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Abstract

Numerical analysis for stochastic differential equations has been studied by many authors from both
sides of the theory and application. Recently, many numerical schemes have been proposed and a lot
of interesting results have been discovered. The aim of this thesis is to study a numerical analysis for
stochastic differential equations with irregular coefficients.

In Chapter 1, we present the background and outline of this thesis. This chapter contains History
of the existence and uniqueness for solution of stochastic differential equations under general settings for
the coefficients. We also discuss the relation between stochastic differential equations and Kolmogorov
equations. Moreover, we consider several numerical scheme which contains the Euler-Maruyama approx-
imation with historical frame work.

In Chapter 2, we consider the Euler-Maruyama approximation for multi-dimensional stochastic dif-
ferential equations with irregular coeflicients. We provide the rate of strong convergence where the
possibly discontinuous drift coefficient satisfies a one-sided Lipschitz condition and the diffusion coeffi-
cient is Holder continuous and uniformly elliptic. Yamada and Watanabe approximation technique in the
celebrated paper [120] plays a crucial role in our argument.

In Chapter 3, we study the Euler-Maruyama approximation for one-dimensional stochastic differ-
ential equations with discontinuous coefficients. Using the method of removal of drift, we present the
rate of strong convergence when the drift coefficient is the sum of Hélder continuous and bounded varia-
tion functions, and the diffusion coefficient is Holder continuous or more generally, bounded 2-variation
function.

In Chapter 4, we study the weak approximation for stochastic differential equations with unbounded,
irregular drift and constant diffusion coefficients. We apply Girsanov theorem to obtain the weak rate of
the Euler-Maruyama approximation for the expectation of various non-smooth functionals of stochastic
differential equations, its maximum and killed diffusion. We also apply our method to the study the weak
approximation of reflected stochastic differential equations.

In Chapter 5, we consider stability problem for one-dimensional stochastic differential equations with
irregular coefficients. The goal of this chapter is to estimate the LP-difference between two SDEs using a
norm associated to the difference of coefficients. In our setting, the discontinuous drift coefficient satisfies
a one-sided Lipschitz condition and the diffusion coefficient is bounded, uniformly elliptic and Hoélder
continuous.

In Chapter 6, we study an unbiased simulation scheme for skew diffusion processes. We apply the
parametrix method in order to obtain the existence and the regularity properties of the density of a
skew diffusion and provide a Gaussian upper bound. The parametrix method leads to a probabilistic
representation in order to use Monte Carlo simulation.
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Chapter 1

Introduction

1.1 Overview

1.1.1 Stochastic differential equations and Kolmogorov equations

Stochastic differential equations

The theory of stochastic calculus and stochastic differential equations (SDEs) introduced by Kiyosi It6
[52, 53, 54] is used to model a random dynamical phenomena in many fields of applications, for example,
mathematical finance, physics, biology, optimal control problem and filtering problem. In particular, it
is indispensable to the theory of option pricing in mathematical finance developed by Black, Scholes [15]
and Merton [91].

We shall first consider history of the existence and uniqueness for solution of SDEs. Let X =
(Xt)o<t<T be a solution of d-dimensional SDE

dXt == b(Xt)dt+U(Xt)th, (11)

where W = (W})o<i<r is a d-dimensional standard Brownian motion on a probability space (2, F,P)
and b = (b ... p@)* : RY — R? and 0 = (07 ;)1<ij<a : RY — R The method to prove the
existence and uniqueness which Itd uses is Picard’s successive approzimation (see [52, 53]). Under the
Lipschitz condition, we can use the framework of the contraction mapping of L?-space in order to show
the convergence of the successive approximation and the pathwise uniqueness for the solution of SDE. It
is worth noting that under Osgood’s and Nagumo’s type condition for the coefficients, Picard’s successive
approximation converges to the unique solution to the corresponding SDE in L2-sense (see [62, 119]). In
contrast to the existence and uniqueness of ordinary differential equations, we can discuss them under
“weak regularity condition for the coefficients” of the SDE (1.1). It is well-known that the martingale
problem introduced by Stroock and Varadhan [110] plays a crucial role in the proof of the weak existence
and uniqueness in the sense of probability law for the SDE (1.1) under the condition that the drift
coefficient b is bounded measurable, and the diffusion coefficient o is bounded, uniformly elliptic and
continuous. Krylov [71] extended the results in [110] to measurable diffusion coefficient. Moreover, for
the one-dimensional SDE dX; = o(X;)dW,, by using the method of time-change, Engelbert and Schmidt
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gave the equivalent conditions for the weak existence and uniqueness in the sense of probability law
(see e.g., Theorem 5.5.4 and 5.5.7 in [60]). The relation between pathwise uniqueness and uniqueness
in the sense of probability law is considered by Yamada and Watanabe [120]. Yamada and Watanabe
prove that pathwise uniqueness implies uniqueness in the sense of probability law, and weak existence and
pathwise uniqueness implies the solution is a strong solution. Moreover, they also provide that under one-
dimensional setting, if the drift coefficient is Lipschitz continuous and diffusion coefficient is 1/2-Hélder
continuous, the pathwise uniqueness holds, so the solution is a strong solution. The problem of the
pathwise uniqueness is considered by many authors, and the result in [120] is extended to some SDE with
discontinuous coefficients, [77, 94, 116, 122] (see below in detail). We remark here that Girsanov gives an
example of SDE with a-Holder continuous diffusion coefficient with a € (0,1/2) which does not satisfy
the pathwise uniqueness (see Example 1.22 in [18]). Tanaka also provides that if the diffusion coefficient
is a signed function (discontinuous), the weak solution of the corresponding SDE (Tanaka’s equation) is
not a strong solution but satisfies uniqueness in the sense of probability law, (see e.g., Example 5.3.5 in
[60]). Finally we notice here that the pathwise uniqueness arguments was developed to some “comparison
theorem” which is the monotonicity property for solutions of one-dimensional SDEs (see e.g. [50, 117]),
and “stability problem” which is the error analysis between different two solutions of SDEs (see [59, 61]).

Kolmogorov equations

Now we consider the relation between SDE (1.1) and the Kolmogorov equation:

%—kLu:(); in [0,T) x RY,

1.2
u(T,z) = f(z); xR (12

Here the differential operator L corresponding to the process X is defined by
d

Lo 9*f(x) (), OF (@)
;;ai’j(m)axiaxj +Zb (z) oz

i=1

Lf(z):=

|~

where a = 00* = (a;,j)1<i,j<d- It is well-known that the Feynman-Kac formula implies that under the
assumption that the coefficients b and o are bounded, Holder-continuous and ¢ is uniformly elliptic then
the solution u of (1.2) admits the stochastic representation

U(S,Ji) = Ex[f(XT—s)]a (13)

on [0,T] x R%, for any continuous and polynomial growth function f : R — R, (e.g., Theorem 5.7.6
in [60] and see also [28]). Moreover, in the case of bounded, Hélder continuous coefficients, it is known
that there exists the transition density function of X; which is also called fundamental solution of the
equation (1.2). The idea of proof is based on Levi’s parametriz method which is a classical method in order
to construct fundamental solution for parabolic type partial differential equations using a “Taylor-like”
expansion argument (see [28]). This method allows for coefficients to be less regular than in the Malliavin
Calculus [101] approach for the study of the density. On the other hand, we know that the stochastic
differential equation (1.1) has a unique solution under weak regularity condition for the coefficients, and
the operator L is well-defined for any measurable functions b and a. Stroock and Varadhan (Corollary
11.1 in [110]) show that if the drift coefficient b is bounded, measurable and the diffusion coefficient o is
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bounded, uniformly elliptic and continuous, then the solution to the equation (1.2) in the class VV}}2 with
p > (d+2)/2 also admits the stochastic representation (1.3) (see also Theorem 1 in [122]). We refer to [76]
for the definition and properties of solutions in the class W, 2. We also refer to [27, 75, 85] for the existence
of the density of general SDEs, and [46, 47, 75] for the Holder continuity property of the density. Finally,
we remark that Fabes and Kenig [24] give an example that there exists, bounded, uniformly elliptic
and uniformly continuous coefficient o such that the law of the solution to dX; = o(t, X¢)dW; is purely
singular with respect to Lebesgue measure on R?, it means that X, does not have the probability density
function.

1.1.2 Problem of numerical analysis for stochastic differential equations

Euler-Maruyama approximation

In many fields of applications, the theory of a numerical analysis for SDEs is quite important topic. In
particular, it is essential for quantitative analysts in banking facilities to price complex financial derivative
products.

Historically, the Fuler-Maruyama scheme introduced by Maruyama [88] (which is a polygonal line
approximation) is the most standard discrete approximation for solution of SDEs. Maruyama introduced
it in order to prove Girsanov’s theorem for the solution of one-dimensional SDE dX; = b(X;)dt + dW;
(see [87, 88]). The Euler-Maruyama scheme for SDE is a stochastic analogue of the Euler scheme for
ordinary differential equation, and is recognized as a way to have vast range of applications.

Let us define the Euler-Maruyama approximation introduced by Maruyama [88]. The Euler-Maruyama
approximation for the SDE (1.1) denoted by X () = (Xt(n))ogth is defined by

dX{™ = b(X\",))dt + o(X1",)dW;, X = Xo, (1.4)

where 7, (¢) := kT/n if t € [kT/n,(k+ 1)T/n). For the Euler-Maruyama approximation, there are the
following two types of error:

E[ sup |X; — X™[P)'/?, (strong error), (1.5)
0<t<T
and
E[f(X7)] — E[f(XM)]], (weak error). (1.6)

Maruyama prove that under the Lipschitz conditions for b and o, the process X (™ converges to the unique
solution to the corresponding SDE in L2-sense. Moreover, it is well-known that the Euler-Maruyama
approximation has strong rate of convergence 1/2, (see [25, 58, 64]), that is, for any p > 1, if the
coeflicients b and o are Lipschitz continuous,

C
E[ sup |X; — XM p)/r < = 1.7
[Ogthl e XIS (1.7)

and has weak rate of convergence 1, (see [10, 35, 37, 69, 113]), that is, for any bounded and smooth
function f : R — R, if b and o are smooth functions,

IE[f(X1)] - E[f(XM)]]

IN
s1Q

(1.8)
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On the other hand, as mentioned above, the existence and uniqueness are true for SDE with “irregular
coeflicient”. Therefore we now consider the following two questions:

Q-(i) Under the assumption of existence and uniqueness for SDE, does the Euler-Maruyama approzima-
tion converge to the unique solution?

Q-(ii) If the Euler-Maruyama approzimation converges to the unique solution, how is the convergence
rate?

The question Q-(i) is considered by Yamada in [118], and he show that under the same assumptions for
the coefficients considered in [120], the Euler-Maruyama approximation converges to the unique solution
to the corresponding SDE in L!-sense and then extend to L?-sense. Moreover, the question Q-(i) is
solved by Kaneko and Nakao [59] in continuous coefficients. They show that the pathwise uniqueness,
and continuity and linear growth property for the coefficients imply the Euler-Maruyama approximation
converges to the unique solution in L2-sense. Recently, Yan [121] show that for linear growth coefficients b
and o, under some assumptions on the discontinuity points of b and o, the Euler-Maruyama approximation
weakly converges to the unique weak solution. In the proof of [59] and [121], by using the tightness of the
Euler-Maruyama approximation, we can deal with a convergence without having to use the smoothness
of the coefficients. Therefore, the question Q-(i) has been solved in some sense. Finally we remark the
result of Hutzenthaler, Jentzen and Kloeden [48]. They show that under a super-linear growth condition
for the coefficients, the Euler-Maruyama scheme does not converge to the unique solution in the both
weak and strong sense.

For the question Q-(ii), the strong rate in the case of non-Lipschitz coefficients have been studied
recently. Yan [121] prove that for one-dimensional SDEs by using the It6-Tanaka formula and estimation
of local time, if the diffusion coefficient o is (a + 1/2)-Holder continuous with « € (0,1/2] and the drift
coefficient is Lipschitz continuous, then
c

o

E[| X7 — X[ <

3

This result extended by Gyongy and Résonyi [40]. They show that by using the approximation method of
Yamada and Watanabe considered in [120] (see below in detail), for one-dimensional SDEs, if the diffusion
coefficient is (« + 1/2)-Hélder continuous with « € [0,1/2] and the drift is the sum of a Lipschitz and a
non-increasing y-Holder continuous function with v € (0, 1) then

C .
(n) logn ifoa=0,
By - x{P) < {lgn
nfa‘an/Q 1fa6(0,1/2].

Therefore, we know the strong rate of convergence for the Euler-Maruyama scheme, under the assumption
for the pathwise uniqueness considered by Yamada and Watanabe [120].

The weak rate of convergence in the case of Holder continuous coefficients are considered by Mikule-
vicius and Platen [92]. They prove that by using the property of the Kolmogorov equation (1.2) and
stochastic representation (1.3), for any bounded, smooth function f : R? — R,

[BL(Xr)] — BN < o
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where 8 € (0,1] is the Holder exponent of the coefficients b and o. Recently, Kohatsu-Higa, Lejay and
Yasuda [65] provide the weak rate of convergence for the Euler-Maruyama scheme under non-regular drift
coefficient. Martinez and Talay [86] prove that the weak rate for the Euler-Maruyama scheme with some
discontinuous diffusion coefficients is (1 — €)/2 for any ¢ € (0,1/2). We note that the weak convergence
rate presented in [65, 86, 92] is less that 1/2 for the Euler-Maruyama scheme for SDEs with irregular
coefficients. Finally, we remark the result of Hairer, Hutzenthaler and Jentzen [41] (see also [56]). In
[41], it has been shown that there is an example of SDE with infinitely often differentiable and globally
bounded coefficients (the derivatives of drift are not bounded and diffusion coefficient is not uniformly
elliptic) such that for any o > 0,

0, ifa=0,

lim n“B[|X7 — X7V = lim n®[E[X7] - E[X7"]| = { 0, ifa> 0.

n—oQ

Therefore the “polynomial type” convergence rates (1.7) and (1.8) are not satisfied in general, even if the
coefficients are bounded and smooth enough.

Unbiased simulation and the parametrix method

Recently, many numerical schemes alternative to the Euler-Maruyama method have been studied by using
a variety of techniques, and it has been discovered a lot of interesting results (see [4, 5, 9, 23, 26, 29,
49, 67, 74, 79, 81, 95, 105, 106]). As one of them, Bally and Kohatsu-Higa introduce in [9] an unbiased
simulation method for the expectation E[f(Xr)] based on the parametrix method (see also [4, 67]).

Let us first recall Levi’s parametrix method. For more detail, we refer to [28]. As we mentioned
above, the parametrix method is used to construct a fundamental solution of the Kolmogorov equation
(1.2). A fundamental solution of (1.2) is a function p(s,z;t,9), 0 < s < t < T and x,y € R? which
satisfies the following conditions:

(i) For fixed (¢,y) € (0,T] x R%, it satisfies the equation (95 + L)p(s,z;t,y) = 0.
(ii) For any continuous function f: RY — R, lim, ~ [pa p(s, z;t,9) f(y)dy = f().

In order to construct the fundamental solution p(s,x;t,y), we introduce an “approximation function”
p*(s,x;t,y) defined by

exp (— g5y a(2) 7y — @),y — @)
(27 (t — 5))4/2 /det a(z)

P (s, x5t y) =

)

and we denote p(s, x;t,y) := pY(s,x; t,y) which satisfies the equation (9s + LY)p(s, x;t,y) = 0 where

d d 02 f ()
z::z:: axlﬁx]

Then the fundamental solution p(s, z;t,y) can be constructed as the solution to the integral equation

LVf(x

l\.')\»—l

t
p(s, 23, y) = Bls, 73, y) + / du [ dep(saiu, 2)®(u, 251, y), (1.9)
s Rd
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where ®(s,z;t,y) = (L — LY)p(s,z;t,y). The equation (1.9) can be solved “formally” as follows: We
define the convolution ® for functions f,g as

t
f®glsait,y) = / du [ def(s,au 2)g(u, 2t y).
s R4

We denote f®! = f, f® = f@® fO*=1 and f ® ¢g®° = f. Then the equation (1.9) is linear equation,
thus it satisfies the formal expansion

pls,t,y) =Y p® (s, a3t y). (1.10)

n=0

This procedure is called the parametriz method and p(s,x;t,y) is called the parametriz. The expansion
(1.10) converges absolutely and uniformly for z,y € R? if the coefficients b and o are bounded, Hélder
continuous and o is uniformly elliptic.

Now we provide a probabilistic representation for the density function p(0, z;t,-) of the solution to
the SDE (1.1) which is introduced by Bally and Kohatsu-Higa [9]. Let N = (N;);>0 be a Poisson process
with parameter A > 0, that is N; = Zzo:l 17, <¢ where (T — Tn—1)nen with 79 are independent and
identically exponential distribution with parameter \. We also define

d
Do) =5 3 (o) — ai ) H =) = 3 bile) By (v — ),

1<i,j<d i=1
where H* and H%J are Hermite polynomials of order 1 and 2, that is,

Hi(y) == —(a"'y); and H (y) == (a 'y)i(ay); — (@™ )iy

Then it is easy to prove that

(0, z;t,y) = 0 (2, y)B(0, 5, y). (1.11)

Using the expansion (1.10), the equation (1.11) and the Markov property of the stochastic process y +
o(y)W; whose density is D(0, -; ¢, y), we have the following probabilistic representation for the density of
Xti

Ne—1
p(0,3t,y) = ME (NN, 2,5t X7 W)) [ Orpor oy (X527, (), X357 () | (1.12)
§=0

Tj+1

where 73 := 7y, and X*™(y) is the Euler-Maruyama scheme with X" (y) = y and a random partition
7 = (15 AT)jen whose diffusion coefficient is o, that is X" (y) := y and for j > 1,

X2 (y) = X2, (y) + o (X7, () (Wey = W, ).

Tj—1 Tj—1

The stochastic representation (1.12) can be used for Monte Carlo simulation in order to compute the
expectation E[f(Xr)] for some Borel measurable function f.
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1.2 Outline of the thesis

In this thesis, we consider numerical analysis for stochastic differential equations with irregular coeffi-
cients. This thesis consists of six chapters and references. In Chapter 2, 3, 4, we consider the above two
questions Q-(i) and Q-(ii) for the Euler-Maruyama approximation with irregular coefficients. We provide
the strong and weak rate of convergence. In Chapter 5, we consider the LP-difference between two SDEs
using a norm associated to the difference of irregular coefficients. In Chapter 6, we introduce an unbiased
simulation scheme for SDEs with symmetric local time by using the parametrix method.

In Chapter 2, we consider the Euler-Maruyama approximation for multi-dimensional SDEs. We
introduce some basic properties and the Gaussian estimate for the density of the Euler-Maruyama ap-
proximation. We will see the proof of a well-known result that if the coefficients are Lipschitz continuous
then the Euler-Maruyama approximation has strong rate of convergence 1/2; which was proved by Kana-
gawa [58] and Faure [25]. We introduce Yamada and Watanabe approximation technique in order to
deal with Holder continuous diffusion coefficients and one-sided Lipschitz drift coefficient. We introduce
a class of irregular functions A in subsection 2.4.1 for the drift coefficient. The properties of the class
A play a crucial role in our argument to obtain the strong rate of convergence for the Euler-Maruyama
scheme. The results presented in section 2.4 are based on the paper [97] by Ngo and Taguchi published
in Mathematics of Computation.

In Chapter 3, we consider the Euler-Maruyama approximation for one-dimensional SDEs with Holder
continuous and discontinuous coefficients. We apply the method of removal of drift to the solution of SDE
and the Euler-Maruyama scheme, for providing the strong rate of convergence. In the case of discontinuous
diffusion coefficient, we use an argument with local time and tightness of the Euler-Maruyama scheme.
The results presented in section 3.2 are based on the paper [99] accepted for publication at IMA Journal
of Numerical Analysis, and those in section 3.3 are based on the paper [100] accepted for publication at
Statistics and Probability Letters by Ngo and Taguchi.

In Chapter 4, we aim at developing a systematic study for the weak rate of convergence of the Euler-
Maruyama scheme for SDEs with unbounded, irregular drift and constant diffusion coefficients. We
apply Girsanov’s theorem to obtain the rates of approximation for the expectation of various non-smooth
functionals. We also discuss approximation for the density of SDE and the weak rate of convergence for
reflected stochastic differential equations. The results presented in this chapter are based on the preprint
[98] by Ngo and Taguchi.

In Chapter 5, we consider stability problem for one-dimensional SDEs with irregular coefficients. The
goal of this chapter is to estimate the LP-difference between two SDEs using a norm associated to the
difference of coefficients. In our setting, the (possibly) discontinuous drift coefficient satisfies a one-sided
Lipschitz condition and the diffusion coefficient is bounded, uniformly elliptic and Hélder continuous.
As an application of this result, we consider the stability problem for this class of SDEs. The results
presented in this chapter are based on the paper [114] by Taguchi, published in Séminaire de Probabilités.

In Chapter 6, we apply the parametrix method in order to obtain the existence and the regularity
properties of the density of a skew diffusion which is the solution of SDE with symmetric local time, and
provide a Gaussian upper bound. We will provide a probabilistic representation similar to (1.12) which
can be used to Monte Carlo simulation. The results presented in this chapter are based on the paper [67]
by Kohatsu-Higa, Taguchi and Zhong, accepted for publication at Potential Analysis.
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1.2. OUTLINE OF THE THESIS
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Chapter 2

Strong rate of convergence for the
Euler-Maruyama approximation

2.1 Introduction

Let us consider the d-dimensional stochastic differential equation (SDE)
t t
X =z +/ b(s, Xs)ds +/ o(s, X)dW,, 29 € RY t €[0,T), (2.1)
0 0

where W := (W, )o<¢<r is a standard d-dimensional Brownian motion on a probability space (2, F,P) with
a filtration (F3)o<i<T satisfying the usual conditions. The drift coefficient b is a Borel-measurable function
from [0,7] x R? into R? and the diffusion coefficient ¢ is a Borel-measurable function from [0, 7] x R?
into R4*4. In this thesis, we consider that elements of R¢ are column vectors. The diffusion process
X = (X})o<t<r is used to model many random dynamical phenomena in many fields of application, for
example, mathematical finance, optimal control problem and filtering.

Since the solution of (2.1) is rarely analytically tractable, one often approximates X by using the
Euler-Maruyama scheme given by

t t
Xt(n) =0+ / b (nn(s),Xf]:%S)) ds + / o (nn(s),Xf]:)(SJ dWs, t €[0,T7], (2.2)
0 0

where 7, (s) = kT/n =: t,(en) if s € [kT/n,(k+1)T/n). Tt is well-known that if the coefficients b and o
are Lipschitz continuous in space and 1/2-Holder continuous in time then the Euler-Maruyama scheme
has strong rate of convergence 1/2, (see [64]), i.e. for any p > 0, there exists C}, > 0 such that

0<t<T np/

The strong rate in the case of non-Lipschitz coefficients have been studied recently by using the
approximation method of Yamada and Watanabe ([120], Theorem 1) in Gyongy and Rdsonyi [40]. They
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have proven that for a one-dimensional SDE, if the diffusion coefficient is (o + 1/2)-Hélder continuous in
space and the drift is the sum of a Lipschitz and a non-increasing y-Hoélder continuous function then

= (n (1 —1/2 ifa=0
B| s - X0 <SOUET T 2:3)
0<t<T Cn™2* +n~ ) ifae(0,1/2],
where X is the Euler’s “polygonal” approximation of X given by
XM — g +/ b <3,X<">( )) ds +/ o (s7X(" )dWs, te0,7). (2.4)
0 NMn (S 0 nn(s)

Yan [121] has obtained a result similar to (2.3) for the Euler-Maruyama scheme applied to a one-
dimensional SDE with a drift which is Lipschitz continuous in space and Hélder continuous in time
by using Tanaka’s formula and some estimates for the local time. When the drift b is not supposed to
be continuous, Halidias et al. (Theorem 3.1 in [42]) have shown the convergence of Euler-Maruyama ap-
proximation in L?-norm (see also Theorem 2.8 in [39]). Regarding the rates of convergence, Gyéngy has
shown that if b satisfies the one-sided Lipschitz condition (see Definition 2.4.7) and o is locally Lipschitz
then the rate of almost sure convergence for the Euler-Maruyama’s polygonal approximation is of order
1/4 (see [38] Theorem 2.6). Moreover, Bastani et al. have recently proven strong LP-rate 1/4 for p > 2
for split-step backward Euler approximations of SDEs with discontinuous drift and Lipschitz continuous
diffusion coefficients (see Theorem 5.2 in [12]).

Besides the strong approximation problem, the weak approximation for non-Lipschitz coefficients
SDE has also received a lot of attention. The weak rate of the Euler-Maruyama approximation when both
drift and diffusion coeflicients as well as payoff functions are Holder continuous has been studied in [40, 64,
92]. Kohatsu-Higa et al. studied weak approximation errors for SDEs with discontinuous drift by using a
perturbation method in [65]. The case of locally Lipschitz coefficients has been studied extensively, too,
see [48] and the references therein. It should be noted that the strong rate of approximation is very useful
to implement an effective Multi-level Monte Carlo simulation scheme for approximating expectations of
some functionals of X (see [32]).

The goal of this chapter is to show that the strong rates obtained in [40] and [121] still hold even
when b is discontinuous. More precisely, we will investigate the strong rate of the Euler-Maruyama
approximation under the assumption that the diffusion coefficient o is (a+1/2)-Hélder continuous and the
drift b is one-sided Lipschitz and belongs to the class A of functions which is, roughly speaking, of bounded
variation with respect to a Gaussian measure on R?. In particular, our result implies that the Euler-
Maruyama approximation has the optimal strong rate 1/2 in the case of Lipschitz continuous diffusion
coefficient and discontinuous drift. Hence our result partly improves upon the ones in [38, 40, 121]. In this
article, Lemma 2.4.12 is the key estimation. If the drift coefficient b is a Lipschitz continuous function, it
is easy to prove this lemma. To obtain the same estimate with discontinuous drift, we use the result of
Lemaire and Menozzi which is the Gaussian bound for the density of the Euler-Maruyama approximation
(see [80], Theorem 2.1).

Finally we note that SDEs with discontinuous drift appear in many applications such as optimal
control and interacting infinite particle systems, see e.g. [14, 16, 72].

In this chapter, we use the following notations. We define

v =X, = X and U = XM - X7 (2.5)

We denote b= (b1, ... b(D)* and ¢ = (04,5)1<i,j<d- Here * means transpose for the matrix.
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2.2 Basic properties for the Euler-Maruyama scheme

2.2.1 Some auxiliary estimates

We first introduce the following two useful inequalities for proving the rate of convergence of the Euler-
Maruyama approximation.

Lemma 2.2.1. Assume that the coefficients b and o are measurable and linear growth in space, i.e. there
exists a positive constant K such that for any (t,z) € [0,T] x R?,

[b(t, )| + [o(t, 2)| < K(1 + |x]).

Then for any q > 0,

supE[ sup |Xt(n)|q] < 400.
neN  lo<t<T

Proof. The case 0 < ¢ < 2 can be obtained from the case ¢ > 2, so we assume that ¢ > 2. Define a stopping
time 7 := inf{¢t > 0 : |Xt(n)| = N} for N € N. By using the inequality |a+b+c|? < 3971(|a]?+[b|?+|c|?)
for a,b,c € R, it holds that

q]

E [ sup |X§XZN|Q]

0<t<T

+3971E | sup

tATN (n)
/ o (nn(s), X, () dWs
0<t<T | Jo

TATN q
< 39 a7 4 (3T)7'E / jons), X371 s
0

By using Burkholder-Davis-Gundy’s inequality, we have

q d TNATN
< c(q)E
| ez |52

TATN (n) q
/0 ‘o(nn(s),Xnn(s))’ ds| .

2 q/2

E | sup ds

tATN ( )
n
/ a(nn(s),Xnn(s))dVVS
0<t<T |Jo

d
> oinln(s) X,0)
i=1

< c(q)(dT)/*'E

Since b and o are linear growth in space, we have
b0 (5 A7), X0 r )1+ Lo (nn(s A i), X0 ]9 < (2K) {1 + sup X0 Iq} :
Therefore there exists a positive constant C' such that
T
E{ sup |X£,@N|q] < C’+C’/ E{ sup |X1(;R)TN|‘1] ds.
0<t<T 0 0<u<s
Applying the Gronwall’s inequality we obtain
E { sup |Xt(/@N|q] < Cexp(CT).
0<t<T

By taking N — oo, we conclude the statement. O
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Using the above Lemma, we have the following estimation.

Lemma 2.2.2. Let the coefficients b and o are measurable and satisfy linear growth in space. Then for
any q > 0, there exists a positive constant Cy such that

C
su ]E[U(") q} <
OStET | t | nq/g

Proof. 1t is sufficient to prove the case ¢ > 2. From the definition of Ut(") and linear growth condition
for the coefficient, we have
}Q/2

. 2 q/2
x ™ x ™ j j
Z ) (1 (8), X, +Z"w (1 (0), X 1) )W =W )
d .
<CQ = m@®" (1 + X119 +Z; (L4 (X W = w2 )
i=
Since X ( ) and Wj Wg}vn( 4 are independent, by using Lemma 2.2.1, we have
d
E [|U§”>|q} <C{lt-nm@+ > E [\WJ Wi (tﬂ
j=1
C
2
{lE=m @I+t =m0} < =
This concludes Lemma 2.2.2. O

2.2.2 SDEs with Lipschitz continuous coefficients

In this section, we consider the strong rate of convergence for the Euler-Maruyama approximation for
SDE (2.1) with Lipschitz continuous coefficients. Maruyama [88, Theorem 1] prove the Euler-Maruyama
approximation converges to the unique solution to the corresponding SDE in L2-sense under the assump-
tion that the coefficients are Lipschitz continuous. Moreover, Kanagawa [58] and Faure [25] prove that the
Euler-Maruyama approximation has strong rate of convergence 1/2. For the convenience of the reader,
we will give a proof below.

Theorem 2.2.3 ([25, 58, 64]). We assume that the coefficients b and o are Lipschitz continuous in space
and 1/2-Holder continuous in time, that is

wp Dbl pta) b))

172 < +00
te[0,T],z,yeR* z2y |1‘ - y| t,s€[0,T],t#£s,z€RE ‘t - 5|
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and

p ol feltn) ol
te(0,T],z,yeR® Ay |{E - yl t,s€[0,T],t#s,c€RY |t - 8|

< +o00.

Then for any p > 0, there exists a positive constant C such that

C
E X, — xM™p .
[Og;ng X S o

Proof. By using Jensen’s inequality, the case 0 < p < 2 is obtained from the case p > 2, so we assume
that p > 2. Applying the simple inequality |a + b|P < 2P~ 1(|al? + |b|P) for a,b € R, we have

E { sup |Xs — Xg")|p}
0<s<T
T

<C [\b(s Xs) = b(nn(s), XT(]:)(S)HP] ds + CE S

/0 o (s, X) = o (na(s), X1,

< c/ s — 1 |p/2ds+0/ |b n(s), Xs) —b(nn(s),xg’jgs))w] ds

]

It follows from Burkholder-Davis-Gundy’s inequality that

+CE /Oo(s,Xs)— o(mn(s), X",))

sup
0<t<T

t p
E | sup / o (s, X) = a(na(s), X, ) AW, ]
0<t<T |Jo
2 p/2

< CE U’Lk? S, X ) Ul,k(nn(s)’Xv(:;)(s))} ds

’ () [P
< CE / ‘U(S,Xs) —o(nn<s>7X,,,,L(s)>\ ds

0

T

< C/o E[jo(s, Xs) — o(nn(s), X ds+0/ (1(5), Xs) — 0(a(s ),Xff‘ig))] | as.

Therefore from the Lipschitz continuity of the coefficients and Lemma 2.2.2 with ¢ = p, we have

IE[ sup |XS—X§")|p] <C’/ [s — 1 |p/2d8—|—C’/ | X — X(n(e)ﬂ ds
0<s<T

n (n)
- P/2 + C/ |X X( )‘p:| ds * C/ "7 (s) X77n(5)|p:| ds

§C/ [sup | X X”)|p] ds +
0

0<u<s

C
np/2’
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Hence by the Gronwall’s inequality, it holds that

E | sup |XS—XS(")|p <

C
0<s<T np/2’

which concludes the proof of Theorem 2.2.3. O

2.2.3 Gaussian bound for the density of the Euler-Maruyama approximation

In this section, we consider the Gaussian estimate for the transition density of the Euler-Maruyama
approximation. If the diffusion coefficient satisfies the uniformly elliptic condition, then the transition
density p(™ (s,t,z,2") of X(™ between times s and ¢ exists. Lemaire and Menozzi [80] prove that if the
drift coefficient is bounded measurable and the diffusion coefficient is a Holder continuous function, then
the transition density of the Euler-Maruyama approximations has the upper and lower bound by the
density of Gaussian distribution. The idea of their proof is to use Levi’s parametrix method (see [28]).

Theorem 2.2.4 ([80], Theorem 2.1). Suppose that the drift coefficient b and diffusion coefficient o
satisfies the following conditions:

(UE) a = oo™ is bounded and uniformly elliptic, i.e., there exists A\g > 1 such that for any (t,z,€) €
[0,T] x de,

Ao € < (alt, 2)€, Era < Nol€[

(SB) The drift b is bounded measurable and the diffusion coefficient o is uniformly n-Holder continuous
with n € (0,1] in space and uniformly in time. More precisely, there exists K > 0 such that

4 —o(t
sup |b(t, )| + sup lo(t,x) — o(t,y)|

< K.
(t,2)€[0,T]xR? (t,2,y)€[0,T] xRI xR £y |z —y|

Then there exist constant ¢ > 0 and C > 1 such that for any 0 < j < j' <n and z,2’ € R,

C'p,. (t§-7) - tg»n),x,x') < pm (tg.n),tg?),x,x’) < Cp. (t;@ — t§»n),x,x') , (2.6)

/ ¢ vz \x’—m|2
h (t—s,z,2") = —/———— —c— .
where p.(t — s, z,x") (271'(75—5)) exp( CZ(t—s))

Note that the constant C' depends on K, \g,7,d,T and the constant ¢ depends on K, \g,n, d but not
onT.

The following lemma plays a crucial role in our argument.

Lemma 2.2.5. Suppose that (UE) and (SB) hold. Then there exist C > 1 and ¢ > 0 such that for any

z,o' €RL,0<j<j <nandtec (t;?ll,tgy)], we have

p(™ (tg-n),t,x,m’) < Cp, (t - t(-n),ac,ac’> .
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Proof. Note that for any u € R?,
/2
n 1 1
p™ (t( )t x) _ (2)
T \/(t — t(r,l) )4 det a(t(7) 1)

< (a~ ($JUMI—U—@—ﬁQDM14,D(f—u—ﬁ/tﬁhﬁﬁﬂp)»w>
X exp .

20t — ')
> L(z|? — |y|? for any z,y € RY, we obtain

Since a~! is uniformly elliptic, using the inequality |z — y|?
£ g )

e )@ — = = )b ), (@ == (= 15 )b ) ) e
2(t — ¢ )
gt —u— (6=t )b(eS) | w)?
- o(t — 7))
(200) "o —uf2 | Mgt =t )2 w) 2 o — ul?
- o) W = +Ch
2(t =t ) 2(t—t3”))

Hence we have

_ ‘w/7u|2
P < “ 2<tt§7>1>>
, aj2 -
(27T(t - tg-?ll))

This estimate together with the Chapman-Kolmogorov equation and (2.6) yield

o) (t§_n>7t7x7m/) _ /dpw) ( RO u) () ( e, ux) du
R

lu—a? o’ —uf?
exp (_022 ) ) ) exp (_C2 () )
R 23t ) (n) )
=Cs /Rd () J ()1 /2 () )92 du = Clape, (t S ) :
(27r(tj,_1 — ¢ )) (2 (it — 1) ))

We therefore obtain the desired estimate.

(n) (t(n)l,t U Z‘) S 02

O

Corollary 2.2.6. Let ptn) be a density for Xt(n). From Lemma 2.2.5 with 7 = 0, there exist C > 1 and

¢ > 0 such that for any t € (0,T] and z € R? we have

p (@) = p™(0, 8,20, 2) < Cpolt, xo, z). (2.7)

2.3 Yamada and Watanabe approximation technique

Inspired by the paper [40], we will use the approximation technique of Yamada and Watanabe (see [120]
Theorem 1). For each § € (1,00) and € € (0,1), we can define a continuous function 5. : R — RT with
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supp ¢s.e C [£/0, €] such that

>4
2
Yse(2)dz=1and 0 < ¢5.(2) < ——, 2> 0.
</ zlog d

Since f /6 Zlogadz = 2, there exists such a function 15.. We define a function ¢s. € C*(R;R) by

b5.(2) /'/ () dzdy.

It is easy to verify that ¢;. has the following useful properties:

Ps.e(2) = z |¢58(|f\) for any = € R\ {0}. (2.8)
0 < |¢5.(x)| <1, for any z € R. (2.9)
Moreover, we define the function ®5,. : R? - R by

@575(93) = ¢6,s(|x‘)'

Then we also have the following useful properties:

lz| < e+ Pj(x ) for any z € R%. (2.10)
i |53£|| |) < -, for any z € R?\ {0}. (2.11)
2
G4 c(elel) = ¥s.(el) < 1ol for any @ € R\ {0} (212)

Note that partial differentiations of ®s. give the following: for any z € R%\ {0},

0, c(x) = ¢:s,€<|x|>@—"|, (2.13)
2 2 _ .2

025 (x) = g’,5<|m|>‘j]2 pellah (), (2.14)

0303 01(0) = 4. (1) T2 — 5 1aD (7). (2.15)

Notice also that all derivatives of ¢5. and ®;. at the origin equal to 0. In particular, note that for any
r€R%andi=1,...,d, using (2.9) and (2.13),

|0;®s.c(z)] < 1.

Remark 2.3.1. Note that Yamada and Watanabe [120] prove that under the one-dimensional setting, if
the diffusion coefficient o is 1/2+ a-Holder continuous with « € [0,1/2] and drift coefficient b is Lipschitz
continuous, then the pathwise uniqueness holds. Let us prove this. To simplify the discussion, we consider
the one-dimensional SDE dX; = o(X;)dW; with Xy = x¢. It suffices to prove that E[|X; — X;|] = 0 for
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all t € [0, 00) where X and X are two solutions. For any € € (0,1) and d € (1, 00), by using the inequality
(2.10) and Itd’s formula, we have,

| X — Xt‘ <e+ ¢se(Xe — )?t)

! / Y v 1 ! " v v )2
=€ +/0 ¢675(Xs - Xs){U(XS) - U(Xs)}dWs + 5/0 ¢5,5(X8 - XS)‘O'(XS) - U(XS)| (Z‘S' )
2.16

Since |¢'(z)] < 1 and o is Holder continuous, the stochastic integral of right hand side of (2.16) is a
martingale, thus its expectation equals to zero. Therefore, we only consider the last part of (2.16). Since
o is 1/2 + a-Holder continuous, it follows from (2.12) that

X, — X,|'"F2ds

1 [t ~ ~ t] X, — X,
3 | e - Rlo(x) -~ o(Ropas < 2 [ 1% =)
2Jo " 0 |Xs— X;|logd

K2Te2
2.17
log § ( )
where K := sup,_, % Therefore, by taking the expectation, we have
> K?2Te
E[|X;: — Xi|] < _ 2.18
(1 X ] <e+t Tog 6 (2.18)

Since a € [0,1/2], by letting ¢ — 0 and then § — oo, we conclude E[|X; — X;|] = 0.

