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Abstract

In this thesis, the E-string theory, that is the interacting, non-gravitational local
guantum field theory with (1,0) supersymmetry andiEgglobal symmetry in six
dimensions, is surveyed. By the toroidal compactification, we can obtaiN tae
2 supersymmetric gauge theory in four dimensions. This theory is allowed to have
its Seiberg-Witten description. In 2012, the Nekrasov-type partition function for
E-string theory appeared. As the original Nekrasov partition function was required
the proof of the correctness, the Nekrasov-type partition function also WHse
proof” is given by extracting the Seiberg-Witten description in the thermodynamic
limit from the Nekrasov-type partition function, following the idea by Nekrasov
and Okounkov. Due to the toroidal compactification, in E-string theory we obtain
an elliptic function on the way to prove. The elliptic function gives the Seiberg-
Witten description. The Nekrasov-type partition function is also valid in the cases
with the general Wilson lines. Moreover, the Nekrasov-type partition function
clarifies the dependence of the Seiberg-Witten curve on the Wilson lines.
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1 Introduction

String theory is the most reliable model for the study of the fundamental struc-
ture of an object. Superstring theory, or simply superstring, is the string theory
with supersymmetry. The study of superstring has given not only a lot of physical
predictions but also a lot of mathematical predictions. However, there are five
different types of superstrings, so we have a big problem: which can describe our
physics? However, E. Witten showed that there exists the theory in eleven di-
mensions which contains all the superstrid§js[rhis eleven-dimensional theory

is calledM-theoryand is expected to be the more fundamental theory. M-theory
has membranes as the ingredients which are callédzamand anM5-brane. One

of methods of study of M-theory is to study the worldvolume theory on the M5-
brane. The worldvolume theory is the six-dimensional theory and has supersym-
metry. The number of supersymmetry depends on the configuration of the M2-
and M5-branes. The six-dimensional theory can have three types of the number
of supersymmetry and they are called the (2,0), (1,1), and (1,0) theories respec-
tively® . The six-dimensional (2,0) theory is the maximal supersymmetric theory.
Recent years, this theory has been intensively studied and has given a lot of in-
teresting results not only in physics but also in mathematics. One of these is the
AGT correspondeng?, 3]. The AGT correspondence relates the Nekrasov parti-
tion function of anN = 2 supersymmetric gauge theory in four dimensions to the
conformal block(roughly speaking, the correlation function) of a conformal field
theory in two dimensions.

The six-dimensional (1,0) theory is the minimal supersymmetric theory, on
the one hand. The six-dimensional (1,0) theory with the least field content, more
explicitly just one tensor multiplet, and th&; global symmetry is called thiE-
string theoryand this theory is the main subject in this thesis.

The history of E-string theory was started by P. Horava-E. Witten and O. J.
Ganor-A. Hanany, 5,/6). Briefly speaking, Horava and Witten showed that in M-
theory onS'/Z, eachEg gauge field must live on the end-of-the-world brane(M9-
brane) to reproduce ths x Eg heterotic superstring theory in the smaf/z,
limit2. Ganor and Hanany showed that, in such a case, in the limit where an M5-
brane between the M9-branes approaches one of the M9-branes, an M2-brane
between the M5-brane and the M9-brane becomesisionlesg&ndnoncritical

We make some comments on the study of the (2,0) and (1,0) theories in Introduction. However
we make no mention of the (1,1) theory here.

2Before the discussion of a small instanton associated tdEghe Eg heterotic superstring
theory, Witten discussed that assciated toSKE32)heterotic superstring].
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string. This string is called th&-string and the theory which describes the be-
haviour of the E-string on the M5-brane is called tBestring theory We will
review this theory in more detail in section 3.

E-string theory is known as the simplest, six-dimensional (1,0) theory. The
theory consists of just one tensor multiplet, namely has no gravity. In addition,
the theory has th&g global symmetry. However, the theory does not have its
Lagrangian description at present.

