study the
eigenvalues of the the so-called Zakharov-Shabat operators defined by

L± =

 ih
d

dx
−iA(x)

±iA(x) −ih d
dx

 ,

where h is a positive small parameter (called semiclassical parameter) and
A(x) is a potential. Notice that L+ is self-adjoint and L− is non-self-adjoint
if the potential is real-valued.

These operators appear in the study of the soliton theory for the nonlinear
Schrödinger equations

ih
∂ψ

∂t
+
h2

2

∂2ψ

∂x2
∓ |ψ|2ψ = 0, ψ = ψ(t, x)

with the initial condition ψ(0, x) = A(x). The equation is called defocusing
(resp. focusing) for the minus (resp. plus) sign of the nonlinear term. It is
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also known that these nonlinear equations have soliton solutions, and can be
solved by using the inverse scattering method, which reduces the nonlinear
equations to the direct and inverse eigenvalue (and scattering) problems of
linear operators, called Lax pair. The Zakharov-Shabat operator is one of
this Lax pair, and each eigenvalue corresponds to a soliton solution for the
nonlinear equation.

This doctoral thesis consists of two subjects.
The first one is concerned with the self-adjoint Zakharov-Shabat operator

L+. Assume that the potential A(x) has a simple well at a fixed real energy
level λ0. Adding a small complex perturbation iεB(x) to the potential and
assuming PT -symmetry, which means that A is even and B is odd, or A
is odd and B is even, we prove that the eigenvalues stay real for suficiently
small ε and h. This is an analogy of the result by Boussekkine, Mecherout
([3]) about the Schrödinger operator.

The second one is concerned with the non-self-adjoint Zakharov-Shabat
operator L−. The potential is supposed to decay at infinity. Then the
spectrum of L− consists of essential spectrum on R and eigenvalues near
the imaginary axis. We give the quantization conditions of the eigenvalues
near iλ0 for a fixed λ0 > 0 in case where the potential has a simple well
at the energy level λ0 and in case where it has double wells. In the simple
well case, we deduce that the eigenvalues near iλ0 are all purely imagi-
nary. This is a recovery of a result by Klaus and Shaw ([16]) in a different
semiclassical setting. In the double well case, we observe an interesting
splitting phenomenon. If the potential A is an even function, each pair of
eigenvalues near iλ0 corresponding to the two symmetric wells split into two
purely imaginary eigenvalues, and if A is an odd function, they split into two
non-purely imaginary eigenvalues. In both cases, the difference of the two
eigenvalues is exponentially small with respect to h and the exponential rate
is given by the action of the barrier between two wells. These results also
give an answer to the question by Klaus and Shaw ([17]) who conjectured
the existence of non-purely imaginary eigenvalues for double lobe potentials
(a stronger condition than double well potential), although h is assumed to
be small enough in our results.

The main tool of our study is the exact WKB method. WKB solution
is an asymptotic solution in powers of the small parameter h. The name
comes from the three physicists Wentzel, Kramers and Brillouin. It is used
since the beginning of 20th century for the study of quantum mechanics, or
even in the 19th century by mathematicians such as Liouville or Green for
the study of Sturm-Liouville problems. The essential difficulty lies in the
divergence of the power series in h. In 1970’s, Ecalle and Voros successed to
overcome this difficulty by using a Borel resummation of this series. Since
that time, WKB method (now called exact WKB method) has developed in
a rigorous way. The method we use here was first discovered for Schrödinger
operators by Gérard and Grigis in [12] and later extended to 2×2 systems by
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Fujiié, Lasser and Nédélec in [9]. It uses another resummation to construct
an exact solution. This method is reviewed in Chapter 2.
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Chapter 2

Exact WKB method

2.1 General theory

We review the construction of the exact WKB solutions in [9] and apply to
the 2× 2 system of the first order differential equations

h

i

d

dx
u(x) =

(
0 F (x)

−G(x) 0

)
u(x), (2.1.1)

where F (x) and G(x) are holomorphic function in a simply connected com-
plex domain D ⊂ C. Let us take a point γ ∈ D, and define the phase
function by

z(x; γ) =

∫ x

γ

√
F (t)G(t)dt

Note that the zeros of F (x) and G(x) are referred to as turning points of the
system (2.1.1). We write the solutions of the equation (2.1.1) in the form

u±(x, h; γ) = e±z(x;γ)/hQ(x)

(
0 1
1 0

)(1±1)/2

w±(x, h),

where Q(x) is 2× 2 matrix-valued functions defined by

Q(x) =

(
H(x)−1 H(x)−1

iH(x) −iH(x)

)
, H(x) =

(
F (x)

G(x)

) 1
4

.

Then, w±(x, h) satisfy the equation

d

dx
w± +

(
0 0
0 ±2z′/h

)
w± =

(
0 c(x)
c(x) 0

)
w±, where c(x) =

H
′
(x)

H(x)
.

(2.1.2)
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Let {w±
n (x)}∞n=−1 be a sequence of functions satisfying the recurrence dif-

ferential equations 
w±
−1 = 0, w±

0 = 1,

d

dx
w±
2n = c(x)w±

2n−1,(
d

dx
± 2z′

h

)
w±
2n−1 = c(x)w±

2n−2,

(2.1.3)

the vector-valued infinite series

w±(x, h) =
∞∑
n=0

(
w±
2n(x, h)

w±
2n−1(x, h)

)
formally satisfies the equation (2.1.2). Each w±

n is uniquely determined when
an initial condition is given at some point x0 which is not a turning point,

w±
n |x=x0 = 0, n ≥ 1, (2.1.4)

We denote these formal solutions constructed above by u(x, h; γ, x0). The
points γ and x0 are called base points for the phase function z(x) and the
amplitude w(x, h). We also write the series

∑
w±
2n as w±

even(x, h;x0), and∑
w±
2n−1 as w±

odd(x, h;x0).
We recall here the following three propositions. The proofs are found in

[9] or [12]. The first is about the convergence of the series.

Proposition 2.1 ([9, Lemma 3.2]). Two series w±
even(x, h;x0) and w

±
odd(x, h;x0)

are absolutely convergent in a neighborhood of x0. These solutions extend
analytically to any turning point free subdomain Ω of D.

The second property is about the Wronskian between two exact WKB so-
lutions.

Proposition 2.2 ([9, Lemma 3.4]). Let γ ∈ D and x0, x1 ∈ Ω. Then, the
Wronskian of the exact WKB solutions u±(x, h; γ, x0) and u∓(x, h; γ, x1) is
given by

W
(
u±(x, h; γ, x0),u

∓(x, h; γ, x1)
)
= ±2iw±

even(x1, h;x0),

where W(f , g) := det(f , g).

The final proposition is about the asymptotic property of the exact WKB
solution. Let x0 ∈ Ω be fixed.

Definition 2.3. We denote by Ω+ (resp. Ω−) the subset of all x ∈ Ω such
that there exists a path in Ω from x0 to x along which Rez(x;x0) is strictly
increasing (resp. decreasing).
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Proposition 2.4 ([9, Proposition 3.3], [12, Proposition 1.2]). The functions
w+
even(x, h;x0) and w+

odd(x, h;x0) have the asymptotic expansions as h → 0
in all compact subsets of Ω+:

w+
even(x, h;x0)−

N∑
n=0

w+
2n (x, h;x0) = O(hN+1),

w+
odd(x, h;x0)−

N∑
n=0

w+
2n−1 (x, h;x0) = O(hN+1).

Similarly, The functions w−
even(x, h;x0) and w−

odd(x, h;x0) have the asymp-
totic expansions as h→ 0 in all compact subsets of Ω−:

w−
even(x, h;x0)−

N∑
n=0

w−
2n (x, h;x0) = O(hN+1),

w−
odd(x, h;x0)−

N∑
n=0

w−
2n−1 (x, h;x0) = O(hN+1).

It is sometimes convenient to consider the Stokes lines in order to apply
these asymptotic properties.

Definition 2.5 (Stokes line). The Stokes lines are defined as the level curves
of the real part of the phase function z(x; γ){

x ∈ D; Re z(x; γ) = Re

∫ x

γ

√
F (t)G(t)dt = const.

}
.

In particular, the Stokes lines passing through the point γ = γ0 in D are
defined by {

x ∈ D; Re z(x; γ0) = Re

∫ x

γ0

√
F (t)G(t)dt = 0

}
.

Along a path which intersects transversally with the Stokes lines, Rez(x) or
−Rez(x) is strictly increasing. Such a path is sometimes called canonical.
From a turning point, which is a singularity around which the phase function
is multi-valued, Stokes lines present a particular configuration. In particular,
three Stokes lines emanate from a simple turning point with an asymptotic
angle 2π/3 between two neighboring Stokes lines.

2.2 Exact WKB solution to the Zakharov-Shabat
equation

We first construct the exact WKB solution to the equation

L+u(x) = λu(x) (2.2.1)
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for the operator

L+ =

 ih
d

dx
−iA(x)

iA(x) −ih d
dx

 .

Here, A(x) is a real-valued function and analytic in the complex domain D.
This equation is also written in the form

h

i

d

dx
u(x) =

(
−λ −iA(x)

−iA(x) λ

)
u(x).