From the next section, we will see the Yamada and Watanabe approximation technique works well
for the error analysis of the Euler-Maruyama scheme.

2.4 SDEs with one-sided Lipschitz drift and Holder continuous
diffusion coefficient

In this section, we provide the rate of strong convergence where the possibly discontinuous drift coefficient
and the diffusion coefficient is Holder continuous and uniformly elliptic.

Veretennikov [116] has shown the following result. Assume that b and o are bounded measurable
functions such that oco* is bounded and uniformly elliptic. If o is 1/2-Hélder continuous in z € R when
d = 1 and it is Lipschitz in € R? when d > 2, then there exists a unique strong solution to the stochastic
differential equation (2.1) (see also [18, 39, 71, 72, 122] for other criteria for the existence and uniqueness
of solution of SDE with non-Lipschitz coefficients).

2.4.1 Class of irregular functions

In this section, we introduce two classes of functions, A and L, for the drift coefficient.
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Class of irregular functions A

We first define the class of functions A which is first introduced in [66] (see also [97]). We also provide
some properties of class A.

Definition 2.4.1. Let A be the class of all bounded measurable functions ¢ : [0,T] x R? — R such that
there erists a sequence ((n)nen of functions satisfying (n(t,-) € CH(R%R) for any t € [0,T] and the
following conditions:

A(i) For any L >0, sup / [ (t,z) — ¢(t,z)|de — 0 as N — oo.
te[0,7] Jjz|<L

A(ii) There erists a positive constant K such that for any v € R?,

sup sup |(n(t, 2)| < K.
te[0,T] NeN

A(iii) There exists a positive constant K such that for any a € R? and u > 0,

d

_le?
(& u
sup sup » | |0iCn(t 2 + a)| gz de < K(1+ V),
t€[0,T) NeN = /]Rd [2iCn )l w172 ( )

where 0; is partial derivative in space with respect to the i-th coordinate.

We call ({y)nen an A-approximation sequence of ¢. This class of function A is similar to the one
introduced in [66]. The following proposition shows that this class is quite large.

Proposition 2.4.2. (i) If¢,( € A and a, € R, then £ € A and af + B¢ € A.

(i3) If g : [0,T] x R? — R is a bounded measurable function and g(t,-) : RY — R is monotone in each
variable separately, then g € A.

(iii) If g is bounded and Lipschitz continuous in space, then g € A.

Proof. (i) It is easy to prove that A is a vector space over R.

(ii) Let g : [0, 7] xR? — R be a bounded measurable function and let g(¢, ) : R — R be monotone in each
variable separately. Let p(z) be the density function of the d-dimensional standard normal distribution,
ie. p(z) := e"g”‘Q/?/(Qﬁ)d/2 and a sequence (py)nen be defined by py(z) := N9 (Nz). Finally, we
set gn(t,x) = fRd g(t,y)pn(x — y)dy and ||g]l = SUDye[0,7],zeR lg(t, z)|. We will show that (gn) is a
A-approximation sequence of g. Indeed, since [, pn(y)dy = 1, we have [gn (¢, 2)| < ||g]loc- Thus (gn)
satisfies A(ii). Moreover, for any L > 0, we have

/w|<L lgn (t, @) — g(t,z)|dz < /$|<L dx /Rd dylg(t,y) — g(t, 2)|pn(z — y)

= /I|<de/Rd dz|g(t,z — 2) — g(t, z)|pn (2)

= [ o= [ aalatte =)~ gt
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For each z € R?, we write z = (z1,...,24)*, 20 = 0 and 2 = (2,...,2,0,...,0)" for k = 1,...,d.
We have
; d
/ lg(t,x — N) —g(t,z)|dz < Z/ dzy .. / dzg_y / dzgiq .. / dzg
lz|<L k=1"Iz1I<L |op—1|<L |Try1|<L |za|<L

(ho— 22y gtz
g\t, N g\t, N

></‘
|zk| <L

Since ¢(t, -) is monotone in each variable,

/ﬂﬂleL

By the change of variable, we have

z(k) Z(k_l)
’/ML(gu,x—N)—g(t,x— ~—))dai

(k) (k—1)
glte— ) —g(t,w = =

—L L 5 (k=1)
/ +/ g(t,x — Yday,
—L—z, /N L—z,/N N

2|2k llglloo
N

IN

Therefore
d
z 2|z [lgll oo L
swp [ gltir = 2~ gltin)ide < 30 AT
te(0,7]J|z|<L N ; N

This implies that

te[0,T)

% 2|z llglloo L
o [ Jon(ta) gt < [ 32 s
|z|<L -

as N — oo. Thus (gn)nen satisfies A(i).

Since ¢(t,-) is a monotone function in each variable separately, so is gy (t,-). Using the integration
by parts formula, we have

—|z|? /u —|z|?/u
e e
/d |0ign (t,  + a)|———5 = 1)/2 ‘/}Rd ) ...dxi_ldxiﬂ...dxd/RdxiaigN(t,era)W

2| e lo/v 2| glloo|a] e+ 2
< [ lontea+ P S < [ AN < 2lgl [l ay,

where we use the change of variable y = x/y/u in the last equation. This concludes (gn)nen satisfies
A(id).

(iii). Let (gn) be defined as in (ii). For each L > 0, since g is Lipschitz continuous, we have

/|m<L lgn (t,z) — g(t, z)|dz < /I<L dz /Rd dylg(t,y) — g(t,z)|pn (2 —y)
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<C dx/ dyly — z|pn (2 —y)
|lz|<L R¢

22

—C dx/ AT ¢y
loj<r  JRe N N

as N — oo. This implies (gn) satisfying A(i). It is straightforward to verify (gn) satisfying A(ii).
To check \A(iii), we note that from the fact 9;pn(z) = —N%22;p(Nz) and Lipschitz property of g,

uan () =| [ at.nopnt@=an| = | [ a(t.9) - ot.0)oon (e ay

_N2jy—=z?
|€

< | Ny —ally; — x| s dy.
_/Rd ly = allyi — il =5 a7

The change of variable x = y + z/N implies that

2 2
_N7ly—=| e*|z‘2/2

Nd+2\y—x||y'fz'|idy< |z2| =——=dz=C <
e i i (27T)d/2 —= Rd (27T)d/2 .

Hence for any a € R? and u > 0,

d lz? =2
e u e u
]Svlé% i:E - /Rd |ang(t,$ + a)| de < C e Wdl’ < C’\/ﬂ

holds with constant C' which is independent of a and u. This concludes (gn)ven satisfying A(iii). O

Using Proposition 2.4.2 one can easily verify that the class A contains the functions {(z) = |z —a|A1
or ((z) = Ip<z<c for any a € R? and b, ¢ € [~00,00]. On the other hand, the following proposition shows
that there is an example of function which does not belong to A.

Proposition 2.4.3. Let
A S
Flx) = || sin - if x #0,
0 ifx=0.
which is a bounded and continuous function on R. Then f ¢ A.
To prove Proposition 2.4.3, we need to show the following Lemma.
Lemma 2.4.4. Suppose that g : R — R and g € A. Then there exists a sequence of functions (gn)Nen C

C>(R;R) such that

(i) For any L >0, / lgn(2) — g(z)|dz — 0 as N — oo.
|z|<L

(ii) There exists a positive constant K such that for any x € R,

sup |gn (¢, 2)| < K.
NeN
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(iii) There exists a positive constant K such that for any a € R and u > 0,
z2
sup [ (e +a)l e do < K(1L+ V.
NeNJRr

Remark 2.4.5. Lemma 2.4.4 implies that we can approximate a function f € A by a sequence of C*
functions instead of C*.

Proof of Lemma 2. 4 4 Let p(x) := e‘”2/2/\/ 27. Suppose that ((x)nen is the A-approximation sequence
of g. We denote gy (z fR (n(z—2z/N)p(z)dz. Then we will show that (gn)nveny € C°(R;R) satisfies
(i), (ii) and (iii). Smce g is a bounded and (y satisfies A(ii), there exists K such that for any = € R,
l9(2)| V supyey [Cn ()] < K. So since [, p(z)dz = 1, we have |gn(z)| < K. Thus (gn)nen satisfies (ii).

Note that gy (z) — g(z) = [p(Cn(z — 2/N) — g(2))p(z)dz. For any L > 0,

/ on () — g()|de
|z|<L

/|m<de/dZ‘CN l‘—*>—9($—* ‘p /z|<de/dz’g x—*>—g( )’P( )

=:J; + Jo.

By Fubini’s theorem and the change of variable, we have

Jy < /MSN dz /MSLH dz [Cn () — g ()] p(2) + /ZM dz /@ da (gN (- %) —g(z- %) ’ o(2)

< /|x§L+1 ICn () — g (@)| dz —|—4KL/ p(z)dz — 0,

|z|>N

as N —> 0o. Since g is bounded and continuous function on R, by the dominated convergence theorem,
Fn(z flw\<L lg(z — z/N) — g(z)|dz — 0 and |Fn(z)| < 4KL. Therefore, since [, p(z)dz = 1, from
Fub1n1 s theorem and the dominated convergence theorem, we have

Jy < / dz /Idx 9 (2= =)~ g@)| () = 0,

as N — oo. Thus (gn)nven satisfies (i).
Since ({n)nen satisfies A(iii), there exists K such that for any a € R and u > 0,

/ ICh (2 + a)| e~ da < K(1+ Va).
R

Therefore by Fubini’s theorem, we have

/|g;V<x+a>|e-%dxg/dzp@)/dx
R R R

This concludes (gn)nven satisfies (iii). O

V(=)o < KO+ va),

To prove Proposition 2.4.3, we introduce the following lemma.
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Lemma 2.4.6 ([3], Proposition 3.6 and Theorem 3.9). Let Qg C R be a open set and h € L'(Qp).
Then h : Qo — R is a bounded variation function (in this case this means that fQo [P (x)|dz < oo, see

p.119) if and only if there exists a sequence (hy)nen C C°(Q0) converging to h in L' (Q0) and satisfying
limy o0 o My (2)]de < co.

Proof of Proposition 2.4.3. Assume that f € A. Let (fy)nen be a A-approximation sequence of f.
It follows from Lemma 2.4.4 that we can suppose (fx)nven € C°°(R;R). We choose Qg := (0,1),
hyn = fnla, and h := f|q,. Since (fn)nen satisfies A(i), (hn)nen converges to h in L1(Qp).

Since (fn)nen satisfies A(iii), by choosing a = 0 and u = 1, we have

2K = K(1++1) > sup/ |Fi(2)]e™ da > sup/ Wy (2)|e ™ dz > e} sup/ |y (z)|dz.
NenJr Nen Ja, NeNJq,

It means

sup/ |y (z)]dz < .
NeNJQg

Hence we can choose an increasing subsequence (Ny)ren such that there exists the limit

lim / |Wy, (z)|dz < oo.
0

Nk—>OO Q

L'(Q
Thanks to Lemma 2.4.6, this convergence together with the fact that Ay, (—>0 ) h implies i has a bounded
variation on {2y. However, since

/ W (2)|da = oo,
Qo

the variation of h on € is infinite. This contradiction concludes that f ¢ A. O

Class of irregular functions £

Next, we define the class of one-sided Lipschitz functions.

Definition 2.4.7. A function f : [0,T] x R? — R? is called one-sided Lipschitz function in space if there
exists a positive constant K such that for any (t,z,y) € [0,T] x R*?,

<£C - Y, f(t7x) - f(tvy»Rd < K|$ - y|2 (219)
Let L be the class of all one-sided Lipschitz functions.

Remark 2.4.8. By the definition of the class L, if f,g € £ and a > 0, then f + g, af € L. The one-
sided Lipschitz property is closely related to the monotonicity condition introduced in [38] and the class
L obviously contains all functions which are the sum of a Lipschitz function and a monotone decreasing
~v-Holder continuous function considered in [40]. Another example of one-sided Lipschitz function is

(@) =Y pez(® — k)1 krn) ().

Many properties and applications of SDEs with one-sided Lipschitz drift can be found in [107].
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Proposition 2.4.9. Let g : [0,t] x R = R be a bounded and measurable function. Assume that for any

x € R, g(-,x) is continuous; for any t € [0,T], the number of discontinuous points of g(t,-) is countable
and g € L. Then g € A.

Proof. Let (gn)nen be defined as in (ii) of the previous section. Since g € L, there exists a positive
constant K such that for any (¢, z,y) € [0,T] x R?,

(z —y)(g(t,x) — g(t,y)) < K|z —y|*.
Then gy is also a one-sided Lipschitz function. Indeed,

(z —y)(gn(t,z) —gn(t,y)) = /R(x —y)(g(t,x —2) — g(t,y — 2))pn(2)dz

= /R{(fv —2) = (y = 2)}glt,z — 2) = g(t,y — 2))pn(2)dz < Kz — y|*.

Since for any ¢ € [0,7] and L > 0,

/|70|§L lgn (t, ) — g(t, z)|dx < /Rp(z) /|ng ‘g (t,x — %) - g(t,x)‘ duds

and sup,c(o, 77 |9 (t, 2 — 2/N) — g(t, )| — 0 almost every z, from the dominated convergence theorem, we
have

sup / lgn(t,2) — gt 2)|dz — 0.
|| <L

te[0,T)

Thus (gn)nen satisfies A(7).
Let a € R, u>0and ¢t € [0,7]. Since R =J,2___[¢v/u, (¢ +1)y/u), we have

oo

/ B etV »
/|gN<t,x+a>|e-vdx= 3 / g (t, 2+ a)le da
R N

f=—o0
o0 (e+1)va
<Y e [ e+ o

f=—o0 e

We prove that for any ¢ € Z,
(+1)V/u
awi= [ gt +a)lds < 2(lgle + KVAD.
&
We fix ¢ € [0, 7] and write [(v/u, (£ + 1)v/u) = U,enl@2i: 22i41) U U, jenly2j: y25+1) where
gn(t,x+a) >0 ifx+a € [v2:,2241) and g (t, 2 +a) <0 if © +a € [y25,y2j+1)-

Then we have

I(a,u) = Z(QN(t>$2i+1 +a) — gn(t 2 +a)) + Z(QN(taij +a)) — gn(t,y2j+1 + a))
ieN jEN
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=: I} (a,u) + I?(a,u).

Since gy is a one-sided Lipschitz function, we have
((x2i41 + @) — (w25 + @) (gn (£, T2i41 + @) — gn(t, 22 + @) < K|wgig1 — x2:]?
Therefore, we have (gn (¢, 2,41 + a) — gn(t, 22; + a)) < K(z2;41 — x2;). Hence we obtain
I} (a,u) = > (gn(t, 221 + @) — gn(t 22 + a)) < K/
€N
Finally, we estimate I7?(a,u). Since gy is bounded, |gn (¢, (£ + 1)vu + a) — gy (t, 4y + a)| < 2]9|]oo-

Hence, we have

IF(a,u) =Y (gn(t w201 + @) — gn(t, 22 + a)) — (g (t (L + DVu + a) — gn (8,01 + a))
ieN
< KvVu+ 2|9l 0o-

Therefore, Iy(a,u) < 2(||g||co + K+/u). This concludes (gn) ven satisfying A(iii). O

Key lemma

From now, we derive a key estimation (Lemma 2.4.12) for proving the rate of convergence for the Euler-
Maruyama scheme with irregular coeflicients.

Lemma 2.4.10. Let ¢ : [0,T] x R? — R be a bounded measurable function and ((x)nen be a sequence
of functions satisfying A(i) and A(ii) for (. Let (Yi)o<i<r be a d-dimensional stochastic process with
Yy = yo € RY. Suppose that Y; satisfies the Gaussian bound condition on [k, T] for some r € (0,T], i.e.,
there exist positive constants Cy and c1 such that

*q\@ruglz

pe(y) < ClTa te [k, T, (2.20)

where p; is the density function of Yy. Then

T
/ E[[¢n(t,Y:) = ((t,Yy)[]dt — 0, N — oo (2.21)
and if T/n > K
T

/T E [|¢n (t, Yo, 0) = C(t Yo, )[] dt = 0, N — oo (2.22)

n

Proof. For given € > 0, there exists M = M (e, yo,¢1) > 0 such that for any |y| > M,

2 2
_c1ly—wvol _c1ly—yol
2t e 2T

e <e. (2.23)
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From A(i), there exists N’ = N’(g) such that for any N > N,

[ et — ctewlay <
lyl<M

Therefore for any N > N’, using the Gaussian bound condition (2.20), the uniform boundedness of {n
and ¢, and (2.23), we get

T T
[ By - cevollae< [ [ dvien(en) - <l

T —cyly—wol?
e t
SCl/ dt / dy+/ dy | [Cn (8 y) = ¢t y) | —a7—
P lyl<M ly|>M t

*C1\y yol?

T
1
SC/ dt/ dyl¢n(t,y) — C(t,y) +C/ dt/ —_—
1 /2 <M ICn(t,y) — | 1 y|>M 1d/2

—cly—yql?

1 e 2t
S C T d/2€+01T€/Rd Wdy S CT7H€,

where the constant Cr, depends only on T and . Hence by letting € go to 0, we conclude (2.21). In
the same way, we can show (2.22). O

Corollary 2.4.11. Let (UE) and (SB) hold, and let ( € A with an A-approximation sequence ((N)neN-
Then for any n € N, we have

T

lim [ E[[Cn (s, X)) = O (s, X, )]ds = / E[|¢(s, X{™) — (s, X\"))]ds < +oo.

N—o0 N (8) Nn(s)

Proof. Tt follows from Lemma 2.2.5 that the densities of X{™ and Xf]nzs) satisfy the Gaussian bound

condition for s > Z. Hence using Lemma 2.4.10 with £ = T'/n and the simple inequality ||a—b] —|a’—¥|| <
la —a'| + |b— V|, we have

1 (s)

T
‘ / (5, XE) = (s, X, ) s — [ E[JG(s, X{M) — (s, X)) Jds

< / B [[IGn s, X) = On (s, X001 = 160, X0) = ¢, XU, )| ds

< /TTE[|cN<s,X§”)>—<<s,X§">>|}ds+ / E [IGv (s X)) = Cls, X0, ] ds

n

— 0, as N — oo,

which implies the desired result. 0

The above corollary is useful for proving the following key estimate.
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Lemma 2.4.12. Let ( € A. Under Assumption (UE) and (SB) for the coefficients b and o, for any
q > 1, there exists C = C(K, T, \o, o, d, q) such that

/O " Eflc(s, X0 - C(s, XM, )|ds < fﬁ (2.24)
In particular, if ¥ € A for each i =1,...,d, then it holds that
Zd: / (DO (s, X)) (5, X jajds < (2.95)
~ Jy 1<hs 7 (s) = n

Remark 2.4.13. We note that if d = 1 then, for ( : R — R with V({) < oo (see Definition 5.2.14), by
using Lemma 5.2.17 (Theorem 4.3 in [8]), Corollary 2.2.6 and Lemma 2.2.2, for every p > 1, we have

’ (n) g P (n)
/ E[JG(X) - ¢(x))I9)ds < 377 V(¢)° / (sggpgm(x)) E[IX(™ — X Y #+ds
0 0 T

C /T 1 2p+ 2T C
ds =
0

S ¥4 P )
§2(p+1) p+2 n2(+1)

D
n 2(p+1)
for some C' > 0. Thus for any ¢ € (0,1/6], we choose p = % > 1, it holds that

! (n) C
| Bleee) — el imas < =

nz—¢

for some C; > 0. This approach can be used for one-dimensional setting and the rate of convergence is
almost 1/2 but not 1/2.

Proof of Lemma 2.4.12. Since ¢ is bounded, it is sufficient to prove (2.24) for ¢ = 1. Let (b%)) be an
A-approximation sequence of . From Corollary 2.4.11, we have

T
| B X0 = ¢l X s

o T
— [T B¢ X ol XS s+ [ B XE) — ¢l X0l

T

O n
<S4 im T]E[|gN(s XMy = (s, X" )[)ds. (2.26)
~ n  NoocoJr e P (s)
So we estimate the second part of (2.26). Since W, — W, () and Xé:)(s) are independent, we have

E (o (. X8) = o (s, X (7))
= B{[x (5270 (5 = (S)BO0m(5): X110 + 0 0m(5), X)W = W) = 6. X570 )

= [ [ auion (st (s = ma)bla().2) + ol (s).2)y) = G (s.)
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o () o (o) 20

From the Gaussian bound condition for pg:)(s), there exists positive constants Cs > 1 and ¢y > 0 such

that the last term of (2.27) is less than

- (nn1<s>>d/2 o (e i) (i ;n<s>>d/2 o (g ) 229

Applying the change of variables z = (s — 1,,($))b(nn (), ) + o (N (s), x)y, (2.28) is bounded by

0 [ an [ it Ol () e (el

|
(1o ()00 = (5 = ()b (), )P
) (8 - nn(S)) P <_ 2(s — 1 (s)) > : (2:29)

! is uniformly elliptic,

0_71(,'7"(5)71,)(2, - (5 - nn( ))b(nn(s) ))|
= (a7 (1 (5), 2) (2 = (5 = 0 (5))b(Mn(5), 2)), 2 = (5 = 7 (8))b (11 (5), ) ) ga
> X0tz = (s = 0a(8))b(nn (s), 7).

By the inequality |z — y|> > $||? — |y|? for any z,y € R?, we have

|07 (0 (5), 2) (2 = (s = M (5))b(1n(s), 7)) |

Since a~

2 — 7 (s))
TR 5 )b () L
) 25— 1(s)) S T ()

Using this estimate and Fubini’s theorem, (2.29) is less than

r—x ’
exp( 64‘277 (05‘ )exp( C4W|n(5)))
(na(5))"2 (s = ()72

C /R dz/Rd dz|Cy (5,2 + 2) — (s, 2)] (2.30)

Since (n (s, 2+ 2) — (N (s, ) = fol (2, V(N (s, + 02))gadf, (2.30) is less than

lz—z0|? [l
! eXP( ¢z <s>)exp (—C4m)

C/ dz/ dm/ df [{z,V{n (8,2 + 02))pa n -

4 - e 0 |< N ( )>R | (nn(s))d/z (s—nn(s))d/2

|[z—2z0] \Z|2
' exp( €z <s>)eXP (—C4m)

gc/ dz/ dx/ d6|z||V¢n (s, z + 0z o -

4 - i o | H ~( )| (nn(s))d/z (S—Un(s))d/z
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d 1 exp (76472|y‘(2§)> exp (70472“_‘2‘2(?)))
<C / dz/ dy/ d6|2|10;Cn (s, y + o + 02 I ) (2.31
12 o o0y ROy 0 T G e

where we use the change of variable y = x — x( in the last inequality. It follows from Fubini’s theorem
and condition A(iii) that (2.31) is bounded by

V nn(s) Rdd /0 d9| ‘ _nn(s))d/2 p( 42(3_7711(5)))

Cs || O S W A S I
\/7 re (8= 1n(s ))d/26p< 22(s—nn(s))> p( 22(3_77n(8))>d' (2.32)

Since |z| exp (—%m> \/ = \/s — Nn(s) for any 2z € R?, (2.32) is less than

s—nn() Cr

m]n

Ce

Therefore we have

T T T
n ¢, Oy 1 cy Cy 1 Cy

E[JC(s, X(™) — ¢(s, X7 dsg—+f/ dsS——k—/ . <
/0 It )= Xl \/Nn(s) n - nJjg \[ '

which concludes the proof of Lemma 2.4.12. O

If the drift coefficient b : R¢ — R are Lipschitz continuous for each i = 1,...,d, then using Lemma
2.2.2, for any g > 1, we have

[T ‘ (n) C
Zl/o E[p® (s, X)) — b0 (s, X)) []ds < .

Thus, the convergence rate depends on q. However, the following proposition shows that if the drift
coefficient is discontinuous, then the bound (2.25) is tight.

Proposition 2.4.14. Letd =1, z0 =0, 0 =1 and b(v) = 1(_c0,0](%) — L(0,400)(x). Then, there evists
C > 0 such that for any n > max{T, 2},

C

N (2.33)

T
| B~ s >

S

Proof. For any s > T'/n, since X( () and W, — W, () are independent,

E[b(X M) = b)) = 207 E[(X () = (X))

_ (n) (n) (n)

_ gap ((X%(S) (s = ma(@) X))+ W = Wy ()X < 0)
oy

P e )

=9 [ dz 2?4+ (s — nu(s))b(z)z + yx (7)o
9 /Rd /Rdyl( + (s = m(s)b(@)z +ya < 0) p, 1 (@) 270(5 — 1n(3))
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v
e 2G=nn ()

/ dm/dyl (x = (s =1nn(s)) +y <0)p 7(7:)(5)( )m

02
Let ®(u) := [“_ ©-2dv. Then by the change of variable z = y/1/s — n,(s) , we have
0o /27

R A =L P

41

Recall that zg = 0. It follows from the lower bound of (2.6) that there exist constants C; and ¢; such

that
2
) 1 % e e z— (s —nn(s))
Elb(X ™) — p(x™ Y9 > B e on Bl
[Ib(X ™) = b(X,, ()] = CiJo \/2reinn(s) § = 1n(s)

2
s=mn(8) " 3ot (g —
Z i/ e Zein P _.1: (8 nn(S)) dz
Ci Jo 2me1nn(s) s —nn(s)
s (s) o s - (s —
> i/ e in o[ — S nn(s) (S nn(s)) dx
Ci Jo 271'0177n(8) §— nn(s)
s—nn(s)

_ VS _O?n(S) 62;:::3)(1) (7 (1 — /5 — nn(s))) .

Moreover, using the Komatsu’s inequality (see [55] page 17 Problem 1),

2

2e7 2

(lal) 2 V(e + VaZ + )’

we get for any n > T,

C ¢ S_nn(s)
E[b(X M) = b)) 2 =
[1b(X ™) = b(X,, () )H*WOM/E M (5)

where the constant C7, is a constant depending only on 7" and c¢;. Therefore, we have

T
/ E[b(X(™) ~ (X" )|ds > ¢y [ VI ”" > 2,
0 T/n /Mn(8) \/ﬁ

S 1=

for any s >

for n > max{T,2}. This concludes (2.33).

2.4.2 Error estimates for the Euler-Maruyama approximation

We now provide our main statements of this chapter. We need to suppose the following assumptions for

the coefficients b and o.
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Assumption 2.4.15. We assume that the coefficients b and o are measurable functions and satisfy the
following conditions:

(i) be L and b € A for any i =1,...,d and there exists K > 0 such that

sup [b(t,z)| < K.
(t,z)€[0,T)xR4

(ii) a = oo* is bounded and uniformly elliptic, i.e., there exists \g > 1 such that for any (t,z,§) €
[0, 7] x R,

Ao el < {alt, 28, e < Nole]”
(iii) o is a (1/2 4 «o)-Holder continuous with o € [0,1/2] in space, i.e., there exists K > 0 such that

t —o(t
wp ot ot

(toy)E[0,T]xR2 gty [T — Y[}/ 2F

Remark 2.4.16. Many functions satisfy Assumption 2.4.15 (i). For example, any non-increasing function
or Lipschitz continuous function does. In particular, for 2 € R, the function 1(_s (%) — 10,400 ()
satisfies Assumption 2.4.15 (i). This function is the optimal drift coefficient for some stochastic control
problem (see [14] or [60] page 437). From Proposition 2.4.2 and Remark 2.4.8, we know that if f and
g satisfy Assumption 2.4.15 (i) and «, > 0, then af + [g also satisfies this condition. Assumption
2.4.15 (ii) implies that the diffusion coefficient o is bounded i.e., for any (t,z) € [0,7] x R?, |o(t,z)| =

2 1/2 >
{Z” it )} 2 < VdXo.
We will assume the following Hélder continuity in time variable.

Assumption 2.4.17. The coefficients b and o are B-Holder continuous with 8 > 1/2 in time i.e., there
exist K > 0 such that for all t,s € [0,T] and x € R?,

b(t, z) — b(s,z)| + |o(t,z) — o(s,z)| < K|t — s|°.

We obtain the following results on the rate of the Euler-Maruyama approximation in L'-norm.

Theorem 2.4.18. Let Assumptions 2.4.15 and 2.4.17 hold. Then there exists a constant C which depends
on K, T, \g,x0,d,a and B such that for d =1,

c
ifa=0,
sup E[| X, — X("[] < ¢ logn (2.34)
€T —  ifae(0,1/2],
n

and for d > 2,

C
. _ x@) if o =
ilelg'EHXT XM < .y if o =1/2,

where T is the set of all stopping times T < T.
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Proof. By using It6’s formula, (2.8) and (2.10) we have

v, <5+/ onds 4 MO 4 L Z / 00, @5, (V)Y o)y ) (2.35)
[ 1
where .
155 = Zaqm Y ™) { @) (s, X,) —b(i)(nn(s),Xéfzs))}
and
M = 35 [0 ) {ouato ) —onstm . X aWE
k=11i=1

Since 0;,®5. and o are bounded, Mt&a’" is a martingale. Therefore the expectation of Mf“g’" equals
0, so we only estimate the second and fourth part of (2.35). First we consider the second part. From
Assumption 2.4.17, (2.8), (2.9) and partial differentiations of ®5 ., we have

t
/ Ig"g’"ds
0

- Z/ (|1 |{ (b@ (5, X,) — b(i)(s,Xf:)(s))) + (b( (s, X" ) —b(i)(nn(s),Xf]:)(s))) }ds

, n C
< Z/ P5: (Y, | ( (s, X) —b(”(s,Xf]nzs))) ds + n—;

/ Z%E

5 ( (s, Xs) — b“’)(s,Xs("))) ds

Y(n 1) ) ] . Cl
/ Z ¢5€ (n)| | (b(Z) (Sa Xgn)) - b(Z) (87 Xr(],L)(s))) ds + 3
v
< / (X — X ™ b(s, Xs) — b(s, X)) ga %El('(')ds
0 ™

d t
7 n n Cl
+Z/O ‘b()(s,Xs( )~ b0 (s, X" )(S))’ds—i-—
=1

By using the one-sided Lipschitz condition (2.19), we have
s ' o Do x ™ Gy
/0 Pends < K /0 Y |ds + ; /0 65, X() = 505, X7 )| s + L. (2.37)

Next we estimate the fourth part of (2.35). Using partial differentiations of ®; ., the fourth part of (2.35)
can be expressed by

- Z / 9,0, (I)éa(y(n))d<y(n ,i) Y(n’J)> At1,5,s,n+A?,6,a,7L7

zyl
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where
(n Z)Y(nu)

(n,i)_y(n.g)
‘)/S(n)|2 d<Y 7Y >S

A%,é,e,n P Z / ¢

1,j=1

and

d t (n)2 (n,i) 2
2,0,e,m _]‘ (n) |sz | |Y | (n,i) (n,i)
A=y 3 [ o (B e Jaer v,

(n,1)y,(n,5)
YUY . _
+ Z / { P5. (1Y, AU ] Pul R E— }d(Y("vZ)7y(nJ)>s.

1<i<j<d |Y(")‘d

Here we remark that AZ**™ = 0 for d = 1. So we should estimate A>>*"™ and A>**". By the definition
of quadratic variation of Yt("),

i / o |Y<" |y

vim)2

15577,
Ats [SE)

aik(s, Xo) = i k(ma(s), X\,

l\')

x ]oj,us,xs) — ainlm(s), X)) ds,

and

2
7ik(5, X) = 00 (), X0 s

1 VR — P
o< 5 [
2,”1 v

(n,i) (n
+Z 3 /%5 o w

k=11<i<j<d |Yv5(n)|3

0k (5.X,) = i (ma(5), X\ .

01k (5, X0) = 7l (), X))

x M (s)

Since o is (1/2 + «)-Holder continuous in space and S-Hoélder continuous in time, we have

n,i) (n,7)
JROENG n) |Y ||Y ‘ (n) 1+2a 1
A £, < C Z / ¢// ( R ‘XS — X"']n(s) + nTB dS

i,7=1 |Y9(n |2
(n) 12« 1
<03/¢ {(X X" +n25}ds

1+2a I+2e ]
<o [ o v {7 ju T e
0

n28
Similarly, we obtain

t 4 (n) o
AtQ,é,s,n <Cs ¢5,s(|Ys D { y () 2

0 |YS(”)| s

1+2a 1
+‘U5(~n)‘ +TL26}dS
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It follows from (2.12) that

Y 1+2a 142 1
APPEm < O / 5/5(5)| ){ys(n) +‘U§”>‘ +2ﬁ}ds
|Ys |log6 n
CﬁEZa 066 066
U(n) 1+2ad
~ logd  elogd J, | o ot e(log d)n28’
and from (2.9) and (2.11) that

1+2a
S

Cs0

t 20 T
AQ,(S,E,YL S 05 Y('IL) dS + 055 U(n) .
t s € s en?p

0 0

Let 7 be a stopping time with 7 < T'. Define Z(”)

|YMT\ and for any « € [0,1/2],

0682(1 Cgd 142« Cgd
R ) 67 ) = 1< ‘ ) ‘ d T\ 923"
(o, 8,6,m) = + logd  elogd J, |° ot e(log §)n2s
and
. 05 (TL) 05(5
S(a,d,e,m) := ‘U s—i—sn—w.
Then we consider the following two cases

Case 1 (d > 2 and a = 1/2): In this case, gathering the above estimates, we have

”) <Cy / ")ds—l—Z/ 5, XM) b(i)(s,Xfyzzs)) ds
C’T d,e,m
—l— —5 M+ R(1/2,6,e,n) + S(1/2,8,e,n)
We choose § = 2 and € = n~'/2. Then for any « € (0,1/2], we obtain

Cs Cs
R(a,2,n~1/?2 )<——|—C8\f/ UM |12 + -1/

and

S(a,2,n7" <Cg\f/ Uim|Heds 4 o

n2B—1/2"
Note that 26 — 1/2 > 1/2. Tt follows from Lemma 2.2.2 with ¢ = 1 + 2« that for any « € (0,1/2]

E[R(a,2,n""%,n)], E[S(a,2,n""/% n)] < Cio

ne’
Recall @ = 1/2. By using the above estimate and Lemma 2.4.12, we obtain

(n) i Ci1
E[Z,"] < 07/ E[Z{™]ds + —=.
0 n

(2.39)

(2.40)

45

(2.38)
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By Gronwall’s inequality, we have

), _ Cl2
E(Z < —=.
7)< 2

Therefore, from the dominated convergence theorem, we complete the statement taking ¢t — T
Case 2 (d = 1): As remarked before, A>*=™ = (. From (2.37) and (2.38), we have

(n)

t T
Zt(n) < C6/ Zs(”)ds—i—/ ‘b(stsgn)) - b(s’Xn (s)

C
i ; )‘ ds + n—g + MJE™ + R(, b,e,n). (2.41)

For o € (0,1/2], we can prove the statement in (2.34) in the same way as Case 1 by taking ¢ = 2 and
e =n"2 For a =0, we choose § = n'/? and ¢ = (logn)~!. Then we have

_ Cis T Cis
1/3 1 1/3 n
R(0,n'/3 (logn)~,n) < logn + Cant/ /0 U™ |ds + 175
and so we get
E[R(0,n/3, (logn)~t,n)] < Cua (2.42)
~ logn
From Lemma 2.4.12, 2.2.2 and (2.42), we have
(n) K C’15
E[Z;"] < Cﬁ/ E[Z(™]ds + .
0 logn
Hence by Gronwall’s inequality we see that
E[Z(™] < Cis
logn
Therefore, from the dominated convergence theorem, we obtain (2.34) for a = 0 as taking t — T O

We obtain the following results on the rate of the Euler-Maruyama approximation in L!-sup norm.

Theorem 2.4.19. Under Assumptions 2.4.15 and 2.4.17, there exists a constant C which depends on
K, T, \og,x0,d,a and B such that for d =1,

L ifa =0
E[ wp |X, Xt(”)l] < @ , (2.43)
0<t<T 7 if a € (0,1/2],

and for d > 2,

E [ sup |X; Xt(")|] < % if a=1/2.
0<t<T nt/
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Proof. Recalling (2.5), we define Vt(") = SUPp<s<y |Ys(n)|. To estimate the expectation of V;(n), we use
(2.39) and therefore we need to calculate the expectation of supg<,<, |[MZ*"|. We use the notation C;

for a positive constant instead of C;. This constant C; can depend on K, T, « and § while the constant
C; can be depend on K, T, Ay, zg, 8 and d. For any d € N, by using (2.36) and Burkholder-Davis-Gundy’s
inequality we have

B [ sup o] < Elarem; )

0<s<t
2 1/2

ds

d
> 025 (V) {gils, Xo) = oin(mn(s), X)) }
=1

=CiE || > /
k=170

Since 0;®s., (i = 1,...,d) are bounded and o is 1/2 + a-Holder continuous in space and S-Holder

continuous in time, we have
d t
(> [ {

i,k=1

()| (n) )
oik(s, Xs) —oik(s, X" )‘ + |oink(s, X)) —oin(s, X, )

E [ sup |M56”|] g@E

0<s<t

_|_

(n) ™ g0
Ui,k(SaXnn(s))—Ui,k(ﬁn(5)7Xnn(s))‘ }ds)

~ t 2 OENE
=GB |( [ {Jots. ) = ol X[+ fots, X0 — o, X07,)
0

n n 2 1/2
+ |o(s, X)) = olm(s), X)) Js) ]

‘ 1/2
<CsE (/ {le _ Xé")‘H_ZO‘ + |X§n) _ Xy(]ﬁ)(s)|1+2a + ‘S o nn(3)|26 }ds) ‘|
0 n

~ n n 1
<C, {]E[AE )+ B+ nﬁ’} , (2.44)
where by the definition of Y (") and U™ given in (2.5),

t 1/2 t
A = ( / |Y;”>|1+2ads> and B{" := < / |Us(”)|1+2ads>
0 0

From Lemma 2.2.2 with ¢ = 1 + 2« and using Jensen’s inequality, we have

T 1/2 o
(n) n)|14+2«a 1
E[B™] < (/O E [|Us< )| }ds> < a7 (2.45)

Next we estimate AE") and V;(n) = SUPp<s<t |Y3(n)| for the following two cases.

Case 1 (d > 2 and oo = 1/2): Since |Ys(")\ < Vt(") for all s <t, we have

t 1/2 . 12
E[A{] =E K/O |Ys(n)|1+2ads> AREE (/0 |Y;(")2ads> ] .

1/2

<E




48 CHAPTER 2. STRONG RATE FOR THE EULER-MARUYAMA APPROXIMATION

Using Young’s inequality xy < % +
4

E[A")] < ——E[V™)] + G /TEHY,(”)Hds < Lpymy 2
F T, 2 Jo ° 20, ! vn

Therefore as 8 > 1/2, we have, using (2.44), (2.45) and (2.46),

1 1 1 1 Cy
E M| < BV + ¢ < ~E[VM]+ £
s, agenl] < GV € ok b < R+
Taking supremum in (2.39) with 7 = T', we obtain
v, <C’5/ ViMds + Z/ (s, X (™) b(i)(s,XY(]:%s)) ds

\n) + S(1/2,5,¢,n).
0<s<t

From (2.40), (2.47) and (2.48), we have

t
(n) (n) Cs
E[V, gC/EVS ds + —=.
Vi1 < Cs ; V™) Tn

From Gronwall’s inequality we have

C“Qy2, for any x,y > 0 and Theorem 2.4.18, as a = 1/2, we get

(2.46)

(2.47)

(2.48)

Case 2 (d = 1): For a € (0,1/2], by using the same method as in Case 1, we have that (2.46) becomes

1 Cy [T 2a 1
E[A"M] < —E[V,™ +i/ E[[Y™[])**ds < —E[V,™] +
[t]_2c4[t] 20([I ) _204[t]

Therefore from (2.44), using (2.45) and (2.49) we obtain

1 1 1
n2a? + nl/4+a/2

E{sup |M5E"|} < ]E[V(")]+C9{

0<s<t

Taking supremum in (2.41) with 7 = T, we have

¢ T
VP <o [ vmds e [ bl x0) - bs, X0,
0 0 K 0<s<

Therefore by using (2.40), (2.50) and applying Gronwall’s inequality we have

BV < 22

— p2a?’