When it comes to the four-dimensional theories, in particular with eight su-
percharges, we know a lot. More explicitly, the four-dimensioNal= 2 su-
persymmetric gauge theories have two major descriptions: the Seiberg-Witten
theory8] and the Nekrasov partition functiahl]. Thus in that sense, we can
say that the four-dimensionAl' = 2 supersymmetric gauge theories are the best
understood theories. So we would like to move on from the world in six dimen-
sions to that in four dimensions. By taking two dimensions to be very small in
the six-dimensional theories, we can obtain the four-dimensidhal 2 super-
symmetric gauge theories and study them. This procedure is chitezhsional
reduction Then to keep supersymmetry, the two dimensions must be a compact
manifold, i.e.R*x M? whereM? denotes the two-dimensional compact manifold.
This procedure is calledompactification In E-string theory, the two dimensions
must be a toru$? because we have to keep the eight supercharges. This is called
thetoroidal compactificationBy the toroidal compactification, we can obtain the
four-dimensionalV = 2 supersymmetric gauge theory, but the nature of it is so
different from that of the ordinary four-dimensioml= 2 supersymmetric gauge
theoriesg). For instance, the four-dimension&l = 2 supersymmetric gauge the-
ory obtained from E-string theory is asymptotically non-free. More details will
be mentioned in section 3. Nevertheless, it was shown that it has the Seiberg-
Witten descriptior®, [10]. Hence, following the history of the four-dimensional
N = 2 supersymmetric gauge theories, namely the discovery of the Nekrasov
partition function several years later since the appearance of the Seiberg-Witten
description, it is natural to expect that there also exists the Nekrasov-type par-
tition function in E-string theory. The Nekrasov partition function includes the
Seiberg-Witten description as the special lihi[12]. Hence it is the very im-
portant problem to ask whether the Nekrasov-type partition function in E-string
theory exists or not for the development of E-string theory.

From such an expectation, in 2012 the Nekrasov-type partition function was
given by K. Sakail3, [14]. The correctness or the validity of the Nekrasov-type
partition function was checked order by order, by comparing the values given by
the Nekrasov-type partiton function with the ones given by the partition function
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of the N = 4 topological super Yang-Mills theory o}KB[lG] and the ones given

by the prepotential. In addition it was also checked that the Nekrasov-type parti-
tion function satisfies the holomorphic anomaly equaB&h[ However, “ order

by order” means“ not all orders.” Namely, in order for the Nekrasov-type par-
tition function to be correct, i.e. it is thiermula that it is correct for all orders

has to be shown. The Nekrasov partition function and some statements associated
to it were given in[LL1] and then their correctness was given in the subsequent
paperll2]. Hence it is natural to expect that we can show the correctness of the
Nekrasov-type partition function for all orders by following the ideadd][ K.

Sakai and the author showed it [b5]. More details will be discussed in section

3.

Briefly speaking, our goal is to show that we can extract the known Seiberg-
Witten description in E-string theory from the Nekrasov-type partition function.
Following the idea of Nekrasov and Okounkg], the Nekrasov-type partition
function is represented by some Young diagrams and functions associated to them
which are called therofile functions In the semiclassical limit which is called
the thermodynamic limjtwe can fix them explicitly. Then in E-string theory,
due to the toroidal compactification, the profile functions are fixed by an elliptic
function. This elliptic function plays a crucial role in our discussion. Namely, we
showed that we can extract the Seiberg-Witten description if we give the elliptic
function depending on a case. Hefease” means that for the special values of
the Wilson lines, the global symmetry would be partially broken.

In the subsequent pap2g], the author generalised the result [&@E] to more
general cases. Namely, whilst ihg] we studied some cases with the Wilson
lines given the concrete values, @6 the cases with three and four general Wil-
son lines were discussed. By the sti#8][ it was shown that the Nekrasov-type
partition function is also valid for the general case and was shown the dependence
of the Seiberg-Witten curve on the Wilson linesplicitly. In particular, the lat-
ter is interesting for us. The Seiberg-Witten curve in the case with three general
Wilson lines is already knowgf]. It was obtained by the so-callegometric en-
gineeringapproach. However, in that case, the dependence of the Seiberg-Witten
curve on the Wilson lines was not clear. We will comment about this point in
Conclusion again.

This thesis is organised as follows. In the next section, we briefly review the
Seiberg-Witten description and the Nekrasov partition function. In particular, we
will focus on the ideas which we will need for the later discussions. In section 3,
we will review the formulation of E-string theory, its Seiberg-Witten description,
and the Nekrasov-type partition function. In addition, we will see briefly the va-
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lidity, or in other words the interpretation of the Nekrasov-type partition function.