After a change of unknown function u 7→
(

1 1
−i i

)
u, this system can be

reduced to the form (2.1.1) with F (x) = A(x)+λ and G(x) = A(x)−λ, i.e.,

h

i

d

dx
u(x) =

(
0 A(x) + λ

−(A(x)− λ) 0

)
u(x).

Hence, we can construct exact WKB solutions for (2.2.1) as in the previous
section

u±(x, h; γ, x0) =

(
1 1
−i i

)
e±z(x;γ)/hQ(x)

(
0 1
1 0

) 1±1
2

w±(x, h;x0), (2.2.2)

where the phase function z(x; γ) is defined by

z(x; γ) :=

∫ x

γ

√
A(t)2 − λ2dt,

and the 2× 2 matrix function Q(x) is given by

Q(x) =

(
H(x)−1 H(x)−1

iH(x) −iH(x)

)
, H(x) =

(
A(x) + λ

A(x)− λ

) 1
4

. (2.2.3)

The vector-valued function w±(x, h;x0) are the series

w±(x, h;x0) =

(
w±
even(x, h;x0)
w±
odd(x, h;x0)

)
:=

∞∑
n=0

(
w±
2n(x, h)

w±
2n−1(x, h)

)
constructed inductively by (2.1.3) and (2.1.4).

As in the previous section, this formal solution converges in a neighbor-
hood of x0, and defines an analytic exact solution in Ω. The asymptotic
properties (Propsition 2.4) also hold. The Wronskian formula (Proposition
2.2) slightly changes because of the matrix

W
(
u+(x, h; γ, x0),u

−(x, h; γ, x1)
)
= 2i det

(
1 1
−i i

)
w+
even(x1, h;x0)

= −4w+
even(x1, h;x0).
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If we find a canonical curve along which Rez(x) = Re
∫ x√

A2(t)− λ2dt
strictly increases, we obtain from Proposition 2.4

W
(
u+(x, h; γ, x0),u

−(x, h; γ, x1)
)
= −4 +O(h)

as h→ 0.
In the same way, we construct the exact WKB solutions to the equation

L−u = λu(x) (2.2.4)

with the operator

L− =

 ih
d

dx
−iA(x)

−iA(x) −ih d
dx

 .

Let us introduce the change of the unknown function u →
(

1 1
−1 1

)
u.

Then, this system reduce to

h

i

d

dx
u(x) =

(
0 i(−A(x) + iλ)

−i(A(x)− iλ) 0

)
u(x).

Therefore, the exact WKB solutions to the (2.2.4) are constructed in the
form

u±(x, h; γ, x0) =

(
1 1
−1 1

)
e±z(x;γ)/hQ(x)

(
0 1
1 0

) 1±1
2

w±(x, h;x0), (2.2.5)

where the phase functions z(x; γ) is in the form

z(x; γ) =

∫ x

γ

√
−A(t)2 − λ2dt = i

∫ x

γ

√
A(t)2 + λ2dt (2.2.6)

for the base point γ ∈ Ω. The matrix Q(x) is the same form as in (2.2.3),
where we take the function H(x) as

H(x) =

(
A(x) + iλ

A(x)− iλ

) 1
4

.

The series w±(x, h;x0) also are constructed by (2.1.3) and (2.1.4).
In this case, the Wronskian formula for the exact WKB solutions u+(x, h; γ, x0)

and u−(x, h; γ, x1) with γ ∈ D and x0, x1 ∈ Ω is given by

W
(
u+(x, h; γ, x0),u

−(x, h; γ, x1)
)
= 4iw+

even(x1, h;x0).

We also have asymptotic property of this

W
(
u+(x, h; γ, x0),u

−(x, h; γ, x1)
)
= 4i+O(h)

when we have a canonical curve along which +Rez(x) = +Im
∫ x√

A2(t) + λ2dt
strictly increases.
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Chapter 3

Eigenvalues of the
self-adjoint Zakharov-Shabat
operator and its PT
symmetric perturbation

In this chapter, we consider the eigenvalue problem

L+u(x) = λu(x) (3.1.1)

for the first order 2× 2 differential system

L+ =

 ih
d

dx
−iA(x)

iA(x) −ih d
dx


with a real-valued function A(x) and a small positive parameter h.

Note that this operator is (formally) self-adjoint since A(x) is real-valued.
Indeed, we have

⟨L+u,v⟩ = ⟨u, L+v⟩

for any pair u,v ∈ C∞
0 (R)×C∞

0 (R). Here ⟨·, ·⟩ denotes the L2-inner product.
We will see below that, anagolouly to the Schrödinger case, L+ has real
eigenvalues when A(x)2 form a well at an energy level. Notice that the
potential V (x) in the Schrödinger operator corresponds to A(x)2 in our
Dirac case.

We assume the following assumption.

Assumption 1. Let A(x) be a real-valued function analytic in D := {z ∈
C; |Imz| < δ} for some δ > 0, and λ0 a positive real number satisfying the
following conditions:
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1. There exist two real numbers, α0 and β0 (α0 < β0) such that |A(x)| =
λ0, x ∈ R if and only if x = α0, β0.

2. A
′
(α0)A

′
(β0) ̸= 0.

3. |A(x)| < λ0 for α0 < x < β0, and |A(x)| > λ0 for x < α0 and x > β0.

4. lim inf
|x|→∞

|A(x)| > λ0.

This assumption permits two types of potentials. One is a simple well type
where A(α0) = A(β0), and the other is monotonic type where A(α0) =
−A(β0). In both cases, A(x)2 has a simple well, see Figure 3.

Figure 3.1: Examples of the potential A(x).

Recall that the phase function of the solution is of the form

z(x) =

∫ x

γ

√
A(t)2 − λ2dt.

Under Assumption 1, the solution is oscillating on the interval [α(λ), β(λ)]
for real λ since

√
A(x)2 − λ2 is purely imaginary for x ∈ [α(λ), β(λ)], and is

increasing or decreasing exponentially outside the interval. In other words,
the region

{
x ∈ R; A(x)2 − λ2 < 0

}
corresponds to the classically allowed

region and
{
x ∈ R; A(x)2 − λ2 > 0

}
corresponds to the classically forbidden

region as in the case of the Schrödinger operator with a simple well potential.
We then introduce the action integral. For λ ∈ R close enough to λ0, the

function λ2 − A(x)2 has exactly two real zeros α(λ) and β(λ) close to α0

and β0 respectively, and we define the action integral

I(λ) :=

∫ β(λ)

α(λ)

√
λ2 −A(t)2dt. (3.1.2)

This is a real analytic function of λ ∈ R in a neighborhood of λ0. The
quantization condition of eigenvalues near λ0 is given by the following Bohr-
Sommerfeld type formula:
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Theorem 3.1. Suppose Assumption 1. In the case A(α0) = A(β0), there
exist positive constants δ and h0, and a function r+(λ, h) bounded on [λ0 −
δ, λ0 + δ] × (0, h0] such that λ ∈ [λ0 − δ, λ0 + δ] is an eigenvalue of L for
h ∈ (0, h0] if and only if

I(λ) =

(
k +

1

2

)
πh+ h2r+(λ, h) (3.1.3)

holds for some integer k. In the case A(α0) = −A(β0), there exist positive
constants δ and h0, and a function r−(λ, h) bounded on [λ0−δ, λ0+δ]×(0, h0]
such that λ ∈ [λ0− δ, λ0+ δ] is an eigenvalue of L for h ∈ (0, h0] if and only
if

I(λ) = kπh+ h2r−(λ, h) (3.1.4)

holds for some integer k.

We give the proof to this theorem in Section 3.3.
Next, we add a small complex perturbation to the potential A(x):

Aε(x) = A(x) + iεB(x)

with a real-valued function B(x) and a positive small parameter ε, and
consider the eigenvalues of Lε

Lε :=

 ih
d

dx
−iAε(x)

iAε(x) −ih d
dx

 .

This operator is no longer self-adjoint, and eigenvalues become complex in
general.

There are special cases that the complex eigenvalues of the non-self-adjoint
operator become real when the operator has some symmetry. In the case of
Schrödinger operator, PT -symmetry has been expected to be an alternative
to the self-adjointness in order to have real eigenvalues. In recent studies,
Boussekkine and Mecherout considered in [3] the Schrödinger operator with
PT -symmetry. Let Pε be the Schrödinger with a complex perturbation

Pε := −h2 d
2

dx2
+ V (x) + iεW (x),

where V (x) and W (x) are real-valued function. It is said that that Pε is
PT -symmetry if P ε is commutative for the product of two operators P and
T , that is, PT Pε = PεPT . Here, P and T are given by

Pux = u(−x), T u(x) = u(x),
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(see [3, 23]). Moreover, the condition that Pε is PT -symmetry is equivalent
to that V (x) is an even function and W (x) is an odd function. Under the
simple well condition on V (x) and λ0, Boussekkine and Mecherout showed
that the eigenvalues stay real near λ0 for sufficiently small h and ε. After
that, Boussekkine, Mecherout, Ramond and Sjöstrand studied in [23] the
double well case with PT -symmetry, and found that the eigenvalues stay
real only for exponentially small ε with respect to h.