)|ds —|—C—+ sup |M2"| 4+ R(a, d,€,7m).

(2.49)

(2.50)

(2.51)
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For a = 0, it follows from Theorem 2.4.18 that we have

T 1/2 o
E[AM] < /E Y|l d .
[t1_(0 IR

Therefore from (2.51) and applying Gronwall’s inequality we have

Cia
E[V,"] < .
Vil = Vdiogn
Hence we finish the proof of Theorem 2.4.19. O

The following theorem provides a bound on error in LP-norm which is useful for designing a Multilevel
Monte Carlo approximation scheme.

Theorem 2.4.20. Let Assumptions 2.4.15 and 2.4.17 hold. Then for any p > 2, there exists a constant
C' which depends on K, T, \g,x9,d,a, 8 and p such that for d =1,

C .
(n)|? logn ifa=0,
E JSup ‘Xt - X, < Cg (2.52)
<t< =

if a € (0,1/2],

and for d > 2,

E { sup ‘Xt —xM
0<t<T

P c

Remark 2.4.21. In Theorem 2.4.20, for o € [0,1/2), the result is the same as in Gyongy and Résonyi
[40]. But for o = 1/2, every moment bigger than 2 of the error is of the same order. The reason is that
we deal with the discontinuous drift coefficients and the estimate of discontinuous part is of order 1/2
for any ¢ > 1 (see Lemma 2.4.12). The proof of Theorem 2.4.20 does not make use of Theorem 2.4.19,
but only of Theorem 2.4.18. On the other hand, for @ € (0,1/2), using Theorem 2.4.20 and Jensen’s
inequality, we can obtain that the rate of convergence is a/2 in L'-sup norm. For « € [1/4,1/2), this
result is better than Theorem 2.4.19 and for o € (0,1/4], this result is worse than Theorem 2.4.19.

To prove Theorem 2.4.20, we introduce the following Gronwall type inequality.

Lemma 2.4.22 ([40], Lemma 3.2.). Let (Z;):>0 be a nonnegative continuous stochastic process and set
Vi i=sup,<; Zs. Assume that for somer >0, ¢ > 1, p € [1,q] and some constants Cy and £ > 0,

() [z | (] =)

for allt > 0. Then for each T > 0 the following statements hold.
(i) If p = q then there exists a constant C1 depending on Co,T,q and r such that

r

r/q

E[Vy'] < GoE + CoE +& <0

E[Vr] < Ci€.
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(i) If r > q or ¢+ 1 — p < r < q hold, then there exists constant Co depending on Cy, T, p,q and r, such
that

T
E[Vr] < Coé + Cz/ E[Z4]ds.
0

Proof of Theorem 2.4.20. Let p > 2. First we estimate the expectation of supy<s<, |Moem
(2.36) and Burkholder-Davis-Gundy’s inequality, for any ¢ € (1,00) and € € (0,1), we have

E [ sup |M§’€7”|p] < CLE[(MPmy??)
0<s<t

i t p/2
< C,E (/ |Y'S(n)|1+2a + ‘Us(n)‘H_ZQ + |5 . 77n(3)|2'8 dS) ]
0

: t - p/2 Cs Cs
n)|14+2a
< CgE (/O |YvS | dS) + W + W (253)
B t p/2 C
< C4E ( / |Y'S(”)|1+20‘ds) v, (2.54)
0 nre’

Now we estimate the expectation of (Vt("))p.

Case 1 (d > 2 and a = 1/2): We choose § = 2 and ¢ = n~/2. From (2.48), by using the inequality
(O a)? <ma=HVOS™™ ad for any m € N, a; > 0 and ¢ > 0, we have

t
(m(")>pé(’5{</ Vs(")“) *Z/ DO (s, X[M) =00 (s, X, IPds
0

+ 5+ swp |MSn [P 4 RP(1/2,6,e,n) + SP(1/2,6,¢ n)} (2.55)
0<s<t

In the same way as in (2.40), for any « € (0,1/2] we have
E[RP (v, 2,7~ %, n)], E[SP(a,2,n" Y2, n)] < Cgn=Pe. (2.56)
Using Lemma 2.4.12 with ¢ = p, (2.54), (2.55) and (2.56) we have

t p t p/2
( / v;">ds> ( / |Y;”>2ds)
0 0

From Lemma 2.4.22 (i) with r = p, p = ¢ = 2 and &€ = Cyn~'/2, we obtain

C
+ L.

E[(V,"™)"] < C+E NG

+ C7E

Case 2 (d = 1): From (2.51), we have

t P T
Wy < 09{ (/ Vs(n)d8> [ s, X = ba. X s



2.4. ONE-SIDED LIPSCHITZ DRIFT AND HOLDER CONTINUOUS DIFFUSION o1

+ sup |MZEn
0<s<t

+

1
v P +Rp(a,5,s,n)}. (2.57)

For a = 1/2, we can show the statement in the same way as in Case 1.
For a € (0,1/2), we also take § = 2 and & = n~'/2. By using (2.54), (2.56) and Lemma 2.4.12 with ¢ = p

we have
¢ P t p/2
V(n)d / Y(n) 1+2ad ~190 )
</0 . S) (0|S| A T

From Lemma 2.4.22 (ii) with = p, ¢ = 2, p = 1 + 2a and & = C1on P + Cyon~ /2, we have

Cio . Cho

E[(V}(n))p] < CyoE + CoE

T
(n) p Cll Cll (n) 1 1 1 013
]E[(‘/f ) ] S npo + \/ﬁ +Cll/0 E“Y‘? HdS S C112 npe + 7\/7; + 7’[7,0‘ S —_—.

For a = 0, we choose § = n'/3 and & = (logn)~'. In the same way as in (2.42), we have

Cia
(logn)p’

E[RP(0, n'/3, (log n)_l7 n)] <

Using Lemma 2.4.12 with ¢ = p, (2.53),(2.56) and (2.57) we obtain

t P t p/2
([ )] e[ ( [0
0 0

From Lemma 2.4.22 (ii) with r =p, ¢ =2, p =1 and £ = Cj5(logn) P, we have

C'15

T Qognyr’

E[(V,")?] < C15E 4 CysE

Cie
(logn)P

g Cir
+Cuo [ B s < T
0

ogn’

E[(V™)P] <

Hence the proof of the theorem is complete. O
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CHAPTER 2. STRONG RATE FOR THE EULER-MARUYAMA APPROXIMATION



Chapter 3

The Euler-Maruyama approximation
for one-dimensional SDEs

3.1 Introduction

Let us consider the one-dimensional stochastic differential equation (SDE)
¢ t
X =z +/ b(Xs)ds —|—/ o(Xs)dWs, o € R, t €[0,T], (3.1)
0 0

where W := (W, )o<¢<r is a standard one-dimensional Brownian motion on a probability space (2, F,P)
with a filtration (F;)o<i<7 satisfying the usual conditions.

It is well-known that the solution to the SDE (3.1) is related to the Kolmogorov equation. Stroock
and Varadhan [110] prove that if the drift coefficient b is bounded, measurable and the diffusion coefficient
o is bounded, uniformly elliptic and continuous, then a solution to the Kolmogorov equation % + b% +

02% = 0 with the boundary condition u(T,z) = f(x), in the class W}* with p > 3/2 admits the
stochastic representation (see also Theorem 1 in [122]). Zvonkin [122] studied the existence and uniqueness
of solution of the SDE (3.1) under very weak regularity assumption of coefficients b and o. In particular,
he showed that if b is bounded, measurable and o is bounded, uniformly elliptic and (o + %)—Hélder
continuous for some a € [0, 1] then equation (3.1) has a unique strong solution (see also Veretennikov
[116]).

Since the solution of (3.1) is rarely analytically tractable, one often approximates X = (X;)o<i<r
by using the Euler-Maruyama scheme given by

t t
X :x0+/0 b(Xf,jzs)) ds+/0 o (Xéjj}s)) AW, t e [0,T),

where 1, (s) = kT /n =: t,(Cn) it s € [kT/n,(k+1)T/n).
Both the strong and weak rates of convergence of X(™) to X are known when b and ¢ satisfy
globally Lipschitz continuous condition (see [10, 64]). It has been shown recently that there exist SDEs

53
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with smooth and bounded coefficients such that neither the EM approximation nor any approximation
method based on finitely many observations of the driving Brownian motion can converge in absolute
mean to the solution faster than any given speed of convergence (see [41, 56]). However, there are few
results when b is irregular. When b is not continuous, most of the works so far need the assumption that b
is one-sided Lipschitz to establish the rate of convergence (see [38, 97]). Note that this one-sided Lipschitz
condition also plays an indispensable role to establish the rate of convergence for SDEs with super-linear
growth coefficients (see [17],[48]). Outside the framework of one-sided Lipschitz, Halidias and Kloeden [42]
showed that X (™ converges to X in L?-norm if b is increasing, continuous from bellow and ¢ is Lipschitz
continuous. Since their proof uses upper and lower solutions of the SDEs and the Euler-Maruyama
approximation, it is hardly possible to get any rate of convergence by using their method. Recently,
Leobacher and Szolgyenyi [81] studied the SDE (3.1) under the assumption that b is piecewise Lipschitz,
has a finite number of discontinuous points and ¢ is Lipschitz and uniformly elliptic. They introduced a
clever way to transfer equation (3.1) to an equivalent equation whose coefficients are Lipschitz continuous
and therefore the new equation can be approximated by an Euler-Maruyama scheme with the standard
rate of convergence 1/2.

The strong rates of the Euler-Maruyama approximation for SDEs with Hélder continuous diffusion
coefficient were first established in [13, 40, 121]. The main idea in [40] is to use the so-called Yamada-
Watanabe approximation method to estimate the error. This remarkable idea has been developed in
[11, 96, 97] to obtain strong rate under various assumptions on coefficients b and o. It is undoubted
that Yamada-Watanabe approximation is still a key tool to deal with the Holder continuity of o in this
chapter. When b is only Holder continuous of order 8 € (0,1] and o is a non-zero constant, Menoukeu-
Pamen and Taguchi [90] have used a PDE technique to show very recently that the strong rate of the
Euler-Maruyama approximation is of order /2.

In this chapter, we will study the rates of strong convergence of the Euler-Maruyama approximation
for SDE (3.1) when the coefficients b and o may have a very low regularity. In section 3.2, we consider
the case that o is (o + %)—H'dlder continuous and b = by + by where by is, roughly speaking, a function
of bounded variation on compact sets and by is Holder continuous of some order S € (0,1]. Note that
b is not necessary continuous or one-sided Lipschitz function. By introducing a new approach based on
the removal drift transformation, we are able to establish the rates of convergence of X(™ to X in L',
L'-sup and LP-sup norm (p > 2). Our finding partly improves upon recent results in [40, 90, 97] as well
as the well-known ones in [38, 42] in the one-dimensional setting (see Remark 3.2.12). It worth noting
that SDEs with discontinuous drift appear in many applications such as mathematical finance, optimal
control and interacting infinite particle systems [1, 14, 16, 18, 72]. In section 3.3, we consider the case
that the o is discontinuous function. These SDEs appears in many applied domains such as stochastic
control and quantitative finance (see [1, 18]). For such SDEs, the existence and uniqueness of solution
was studied in [18, 77, 94]; the weak convergence of EM approximation was shown in [121]. To the best
of our knowledge, the strong convergence of the EM approximation of SDEs with discontinuous diffusion
coeflicient has not been considered before in the literature. It is worth noting that the key ingredients
to establish the strong rate of convergence of EM approximation for SDEs with discontinuous drift are
either the Krylov estimate (see [40, 65]) or the Gaussian bound estimate for the density of the numerical
solution ([80, 97, 99]). However, these estimates seem no longer available for SDEs with discontinuous
diffusion coefficients. Therefore in section 3.3 we develop another method, which is based on an argument
with local time, to overcome this obstacle. In section 3.4, we will see that the arguments of section 3.3 are
useful to improve the rate of convergence provided by Gyongy and Rsasonyi in [40] under the additional
assumption that the diffusion coefficient o is monotone Holder continuous.
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3.2 SDEs with discontinuous drift and Holder continuous diffu-
sion coefficient

3.2.1 Notations and assumptions

For bounded measurable function f on R, we define || f|s = sup,cg |f(z)|. We denote by L'(R) the
space of all integrable functions on R with semi-norm || f|| 1) := [ |f(z)|dz. For 8 € (0,1], we denote

by H? the set of all functions from R to R which are bounded and 3-Holder continuous, i.e., a function
f e HP iff

< 00.

1flls = I flloo+  sup L@ ZIW

z,yER,x#y |'7j - le

Next, we recall the following class of functions A for one-dimensional setting (see Chapter 2, section
2.4.1) which is first introduced in [66] (see also [97]). Let A be a class of all bounded measurable
functions ¢ : R — R such that there exist a finite positive constant K 4 and a sequence of functions

(Cn)nen C CH(R) satisfying:

A@): (v —C¢in L}, (R), as N — oo,

Loc
A(ii) = supyen [Cv (@) + [C(2)| < Ka,
A(iig) - sup / Iy (z + a)|e“’”‘2/"dm < (1++Vu)K4 for all u> 0.
NeN,aeR JR

We denote ||¢||.4 the smallest constant K 4 satisfying the above conditions. The class A4 will be used to
model a part of the drift coefficient b.

Recall that the following propositions shows that this class is quite large, (see Proposition 2.4.2). It
is worth noting that if a function ¢ € A has a compact support then it follows from Theorem 3.9 of [3]
that ¢ is of bounded variation. Therefore class A does not contain class of Holder continuous function
H? for any 3 € (0,1).

In this section, we need the following assumptions on the coefficients b and o.

Assumption 3.2.1. We assume that the coefficients b and o are measurable functions and satisfy the
following conditions:

(i) b="by + by € L' (R) where by € A and by € H® with 8 € (0,1].

(ii) o is uniform elliptic, globally bounded and globally Holder continuous: there exist real numbers
Ky >1 and a € [0, 1] such that

1
K—g < az(x) < Kg for any x € R,
and )
0(2) — o (v)| < Kolz — y|¥+ for any 2,y € R.

The following lemma is a one-dimensional version of Lemma 2.4.12.
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Lemma 3.2.2. Assume that b is bounded, measurable and o satisfies Assumption 3.2.1 (ii). Suppose
that ¢ € A. Then for any q > 1, there exists C = C(T, Ko, |||l 4, |0]loo, Zo,q) such that

g (n) (n) c
| Eeee) - coelr imas < - (3:2)

Finally we recall that we have the following standard estimation, (see Lemma 2.2.2).

Lemma 3.2.3. Suppose that b and o are bounded, measurable. Then for any q > 0, there exist C' =
C(Qa ||b||OCa HUHOO7T) such that

sup B[ X — X", |9 <
te[0,T)

3.2.2 The method of removal of drift

The following removal of drift transformation plays a crucial role in our argument. Under the assumption
that b € L'(R) and o2 is uniformly elliptic, the scale function

o= | " exp (_2 / ’ %d) dy

is well-defined. Moreover, since ¢ exists and " = —QSfl almost everywhere, ¢ satisfies the following
ODE
/ 1 2 "
b(z)¢'(z) + 507 (x)@" (2) = 0.

Define Y; := ¢(X;) and ;"™ := o(X™). Then by the generalized Ito’s formula (see Problem 3.7.3 in
[60]), we have

Y, = o(z0) + / o (X)o(X)dIT,,

and

n K n n 1 n n K n n
Y =gao) + [ (@' XX )+ e (XM (X)) ) ds+ [ @/ (XM)a(X,) AW,
0 2 0

We will make repeated use of the following elementary lemma.

Lemma 3.2.4. Suppose that b € L*(R) and Assumption 3.2.1 (ii) hold. Let Cy = 2KVl ey

(i) For any x € R,
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(ii) For any x € R,
" ()] < 2EZ[bllocll¢lloe < 2[1Blloc K5 Co.

(iii) For any z,w € Dom(p~1),

o7 (2) = o7 (w)] < Colz — wl. (3.3)

The proof of Lemma 3.2.4 is trivial and therefore will be omitted.

To deal with the Holder continuity of the diffusion coefficient o, we again use Yamada and Watanabe
approximation technique (see Section 2.3). For each § € (1,00) and € € (0,1), we define a continuous
function 5. : R — R* with supp 15, C [¢/d, ] such that

Y5e(2)dz =1 and 0 < ¢)5(2) 2

< ——=, 2>0.
</ ~ zlogd :

Since f;/é ﬁgadz = 2, there exists such a function 15 .. We define a function ¢s . € C?(R;R) by

=] py
¢5,6(x) ::/0 /0 5, (2)dzdy.

It is easy to verify that ¢;. has the following useful properties:

|z| < e+ ¢s5e(x), for any x € R, (3.4)
0 <|[¢s.(x)| <1, for any x € R, (3.5)
2
P5.e(El2]) = P (l2]) < mhm,a(lﬂ% for any = € R\ {0}. (3.6)

From (3.3) and (3.4), for any ¢ € [0,T], we have
1%, = X[| < ColYy = V| < Co (= + 6a(Yi - ¥,)). (3.7)
Using It6’s formula, we have
95 (Yy = Y,") = MO 4 i 4 g, (3:8)
where
¢
M = / 6 (Vs = Y) {0 (X)o(X,) = ¢ (X))o (X" ) b aws,
17 i = [ g0 = Y (o (KM )+ o (KoK
0 ) n 2 MNn

2
¢(X,)o(X,) = ¢ (Xa(X ()| ds.

w1
5= [ v - v
0
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3.2.3 Error estimates for the Euler-Maruyama approximation

We obtain the following results on the rate of the Euler-Maruyama approximation in L'-norm.

Theorem 3.2.5. Let Assumption 3.2.1 hold. Then there exists a constant C* which depends on K,
lballa, 1oxllg, 10llLrm), T, xo, @ and B such that

c* )
1 if a =0,
sup E[| X, — XM < AL (3.9)
TeT 3 if a € (0,1/2],
nf/\o‘

where T is the set of all stopping times T < T. Moreover, for any v € (0,1), it holds

2_77( S )7 if a =0,

1 —~\logn
E[ sup |X, - XM <q 57 Bl (3.10)
s — ')/ Y .
0<s<T 2=
177(n§Aa) if a € (0,1/2].
Proof. Recall that by (3.7) and (3.8), we have
X, — x| < Co (e + MO I Jf’”) :
We first consider It(n). Since ¢ = —QZf/7
r b((XE)o*(X,,)
112 [ 6 = YO X0 o, ) - e g,
0 ’ Tin Uz(XSn )

Thanks to Lemma 3.2.4 and estimate (3.5), we have

(n) g (n) (n)

n n n n n

1)< K2Co [ oK o r) = bt (e, ) ds
T
SK?%/ (K2 [p(x) = (x| + Ibloo |o2(X0) = (X))} ds.
0
It follows from Assumption 3.2.1 that
(n) ! (n) m |
1" SK;LCO/O {‘bA(Xs(n)) - bA(X,,:(S))‘ + bxlls ’ngn) - X, }ds
T (n) 1/24«
+ 2K§Hb||oo00/ ‘X@ - X", ds. (3.11)
0

Now we estimate Jt("). From (3.6), we have

< [ Rl
t >
0

/ / n (n) 2
¢ (Xo)o(Xe) — @' (XM (X,")))| ds
Y, — V™| log s

N (s)
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< 3T A T 4TI,

where

t 1 Yg _ )/S(”)
Jtl,’n, ::/ [8/6,8](| & |)|J(Xs)|2
0

Y, — ™| log s
S / ey (Y — ¥
YD = v egs
o / eV — ¥
! o Y, — Ys(n)| log 0

2
¢(X,) = ¢ (x| ds,

/(X [o(X,) = a(x(™)

[ (XD |o(X) = r(x{1,)

2
M (s) ‘

ds.

From Lemma 3.2.4 (ii), ¢’ is Lipschitz continuous with Lipschitz constant ||¢”||o.. Hence, we have

Jl,n < Kg”@//”go /T 1[5/578](‘Y; - Ys(n)‘
T = logd 0 Y, — v

2
ds

) ‘Xs —x™

EZ"1%C [
ol Nleo~0 1 Y, — Y™
el R Al

_ AKSC b2, T

IN

Y, — Y™ |ds

12
log 0 (3.12)

and since o is (1 + «)-Hélder continuous, we have

142«

K202 [T 11/5(|Ys — V) iy

logd Jo |y, - v

K203+2a T

o0 1 Y, — Y™ ‘Ys _y®
ol AR RS ] R s

K2Cit2oTe

log 6

I < ’Xs —x™

2a
ds

: (3.13)

and

K2025 T 1+2a
It < E;Cod / ‘X(”) —x™ ds. (3.14)
0

~ elogé s 1 (5)

Therefore, from (3.7), (3.8), (3.11), (3.12), (3.13) and (3.14), for any stopping time 7 € T,
B
} ds

(n) _ y(n)
Xs M (s)

X — X{M| <Coe + CoMp-<

T
eacq [ A a0 - x03,

1/24«
ds

T
2R3)CE [ [ - X0,
0

142«
ds.  (3.15)

12KSCE||b||12.Te ~ 3K2C5T2Te?  3K2C36 T‘
log & log & elogd Jo
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Note that since ¢’, ¢’ and o are bounded, (Mt"’é’g)ogtST is martingale, so expectation of M™% equals
to zero.

If a € (0,1/2], then by choosing € = n~/2 and § = 2, the estimate (3.15) becomes
C —1/2
_ v(n) 0 n,2,n
X = XV <5+ oM}
B
} ds

T
+xic | {]mxﬁ")) ~ba(XI )]+ bl | X6 = X
1/24a

7n (5) ds

T
2KCF [ [ - )
0

12KSCRBAT | BKECH™ T | 6K2CHn'/” /T’m 3
s Nn (s
0

nt/2log?2 n®log 2 log 2

By taking an expectation in (3.16) it follows from Lemma 3.2.2 and Lemma 3.2.3 with ¢ = 1 that

C
sup E[[X, - XM < -, (3.17)
TeT nze
where
3T(1+4/b]1%) 6T
=KS 5(1 _ 07 1+ Tb 2|16 0T —)
Oy = KSCH (14 Sy 4 O+ Tl + 28T + ).

where C is a constant depending on «, 3, T, ||ball4, Ko, ||b]lc and z¢. Note that C doesn’t depend on
6]/ 2, (r)- This concludes (3.9) for a € (0,1/2].

If @ = 0, then by choosing ¢ = (logn)~! and § = n'/?, the estimate (3.15) becomes

X, — x) < S0y g agmnt’tosm
logn
4 ~2 T (n) (n) B
+KACE / {ij<X§">>bA<XW>>\ + bl | X = X0, }ds
T 1/2
2K]CE [ [ - x| s
0 )

36KSCI|BIZT  9K2CAT

ds. .1
(log n)? logn s (3.18)

T
+9K203p1/3 / ‘XS(”) —x™
0 "77L(3)

By taking an expectation in (3.18), it follows from Lemma 3.2.2 and 3.2.3 with ¢ = 1 that

sup E[|X, — x| < -2
T Y= logn’
TET g

(3.19)
where
Co :=KSC§ (1 + 9T + C(L+Tbu g + 2T/l o + 36T|b]|%, + 9T)),

where C' is defined as in (3.17). This concludes (3.9) for a = 0.
Finally, the estimate (3.10) follows directly from (3.9) and Lemma 3.2 in [39]. O
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The assumption that b € L*(R) in Theorem 3.2.5 is in fact quite restricted since it excludes some
simple function such as b(z) = 1,>0. Fortunately, removing that assumption does not affect much on the
strong rate of convergence as shown in the following theorem.

Theorem 3.2.6. Suppose that the drift coefficient b = ba + by, where by € A and by € HP with
B € (0,1]. Let Assumption 8.2.1 (ii) hold. Then there exists a constant C* which depends on K, ||bal 4,
1bwllg, T, xo, o and B such that

C*eC’* 1/log(logn)

(n) logn ifa=0,

SEE’EHXT - XM < C*eC*\/gIOW (3.20)
Moreover, for any v € (0,1), it holds
Q—V(C*ec*\/m)v r
if a =0,
E[ sup |X,— XMp1<{ 1=7 logn 3.21
%?:ET' = 2*7(0*60 ”Og”)” ifa € (0,1/2] o
[ ng/\a if a € (0, .

Remark 3.2.7. Note that the function x — eVI°8% increases faster than any polynomial function of
log x but slower than any polynomial of z, i.e, for any € > 0 and k£ > 0,

) ex/log T ) (IOg l‘)k
lim = lim =0.
z—+oco € z—4oo eVlogz

Proof of Theorem 3.2.6. The main idea of the proof is to approximate b by a sequence of functions
(bym)men C LY(R) and to apply Theorem 3.2.5 for solution of the SDE with drift coefficient b,y,.

For m € N, we choose a smooth function g, € C'(R) with support [—(m + 2),m + 2] such that
gm =1on [-m,m] and 0 < g,,,(x) <1 for all z € R, and ||g}, |l < 1.
We define b,,, := bg,,. It is easy to verify that

o [[bmlloc < [Ibllocs
o by € LA(R) and [lbm 1) < (2m 4+ 2)[b]oc;
® bagm € A and HbAgmH.A < 3||bA||A;

® bygm € H? and ||brgm| s < 2||buls for all m.

Let X " and X " bea unique solution of SDE (3.1) with drift b, and its Euler-Maruyama approximation,
respectively. Then it holds that

sup E[|X, — X)) < sup {BIx, - X7+ BIXD" - X0 4 EIXT X0} (322)
TET TET
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From (3.17) and (3.19), it holds that

Cige20K2 [bllocm

1 if a =0,
—m  —=m,n ogn
sugEHXT -X, < O 620K [bllocm (3.23)
7€ o ifae(0,1/2],
nf/\a

where C3 = C3(z0, Ko, ||b]|co, Ty @, B) is a finite constant which depends neither on n nor on m. On the
other hand, for any stopping time 7 € T, it holds that

/ (X)W,

(X £ X7} s %] 2 m) € { sup > m = Jao] - bnooT}.
o<t<r

0<t<rt

Since ([, o(Xs)dWs), < K2T almost surely, from Proposition 6.8 in [108], we have

(m — |zo| — [[bllT)*
P Xi| > <2 —
(e 102 m) < 20 (G

zol + 115l T)? m?
< 2exp ((|0|2KH2|T)) exp (_4K2T) . (3.24)

Since E[supy<;<r | X¢|*] V E[supg<;<r IX7'2] < Cy := 3(22 + T2||b||%, + 12K2T), we have

N\ 2 —m 2
(BOX- = X70) = (B0X = X7 110, xmy])
< EHXT - YTF]P(XT 7& Y:L)

2 m?
< CZexp ~ 1T ) (3.25)

2
where C2 = 4Cy exp (%) In the same way, we have

2 m?2
]) < CZexp (—4K2T> . (3.26)

If a € (0, 3], from (3.22), (3.23), (3.25) and (3.26), we have

m,n

(E1x( - X7

20K [[b]l o 2

E[|X, - XM < .S 190 (—L)
sup ] Fl s G 20 e~ gimg

Choose m? = 8(§ A a) K?2Tlogn, we obtain

CgeCG\/logn 205

sup E[| X, — XM < T
TeT n2"e

where Cs = 40K§'||b||001/2(§ Aa)T. This concludes (3.20) for o € (0,1/2].

B )
ana
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If o =0, from (3.22), (3.23), (3.25) and (3.26), we have

sup E[|.X, — X([] <

2
CSeZOKUHbHOOm m2 )
reT logn

+2056XP(‘81;TT

Choose m? = 8K 2T log(logn), we obtain

C eC'7y/10g(logn) 20
sup B[| X, — X)) < 2 L P
reT ogn ogn

where C7 = 40vV2T K3||b||oo. This concludes(3.20) for a = 0.
Finally, the estimate (3.21) follows directly from (3.20) and Lemma 3.2 in [39]. O

The estimates (3.10) and (3.21) become worst when v 1 1. Fortunately, we have the following bounds
for the L'-sup norm.

Theorem 3.2.8. Let Assumption 3.2.1 hold. Then there exists a constant C which depends on K.,
loalla, 10w llg, 621 ®), T, w0, o and B such that

¢ ifa=0
Bl swp |X, - X" < Vg |

Proof. Define V; := supg<s<; | Xs — X§")|. To estimate the expectation of Vr, we need to estimate the
expectation of supg<,<p M m9:¢|. Using Burkholder-Davis-Gundy’s inequality, we have

E[ sup |Mg’57€|] < V32E [(M™74) 1]
0<s<T
T
= V32E /
0

Using the fact that ||¢'||c < 1, we have

(v~ V[
d,e\tt t )

1/2
2
¢ (Xs)o(Xs) — ‘P/(X:gn))a(Xé:zs))‘ dS)

IE[ sup MS"";’E@
0<s<T

12 1/2

T 9 T 2

< VOGK,E (/ @ (X) = ¢ (X)) ds) +V96C,E </ () = o(X ()| d8>
0 0

7771(

1/2
T 2
+ VI6CE < / ’a(Xﬁ”))fa(X(7l)s))‘ ds)
0
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Since o is Holder continuous and ¢’ is Lipschitz, E [SUpogng |M§“5’5|] is bounded by

1/2 T 1/2
2 1+2a
ds> + V960, K, E ( / ’XS - X§”>‘ ds>
0

T 1/2
n (n) e}
+V96Co K, </0 IE[|XS( ) _ Xnn(s)|1+2 ]ds)

T
VIOK, ||¢" || E (/ ’XFX(@
0

C3

<&FE [A“”} +&E {B( q + it

(3.27)

where 51 = \/%KUHQO//”“” 52 = \/976C0K0-, 53 =V 9GCTC’0KU,

T 2
Agzl) = / ‘XS — X(§”> s
0

Since | X X(n)| < V(n) for any s € [0, T, by using Young’s inequality zy <

+ ¢,Coy?, we have

4(' Co
1/2
1/2 T V(n) T
A < (y / ’X,—XW d < T ~0/ X, — X"|ds.
T—(T) 0 s K] S —46100+6100|6 5‘5
Hence it holds that

E[AM] < =L T 14 60 / E[| X, — X(™]]ds. 3.28
ELAY) < S a0 [ I, - X(V ds (325)

Next we estimate the expectation of B(Tn) and VT(").

For a € (0,1/2], by using Young’s inequality zy <

1/2 T
= () ([ e

Hence it holds from Jensen’s inequality that

T Co + &,Coy?, we have

2a0 1/2 V(n) T
ds <L +EQC’0/ |X, — X(™|?ds.

~ 4¢9,C)

E[V,"]

E[B(n)} — 4¢,C)

T
+ &Cp / E[| X, — X{™[]?~ds. (3.29)

Therefore from (3.27), (3.28) and (3.29), we obtain

E| sup |[M™*"
0<s<T

2] _EWV T
) < v s [ Eix - 2l
0 0

T
+5§OO/O E[|X, X(")|]2ads+71/4ia/2
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It follows from (3.17) that

—1/2

E V(n) ~2 ~2 TC,C ~
E| sup |[M™M%" 7| Vil (& +&)TCO €3
0<s<T 2Cy ne(BA2a) nl/4+a/2

IN

This fact together with (3.16) and (3.17) implies that

2(6% + é%)TCgCl 2¢3C 2C1

(n)
]E[VT ] = no(BA2a) nl/4+a/2 n%/\a'
Since 1/4 + a/2 > 202, we have
(n) Cs
E[VT } S na(ﬂ/\2a)a (330)
where Cg 1= 2(&3 + &3)TCZCy + 2¢3Cy + 2C4.
For a = 0, by Jensen’s inequality we have
. 1/2
v T
E[BM™] < (/ E HX —xm } ds> < VT (3.31)
0 Vdlogn
Therefore from (3.27), (3.28) and (3.31), we obtain
- E[Vy] = T o/ CoT é3
E ’Mn,nl/{(logn) 1 < 20 / E[| X, 7X(n) d
B <y + G | E X SR
CEVi] | BGGT | &Gl , &
— 40, logn Viogn — nl/4te/2’
This fact together with estimates (3.18) and (3.19) implies that
n 4E3C3CT  4Cyea\/CoT 4Cy¢ 4C. C,
E[V(V) < 2052 e L o . Sy (3.32)
3logn 3v/logn 3nl/4te/2 " 3logn — /logn

where Cy := %(E%C(%CQT + Colav/CoT + Cyés + Ca). Hence we finish the proof of Theorem 3.2.8. O

In the similar arguments of Theorem 3.2.6, we can remove the assumption that b € L!(R).

Theorem 3.2.9. Under the assumption of Theorem 3.2.6, there exists a constant C' which depends on
Ko, ||balla, |ballg, T, xo,« and B such that

CeC’ log(log n)

fo=0,
E[ sup |X —X(”)H < Vdiogn ifa
Pl s H= CcViogn
0<s<T CeCVlogn )
if € (0,1/2].

no(BA2a)
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Proof. We denote bm,ym and X" as in the proof of Theorem 3.2.6. Then it holds that
E[ sup | X, — X"

0<t<T
< {E[ sup | Xy — X} ||+ E[ sup [X;"" = X[+ E[ sup [X}" - Xl”’”u} : (3.33)
0<t<T 0<t<T 0<t<T
From (3.30) and (3.32), it holds that
010672K§|\b\|mm
e ———— ifa=0,
Bl sup (X} =X < LA (3:34)
0<t<T 010672Ka”b‘|00m .
W lfOéE(O,l/Q],

where Cy9 = Cio(x0, Ky, ||b]|0o, T, v, B) is a finite constant which depends neither on n nor on m.
Since {supg<;<r | Xi — X'| #0} C {supg<i<r | X¢| > m}, it follows from (3.24) with 7 = T that

—m \2 —m 2
(ELsup 1= X70)" = (BLswp 1% = X7 11,y 1,37 101

0<t<T 0<t<T
<E[ sup [X;— X, PJP( sup |X| >m)
0<t<T 0<t<T
2
2 m
< C%exp < 4K02_T) . (3.35)
In the same way, we have
_ 2 m2
E[ sup |X™ - X" ) < C2ex ( > 3.36
(Bl sup X0 =X"0) < Cexp ( ~gpap (3.36)

If a € (0, 3], from (3.33), (3.34), (3.35) and (3.36), we have

2
T2 [bl| o 2

+ 2C5 exp ( — 8;(1§T)'

)
]E[OiltlgT|Xt Xl < Cro na(BA2a)

Choose m? = 8a(B A 2a) K2T log n, we obtain
Cloecu Viegn 2C5

E[ sup |X; — XM < )
[Ogthl K ¢ |]_ ng/\a n%Aa

where C11 = 144K32||b||oo /2T (B A 2cr). This concludes the statement for a € (0,1/2].
If & =0, from (3.33), (3.34), (3.35) and (3.36), we have

010672K§\|b|\00m m2
E X —X(") < —— +2¢ (—7)
i, e Xl < T m TG e~ gar

Choose m? = 8 K2T log(logn), we obtain

(n) 036012\/10g(10g") 205
E[ sup |X; — X;"[] < + 7
[O§t£T| k e Viogn Vlogn
where C1o = 144v/2T K32||b||oo. This concludes the statement for a = 0. O
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The following LP-norm estimation is useful to construct a Multi-level Monte Carlo simulation for X
(see [32]).

Theorem 3.2.10. Let Assumption 3.2.1 hold. For any p > 2, then there exists a constant C which may
depend on Ko, ||balla, |bm |, |6l 21 (), T, 20, o, B and p such that

C

lo%n
E[ sup |X,— XM < T
0<s<T nz

C

1 ,pB
INT

if a =0,

if a €(0,1/2),

ifa=1/2.
n

If we suppose that o is Lipschitz continuous and b € H?, i.e. b4 = 0, then Theorem 3.2.10 implies
the following result which improves the one in [90] for SDEs with non-constant diffusion.

Corollary 3.2.11. Assume that b € L*(R)(H” for some 8 € (0,1] and the diffusion coefficient o is
Lipschitz continuous and uniformly elliptic. Then for any p > 1, there exists positive constant C' which
depends on Ko, ||b]|g, |6l L1 (r), T, w0, v, B and p such that

c
E X, — XM < :
[oilslng | SIS e
Remark 3.2.12. 1. Gyongy [38] studied the rate of convergence in the almost sure sense of the Euler-

Maruyama approximation for SDEs with irregular drift. He showed that the rate is 1/4 when o is
locally Lipschitz and b satisfies an one-sided Lipschitz type condition.

2. In the case that 8 = 1, the results of Theorems 3.2.5, 3.2.8 and 3.2.10 were proven in [97] under a
further assumption that b is one-sided Lipschitz. In this chapter, thanks to the method of removal
drift we are able to get rid of this assumption. Note that if o is Lipschitz function, the strong rate
of the Euler-Maruyama approximation mentioned in Theorem 3.2.5 is 1/2.

To prove Theorem 3.2.10, we need the following Gronwall type inequality.

Lemma 3.2.13 ([40], Lemma 3.2.). Let (Z;)i>0 be a nonnegative continuous stochastic process and set
Vi i=supy<; Zs. Assume that for somer >0,q>1, p€ [1,q] and some constants Co and & > 0,

([ ) o | (f 220) ™

for allt > 0. Then for each T > 0 the following statements hold.
(i) If p = q then there exists a constant Cy depending on Cy,T,q and r such that

E[V}] < CoE + CoE +& <o

E[V7] < Ci&.