In section 4, we will prove the correctness of the Nekrasov-type partition func-
tion, i.e. we will show that we can extract the Seiberg-Witten description from
the Nekrasov-type partition function. In section 5, the result of section 4 is gener-
alised to the cases with the Wilson lines. In section 6, the examples of the cases
with the broken symmetries are summarised. Sections 4, 5, and 6 are the original
parts based onlE, 29]. Finally, in section 7 we will summarise the stories. In
appendix A, the functiow,, .,(X; A) which will be used in sections 2 and 4 will be
summarised. In appendix B, the definitions and the useful relations of the elliptic
functions which will be used in sections 4, 5, and 6 will be summarised.

2 Two Prescriptions in4d N = 2 Gauge Theory

In this section, we review the ordinaly = 2 supersymmetric gauge theory in four
dimensions before we move on to our main discussion, that is, the Nekrasov-type
partition function for E-string theory. Firstly, we very briefly recall the Seiberg-
Witten description for the ordinary theory and E-string theory. And secondly, we
briefly review the discussion of the so-called Nekrasov partition function to move
on to that for E-string theory.

2.1 Seiberg-Witten description

In 1994, N. Seiberg and E. Witten determined the low-eneffgctve action in
the N = 2 supersymmetric gauge theory in four dimens¥#js More precisely
speaking, they gave the prescription to determine the prepotential of the theory
which gives the action(we say Lagrangian alternatively henceforth). Here the
low-energy ef fectiveneans so-calletVilsonian that is, by integrating out the
massive modes, we make the theory consist only of the almost massless modes.
The low-energy ffective Lagrangian of the theory witNl = 2 supersymmetry
is given by

2
Lert = 1 f dzewwwwa f d?6 dzecp“af @) | he. (2.1)
8ri 0D2

where¥# denotes the prepotentiah(z) the complex scalar superfield, awg the
chiral superfield including the vector field. Note, here, that fréod)(we have the

3For the good review, see e.@G 41].



gauge coupling:
_ 0*F (D)
02
The prepotentiaF (®) is a holomorphic function. Thus determining the holomor-

phic function is to give the Lagrangian. The prepotential can be writte\ by2
supersymmetry, as

2.2)

Prepotentiak classicak 1-loop+ non-perturbative (2.3)

In the r.h.s., the first two terms can be determined by the classical discussion as

1, i, a
ETC'a + Za Iog(P), (2.4)

wherea denotes the Higgs vev andthe so-called QCD dynamical scale.
The long-standing problem was to determine the non-perturbative part. The
form was known as

- A4k
kZz;y-"k(g) a2 (2.5)

This is known as the so-calladstanton expansigrwhich forms the series by
the instanton numbek. Seiberg and Witten showed that this can be determined
by using the period integrals in algebraic geometry which is known as the moduli
theory of torus.

The key ingredients of their discussion are a one-form, two one-cycles, and
an elliptic curve, which are called the Seiberg-Witwdii ferential the @- and
B-cycles, and the Seiberg-Wittemirverespectively. For instance, f&U(2), we
give just the result:

_ 0F(@
D L aa ’
. dz _ dz
w .= —, Wp .= —,
a y B y
_ (9aD _ (9aD ou (9aD _ oa _
@ = 9a  ou oa’ - @ 27“(9 - @b
alu) = Sgds aD(u)_SEds ds= lzz_dz
V= (Z-UP2-4A2= ﬂ(z— @) (z-ab). (2.6)
i=1



Treating the Higgs vewa and its duabp as functions with respect to the modulus
u := (Tr¢?) = a?/2 is the basic idea. The prepotential is fixed by the beta-cycle
integral of the Seiberg-Wittenfllerentialds. The two cycles are taken by two cuts
over a7, 7] and [a;, f]. The period integral or the Seiberg-Witterfférential

is fixed by the Seiberg-Witten curwg. The discussion by Seiberg and Witten
states that we are able to determine the prepotential by going up the river.