We continue in this direction and prove that a sufficiently small com-
plex perturbation of the self-adjoint Zakharov-Shabat operator Lε has real
eigenvalues when A(x) and B(x) have some PT -like symmetry in the case
where A(x)2 has a simple well, even though the perturbed operator Lε is
non-self-adjoint. Here assume the following symmetry condition on A(x)
and B(x).

Assumption 2. The function B(x) is real-valued, analytic and bounded on
R. A(x) and B(x) satisfy for x ∈ R either

A(x) = A(−x), B(x) = −B(−x), (3.1.5)

or

A(x) = −A(−x), B(x) = B(−x). (3.1.6)

The following theorem shows that the eigenvalues of Lε are real for suffi-
ciently small ε and h.

Theorem 3.2. Suppose Assumption 1 and 2. Then there exist positive
constants ε0 and h0 such that σp(Lε) ∩ {λ ∈ C : |λ− λ0| < ε0} ⊂ R when
0 < ε ≤ ε0 and 0 < h ≤ h0.

3.2 Quantization condition for the eigenvalues of
L+

In this section, we derive the quantization condition for the eigenvalues of
L+. In order to describe the condition, we define the exact WKB solutions
to the equation (3.1.1) on D, and consider the connections of the solutions
near the turning points α(λ) and β(λ), simple zeros of A(x)2 − λ2.

Now we choose the points α(λ) and β(λ) as the base point of the phase
function z(x) of the exact WKB solutions to the equation (3.1.1). We in-
troduce the Stokes lines by the Definition 2.5, that is,{

x ∈ D; Re z(x; γ) = Re

∫ x

γ

√
A(t)2 − λ2dt = const.

}
.
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By a simple calculation, we see that the Stokes lines emanating from α(λ)
(resp. β(λ)) have angles of 0, 2π/3, and 4π/3 (resp. π/3, π, and 5π/3).
These Stokes lines separate the complex domain D into four sectors as in
Figure 3.2 if δ is chosen sufficiently small.

Here, we put two branch cuts on the Stokes lines emanating from α at an
angle 2π/3 and from β at an angle 5π/3 since the functions

√
A(x)2 − λ2

and H(x) are multi-valued in the complex plane around the turning points
α and β. We choose the branches such that

√
A(x)2 − λ2 and H(x) are

both positive when λ is real and x > β(λ).
We take x1 and x4 as in Figure 3.2 for the base point of amplitude,

and define the exact WKB solutions u1 and u4 so that u1 ∈ L2(R+) and
u4 ∈ L2(R−) respectively, i.e.

u1 = u+(x, h;α, x1), u4 = u−(x, h;β, x4).

Figure 3.2: The Stokes lines and base points

Then, µ near µ0 is an eigenvalue of the equation (3.1.1) if and only if two
solutions u1 and u4 are linearly dependent. This means that the quantization
condition is given by

W(u1,u4) = 0. (3.2.1)

To calculate this Wronskian, we also define four solutions

u2 = u+(x, h;α, x2), u3 = u−(x, h;α, x3),

ũ2 = u+(x, h;β, x2), ũ3 = u−(x, h;β, x3)

with base points x2 and x3, and write u1 and u4 by the linear combination
of them:

u1 = c2u2 + c3u3, u4 = d2ũ2 + d3ũ3.
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Then, the Wronskian of u1 and u4 is represented by

W(u1,u4) = e2iI(λ)/h(c2d3 − c3d2)W(u2,u3),

where I(λ) is action integral defined by (3.1.2). We can easily check that
the solutions u2 and u3 are linearly independent. Therefore, we see that the
condition (3.2.1) is equivalent to

exp

[
2i

h

(
I(λ) +

h

2i
log

(
−c2d3
c3d2

))]
= −1,

that is,

I(λ) +
h

2i
log

(
−c2d3
c3d2

)
=

(
k +

1

2

)
πh (3.2.2)

for some k ∈ Z.
To complete the proof of Theorem 3.2.2, we calculate the connection

coefficients cj and dk (j, k ∈ {2, 3}). Note that each coefficient is represented
in terms of the Wronskians as

c2 =
W(u1,u3)

W(u2,u3)
, c3 =

W(u1,u2)

W(u3,u2)
,

c̃2 =
W(u4, ũ3)

W(ũ2, ũ3)
, c̃3 =

W(u4, ũ2)

W(ũ3, ũ2)
.

By using the Wronskian formula and the asymptotic expansion for the ex-
act WKB solution, we can calculate the coefficients approximately in h as
follows.

Lemma 3.3. Suppose Assumption 1. The connection coefficients c3 and c̃2
satisfy

c3 = 1 +O(h), c̃2 = 1 +O(h)

as h→ 0 respectively.

Proof. We apply directly the Wronskian formula and obtain

c2 =
w+
even(x3, h;x1)

w+
even(x3, h;x2)

, c̃3 =
w+
even(x4, h;x2)

w+
even(x3, h;x2)

. (3.2.3)

Let Γ(xi, xj) be a canonical path from xi to xj for (i, j) = (1, 3), (2, 3)
and (2, 4) as in Figure 3.3. Notice that Rez(x, ·) increases in the direction
indicated in Figure 3.3.

According to Proposition 2.4, we obtain, as h→ 0,

w+
even(x3, h;x1) = 1 +O(h), w+

even(x3, h;x2) = 1 +O(h),

w+
even(x4, h;x2) = 1 +O(h),

and hence, from (3.6), it follows that the argument holds.
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Figure 3.3: Examples of Γ(xi, xj). Arrows indicate directions along which
Rez(x) increases.

In order to calculate c2 and d3, it is convenient to introduce some notation
defined by [10].

Definition 3.4. We denote R(γ, θ) by the operator acting through rotation
around γ by θ so that, e.g., R(0, θ)x = eiθx. We also denote x̂ by the point
obtained when rotating x anticlockwise once around γ , i.e.,

x̂ = R(γ, 2π)x.

The point over x that is obtained when rotating x clockwise once around γ
will be denoted by y̌ℓ, i.e.,

x̌ = R(γ,−2π)x.

Lemma 3.5. Let γ be the simple zeros of A(x)2 − λ2, and x̂ and x̌ be
defined as above. The exact WKB solutions u±(x, h; γ, x0) satisfy in the
case A(γ) = λ,

u±(x, h; γ, x0) = −iu∓(x̂, h; γ, x̂0) = iu∓(x̌, h; γ, x̌0).

On the other hand, in the case A(γ) = −λ,

u±(x, h; γ, x0) = iu∓(x̂, h; γ, x̂0) = −iu∓(x̌, h; γ, x̌0).

Proof. We rewrite the solutions u±(x, h; γ, x0) in terms of x̂. Since A(x)±λ
is analytic and x = e−2πix̂, we have

A(x)± λ = e−2πi(A(x̂)± λ).

This implies that when A(α) = λ,√
A(x)− λ =

√
e−2πi (A(x̂)− λ) = −

√
A(x̂)− λ.
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On the other hand, when A(α) = −λ,√
A(x) + λ =

√
e−2πi (A(x̂) + λ) = −

√
A(x̂) + λ.

That is, there is a sign change

+z(x; γ) = −z(x̂; γ) (3.2.4)

in both cases A(γ) = ±λ.
The representation of the function H(x) is different between the cases

A(γ) = λ and A(γ) = −λ. When A(γ) = λ,

H(x) =

(
A(x) + λ

A(x)− λ

) 1
4

=

(
1

e−2πi

A(x̂) + λ

A(x̂)− λ

) 1
4

= e
πi
2

(
A(x̂) + λ

A(x̂)− λ

) 1
4

.

On the contrary, when A(α) = −λ,

H(x) =

(
A(x) + λ

A(x)− λ

) 1
4

=

(
e−2πiA(x̂) + λ

A(x̂)− λ

) 1
4

= e−
πi
2

(
A(x̂) + λ

A(x̂)− λ

) 1
4

.

Namely, H(x) = ∓iH(x̂) holds when A(γ) = ±λ respectively. In addition,
this leads to

Q(x) = ±iQ(x̂)

(
0 1
1 0

)
. (3.2.5)

Since H(x) = ∓iH(x̂), we also see that

c(x) =
H ′(x)

H(x)
=
H ′(x̂)

H(x̂)
= c(x̂) (3.2.6)

in both cases A(γ) = ±λ. According to the sign of z(x) changes and c(x) =
c(x̂), we find from the recurrence equation (2.1.3) that

w+(x, h;x2) = w−(x̂, h; x̂2). (3.2.7)

From (3.2.4), (3.2.7), and (3.2.5), we obtain

u(x, h; γ, x0) = iu∓(x̂, h; γ, x̂0),

in the case A(γ) = λ, and

u(x, h; γ, x0) = −iu∓(x̂, h; γ, x̂0),

in the case A(γ) = −λ.
We can also obtain the representation in terms of x̌ in the same way as

above.
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Lemma 3.6. Suppose Assumption 1. In the case A
′
(α0)A

′
(β0) > 0, the

connection coefficients c3 and d2 satisfy

c3c̃2 = −1 +O(h)

as h→ 0. On the other hand, in the case A
′
(α0)A

′
(β0) < 0,

c3c̃2 = 1 +O(h)

as h→ 0.