(ii) If r > q or g+ 1— p <1 < q hold, then there exists constant Cy depending on Co, T, p,q and r, such
that

. . T
BVf) <Ca +Ca | BlZJds.
0
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Proof of Theorem 3.2.10. Throughout this proof, the letter K denotes some positive constant whose value
can change from line to line. The constant K may depend on Koy, ||balla, 0], [|bllcc, 1]l 1 (), T 20, @
and S but it does not depend on n. We will use again the estimates (3.7) and (3.8). Let us first consider
the expectation of supy« <y |[M™%¢[P. Using Burkholder-Davis-Gundy’s inequality, for any ¢ € [0, 7],
§ € (1,00) and € € (0, 1), we have

t
E [ sup |MS"’5*5|”} < KE [(/
0<s<t 0

Note that for any bounded Lipschitz continuous function g with Lipschitz constant L > 0, it holds that

9 p/2
06X — X7 ) s ]

sup B ZIWN o V171 for any 4 € (0,1]. (3.37)

z,yER,x#y |l‘ - yl’y

Since o is bounded and 1/2 + a-Hoélder continuous, ¢’ is bounded by 1 and ¢’, ¢” are bounded, by using
(3.37) for g = ¢’ with v =1/2 4 «, we have
t
(f

(f
[loser o)

9 p/2
8| s ey <xe | ([ oo - o) | ke

0<s<t

o(X,) — a(XS("))‘Q ds>p/2]

+ KE

t 1420 \P/? T 1+2a p/2
<KE / X, — X§”>‘ ds +KE / ]Xs<"> - x™ ds
0 ‘ 0 nn(s)
t (|20 p/2 K
<KE (/0 ‘XS ~ X ‘ ds) + — T (3.38)

For a € (0,1/2], it follows from (3.16) that for any ¢t € [0, 7], we have

P T
v, +/ {‘bA(Xgn))—bA(X(n) )’p—kK‘XS(”)—X(")
0

Nn(s) M (s)

B
} ds

nP/2 " g<e<y

p 1 -
<K{+ sup ‘MS"2” v

T 24pa 1 1 T p+2pa
) _ xm |7 B SRE S ‘ (n) _ x ()
+ /O ‘Xs xm s o o +? | |XI0 X dsb.  (3.39)
By taking the expectation on (3.39), from Lemma 3.2.2 and 3.2.3, we have
P —1/2|P K
E HV(") } < KE { sup |M™2" } R E— 3.40
! - ogsl[g)t ° n3NE Apa (3.40)
Since o < 1/4 + a/2, from (3.38) and (3.40), we obtain
t 1+20  \P/? K
E[lv]] < kE X, — x| ds + (3.41)
0 n%/\%/\pa
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If @« =1/2, from Jensen’s inequality, we have

(n)|P ¢ P K ¢ P
]E[Vt ]SK/EHXFX@ }d5+ lpagK/EHVG(n) }der i
0 ‘ n2'e 0 ) naN'T
Using Gronwall’s inequality, we have
n p K
E Hw ) } < (3.42)
If a € (0,1/2), then from (3.41), for any ¢ € [0,T] we have
t P t 142a p/2 K
E ||y p} < KE (/ Vs(")ds> + KE (/ ‘Xs - x| ds> FRNE -
0 0 nEAT/\pO‘

Using Lemma 3.2.13 (ii) with r =p, ¢ =2, p=14 2, £ = Kn~GA%AP2) and Theorem 3.2.5, we have

K t K K K
EHVt(n)P}S _ +K/ [XS*Xgn)}dSS — +— < —— (3.43)
n§/\%/\poz 0 ‘ TL§APTAPO‘ naha nzNa
This concludes the case of « € (0,1/2].
For a = 0, it follows from (3.18) that for any ¢ € [0, 7], we have
p 1 1/3 —1|P
vl <k + su ‘ Mt ogn)
¢ B { (logn)P ogsgt
t B
[ fpace - vacx )|+ e xi - i, [ L as
0 77n(5) N (8)
¢ p/2 1
X(n) _ X(n) d
+/0 ‘ s n (5) ot (logm)?r
IS S 7 /T ‘X(”) ~xt P ast (3.44)
(log n)P 0 S Nn(s)
By taking the expectation on (3.44), from Lemma 3.2.2 and 3.2.3, we have
P 1/3 1P K
E HV(") } < KE [ su ’M;W (ogm)~* 17 . 3.45
' 0<sst 1 (logn)? (345
From (3.38) and (3.45), we obtain
t p/2]
1 K
E HV}”} p} <KE </ ‘Xs _xm ds> + .
0 | (logn)?
Using Lemma 3.2.13 (ii) with r =p, ¢ =2, p =1, £ = K(logn) P and Theorem 3.2.5, we have
P K T
B[] K/ E[|X, - x(|]as< 3.46
Vr ~ (logn)p * 0 8 5= logn (3:46)

This concludes the case for o = 0. O
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Remark 3.2.14. Note that it is hardly possible to obtain a LP bound for the error if we remove the
condition b € L*(R) by following the method used in the proofs of Theorem 3.2.6 and 3.2.9 since a careful
tracking of constants K will show that the constants K in (3.42), (3.43) and (3.46) increase with the order
of double exponent with respect to |[b||z1(ry. This makes the localization technique for b not applicable.

3.3 SDEs with discontinuous diffusion coefficient

3.3.1 Notations and assumptions

Throughout this section the following notations are used. For any continuous semimartingale Y, we
denote L¥(Y') the symmetric local time of Y up to time ¢ at the level z € R (see [77]). For bounded
measurable function f on R, we define || f||cc := sup,er |f(z)|. We denote by L!'(R) the space of all
integrable functions with respect to Lebesgue measure on R with semi-norm || f||,1 () := [ |f()|dz. For
each 8 € (0,1] and k > 0, we denote by H?* the set of all functions f : R — R such that there exists a
measurable subset S(f) of R satisfying

[f(x) = f(y)

(i) Hf”ﬂ = ”f”oo =+ SUPg < y;[2,y]NS(f)=0 |x — y|,3 < oo; and
AS(f)En[-K, K
(ii) Cpx = SUPK>1 SUP.~g (S(H)°n [ﬁ K] < +00 where A denotes the Lebesgue measure on R and
S(f)¢ is the e-neighbourhood of S(f), ie, S(f)e ={y € R: there exists z € S(f) such that |z —

yl < e}
Here are some remarks on the class H?".
Remark 3.3.1. (i) H?* is a vector space on R, i.e., if a,b € R and f,g € H?" then af + bg € H5".
(ii) A bounded function f is called piecewise S-Holder if there exist a positive constant L and a sequence
—00 =89 < 81 < 82 < ... < 8y < Smy1 = 00 such that |f(u) — f(v)| < Lju — v|? for any u,v

satisfying s, < u < v < sp11. It is easy to verify that such function f € H?1, S(f) = {s1,...,5m}
and C,1 < 2m.

(iii) The following ¢ is a non-trivial example of function of H?* with x < 1. For each B,k € (0,1), we

denote
“"71 if £ <0
1 oo nr=l
((z) = 1 —|— 1ogh()§i1)$ﬁ if (n+1)"Y0-%) <z <n=Y/0-% and n €N, (3.47)
Sz41 if 2> 1.

It can be shown that ( is a strictly increasing function with an infinite number of discontinuous

pomts which are cumulative at 0, 1 < ( < 3, and ¢ € H?* with 8 = 1255“, S(¢) ={n0=r) n=
2,...} and Cg,,, < 3.

We need the following assumptions on the diffusion coefficient o.
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Assumption 3.3.2. (i) There exists a bounded and strictly increasing function f, such that for any
z,y €R,

lo(x) = a(W)* < |fo(x) = fo(y)]-

(ii) o is bounded and uniformly positive, i.e. there exist positive constants @ and o such that for any
r €R,

og<o(z)<7.

Le Gall [77] has shown that if b is bounded measurable, and o satisfies Assumption 3.3.2, then there
exists a unique strong solution to SDE (3.1) (see also [94]). We now give some remarks on the Assumption
3.3.2.

Remark 3.3.3. (i) The function o(z) =1+ 1,>( satisfies Assumption 3.3.2 and belongs to H1.
(ii) The function ¢ defined in (3.47) also satisfies Assumption 3.3.2.
(iii) If a,b > 0 and o7, 02 satisfies Assumption 3.3.2, then aoy + boy also satisfies Assumption 3.3.2.
(iv) Let f1, f2 be two strictly increasing, piecewise 1-Holder functions. Let p be a 1/2-Holder continuous
function satisfying 0 < infyecr p(x) < sup,er p(x) < 0o. Then o := po (f1 — fo) is piecewise 1/2-
Holder and it satisfies Assumption 3.3.2 with f, = C(f1 + f2) for some positive constant C'.

3.3.2 Error estimates for the Euler-Maruyama approximation

We obtain the following results on the rate of the Euler-Maruyama approximation with discontinuous
coefficients in L!-norm.

Theorem 3.3.4. Let Assumption 3.3.2 hold, and b,o € H?* for some 3 € (0,1] and x > 0.

(i) There exists a constant C such that for all n > 3,

() CeCVioglogn
sup E[|X; - X;"|]| < ———. (3.48)
0<t<T logn
(ii) Moreover, if b € L'(R), then there exists a constant C' such that for all n > 3,
C
sup E[|IX; — X{™M|] < ——. 3.49
ogth (X o= logn ( )

The estimates (3.48) and (3.49) were obtained in [40, 97, 99] under a stronger assumption that o is
1/2-Holder continuous on R.

For proving Theorem 3.3.4, we derive a key estimation (Lemma 3.3.8). The next estimation is a
uniform L?-bounded of the local time of solution of SDE (3.1) and its EM approximation.
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Lemma 3.3.5. Suppose that b is bounded, measurable and o is measurable and satisfies Assumption
3.3.2 (it). For each 0 € [0,1], define

v, ™) = (1-0)X, +0Xx™.
t t
=20+ /0 {(1 —0)b(X,) + Hb(Xflz)(s))} ds + /0 {(1 —9)o(X,) + 9U(X57:>(5))} aw,.
Then it holds that

sup  E[|LE(V™(9))[2] < 12|p||2.T? + 65°T. (3.50)
6€[0,1],2€R

Proof. By using the symmetric It6-Tanaka formula, we have

T
L5 (VO (9)) =[V{™(0) - x| — |ao — 2| - / (1V0) > @) = 1V (6) < @)) avi (6)

T
<|VE" (8) — ol + /0 (1(Vs(")(9) > ) — 1V (0) < x)) avm (@)

<2 /T (1= 0)b(X,) + 00X )| s + /T {0 =0)0(x) +0o(x,)) W,
o 0

T
+ /0 (1(1/;")(9) > ) — 1V (9) < x)) {(1 —0)o(X,) + bo(X™)

1 (s)

)}dWS :

Since b and o are bounded, it follows from inequality (a + b+ c)? < 3(a® + b* + ¢?) and the L%-isometry
that,

T
xT n 2
sup E[LE(VO @) < 12[b[ET2 +6  sup / ]E[|(1 ~0)0(X.) + 00(X)))| }ds
0€[0,1],z€R 0€[0,1],z€eR JO

< 12|]p||2,T? + 65°T.
This concludes the statement. O

The following lemma, which is similar to Lemma 2.2 in [121], plays a crucial role in our argument.

Lemma 3.3.6. Assume that b and o are bounded measurable. For any ¢,x > 0 such that §
4 . n n
W < T, it holds that for any t > 0 and n € N, P(Sup;<,.<;15 |XT( ) Xt( )\ >¢e) < dx.

Proof. Let t € [0,T] be fixed. We define ZM = Xt(i)s - Xt(n). Then using Burkholder-Davis-Gundy’s
inequality, it holds that for any ¢ € [0, 7],
4
sup ]

t+s
/ b(X (") )dr
0<s<§ |/t

t+90 (n) 4
/ ‘b(Xnn(r))‘ dr
t

4

+ 8E | sup

0<s<é

t+6 ( ) 4
[l o]
t

E { sup |Z§">|4] < 8E 7 (r)

t+s
/ o(X™ dw,
0<s<é t

< 80°E + 20K
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< 8|b|4.6* + 219516 < 8 (||b]|2. T + 2751) 6%

xe*

Hence, for any ¢,y > 0 such that § := ST BIL T

5751 < T, from Markov’s inequality, we have

n 1 n 1
p( s X0 x> <) < GE | s (X0 - X = | sup (20014

t<s<t+d8 € t<s<t+6 0<s<
8 (||b\|‘éoT2 + 2764) 52
< = = 0x,
which concludes the statement. O

Lemma 3.3.6 directly implies the following result.

Lemma 3.3.7. Assume that b and 0 are bounded measurable. Let ('yn)neN be a decreasmg sequence such

that v, € (0,1] and 7, L 0 and y,n* — 00 as n — 00. Denote e, 1= ;. 1= = 23/4T12LT2||p|| 4 +
v/ n
54
27Ty, = NN W . For each k=0,...,n—1, we define
Qe ={we sup (XM () - X;?) (W) > en

B <<t
Then it holds that P(Q ne.) < 0nXn = Yn-

Now we state the key lemma of our demonstration.

Lemma 3.3.8. Let Assumption 3.3.2 (ii) hold and the drift coeﬁ%zent b be bounded and measurable. Let
f € HP* for some 3 € (0,1]. Then for anyp>1 and 0 < o < pQ’B A K+4, there exists a positive constant
Cy(f) =C*(p,a, B, K, T, 0, || fll g, Cp s bl oo, T, @) which does not depend on n such that for each n > 3,

[t - s [ an < 0 ws
0

(s n®logn
Proof. From Lemma 3.3.7 and the boundedness of f, it holds that

/ g [| £t = rex ([ as

n—l ) p
-y / o B [l - )

n)
k=0
< 2SI T + 2 /

We estimate the second term of (3.52) as follows

(].Qk‘m5 N -+ ]_Qi e >:| ds

)] P

B |y - )

1an} ds. (3.52)

RO

[ s

1Q(‘ :|dS
k,n,en
k=0 "tk
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R o (n) ONG
Z /t<") Hf ) — f(Xt,(C")) 192%% 1X§"’)essn(f)} ds
n=1 4"
+ Z/t Hf (XM — f(Xt(g)))' Lo 1X§n)€ssn(f)} ds. (3.53)
k=0

On the set Q¢

k,n,en

N{X{™ @ S5 ()}, it holds that S(f) N [X™ A Xf(kf:l)),xg"> v X;{:))] = 0, thus,

k

p
n n n n)
‘f(Xi )= PG| Lo, xorgsenqpy < 111G (X Xfw
This implies the second term of (3.53) is bounded by
) ) pB
1715 Z / o B |- x@]” s <y, (3.54)

where the last inequality follows from Lemma 3.2.3. For each constant K,, > 1V (|zo| + T||b||so), the first
term of (3.53) is bounded by

o,
21| FI1% Z /t(") (E [1X§">esfn(f)ﬂ[—Kn,Kn]} +E {1X§")655n(f)\[—Kn,K,l]} )ds
k=0""k

T T
< 2p||f||go/0 E {1X§n)€SEn(f)m[fKn,Kn]} ds + 2p||f‘|go/0 E {1‘X§n>|2[{n} ds. (3.55)

Since ¢ is uniformly elliptic, (X(™); > g?¢, we obtain

T
/0 1X§”’6$En(f)ﬂ[—Kn.,Kn]d<X(n)>51

_ oK [ / mmm[Kn,Knm)LTT'(X(“)dx} 7
R

T
-2
/O E [1X§")€an(f)ﬁ[—KT,,,Kn]} ds < g°E

where the last equation follows from the occupation time formula. Moreover, it follows from Lemma 3.3.5
that

E [ / 155nmm[K,,L,K,J@)L%(de} < / Lsen (i g (@) ELLE(X )] dz
R R
< sup BILE (X A (5 () N [, Ko
e

< {122 T? + 65°T}/2Cp K et

Now we consider the second term of (3.55). For each s € [0, 7],

(n) ° (n
|: |X(n)‘>K <HD ’/ Xnn(“) o ‘.TQ-'-/(; b Xnn(u))du‘>
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gIF’(’ /O (X )AW,

> Ky — [blloeT = |2ol)-

Since ([, J(Xézzs))dwsﬁ < &*T almost surely, from Proposition 6.8 of [108] and the inequality (a —b)? >

a?/2 — v? for any a,b € R, we have

t
IP’( sup / (XM )AW,| = Ky — [T - |x0|>
o<t<T |.Jo

— _ 2 9 9
gzexp(—”(n o ”b'wT>)gzexp(<w+Hw.oT>)eXp(_ K)

22T 22T 452

This implies

T 2 2
(Jzo| + [[6]T) K;
/O E [1‘X§n>|ZKn] ds < 2T exp ( o exp (== ). (3.56)

Gathering together the estimates (3.52) —(3.56), we get

r p
/0 E[|£(X0) = 15| ] ds <2 FIE T + 1 FIETCpan P2

+ 2| fla P {12IBlI2, T + 65° T}/ Cp w Kl
bl T)? K2
ot (LD Yo (- B2 ) )

26°T 452
For each 0 < o < % A KQ—JZ}, by choosing Ky, = (14 [zo] + T'[|b]|oc + 20V Ta)vIogn and v, = 1oy, We
obtain (3.51) from (3.57). O

Now we prove Theorem 3.3.4 by using the key Lemma 3.3.8.

Proof of Theorem 3.3.4. We will only present the detail proof for the case that b € L'(R). The proof for
the case b ¢ L'(R) is based on the localization technique given in proof of Theorem 3.2.6 and it will be
omitted.

We fix n > 3 and a constant 0 < o < g A 25 Recall that by (3.7) and (3.8), we have

Kk+4°
() n,8,e (n) n)
(X = X,V < Co e+ M™ + 177 + ;7). (8.58)
We first consider It(n). Since ¢ = —ng/,

T b(XS(”))O.Q(X(n) )
(n) ’ _ vy oy (n) (n) \_ nn(s)
11 [ [ =¥ x| e, LI

Thanks to Lemma 3.2.4 and estimate (3.5), we have

T
1] < K2C / BX)a2 (X ) — (X)X )| d
0
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T
gKgCO/ {Kg
0

It follows from Lemma 3.3.8 that

BX) = (X)) + bl [0 (X)) = 02(x (1 )| } s

Cr

n®logn’

(| < (3.59)

where O 1= K2Co{K2C%#(b) + 2||b]|7C; (o) }. Now we estimate J\™. From (3.6), we have

(n) T 1[5/6,6](|Ys - Ye(n)|)
Sl s ™)
o |Yy—Y"|logé
<3(Jp" 4 T 4 T,

2
¢ (X)or(X,) = ¢ (XX ds

where

= | F gy (1Y = Y3
t T n
0 |YS—Y3( )|log6

s = [ A D)o (x,) - o(x1)
o |Y,—=Y"|logd

t 1 Ys _ Y'S(")
JS’” = / GLEN o) ) |<P/(X§n))|2 ‘J(Xs(n)) - U(X(")(S))
0 Ve — ¥\ |logs "

2
¢(X,) = ¢ (X)) ds,

o (X))

ds,

‘ 2

ds.

‘ 2

From Lemma 3.2.4 (ii), ¢’ is Lipschitz continuous with Lipschitz constant ||¢”||o.. Hence, we have

Jim o Kalle"ll5 /T 1/ (¥s = V™)) ‘X ~ x| ds
T = log5 o |Ys _Ys(n)l s
K2|" 268 [T
< 2oll¥ llo0 1 Y, — Y™ )YS —v™|d
< 088 /0 e/5,1 (| 1) s |ds
CJ1€
< 2 )
SR (3.60)

where C; := 4KSC3(|b||2, T. Next we consider J2". We first note that by (3.3),

e ON
o3 7 |o(x) - o(x{M) -

JEm <

SlogdJo X, X0 XemxOlze/con)

Recall that by Assumption 3.3.2 (i), there exists a bounded and strictly increasing function f, : R = R
such that for any z,y € R,

lo(2) = a()|* < |fo(x) = fo(y)].

We consider approximation f,, € CL(R) of f, which is also strictly increasing function and satisfies
| foelloo < IIfolloo and foe 1 fs as £ — oo on R. Then by using Fatou’s lemma and the mean value
theorem, we have

om . C3 [T UL (X)) — [ (X))
J S (n) ds
T = logd J X, — X X =X{|>e/(Cod)
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n)
< lim inf / o) = Lo (X ds
log &

pares | X X n)| |X.—X{"™|>¢/(Co0)
< lim inf Vi (6 3.61
imin og5/ dS/ dofs (Vi™(9)), (3.61)

where V(™) (0) = (Vt(n)(a))ogth is defined in Lemma 3.3.5. Since ¢ > g, the quadratic variation of
V() (9) satisfies

W@y = [ {a-0000) +00x)) a5 2 o
which implies
/0 "as /0 ldefé,e(‘é(”’(H))Sg‘Q / do / AV (0))s f7.0(VI(6))

:g‘2/Rdxf (e >/0 dOLE (V) (6)),

where the last equality is implied from the occupation time formula. Using Lemma 3.3.5 and the estimate
[f5ellr®) < 20 foelloc < 2[[folloc we have

T 1 1
s / (n) o2 zf (x z (y7(n)
E /0 d /0 dofL (V. (9))1 <ag /Rd foul )/O dOE[LT (V1™ (0))]

<o | foillpw sup  E[LE(V™(9))4?
0€(0,1],z€R

< 20 2||fo oo {12]BI3. T2 + 65°T} /2.

By plugging this estimate to (3.61) and using Fatou’s lemma, we get the following estimate for the
expectation of J2",

Cra

E[J3"] < 3.62
3" < 2 (3.62)
where Cjy 1= 2C30 72| fs oo {12[|0]| 2, T? + 652T}'/2. Finally, we estimate Jo" as follows
cgs [T 2
3,n 0 ny _ (n)
ELE") S s E| ‘o(xs) U(Xnn(s))\ Jds.
Applying Lemma 3.3.8, we get
6 C
E[J;"] < L (3.63)

elogd n®logn’

where Cj 5 := C2C3(0). Since E[M]"*¢] = 0, it follows from (3.58) - (3.63) that there exists a positive
constant C' which do not depend on n such that

1 € 1 0 1 )

_ (n) < (
sup E[lX; - X;V[[<C 5+nalogn+10g5+1og5+5log6nalogn ’

0<t<T

By choosing € = T and § = n®, we obtain the desired result. O
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3.3.3 Application to skew diffusion processes

In this subsection, we apply result in section 3.3 to a skew diffusion process which is the unique solution
to the following SDE with symmetric local time:

X, = a0 + /t o(X)dW, + (20 — 1)LO(X), t € [0,T], a € (0,1). (3.64)
0

The skew diffusion (3.64) has a unique (weak or strong) solution by using an equivalent SDE without
reflection. To this end, fix a € (0,1) and we define the following functions:

Sa(x) == (1 —a)zl(x > 0) + azl(x < 0),
ro(z) =5, (2) = a fa) 1(z > 0) + gl(x < 0),

Doral®) ¥ Dasal) _ (1 _ay(e > 0) + ad(@ < 0) + 21(x = 0)

fa(z) =
Here D_ and D, denote the left and right derivatives, respectively. Note that fq o7 (2) = fo 0 so(z) =
fa(x). Then Z; := s,(X:) is a solution of the equation

t
Zy = zg —|—/ p(Z)dWs, 2o = sa(T0), (3.65)
0

where

p(2) == fo(2)o(ra(2)) = (1 — a)o (1204) 1(z > 0)+ ao (2) 1(z<0)+ @1(2 =0),

(see [43] and [77]). Indeed, by using the symmetric It6-Tanaka formula (see e.g. (32) of [78]), we have

Zy :Sa(xO) +/ foz(Xb)dXs + %LE(X)
=54(20) / fa(X5)o(X5)dW; + (2a — 1) / fa(X)dLY(X) + 1_22%?()()
“sala)+ [ faoraosa<xs>a<ra<zs>>dws+<2a—1>fa<o>L?<X>—20‘; LLY(X)

¢
=54(20) /fa s) Z))dW —zo—i-/o p(Z)dWs.

Therefore, since 7, = s; !, Z is a solution of (3.65) if and only if X is a solution of (3.64).
Remark 3.3.9. (i) If o satisfies Assumption 3.3.2, then p also satisfies it. Indeed, for any =,y € R,
p(z) = p(y)|* < 2|fa(@)Plo(ra(@)) = o(ra(®))]* + 2|0 (ra(®))* falz) = fa(y)|?

<2|fs ora(x) = fo o ra(y)| + 4llo|Z] fa(z) = fa(y)]
< |fp(x) = fo(y)l,

for some bounded, strictly increasing function f,. Thus, the SDE (3.65) has unique strong solution.
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(ii) We consider o = po (f1 — f2) where f1, fo are two strictly increasing, piecewise 1-Hélder function,
and p be a 1/2-Holder continuous function satisfying 0 < inf,er p(z) < sup,cp p(x) < co. Then
since 7, is strictly increasing function, p € H'/?>! and satisfies Assumption 3.3.2 (see Remark 3.3.1
(ii) and 3.3.3 (iv)).

Let us define a transformed Euler-Maruyama scheme for SDE (3.64). Let Z(™) be the Euler-
Maruyama approximation for SDE (3.65), that is

t
ZM = 2+ / p(ZM AW,
0 n
We define a transformed Euler-Maruyama scheme X (™ for SDE (3.64) by )~(t(n) =Tq (Zt(n)). Since 7, is

Lipschitz continuous, from Theorem 3.3.4, we have the following Corollary.

Corollary 3.3.10. Suppose that o = po (f1 — fa) where f1, fo are two strictly increasing, piecewise
1-Hélder function, and p be a 1/2-Hélder continuous function satisfying 0 < infyer p(z) < sup,er p(z) <
oco. Then there exists a constant C' such that for all n > 3,

v (n 1 1 n C
sup E[|X; — Xt( )|] < max{ , } sup E[|Z; — Zt( )H < .
0<t<T 1—a’ o o<i<r logn

3.3.4 Numerical experiment

In this subsection, we give some simulation results for the Euler-Maruyama approximation for SDE with
some simple discontinuous coefficient. We will estimate the weak convergence rate by using statistical
analysis approach.

We first consider a skew Brownian motion. A skew Brownian motion X = (X;)o<;<7 is the unique
solution of the following one-dimensional stochastic differential equation:

X; =z +0W; + (2a — 1)LY(X), g € R, t € [0,T] and |20 — 1| € (0, 1). (3.66)

Then, the stochastic process Z; := s,(X;) is the unique strong solution of the SDE

t
Zy = 2o +/ p(Z)AWs, 2o = salz0), (3.67)
0

where p(z) := o f,(x). Since for any bounded measurable function f,

E[f(Z1)] = E[f o sa(X)], (3.68)

by using Proposition 6.4.1, Z; has the explicit density function

pi(ra(20),7a(2)) 1(z > 0) + Pi(ra(20),7a(2)) 1(

o o z < 0),

qt(ZOa Z) =

where p:(zo, -) is the density function of skew Brownian motion (3.66).
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We consider the Euler-Maruyama scheme Z(™ for Z. From Theorem 2.2 in [121], for any bounded
measurable function f : R — R, it holds that

lim [E[f(Z7)] - E[f(Zy")]| = 0. (3.69)

n—oo
Note that in this case, by Theorem 3.3.4, there exists C' > 0 such that for any n > 3,

C

Z _ Z(n)
E| 1S oo

In this subsection, we estimate the weak rate of convergence for (3.69). For given f, we assume the
following hypothesis: there exists § > 0 and positive constant C' such that for any n € N,

Brr(f,n) = [E[f(Z0)] ~ E[f(Z)]] < 5. (3.70)

Then it holds that
log Err(f,n) < —Blogn + logC. (3.71)

Thus, by using the regression line of the pair (logn,log Err(f,n)), we can estimate the rate .

For the expectation E[f(Zr)], using the density function ¢r(zo,-), we compute the benchmark as a
Riemann sum, that is, for large M € N and K > 0

zo+K
E[f(Zr)] = / F2)ar(z0, 2)dz = / F(2)ar (20, 2)dz

0o— K

Numerical results

We choose the parameters as zg = 0.1, 0 = 1 and T = 1. The parameters for Riemann sum are defined
by M = 10° and K = 30. For n = 500,600, .. .,3000, we compute the expectation E[f(Z\™)] by using
n? times Monte Carlo simulations, that is,

n 1 o n,k
E[f( () 722 ( )
k=1

where Z(Tn’k) has the same law of Zé") and are independent.

These are the tables of a convergence rate 3 assumed in the hypothesis (3.70) estimated by the
regression line of the pair (logn,log Err(f,n)) for n = 500,600, .. .,3000.
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Table of numerical results 1

f(z)

N sin(z) cos(z) x || x?
0.1 0.491987 | 0.504169 | 1.039288 | 0.494289 | 0.504194
0.2 0.432466 | 0.510081 | 1.585548 | 0.498085 | 0.511158
0.3 0.568442 | 0.528448 | 1.439056 | 0.509959 | 0.537020
0.4 1.157831 | 0.474950 | 1.357145 | 0.495725 | 0.482682
0.6 0.990556 | 0.515444 | 1.273079 | 0.447568 | 0.554261
0.7 0.925687 | 0.504754 | 1.460240 | 0.480132 | 0.511856
0.8 0.352484 | 0.514813 | 1.699516 | 0.487289 | 0.521909
0.9 0.278208 | 0.531746 | 1.678396 | 0.499855 | 0.531106
Table of numerical results 2
N /(@) 10,00) () | Lcoo,0() | Lmr,y(@) | 2 L_1 (@) | @ 1jg,00)(T)
0.1 0.493563 0.493565 0.487793 0.491943 0.492575
0.2 0.490348 0.490349 0.488123 0.490565 0.496419
0.3 0.507297 0.507299 0.428196 0.407625 0.499839
0.4 0.476116 0.476120 0.141331 0.827703 0.331620
0.6 0.535529 0.535522 1.096105 0.837624 0.231807
0.7 0.517454 0.517449 0.544199 0.394982 0.464200
0.8 0.490731 0.490726 0.543134 0.537530 0.483578
0.9 0.508520 0.508510 0.552991 0.474045 0.484907

Conclusion of numerical experiment

81

The numerical results shows that, in many cases, the weak convergence rate 8 estimated by the regression
line are 0.5 even if the function f is smooth enough. Therefore, we guess that the weak convergence rate
for the Euler-Maruyama approximation of SDEs with discontinuous coefficients may be theoretically 0.5.

3.4 SDEs with monotone Holder continuous diffusion coefficinet

In this section, we will see that the arguments of section 3.3 are useful to improve the rate of convergence

proved by Gyongy and Résonyi in [40] under the additional assumption that the diffusion coefficient o is

monotone Holder continuous. Similar arguments are considered in recent paper [45].

To simplify the discussion, let us consider the SDE without drift coefficient:

t
X, = 20 +/ o(X,)AW,.
0

We assume the following assumption for the diffusion coefficient o.

(3.72)
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Assumption 3.4.1. We assume that the diffusion coefficient o satisfies the following conditions:

(i) o is bounded measurable and uniformly positive, i.e., there exist positive constants @ and o such
that 0 < o(x) <7T.

(ii) o is B-Holder continuous function with 8 € (0,1), that is there exists a positive constant K such
that

wp 7@ o)

3 < K.
syeRaty [T =Yl

(iii) there exists a bounded and strictly increasing function g : R — R such that for any z,y € R,
o(z) —o(y)] < lg(x) — g(y)l-

Example 3.4.2. (i) Let 8 € (0,1) and define

1 if 2 < —1,
o(z) =< sgn(@)z|® +2 ifxel-1,1],
3 if 1 <.

Then o is S-Holder continuous at the origin and satisfies Assumption 3.4.1.

(ii) Let c¢:[0,1] — [0, 1] be the Cantor function and define

1 if x <0,
o(x) =< c(x)+1 ifze|0,1],
2 ifl <.

Then o is log 2/ log 3-Holder continuous function and satisfies Assumption 3.4.1.

Remark 3.4.3. Under Assumption 3.4.1, since o is of bounded variation, thus there exists a unique
strong solution for the SDE (3.72), (see Le Gall [77] or Nakao [94]).

We obtain the following results on the rate of the Euler-Maruyama approximation in L'-norm.

Theorem 3.4.4. Under Assumption 3.4.1, there exists C > 0 such that

c
E[lX, — X[ < ——.
2, B X7 <

Remark 3.4.5. It has been shown in [64, 92] that if o is bounded, uniformly elliptic and S-Holder
continuous with § € (0, 1), then

where f € C? and the second derivative of f is S-Holder continuous. Therefore, the strong rate of
convergence obtained in Theorem 3.4.4 is the same as the weak convergence rate.
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Recall that if o are linear growth then for any ¢ > 0, there exist C' = C(q, K, T) such that
Q:| C

sup E HXt(n) —x™ a2

t€[0,T] ()

(see Lemma 2.2.2). Hence if ¢ is -Holder continuous with 5 € (0, 1), it holds that

T w2 CK?2T
/0 E UU(XS(”)) - U(ngn%s))‘ } ds < - (3.73)

On the other hand, under Assumption 3.4.1, we can improve the standard convergence rate (3.73).

Lemma 3.4.6. Suppose that Assumption 3.4.1 (i) and (%) hold. Let f be a bounded, 3-Holder continuous
function with 8 € (0,1) and let g be a bounded, monotone increasing function. Then for any q > 0, there
exists a positive constant C' such that

[ e[l s o oo Jas <o { e 2z b @

In particular, under Assumption 3.4.1, it holds that

’ (n) ) |? ¢
; E ’O’(XS ) — J(Xnn(s))‘ ds < —5. (3.75)
Proof. Since f and g are bounded, we have

T q
| [l = se [ aee) - ae ) as

29| fllssllgllocT [ n a n
< Tt [ [l e[ ook - g [Jas @70
Hence, we estimate the second part of (3.76).

Since g is monotone increasing function, from Proposition 2.4.2 (ii), there exist a finite positive
constant K and a sequence of functions (gn)nen C C*(R) satisfying:

A(@): gy — gin L}, (R), as N — oo,

A(ii) : - supyen|gn(2)] < K,

VAGHE sup  (1+ \/ﬂ)_l/ gy (z + a)|e 1" /udz < K.
NeN,u>0,aeR R

Using the above approximation, we first prove that the second part of the right hand side of (3.76) equals
to

T
i B[l - regr,)

" lon () — g (X,))]] ds (3.77)
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From Corollary 2.2.6, for any s € [T'//n,T], the density of Xs(") satisfies the Gaussian upper bound, that
is there exist C' > 1 and ¢ > 0 such that

¢ \1/2 _ le—sq?

pgn)(x) S Cp0(57x07$) =C (%) € 250 . (378)

Therefore, by using Lemma 2.4.10, we have

T
Jom ) E [low(x() = g(x )] ds = 0 (3.79)
and
g (n) (n)

Jim T/n]E H N(XT) — g(XL (5))’] ds = 0. (3.80)

Since o is bounded, by using (3.79), (3.80) and ||a — b| — |a’ = V|| < |a — d'| + |b — V|, we have

T q
/T - [ = s x| {Jow (X0 = gn (X)) = a(x ) = 90X )|} as
</T/n [ roxe) — rx [ Lo (x) = 90| 4 Jaw (x8) — x| ] s

<2 £ll% /Tjn{uzﬂgmxg")) (X +E[|on (X0 = g(xi )|} ds = 0,

as N — oo. Hence we conclude that the second part of the right hand side of (3.76) equals to (3.77).

Now we consider (3.77). The following estimates are similar to Lemma 2.4.12. Since, o is S-Holder

continuous, and W, — W, () and Xé")(s) are independent, for any s € [T'/n,T], we have

B[ = pxm | Jon () = an (X5,

§||f%EUXS(")X,(7:9) ’QN &) =g ( f]i))u

v
oxXp ( 2<s—m,<s>>>
2m(s — 1n(s))

Using the Gaussian upper bounded (3.78) and applying the change of variables z = o(x)y, (3.81) is
bounded by

— 1£1 / da / dylo(@)| |y | |gn (2 + o(2)y) — gx (2) P, (@) (3.81)

ex (—c‘w_mo‘Q)ex (——Zz )
b 2070 (s) P\ 2e@P G G)

o) e (352)

c / dz / dz|2|%P|gn (x + 2) — g (2)]
R R

Since o is uniformly elliptic and using the mean value theorem for gy, (3.82) is less that

|z—a0] 2
exp P’ exp Pl CRrw e
C/da:/dz/ df|z|* 98| g (x + 62)| {/ni(")( >) ( ;_(n (?78)( >>)
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! 2\ exp *ﬁ
_ L/dz/ do|z|1+qﬁ/dw|g’N(w+x0+ez)\eXp <—c w ) ot ”), (3.83)
Vin(s) Jr 0 R 21 () s —nn(s)

where we use the change of variable w = x — (. By using condition .A-(iii), (3.83) is bounded by
22
C 2 exp<_5257ns)
/dzlz|1+qﬂexp (_ — ? ) 452 (s—nn(s)) ,
Vnn(s) R 4o (s—nn(s)) 8-%(8)
1+4g8

_ Cls—mals)™
B M ()

1+qB8
2

(3.84)

exp <_ 462(sizn (s))) C(s—nn(s)) 1
/ dZ n < n
R

P 7y S o 45 Y o ¢y IR

where we use the fact that the function |z|'*%% exp(—2?) is bounded. Therefore, we have

/T E Hf(xgm) _f(Xf]:)(s))‘q ‘g(xgm) —g(Xé:)(s))H ds < ng;!ﬂ /T L is< quﬁ (3.85)

T/n T/n \/Mn(S) n-z

This concludes the statement. O

Proof of Theorem 3.4.4. Let § € (1,00) and € € (0,1). By using (3.4) and It&’s formula, we have

X, — XM < et NP g Ko, .
where
t
Ny = / 95.-(Xe = X[V)(0(Xs) = o(X,",)))dW,
0
and
n,8,e 1 ¢ 1" (n) (n) 2
Kt = 5 0 ¢55(X9 - XS )|U(X§) - G(Xnn(‘?)” ds'

Since o and ¢j_ are bounded, (NP=™)o<i<7 is a martingale so E[N*"] = 0.

Now we estimate |K€FL’6’8|. By the inequality (a + b)? < 2(a? + b2) for a,b > 0, we have
n,o, 1,n,6, 2,n,6,

KT € S KT € +KT 57

where
1,1, T
KE 0 = [ (X = X)) — o (X

0

and

T
K20 = / B (X, — XO)o(X) — a(x"))2ds.
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We first estimate K2, From (3.6), we have

2,n,0,e
KZm0e <

T
(n)y _ (n) 2
— 510g§,/0 ‘U(Xs ) U(Xﬁn(s))‘ ds.

Since o satisfies Assumption 3.4.1, from Lemma 3.4.6, we have

75 1
¢1o Iz (3.87)

2,n,6,
E[K"™] < elogé p,

Now we consider quq’n"s’s. Recall that by Assumption 3.4.1 (iii), there exists a bounded and monotone
increasing function g : R — R such that for any z,y € R,

lo(z) —a(y)l < lg(z) — g(¥)l.

We consider approximation g, € C'(R) of g which is strictly increasing function and satisfies ||go|/oo <
llglloc and g¢ T g on R. Since o is S-Holder continuous, from (3.6) we have

T
X, — x|
KLmoe < / 1 X, — x(™ X, - xamp X,) — g(X™)|d
T = 10g5 o [6/5,6](' s |) |X—Xs(n)| |g( ) g( s )l S
255 T n g X(")
< 20 [ 1 (X, — x 9 Z 9T
log d |X, — — X! |

By using the mean value theorem, we have

(n)
/ 5/65(|X Xn)|)|g€( ) gE(X )|d5

Ktl’"’é’s < hmlnf ol
X — X"

=00 0g6

v (g
2 [ [ s,

< liminf

where V;(")(H) = (V;(n) (0))o<t<T is defined by
Vo) = X, +0x™ - X;) = L 0)o(xX.) + (X aw.
0(60) = X+ 09X = X) = o+ [ {(1=0)0(X,) + 00X, )}

Since o > g, the quadratic variation of V(™) (6) satisfies

@y = [ {a- 0000+ ox)} a5 2 gt

Therefore, from the occupation time formula, we have

T 1 1 T
/ ds [ dog, (v () < o2 / a9 [ AV 0).gu (VD))
0 0

_ g2 / dag)(a) / 0L (V™ (6)). (3.88)
R 0



3.4. SDES WITH MONOTONE HOLDER CONTINUOUS DIFFUSION COEFFICINET 87
By using the symmetric It6-Tanaka formula, we have
T
LV (9)) = V7" (6) — al — o — a] - / (1VI () > @) = 1V (0) < 0)) AV (6)
0

< [V (0) — ol + .