2.2 Nekrasov partition function

As seenin the last subsection, we can obtain the prepotential by usiagy tistic
algebraic geometrically method. However, it is hard to determine the prepoten-
tial practically. A few years later, a new approach appeared. It can combina-
torially determine the prepotential and what we need is just the field content of
the theory. In other words, if we even know the field content, we can directly
give the prepotential. More precisely, it gives directly not the prepotential but the
partition function More explicitly, Nekrasov proposed the expres8ja

FsYE, €1, &, A))-

€162

Z(d e, €. A) = exp( - 2.7)
The detail including the notation is given later. The important thing is that the
partition functionZ(&, e, e, A) and the instanton part of the prepotengi@ls are
both generic, that is, they are generalised by the two paramgterSo Nekrasov
proposed one more strong relati@d]: in the limit ,, — 0, (Z.4) would repro-
duce the Seiberg-Witten description,5.e.

FsYE, e, €, A)le -0 IS the instanton part of the prepotential of the low-energy theory
(2.8)

In the rest of this subsection we review the so-called Nekrasov partition func-
tion more detail and pursue the idea of the proof of it, that is, extracting the
Seiberg-Witten description.

4The prepotential consists of the perturbative part and the non-perturbative part. Similarly, the
Nekrasov partition function also consists of the perturbative part and the non-perturbative part. In
this thesis, we restrict ourselves to the non-perturbative part, i.e. the instanton part. In the sense,
by the Nekrasov partition functiadt we mean the instanton partition function of the full partition
function.

5The full prepotential including the perturbative part is given by the full partition function.
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From now on, we also consider the Nekrasov partition function in the field the-
oretic limit, i.e.e; = —e, = h and we take the gauge group to®&(N). Then the
Nekrasov partition function can be expressed as the sum over the paififipns|

an +h(k|,i - I<n,j + J - |)
aln"'h(j_i) .

Z(a.n,~h.q)= ) ¥ (2.9)

K (L=#(n.j)

Herea,, = a — a,, & denotes the diagonal components of the Higgs gev AN

is the dynamical scale, argl, are the deformation parameters which appear in
the Omega-backgrountl, [12]. Note that the dyanamical scale can be expressed
as

2
8r H
— 5 +2nitho

AN ~ yMNe % , (2.10)

whereu is an UV cutdi® andg, 9 are the bare couplings. The partition is defined
as follows:k = (kq, -+ ,kn), ki ={ki> k2> >kn >Kni1=Kp2=-=
0}, K| = 2 kii. The indexes, nrun from 1 toN andi, j is 1 or above.

Including the perturbative part, the Nekrasov partition function can be totally
written as

Z@hA) = ) AMNZ(an).
K

Zy(@n) = ZPa mu(ah),
us(ah) = —— (2.11)

In the semiclassical limit — 0, which is called thehermodynamic limjtthis
partition function can be expressed as the genus expansion

[Se]

Z(a, i, A) = exp( Z n92Fy(a, A)). (2.12)
g=0

Fo is the prepotential of the low-energffective theory:

R 8 =3 Y a-ar(log(*) - 5+ Y ai@ @19



Figure 1: A Young diagram and the profile function(red line). left: A set of
partitions(i.e. a Young diagram). right: A Russian style of the Young diagram
and the profile function. The piecewise-linear function becomes the continuous
function in the limite; , — O.

There are three fferent approaches to prove the correctness of the Nekrasov
partition functionfL2, 28, 132,133]. Since we discuss the Nekrasov and Okounkov
approach for E-string theory in the next section, we review the approach only here.

Their idea is to represent the sum of the partitions by that of the Young dia-
grams(see the figuf®). The shape(the red line in the figure) is expressed by a
piecewise-linear functiorfy (X)

fi (%) = |x|+i[|x—ki+i—1|—|x—ki+i|+|x+i|—|x+i—1|]. (2.14)
i=1

We call this function theprofile function In general, the profile function with
€12 IS expressed as

(o)
fu(Xle, e2) = X+ Z [|X+ €1 — ek —al|l — [X— ek — il — X+ e — all + [X - €1i|],
i1

X+ [Ix+ & - ekj - el - Ix— ek - &)l - X+ & - &l + X - &jl].
=1

(2.15)

5We use a letten just below again but it does not mean an UV diito
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This general profile function satisfies the following conditions

fu(Xler, &) = +1,
fu(Xle &) > X, (2.16)
fu(Xle, &) = X, for|x > 0.