Proof. We calculate the Wronskians W(u1,u2) and W(u4, ũ3). In order to
calculate them, we use the representations in terms of x̂ or x̌ to the solutions
so that we can apply the asymptotic properties. For example, we rewrite u2

in terms of x̌, i.e.,

u2 = ±iu−(x̌, h;α, x̌2),

and obtain

W(u1,u2) = W
(
u+(x, h;α, x1),±iu−(x̌, h;α, x̌2)

)
= ∓4iw+

even(x̌2, h;x1).

in the case A(α) = ±λ respectively.
In the same way, we also represent ũ3 in terms of x̌ to calculateW(u4, ũ3).

When A(β) = ±λ, ũ3 is rewritten respectively as

ũ3 = ±iu+(x̌, h;β, x̌3).

Therefore, W(u4, ũ3) is calculated as

W(u4, ũ3) = −W
(
±iu+(x̌, h;β, x̌3),u

−(x, h;β, x4)
)

= ±4iw+
even(x4, h; x̌3).

We can find canonical paths Γ(x1, x̌2) and Γ(x̌3, x4) along which Rez(x, ·) is
strictly increasing, and obtain by Proipodition 2.4 that as h→ 0,

w+
even(x̌2, h;x1) = 1 +O(h), w+

even(x4, h; x̌3) = 1 +O(h).

As consequence, we obtain that when A(α)A(β) > 0,

c3c̃2 = i2
w+
even(x̌2, h;x1)

w+
even(x3, h;x2)

w+
even(x4, h; x̌3)

w+
even(x3, h;x2)

= −1 +O(h)

and when A(α)A(β) < 0,

c3c̃2 = −i2w
+
even(x̌2, h;x1)

w+
even(x3, h;x2)

w+
even(x4, h; x̌3)

w+
even(x3, h;x2)

= 1 +O(h)

as h→ 0.
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From Lemma 3.3 and 3.6, we see that in both cases A(α) = ±A(β),

c2c̃3
c̃2c3

= ∓1 +O(h)

as h → 0. This means that the term log
(
− c2c̃3

c̃2c3

)
in (3.2.2) satisfies in the

case A(α) = A(β),

log

(
−c2c̃3
c̃2c3

)
= O(h),

and in the case A(α) = −A(β),

log

(
−c2c̃3
c̃2c3

)
=
πi

2
+O(h),

as h → 0 respectively. In conclusion, the quantization condition for eigen-
values λ is given by

I(λ) =

(
k +

1

2

)
πh+O(h2) as h→ 0,

in the case A(α)A(β) > 0 and

I(λ) = kπh+O(h2) as h→ 0,

in the case A(α) = −A(β).

3.3 Real eigenvalues of the PT symmetric pertur-
bation

From this section, we consider the eigenvalue problem:

Lεu(x) = λu(x), λ ∈ C (3.3.1)

for the operator

Lε :=

 ih
d

dx
−iAε(x)

iAε(x) −ih d
dx


with Aε(x) = A(x) + iεB(x) and ε > 0. Here we only assume that A(x)
satisfies Assumption 1 and that B(x) is real-valued, analytic and bounded
on R.

Let D(λ0, ε0) = {x ∈ C; |x− λ0| < ε0} for a positive ε0. Under Assump-
tion 1, for all λ ∈ D(λ0, ε0) and ε ∈ (0, ε0], there exist zeros of Aε(x)

2 − λ2,
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α(λ, ε) and β(λ, ε) such that α(λ0, 0) = α0 and β(λ0, 0) = β0. We simply
write them as αε and βε, and define the integral I(λ, ε) by

I(λ, ε) :=

∫ βε(λ)

αε(λ)

√
λ2 −Aε(t)2dt. (3.3.2)

It is holomorphic in regard to λ and ε, and we choose a branch of the square
root

√
λ2 −A(x)2 such that it is positive on [α(λ), β(λ)] when ε = 0 and λ

near λ0 is real.
First we consider the quantization condition for the eigenvalues of Lε. The

exact WKB solutions to the equation (3.3.1) are given by replacing A(x)
with Aε(x) in (2.2.5), and we denote these solutions by u±(x, h, ε; γ, x0).

We choose αε and βε for the base points of the phase function z(x, ε) and
draw the stokes lines. They pass through the points αε and βε for small but
non zero ε are drown in Figure 3.4. In this case, the Stokes lines change
continuously with respect to ε from the case of ε = 0, since αε, βε and z(x, ε)
are continuous with respect to ε.

Figure 3.4: The Stokes lines for a sufficiently small ε.

Here, we assume that ε is sufficiently small. We take base points as in Figure
3.4, and define the exact WKB solutions as

u1 = u+(x, h, ε;αε, x1),

u2 = u+(x, h, ε;αε, x2), ũ2 = u+(x, h, ε;βε, x2),

u3 = u−(x, h, ε;αε, x3), ũ3 = u−(x, h, ε;βε, x3),

u4 = u−(x, h, ε;βε, x4),

where we put branch cuts and choose the branches of
√
Aε(x)2 − λ2 and

H(x, ε) such that they are both positive when λ is real, ε = 0 and x > β(λ).
Then, we can derive the quantization conditions for eigenvalues of Lε just
in the same way as in the previous section.
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Lemma 3.7. Suppose Assumption 1, and let B(x) be real-valued, analytic
and bounded on R. In the case A(α0) = A(β0), there exist positive constants
ε0 and h0, and a function r+(λ, ε, h) bounded on D(λ0, ε0)× (0, ε0]× (0, h0]
such that λ ∈ D(λ0, ε0) is an eigenvalue of Lε for ε ∈ (0, ε0] and h ∈ (0, h0]
if and only if

I(λ, ε) =

(
k +

1

2

)
πh+ h2r+(λ, ε, h) (3.3.3)

holds for some integer k. In the case A(α0) = −A(β0), there exist posi-
tive constants ε0 and h0, and a function r−(λ, ε, h) bounded on D(λ0, ε0)×
(0, ε0]× (0, h0] such that λ ∈ D(λ0, ε0) is an eigenvalue of Lε for ε ∈ (0, ε0]
and h ∈ (0, h0] if and only if

I(λ, ε) = kπh+ h2r−(λ, ε, h) (3.3.4)

holds for some integer k.

Let us define a function S(λ, ε, h) as

S(λ, ε, h) = I(λ, ε) + h2r±(λ, ε, h).

This is a map from neighborhood of λ0 to one of S(λ0, ε, h). In addition, H
is locally injective near λ0 for sufficiently small ε and h, since ∂I

∂λ(λ0, 0) ̸= 0.
To prove Theorem 3.2, it is enough to show that S(λ, ε, h) is real-valued for
λ ∈ R.

We now assume Assumption 2 for Aε(x). Since A(x) and B(x) are real-
valued analytic functions on R, one has

A(x) = A(x̄), B(x) = B(x̄),

for complex x near the real axis, and hence

Aε(x) = A(x)− iεB(x) = A(x̄)− iεB(x̄).

Then thanks to the Assumption 2, we see that, in the case (3.1.5),

Aε(x) = Aε(−x̄), (3.3.5)

and in the case (3.1.6),

Aε(x) = −Aε(−x̄). (3.3.6)

This relation results in a symmetry of the action integral I(λ, ε).

Lemma 3.8. Under Assumption 2, the action integral I(λ, ε) is equal to the
complex conjugate of I(λ, ε):

I(λ, ε) = I(λ, ε).
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Proof. From the relation (3.3.5) and (3.3.6), we have

Aε(x)2 = Aε(−x)2,

that is,

Aε(x)2 − λ2 = Aε(−x)2 − λ2.

By substituting x = αε and x = βε, we see that

Aε(−αε)
2 − λ2 = 0 and Aε(−βε)2 − λ2 = 0

respectively. In addition, since A(x) is even or odd,

−αε(λ) → −α(λ) = β(λ) and − βε(λ) → −β(λ) = α(λ)

as ε→ 0. Therefore, I(λ, ε) is represented by

I(λ, ε) =

∫ −αε(λ)

−βε(λ)

√
λ
2 −Aε(t)2dt.

We take the complex conjugate of this, and obtain that

I(λ, ε) =

∫ −αε(λ)

−βε(λ)

√
λ2 −Aε(t)

2
dt.

Then, we change the variable from t to −t,

I(λ, ε) =

∫ βε(λ)

αε(λ)

√
λ2 −Aε(t)2dt.

This is just the action integral.

To complete the proof of Theorem 3.2, we should show that the functions
r+(λ, ε, h) and r−(λ, ε, h) are real-valued for real λ . Recall that these func-
tions are represented by

r±(λ, ε, h) =
1

2ih
log

c2c̃3
c3c̃2

,

where cj and c̃j (j=2,3) are connection coefficients:

u1 = c2u2 + c3u3, u4 = c̃2u2 + c̃3u3.