[ (100> @ - 100 0) < @) avioro
0

Since o is bounded, it follows from inequality (a+b)? < 2(a? +b?) for a,b > 0 and the Burkholder-Davis-
Gundy inequality that,

T 2
sup B[ LE(V™M(0))%] <4c(2)  sup / E U(l —0)o(Xs) + 90(X§"))‘ } ds
0€(0,1],a€R 0€(0,1],a€R JO
< 45%¢(2)T. (3.89)
By Jensen’s inequality and (3.89), we have

sup  E[LF (VW (0)] < sup E[LG(V™(0))'/? < 20/c(2)T. (3.90)
0€[0,1],aeR 0€[0,1],a€R

It follows from (3.88), (3.90) and ||gy||1®) < 2[|g¢/lco < 2[|g/cc, We have

E[ / s / degz<m<"><9>>] <o / dag)(a) / a0 (1, (V (") ()
< 25 /e@)Te g4l 12wy < Algllocty/cD T 2.

Hence, the expectation of K%’"’é’e is bounded by

4)|glleeT>/c(2)Ta 2P
,n,o, oo o
B[ K7™") < og s . (3.91)

Therefore, it holds from (3.86), (3.87) and (3.91) that

C 6 1
sup E[IX; — X ™ <s+<+sﬂ>,
2o BllX =Xl < et i \ o

By choosing € = n~1/2 and 6 = 2, we have

Ozl:gTEHXt X < /2 + nBl2 = pBl2°

This concludes the statement. O
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Chapter 4

Approximation for non-smooth
functionals of SDEs

4.1 Introduction

Let (X¢)o<t<T be the solution to
dX; = b(Xy)dt + o(X)dWs, Xo=x0€RY, 0<t<T,

where W is a d-dimensional Brownian motion. The diffusion (X;)o<¢<7 is used to model many random
dynamical phenomena in many fields of applications. In practice, one often encounters the problem of
evaluating functionals of the type E[f(X)] for some given function f : C[0,7] — R. For example, in
mathematical finance the function f is commonly referred as a payoff function. Since they are rarely
analytically tractable, these expectations are usually approximated using numerical schemes. One of the
most popular approximation methods is the Monte Carlo Euler-Maruyama method which consists of two
steps:

1. The diffusion process (X;)o<i<7 is approximated using the Euler-Maruyama scheme (X!)o<;<7
with a small time step h > 0:

dXth = b(Xr};h(t))dt + U(X'r}th(t))dWh Xg = 2o, nh(t) = kh»
for t € [kh,(k+1)h), k € N.

2. The expectation E[f(X)] is approximated using & SN | f(X™%) where (X™%);<;<n are N inde-
pendent copies of X".

This approximation procedure is influenced by two sources of errors: a discretization error and a statistical
error

N
Err(f,h) := Err(h) .= E[f(X)] — E[f(X")] and E[f(X")] - %Zf(Xh,i).

89
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We say that the Euler-Maruyama approximation (X") is of weak order x > 0 for a class H of functions
f if there exists a constant K (7") such that for any f € H,

|Err(f,h)| < K(T)h".

The effect of the statistical error can be handled by the classical central limit theorem or large deviation
theory. Roughly speaking, if f (thﬂ) has a bounded variance, the L?-norm of the statistical error is
bounded by N~/ 2Var(thw)l/ 2. Hence, if the Euler-Maruyama approximation is of weak order &, the
optimal choice of the number of Monte Carlo iterations should be N = O(h~2%) in order to minimize the
computational cost. Therefore, it is of both theoretical and practical importance to understand the weak
order of the Euler-Maruyama approximation.

It has been shown that under sufficient regularity on the coefficients b and o as well as f, the
weak order of the Euler-Maruyama approximation is 1. This fact is proven by writing the discretization
error Err(f,h) as a sum of terms involving the solution of a parabolic partial differential equation (see
[10, 35, 64, 93, 113]). It should be noted here that besides the Monte Carlo Euler-Maruyama method,
there are many other related approximation schemes for E[f(Xr)] which have either higher weak order
or lower computational cost. For example, one can use Romberg extrapolation technique to obtain very
high weak order as long as Err(h) can be expanded in terms of powers of h (see [113]). When f is a
Lipschitz function and the strong rate of approximation is known, one can implement a Multi-level Monte
Carlo simulation which can significantly reduce the computation cost of approximating E[f(X)] in many
cases (see [32]). It is also worth looking at some algebraic schemes introduced in [74]. However, all the
accelerated schemes mentioned above require sufficient regularity condition on the coefficients b, o and
the test function f.

The stochastic differential equations with non-smooth drift appear in many applications, especially
when one wants to model sudden changes in the trend of a certain random dynamical phenomenon (see
e.g., [64]). There are many papers studying the Euler-Maruyama approximations in this context. In
[39] (see also [16]), it is shown that when the drift is only measurable, the diffusion coefficient is non-
degenerate and Lipschitz continuous then the Euler-Maruyama approximations converges to the solution
of stochastic differential equation. The weak order of the Euler-Maruyama scheme when both coefficients
b and o as well as payoff functions f are Holder continuous has been studied in [64, 92]. In the papers
[65] and [97], the authors studied the weak and strong convergent rates of the Euler-Maruyama scheme
for specific classes of stochastic differential equations with discontinuous drift.

The aim of this chapter is to investigate the weak order of the Euler-Maruyama approximation for
stochastic differential equations whose diffusion coefficient o is constant, whereas the drift coefficient b
may have a very low regularity, or could even be discontinuous. More precisely, we consider a class A of
functions which contains not only smooth functions but also some discontinuous one such as indicator
function. The drift b will then be assumed to be either in A or a-Hoélder continuous. It should be noted
that no smoothness assumption on the payoff function f is needed in our framework. As a by product
of our method, we establish the weak order of the Euler-Maruyama approximation for some particular
functionals f which include the path-wise maximum of the diffusion, integral of diffusion with respect to
time as well as the approximation of a diffusion processes killed when it leaves an open set. We also apply
our method to study the weak approximation of reflected stochastic differential equation whose drift is
Holder continuous.
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4.2 Weak approximation of SDEs

4.2.1 Notations

For an invertible d x d-matrix A = (A; j)1<i,j<d, we define

(og) = O (—3(A (y— ),y — )
s @mitViswA

In particular we denote g.(z,y) = ger(z,y) for ¢ € R where the matrix I is the identity matrix.

A function ¢ : R — R is called exponentially bounded or polynomially bounded if there exist positive
constants K, p such that |¢(z)] < KeXl®l or [¢(z)] < K(1 + |z|P), respectively.

Let Acxp be a class of exponentially bounded functions ¢ : R? — R such that there exists a sequence
of functions (Cy) C C(RY) satisfying:

-Aexp(i) : CN — C in L%oc(Rd)a
Aexp(id) = supy O (2)] +[¢(2)] < Ke™I7, 2

—Klal— o2/
Acxp(iii) : SUPN y50; aera € T [ou [VOv (@ + )| Smmpde < K,

for some positive constant K. We call ((x) an approximation sequence of ¢ in Aexp.

The following propositions shows that this class is quite large.

Proposition 4.2.1. i) If £, € Aexp then £ € Aexp and a1€ + a2 € A for any aq, a2 € R.
ii) Suppose that A is a non-singular d x d-matriz, B € R%. Then ¢ € Aexp iff £(z) := ((Az + B) € Aexp-

It is easy to verify that the class Aeyx,, contains all C*(R?) functions which has all first order derivatives
polynomially bounded. Furthermore, the class Aeyp contains also some non-smooth functions of the type
((x) = (1 —a)t or {(x) = I4<z<p for some a,b € RY. Moreover, we call a function ¢ : R? — R monotone
in each variable separately if for each i = 1,...,d, the map z; — ((z1,...,2;,...,Z,) is monotone for all
T1yeeoyTie1,Tig1y---,L4 € R.

Proposition 4.2.2. The Class Aecxp contains all exponentially bounded functions which are monotone
in each variable separately.

The proofs of Propositions 4.2.1 and 4.2.2 are similar to the proof of Proposition 2.4.2 and therefore
will be omitted.

We recall that a function ¢ : R? — R? is called a-Hélder continuous for some « € (0, 1] if there exists
a positive constant C' such that |((x) — ((y)| < C|z — y|® for all z,y € R%. We denote by B(«) the class
of all measurable functions b : R? — R? such that b = b + b where b is a-Hélder continuous for some
a >0 and b;‘ € Aexp for j=1,...,d.

4.2.2 Error estimates for the Euler-Maruyama approximation

Let (Q, F, (Ft)t>0,P) be a filtered probability space and (W;);>o be a d-dimensional standard Brownian
motion. We consider a d-dimensional stochastic differential equation

t
X, =29 +/ b(X,)ds + oW, xzo€eRY, te [0, 77, (4.1)
0
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where o is a d X d deterministic, uniformly elliptic matrix, that is, for the matrix a := oo™, there exist
0 < a < @ < oo such that for any ¢ € R?,

al¢]? < (ag,€) < aléf?,

and b: R? — R? is a Borel measurable function. Let X", h > 0, denote the Euler-Maruyama approxima-
tion of X,

t
X = +/ b(X) (o)ds + oWy, t€[0,T], (4.2)
0

where np(s) = kh if kh < s < (k4 1)h for some nonnegative integer k. In this chapter, we study the
convergent rates of the error

Err(h) = E[f(X)] - E[f(X")]
as h — 0 for some payoff function f : C[0,T] — R.

Remark 4.2.3. Note that the uniformly elliptic condition plays an important role in establishing the
convergence of the Euler-Maruyama approximation for SDEs with non-Lipschitz coefficients. In fact,
Hairer, Hutzenthaler and Jentzen [41, Theorem 5.1] constructed a class of 4-dimensional SDEs whose
drift coefficient is a smooth, bounded and non-Lipschitz function, and diffusion coefficient is a determin-
istic non-uniformly elliptic matrix for which the Euler-Maruyama scheme does not converges with any
polynomial rate, that is

- Xh _ h e
lim E[| X7 — X7] = lim [E[X7] — E[X7]| _J0 %f a=0,
h™0 he h™\0 he oo ifa>0.

A Borel measurable function ¢ : R* — R? is called sub-linear growth if ¢ is bounded on compact sets
and ((y) = o(Jy|) as y — oo. ¢ is called linear growth if |{(y)| < c1]y| + c2 for some positive constants
¢1,c2. It has been shown recently in [48] that when b is of super-linear growth, i.e., there exist constants
C > 0 and 0 > 1 such that [((y)| > |y|? for all |y| > C, then the Euler-Maruyama approximation (4.2)
converges neither in the strong mean square sense nor in weak sense to the exact solution at a finite time
point. It means that if E[|X7|P] < co for some p € [1,00) then

lim E[| X7 — X{] =00 and Jim [E[|Xr]” — | X}]] = oc.

Thus, in this chapter we will consider the case that b is of at most linear growth.

Remark 4.2.4. In the one-dimensional case, d = 1, it is well-known that if ¢ # 0 and b is of linear
growth, then the strong existence and path-wise uniqueness hold for the equation (4.1) (see [18]).

In the multidimensional case, d > 1, it has been shown in [116] that if b is bounded then the equation

(4.1) has a strong solution and the solution of (4.1) is strongly unique. Moreover, if o is the identity
matrix, then the equation (4.1) has a unique strong solution in the class of continuous processes such

that P( fOT b(X,)[2ds < o0o) =1 provided that [5, [b(y)[Pdy < oo for some p > d Vv 2 (see [72]).

Throughout this chapter, we suppose that equation (4.1) has a weak solution which is unique in the
sense of probability law (see Chapter 5 [60])).
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Change of Measures

From now on, we will use the following notations
t ) 1 t
Zy=e", Y= /0 (07 1b) (w0 + oWs)dW! — 5/0 lo ™ b(zo + oW,)|2ds,
h ¢ o1t
Zh =", Yl = /0 (0710) (0 + oWy, (s))dW! — 5/0 lo~tb(20 + ath(smzds,

where we use Einstein’s summation convention on repeated indices. We also use the following auxiliary
stopping times
Tp =inf{t >0:X; ¢ D} and 7} =inf{kh >0: X}, ¢ D,k=0,1,...}
™ =inf{t > 0: 204+ 0W, &€ D} and 70" =inf{kh > 0: 204+ oWy, & D,k =0,1,...}.

Lemma 4.2.5. Suppose that b is a function with at most linear growth, then we have the following
representations

E[f(X)] — E[f(X")] = E[f(x0 + oW)(Zr — Z})), (4.3)
and

Elg(X1)1(rp>m)] — Elg(XF)1(rp )]
= Elg(zo + oWr)(Zr1 (1) — Z%l(%v,hm)], (4.4)

for all measurable functions f : C[0,T] — R and g : R? — R provided that all the above expectations are
integrable.

Proof. Let 0~ ! be the inverse matrix of o. Since b is of linear growth, so is o ~'b. Thus, there exist
constants ¢y, cy > 0 such that |b(x)| < ¢1|z| + cg for any z € R, For any 0 <t <ty < T,

t t
|Xt|§\x0\+|aWt|+/ IB(X,)lds < [z0| + o] sup |WS|+02to+cl/ X, |ds.
0 0<s5<tg 0

Applying Gronwall’s inequality for ¢ € [0, ¢o], one obtains
[ Xio| < (Jzol + o] sup [Wi| + cato)e™
0<s<to
< (|lzo| + e2T)e™ + |ole™ sup |[W,]. (4.5)
0<s<to
On the other hand, for each integer k£ > 1, one has
h h h
khl = A (k—1)h (k—1)h t
[ Xin| < 1X |+ hlb(X ) +2lo| sup |[Wy
0<t<kh

S(1+hcl)\X(hk71)h|+h02+2|0| sup |Wql.
0<t<kh
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Hence, a simple iteration yields that

14 he )kt —1
|XP | < (14 hey)¥|ao| + (hea + 2|o] sup |Wt|)< ) .
0<t<kh hey

Thus, for any ¢ € (0,77,

1 h T/h
(A +he) /™ sup Wy

R
hey 0<s < (t)

Th

02(1 + hCl>T/h
C1

wl < @+ hey) TP ao| + +2|o|

Moreover,

| X} — Xf;h(t)| < c1h|X1’71h(t)\ + coh + 20| Os<u12 |We|.
<s<t

Therefore, for any t € (0,7], we have

2lo|(1 + he)HT7M - 2h
X7 < (1+ Clh)H_T/hm +coh + lol(L + hey) +2har sup |Wl. (4.6)
c1 hey 0<s<t

We define new measures Q and Q" as

d - S N L 2
@:exp(—/o (o b)j(Xs)defi/O o b(X,) s ),

It follows from Corollary 3.5.16 [60] together with estimates (4.5) and (4.6) that Q and Q" are probability
measures. Furthermore, it follows from Girsanov theorem that processes B = {(B},...,Bf), 0<t < T}
and B" = {(B"',...,B*), 0 <t < T} defined by

t t
Bl =W} +/ (o7 1b),(X,)ds, BT = W +/ (0718); (X, ())ds, 1< <d0<t<T,
0 0
are d-dimensional Brownian motions with respect to Q and Q”, respectively. Note that X, = x¢ + 0B,
and X" = x¢ + o B". Therefore,
iy
dQ
T 1 4T
Q [f(xo + oB)exp (/ (071b);(wo + 0 By)dBI — 5/ lo = b(20 + O‘Bs)|2d8)}
0 0

=E
= E[f({L‘o + UW)ZT].

E[f(X)] = Eq[£(X)

Repeating the previous argument leads to E[f(X")] = E[f(zo + cW)ZA4], which implies (4.3). The proof
of (4.4) is similar and will be omitted. O

From now on, we will use the representation formulas in Lemma 4.2.5 to analyze the weak rate of
convergence. We need the following estimates on the moments of Z and Z”".
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Lemma 4.2.6. Suppose that b is of sub-linear growth. Then for any p > 0,
E[|ZrP +|Z}[P) < C < 0,
for some constant C which is not depend on h.

Proof. Tt suffices to proof the statement for p > 1. Using Holder’s inequality, we have

B[] = E[ exp (p /0T<o—1b>j<xo oW AWy — 7 /OT 7™ b(e -+ oW.)Pds )|

T tn
—E[exp (5 / (0= 10); (20 + oW )dAWT — / (o~ Lb(wo + oW, ) 2ds+
0 tn—1

+ (- g) /OT lo = b(xo + UWS)|2dS)}

< {E[exp (2 /OT(01b>j(:vo + oW, )dWi — 2p? /OT 7 (w0 + W) Pds)| }1/2

T 1
X {E{exp ((2102 - p)/O lo ™ b(zo + O'WS)|2dS)}} /2.

Since b is of linear growth, so is o~ !b and it follows from Corollary 3.5.16 [60] that

T T
E[exp (2p/ (07b); (w0 + oW )dW7 — 2p2/ o~ b(zo +JWS)|2ds>} =1 (4.7)
0 0

On the other hand, since b is bounded on compact sets and b(y) = o(|y|) as y — oo, for any § > 0
sufficiently small, there exists a constant M > 0 such that |0~ 1b(zg + oy)|> < d|y|> + M for any y € R%.
Thus,

T T
/ lo ™ b(xo 4+ oW,)|?ds < / (S|W,|> + M)ds < TM + T6 sup |[W,|?
0 0

s<T
d
< E N2 4 (i 7)2).
_TM+T5j:1((§2¥WS) +(;2§WS) )

Hence,

E{exp ((2102 —p) /OT lo~tb(xg + OWS)|2dS)}
< 6(2172717)MTE[exp (T5 2% — p ]Zd; igg Wi)2 (SH<1£1 W) ))}

d/2
< NI ([ exp (218(20° - p)WHP)] )
where the last inequality follows from Holder’s inequality and the fact that

: law . i law
sup W7 'E" — inf WJ "= |[W1|.
s<T s<T
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Because E[exp <2T5(2p2 - p)W%)] < o0 if one chooses § < (4T2(2p* — p)) !, we obtain E[|Z7 "] < co.
Furthermore, since equation (4.7) still holds if one replaces b(zo + W) with b(zg + oW, (5)), a similar
argument yields E[|Z2|P] < occ. O

Remark 4.2.7. In general, the conclusion of Lemma 4.2.6 is no longer correct if we only suppose that b
is of linear growth or even Lipschitz.

Indeed, consider the particular case that d = 1,0 = 1 and b(z) = x, which is a Lipschitz function.
It follows from Holder’s inequality that

slew (5 [ wa)|s[ew (p [ waw, -2 [ wzas)]
= e (2 [ w2as)[e[own (Bw -2 [ w2as)]

> ¢ pT/2 (E [epW%/4]>2_

Furthermore, for any p, T > 0 such that pT > 2 and pT? < 1/2, we have E[epw%/ 4] = 00, whereas

E[exp (£ /OT W2ds)| <E|exp (% sup W, 2)]
< E[exp (- (sup W+ B (ing W)
< (B[] ) < o0.
Therefore,

1
Eexp /WdeB/ W2ds foo, i pl>2, pI” < 3.

Some auxiliary estimates

From now on, we will repeatedly use without mentioning the following elementary estimate

sup |:1:|pe’“"”|_3”2 <oo, foranyp>0, keR. (4.8)
z€R

Throughout this section, a symbol C stands for a positive generic constant independent of the discretiza-
tion parameter h, which nonetheless may depend on time 7', coefficients b, 0 and payoff function f.

The following result plays a crucial role in our argument.

Lemma 4.2.8. For any ¢ € Aexp, anyp>1, t > 5> 0,

i

t—s

E[K(Wt) - C(Wé)‘p] < O;D ’ (4'9)

S

for some constant Cp, not depending on neither t nor s. On the other hand, if ¢ is a-Holder continuous
then
E[[¢(Wr) = C(W)[P) < Cy(t — 5)P/2. (4.10)
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Proof. If ¢ € Aexp, let ((x) be an approximate sequence of ¢ in Aexp. Since (y — ¢ in L}, (R?) and ¢

and ( are uniformly exponential bounded, we have
E[C(We) = C(W,)IP)) = Jim E[C(W) — G (W) P

Next, we will show that
Vt—s
N

sup E[|(y (W) — Cnv(We) [P < C
NeN
Indeed, we write

E[[¢n (W) — v (W) ]
e —|z|?/2s e—\y\2/2(t—s)
/Rddx/ Alen (e + ) = P G ey

C d d K(|z+y| Kly|\p lei‘w‘2/28 ef|y‘2/2(t*5)
< f— x —
- /]Rd x/Rd ylin(z +y) — Cn(z)l(e +et V) (27s)472 (21 (t — 5))4/2

d 1 —|z?/2s  o—lyl?/2(t—s)
e e
<C d d
B 2/ x/ y/ (2ms)972 (2m(t — )72
d 1 —|z|?/4s  —|y|?/4(t—s
AN (z 4 Oy) e~ 1#17/4s o=yl /4(t=s)
< CVt— d d do .
- siz_;/Rd m/Rd y/o ‘ Ox; ‘ (27s)4/2 (2 (t — 5))4/2

It follows from Aexp(#4) that

 Jen (@ + 0y) ’6K<p—1><|m|+2|y\>

aCN + gy) ‘ 67‘$|2/4S

K6
(27s)(d—1)/2 dz < Ceflovl)

thus

— e—lul*/4(t—s)
E[[Cn (W) = O (W3)[7] < F / / 60 =y
m

NG

<C

From (4.11) and (4.12) we get (4.9). The proof of (4.10) is straightforward.

(4.11)

(4.12)

O

Lemma 4.2.9. Suppose (4 € Aexp and (i : R — R is a-Hélder continuous with o € (0,1]. Let M be

a non-negative constant. Then there exists C' > 0 such that for any 0 < t; <t <t3 <t4 <T,

4
E [|<A<Wt2> CUAIUARTAD WL E e
4 )2
E l|<A(Wt2) = CaWi)IICar (W) CH(Wt3)|;€MW”] < Ots tgz/ﬁ L tl,

(4.13)

(4.14)
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4 — o a/2
E[KH(WQ)<H<Wt1>||<A<Wt4>g(%ﬂgeww < G/l V%m , (4.15)
4
ElKH(Wm)—cH(WtJHCH(Wm)—cH(Ww)lZeMWw < Oty —t3)*/?(tg — 1)/, (4.16)
=1

Proof. Let (Ca,n) be an approximate sequence of (4 in Aexp. Since (an — Ca in L}, (RY) and (4 and
Ca,n are uniformly exponential bounded, we have

4
[Ca(Wey) = Ca(Wi, )[[Ca(Wey) = Ca (W) ZeM'W“']

i=1

4
= ngnoo]E 1Ca, N (Wiy) — Ca, N (Wi )[|Ca,n (We,) — Can(Wey)| Zele”ll . (4.17)

i=1

Next, we will show that

<OVt bVl ol g

4
|CA,N(Wt2) - <A,N(Wt1)”<A,N(Wt4) - CA,N(Wt4)| ZeM‘Wti‘ = \/H\/E

=1

sup E
NEN

We observe that

4
E |[¢an (W) = Can (We)[[Can (W) = Can (We,)| Y eI

i=1

— [ao [ ay [ s [ dulanetw) - CGn@lica(e byt w) - Gy + 2+ )
R4 Rd Rd R4

X {e]V[|w\ + 6M|z+w\ + 6M|y+z+w\ + eﬂf‘$+y+z+W|}gt4*ts (x)gtsfb (y)th*tl (Z)gtl (w)

<C dx/ dy/ dz/ dw[Ca,n(z +w) = Can(w)|[Can(@+y+ 2 +w) = Can(y + 2+ w)|
rRd  Jre " Jra  Jge

X gc(t47t3)(‘r)gc(tgftz)(y)gc(tgftl)(z)gdl (w). (4.19)
Using the mean-value theorem, (4.19) is bounded by

/dx/dy/dz/dw/d@/dé
R R Rd R4

ch(t4—t3)( )gC(t3 tg) 9¢(t2 tl) )Get, (w

SC\/t4—t3\/t2—t1/ d.’l?/ dy/ dZ/ dw/ dQ/ dé
d Rd Rd Rd

'QCA,N(w +02)
X
awi

It follows from Aexp(#44) that

ICan(y+z+w+0x)
yi

OCa, N(w+6z)
T
ow;

Ge(ta—ts) ('r)gC(tg —t2) (y)gc(t2 —t1) (2)get, (w) (4.20)

OCaN(y+z+w+ox)
yi

[

_ |wl
e Z2ct1

(2enty) @D/

0Ca,n(w + 6z)

dw < CeK19%1
8’[02’ - ’

J.
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J.

thus (4.20) is bounded by

CVty —t3\/ta — t1 dsc/ dz/ dw/lde‘aCA,N(er@z)
m Rd Rd Rd a’wi

< OVl — sVt — 1y

T VB —hvh
_ Cty —t3\/ta — 1
WV —hyvh

From (4.17) and (4.18) we get (4.13).

The proof of (4.14), (4.15) and (4.16) follows from similar arguments.

o 1wl?
e 2c(tz—t2)

(2cr(ts — t2)) @072

an(y+2z+w+dx)
yi

K )
dy < Ce |z+w+ x|’

Ge(ta—ts) (‘r)gc(tg —t1) (2)get, (w)

de/ ngc(tz;ftg)(x)gc(tth)(z)
R R

Lemma 4.2.10. Suppose that b € B(a).
(i) If b is bounded, then for any p > 2, there exists a constant C > 0 such that
E[|Yy — Y[P] < ChY/? + ChPe/2,
(ii) If b is of linear growth, then there exists a constant C' > 0 such that
E(|Yr — Y2 < ChY? + Ch®

Proof. Using Minkowski’s inequality, we obtain E[|Y7 — YA|P] < C{S1(p) + S2(p)} where

i

’/ {(0710);(x0 + oWs) = (07'0);(x0 + oWy, () JAW
P
/ {lo™ b0 + o W) — |0~ blao + oWy, ) Yo ]
0
It follows from Burkholder-Davis-Gundy’s inequality that,
d T
<Cy / E[(7 1) w0 + 0W,) — (07 b)3 w0 + o Wi )7 ]l
Since b is of linear growth,

Z/ E (o= 1b); (z0 + oW,) — (o 1b)j(q:0+ath(s))|p}ds§Ch.

Furthermore, it follows from Proposition 4.2.1 ii) and Lemma 4.2.8 that

zd:/T [ (1'0 +oWs) = (o 1b)j($0 +0th(s))|p} ds

Jj=1

99
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! ih(s) S — s) P s 1/2 pa/2
gc/h {V s (o) }d < C(RY2 4 hor2),

Therefore, S1(p) < C(hY? + hPe).
Proof of (i). We assume that b is bounded. Using Hoélder’s inequality, we obtain

T
%% P
S2(p) = E|:/O ‘|J_1b($0 +o 5)|2 - |U_1b($0 +0th’(s))|2‘ ds}
d T .
= CZ/O HI(U_lb)j(xO UW3)|2 - |(U_1b)j($0 + O’th(s))|2‘ }ds
j=1

Since b is bounded, it holds that for any z,y € Rand j =1,...,d,

(o™ 1b);(2)” — I(U’lb)j(y)lz‘p < C{l(071ba);(x) = (03 '0); WP + (07 bm)j () — (07 0);(w)I7} -

Thus, by dividing the integral into two parts: from 0 to h and from h to T, and applying a similar
argument as above, we obtain

T J—
Sa(p) < Ch + C/ VEZS) g0 oppal2 < o(n1/2 4 pol?).
h

V1 (8)

Thus, E[|Y — Y] < Ch'/2 4 ChPe/2,
Proof of (ii). We assume that b is of linear growth. We observe that

T u
52(2):/ du/ 4sE[{lo™ blag + oWL)[? — o~ blao + oW,y )}
0 0
x {lo ™ blwo + W) = o™ b(ao + Wy, )2}

Let n be a natural number such that (n — 1)h < T < nh. Define t! = ih fori =0,...,n—1and t" =T.
Since b is of linear growth, we have

S2(2)

X E[{lo ™ b(wo + W) = |0~ b(o + Wiy, () 2 H{Io ™ blwo + W) 2 = |0~ bz + oWy, )}
n-l t?+1 t;
< Ch+ Z/ du/ ds
=17t ¢
X E[{lo ™ b(wo + W) = |0~ b(wo + Wiy, ()P H{Io b + oWa) 2 = |0~ b(wo + oW, )P}

Since that for any z,y € R?,

o™ b(x) — o™ b(y)|?
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d
=Y I )@ = 0 ba)s ()

+ {0 bm);(2) + {07 bm); (W H (o™ bm)j (@) = {(0™ ) ()}
+2(0 ") (2){(071ba);(x) = (07 ba); (1)} + 2(0 ba); (W){(0 bmr) () — (Ufle)j(y)}}

by using Lemma 4.2.9 with ¢; = ny,(s), t2 = s, t3 = np(u) and t4 = u, we obtain

nolopti t h h3t$ h3ts
S2(2) < Ch+C / du/ ds + + + h®
; t g V@) =svim(s) - Vomls) V() = s

Therefore from Lemma 4.4.1, we have

55(2) < C(h+h2 % + h®).

Thus, E[|Yr — Y}|?] < ChY/? + Che. O

Weak rate of convergence

The following results requires no assumption on the smoothness of f.

Theorem 4.2.11. Suppose that b € B(a) and b is of linear growth. Moreover, assume that f : C[0,T] —
R is bounded. Then
lim E[f(X™)] = E[f(X)].

—0
Proof. Tt follows from Lemma 4.2.10 that Y} converges in probability to Y7 as h — 0. Thus Z% also
converges in probability to Zr as h — 0. Moreover E[Z}] = E[Zr] = 1 for all h > 0. Therefore, it follows
from Proposition 4.12 [57] that

}LLII%)IEHZ% — Zr|] =0. (4.21)

On the other hand, since f is bounded, it follows from (4.3) that
[ELf(X) = F(X")]| < CE[|Z] - Zr]].
This estimate together with (4.21) implies the desired result. O

If b is of sub-linear growth, we can obtain the rate of weak convergence as follows.

Theorem 4.2.12. Suppose that b € B(«a) and b is of sub-linear growth. Moreover, assume that f :
C[0,T] — R satisfies E[|f(xo + cW)|"] < oo for some r > 2. Then there exists a constant C which does
not depend of h such that

[E[f(X)] - E[f(X")]| < ChZ4.

Proof. Tt is clear that |e* — e¥| < (e® + €¥)|z — y|. This estimate and Holder’s inequality imply that
|E[f(X) — f(X™)]| is bounded by

E[| f(zo + oW)(Zr + Z§) (Yr — V1))
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< ||f (o +oW)(Zr + Z7) ||, Y7 — Y72

- (E[|f(a:o . aW)|T])2/T (EUZT + Z§£|2r/(r72)])07

2)/r
Y7 = Y72

Thanks to the integrability condition of f and Lemma 4.2.6,

2/r (r—2)/r
(1504 W) (2020 + 2552]) " <0 <o

This together with Lemma 4.2.10 implies the desired result. O

Remark 4.2.13. In the paper [84], the author considered the weak rate of convergence of the Euler-
Maruyama scheme for equation (4.1) in the case of a one-dimensional diffusion. It was claimed that if b
was Lipschitz continuous, the weak rate of approximation is of order 1. However, we would like to point
out that the given proof contains several gaps (see for instance Lemma 2 of [84] and Remark 4.2.7 below)
which leave us unsure about the claim.

Remark 4.2.14. It has been shown in [64, 92] that for a stochastic differential equation with a-Holder
continuous drift and diffusion coefficients with o € (0, 1), one has

E[f(X7)] — E[f(Xp)]| < Ch*/2,

where f € CF and the second derivative of f is a-Holder continuous. On the other hand, in [40], Gyongy
and Résonyi have obtained the strong rate of convergence for a one-dimensional stochastic differential
equation whose drift is the sum of a Lipschitz continuous and a monotone decreasing Holder continuous
function, and its diffusion coefficient is Holder continuous. Recall that in Chapter 2, we improve the results
in [40]. More precisely, we assume that the drift coefficient b is a bounded and one-sided Lipschitz function,
i.e., there exists a positive constant L such that for any =,y € R, (x — y,b(x) — b(y))ra < L|z — 9|2,
bj € Aexp for any j =1,...,d and the diffusion coefficient o is bounded, uniformly elliptic and 1/2 + a-
Holder continuous with « € [0,1/2]. Then for h = T'/n, it holds that

C(log1/h)™ ifa=0andd=1,
E[| X7 — X}] < Ch® if o €(0,1/2] and d =1,
Chl/? if o =1/2and d > 2.

Therefore, if the payoff function f is Lipschitz continuous, it is straightforward to verify that

C(log1/h)™ ifa=0andd=1,
E[f(Xr) - fOXB) < { Ch® if a e (0,1/2) and d =1,
Chl/? if o =1/2and d > 2.

The following result concerns with the approximation of maximum of SDEs.

Corollary 4.2.15. Assume the hypotheses of Theorem 4.2.12. Moreover, suppose that g : R — R is
B-Hélder continuous with 8 € (0,1]. Then there exists a constant C which does not depend of h such that

- h %A% B/2
e 5] )t s ).
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Proof. Since g is f-Holder continuous, it holds that E [|g (maxo<s<t |To + oW|) "] < oo for any r > 2.
Thanks to Theorem 4.2.12, it remains to estimate

h _
oo G )| =2 s )|

Since g is S-Hoélder continuous and b is sub-linear growth, we have

B o (s, 1) -2 s (O%'Xm )]

B
< CE max | X" - max |X S)| < CIE{maX | X" th(5)|]

0<s 0<s<T

B
gcm[&ggﬂmx%@n@nAﬂ>de’ W)}

B
< ChP +CE { max_ W, — st)l}} . (4.22)
By modulus continuity of Brownian motion (e.g. Lemma 4.4 in [102]), we have

E [ max W, — Wﬂ < Chlog(1/h),

0<s<t<T,|t—s|<h

Thus from (4.22), we obtain

e o o, 1) 2 [o (g, bt | <+ maomt i},

which implies the proof of the statement. O

For an integral type functional, we obtain the following corollary.

Corollary 4.2.16. Let h = T'/n for some n € N. If the drift coefficient b € B(«) is bounded, then for
any Lipschitz continuous function f and g € B(B) with 8 € (0,1], there exists a constant C which does

not depend of h such that
T
P ot

f(ATMXQ®>]—E

Proof. We first note that if b is bounded, then it holds from Theorem 2.1 in [80] (see also Corollary 3.2
in [97]) that there exists a density function p}* of X} for ¢ € (0,7] and it satisfies the following Gaussian
upper bound, i.e.,

E < Ch3NENT,

_lz—=g|?
e 2ct

$d/2

for some positive constants C and c.
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Now we prove that E Hf (fOTg(xo + Ws)ds)) } is finite for any r > 2. Since |g(z)| < Ke&l#l it
follows from Jensen’s inequality that for any r > 2,

T " T T d )
f </O g(x0+ws)ds>‘ ] < C+C/0 E[lg(z + W;)|"]ds < C+c/0 EE[eTKWé}ds

Since x2/(4s) + K%r?s > Krz, we have

T T T
Elf(/ Q(CUO"‘Ws)dS)’ ] SC’—I—C/ T3 ds < 0.
0 0

Thanks to Theorem 4.2.12, it remains to prove that

E

T T
E f(/ g(Xf)dsﬂ ~-E f(/ g(X! ))ds> < ChP2.
0 0
Since f is a Lipschitz continuous function, we have
T T
E|f ( / g(X;L)ds)] “E|f ( | otxt ) <c / b = g(Xh )] ds
0 0

If s € (0, h], then by using the Gaussian upper bound for p’(z), we have

/ "B [Jox) - gt )] ds < / " Ellg(X2)1ds +lg(eo)lh

_lz—=g|?

<c / s / delg(@)| o+ |g(zo)lh
Rd
< Ch.

On the other hand, for s € [h,T], using the Gaussian upper bound for pzh (s) and following the proof of
Lemma 4.2.8 (see also Lemma 3.5 of [97]), we have

Bllg(X!) - g(XL, )] < CW e,

Therefore, we conclude the proof of the statement. O

In the following we consider a special case of the functional f. More precise, we are interested in the
law at time T of the diffusion X killed when it leaves an open set. Let D be an open subset of R? and
recall that 7p = inf{t > 0 : X; ¢ D}. Quantities of the type E[g(X7)1(;,~7)] appear in many domains,
e.g. in financial mathematics when one computes the price of a barrier option on a d-dimensional asset
price random variable X; with characteristics f,T and D (see [34, 36] and the references therein for more
detail). We approximate 7p by 74 = inf{kh > 0: X} ¢ D,k =0,1,...}.

Corollary 4.2.17. Assume the hypotheses of Theorem 4.2.12. Furthermore, we assume
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(i) D is of class C*° and 8D is a compact set (see [31] or [34]);

(ii) g : R® — R is a measurable function, satisfying d(Supp(g),0D) > 2¢ for some € > 0 and ||g|oo =
SUp, g [9(2)] < 00.

Then for any p > 1, there exist constants C and C, independent of h such that

CP”gp”oo hﬁ

T (4.23)

E[g(XT)]-(TD>T)] - ]E[g(Xél")l(Tg>T)] < Ch%/\% +

Proof. Tt suffices to proof the statement for the case that g is positive. It follows from (4.4) that
Elg(X1)1(rp=1)] — Elg(X2) 111y o7)] = Ey + Es where

E, = ]E[Q(CUO + UWT)(ZT - Z%)].(TEV,}L>T)],

Ey = ]E[g(l‘o + O.WT)ZT(]‘(TX)V>T) — 1(Tg/,h,>T))}.

It follows from the proof of Theorem 4.2.12 that

|Er| < Ellg(wo + 0Wr)(Zr — Z7)|] < ChEME. (424)
Applying Hoélder’s inequality, we have
|E2| <11 Zrllgllg(xo + oWr) (A sy — 1w gyl
where ¢ is the conjugate of p. Thanks to Lemma 4.2.6 and the fact Tg/’h > 7%, we have
1/p
|E2| < Cp (E [gp(l‘o + O'WT)l(T]x;V,h,ZT)] — K [gp(a;‘o =+ O'WT)]_(TEVZT)}) .
It follows from Theorem 2.4 in [34] that there exists a constant K (T') such that
K(T)[lg"loe \ /7,
Bl G (=5 )
Combining this estimate with (4.24) completes the proof. O

Finally, we consider the approximation for the density of SDE (4.1). Let p:(z¢,-) and p}(xg,-) be
the density functions of X; and X[ respectively. Then we have the following rate of convergence.

Theorem 4.2.18. Suppose that b € B(a) and bounded. Then for any p > d and r > 1, there exists
constants Cy, . and c, such that for any y € R and h € (0,T/2),

+ he/? 4 h1/<2p’“)} .

h
1 (20.) = P a0, )] < Cprs (o) { i

Remark 4.2.19. (i) Note that if d = 1, we can choose p € (1,2) and r = 2/p, and then

h
lpr (o, y) — p(z0,9)] < C 9,7 (T0,Y) {T1/2 + he/2 4 h1/4} )
(ii) Konakov and Menozzi [70] obtain a better rate of convergence under further assumption that the
drift coefficient is piecewise smooth (see Theorem 2 in [70]). However, in our setting, the drift coefficient
may have infinite number of discontinuous points.
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The proof of Theorem 4.2.18 is the based on the perturbation or Levi’s parametrix method (see [28])
for the density functions p;(zg,y) and p} (zo,y). It is known that when the drift coefficient b is bounded
and Hoélder continuous, it holds that for any ¢ € (0, T

Pe(70,Y) = gta(T0,y / dS/d dZ mgt s) a(z Y), >pt xg, 2)
R

= gta(xmy) + /0 E [<vxg(t—s)a(X57 )7 b(XS)ﬂ ds> (425)

where a = 0o* and gi4(x0,y) is called the parametrix (see (1.9) and Chapter 1 in [28]).