Moreover, the shifted profile function which is called a charged partition is defined
by

fak(Mer, ©) = fi(x - dle, &), (2.17)

Then, the instanton chargeand the size of the partitionk|, i.e. the size of the
Young diagrams, are recovered from the charged profile function as

1 1
a = —fdx x[;’k(xlel,ez):——fdx B (Xew, ),
2 Jr 2 Jr

a’ 1 , 1
K = o= [ Ot e) = 5

26162 46162

(& [ dx(fastes. &) - X))
(2.18)

where the integral of the rightmost hand side of the first line is defined by the
Caucy’s principal value one.

In the thermodynamic limitk — O ore;» — 0, the typical size of the partition
k contributing to the partition function is given by ~ 1/ee,. This means that
the size of a box in a Young diagram becomes small, namely the piecewise-linear
profile function becomes a continuous profile function. Hence the sum of the par-
titions can be approximated by an integral over the space of the continuous profile
functions. This continuous profile function satisfies the following condfflons

f(x) = Ix, IX>0,
1T - Tl < IX=¥i,
fdxf’(x) = 0,
fRdx(f(x)—|x|) < oo, (2.19)

where the integral in the third condition is defined by the Caucy’s principal value
one.

"The second condition in the original paff&] might be wrong.
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The approximation by the integral over the space of the continuous profile
functions is the saddle point one. Namely, our task is to find the saddle point of
the profile function from

1
Z;(@ e, e,A) = exp( -2 f dxdyf.(Xer, &) f (Ve €)va.e(X =Y, A)),
(2.20)

where the integral is defined by the Caucy’s principal value oneyangx) is
some function defined in Appendix A. Thus the partition funct@Al) becomes
the sum over the profile functions

Z(3; e, €2, A) = zlzﬁm@AL (2.21)

discrete
f ely

whereZ; :=(2.20 andI'{*""®*is the set of the profile functions = f,.

Viewing (2.20) as the action written with the profile function, the profile func-
tion is known as théensity functiorand the saddle point equation obtained from
the action is known as thieop equationin the matrix mod&. For e, e, — 0,
(2.20 is expressed as

L@@@m~qugl (2.22)
where
e =g [ axyrerme-y(os*Y)-3) @2
y<X

where the integral is defined as the Caucy’s principal value one. This is the leading
term of the action[Z.20) ase;, — 0. The prepotentiafo(d, A) is given by the
saddle point of the action:

Fo(& A) = —Critter, Ea(F), (2.24)
wherel s denotes a set of the profile functions of the form
N
o) =) fitx-a), (2.25)
=1

8For the good reviews of matrix model, see €86, [37], and as that closest to our discussion
we will see later, seé?f).
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M9 M35 M9

M2

> X10

Figure 2: The formulation of E-string theory in terms of the M-theory picture.
When the M5-brane approaches one of the M9-branes, the M2-brane becomes the
non-critical, tensionless string.

with f; satisfying the condition®2(19. This means, namely, that within all the
profile functions which dominate the Nekrasov partition function, only the critical
points of the space of the profile functions, namely only the dominant profile
functions give the prepotential.

For our main purpose, we will follow this idea in the later sections. There, we
will recall this idea again and will discuss more concretely.

3 E-string Theory

In this section, we formulate E-string theory in terms of M-theory picture. We
firstly see howEg symmetries appear and then how E-string theory is defined.
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3.1 Formulation of E-string Theory

As said in Introduction, the history of E-string theory was started by P. Horava and
E. Witten4,5]. They considered what type of M-theory can reprodigex Eg
heterotic superstring theory in the limit where the M-theory direction becomes
zero. Now we see the story briefly following the discussions4p®j(see the
papers for more details).

First of all, we consider M-theory on an orbifdkd®x S/Z, whereZ, acts on
StasX!® — —X19and on the worldsheet as the orientation reversal. Zhigtion
breaks the original thirty-two supercharges to the half, i.e. sixteen supercharges.
This means that if M-theory in the zero radius limit can reproduce one of the five
known superstrings. It would be some one of Typgglx Eg heterotic and ((32)
heterotic superstrings.

