Synthesis of Bacteriochlorins by Modifying Natural Chlorophylls and Their Optical Properties in Monomeric and Oligomeric States

Michio Kunieda

Bacteriochlorin, one of cyclic tetrapyrrole derivatives, is utilized in natural photosynthesis as photoactive pigments. Since a bacteriochlorin π -conjugate system is a double reduced porphyrin derivative, it is sensitive to be oxidized and decomposed even under ambient conditions.

In chapter 2, I synthesized stable bacteriochlorin derivatives by use of Diels-Alder reactions of 8-vinylchlorins with tetracyanoethylene. Such synthetic bacteriochlorins possessing the 8-alkylidene group resembled with natural bacteriochlorophyll(BChl)*s-b/g* possessing the 8-ethylidene group and were chemically more stable than the natural pigments due to no hydrogen atoms at the 7,8-positions. Furthermore a series of 3-substituted bacteriochlorins were available. The electronic absorption properties of 3-substituted bacteriochlorins showed that their Qy maxima were controlled by the 3-substituents to be red-shifted in the order of ethyl, hydroxyethyl, vinyl, acetyl and formyl group, which was consistent with that in 3-substituted chlorins.

In chapters 3 and 4, I investigated oligomeric properties of synthetic bacteriochlorin molecules. Bacteriochlorins are generally utilized in purple bacterial light-harvesting antenna system (LH1) by assistance of protein scaffold to make exciton coupling among the molecules, whereas chlorins in green bacterial antenna make exciton coupling only by their self-aggregation. In chapter 3, I synthesized self-aggregative magnesium 3-(1-hydroxyethyl)-bacteriochlorin and separated its 31-epimers. Their self-aggregation was strongly dependent on the 31-stereochemistry; red-shift value by self-aggregation of the 31*R* -epimer was 2170 cm⁻¹ while that of 31*S* -epimer was 1280 cm⁻¹. Especially, self-aggregation of the 31*R* -epimer showed similar electronic absorption property with LH1.

In chapter 4, I synthesized chemically stable self-aggregative 7- or 8-oxo-bacteriochlorins. As compared with the above self-aggregative bacteriochlorins modified from natural BChl-*a*, the present oxo-bacteriochlorins were chemically stable because they had no hydrogen atoms at the 7,8-positions. The self-aggregation behaviors of 7- or 8-oxo-bacteriochlorins were controlled by the situation of 8- or 7-dialkyl groups. Molecular modelings of their dodecamers showed that 7-oxo-8-dialkyl-bacteriochlorin self-aggregated with less hindered motif than 8-oxo-7-dialkyl-bacteriochlorin did.