We first consider a similar representation (4.25) for the density functions p; (o, y) and p?(z¢,y) under
the assumption that the drift coefficient is bounded measurable. Recently, Makhlouf [85, Theorem 3.1]
prove that the representation (4.25) also holds for a Brownian motion with random drift b = (bt)o<i<r
under the suitable growth condition. For the convenience of the reader, we will give a proof below.

Proposition 4.2.20 ([85]). Let W = (W,)o<i<1 be a d-dimensional (Fi)o<i<r-Brownian motion. Sup-
pose that the stochastic process b = (b)o<i<r s adapted to (Fi)o<i<T and there exists a constant K > 0
such that supy<,<p |bs] < K almost surely. Then, for any t € (0,T] and x € R?, the stochastic process

Y, =z + fot bsds + oW, admits a density v;(z,-) with respect to Lebesque measure and for any y € RY,

’Yt(xv y) = gta(x, y) + -/0 E [<ng(t—s)a(}/;v y)a bsﬂ ds. (426)

Proof. Tt suffices to prove that for any f : R? — R infinitely differentiable functions with compact support
contained in R,

]E[f(Y%)} = /]Rd f(y)gta(x7y)dy + /]Rd dyf(y)/o dsE [(Vmg(t—s)a(ymy)7 bs>] .

It is well-known that the function wu(s,z) := E[f (z +ocW;_s)] is a solution to the following partial
differential equation:

d

Osu(s,x) +% Z i 68 u(s,r) =0, (s,z) € [0,t) x RY, (4.27)
u(t,z) = f(z), = € R%
Hence we have
E[f (z 4+ oW;)] = u(0, 2), (4.28)
E[f(Y)] = E [u(t, Y1)] . (4.29)

By using It6’s formula and (4.27), it holds that for any € € (0,¢),

wt— e, Yiot) = u(0,5) + /Ot—€<v u(s,Yy),bs)ds + Z / Oij 8 (s,Ys)dWY. (4.30)
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Since for any i = 1,...,d, s € [0,t) and 2 € R,

0 0 0
Gusa) = B o oWl = [ )5y (431)

and

Cllfllso
< i) 1lee
(02| < g

for some constant C' > 0, the stochastic integral in (4.30) is martingale. By taking the expectation and
Fubini’s theorem, we have from (4.28)

t—e
Blut— . Yi )| =E[f e+ oWl + [ E[(Vou(s.Y).0)]ds.
0
Taking £ — 0 and using the dominated convergence theorem, we have from (4.29) and (4.31),

BLF()] = lim Blu(t—e.Yi 0l = ELf (a4 oWl + [ BTl Y. b)]ds

t
| 1 waate s+ [ i) [ A [Tag0mga(Vern)ba)]

Rd Rd 0

This concludes the proof. O

Proof of Theorem 4.2.18. Using Proposition 4.2.20, we have
T
pr(eo.) = graao ) + [ E[(Vagir—ga(Xers). b)) ds,
0

T
p’?“(x()a y) = gTa(x07 y) + / E |:<vIg(Tfs)a<X;La y)7 b<X7};h(s))>:| ds.
0

Moreover, from Lemma 4.2.5, we have

T
pr(zo,y) — P%(l“oy y) = / E [<v:cg(T—s)a(x0 +oWs,y), Zrb(zo + W) — Z%b('TO + O'th(s))>] ds.
0

By using Jensen’s inequality and Schwarz’s inequality, we have there exists ¢ > 0 such that

T
|pr(z0,y) — P%(ﬂﬁo,y)} < /o E [|Vag(r—s)a(zo + We,y)| | Zrb(z0 + W) — ZEb(o + oW(s))|] ds

T
1
< C/O T—s SE [gc(Tfs) (xO + W37y) |ZTb(l'0 + O'Ws) - Z%b(.ro + O'th(s))H ds

T
1
<C | ———1{A,+ B.}ds,
_/0 %T_S{ }ds

where

A, =E [gc(T,s)(xo +oWs,y) ’ZT - Z%H
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By :=E [ge(r—s) (@0 + oWs,y) | Z1| |b(wo + o W) — bz + oWy, (5))|] -

Note that for any ¢ > 1, there exist Cy and ¢, such that

dla—1)

1 T 24
E [|gc(T—s) (xO + UWS,y)‘q} /4 S Cq (T _ S) ngT(xO’ y)' (432)

We first consider the upper bounded for A;. By using |e” — e¥| < (e” + e¥)|z — y| and Holder’s
inequality, for any p,q > 1 with 1/p+1/¢ =1 and r > 1, we have

1 1/p
A, <E [|gc(T—s) (xO + O'Wsay)‘q} /qE {‘ZT + Zél’|p ’YT - YT}’L|p:|
d(g—1)

. i 1/(pr)
<Gy (T — 5) Ge, (w0, y)E [|ZT + Z;g‘p?“/(r—l)

}(T*l)/(pr) E UYT _ Yj}}|pri|

Therefore, it holds that

d(g—1)

T 2 ppr] L (Pr)
mA ods < Cp Coge, (w0, ﬁ — asE vy -] (438)
By choosing p > d that is ¢ =p/(p — 1) < d/(d — 1), from Lemma 4.2.10, we have
" e /)
\/714 ods < CpCyge,1(z0,y)T/2E [|y ~ v ]
S Cp,q,rgch(xm y)Tl/z{ha/2 + hl/(2p7‘)}. (434)

Now we consider the upper bounded for B,. By using Hoélder’s inequality, for any p > d and
q=p/(p—1) and r > 1, we have

}(T—l)/(w)

B; <E ch(T—s)(IO + UW87 y)|q] a E |:|ZT|pT/(T71) E Hb(il?o + O'Ws) - b(l‘o + Uth(S))|pr] 1/(er)

d(g—1)
2

T ! r11/(pr
< Cpar (T_S> Ge, (20, )E [|b(0 + W) — b(zo + oW, ()[7] ¢

By Lemma 4.2.8 for any s > h,

1/ (20r)

PT 1/(1"’) 2,

Since b is bounded, we have

d(g—1)

T BRI
( > ds
T—s

d(g—1)

( r - ds
VT —s

/ \/73 dS <Cp,q,rgcq Zo,Y /

+ Cpg,rge,T (zo,y)h™

m
"l
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d(g—1)

T 24 1
1/(2pr)
+ Cp,q,r9e,T(T0, y) 1 / \/7 ( — s) P BVET ds. (4.35)

By the assumption h € (0,7/2), it holds that

d(g—1)

h
1 T \ 2 dg-b) h
[ <922t 72 .
T (T - s) ds <28 T2

Since g < d/(d — 1), we have

d(g—1)

1 29 2q a—dq+d
ds= —(T —h) 2
_5<T—s> 8 q—dq—i—d( )

and

d(g—1)
2

T
1 1 a 1 1-1/(2pr) 1 dg—-1) 1
S (. . ds< (T - B(= —
VT —s (T— S) nh(S)l“z””ds <=k 2" ey )

where B(z,y) is the beta function. Therefore, we obtain

h
Byds < Cp gr9e,7(T0,Y) {T1/2 +he/2 4 hl/(2p7")}’ (4.36)

[ =

which concludes the proof. O

4.3 Weak approximation of reflected SDEs

We first recall the Skorohod problem.

Lemma 4.3.1 ([60], Lemma II1.6.14). Let z > 0 be a given number and y : [0,00) — R be a continuous
function with yo = 0. Then there exists unique continuous function ¢ = (¢)¢>o satisfying the following
conditions:

(i) 2y =z+y: + 4 > 0,0 <t < 005

(i) ¢ is a non-decreasing function with £y =0 and ¢, = fot 1(xs = 0)dls.

Moreover, £ = ({)¢>0 is given by

£, = max{0, Orélsaéct(—z —ys)}t = [fnax max(0,0s — z5).

Let us consider the following one-dimensional reflected stochastic differential equation valued in
[0, 00) such that

t
X, = o +/ b(X,)ds + oW, + LO(X), 20 € [0,00),t € [0, T, (4.37)
0
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t
LX) = / 1x.—0ydLY(X),

where (L?(X))o<¢<7 is a non-decreasing continuous process stating at the origin and it is called local
time of X at the origin. In this chapter, we assume that the SDE (4.37) has a weak solution and the
uniqueness in the sense of probability law holds (see [104, 115]). Using Lemma 4.3.1, we have

LY(X) = sup max (0,LI(X) — X,).

0<s<t

Now we define the Euler-Maruyama scheme X" = (Xth)OStST for the reflected stochastic differential
equation (4.37). Let X[ := z¢ and define

t
XM =20+ /0 b(XT};h(S))ds + oW, + LY(Xh).
The existence of the pair (X}*, LY(X"))o<¢<r is deduced from Lemma 4.3.1. Moreover

t
LY(X") = / Lixn—)dLY(X").
0
By the definition of the Euler-Maruyama scheme, we have the following representation. For each k =
0,1,...,
X(hk+1)h = X + (X 4 0(Wiegnyn — Win) +max(0, A, — X3,),
where

A= sup  (=b(Xp)(s = kh) = o(Ws — Wiy)) .
kh<s<(k+1)h

Though Ay, is defined by the supremum of a stochastic process, it can be simulated by using the following
lemma.

Lemma 4.3.2 ([82], Theorem 1). Let t € [0,T] and a,c € R. Define S; := supg<,<;(aWs + cs). Let
U; be a centered Gaussian random variable with variance t and let Vi be an exponential random variable
with parameter 1/(2t) independent from U;. Define

1

Y=g

(aUy + ct + (a®Vi 4 (aU, + ct)?)Y/?).
Then the processes (Wt, St)iepo,r) and (U, Yi)iejo,r) have the same law.

Under the Lipschitz condition for the coefficients of the reflected SDE (4.37), Lépingle [83] shows
that

E[ sup |X;— Xth‘|2]1/2 < C’hl/z,
0<t<T

for some constant C.
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Change of measures

In the same way as in subsection 4.2.2, we have the following Lemma.

Lemma 4.3.3. If b is a measurable function with sub-linear growth then
E[f(X)] — E[f(X")] = ELf(U)(Zr — Z})]

for all measurable functions f : C[0,T] — R provided that the above expectations are integrable. Here the
process U = (Up)o<i<T is the unique solution of the equation Uy = xg + oWy + LY(U) and

. R . t 1 t
VARES 6Yt7 Y = / b(Us>dW9 - 5/ bz(Us)ds
0 0

R h ~h t 1 t
Zth = eYt7 Yt} ;:/0 b(Unh(s))dWS—§/0 [)Q(UW}L(S))dS7

Proof. We define new measures Q and Q" as

Since b is of sub-linear growth and the fact that 0 < LY(X) < |o] Supg<s<¢ |Ws!, by following the proof

of Lemma 4.2.5 we can show that Q and Qh are probability measures. Furthermore, it follows from the
Girsanov theorem that the processes B = (Bt)0<t<T and B" = (Bh)ogtST defined by

t t
B, =W, +/ o '0(X,)ds, Bl =W, +/ o h(X) ()ds, 0 << T,
0 0

are Brownian motions with respect to Q and Qh respectively. Note that X; = x¢ + O‘BS + L9(X) and
X" = 2o+ 0B + Lo(X"). Therefore,
d]P’}
d@
T
-1 F 1 -1 2
F(X) exp ( o Ib(X)dB, — 5 [ oK) ds)}
0
1

T T
f(axo + 0B + LO(X)) exp (/ o b(ao + 0B, + LYUX))dB, - 5 / lo " b(zo + 0B, + LS(X))Fds)] .
0 0

E[f(X)] = Eg|/(X)

o|
Y

Es

Q

Since (X, §)|@ < (U, W)|p, the above term equals to

T T
E[ /(20 + oW + L(U)) exp (/0 o b(o + oW, + LO(U))dW, — % /0 o~ b(g + oW, + L2(U)Pds) |

:E[f(U)exp(/OTa_lb(Us)dWs— ;/ o b(U)Pds) |
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Repeating the previous argument leads to E[f(X")] = E[f(U)Z}], which concludes the statement. [

In the same way as Lemma 4.2.6, we have the following estimate of the moments of Z and Zh.
Lemma 4.3.4. Suppose that b is of sub-linear growth. Then for any p > 0,
E(|Zr[P + | Z}P) < C < oo,
for some constant C which is not depend on h.

Finally, we introduce the following auxiliary estimate.

Lemma 4.3.5. Let U as in Lemma 4.3.3. Suppose that ¢ is a-Holder continuous with o € (0,1], then
foranyt > s >0,

E[|¢(Ur) — C(Us)[P] < Cy(t — s)P>/2.

Proof. By Hélder continuity of ¢, we have
E[I¢(U:) — C(UL) )] < E[|U, — Ud|°?] < CE[|W, — W, |"*] + CE[|LY(U) — LY(U)}7).
Hence it is sufficient to prove that
E[|IL{(U) = LYUU) ] < Cylt — 5)P/2.
Using Lemma 4.3.1, we have

LY(U) < LY(U) < LY(U) + sup max (0, —a(W, — Wy)).
s<u<t

Therefore, |LY(U) — LY(U)| < |o|sup <, <; [Wu — W,|. Hence applying Burkholder-Davis-Gundy’s in-
equality, we have

E[|L(U) — LYU)[*] < CE[ sup [W, — W,[P*] < C(t — 5)P/%.

s<u<t

This concludes the proof. O

We obtain the following result on the weak convergence for the Euler-Maruyama scheme for a reflected
SDE with non-Lipschitz coefficient.

Theorem 4.3.6. Suppose that the drift coefficient b is of sub-linear growth and a-Hélder continuous with
a € (0,1]. Moreover, assume that f : C[0,T] — R is bounded. Then there exists a constant C' not depend
of h such that

E[f(X)] = E[f(X")]] < Ch*/2.
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Proof. Using Lemmas 4.3.3 and the elementary estimate |e® — e¥| < (e” 4 e¥)|z — y|, we have
[ELf(X)] - B (X")]| < B[[£(U)(Zr + Z3) (V7 - V).
Thanks to Lemma 4.3.4 and the Holder’s inequality, for some r > 2, we have
[ELF(X)] — E[f(X™")| < CE[FO)P|[Yr — Y2l2.
By a similar argument as the proof of Lemma 4.2.10, we can show that
1V = Y|l < Cho/2,
which concludes the proof. 0

Remark 4.3.7. The conclusion of Theorem 4.3.6 still holds if we relax the condition f bounded to
E[|f(U)]"] < oo for some r > 2.

4.4 Appendix

Lemma 4.4.1. Let n be a natural number such that (n—1)h < T < nh. Defineth =ih fori=0,...,n—1
and t! = T. Then it holds that

S . L 1 1 T3/
;/ “J, ds{m(u) SN ORNCORYT —s} <aVI+T+

Proof. We first note that if s > ¢ then n;,(s) > s/2. The first integral is estimated as follows

th

Z/ . th S\/ﬂh(u)—lS\/nh(S <\[h;{/1 /2d8+/th1/2d8}\/ff7i8\/§

th/2 1 th 1
<fhz,/ / ds+ ——ds
ty t?/Q ti_s

<4

The second integral is estimated as follows

n—1

Z/ du \ﬁ \/ﬁhZ/deSSQ\/f

The third integral is estimated as follows

h
Z/ du " <hZ QhZ,/ - 2Z/t th_ ds
th \/ th \/th — h ‘
§2/ \/§d5:4T3/2.
0 3

This concludes the proof of the statement. O
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Chapter 5

Stability problem for SDEs with
discontinuous drift

5.1 Introduction
Let X = (X¢)o<t<T be a solution of the one-dimensional stochastic differential equation (SDE)
¢ ¢
X =10 +/ b(XS)ds+/ o(Xs)dWs, g € R, t € [0,T], (5.1)
0 0

where W := (W;)o<¢<r is a standard one-dimensional Brownian motion on a probability space (€2, F,P)
with a filtration (F;)o<i<r satisfying the usual conditions. The drift coefficient b and the diffusion
coefficient o are Borel-measurable functions from R into R. The diffusion process X is used in many
fields of application, for example, mathematical finance, optimal control and filtering.

Let X (™ be a solution of the SDE (5.1) with drift coefficient b,, and diffusion coefficient o,,. We con-
sider the stability problem for (X, X (™) when the pair of coefficients (b, o, ) converges to (b, o). Stroock
and Varadhan introduced the stability problem in the weak sense in order to consider the martingale
problem with continuous and locally bounded coefficients (see chapter 11 of [111]). In [61], Kawabata
and Yamada consider the strong convergence of the stability problem under the condition that the drift
coefficients b and b,, are Lipschitz continuous functions, the diffusion coefficients ¢ and o, are Holder
continuous and (b, o,) locally uniformly converges to (b,o) (see [61], example 1). Kaneko and Nakao
[59] prove that if the coefficients b, and o, are uniformly bounded, o, is uniformly elliptic and (b, o)
tends to (b,o) in L'-sense, then (X (™), cy converges to X in L?-sense. Moreover they also prove that
the solution of the SDE (5.1) can be constructed as the limit of the Euler-Maruyama approximation
under the condition that the coefficients b and o are continuous and of linear growth (see [59], Theorem
D). Recently, under the Nakao-Le Gall condition, Hashimoto and Tsuchiya [44] prove that (X (™), ey
converges to X in LP sense for any p > 1 and give the rate of convergence under the condition that
b, — b and 0,, — o in L' and L? sense, respectively. Their proof is based on the Yamada-Watanabe
approximation technique which was introduced in [120] and some estimates for the local time.

On a related study, the convergence for the Euler-Maruyama approximation with non-Lipschitz
coefficients has been studied recently. Yan [121] has proven that if the sets of discontinuous points

115
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of b and o are countable, then the Euler-Maruyama approximation converges weakly to the unique
weak solution of the corresponding SDE. Kohatsu-Higa, Lejay and Yasuda [65] have studied the weak
approximation error for the one-dimensional SDE with the drift 1(_c 0)(2) — 1(0,400)(z) and constant
diffusion. Gyongy and Résonyi [40] give the order of the strong rate of convergence for a class of one-
dimensional SDEs whose drift is the sum of a Lipschitz continuous function and a monotone decreasing
Holder continuous function and its diffusion coefficient is a Holder continuous function. The Yamada-
Watanabe approximation technique is a key idea to obtain their results. In [97], Ngo and Taguchi extend
the results in [40] for SDEs with discontinuous drift. They prove that if the drift coefficient b is bounded
and one-sided Lipschitz function, and the diffusion coefficient is bounded, uniformly elliptic and n-Holder
continuous, then there exists a positive constant C' such that

sup E[IX, - X, <{ "

0<t<T

ifn=1/2
Togn’ if n=1/2,

where Y(n) is the Euler-Maruyama approximation for SDE (5.1). This fact implies that the strong rate of
convergence for the stability problem may also depend on the Holder exponent of the diffusion coefficient.

The goal of this chapter is to estimate the difference between two SDEs using the norm of the
difference of coefficients. More precisely, let us consider another SDE given by

X, :x0+/0t3(Xs)ds+/Ot&(Xs)dWs. (5.2)

We will prove the following inequality:

C(lb = bl[1 v ||lo — &113) 7= D/ED ity € (1/2,1],
C

OiltlgTEHXt - Xt” = 2 ~112\Y if n= 1/2a (53)
= log(1/(|[b—bl[x V [lo = &1[3))
where 7 is the Holder exponent of the diffusion coefficients, C' is a positive constant and || - ||, is a

LP-norm which will be defined by (5.4). We will also estimate E[supy<, <y |X; — X;|P] for any p > 1. Tt
is worth noting that in the papers [59] and [61], the authors only prove the strong convergence for the
stability problem. On the other hand, applying our main results, we are able to establish the strong rate
of convergence for the stability problem (see section 5.3). In order to obtain (5.3), we use the Yamada-
Watanabe approximation technique and a Gaussian upper bound for the density of SDE (5.2) (see [7],
[75], [85] and [109]).

Finally, we note that SDEs with discontinuous drift coefficient have many applications in mathemat-
ical finance [1] and [51], optimal control problems [14] and other domains (see also [16] and [72]).

5.2 [P-difference between two solutions of SDEs

5.2.1 Notations and Assumptions

We will assume that the drift coefficient b belongs to the class of one-sided Lipschitz functions which is
defined as follows.
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Definition 5.2.1. A function f : R — R is called a one-sided Lipschitz function if there exists a positive
constant L such that for any z,y € R,

(z —y)(f(z) = f(y) < Llz —y|*.
Let L be the class of all one-sided Lipschitz functions.

Remark 5.2.2. By the definition of the class L, if f,g € £ and o > 0, then f+g¢, af € L. The one-sided
Lipschitz property is closely related to the monotonicity condition. Actually, any monotone decreasing
function is one-sided Lipschitz. Moreover, any Lipschitz continuous function is also a one-sided Lipschitz.

Now we give assumptions for the coefficients b, i), o and &.

Assumption 5.2.3. We assume that the coefficients b, B,cr and & satisfy the following conditions:
A-(i) : be L.
A-(i1) : b and b are measurable and there exists K > 0 such that

sup (Ib(a)| v [b()]) < K

A-(iii) : o and & are n := (1/2 + «)-Hélder continuous with some a € [0,1/2], i.e., there exists K > 0
such that

sup
z,yER, Ay

(Ia(x) —o@l,, 16() —&(y)> K
|z —y|" |z —y|" -

2

A-(iv) : a =02 and a = 6% are bounded and uniformly elliptic, i.e., there exists X > 1 such that for any

rz €R,
A <a(z) < Xand M <a(z) < A

Remark 5.2.4. Assume that A-(ii), A-(iii) and A-(iv) hold. Then the SDE (5.1) and the SDE (5.2)
have unique strong solution (see [122]). Note that the one-sided Lipschitz property is used only in (5.7)

for b, so we don’t need to assume be L.

5.2.2 Gaussian upper bound for the density of SDEs

A Gaussian upper bounded for the density of X; is well-known under suitable conditions for the coef-
ficients. If coefficients b and o are Holder continuous and o is bounded and uniformly elliptic, then a
Gaussian type estimate holds for the fundamental solution of parabolic type partial differential equations
(see [28], Theorem 11, chapter 1). Under A-(ii), (iii) and (iv), the density function pi(xo,-) of X; exists

for any ¢ € (0,7T] and there exist positive constants C' and ¢, such that for any y € R and ¢ € (0,77,

Dt (.’L‘O, y) S 6])0* (t7 Zo, y)7

(y—=)2

where p.(t,z,y) = % (see [7], [75], [85], [109] and Remark 4.1 [80]).

Using a Gaussian upper bound for the density of X;, we can prove the following estimate.
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Lemma 5.2.5. Let p > 1. Assume that A-(ii), A-(iit) and A-(iv) hold. Then we have

T
/0 E[Jb(X.) — b(X.)[P)ds < Crl[b— b|2

and
T > o 2
| Bl ~ s(RIP7Ids < Crllo - ol
0
where Cp :=C f—CT* and for any bounded measurable function f, || ||, is defined by

z—zq|? 1/p
1l = ( [1spe dx) . (5.4)

Proof. We only prove the first estimate. The second one can be obtained by using a similar argument.
From a Gaussian upper bound for the density of X;, for any € R and s € (0, 7], we have

C _|1’71’Q|2
e 2¢x T ,

pS(anx) < 61)0* (57x07x) <

T \/2me.s

where ps(xo, ) is a density function of X,. Hence we obtain

T T
/0 E[[b(X,) — b(X,)[P]ds = /O ds /R dz|b(z) — b(x)[Pp(z0, 2)

T _
C ~ |z—zo|2
< d dx|b(x) — b(x)|Pe™ 2exT 5.5
< [ s [ dapta) ~bope 655
= Crllb - Bl
This concludes the proof. O

Remark 5.2.6. Our proof of Lemma 5.2.5 is based on the fact that we are in the one-dimensional setting.
In multi-dimensional case, the integrand of (5.5) is not integrable with respect to s in general. This is
the main reason for restricting our discussion to the one-dimensional SDE case.

5.2.3 Rate of convergence for the L?({))-difference between two SDEs

For any p > 1, we define
; A112
gp = lb = bl V [lo = &1f5,-
Then we have the following estimate for the difference between two SDEs.

Theorem 5.2.7. Suppose that Assumption 5.2.3 holds. We assume that &1 < 1 if a € (0,1/2] and
1/log(1/e1) < 1 if a = 0. Then there exists a positive constant C' which depends on C,c., K, L, T, A
and xg such that

2/t r g e (0,1/2),

sup E[| X, — X.|] < Fa=0

T log(1/21)
where T is the set of all stopping times 7 < T.
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Proof. We set Y; = Xy — X, for t € [0,T]. We again use the Yamada and Watanabe approximation
technique in one-dimensional setting (see subsection 3.2.2). Let § € (1,00) and ¢ € (0,1). From Itd’s
formula, (3.4) and (3.5), we have

|Y;5| <5+¢65 Y;i)

—e / 8 (Ya)(b(X,) — B(X.)ds + G0l = 60 s+
et / 05 (Vo) (b(X,) — b(X)ds + [ ¢ (Va) (b(Ks) — (X.))ds
45 | Bl — () Fs + 14

t T
<o+ [ b VB0 ~bCEDs+ [ R — s

where
t ~
M o= [ (Vo) — S )W,

Note that since o, & and ¢j5_ are bounded, (Mt‘s’a)ogtST is a martingale so E[M;**] = 0. Since b € L, it
follows from ¢ _(z)/z >0 for = # 0 (see (2 8)) and (3.5) that for any z,y € R with = # v,

et~ 0@ b)) = =P o) o) <108 Dy < ae gl 67
Therefore we get
[ 00 —oxds <2 [ wijas (5:8)

Using Lemma 5.2.5 with p = 1, we have
T A A A A
| BBCE) ) s < Callp bl (5.9)
0
From (3.6) and (z + )2 < 222 + 232 for any z,y > 0, we have
L, e " esoa(1YsD) e
5 YS Xs -0 Xs S — Xs -0 Xs d
5 | 9500l — s Pas < [ AL o (x,) - o) s

t t
1ie/s,(Ys]) 5 o /1[5/551(|Ys|) 5 N2
<2 | ——F—o(Xs) —o(X)|["ds+2 | —————|0(Xs) —0(Xs)|"d
<2 [ SR o) — () Pas+ 2 [ SR 0(K,) -0 (X) s

t j/
1[5/56](| S|) o\ (2
<2 — " |o(X,) — o(X,)|°d
<2 [ e X —o(EPs+

r % D 2
slog5/0 I0(R,) — 6(X4)[2ds. (5.10)
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Again using Lemma 5.2.5 with p = 1, we have

26 T N _ 2076

Ello(X,) — 6(Xs)|2d — 5|2 5.11
s | Ello(t) — o) Plas < S5l — a1 (5.11)
Since o is (1/2 4 «)-Holder continuous, we have
T Less.q(Ys)) ; T 15,0 (1Y5]) 2TK?e*
2 = o (X) — o(X)[2d <2K2/ “Ere sy p2egs < 22 S 5.12
|| g o0 —oKopas <2k* |7 AR ey < S (5:12)

Let 7 be a stopping time with 7 < T and Z; := |Yia,|. From (5.6), (5.8), (5.9), (5.11) and (5.12), we
obtain

2Crd
elogd

t 2070 2T K22
SE—FL/ E[Zs}dS—FCTSl—f— T g1+ c
0 elogd log 0

AT K22

_~112

t
E[Z] <e+ L/ E[Zs]ds + Cr||b— b]|1 +
0

e/ (2at)

If & € (0,1/2], then since &1 < 1, by choosing § =2 and € = , we have

! N AOel~ /(20D e 2a/(2a+1)
E[Zt} < L/ ]E[Zs]ds_;'_ai/@ +1) +CT€1 + TE1 n €]
0 log 2 log 2
¢
< L/ E[Z,)ds + C (v, T)e2*/ o)
0
where
ACr+  2TK?
C T :=1+C T .
1(0{, ) + T+10g2+ 10g2

By Gronwall’s inequality, we get
E[Z] < Cy(a, T)el T2/ o),

Therefore by the dominated convergence theorem, we conclude the statement by taking t — T'.

If o = 0, then since 1/log(1/e1) < 1, by choosing 6 = 5;1/2 and € = 1/log(1/e1), we have

s ATK?

C1(0,7)
1t log(1/e1)

4 P S A
+ Cpeq + 4Cre log(l/al)’

E[Z,] < L/t]E[Zs]ds + < L/tE[Zs]ds +
0 0

1
log(1/e1)
where

C1(0,T) :=1+5Cy +4TK?>.
By Gronwall’s inequality, we obtain

Cl (0, T)eLT
A= Rogize

Therefore by the dominated convergence theorem, we conclude the statement by taking t — T'. O
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Theorem 5.2.8. Suppose that Assumption 5.2.3 holds. We assume that e1 < 1 if a € (0,1/2] and
1/log(1/e1) < 1 if a« = 0. Then there exists a positive constant C' which depends on C,c., K,L,T, o, A
and xo such that

C€%a2/(2a+1) if « € (0,1/2],

E[ sup |X; — Xi]] < if a=0.

Before proving Theorem 5.2.8, we estimate the expectation of supy<s<, |M2€]| for any t € [0,T],
d € (1,00) and € € (0,1).

Lemma 5.2.9. Suppose that the assumption of Theorem 5.2.8 hold. Then for any t € [0,T], 6 € (1,000)
and € € (0,1), we have

71E[vt] + Caa, T) /D ir o e (0,1/2],
E[ sup [M2[] << “0y(0,T)

0<s<t ZfOl _ 07
log(1/eq)
where
Caa, T) := CIKTC (o, T)?e* T 4 V20107, ifa€(0,1/2),
; \[C KT1/2C1(0 T)1/2 LT/2+\fC 01/27 ifCE:07

and C'p is the constant of Burkholder-Davis-Gundy’s inequality with p > 0.

Proof. Recall that for each 6 € (1,00) and € € (0, 1),
t
M = [ 6. (V)(0(X.) - (X)WL,
0
Hence the quadratic variation of Mf € is given by

(M5, = / 164, (V) Plo(X,) — 6(X,)2ds.

Thus from Burkholder-Davis-Gundy’s inequality, we have

0<s<t B </ lo(X X>|2d8>1/21
(/ lo(X X, ds)1/2 +V2C,E (/OT|0(XS)_5—(XS)I2dS>1/2

From Jensen’s inequality and Lemma 5.2.5, we have

T T 1/2
B (/ |o<Xs>—a<f<s>2ds> <</ E[|o<Xs>—&<Xs>|2]ds> < o — 61l

El sup |M2¢|] < CiE[(M),?] < C

< V2C,E

1/2
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Since o is (1/2 4 «)-Holder continuous, we obtain

t 1/2
(/ |sz|1+2ad8)
0

E[ sup |M%<|] < V2C,KE +V2C,C) o — 6. (5.13)

0<s<t

If € (0,1/2], then we get

t 1/2
( / IYsll“ads) ] < V2C1KE
0

2V2CH K 2

t 1/2
</ |Y*S|1+2ads> ‘|
0

V20, KE

t 1/2
th/2 (/ |YS|2cxds) ] ]
0

2
Ky~ for any x,y > 0 and Jensen’s inequality, we obtain

Using Young’s inequality zy <

2C? K2

V20, KE

IN

1 T
Yev + | Evipeas
2 0

20

IN

1 A T

SEIVI] + GRR2T1 =20 ( / Eny;nds)
0

From Theorem 5.2.7 with 7 = s, we have

V20, KE

t 1/2
1 A a @
(/ |Ys|1+2"‘d8) ]sQE[VA+C%K2Tcl<a,T>2ae2a”ez‘ et (5.14)
0

Since 4a?/(2a+ 1) < a < 1/2, from (5.13) and (5.14), we get

E[ sup |M§5|] < —E[V;] + Cg(a,T)azllO‘Q/(zaH)

1
0<s<t 2

which concludes the statement for o € (0,1/2].

If @ =0, then from Jensen’s inequality and Theorem 5.2.7 with 7 = s, we get

t 1/2 T 1/2 . 12 Va1
V201 KE (/ |ys|ds> < VLK / E[vids| < V2CLKTYV2C, (0, 1) 2172
’ 0 log(1/e1)

Therefore we have

2C L KTY2C4(0,T)Y/2eET/2 . C5(0,T
B sup_ M3 < Y21 10.7) V3G CY o — oy < —220T)

0<s<T log(1/e1) Viog(1/e1)

This concludes the statement for o = 0. O

Using the above estimate, we can prove Theorem 5.2.8.
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Proof of Theorem 5.2.8. Let Vi := supg<<, |Ys|. From (5.6), (5.8), (5.10) and (5.12), we have

t T
mg+L/mm+/'w&w$@mm
0 0

20

2TK2 2c
2 4 sup MO (5.15)
elogd )

log & 0<s<t

T A~ A~
/0 lo(X) — 6(X,)|2ds +

If o € (0,1/2], then from (5.15), Lemma 5.2.5 and Lemma 5.2.9, we have

¢ . 2C70 2T K22
< g b—b R
BIVi) <+ L | EVlds+ Crllo— bl + 2oy lo — o1l + 5=
1 2
+ SEVi] + Cs(a, T)et> /2oth)
2076 ITK2:e2 1 107/ (204+1)

+ ZE[V,] + Cs(a, T)e .

t
< L[| E
<€+ / [Vi]ds 4+ Cpeq + 510g561 + log 6 5

0

Hence we get

¢ 4Crd AT K22
E[V}] < 2g+2L/ E[Vlds + 2Cre; + 0 4 2120¢
0 elogd log 6

+2C5(a, T)Eilaz/(hﬂ).

Note that 0 < 4a?/(2a+ 1) < o < 1/2. Taking § =2 and ¢ = 51/2, we have

K 4C' ATK?
E[V;] < 2L/ E[V.]ds + 2 (1 +Cr + T) a” + og
0

o 402/ (2a+1
og 2 e +2C5(a, T)e; / )

t
< 2L/ E[V,]ds + Cy(a, T)eo"/@otD),
0

where

407 + 2TK?

Cy(a,T) :=2 (1 +Cr + oz 2

+ Cs3(a, T)) .
By Gronwall’s inequality, we obtain
E[V,] < 04(Q,T)62LT€‘11<¥2/(2a+1)'
If & = 0, then from (5.15), Lemma 5.2.5 and Lemma 5.2.9, we have

2016 2TK? C5(0,7)
€1 .
elogd log é log(1/e1)

t
E[Vi] <e+ L/ E[Vi]ds + Cre; +
0

Taking § = 61_1/2 and € = 1/log(1/e1), we get

C4(0,T)

\/log(l/sl),

E[V;] < L/tE[VS]ds +



124 CHAPTER 5. STABILITY PROBLEM FOR SDES WITH DISCONTINUOUS DRIFT

where
C4(0,T) := 14 5Cy +4TK?* + C5(0,T).
By Gronwall’s inequality, we obtain

< 04(0, T)eLT

VT ogt/e)

Hence we conclude the proof of Theorem 5.2.8. O

Theorem 5.2.10. Suppose that Assumption 5.2.3 holds and p > 2. We assume that ¢, < 1 if a €
(0,1/2] and 1/log(1/ep) < 1 if @ = 0. Then there exists a positive constant C which depends on

C,co, K, L, T,p,a, A\ and xg such that

Cel/? if oo =1/2,
R 20/ (2a41) .
E[ sup |Xt — Xt‘p] S 061 ZfOé € (07 1/2)7
OstsT ¢ ifa=0
log(1/e1) '

Using Jensen’s inequality, we can extend Theorem 5.2.10 as follows.

Corollary 5.2.11. Suppose that Assumption 5.2.3 holds and p € (1,2). We assume that €2p < 1 if
a € (0,1/2] and 1/log(1/e9y) < 1 if @ = 0. Then there exists a positive constant C which depends on
C,co, K, L, T,p,a, X and xo such that

0551{,/2(2 . ifa=1/2,
" af/(a .
E[ sup | X, — X, <{ C c if a €(0,1/2),
o=t=T ————  ifa=0.
log(1/e1)

In order to prove Theorem 5.2.10, we first estimate the expectation of supg< <, | M= P for any p > 2,
€10,7], 6 € (1,00) and € € (0,1).

Lemma 5.2.12. Let p > 2. Assume that A-(ii), A-(iii) and A-(iv) hold. Then for any t € [0,T],
d € (l,00) and € € (0,1), we have
t p/2
</ |YS|1+2ad8>
0

where Cs(p, T) := 2p/2Cpr and C¢(p, T) := or/27 5 CPC%/Q, In particular, if « = 1/2, we have

E[ sup |[M<|P] < Cs(p, T)E

+Cs(p, T)llo — 6ll5,,
0<s<t

1 p—1 T
E[th} + 5 CS(pé

E[ sup [MJe"] <

)2Tp71 t
E[VP]lds 4+ Cs(p, T — 5P
S, < 55 [ Ewzias + e 1o - ol
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Proof of Lemma 5.2.12. From Burkholder-Davis-Gundy’s inequality, we have

[Oitigt IMPEP) < C E[<Mée>p/2 < C,E [(/ o (X %) ds>p/2]
<2°C, [E (/|a H<myw +E (ATML&)—MXQPM>M2

From Jensen’s inequality and Lemma 5.2.5, we have

r N
E (/ 0(X,) - 6(X,) ds> <7 (/ Ello(X.) - 6(X.)| 1ds>

p=1 1/2 ~
<77 C7*|lo - 61l5,

Since o is (1/2 4+ «)-Holder continuous, we get
(/ |Y |1+2ad8>

In particular, if « = 1/2, then we get from definition of V%,

(/Ot |Y52ds)p/2 (V)*”? (/Ot |sts)p/2] :

p/2

E[ sup M) < Cs(p, T

+ Co(p, T)llo = 61f3,
0<s<t

This concludes the first statement.

< C5(p7 T)E

Using Young’s inequality zy < 2A5p,f’é5 ) 5;771052(17 D for any x,y > 0 and Jensen’s inequality, we
obtain
t p/2 1
1 5P~ O5 p,
([ weras) ] < 5BV + Pe| ( / vijas) ]
1 5P~ 1C5(p, T)?TP~1
14 ) E P d
< S BV + D [evrias
which concludes the second statement. O

To prove Theorem 5.2.10, we recall the following Gronwall type inequality.

Lemma 5.2.13 ([40], Lemma 3.2. (ii)). Let (A)o<t<r be a nonnegative continuous stochastic process
and set By := supg<s<; As. Assume that for somer >0, ¢>1, p€[l,q] and C1,§ >0,

([ ) [ res|([ aea)”

T

E[B]] < C\E +CE +E< o0
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forallt € [0,T]. If r > q or q+1— p<r < q hold, then there exists constant Cy depending on r,q,p,T
and C7 such that

T
E[B;) < Cag + Ca | BlAJds
0

Now using Lemma 5.2.12 and Lemma 5.2.13, we can prove Theorem 5.2.10.