For this, we consider the symmetry property of the exact WKB solutions
with respect to complex conjugation. Here, we specify the dependence on λ
of the exact WKB solutions and write u±(x, h, ε; γ, x0;λ). In addition, let
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y1 and y2 be small enough positive numbers, and take the base points of the
amplitude as

x1 = −y1, x4 = y1, and x2 = iy2, x3 = −iy2

for the solutions uj and ũj .
We also define the exact WKB solution to the equation Lv = λv by

v1 = u+(x, h, ε;−βε,−y1;λ),
v2 = u+(x, h, ε;−βε, iy2;λ), ṽ2 = u+(x, h, ε;−αε, iy2;λ),

v3 = u−(x, h, ε;−βε,−iy2;λ), ṽ3 = u−(x, h, ε;−αε,−iy2;λ),
v4 = u−(x, h, ε;−αε, y1;λ).

Under Assumption 2, those solutions can be represented by the complex
conjugate of uj and ũj , according to the following symmetry relation.

Lemma 3.9. Suppose Assumption 2. When Aε(x) = ±Aε(x), the exact
WKB solutions v1 and v4 satisfy

v1 = C±u4|x=−x, v4 = ±C±u1|x=−x,

where C+ =

(
1 0
0 −1

)
and C− =

(
0 1
−1 0

)
. More precisely, the exact WKB

solutions u±(x, h, ε; γ, x0;λ) satisfy in the case (3.1.5),

u±(x, h, ε; γ, x0;λ) =

(
1 0
0 −1

)
u∓(−x, h, ε;−γ,−x0;λ), (3.3.7)

and in the case (3.1.6),

u±(x, h, ε; γ, x0;λ) = ∓
(

0 1
−1 0

)
u∓(−x, h, ε;−γ,−x0;λ). (3.3.8)

Proof. Let us assume (3.1.5), i.e. Aε(x) = Aε(−x), and we show the relation
(3.3.7) and (3.3.8). It is easy to check

z(x, ε; γ;λ) = −z(−x, ε;−γ;λ), (3.3.9)

and

H(x, ε;λ) = H(−x, ε;λ) (3.3.10)

by taking the complex conjugate and changing the variable x to −x. Hence,
the matrix function Q(x, ε;λ) satisfies

Q(x, ε;λ) = Q(−x, ε;λ)
(
0 1
1 0

)
. (3.3.11)
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To prove the first relation, we should show that

w±(x, h, ε;x0;λ) = w∓(−x, h, ε;−x0;λ). (3.3.12)

Recall that the series w±(x, h, ε;x0;λ) are constructed by

w±
−1 ≡ 0, w±

0 ≡ 1,

d

dx
w±
2n(x, h, ε;λ) =

H ′(x, ε;λ)

H(x, ε;λ)
w±
2n−1(x, h, ε;λ),(

d

dx
± 2

h
z′(x, ε;λ)

)
w±
2n−1(x, h, ε;λ) =

H ′(x, ε;λ)

H(x, ε;λ)
w±
2n−2(x, h, ε;λ),

with the initial conditions

w±
n |x=x0 = 0 (n ≥ 1).

From (3.3.9) and (3.3.10), we have

z′(x, ε;λ) = z′(−x, ε;λ)

and

H ′(x, ε;λ) = −H ′(−x, ε;λ).

Therefore, we see that w±(x, h, ε;x0;λ) also satisfy
d

dx
w±
2n(−x, h, ε;λ) =

H ′(x, ε;λ)

H(x, ε;λ)
w±
2n−1(−x, h, ε;λ),(

d

dx
∓ 2

h
z′(x, ε;λ)

)
w±
2n−1(−x, h, ε;λ) =

H ′(x, ε;λ)

H(x, ε;λ)
w±
2n−2(−x, h, ε;λ),

by taking the complex conjugate, and changing the variable x to −x and
λ to λ for the recurrence equations. This means that w± satisfy (3.3.12).
According to (3.3.9), (3.3.11), and (3.3.12), we obtain the first relation

u±(x, h, ε; γ, x0;λ) =

(
1 0
0 −1

)
u∓(−x, h, ε;−γ,−x0;λ).

Similary, if Aε(−x) = −Aε(x), then we find that

z(x, ε; γ;λ) = −z(−x, ε;−γ;λ),

and

H(x, ε;λ) = H(−x, ε;λ)−1.
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Moreover, H(x, ε;λ) also satisfies

H ′(x, ε;λ)

H(x, ε;λ)
=

(
H ′(−x, ε;λ)
H(−x, ε;λ)

)
.

From this property, we obtain

Q(x, ε;λ) = i

(
0 1
−1 0

)
Q(−x, ε;λ)

(
0 1
−1 0

)
,

and

w±(x, h, ε;x0;λ) =

(
1 0
0 −1

)
w∓(−x, h, ε;−x0;λ).

Therefore, the second relation also follows.

Lemma 3.10. Suppose Assumption 2. When Aε(x) = ±Aε(x), the exact
WKB solutions vj and ṽj (j = 2, 3) satisfy

vj = iC±ũj |x=−x, ṽj = ±iC±uj |x=−x,

More precisely, the exact WKB solutions u±(x, h, ε; γ, x0;λ) satisfy in the
case (3.1.5),

u±(x, h, ε; γ, x0;λ) = i

(
1 0
0 −1

)
u±(−x, h, ε;−γ,−x0;λ),

and in the case (3.1.6),

u±(x, h, ε; γ, x0;λ) = ±i
(

0 1
−1 0

)
u±(−x, h, ε;−γ,−x0;λ).

The proof is almost the same as in Lemma 3.9, except the changes for multi-
valued functions z(x, ε; γ;λ):

z(x, ε; γ;λ) = z(−x, ε;−γ;λ),

and H(x, ε;λ):

H(x, ε;λ) =

 − iH(−x, ε;λ) when Aε(x) = Aε(−x),

− iH(−x, ε;λ)−1 when Aε(x) = −Aε(−x).

Proof of Theorem 3.2. We represent v1 and v4 as

v1 = d2v2 + d3v3, v4 = d̃2ṽ2 + d̃3ṽ3.
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Then, the quantization condition for the complex conjugate of λ near λ0 is
also given in the form of Lemma 3.7. In particular, the functions r±(λ, ε, h)
are described by the connection coefficients dj and d̃j :

r±(λ, ε, h) =
1

2ih
log

d2d̃3

d3d̃2
.

For those coefficients, we have

d2d̃3 =
W(v1,v3)W(ṽ2,v4)

W(v2,v3)W(ṽ2, ṽ3)
, d3d̃2 =

W(v2,v1)W(v4, ṽ3)

W(v2,v3)W(ṽ2, ṽ3)
.

According to lemma 3.9 and 3.10, we find that in the case Aε(x) = Aε(−x),

W(v1,v3) = −iW(u4, ũ3), W(ṽ2,v4) = −iW(u2,u1),

W(v2,v1) = −iW(ũ2,u4), W(v4, ṽ3) = −iW(u1,u3),

and

W(v2,v3) = W(ũ2, ũ3), W(ṽ2, ṽ3) = W(u2,u3).

That is, we obtain

d2d̃3 = −c3c̃2, d3d̃2 = −c2c̃3.

On the other hand, in the case Aε(x) = −Aε(−x),

d2d̃3 = c3c̃2, d3d̃2 = c2c̃3

In any case, those connection coefficients have the symmetry relation

d2d̃3

d3d̃2
=

(
c3c̃2
c2c̃3

)
under Assumption 2. This implies that the functions r±(λ, ε, h) satisfy

r±(λ, ε, h) = r±(λ, ε, h).

From this relation and Lemma 3.8, S(λ, ε, h) becomes real-valued for real λ,
and it completes the proof of Theorem 3.2.
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Chapter 4

Eigenvalues of the
non-self-adjoint
Zakharov-Shabat operator
and complex splitting

We consider the eigenvalue problem

L−u(x) = λu(x), λ ∈ C (4.0.1)

for the first order 2× 2 differential system on the line:

L− =

 ih
d

dx
−iA(x)

−iA(x) −ih d
dx

 ,

where h is a positive small parameter and A(x) is a real-valued potential.
Although this operator is non-self-adjoint, all of complex eigenvalues are
purely imaginary when A(x) is in some cases. In 1974, Satsuma and Yajima
studied this operator with A(x) = A0 sech(x), A0 > 0 and computed explic-
itly all the eigenvalues in [20]. They solved the equation (4.0.1) by reducing
it to the hypergeometric equation, and found that if h = hN = A0/N , there
are exactly N purely imaginary eigenvalues λk given by

λk = ihN

(
N − k − 1

2

)
, k = 0, . . . , N − 1.

In the non-semiclassical case (i.e. h = 1), Klaus and Shaw studied the
eigenvalues of this operator with a “single-lobe” potential, and found that
all the eigenvalues are purely imaginary (see [16]). Here, it is said that A(x)
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is single-lobe if it is a non-negative, piecewise smooth, bounded L1 func-
tion on the real line which is nondecreasing for x < 0 and nonincreasing
for x > 0. In addition, Klaus and Shaw also show that there are no purely
imaginary eigenvalues when A(x) is L1 and odd function ([17]).

Suppose that A(x) is smooth and decays at x = ±∞. As mentioned in
[18, 19], the continuous spectrum of the operator L− consists of the whole
of the real axis.On the other hand, the discrete spectrum consists of eigen-
values appearing near the imaginary axis and accumulating on the axis as
h → 0. For example, in the case A(x) = sech(2x), there exist eigenvalues
accumulating on the interval [0, i] as h→ 0 (see [4]).

We observe that fact from the numerical range of the operator L−. Let
L−(x, ξ) be the semiclassical symbol of the operator L−, that is,

L−(x, ξ) =

(
ξ −iA(x)

−iA(x) −ξ

)
,

where I is 2 × 2 identity matrix. We also denote the closure of the set of
eigenvalues of L− by

Σ(L−) = {λ ∈ C : ∃(x, ξ) ∈ T ∗R, det(L−(x, ξ)− λI) = 0}.

Since det(L−(x, ξ) − λI) = 0 is equivalent to λ = ±
√
ξ2 −A(x)2, one see

that

Σ(L−) = R ∪ i[−A0, A0],

where A0 := maxx∈R |A(x)|. According to [10, Proposition 2.1], the operator
L− has discrete spectrum accumulating on Σ(L−).

In this chapter, we consider the quantization condition of eigenvalues in
a complex neighborhood of a fixed λ0 ∈ i(−A0, A0) in two cases. One is
that there are two simple turning points (i.e., zeros of A(x)2 + λ2), and the
other is that there are four simple turning points. We also mention some
properties for eigenvalues of L− from the quantization condition.

All of the results in this Chapter are in collaboration with J.Wittsten.

4.1 Eigenvalues for a simple well potential

In this section, we consider the case where A(x) satisfies the following con-
dition.

Assumption 3. The function A(x) is real-valued on R and analytic in
D := {z ∈ C; |Imz| < δ} for some δ > 0, and µ0(= −iλ0) a positive real
number satisfying the following conditions:

1. There exist two real numbers, α0 and β0 (α0 < β0) such that |A(x)| =
µ0, x ∈ R if and only if x = α0, β0.
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2. A
′
(α0) > 0 and A

′
(β0) < 0.

3. A(x) > µ0 for α0 < x < β0, and |A(x)| < µ0 for x < α0 and x > β0.

4. lim sup
|x|→∞

|A(x)| < µ0.

Figure 4.1: Examples of the potential A(x) and µ0.

On the interval [α(µ), β(µ)] and µ ∈ R, the solutions are oscillating since
the phase function

z(x) = i

∫ x√
A(t)2 + λ2dt = i

∫ x√
A(t)2 − µ2dt

is purely imaginary for x ∈ [α(µ), β(µ)]. This implies the interval [α(µ), β(µ)]
corresponds to the classically allowed region in the Schrödinger case, and we
say this type of potential simple well.

Under this condition, we will show that the eigenvalues are purely imagi-
nary for sufficiently small h. In order to prove that, we derive the quantiza-
tion condition for the eigenvalues. For µ ∈ D(µ0, ε) = {µ ∈ C; |µ−µ0| < ε},
there exist two simple zeros of A(x)2−µ2 close to α0 and β0, and we denote
them by α(µ) and β(µ). We define the action integral by

I(µ) =

∫ β(µ)

α(µ)

√
A(x)2 − µ2dx.

Then, the quantization condition are described as follows.

Theorem 4.1. Suppose Assumption 3. Then, there exist positive constants
δ and h0, and a function r(µ, h) bounded on D(µ0, δ) × (0, h0] such that
λ = iµ, µ ∈ D(µ0, δ) is an eigenvalue of L− for h ∈ (0, h0] if and only if

I(λ) =

(
k +

1

2

)
πh+ h2r(µ, h) (4.1.1)

holds for some integer k.
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We can prove this in the same way as in Section 2.3. The Stokes lines are
defined by{

x ∈ D; Re z(x; γ) = Im

∫ x

γ

√
A(t)2 − µ2dt = const.

}
.

In particular, the Stokes lines passing through the turning point α(µ) (resp.
β(µ)) have angles 0, 2π/3, and 4π/3 (resp. π/3, π and 5π/3) under As-
sumption 3, as in Figure 3.2. Here, we also put a branch cut on the Stokes
lines emanating from α at angle 2π/3 and another branch cut on the Stokes
lines emanating from β at angle 5π/3, and choose the branches such that√
A(x)2 − µ2 and H(x) are both positive when α(µ) < x < β(µ) for real µ.

Proof of Theorem 4.1. We take base points α and β for the phase function,
and x1, x2, x3, x4, for the amplitude function in each sector as in Figure 3.2,
and define the following 6 exact WKB solutions:

u1 = u+(x, h;α, x1),

u2 = u+(x, h;α, x2), ũ2 = u+(x, h;β, x2),

u3 = u−(x, h;α, x3), ũ3 = u−(x, h;β, x3),

u4 = u−(x, h;β, x4).

We represent u1 as a linear combination of u2 and u3:

u1 = c2u2 + c3u3,

and u4 as

u4 = c̃2ũ2 + c̃3ũ3.

Then, the quantization condition is equivalent to W(u1,u4) = 0, i.e.,

I(µ) +
h

2i
log

(
−c2c̃3
c̃3c2

)
=

(
k +

1

2

)
πh.

By the Wronskian formula, each connection coefficient is represented as

c2 =
w+
even(x3, h;x1)

w+
even(x3, h;x2)

, c̃3 =
w+
even(x4, h;x2)

w+
even(x3, h;x2)

,

c3 = i
w+
even(x̌2, h;x1)

w+
even(x3, h;x2)

, c̃2 = i
w+
even(x4, h; x̌3)

w+
even(x3, h;x2)

,

where, x̌2 and x̌3 are defined in accordance with Definition 3.4. Hence,

c2 = 1 +O(h), c̃3 = 1 +O(h)

c3 = i+O(h), c̃2 = i+O(h)

as h→ 0, which completes the proof.
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From the quantization condition, we have the following.

Theorem 4.2. Suppose Assumption 3. Then there exist positive constants
h0 and δ such that σp(L−) ∩ {λ ∈ C : |λ− λ0| < δ} ⊂ iR when 0 < h ≤ h0.

Proof. It is enough to show that the integral I(µ) and the function r(µ, h)
is real-valued for real µ. We can easily check that I(µ) = I(µ) in the same
way as the proof of Lemma 3.8. In order to prove r(µ, h) = r(µ, h), let us
define six exact WKB solutions v1, v2, v3, v4 and ṽ2, ṽ3 by

v1 = u+(x, h; ᾱ, x̄1; µ̄),

v2 = u+(x, h; ᾱ, x̄3; µ̄), ṽ2 = u+(x, h; β̄, x̄3; µ̄),

v3 = u−(x, h; ᾱ, x̄2; µ̄), ṽ3 = u−(x, h; β̄, x̄2; µ̄),

v4 = u−(x, h; β̄, x̄4; µ̄).

Then, we can express r(µ, h) by

r(µ̄, h) =
1

2ih
log

(
−W(v1,v3)W(ṽ2,v4)

W(v2,v1)W(v4, ṽ3)

)
.

Here, these solutions have some symmetry as follows.

Lemma 4.3. Suppose Assumption 3. The exact WKB solutions vj and
ṽj (j = 2, 3) satisfy

v2 = u3|x=x, v3 = u2|x=x,

ṽ2 = ũ3|x=x, ṽ3 = ũ2|x=x.

Similarly, v1 and v4 also have

v1 = iu1|x=x, v4 = iu4|x=x.

More precisely, the exact WKB solutions u±(x, h; γ, x0;µ) satisfy

u±(x, h; γ, x0;µ) = u∓(x, h; γ, x0;µ),

Proof. It is easy to check that

z(x; γ;µ) = −z(x; γ;µ)

by a simple calculation. We can also check that H(x;µ) = H(x;µ) and

Q(x;µ) =

(
H(x;µ)−1 H(x;µ)−1

iH(x;µ) −iH(x;µ)

)
= Q(x;µ)

(
0 1
1 0

)
.

Since z′(x; γ;µ) = −z′
(x; γ;µ) and c(x;µ) = c(x;µ), we have

w±(x, h;x0;µ) = w∓(x, h;x0;µ).

from the recurrence equations. Therefore, the statement holds.
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According to Lemma 4.3, we see that r(µ, h) = r(µ, h). Indeed, we have

W(v1,v3)W(ṽ2,v4) = −W(u2,u1)W(u4, ũ3)

and

W(v2,v1)W(v4, ṽ3) = −W(u1,u3)W(ũ2,u4).

Since I(µ) = I(µ) and r(µ, h) = r(µ, h), we can show that µ = −iλ near µ0
is real by adapting same argument in the proof of Theorem 3.2.

4.2 Eigenvalues for a double well potential

We consider the eigenvalues near an energy level λ0 = iµ0, 0 < µ0 < A0

such that A(x)2 has double wells. More precisely, we assume

Assumption 4. The function A(x) is a real-valued on R and analytic in
D := {z ∈ C; |Imz| < δ} for some δ > 0, and µ0(= −iλ0) a positive real
number satisfying the following conditions:

1. There exist four real numbers, α0,ℓ, β0,ℓ and β0,r, α0,r (α0,ℓ < β0,ℓ <
β0,r < α0,r) such that |A(x)| = µ0, x ∈ R if and only if x = α0,•, β0,•,
where • = ℓ, r.

2. A
′
(α0,•)A

′
(β0,•) ̸= 0.

3. |A(x)| > µ0 for x ∈ (α0,ℓ, β0,ℓ) ∪ (β0,r, α0,r) , otherwise |A(x)| < µ0.