Proof of Theorem 5.2.10. From (5.15) and the inequality (32", a;)" < mP~t3"" a? for any p > 2
a; > 0 and m € N, and Jensen’s inequality, we have

t P T
vy s5p‘1<”+(L/ Vids) #7000 < B0 P
0 0

27— 1P

(2TK2)1’<€2P“ S.e1p
+ s + sup [MP|

' X,) — 6(X,)|[Pds + ~——————
[ ot~ stapras + EHEE L gy )

From Lemma 5.2.5 with p > 2, we have

E[VP] <57~ 'e? + 57" LPE + (57)P " COrlb — bl

(fver)

P=1(2T K2)pe2pe
5PIE Mo=|P].
(Tog 07 + [Oigr;tl s 1P

2(5T)P~1CpéP
eP(log d)P

5
~112
+ llo =613, +

If & =1/2, using Lemma 5.2.12, we have

— — C paT 2 ¢ — 7
E[VF] <5P~'eP + (5T)P~! <L”+ 5(2))/0 E[VP]ds + (5T)*~*Cr[b— b||%

2(5T)P~1CpéP
eP(log 6)P

P=L2TK?)PeP 1

2, 0 - 5
+ llo = &ll3p + (log )7 + SEVE] + 577 Co(p, T)llo — 61[5,

Hence we get

t
E[VF] <2577 1eP + (5T)P~1 (2LP + C5(p, T)?) / E[VP]ds + 2(5T)*~ ' Cr|[b — b
0

2. 5P~ 1(2TK2)PeP
(log o)P

4(5T)p—1CT5p

~112p
P (log d)? llo—=allzp +

+2-577'Cs(p, T)|lo — 61[5,

¢ 4(5T)P~*CpoP
<9.5p—1.p p—1 p 2 P p—1 T
<2.5P7 e (5T)P~ (2LP + Cs(p, T)?) /0 E[VP]ds + 2(6T)*" " Cre, + =7 (log )" Ep
2. 5P~ (2T K?)PeP

(log d)»

+2- 5" Cq(p, T)ey/2.

Taking 6 = 2 and € = )/ @, we have

t
E[VF] < (5T)P~" (2L? + Cs(p, T)?) / E[VP]ds + C7(1/2,p,T)el/?,
0
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where
4-2°P(5T)P~1 +2.5P71 (2T K?)P

1/2,p,T) :== 257~ 4+ 2(5T)P~*
07( / y Py ) 5 + (5 ) CT+ (10g2)p

+ 257 Cs(p, T).

By Gronwall’s inequality, we obtain
E[V/] < C7(1/2,p,T) exp(5?~'T7 (2L” + Cs(p, T)*) )&,/ *.

If & € [0,1/2), using Lemma 5.2.12, we have

(fver)

5PL(2T K2)pe2re
(log d)»

(fver)

+ 5P el 4 ((5T)P ' Cr + 5" Co(p, T))ey/* +

2(5T)P~1Cp 6P

E[VP] <5P~1eP 4 5P~ 1 LPE
V] < e+ eP(log 0)P

+ (5T) " Orlb — BIIE +

t p/2
</ |}/s|1+2ads>
0
¢ P/2
([ =)
0

2T Crd? | 5 (2T
eP(logs)r 7 (log 6)P '

Now we apply Theorem 5.2.7 with 7 = s and Lemma 5.2.13 with r =p, ¢ =2, p =1+ 2« and

(5T)P~LCréP 5P (2T K?)pe?re
eP(log )P v (log d)P

Then there exists C7(«, p, T) which depends on p,«, T, L and C5(p,T) such that

112
llo =61l

+ 5P 105 (p, T)E + 5771 Cs(p, T)l|o — 6115,

<5P~LLPE + 5P C5(p, T)E

2
€ =5P71eP 4+ ((5T)P~1Cp + 577 Cs(p, T))ek/ +

p 1/2 oPep 2P r
FlVel <Crlen,T) (Ep e eP(log d)P i (log5)z7> " C7(a’p’T)/o Els s

<C T (P 4+ £1/2 oPep e’re
=~ 7(Oé,p, ) € +€P +€p(10g§)p+(10g5)p

C7(a, p, T)Cl(a,T)eLTTefa/(mH) if « €(0,1/2),
+ 49 C7(0,p, T)C1(0,T)erTT

log(1/e1)

Taking § =2 and ¢ = £/ *") if a € (0,1/2) and § = £, /") and & = 1/log(1/e,) if a = 0, we get

if  =0.

Cs(a,p, )y MY i 0 € (0,1/2),
]E[Vile} S 08(aapa T)

.o
log(1/e1) ra=0
where
Colarp, ) (24 2L 4L i@, )T i ae (0,1/2)
Cs(a,p,T) =4 TP (log2)p " e

Cr(a,p, T) (24 2(2p)? + C1(a, T)e™"'T) if =0,

Hence we conclude the proof of Theorem 5.2.10. O
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Next, we will find a bound for E[|g(X7) — ¢(X7)|"] where g is a function of bounded variation and
r>1.

Definition 5.2.14. For a function f: R — R, we define
N
Tp(x) :=sup Y |f(x;) = flaj-1)|-
j=1

Here the supremum is taken over all positive integers N and all partitions —oco < xg < 1 < --- < Txy =
x < oo. We call f a function of bounded variation, if

V(f):= wlgrgo Ty (z) < oo.

Denote by BV the class of all functions of bounded variation.

Corollary 5.2.15. Suppose that Assumption 5.2.3 holds. Furthermore assume that &1 <1 if a € (0,1/2]
and1/log(1/e1) < 1 ifa = 0. Then there exists a positive constant C' which depends on C, ¢y, K, L, T, a,, A
and o such that for any g € BV andr > 1,

3V (g)7Ce/ Y if e (0,1/2),
Ellg(Xr) —g(Xr)I'1 < 37V(9)'C ifa=0
log(1/eq) .

Remark 5.2.16. In the proof of all results, we calculate the constant C' explicitly. In Theorem 5.2.7,
5.2.8, 5.2.10 and Corollary 5.2.11, the constant C' does not blow up when 7" — 0. On the other hand, in
Corollary 5.2.15, the constant C' may tend to infinity as 7' — 0 because we use a Gaussian upper bound
for the density of Xp in (5.16).

To prove Corollary 5.2.15, we recall the upper bound for E[|g(X) — g(X)|"] where g is a function of
bounded variation, r > 1, X and X are random variables.

Lemma 5.2.17 ([8], Theorem 4.3). Let X and X be random variables. Assume that X has a bounded
density px. If g € BV and r > 1, then for every p > 1, we have

Ell(X) — g(O <37V (o) (suppx(a) ) B[X - X700

Using the above Lemma, we can prove Corollary 5.2.15.

Proof of Corollary 5.2.15. From the Gaussian upper bound for the density pr(xo,-) of X1, we have for
any y € R,
C

pr(zo,y) < Cpe, (T, 20,y) < omeT (5.16)

This means that the density pr(zg,-) of Xp is bounded. Hence from Lemma 5.2.17 with p = 1 and
Theorem 5.2.7 with 7 =T, for any g € BV and r > 1, we have

3711V (9T

(2me, T)1/4 E[|Xr — Xr[]'/?

Ellg(XT) — g(X1)["] <
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3TV (g) Co(a, )Y P it o € (0,1/2),
<< 3V(9)"C2(0,T)

if a =0,
Vlog(1/eq)
where
—1/2
o C Cl(Oé,T)l/QeLT/Q
Cy(a, T) := @re. 1)1/ , for a € [0,1/2].
This concludes the proof of statement. O

5.3 Application to the stability problem

In this section, we apply our main results to the stability problem. For any n € N, we consider the
one-dimensional stochastic differential equation

t t
XM = g0+ / b (X™)ds + / o (X™M)aw,.
0 0

Assumption 5.3.1. We assume that the coefficients b,o and the sequence of coefficients (b, )nen and
(0n)nen satisfy the following conditions:

A-(i) : be L.
A'-(ii) : b and b, are bounded measurable i.c., there exists K > 0 such that

sup  ([bn ()| V [b(z)]) < K.
neN,zeR

A'-(iii) : o and oy, are n =1/2 4+ a-Hélder continuous with o € [0,1/2], i.e., there exists K > 0 such that

(|a(w) — oI, lon(z) - Un(y)> <K.

|z — y[7 |z —y["

sup
neN,z,yeR,x#y

A'-(iv) : a =0 and a, = o2 are bounded and uniformly elliptic, i.e., there exists X\ > 1 such that for any
z€R and n € N,

A< a(z) < X and A< an(z) < A\
A'-(p) : For given p > 0,
2

epn = [[b=ball} V|lo = onll3; =0

as n — Q.
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For p > 1 and a € [0,1/2], we define N, , by

N min{n € N: ¢y, < 1,Ym > n}, if « € (0,1/2],
P min{n € N:¢gp,, <1/e,Ym >n}, ifa=0.
Then using Theorem 5.2.7, 5.2.8, 5.2.10 and Corollary 5.2.11, 5.2.15, we have the following corollaries.
Corollary 5.3.2. Suppose that Assumption 5.5.1 holds with p = 1. Then there exists a positive constant
C which depends on C,c., K,L,T,a, A and xo such that for any n > Ng 1,
O}/ Pt ifae (0,1/2),

sup X, ~ X0 < Fano

reT log(1/e1.n)

and
Cetet /Gt e e (0,1/2],

1,n
E[ sup |X; — XM < if o =0

0<t<T ——
== log(1/e1.n)

and for any g € BV and r > 1, we have
3r+1V(g)TCSi/n(2a+1) if a € (0,1/2],
Ellg(Xr) —g(X5) < 3 V(grC o
if a=0.
log(1/e1.n)

Corollary 5.3.3. Suppose that Assumption 5.5.1 holds with p > 2. Then there exists a positive constant
C which depends on C,c., K, L,T,p, o, A and xo such that for any n > Nq p,

05119,/5 ifa=1/2,
2a/(2a+1) .
]E[ sup |Xt — Xt(n)|p] S Cfgl,nCV ZfOé € (05 1/2)7
ost=t = ifa=o.
log(1/e1.n)

Corollary 5.3.4. Suppose that Assumption 5.5.1 holds with 2p for p € (1,2). Then there exists a positive
constant C' which depends on C,c., K, L,T,p,a, A and zo such that for any n > Ny 2p,

Ceyl’, if o =1/2,
a/(2a+1) .
Bl sup |X; — X P]<{ Ccim - if € (0,1/2),
ost=T —— ifa=0.

log(1/e1.5)

The next proposition shows that there exist the sequences (b, )nen and (04, )nen satisfying Assumption
5.3.1.

Proposition 5.3.5. (i) Assume sup,cp |b(z)| < K. If the set of discontinuity points of b is a null set
with respect to the Lebesgue measure, then there exists a differentiable and bounded sequence (by)nen such
that for anyp > 1,

/ 1b(z) — b (2)|Pe T4 A — 0 (5.17)
R
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asn — co. Moreover, if b is a one-sided Lipschitz function, we can construct an explicit sequence (by,)nen
which satisfies a one-sided Lipschitz condition.

(i) If the diffusion coefficient o satisfies A’-(i1) and A’-(iii), then there exists a differentiable sequence
(0n)nen such that for any n € N, o, satisfies A'-(iii), A'-(iv) and for any p > 1,

% [T
/|U ) —on |2pe gy < BOVITGT

n2pn
Proof. Let p(x) := pe~V/0=1#1)1(|2| < 1) with put= f _1/(1_|’”‘2)dx and a sequence (pn)nen be
defined by pn(z) := np(nz). We set by(z) = [p0(y)pn(z — y)dy and o, (z) = [ o(y)pn(z — y)dy.

ThenforanynGNandeR,wehave|b ( )| < K and A7 < a, (2 ):702( ) < A, b, and o, are
differentiable.

Proof of (

z—zg|2 p z—x0|2
[ ) —batoe T < [ ( / dy|b<x>b<y>|pn<xy>) o
R R R

P _lz—ag|?
:/Rdx </|Z<ldz|b(x)b(xz/n)p(z)> e Zex

Pe_‘m;_;cil:OT‘2 z
< /| IRC / dalb(z) - bz — 2/n)| o(2).

i). From Jensen’s inequality, we have

Since b is bounded, we have

/ () — b(z — z/n)[Pe” T Az < (2K)P / T dr = (2K)P /2. T (5.18)
R

R

On the other hand, since the set of discontinuity points of b is a null set with respect to the Lebesgue
measure, b is continuous almost everywhere. From (5.18), using the dominated convergence theorem, we
have

Tr—T 2
/ |b(x) — b(x — z/n)\pef‘ =4 de - 0
R

as n — oo. From this fact and the dominated convergence theorem, (by,)nen satisfies (5.17).

Let b be a one-sided Lipschitz function. Then, we have
(z —y)(bn(z) = bn(y)) = /R(w —y)(b(z — 2) = b(y — 2))pn(2)dz
= [{=2)= (= )}ble = 2) = by = 2)p ()0

S L|$ - y‘za

which implies that (b, )nen satisfies the one-sided Lipschitz condition.

Proof of (ii). In the same way as in the proof of (i), we have from Holder continuity of o

o —wg|? o —wg|?
/|O’ — on(x)]?Pe” ey dxﬁ/ dz/dx|o(x)fa(mfz/n)\2pe_ ey p(z)
|z]<1 R
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sz/ dz / doe A" p(z) = K2V2meT
|z]<1

2¢x T p
— p2pn n2en

Finally, we show that o,, is 7-Holder continuous. For any x,y € R,
7u(a) = 0u(W)| < [ lote = 2) = oly ~ 2lpa(2)dz < Ko~ ",
R

which implies that o, is n-Holder continuous. This concludes that (oy,)nen satisfies (ii). O



Chapter 6

The parametrix method for skew
diffusions

6.1 Introduction

A skew diffusion is the unique solution of the following one dimensional stochastic differential equation
(SDE) with local time:

Xi(z) =2 + /Ot b(X,(z))ds + /Ot o (Xs(2))dW, + (20 — 1)LY(X), t > 0,0 € (0,1), (6.1)

where W = (W,);>0 is a one-dimensional standard Brownian motion and L°(X) = (L?(X));>0 is the
symmetric local time of X at the origin. Here, we will assume that b is bounded and measurable and o
is uniformly elliptic, bounded and a? = ¢ is a Hélder continuous function.

Suppose that b = 0 and o = 1, then the solution of (6.1) is called the skew Brownian motion. Harrison
and Shepp [43] prove that if |2« — 1| < 1 then there is a unique strong solution and if |2« — 1| > 1, there
is no solution. The idea of the proof is a transformation technique to relate (6.1) with another stochastic
differential equation without local time.

The equation (6.1) is linked with various applications as can be seen in Lejay [78] and the references
therein. For example, Lejay and Martinez [79] introduce a numerical scheme for a skew diffusion, which
is based on the simulation of skew Brownian motion. Martinez and Talay [86] prove that the expectation
of a skew diffusion is a solution to a parabolic type partial differential equation with interface conditions
at zero. They also introduce a transformed Euler scheme and provide the weak convergence rate for their
numerical scheme. Another approximation scheme for a skew diffusion is introduced by Etoré [22] using
a random walk approach. In [23], Etoré and Martinez introduce an exact simulation scheme for skew
diffusions when the diffusion coefficient is constant.

Gairat and Shcherbakov in [30] give explicitly the joint density function of a skew diffusion with
constant diffusion coefficient and some of its functionals. They apply their results to a mathematical
finance model of stock prices with switching coefficients.

133
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In this chapter, our goal is to show that one can apply the parametrix method for stochastic differ-
ential equations of the type (6.1) and provide a probabilistic representation for the density. The other
goal of this chapter is to show as one possible application of this result a Gaussian upper bound for the
density exists and the differentiability of this density with respect to the initial variable z. The main
mathematical difficulty we have to face is the fact that we have to deal with the local time term appearing
in the equation (6.1).

The parametrix method (cf. Friedman [28]) is a classical method in order to construct fundamental
solution for parabolic type partial differential equations using a “Taylor-like” expansion argument. This
method allows for coefficients to be less regular than in the Malliavin Calculus approach for the study of
the density. On the other hand, this methodology is restricted to situations where the underlying process
is Markov. As a sample of recent developments of this method, we refer the reader to Menozzi [89], Foschi
et al [19] and the references therein.

Bally and Kohatsu-Higa [9] introduce the parametrix method using a semigroup approach and obtain
the probabilistic representation for the density of the solution to a diffusion equation or for Lévy driven
SDEs. They consider two kinds of parametrix methods already considered in [19]: the first one is called
“forward parametrix method” and second one is called “backward parametrix method”. In order to
construct a forward parametrix expansion for diffusion process, we need to assume that the coefficients
are CZ. On the other hand, a backward parametrix expansion converges if the drift coefficient is bounded
and measurable and diffusion coefficient is bounded, uniformly elliptic and Hoélder continuous.

To simplify the discussion, we will only consider the backward parametrix method. When one
applies the parametrix method for the semigroup of diffusion equations, one uses the Euler scheme with
coeflicients evaluated at the arrival point of the density as the approximation process, in order to obtain
the expansion for the semigroup around this approximation process.

For a skew diffusion case, we will take a generalized version of the skew Brownian motion (see (6.10))
as “approximation process”. The reason for this choice instead of the usual Euler scheme is because the
latter is probably not suitable for this argument and that the density function of skew Brownian motion
can still be written explicitly.

The parametrix expansion leads to a probabilistic representation for the density function of skew
diffusions and therefore also provide a representation for the expectation of f(Xr(x)) for certain classes of
functions f. Such a probabilistic representation can be used for many purposes, notably for Monte Carlo
simulation or as an extension of the classical infinite dimensional analysis known as Malliavin Calculus.
These and other applications such as lower bounds, differentiability with respect to time will be discussed
elsewhere.

Finally, we note that our results for a skew diffusion process can also be extended to a diffusion
process with discontinuous coefficients by using the relation between the two processes (see Proposition
6.2.7).

This chapter is divided as follows: In Section 6.2, we give the notation and assumptions used
throughout the chapter. We will introduce the definition of the symmetric local time for continuous
semi-martingale and the skew Brownian motion. We will also see the relation between skew diffusion and
a SDE with discontinuous diffusion coefficient with an explicit construction of the skew diffusion flows.
In Section 6.3, we obtain the generator associated with X and its domain of definition. In Section 6.4 we
will give some key estimates in order to construct a parametrix expansion for a skew diffusion based on
skew Brownian motion. In Section 6.5, we provide the parametrix method for the skew diffusion process
using the semigroup approach to prove existence and Gaussian upper bound for its density function. Our
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main result is given in Theorem 6.5.1. In Section 6.6, we will show a regularity of the density function for
a skew diffusion obtained in Section 6.5. This gives our second main result in the form of Theorem 6.6.1.
In Section 6.7, we provide our probabilistic representation for the density of a skew diffusion process
which based on a parametrix expansion. In a short Appendix, we provide an explicit calculation for beta
type integrals.

6.2 Preliminaries

6.2.1 Notations and assumptions

We give some basic notations and definitions used throughout this chapter. For a sequence of operators
(Si)i=1,....n, we define []_, S; = Sy ... S, and Hj:n S; =S, ...S51. S* will denote the adjoint operator of
the operator S. The space of real valued infinitely differentiable functions with compact support contained
in R is denoted by C2°(R). Similarly, L>°(R) denotes the space of all bounded measurable functions with
the norm ||f||s := esssup,cgr|f(z)|. We define Ry := R\ {0}. We denote by gf the density function
e

V2nte’
polynomials are defined respectively as H;(y, ct) := gf(y)_laégf(y), 1 € N. We define the Mittag-Leffler
function E, g defined as E, g(2) := >0, F(%:-S-B)’ z € Rya, 8 > 0. Throughout this chapter, we will
use tg := T as a fixed time where the densities will be evaluated.

of the standard Brownian motion with variance ¢, i.e., gf(y) := y € R. The associated Hermite

We now state our main hypothesis on the coefficients of the SDE (6.1).

Assumption 6.2.1. The measurable functions b and o : R — R satisfy the following conditions:

(i) o is a positive, bounded and uniformly elliptic function. In particular, there exist positive constants
a and a, such that for any x € R, a < a(x) := o%(z) < a.

(ii) b is bounded and a = o is n-Holder continuous for some n € (0,1], i.e., there exist a positive
constant K such that
@) =)l _ -

sup |b(z)|+ sup

z€R z,yER,z#£y |£€ - y|7l
Remark 6.2.2. If ¢ is continuous and uniformly elliptic, then o is either positive or negative. If o is
negative, we can replace the Brownian motion W; by —W;. Therefore, the assumption that o is positive
is only for convenience.

Through the article, the constants C' and ¢ may change from line to line, where C' may depend on
(K,a,a,a,n) and ¢ may depend on («,@). As a particular constant with explicit dependence on time, we

use the notation Cp := C(1 + Tl_Tn).

For solutions of SDE’s, we write X;(z) or X; indistinctly to denote the solution process.

6.2.2 Construction of the solution flow process X

In this section, we give a specific construction of the solution for (6.1) using a transformation method.
The arguments of this section have an intersection with parts in Lejay [78] and Kulik [73]. We give them
here for the sake of completeness so that the reader may follow easily the arguments.
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Let us consider a probability space (2, F,P) with a filtration (F;);>¢ satisfying the usual conditions.
We first recall the definition of symmetric local time for a one-dimensional continuous semi-martingale
Y = (Yi)i>0. A stochastic process (L¢(Y));>o is called the symmetric local time of Y at a € R if it
satisfies

t
|Y: —a| =Yy — qaf +/ (1(Ys > a) — 1(Y; < a))dYs + LE(Y).
0

By Itdé-Tanaka formula, the symmetric local time of Y exists and is unique (see e.g. Karatzas and Shreve
[60], Section 3.7).

Let us consider the one-dimensional stochastic differential equation
t
Zy(z) =z +/ p(Zs(z))dWs, z € R, t > 0, (6.2)
0

on the probability space (2, F,P). In this section, we prove that the mapping z — Z;(z) is continuous
for any ¢t > 0. We will use this in the proof of Proposition 6.5.6.

Theorem 6.2.3. Assume that p is a measurable function and that there exist positive constants cg > 1
such that for any z € R, cg' < p?(2) < co. Then there exists a weak solution for the SDE (6.2) and
the uniqueness in the sense of probability law holds. Moreover if p is continuous on Ry then the mapping
z = Zy(z) is continuous for any t > 0 and z € R almost surely.

In order to prove the above theorem, we first introduce the result of Engelbert and Schmidt.

Lemma 6.2.4 ([60], Theorems 5.5.4 and 5.5.7). The stochastic differential equation (6.2) has a non-
exploding weak solution if and only if

I(p) € Z(p),
where

T dy
—e Pz +y)

I(p) := {z€R| :oo7V£>0} and Z(p) :={z € R|p(z) = 0}.

Moreover, the SDE (6.2) has a weak solution and is unique in the sense of probability law if and only if

The explicit construction of this unique solution will be used in what follows. For explicit details,
we refer the reader to [60], Chapter 5.

Let B = (B¢, Gt)i>0 be a one dimensional Brownian motion on some probability space (', F',P')
and assume without loss of generality that the filtration G := (G;);>¢ satisfies the usual conditions. For
(s,2) € ]0,00) x R, we define

s du
=), Ey
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Then T,(z) is strictly increasing and continuous with respect to s. Furthermore, from Problem 3.6.30
[60] (using the uniform ellipticity condition), we have that

liTm Ts(z) = 00, a.s.

Define A.(z) as the inverse of T'(2), i.e.,
Ai(2) :=inf{s > 0|Ts(z) > t}.
From Problem 3.4.5 (v) in [60], A.(%) is a G-stopping time. We set

Mi(2) := Ba,(z), Z1(2) := 2+ My(z), Fi := Ga,, 0 < L. (6.3)

Then there exists a Brownian motion W = (Wt,]}t)tzo on an extended probability space (Q,.}E , ]P’) such
that

t
Zu(2) = 2+ My(2) = 2 + / o(Za(2))dW,, 0 < 1, P-as,
0

This means that (Z(z), W) is a weak solution to the SDE (6.2). Using these notations, we prove Theorem
6.2.3.

Proof of Theorem 6.2.3. Since p is bounded and uniformly elliptic, we have from Lemma 6.2.4 that there
exists a weak solution and uniqueness in the sense of probability law holds.

Now we prove that the mapping z — Z;(z) is continuous for any ¢ > 0 almost surely. From (6.3), it
suffices to prove that z — A;(z) is continuous for any ¢ > 0. In order to obtain that result, we first need
to prove that z — Ty(z) is continuous.

Fix z € R. We take a sequence (zj)reny which converges to z. Then for given § > 0, there exists
K € N such that for any k£ > K, |z — z| < d. Moreover, for any £ > 0 and k > K we have that

t

I 1
\Tt(z) — Tt(zk)| Sf/ 1(_575)(2’ + Bu)du + — 1(_575)(21C + Bu)du
co Jo Co Jo

i /t 1(,€’E)c (z+ By) _ 1(,€’E)c (Zk + Bu>
0

p?(z + By) p?(zi + By)

2 t LT PR B, 1 oo B,

<= lAss(Bu>du+/ (cecre(2+Bu) e (2 + Bu)
€0 Jo ’ 0

du

_ e du, (6.4
2=+ By) Pt By |0 6D

where A. 5 := (—e —J — 2z, + 0 — z). Since p is continuous on Ry, the second term on the right hand
side of (6.4) converges to 0 as k — co. Therefore, we have

k—o0 Co

2 t
limsup |T3(z) — Ty (2x)] < —/ 14, ;(By)du.
0

Since €, > 0 are arbitrary, by taking limits as €,0 tend to 0, we have from the occupation formula (see
[60], Problem 3.6.7),

2 [ 4
limsup |T3(z) — Ti(zk)| < —/ 1(By, = —2)du=— [ 1(y = —2)L{(B)dy =0, a.s.
k—o00 Co Jo Co JR
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Therefore we conclude that limy_,o |T3(2) — T;(2x)| = 0 a.s. Note that the right hand side of (6.4) is
increasing with respect to ¢. Therefore, we also have that z — T3(z) is continuous for any ¢t > 0 a.s.

Next we prove that for fixed ¢ > 0, z — A;(z) is continuous for any ¢ € [0, ¢y/co]. We first note that
since p is uniformly elliptic we have for any z € R,

t
2L < Ty (2).
Co

Since Ti(z) is strictly increasing with respect to ¢ > 0, it holds that for any (¢, z) € [0,%0/co] X R,
Ai(2) < Ay eg (2) < Ay (2)(2) = to-

Fix (¢, z) € [0,t0/co] X R. We take a sequence (zj)ken which converges to z and define s := A;(z) and sy, :=
A¢(zi). Note that s, si, € [0,10] for any k € N. Now, we assume by contradiction that s; does not converge
to s. Then there exists 9 > 0 such that for any n € N, there exists k, > n such that |sg, — s| > &p. On
the other hand, (s, )nen is & sequence on the compact set [0, tg]. Therefore there exists a sub-sequence
(Sk,, (m))men Of (Sk,, Jnen such that lim,, o S, (m) = 8 # s. Since lims_,; sup,cp |17 (2) — Ts(2)| = 0 then
T;(z) is continuous in time uniformly for z € R. This result together with the continuity of T;(z) with
respect to z gives the joint continuity of T;(z) for (¢, z) € [0,00) x Rg. Therefore we conclude

Ts(2) = Ta,(»)(2) =t =T, (21, () Frn(m)) = Toio, oy (2 (m)) T,y (21 (m)) = T (2).

= lim
m—r 00
Since T;(z) is strictly increasing with respect to ¢, we conclude s = s’. This is a contradiction, so A;(2) is

continuous with respect to z for any t € [0,%y/co| a.s. Furthermore, as ¢ is arbitrary, A¢(z) is continuous
with respect to z for any ¢t > 0 a.s. Therefore the conclusion follows from (6.3). O

Now we consider the following one-dimensional stochastic differential equation with drift
t t
Zu(z) = 2 + / 1(Za(2))ds + / o(Za(2))dW,, = € R, (6.5)
0 0

We introduce the method of removal of drift coefficient introduced in section 5.5 B in [60]. Assume
that

(ND) : p2(z) >0, z € R,

T pw)l
(LI):VZGR,E|5>Osuchthat/ 2()dy<oo
z—e P7Y

For some constant ¢ € R, we define the scale function

p(z) = / Texp (-2 / ’ ;‘2((7;)) dr) dy, z € R, (6.6)

The function p is continuous with strictly positive derivative and its second derivative, p”, exists and
satisfies

7 __2/1(2) /(5

Moreover the function p : R — (p(—00),p(c0))) has a continuous and differentiable inverse function
q: (p(—=0),p(c0))) = R. Then the following proposition holds:
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Proposition 6.2.5 ([60], Proposition 5.5.13). Suppose that (ND) and (LI) hold. A stochastic process
Z = (Zy, Ft)t>o0 is a weak (or strong ) solution of equation (6.5) if and only if the stochastic process
Y = (Y, :=p(Z), Fi)i>0 is a weak (or strong ) solution of the equation

t
Y = 1o +/ Y)W,
0
where

yo :=p(2) € (p(=00),p(c0)))
W) ::{ g’(Q(y))p(q(y)) if y € (p(=00), p(c0))),

otherwise .

Theorem 6.2.6. Assume that p is bounded, measurable and that p is a measurable function such that
there exist positive constants ¢y > 1 for which 00—1 < p*(2) < ¢o for any z € R. Then there exists a
unique weak solution of equation (6.5). Moreover if p is continuous on Ry then the mapping z — Z(z)
is continuous for any t > 0 and any z € R almost surely.

Proof. Under the assumption, p and p satisfy the conditions (ND) and (LI). Therefore from Proposition
6.2.5 and Theorem 6.2.3, it suffices to show that p is bounded uniformly elliptic and continuous on Ry.

Since b is bounded and p is bounded and uniformly elliptic, we have p(—o0) = —oo and p(c0) = oo and
p’ is bounded and uniformly elliptic. Therefore p is bounded and uniformly elliptic. If we choose ¢ = 0
in (6.6), then p(0) = ¢(0) = 0. Hence p is continuous on Ry. O

Clearly, from the above statement one also obtains that the process Z is a Markov process.

We will prove that the skew diffusion (6.1) has a unique (weak or strong) solution by using an
equivalent SDE without reflection. To this end, fix « € (0,1) and we define the following functions:

Sa(x) := (1 — a)xzl(z > 0) + arl(x < 0),

ro(z) =5, (2) = i—a) 1(z >0)+ El(w < 0),

fulz) = 2=tal@) ‘; Disal®) _ (1 _ )1(e > 0) + al(z < 0) + %1(:5 =0).

Here D_ and D denote the left and right derivatives, respectively. Note that f, o7, (x) = fo 0 sa(z) =
fa(z). Using these notations, we have the following result.

Proposition 6.2.7. Suppose that o € (0,1), and that Assumption 6.2.1 is satisfied. Define the coeffi-
cients

1(2) = ful2)b(ra(2)) = (1 — a)b ( ) 1(2 > 0) + ab (2) 10z < 0)+ 29Oy ),

11—«

Similarly, p(z) := fa(2)0(ra(2)). Then there ezists a unique solution for the equation

Zi(z) =z +/0 w(Zs(2))ds —l—/o p(Zs(2))dWs, z € R. (6.7)
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Furthermore this solution defines an a.s. continuous flow z — Z;(z) for all t > 0. Define X (z) :=
ro(Zy(2)) with z = so(x). Then X = (Xi(x))i>0 is a solution of the SDE (6.1). Similarly, if X is a
solution of (6.1) then Z = (Z;)1>0 = (sa(Xt))i>0 is the solution to (6.7) and the flow x — X (x) is a.s.
continuous for all t > 0. In particular, for any bounded measurable function f,

E[f (X7 (2))] = E[f ora(Z1(2))], 2 = sa(2).

Proof. The proof of the first part is straightforward, we just show that if X is a solution of (6.1) then
Z = $4(X) is the solution of (6.7).

By the symmetric Ité-Tanaka formula (see e.g. (32) of [78]), we have

Zt = Sa(Xt) - Sa(x) +/ foz(Xs)dXs + L _22(1[’?()()

1 -2«
2

=5q(z /fa s) ds+/fa s)o(Xs)dW, +(a—1/fa s)dLY(X) + LY(X)

=5q(x / faoTa 08a(Xe)b(re(Zs))ds + /0 fa 0700 8a(Xs)o(ra(Zs))dW;

+ (20— D Aa(O)L(X) ~ 222 19(X)

sa(a /fa ) ds+/fa Do (ra(Z2)dW,

=z+/0 ( S)ds—i—/o p(Zs)dWs.

Since r,, = s, !, Z is a solution of (6.7) if and only if X is a solution of (6.1). The other statements follow
from Theorem 6.2.6. O

Remark 6.2.8. Nakao [94] proved that if p is positive and of bounded variation function on any compact
interval of R, then the pathwise uniqueness holds for SDE (6.7) (see Le Gall [77] for a stronger result).
Therefore similar statements can be made about existence and uniqueness of solutions for (6.1).

6.3 The generator of X
Definition 6.3.1. Let o € (0,1). Let D(c) be the class of continuous bounded functions f : R — R

with bounded continuous deriwatives f' and f” on Rg such that f'(0+), f/(0—) exist and af'(0+) =
(1=a)f'(0-).

For measurable functions b and o, we define the differential operator L by
——=f"(x), f € D(a),x € Ry. (6.8)

Define for any bounded measurable function f, the semigroup associated to the Markov process X
as P, f(x) := E[f(X¢(z))]. The next proposition shows that the infinitesimal generator of P is L on D(«).
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Proposition 6.3.2. Suppose that b and o are bounded and continuous functions. Then the infinitesimal
generator of (Py)i>0 on D(«a) is given by

lim hf @) = (@) _ Lf(x),f € D(a),z € Ry.

h—0 h

Proof. If f € D(«), then f has a generalized second order derivative given by
200 — 1

p(dx) = f(x)dx — f(0=)d0(dz),

where 4, is a point mass measure at a € R. From here, it also follows that f is the difference of two convex
functions. Therefore, from the symmetric It6-Tanaka formula, the fact that f/(0+) = (-a O‘) f'(0—) and
the occupation time formula we have for any =z € R,

F(X / FX)dX, + © / L2(X)u(de)
/f S)dw, +/f S)ds + ( 2a—1/f )dLO(X)
/ LX) f" (2)da — (20‘_;a 0= )LO(X)

/f dW+/sz>b J)ds

+(2a—1)—f (Oﬂgf( +%/}RL 7—(20‘*;5/(07)L?(X)
/ (X s)dW, +/ J(Xs)b ds—i-f/ (Xs)d(X)

f”( $)o*(X)ds.

=f(x) + ; f’(Xs)a(Xs)dWs+ ; f’(Xs)( )ds—l—2

Since f’ and o are bounded, we have that the above stochastic integral has expectation zero and therefore

) = 1oy + [ B[y  ZEAPE 0,

Hence we get

RS /@) _L / . [b()@ FX) 4 f<X>0<X>} ds

t 2
1 [t
== / P;Lf(x)ds
t Jo
Therefore we have by continuity of X with respect to the time variable that for x # 0,

1t
; ) §;/0 |PsLf(x) — Lf(x)|ds — 0, ast — 0,

Hence we conclude the proof. O
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Remark 6.3.3. Note that the above proof also gives that

dP;f
dt

() = P,Lf(z),f € D(cv), x € Ry, t > 0. (6.9)

6.4 Skew Brownian motion as the approximation process

We now define the approximation process that will be used in order to construct the parametrix in the
next section. This is a slightly generalized version of the skew Brownian motion. We refer to [78] for
general information about skew Brownian motion.

Proposition 6.4.1. Assume that o is a measurable function, z € R and « € (0,1). There exists an
adapted stochastic process X ** which is the strong unique solution of the stochastic equation:

X% =+ o(2)W + (2a — 1) LY(X 7). (6.10)

As a(z) > 0, then the density of X,"*, denoted by p7(z,y), exists and can be explicitly written in separate

cases as:
Case A: For x >0,

pie,y) = (61 (v — @)+ 2o = )6 (y+2)) 1y = 0) +2(1 - )i (y — 2) 1y < 0),
Case B: For x <0
pi(z,y) = (gf(z) (y—a)+ (1= 20)g; (y + w)) 1(y < 0) +2ag;" (y —2) 1(y = 0),
Furthermore pf(x,y) satisfies the following properties

e For any fived x,y,z € R, p*(x,y) is a continuous function on (0,00).

e pi(-,y) is a Lipschitz continuous function whose derivative is continuous everywhere except at x =0
where we have adypi(0+,y) = (1 — a)0zpi (0—,y).

o Ifa#1/2, then for any (t,x) € (0,00) x R, the mapping y — pi(x,y) is not continuous at y = 0.
Indeed, we have pi(z,0+) = 2agf(z) () and pf(x,0—) = 2(1 — a)g?(z) ().

Define the semigroup associated to X**(z) as P f(z) = P*% f(x) := E[f(X["*(x))]. Then the infinites-
imal generator of PF on D(«) is given as

o%(2)

5 "(@), ] € D(a),x € Ro.

L*f(z) =LY f(x) =

Proof. We have that

X;F x

o(z)  al2)
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This equation is a particular case of skew Brownian motion. That is,
X =2+ W+ (20 — 1) LI(X). (6.11)

The solution of (6.11) is called the skew Brownian motion with parameter . Harrison and Shepp [43]
showed that there is no solution if |2a — 1| > 1. By Revuz and Yor ([103], Chapter 3, Exercise 1.16), the
density of X with X§ = « is given explicitly. Then the density p?(z,y) is obtained by doing a change of
variables. The properties of p?(z,y) are obtained from the explicit formula obtained and the statement
about the generator is a particular case of Proposition 6.3.2. O

Remark 6.4.2. Assume that o(w) > Ao > 0 for any w € R. Let (X;"")¢>¢ be the unique solution of
the stochastic equation (6.10). Define Z;"" := s,(X;"""). Then from Proposition 6.2.7, (Z;""");>0 is the
solution to the following SDE:

zp" =+ [ pulzem)aw,,
where z = s,(z) and
1
pw(x) = o(w) fo(z) = o(w) ((1 —a)l(z > 0)+al(z < 0) + 51(:5 = 0)) .

Then since X;"* has the density function p{’(x,-), using the change of variables theorem for densities of
random variables, we can obtain the density of Z;" explicitly. This gives

Pz, (2,u) = wl(u >0) + wl(

1o o u < 0).

Therefore, choosing w = r,(u) on the “backward parametrix method”, we can also get a parametrix
expansion for Z.

6.4.1 Some auxiliary estimates

In this section, we introduce some key estimates (Lemmas 6.4.4 and 6.4.5) in order to construct a
parametrix expansion for the skew diffusion (6.1).

We define ®(t,z,y) := (L — LY)¢!(z) and p(t,z,y) = ¢Y(z) := p{(z,y). Here, we need to explain
why we need to use these three notations for the same mathematical object: The first p(t, z,y) is used to
make clear how the time-space convolutions are taken. For more on this, see Section 6.5. The second is
used in order to know to which variable the derivative operators are acting on. Finally, the third is used
in order to note that the density is just a variant of the skew Brownian motion density.

Lemma 6.4.3. Let a € (0,1). Then ¢} € D(«) for any (t,y) € (0,00) x R.

The proof of the above statement follows directly from Proposition 6.4.1. Moreover the function ¢y
satisfies the following Gaussian estimate.

Lemma 6.4.4. Under Assumption 6.2.1, there exist positive constants C and c such that for any x,y € R,
t >0,

oY (x) < Cgf(y — ).
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Proof. Since o is bounded and uniformly elliptic, there exist positive constants C' and ¢ such that
Cy; () if 2 =0,
oY (z) << Cgi(y — o) ify<O0O<zorz<0<y,
Clofly—x)+gi(y+=z)) ify>0,z>00ry<0,x<0.
If the signs of y and x are the same, we have gf(y + z) < ¢gf(y — ), hence the proof is finished. O

We now give the essential estimate that will be used in order to prove the convergence of the
parametrix method.

Lemma 6.4.5. Under Assumption 6.2.1, there exist positive constants Cp = C(14+T1="/2) and ¢ such
that for any x,y € Ry, t > 0,

Cr .
|D(t,z,y)| < mgt (y — ).

Proof. We first compute the action of the operators on the function ¢} explicitly. As before, we need to
separate the study in various cases:

Case 1: If z,y > 0, then

(L = L)} (@) =b() (~Haly =z, ta(y)gi ™ (y — 2) + (20 = DHi(y + v, ta())gi (y +2))

, alx) —ay)

5 (Hz(y — 2, ta(y) gt (y — ) + Haly + =, ta(y))(2a — 1)gt™ (y + fﬂ)) :

Case 2: If x > 0 > y, then

(L - )6t =201 - ) (o)l o tat) + “O 5 D by - 10 ) 6 (- ).

Case 3: If z < 0 < y, then
a(r) —a a
(L 296t(e) =20 (=ba)aly ~ ) + 5 D bty - a,tal)) 1 (- ).
Case 4: If z,y < 0, then

(L = £9)6} (@) =blx) (~Hi(y = 2, ta(y))gi” (y = 2) + (1 = 20) Ha(y + 2, ta(y))gi " (y + )

| alz) —ay)

0 (Haly — ., ta(y))gi™ (y — 2) + Haly + 7, tay)(1 — 20)g;Y (5 + 2))

As all the cases follow similarly, we only consider the case z,y > 0.

From Assumption 6.2.1 and the inequality |x|pe_q””2 < (p/(2qe))P/? for any p,q > 0 and = € R, we
have

(L~ LY @) < (6 (0 — ) + 65 (y )
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, Clat) —a(y)|

; g¢ (y — =) +g; (y+ ).

Note that for =,y > 0, we have g7 (y + =) < g7 (y — ). Hence, using the Holder continuity of a and ¢ > 0,
we have

C c C“T B y|77 c
(L= LY)¢}(2)] < 7729 (y—z)+ Ea— (y—z)
Cr .
< a9 (y—x).
This concludes the proof. O

6.5 Parametrix for skew diffusion

In this section, we prove the existence of the density of the skew diffusion (6.1), using the parametrix
method for the semigroup P.

We first define the following time-space convolutions ® for functions f, g : [0,00) X R x R — R and
time dependent operators A and B

f@ gty /(b/ddst)( 52,9),
(Ao B)f ::/ AsBi_sfds.
0
We denote f®' = f, f® = f@ f®¢-1D and f ® ¢®° = f and similarly for the time convolution of

operators. That is, A°* = Ao A°*~1 for k € N.
Now we introduce the following operators for f € L>°(R) and y € Ry,

Qif(y) == /f ptmydw—/f p(t, z,y)d
Sifly /f WL — LY)¢Y (x dx—/f ®(t,z,y)d

(SOn o
Qto (

:/f(x)ﬁ@)@@"(t,x,y)dx.
R

Qe fly), ifn>1,
), if n =0,

i) =

Moreover, we define I,50 (o, 1) := P2 (y1,90) and for n > 1,

I (0, Ynt1) =D ® =" (Lo, Yn+1, Yo)

n—1

to tn—1
:/ dty - / dtn/ dyy ---dyn H Oty — tir1, Yitr1, Y)PLr (Yn+1,Yn)-
0 0 R"

=0
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Furthermore, we define the adjoint operators for € Ry and f € L>*°(R):
/f ptxydy—/f p(t, z,y)dy,

/f )L — L")t (x dy—/f B(t,2,y)dy,

i ()(@) .—{ o (<)S*>°"> S@), 01

- /R F@)P ® B (to, 2, y)dy.

We will extend the definition of Qz‘ f(z) at * = 0 by continuity. Under Assumption 6.2.1 and using
Lemmas 6.4.5 and 6.4.4, there exists a positive constant C such that for any f € L (R),

sup max{t' 2[5 l]oo, 2157 floo, 1Qef oo, Q7 flloc} < Crllfloo- (6.12)

t>0

Therefore Sif, S;f, Q.f and QFf are well defined. Now, we will prove that f{f)(f), f;}j*(f) and
I, (0, yn+1) are well-defined. Indeed, from (6.12) and Lemma 6.4.5,

n—1 n—1
Cr 1
S - 1 < [e’e] ~1 /5 — Cn 0o T 75
H(H ti—ti— )Qt f ||f|| g (ti_ti+1)1_n/2 T||f|| g (ti_ti+1)1_n/2

hence I ' (f)(y) is well defined due to Lemma 6.8.1. In fact,

o e to tn—1
ir H <N o Do/ dt / dt,,
[Tl = X e [ | H (=T

—1
= |\f||oozt““ e HB<1+¢n/2,n/2>

=0

B (1-n/2) 1
= |\f||oonZ:O (t6 "  orr/2) T(1+ n/2)

= 1f1oc By (t§ P O (1/2)) < 0.

So >, f[f) (9)(y) converges absolutely and uniformly for (¢,y) € (0,7] x R. Due to a similar argument,

we have
0 n—1 1
Qr, . <Cilflle |l 775 (6.13)
H ' z=1;[1 b - g E) (t; — tip1)t=n/2
So fg)*(f)(x) is well defined and
Z‘ fo;*(f)Hw < 0. (6.14)
n=0
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From here, we conclude that > I7* (f)(z) converges absolutely and uniformly for (¢,z) € (0, 7] x R.

Now we state our main results for the parametrix expansion of skew diffusions.

Theorem 6.5.1. Suppose that Assumption 6.2.1 holds and that the drift coefficient b is continuous.
Define

pT($5y> = Zﬁ}i(y,l‘), S Ray € RO-
n=0

Then pr(x,y) converges absolutely and uniformly for x € R,y € Ry and it is continuous at any x € R,
and it has Gaussian upper bounds. That is, there exists positive constants C' and c¢ such that for any
x € R, ES RO

pr(e,y) < Eyoa (COVT)P202) g5 (y — ).

Moreover, for any bounded measurable function f and x € R,
Bl (Xr@)) = Y1 (@) = [ Fwpr(e.nis (6.15)
n=0

Therefore, pr(x,-) is the probability density function of Xr(x) for any (T,x) € (0,00) x R.

Proof. The idea of the proof requires two steps: In the first step, done in Proposition 6.5.2, we use the
parametrix method for the semigroup associated to X. We first prove that (6.15) holds for any f € C°(R)
and almost every x € Rg. So pr(z,-) is the density function of Xp(x) for almost every = € Ry.

This weakness in the argument is due to the duality that is used in order to apply the backward
parametrix method. For more details, see the proof of Proposition 6.5.2.

In the second step, done in Proposition 6.5.3, using the continuity of flows of X;(-) and the continuity
of pr(-,y), we will obtain the density of X;(x) for all z € R.

As a consequence, we also get similar results for Z;(z) in Corollary 6.5.6. O

Proposition 6.5.2. Assume that Assumption 6.2.1 holds and that the drift coefficient b is a continuous
function. Then for any f € C°(R), Y07 o 177" (f)(x) converges absolutely and uniformly for x € Ry and
the following expansion holds:

E[f(Xr(2)] = Y I3 (f)(@), a.e z€Ry.
n=0

Proposition 6.5.3. Assume that Assumption 6.2.1 holds and that the drift coefficient b is a continuous
function. Then pr(x,y) converges absolutely and uniformly for z,y € Ry and is continuous at any © € R,
and it has a Gaussian upper bound. That is, there exists positive constants C' and ¢ such that

pr(z,y) < Eppa(C(V T)B3=2m/2) g8 (y — ).
Furthermore the density of Xr(x) is given by pr(z,-) for all x € R.

We first prove the following continuity lemma.
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Lemma 6.5.4. Let f be a bounded and continuous function on R. Then for any x € R, we have

lim O £( =hm/f )b (@)dy = f(z).

t—0+ t—0+

Proof. We first consider (¢,z) € [0,T] x Rg. Then we have

/f o (@

/ F@)6! (2)dyL o) (& / F@)e!(@)dyl (oo 0)(2)
0

[ @) @) dyL o (@) + / F@)8 (@)dyL 000 ()

::Jl(t, ZE) + Jg(t,x) + Jg(t,l’) + J4(t,x).

First, we consider the limit of J;(¢,z). From the definition of ¢ (z) = p{(z,y), we have

0
Ii(t,z) = / F@)gED (y — @) dyL oy (@) + (1 - 20) / F@)GD (4 + 2) dyL oo ()
=: J171(t,$) + J172(t,l‘).

By a similar proof of Theorem 1 of [28], lim; o J1,1(t,2) = f(2)1(—sc,0)(z). Since o is bounded and
uniformly elliptic, using the change of variables z = (y + z)/V/t, we have

0 Z_

Vit
Jua(t,2) < Of|f]]oc / G(@+ )yl ey (@) = C1flso / W)Yoy (@) = 0, ast >0+

— 00

So we conclude Jy(t,x) 4+ Ja(t,x) — f(2)1(—sc,0)(x) as t — O0+. In the same way, J3(t,z) + Ju(t,z) —
J(#)1(0,00)(x). Therefore, we have lim; o4 Q: f(x) = f(x) for any z € Ry.

In a similar fashion, one deals with the particular case x = 0. O
Proof of Proposition 6.5.2. Let tg =T and x # 0. We first prove that
Oy (PePp2 )¢ (x) = Pi(L — LY )dp_y (%), (6.16)

Since X7 is a time homogeneous Markov process, by the Chapman-Kolmogorov equation, we have
Prox(w) = [ iy = [ o2t @)y = pEyole) = (@) (61)
From equation (6.17), using Lemma 6.4.3 and (6.9), we have for z # 0,
O (PPl )oY () =(0u ) PpL o (x) — POPpL o ()

=(0eP)p7_y () — LY PP 62 (2)
=P,(L - L"), (),
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which gives (6.16).

We will now consider an argument by duality. Therefore we need to introduce the following inner
product notation (f,g) := fR x)dz, for two measurable functions f,¢g : R — R such that fg €
L(R).

Fix for the moment, f,g € C>°(R). Using (6.16), we have

/ dys [ () ({9, Pro¥') — (g, P 1)) = / dy1 £ (1) / dag(x) (Pr — PL) 62 (x)
R R R
T
_ / dy1 (1) / dzg() /0 dt0, (PP )¢V ()

/ dyn f (o1 / deg(z / atP, (L= D)6, () ().
(6.18)

Now we consider the limit of both sides of (6.18). From Lemma 6.4.5
[ astai ([ antstul 2 - 2. 01) )
R

< oWl [ astal ([ dn (6510 -9) ) @)

_ Orllflles CrllflloollgllL:
_W/Rdxg<x)Pth($> < T =iz

Since 1 —n/2 € [1/2,1), the above expression is integrable on [0,7] and by the dominated convergence
theorem, the right hand side of (6.18) converges to

i [t [ ass@ ([ ansooe - rmep..0) @

e—=0 Jo

-/ "a [ass@r ([ answe - omep,0) @) (6.19)

Next, we consider the left hand side of (6.18). We define P;(z, A) := P(X,(x) € A) for any A € B(R) and
t > 0. Then from Fubini’s theorem, Lemma 6.5.4, (6.12) and dominated convergence theorem, we have

tim [ o, Pro2 )y = lim [ dn ) [ dag(@)Pror @)
= tim [ dnfn) [ dag@) [ Priadwyer w) = i [ dag@) [ Prie.an@:s)
~ timy [ 9@)PrQ2 (@) = [ g(a)Pri()ds = (Pr.g) (6.20)

R

Finally, we consider the second term on the left hand side of (6.18). Before doing that note that

lim (P7, .)"g(x) = lim Rg(z)pg«yis(zw)dz.

e—0 e—0
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Therefore using Lemma 6.4.4 and the dominated convergence theorem we have that for any =z € Ry,
lime o(P7 ) g(x) = (Pp)*g(z). Applying this result, we obtain

lim / Flan)g. Py 62 )y, = lim / Fn){(PE) g, 6 Yy

e—0 R

= timy [ s / dz(PY) (@) (@) = lim / Fn) (P2 (P2 gy )dun

= lim f(yl)( PYL ) g(y1)dyr = (Q3f, 9).- (6.21)

Therefore from (6.18), (6.19), (6.20) and (6.21), we conclude

(Prf.g) =(Q3f.0) / at [ asgtorr, [ ansnie - 06,0 @
— Qi) + / at [ degta) [ Putadm) [ an )@= )0t )
—(Qrt.9) / at [ dog(o) [ Pa,die)Siufn)
—(Q31.9) / at | degla)PiSiof(a)

—(Qifog) + / (9 PS5 f)dt. (6.22)

0

Note that, by taking an appropriate sequence of smooth bounded functions, one can claim that the
equation (6.22) holds for any f € L*°(R) and g € C°(R).

Hence by replacing f by S’}ftf in the equation (6.22) and iterating, we have

R N-1 to tno1 R ) R
(Prf.g) =(Q5f 0) + 3 / dt; - - / At (QF 85 o S o)
n=1"0 0
to tN—1 N
+/ dt1-~-/ dtN<PtNStN P -St*oftlf,g)
0 0

Now, we apply Fubini’s theorem in order to exchange time and space integrals which is assured by
the hypothesis that f € CS°(R) and the estimates in Lemma 6.4.5, so that

N—
<PTf’ > QTfa Z S* on tof: > <R£X(f)7g>a

n=1
where

YD) = (Po (80N f@) = [t [T din PSS )
0

0
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From (6.13) and Lemma 6.8.1 with a =1 —n/2 and b = 0, we have

to tN—1
RN ()l < CF dty--- dty L—m, as N — oo.
[ Ry, T

0 0

(ti — tig1)t—1/2
Hence we have
(RN (£), 9] < 11BN (H)llsollgllzr — 0, as N — oo.

Therefore, using (6.14), we get the infinite sum expansion

(Prf,9),=(Q7f,9) Z (5™ f.9)

(@Q o
—(O1f9) +<§_Oj / /t”ldtht Sz;tlf7g>

~(S )

Prf=> Iy"(f), ae. x €Ry.
n=0

This implies that

This concludes the statement. O

Proof of Proposition 6.5.3. We first prove that pr(x,y) is well defined. Let yo = y, to = T. Define for
z € R and y € Ry,

K (y,2) = p @ |®]®" (to, 2, y).

Then from Lemma 6.4.5 and 6.4.4, we have

n—1
H Cr
’rL P C L ) C _
Kto v / di - / dtn R dyr - dn i=0 (t; — tigr)t /2 Gti—titr (¥i = Yi+1) 92, (yn — @)

By the Chapman-Kolmogorov property, we get

n—1

tn_1
Ki (y,x / dty - / dt, H = 77/29,50 (y —x). (6.23)

Since 1 —n/2 € [1/2,1), we have

tn—1
n(1-n/2) ~m
ZC’T/ dtl-.-/o dt, H G _tml s Zt Cy HB1+m/2 n/2)

n=1 i=0 1=0



152 CHAPTER 6. THE PARAMETRIX METHOD FOR SKEW DIFFUSIONS

& (8P erm)”
Z I'(14nn/2)

< Eypaa(ty P01 (n/2)) < oo.
Therefore, pr(x,y) is well defined and (6.23) gives
pr(z,y) < En/2,1(c(1 v T)E722)) g5 (y — ).

Since for any n > 0 and f € C°(R), I = Jo f(y)1}(y, z)dy is satisfied we obtain that
Prf(z) =Y I (f) Z/f (Y. dy—/f )pr(z,y)dy, ae. z € Ry,
n=0

which implies that pr(z,y) is a density of Xr(x) for almost every = € Ro. As p{"(x,yy) is continuous at
z € R (see Proposition 6.4.1), then pr(x,y) is also continuous for x € R.

Moreover, the law of Xr(x) is absolutely continuous with respect to the Lebesgue measure and for
almost every x € Ry, pr(z,-) is its corresponding probability density function. Therefore, we conclude
that for any bounded measurable function f,

Bl (Xr(2)] = 3 B (f) () = / f@pr(e,y)dy, ac. @€ R.
n=0

Next, we use Proposition 6.2.7 which gives the continuity of E[f(Xr(z))] with respect to € R and
f € C°(R) and then finally leads to the conclusion. O

By using appropriate approximation arguments, we can extend the statement of Theorem 6.5.1 for
bounded measurable drift coefficients.

Corollary 6.5.5. Under Assumption 6.2.1, all the statements of Theorem 6.5.1 hold.

Proof. By Theorem 174 of Kestelman [63], page 111, there exists a sequence of continuous functions
(bn)Nen such that

lim by =b, ae., (6.24)
N—o0
sup [|b|loo < [[b]|oo- (6.25)
NeN

Let X(V) = (Xt(N))tzo be the unique weak solution to the following SDE
t t
XM =g +/ by (XV))ds +/ (XN AW, + (20 — DLAX M), +>0,a € (0,1).
0 0

Let T > 0. We first prove that there exists a subsequence (X;N’“)) ren of the sequence (XT(FN)) NeN

such that for any f € C>°(R),

lim E[f(X{")] = E[f(Xr)]. (6.26)

k—o0
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Let Z; := s4(X:) and Zt(N) = sa(Xt(N)), t € [0,7]. Note that from Lemma 6.2.7, the drift coefficients
of Z and Z\N) are bounded measurable functions and the diffusion coefficient p(z) = fo(2)0(r(2)) of Z
and Z(N) is a bounded, uniformly elliptic function. The proof of Theorem 2 of Krylov [71] shows that

there exists a subsequence (Z:(FN’“))keN of the sequence (Z}N)) ~Nen such that
1. (Nk) _ 2 —0.
Jim E[[Z7 Zr|"]=0
Since r, is a Lipschitz continuous function, by using Jensen’s inequality, it holds that
N N Ny
[BLAXET)) — Bl (X))l < 1| BIXg™ — X2 < CE[1 2™ — 221/ — 0,

as k — oo for some constant C. This implies (6.26).
Let p;N) (z,-) be the density function of X;N). Then from Theorem 6.5.1, it holds that

oo

P (@) =Y 15N (y,2), w € R,y € Ry, (6.27)
n=0
P (@,y) < Bypoa(C(LVT)C=2D/2) g6 (y — ). (6.28)

Here f?{)’N(yo,yl) = pi2 (y1,90) and for n > 1,

fo)’N(yo, Ynt1) =D ® DF" (to, Yn+1,Y0)

to tn—1 n—1
=/ dey - / dtn/ dys - dyn ] @n(ti = tin, vir1, )P (Ynt1, yn),
0 0 R™ pairs

Dy (t,z,y) := (Ly — LY)¢ (x) and Ly is the differentiable operator defined on (6.8) with drift coefficient
by . Note that from (6.25), the constants C and ¢ in (6.28) do not depend on N. From (6.24) and (6.28),
by using dominated convergence theorem, we have

(oo} (oo}
NN T N) _ : rn,N _ in
pr(z,y) = ngnoop(T (z,y) = > i L (y, @) = Z_%IT(?J,JEL z € R,y €Ry.
This fact and the equation (6.26) imply that pr(z,-) is the density function of X . O

Now, due to the functional relation between X and Z, we can also present similar results for the
density of Z.

Corollary 6.5.6. Suppose that Assumption 6.2.1 holds. Let Z7(z) := $o(Xr(x)) where z = so(x). Then
Zr = Zr(z) has the probability density function, pz,(z,-) for any z € Ry, and its given by

u < 0).

Pz (Z u):wl(uzo)_’_wl(

11—«
Moreover pz,.(z,-) satisfies the following Gaussian upper bound:

11 _ .
pZT(Z7u) S max{17 } En/271(0(1 \/T)(B 277)/2))9T (U - Z) .

- «

for some C,c > 0.
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Proof. We prove that pz,.(z,-) is the density function of Zp(z) for every z € R. For any f € C°(R), by
the change of variables u = s,(y) we have for every z € R,

E[f(Zr(2))] =E[f (sa(X1(2)))]

=/ 1f(_)pT(7“a( )sTa(u du+/ ) pr(ra(z), ra(u))du

- / fwpzs (2, w)du
R

Therefore, pz,(z,-) is the density function of Zr(z) for all z € R. Now we prove the Gaussian upper
bound for pz,.(z,-). From Proposition 6.5.3, we have for some C, ¢ > 0,

1 — c
} Byan (COLV T)E20/2))gs (1

1—a’ «

pzy(z,u) < max {

Q
—~
<
~
|
<

Q
—~
N
~—
~

g5 (u—2), if z,u >0,
1 1 _ F((1l—-au—az), fz>0>u
k @3-2n)/2yy ) 97 ( ; ;
§max{1_a,a}En/2’1(C(1\/T) ) g7 (cu— (1 —a)z), ifz<0<u,
g7 (u—2), if z,u < 0.

Let 2 >0>u. If a/(1—«) > 1, then 7(17‘1)‘1% >z—u>0andif /(1 —a) <1, then 77(170‘257‘“ >
z—u>0. Let z<0<u Ifa/(1-—a)>1, thenw >u—z>0andif /(1 —a) <1, then

W > u — z > 0. Therefore, we obtain that

1 1
peaei) < max{ L By a(COV TS0 )g (02,

-

which concludes the statement. O

6.6 Regularity of the density for a skew diffusion

In this section, we prove that x +— pr(x,y) is differentiable function on Ry.

Theorem 6.6.1. Suppose Assumption 6.2.1 holds. For any y € R, pr(x,y) is differentiable with respect
to x € Ry and we have

TpT X y Za Ito Y, r) = Z(arﬁ) ®q3®n(t0’m,y)
n=0
where to = T. Moreover, we have
Ey21/2(C(1V T)H1/2)
|0pr (2, )| < /21 Ti/2 97 (y — ) (6.29)

and for any x,y € Ry, we have

aa:va(O+a y) = (1 - a)aa:pT(O_v y) (630)
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Proof of Theorem 6.6.1. We first prove that for yo := vy,

n—1

R to tn—1
013, (y, ) =/ dt1~-~/ dtn/ dyy - dyn [[ @i = tisr, yis1, v:)0apY7 (2, yn). (6.31)
0 0 n

i=0

For any z,y € Ry,

—Hi(y — z,ta(y)gt™ (y — 2) + 2a — VHi(y + z,ta(y)gfY (y +2), ifz,y >0,
—2(1 — a)Hy (y — 2, ta(y)) g™ (y — x) if2>0>y,
—20H, (y — a, ta(y))gr™ (y — x), ifr <0<y,
—Hi(y — z,ta(y))gfY (y — 2) + (1 — 20) Hi (y + 2, ta(y))g¢™ (y + 2), if 2,y < 0.

0upf (z,y) =

Therefore, from |;v|pe_q””2 < (p/(2ge))P/? for any p,q > 0 and z € R, we have for any x,y € Ry,

C
|0:p¢ (x,y)] < a2 (y—x).

As in the proof of Proposition 6.5.3, from Lemma 6.4.4 and Chapman-Kolmogorov’s equation, we have

to tn_1 n—1
[t [t [ gy [T 100~ b g )02 )
0 0 R™ o

to a1 o Cr C
< / dty - / dtn/ dyr---dyn [] i Yt Wi~ Yit1) 77596, (Yn — )
0 0 R =0 ( ) (2%

ti —tiv1

to tn—1 1
T 0 1 o H t _t1+1 1 (t. _+. \l-n/2 1/29t0 (y )

Cntt"2rn(n/2)T(1/2) .
_ Gt (n/2) (/)gto (4o — ) < 00,
ty"T'(1/2 + nn/2)

where we used Lemma 6.8.1 with b= —1/2 and a = 1 — 1/2 in the last equation. Hence the, right hand
side of (6.31) is well defined. Then from the dominated convergence theorem, we obtain (6.31) and

c%t”"”r“m/z) I(1/2)

LI (y, 2)| < € (yo— ) < 0.
Therefore,
> A
Z sup 011 (y,r)| < oc.
n=0 z,y€Ry

From here, we conclude the first two statements of the Theorem. Finally, since for any y € Ry and ¢t > 0,
p{(-,y) € D(a), then one obtains (6.30). O

From Theorem 6.6.1, we have the following gradient estimate for the semigroup.
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Corollary 6.6.2. Suppose Assumption 6.2.1 holds. We assume that f is a measurable function such
that [ |f(y)|g5(y — x)dy < oo for any ¢ > 0. Then E[f(Xr(x))] is differentiable with respect to x € Ry
and it holds that

0.Pr () = | F(5)0:pr( )y

Proof. For x € Ry and h € (—1,1) with x +h # 0, it follows from the mean value theorem and the upper
bound for dzpr(z,y) in (6.29) that

1
pr(z + hyy) — pr(ay)| = A \ [ aure+ onyas
0

_ (yfthe)2
2cT

de.

Ep2,1/2(C(LVT)H1/2) 1
< I 7 /

2nT

Using the inequality (a — b)? > a?/2 — b2, we have

< Eup21/2(CLV T)1+n/2) - s

- T1/2 T

pr(z+h,y) —pr(z,y) ‘
h

Therefore, from the dominated convergence theorem, we have

E[f(Xr(z + h))] — E[f(X7(z))] _/ . pr(z+hy) —pr(z,y) _/
= [ f(y) lim dy = | f(y)0zpr(z,y)dy,
R h—0 h R

I
hl—rﬁ) h

which concludes the statement. O

Theorem 6.6.3. Suppose that Assumption 6.2.1 holds. Let Z(z) be the solution to SDE (6.7). For any
(z,u) € Ry X R, pz,(z,u) is differentiable as a function of z € Ry and we have

0:pzr(2,u) %aalpT(Z/(l — ), ra(u)) lﬁu_zao) T 1(ua< O)) ., ifz2>0,
Pz (2, U) = ) i
oo (HEL L)y

As a consequence of the above result and 6.29 one can obtain a similar result as Corollary 6.5.6.

6.7 Probabilistic representation

In this section, we introduce a probabilistic representation of the density function of the skew diffusion
Xr(x) and E[f(Xr(x))].

We first define the following counting process.

Definition 6.7.1. Let R, := > -, 1(7, < t) where (T, — Tn—1)nen with 79 = 0 are independent and

n=1
identically distributed random variables with density function (. Then R = (Ry);>¢ is called the counting

process with jump times (T )neN-
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Remark 6.7.2. Usual choices for the density function ¢ are: {(t) = Ae™*1[ «)(¢) then, R = (R;);>0 is a
Poisson process with parameter A > 0. Another choice is ((t) := t%l[o,ﬂ] (t) where A := (1—)/(2T)*~"
and § € (0,1). For more on this, see Andersson and Kohatsu [4].

Lemma 6.7.3. Let R = (Ry);>0 be the counting process with jumps times (Tp)nen. Then for any t > 0,
n € N and any measurable bounded function V,, : R™ — R,

E[L(R: = )V (71, ..y Tn)]

n—1

/ ds, / dsn_y -- / dsiVaorson)(1 = Felt =) [T €losnr = 5,

where Fe(x) == f_oo C(y)dy and so = 0. In particular, if R is a Poisson process with parameter A > 0,
then we have

t Sn S2
E[1(R; = n)V,(11,...,m)] = A”eiAt/ dsn/ dsn_1~~~/ ds1Vi(s1,. -, 8n)-
0 0 0

Proof. We first prove by induction that the joint probability density function of (71,...,7,) is given by

n—1

[T <G =010 <1< < sn). (6.32)

If n = 1, the statement holds by the definition of (. Assume that (6.32) holds for n > 1. Then since
Tn+1 — Tn i independent from 7;, for any i = 1, ..., n, we have for any z1, ..., z,41 > 0,

P(’Tl < T1yeevyTn+l <1’n+1):P(Tl <(E1,.. Tn+(Tn+1—Tn)<.’L'n+1)

= / dsy - - / dsn/ dtn+1 H C Siy1 — (0 <85 < < 5n)<(tn+1)1(5n Ftng1 < xn+1)
0

Tn41
= / dsy -+ / dsnt1 H C(siv1 — i),
0 0 i=0

where in the last equation we use the change of variable s,,41 = s, + t,+1. Hence (6.32) holds for any
n € N.

From (6.32) and the Fubini theorem, we have

E[I(Rt :Tl) } :E[l(Tn §t<Tn+1)Vn(7—13"'aTn)]

n

Tl,..
:/ dspq1 dSn/ dsp_1- / d51Vn(517~-~,5n)HC(Sz‘+1*Sz')

i=0

/ dsn/ dSn 1 / dSl/ dsn+1< Sn+1 — ) Sla sy S HC Si+1 —

n—1

t 5n 52
:/ dsn/ dsn_l'u/ ds1Vi(s1, ..., 8n)(1 — Fe(t — sn)) HC(S,;_H - 8i),
0 0 0

which concludes the proof of Lemma 6.7.3. O
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Let 7 (x) be a strictly positive density function of a time-homogeneous Markov process Y with
Y§ = z. We define a function 0;(z, z) as
L — L?)¢3
A M if x and z # 0,
Qt(l', Z) = (pf(,r)
0 if x or z=0.

Note that when a = 1/2 and ¢} (x) := ¢F (), i.e., the diffusion case, it holds that

0 (x, 2)07 (x) = (L — L*)¢; ().
However, in the general skew diffusion case, this kind of property does not hold.

Let mo = (8; AT)ieny with 0 =: 59 < 81 < -+ < 8, < ---. Suppose that for any partition 7y there
exists a time continuous Markov chain Y*™ (y,) such that

Yy (yo) = Yo, (6.33)
P(Y5™ (yo) € dyi1 Y™ (yo) = vi) = b o, (ir1)dyiz1-

Let yo := y and o := T. From the definition of pr(z,y) and using the change of variables s, = tg — t,,
we have

o0 to Sn S2
Pro (2, y) :Z/o dsn/0 dsn,l-n/o ds1hn(s1, ..y 80, Y, 2). (6.34)
n=0

Here,

n—1

B (815 -+ 80,4, ) ::/ dyy - dyn H Osivr—s: Yit1, )05 o —s, Wit )DL, (T3 Yn)-
" i=0

Then from Lemmas 6.4.4, 6.4.5 and the Chapman-Kolmogorov’s equation, we have

Cr

n—1
h <
‘ n(sla 7Sn7ya‘r)| = };!; (si+1 — 8

izt (U = 7). (6.35)

This gives the needed integrability properties for the convergence of the sum (6.34). In the probabilistic
representation to follow this condition will imply the L!(£2)-integrability of the probabilistic representa-
tion.

Theorem 6.7.4. Assume that Assumption 6.2.1 holds. Let R = (R:)i>0 be the counting process with
Jump times m := (Tn)nen independent of (Y*™) . Let f : R — R and define D :=supp f C R. Also, let
Z be a D-valued random variable independent of R and (Y*™). . Assume that g is the density function
for Z such that g > 0 on D. Suppose that [ |f(y)|g5(y)dy < oo for any ¢ > 0.
Then for every x € R, we have
g | L) P ¥ (2) T O (25(2) Y2 (2)
9(Z) 1-F (T —r) C(Tiv1 — 7i)

Elf (Xr(2))] =

i=0
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Here, Tp := TR,.. Furthermore the density of Xt can be represented as

Y:j:"(y) . Rr—1 4 o .
*, YT : 97'7‘ 1—Ti YT Yo
pr(z,y) =E Pr_r; ( T (v)) H it ( +1( ), ‘ (v))

1 —F (T —7r) pales C(Tig1 — i)

Proof. First, note that since the density pr(x,-) of Xr(z) satisfies a Gaussian upper bound then using
Young’s inequality, we get that E[|f(X7(z))|] < oco.

We will obtain a representation formula for h,,. For n = 1, since ¢¥° is a density function of Y™ (yo),
we have

hi(s1,y,2) = / B (51, 50) 0% ()Y, (2,31 )don
R

Y0 (y) *, T N *, T
=E [pigte, (@ Y ()0, (V™ (0),9)]

For n = 2, we have

ha(s1,82,y, /951 Y1,%0)04% (1 /982 —s1 (W2, y1)0ls o, ()P o, (2, y2)dys
*, 7T Yoo (y) *,7T *, 1T
= [ )t 0B [feaes (V2 0 Y Y™ ) = ]

= [0 @ Y5 )80, (V™ (), 50)s s (V™ (0 »Y;ﬂo@»}.

In the same way as in the case n = 2, we obtain that

hn(sla"'asTHyv ) =E

*Wo(y) *, T *, T *, 7T
Pt (@, Y Hem (Y2 (y), Yo (y >>].

Let R = (R¢)t>0 be the counting process with jump times (7, )nen independent from Y* ™. From Lemma
6.7.3, we get for every z € R

[e%e) to Sn So n—1
pt0<x7y>=§j/0 olsn/0 dsn,1-~-/0 dsiVa(st, o5 @) (1= F(T = 8)) [] Clsin — 50),
n=0 =0

where

hn(Sla R ) ya‘T)
(1= F(T = su)) T2 C(sin — s5)

V(81 e vy Snyy, ) =

Therefore, we have

ZE Vo(r, .o oy Thyy, )] = ZE[l(RT =n)Vou(m1, ..., Tn, Y, )] (6.36)

:E[VRT (T1ye oy, Y, )] (6.37)
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Y:,;T( ) .7 r—1 *,7T *, 7
g | P Y5 0) T e (L 0 V2T 0) (6.38)
1=F(T =) 5 ((Tit1 —7) '
Since Xr(x) has a density pr(z,-) and Z is independent from R and Y*7™, we have
f(y) {f(Z) }
E[f(X —=g(y r,y)dy =E | —=pr(z, Z
[f(Xr(2))] = o) W)pr(z,y) o2 (%, Z)
i ( ) g T—1 ) *, 7 *, 7
Tk f(Z)E prty @Y W) T G (00 V7 G)
Q(Z) 1= F(T —7r) i—0 C(Tip1 — i) _
L ’ y=Z
[ PR -1p *, 7T *, 7T
1@ | @ v 2) Rﬁl b LDV
9(2) L= F(T=7mr) 5 ((Tit1 =)
This implies the statement. O

For example, if we choose ((t) = /\e”‘tl[om)(t) , then we have

RT 1
T ( *77 *, 7T *, 7T
pr(z,y) = ME (A~ RTpr (z, Y5 (y H Orppr—r (Y2 (), Y7 <y))],

We also have the following probabilistic representation for the derivative of the density of X.

Theorem 6.7.5. Assume that Assumption 6.2.1 holds. Let R = (Ry)i>0 be the counting process with
7 = (Tn)nen ndependent of (Y* ™). Then for any x € Ry,

Yor W, yoer ~14 o o
bupray) — E | 2P @Y () T frenn (00 Y27 0)
£ ’ 1_FC(T_TT) =0 C(T,LJrl—Tl)

Moreover, if we assume the same hypothesis as in Theorem 6.7.4 then we have the following probabilistic
representation:

Y (y) Rr—1 4
_ f(Z) aszETT ( 7Y:T7T( )) r 97’i+1—ﬂ (Y_;Zfl( )7Y7—t 71'( ))
%E[f(Xr(z))] =E 02 1 FT ) g e (6.39)

In the same way the following probabilistic representation for the density of Z; holds.

Theorem 6.7.6. Assume that Assumption 6.2.1 holds and also the same hypothesis as in Theorem 6.7.4.
Then for any x € Ry,
YT (ra (1) RT 1
pT T (Ta(Z), Y *,70 *, 7T
pan(sy) =B | P i o H O (V20 ra0), Y2 ()

§ (1(u>0) +1(u<0)>.

1l -« «@
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Example 6.7.7. One example of a Markov process Y?* satisfying the assumptions in this section is
Y7 =24 o(2)W;

and its density is given by

_ (z—2)?
e 2to(z)2

V2102 (2)t

a(z) (

pi(e) =g (@ —2) =

In this case, the Markov chain Y*™(yg) is given by

Y5 ™ (yo) = yo and Y7 (yo) = Y770 (yo) + o (Y™ (y0)) (W, = Wi, _,)

Si—1

and we have the following cases:
Case 1: If 2,y > 0,

0r(x, y) =b(x) (Hl(y —z,ta(y)) + (2a — 1) Hy (y + =, ta(y)) exp < 2y >)

+ M <H2(y —@,ta(y)) + (2o — 1) Ha(y + z, ta(y)) exp <_ ™ )> '

Case 2: If x >0 >y,

) =201 = ) (b~ 7. 10(0)) + “ DT D by - atate))).

Case 3: If £ < 0 < y,

0u.9) =20 (4@ — avtaly)) + “ D iy~ tar) )

Case 4: If z,y < 0,

0i(x,y) =b(x) (—H1(y —x,ta(y)) + (1 — 2a)Hy (y + x, ta(y)) exp <_ f(xyz)/t))

(Ha(y — =, ta(y)) + (1 = 20) Ha(y + =, ta(y))) -

a(z) — aly)

* 2

6.7.1 Finite variance method

In this subsection, we introduce an example of finite variation probabilistic representation.

Theorem 6.7.8. Suppose that Assumption 6.2.1 holds. Let p > 2. Define ((t) := t%l[o,QT} (t) where

A= (175)/(271)176 and B € (p(1—n/2)—1)/(p—1),1). Let Ry := 220:1 1(7, <t) where (T, —Tn—1)nen
with 19 = 0 are independent and identically distributed random variables with density function . Then
it holds that

Y7o (y) o -1 5 *, T *,70 b
g | [P @Y (@) Rﬁl Orin—n (VLWL YE"OD | _
1= F(T —r) C(Tig1 — )

=0
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Proof. 1t suffices to prove that E[|Vr, (1, ..., 7r,y,2)|P] < co. Using Lemma 6.7.3, we have

EHVRT (Tl7 -y TT, yvx)|p] = ZE[]'(RT = n)|V’ﬂ(Tlv LTy Y, x)|p]
n=0
[e’¢) T Sn So n—1
= s [ s [ dsilVatsne s )P0 - BT = s) T Gloin )
070 0 0 i=0

o0 T Sn 2 h e p
= Z/ dsn/ dsp—1-- / ds; [Als1, ’SZLy{ 2l .
n=0"0 0 0 (1 _FC(T_SH))ZFl Hi:() CP1(s441 — 54)
Since for any s, € [0,T], 1 — F¢(T — s,) > A((2T)'=# — T*=#) /(1 — B), it follows from (6.35) that,
p—1
. Plegp (4% 1-5
E“VRT(TIa 77'T>y795)‘ ] SgT ( c ) (A((?T)lﬁ —Tlfﬁ)
[ee] T Sn So n—1
% Zcpn/ dsn/ ds,_1 - / ds; H(5i+1 — Si)(pfl)ﬁfpﬂm/z.
o 0 0 0 o

Since (p(1—n/2)—1)/(p—1) € [0,1), by taking 8 € (p(1—n/2)—1)/(p—1),1), we conclude the statement
by using Lemma 6.8.1. O

6.8 Appendix

6.8.1 On some Beta type integral

Lemma 6.8.1. Let b > —1 and a € [0,1). Then for any ty > 0,

to tn_1 n—1 b+n(l—a)rn
t I'"1—-—al(1+5
/ dt; -- / dtnti (tj _ tj+1)fa _ 20 ( a)l'(1+ )
0 0 Fr1+b+n(l-a))

J=0

Proof. Let b > —1 and a € [0,1). Using the change of variables s = ut, we have
t 1
/ s(t — s)7%s = tb“*a/ ub(1 —w)"%u = t**17*B(1 +b,1 — a),
0 0

where B(x,y) = fol t*=1(1 — t)¥~! is the standard Beta function. Using this repeatedly, we obtain the
statement. 0
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