4. lim sup
|x|→∞

|A(x)| < µ0.

Figure 4.2: Examples of the potential A(x) and µ0 under Assumption 4.

Under this assumption, there are two types of potentials according to the
sign of the product A

′
(β0,ℓ)A

′
(β0,r) is positive or negative.

In this section, we aim to describe the quantization condition under these
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cases, and estimate the eigenvalue splitting when A(x) is even or odd func-
tion.

For µ ∈ D(µ0, ε) with a small ε > 0, there exist exactly four roots of
A(x)2−µ2 = 0, and we simply write them as αℓ(µ), βℓ(µ), βr(µ), αr(µ). Let
us define the action integrals by

Iℓ(µ) =

∫ βℓ(µ)

αℓ(µ)

√
A(x)2 − µ2dx, Ir(µ) =

∫ αr(µ)

βr(µ)

√
A(x)2 − µ2dx,

and

J(µ) =

∫ βr(µ)

βℓ(µ)

√
µ2 −A(x)2dx.

Notice that these functions are positive for positive µ.
Under Assumption 4, the Stokes lines emanating from turning points are

drawn as Figure 4.3. Let us take real numbers xℓ and xr such that xℓ < Reαℓ

Figure 4.3: The Stokes lines emanating from four turning points.

and Reβr < xr. We define two exact WKB solutions ũℓ and ũr

ũℓ = u+(x;αℓ, xℓ;µ), ũr = u−(x;αr, xr;µ),

and express them as linear combinations of the solutions u+(x;β•, y•, µ) and
u−(x;β•, ȳ•, µ), • = ℓ, r, i.e.,

ũℓ = c11u
+(x;βℓ, yℓ, µ) + c12u

−(x;βℓ, ȳℓ, µ), (4.2.1)

ũr = c21u
+(x;βr, yr, µ) + c22u

−(x;βr, ȳr, µ). (4.2.2)

Remark 4.4. The coefficients cjk are represented as

c11 = eiIℓ/hτ+ℓ , c12 = ie−iIℓ/hτ−ℓ ,

c21 = ±ie−iIr/hτ+r , c22 = eiIr/hτ−r ,
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with

τ+ℓ =
w+
even(ȳℓ;xℓ)

w+
even(ȳℓ; yℓ)

, τ−ℓ =
w+
even(y̌ℓ;xℓ)

w+
even(ȳℓ; yℓ)

τ+r =
w+
even(xr; ˇ̄yr)

w+
even(ȳr; yr)

, τ−r =
w+
even(xr; yr)

w+
even(ȳr; yr)

,

and all of τ±l,r are 1 +O(h) as h → 0. The sign of c21 is minus (resp. plus)
when A(βℓ) = A(βr) (resp. A(βℓ) = −A(βr)).

We set the solution uℓ by

uℓ =
1

2
(ũℓ − iũ∗

ℓ ) .

Here, the asterisk means to take a complex conjugate and change variables
from x to x̄ and µ to µ̄. (For example, c∗(µ) = c(µ̄), f∗(x, µ) = f(x̄, µ̄).)
More precisely, uℓ are written as

uℓ = eiIℓ/hτℓu
+(x;βℓ, yℓ;µ)− ie−iIℓ/hτ∗ℓ u

−(x;βℓ, ȳℓ;µ),

where τℓ =
1
2

(
τ+ℓ +

(
τ−ℓ

)∗)
, and notice that τℓ = 1 +O(h) as h→ 0.

We also set ur in the same way. Because of the difference of the sign of c21,
we take ur = 1

2 (ur − iu∗
r) in the case A(βℓ) = A(βr), or ur = 1

2 (ur + iu∗
r)

in the case A(βℓ) = −A(βr), i.e.,

ur = ∓ie−iIr/hτ∗ru
+(x;βr, yr;µ) + eiIr/hτru

−(x;βr, ȳr;µ),

where τr = 1
2(τ

−
r + (τ+r )∗). Remark that we have uℓ(x) → 0 as x → −∞

and ur(x) → 0 as x→ ∞.
We introduce the four solutions u1,u2,u3, and u4 so that

uℓ = −ieiIℓ/hu1 + ie−iIℓ/hu2, (4.2.3)

ur = −ieiIr/hu3 + ie−iIr/hu4, (4.2.4)

that is, we take

u1 = iτℓu
+(x;βℓ, yℓ;µ), u2 = τ∗ℓ u

−(x;βℓ, ȳℓ;µ), (4.2.5)

u3 = iτru
−(x;βr, yr, µ), u4 = ±τ∗ru+(x;βr, ȳr, µ). (4.2.6)

By those solutions, we define the central solutions vℓ and vr in the same
way as [23]:

vℓ = e−J/h 1

2i
(u3 − u4), vr = e−J/h 1

2i
(u1 − u2). (4.2.7)
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Remark 4.5. The central solutins vℓ and vr are linearly independent if h
is sufficiently small. Indeed, we have

W(vℓ,vr) = −ie−2J/h
(
τℓτrw

+
even(ȳr, yℓ) + τℓτ

∗
rw

+
even(y̌ℓ, yr)

+ τ∗ℓ τrw
+
even(ȳr, ˇ̄yℓ) + τ∗ℓ τ

∗
rw

+
even(ȳℓ, yr)

)
,

and we see that the right-hand side is 4 +O(h) as h→ 0.

We also write vℓ and vr as

vℓ = d11u1 + d12u2, vr = d21u3 + d22u4. (4.2.8)

Then, from (4.2.7) and (4.2.8), we have the representation(
u1

u2

)
= Dℓ

(
vℓ
vr

)
, Dℓ =

1

d11 + d12

(
1 2ieJ/hd12
1 −2ieJ/hd11

)
(4.2.9)

and (
u3

u4

)
= Dr

(
vℓ
vr

)
, Dr =

1

d21 + d22

(
2ieJ/hd22 1

−2ieJ/hd21 1

)
. (4.2.10)

Here, we recall that µ = −iλ near µ0 is an eigenvalue of L− if and only if

W(uℓ,ur) = 0.

By the representation (4.2.3)-(4.2.4), the arguments (4.2.9)-(4.2.10), and
Remark 4.5, we see that this condition is also equivalent to

det

((
−ieiIℓ/h ie−iIℓ/h

)
Dℓ(

−ieiIr/h ie−iIr/h
)
Dr

)
= 0,

i.e.,

1

i

(
eiIℓ/h − e−iIℓ/h

) 1

i

(
eiIr/h − e−iIr/h

)
− 4e2J/h

(
eiIℓ/hd12 + e−iIℓ/hd11

)(
eiIr/hd22 + e−iIr/hd21

)
= 0.

Theorem 4.6. Suppose Assumption 4. There exist positive constants δ,
h0 and functions djk(µ, h), j, k = 1, 2, defined on D(µ0; δ) × (0, h0] with
asymptotic behavior as h→ 0

d11 = −1 +O(h), d12 = −1 +O(h),

d21 = 1 +O(h), d22 = 1 +O(h),

in the case A(βℓ) = A(βr) and

d11 = −1 +O(h), d12 = −1 +O(h),

d21 = −1 +O(h), d22 = −1 +O(h),
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in the case −A(βℓ) = A(βr), such that λ = iµ, µ ∈ D(µ; δ) is an eigenvalue
of L− for h ∈ (0, h0] if and only if(

d12e
iIℓ/h + d11e

−iIℓ/h
)(

d22e
iIr/h + d21e

−iIr/h
)

+ e−2J/h sin (Iℓ/h) sin (Ir/h) = 0.

Remark 4.7. From this quantization condition, the eigenvalues λ = iµ for
µ ∈ D(µ0; δ) are given modulo exponentially small error by the roots of the
equation (

d12e
iIℓ/h + d11e

−iIℓ/h
)(

d22e
iIr/h + d21e

−iIr/h
)
= 0.

This is equivalent to the two Bohr-Sommerfeld quantization conditions cor-
responding to each potential well:

d12
d11

e2iIℓ/h = −1,
d22
d21

e2iIℓ/h = −1.

which can also be written in the form

Iℓ(µ) =

(
k +

1

2

)
πh+ h2rℓ(µ, h), Ir(µ) =

(
k +

1

2

)
πh+ h2rr(µ, h),

where

rℓ =
1

2ih
log

(
d12
d11

)
, rr =

1

2ih
log

(
d22
d21

)
are both bounded when h goes to 0.

Thus we conclude that the set of eigenvalues produced by a double well
potential is a union of the sets of eigenvalues produced by each potential
well. This is a well known fact for the Schrödinger equation.

For the calculation of djk, we summarize the result of the Wronskians as
follows.

Lemma 4.8. Let u1,u2,u3 and u4 be defined by (4.2.5)-(4.2.6). Then,

(i) W(u1,u3) = −4ieJ/hτℓτrw
+
even(ȳr; yℓ),

(ii) W(u1,u4) = 4ieJ/hτℓτ
∗
rw

+
even(y̌ℓ; yr),

(ii) W(u3,u2) = −4ieJ/hτ∗ℓ τrw
+
even(ȳr; ˇ̄yℓ),

(iv) W(u4,u2) = 4ieJ/hτ∗ℓ τ
∗
rw

+
even(ȳℓ; yr),

(v) W(u1,u2) = i · 4iτℓτ∗ℓ w+
even(ȳℓ; yℓ),
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(vi) W(u3,u4) = ∓i · 4iτrτ∗rw+
even(ȳr; yr),

in the cases A(βℓ) = ±A(βr). Moreover, all amplitude functions appearing
on the right are 1 +O(h) as h→ 0.

This is proven by adapting the argument in [10, Sec.5]. We then calculate
the coefficients djk by using them.

Proof of Theorem 4.6. Note that each coefficient djk is represented as

d11 =
W(vℓ,u2)

W(u1,u2)
, d12 =

W(u1,vℓ)

W(u1,u2)
,

d21 =
W(vr,u4)

W(u3,u4)
, d22 =

W(u3,vr)

W(u3,u4)
,

that is,

d11 =
e−J/h

2i

W(u3,u2)−W(u4,u2)

W(u1,u2)
, d12 =

e−J/h

2i

W(u1,u3)−W(u1,u4)

W(u1,u2)
,

d21 =
e−J/h

2i

W(u1,u4)−W(u2,u4)

W(u3,u4)
, d22 =

e−J/h

2i

W(u3,u1)−W(u3,u2)

W(u3,u4)
.

By applying Lemma 4.8, we obtain

d11 = −τrw
+
even(ȳℓ, ˆ̄yr) + τ∗rw

+
even(ȳℓ, yr)

2τℓw
+
even(ȳℓ, yℓ)

,

d12 = −τrw
+
even(ȳr, yℓ) + τ∗rw

+
even(ŷr, yℓ)

2τ∗ℓ w
+
even(ȳℓ, yℓ)

,

d21 = ±
τℓw

+
even(ŷr, yℓ) + τ∗ℓ w

+
even(ȳℓ, yr)

2τrw
+
even(ȳr, yr)

,

d22 = ±
τℓw

+
even(ȳr, yℓ) + τ∗ℓ w

+
even(ȳℓ, ˆ̄yr)

2τ∗rw
+
even(ȳr, yr)

in the cases A(βℓ) = ±A(βr). Here, we know that τ±• (• = ℓ, r) and all
amplitude functions are 1 +O as h→ 0, and it completes the proof.

Remark 4.9. The coefficients djk also satisfy

d11 = d∗12, d21 = d∗22.

In order to show this, we check the conjugate of the amplitude function
w+
even(y1; y2;µ). Indeed,(

w+
even(y1; y2;µ)

)∗
= w+

even(y1; y2; µ̄) = w−
even(ȳ1; ȳ2;µ).

47



By the Wronskian formula, we have

w−
even(ȳ1; ȳ2;µ) = w+

even(ȳ2; ȳ1;µ),

that is, (
w+
even(y1; y2;µ)

)∗
= w+

even(ȳ2; ȳ1;µ).

Now we assume a symmetry for the potential and study the splitting phe-
nomenon of eigenvalues which is well known for the Schrödinger operator.

Assumption 5. In addition to Assumption 4, A(x) is either even or odd
function.

Now, we retake the base points of the solutions so that xℓ = −xr and yℓ =
−ȳr. Under this assumption, we obtain some symmetry for the elements on
the quantization condition.

Lemma 4.10. Under Assumption 5, the action integrals satisfy

Iℓ(µ) = Iℓ(µ) = Ir(µ) = Ir(µ),

and

J(µ) = J(µ).

We can prove them in the same way as Lemma 3.8.

Lemma 4.11. Under Assumption 5, the connection coefficients djk have
symmetry

d12(µ) = d21(µ), d11(µ) = d22(µ).

Proof. It is sufficient to show that τℓ = τr. Recall that τℓ is in the form of

τℓ =
1

2

(
τ+ℓ + (τ−ℓ )∗

)
,

where,

τ+ℓ =
w+
even(ȳℓ;xℓ;µ)

w+
even(ȳℓ; yℓ;µ)

, τ−ℓ =
w+
even(y̌ℓ;xℓ;µ)

w+
even(ȳℓ; yℓ;µ)

.

Under the condition A(x) = ±A(−x), the amplitude w+
even(y1; y2;µ) have

the symmetry w+
even(y1; y2;µ) = w+

even(−y2;−y1;µ) from the recurrence
equations. Hence,

τ+ℓ =
w+
even(−xℓ;−ȳℓ;µ)

w+
even(−yℓ;−ȳℓ;µ)

=
w+
even(xr; yr;µ)

w+
even(ȳr; yr;µ)

,

that is, τ+ℓ = τ−r . One can obtain τ−ℓ = τ+r in the same calculation, and this
gives the symmetry τℓ = τr as a result.
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We rewrite the quantization condition as(
γℓe

iIℓ/h + γ∗ℓ e
−iIℓ/h

)(
γre

iIr/h + γ∗re
−iIr/h

)
∓ e−2J/h sin (Iℓ/h) sin (Ir/h) = 0,

where γ• and γ∗• are 1 + O(h) as h → 0, from Theorem 4.6. Moreover, we
write

γℓ = (γℓγ
∗
ℓ )

1/2(γℓ/γ
∗
ℓ )

1/2 := ρℓe
iθℓ ,

γ∗ℓ = (γℓγ
∗
ℓ )

1/2(γℓ/γ
∗
ℓ )

−1/2 := ρℓe
−iθℓ ,

and

γr = (γrγ
∗
r )

1/2(γr/γ
∗
r )

1/2 := ρre
iθr ,

γ∗r = (γrγ
∗
r )

1/2(γr/γ
∗
r )

−1/2 := ρre
−iθr ,

where we choose branches of the square roots and the logarithm in such a
way that ρ• = 1 + O(h) and θ• = O(h). Then, our quantization condition
is rewritten as

ρℓρr

(
eiĨℓ/h + e−iĨℓ/h

)(
eiĨr/h + e−iĨr/h

)
∓ e−2J/h sin (Iℓ/h) sin (Ir/h) = 0,

that is,

ρℓρr cos(Ĩℓ/h) cos(Ĩr/h)∓ 4e−2J/h sin (Iℓ/h) sin (Ir/h) = 0,

where Ĩ• = I + hθ•. Note that ρ∗• = ρ•, θ
∗
• = θ• and Ĩ∗• = Ĩ• from Remark

4.9 and Lemma 4.10. If Assumption 5 holds, we have ρℓ = ρr, θℓ = θr and
Ĩℓ = Ĩr from Lemmas 4.10 and 4.11. Thus, the quantization condition is
described in the case A(x) = ±A(−x),

ρ2 cos2(Ĩ/h)∓ 4e−2J/h sin2 (I/h) = 0. (4.2.11)

Here, I := I• (Ĩ := Ĩ•) and ρ := ρ•.

This means that the eigenvalues produced by each potential well satisfy the
same Bohr-Sommerfeld quantization condition modulo exponentially small
error:

Ĩ(µ) =

(
k +

1

2

)
πh. (4.2.12)

We are going to show, in the following theorem, the so-called splitting phe-
nomenon of these eigenvalues (which is already well known in the self-djoint
Schrödinger case), thanks to the explicit exponential error term in (4.2.11).

Theorem 4.12. Suppose Assumption 5. Let µ0k(h) be the (unique) root of
the equation (4.2.12) near µ0. Then the two eigenvalues iµ+k (h), iµ

−
k (h)

approximated by iµ0k(h) satisfy the following asymptotic formulas as h→ 0:
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1. In the case where A(x) is an even function,

µ±k (h)− µ0k(h) = ±e−J/h

(
2h

I ′(µ0k)
+O(h2)

)
.

2. In the case where A(x) is an odd function,

µ±k (h)− µ0k(h) = ±ie−J/h

(
2h

I ′(µ0k)
+O(h2)

)
.

Remark 4.13. We see from this theorem that the eigenvalues split vertically
in the even case, whereas they split horizontally in the odd case. This implies
in particular that there are no purely imaginary eigenvalues in the odd case.

Proof. From the quantization condition, we have

cos(Ĩ(µ)/h) = ±2ρ−1e−J/h sin (I(µ)/h) (4.2.13)

in the even case A(x) = A(−x), and

cos(Ĩ(µ)/h) = ±2iρ−1e−J/h sin (I(µ)/h) (4.2.14)

in the odd case A(x) = −A(−x).
Hence it is easy to see that |µ−µ0k| = O(he−J/h) when µ satisfies (4.2.13)

or (4.2.14). But we want more precise estimates. Since Ĩ(µ) = I(µ) + hθ =
I(µ) +O(h2), we have

sin
(
I(µ±k )/h

)
= ±1 +O(h),

where the sign of the RHS depends on the parity of k (but not on the sign
of the LHS).

On the other hand,

Ĩ(µ±k ) = Ĩ(µ0k) + Ĩ ′(µ0k)(µ
±
k − µ0k) +O(h2e−2J/h)

= Ĩ(µ0k) + I ′(µ0k)(µ
±
k − µ0k) +O(h3e−J/h),

and hence

cos(Ĩ(µ±k )/h) = ±I ′(µ0k)
µ±k − µ0k

h
+O(h2e−J/h).

The theorem follows from these estimates.
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