Next, we consider the gravitational anomaly of M-theory on the orbifold. Then
note that a metric oR'%x S'/Z, is same as one dh'x S*. We have a dynamical
metric on the orbifold, so we have its superpartner which has its gpiargl is
commonly called the Rarita-Schwinger fi€ld]. Though we would like to con-
sider to obtain theféective action by integrating out the Rarita-Schwinger field,
this eleven-dimensional Rarita Schwinger field has the gravitational anomaly be-
cause it reduces in ten dimensions to a sum of infinitely many massive fields which
are anomaly-free and the ten-dimensional Rarita-Schwinger field which is anoma-
lous. Thus we have to know the form of the anomaly.

Under a spacetime fieomorphisndX' = ev' wherel runs over01,---,10,¢
is an infinitesimal quantity and a vector field, the change of th&ective action
ol is generically written as

of = ie f d*X gV (X)W, (X), (3.1)
R10xSt/7Z,

whereg is the eleven-dimensional metric allg(X) a function on the orbifold.
Thus that there does not exist the anomaly implies genericallywh@) = 0.
However note thak is not on the orbifold points. Hence on the orbifold points,
i.e. St/Z, = [0,n], W,(X) is a sum of delta functions. We denote the orbifold
points on where the delta functions are defined, i.e. hyperplanes which are called
the M9-branes later, b’ andH” respectively, followingl4]. Then 3.1) can be
decomposed into two parts

6F:ief leX\/gv'W(Hef doX \gvwy, (3.2)
H H”
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wherer and/» means restrictions thl” andH” respectively. This is the standard
ten-dimensional anomaly. Therefore contribution$\¢fandW,” to the anomaly
are even.

Here we have to care about that there are additional massless fields which live
only on the hyperplanes. These are ten-dimensional vector multiplets. We have
to count the number of these to cancel the anomaly. Though we have to recall the
discussion of the Green-Schwarz mechariigjfo proceed our discussion more
precisely, we skip it and turn to the result directly.

To cancel the anomaly, we need 496 additional vector multiplets. This means
that the superstring with sixteen supercharges has the gauge group whose dimen-
sion is 496. As noted above, since contributions of the two hyperplanes to the
anomaly is even, 496 is divided by two, which implies 248 each. This result
shows that 248 vector multiplets, i.e. the gauge group whose dimension is 248,
live on each hyperplandzg x Eg heterotic superstring is only allowed in this re-
sult.

The picture which we have seen above was thaBhgauge symmetry lives
on each end-of-the-world brane, i.e. the M9-brane. We now picture an addition of
an M2-brane and an M5-brane between the M9-branes(see the@lgure

We consider the M2-brane as oscillating modes on the M5-Brafvben the
M5-brane approaches one of the M9-branes(the left in the f@uthe M2-brane
looses one of three directions it spans and then it looks like a string. This string-
like M2-brane is tensionless and non-criti&lp0](and@ [21]). Such a string
is called the E-string.” E” of the name comes from thgs symmetry as fol-
lows: firstly, Eg gauge fields live on the two M9-branes, but when the M5-brane
approaches one of the M9-branes, another M9-brane is much far from the M5-
brane. Hence, it is too far for the world on the M5-brane where the E-string lives
that it can be neglected and i symmetry does notféect. Secondly, thé&g
gauge symmetry on the M9-brane near by the M5-brane becomes the global sym-

9We can consider multiple M5-branes or M2-branes and in those cases, such theories are called
the E-string theoriefil9]. In this thesis, we are locked up in the usual E-string theory, i.e. one
M2- and M5-brane.

0we have a comment on the references here. As mentioned in Introduction(footnote 2), before
considering theEg x Eg heterotic superstring theory with small instantons, the case@B2)
heterotic superstring was considered by WiflgnEg x Eg andS ((32) heterotic superstrings are
not same but they are related with each other by T-duality, more precisely moduli spaces of them
on St are identicafp2]. The string-like object was considered by Witten in type IIB superstring
on K3[21] and was called theontcritical string[20]. Based on these ideas, Ganor and Hanany
studied the tensionless, non-critical string, namely E-sf@hg[
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metry because it is out of the M5-brane. Hence, E-string theory hd&stmbal
symmetry and it is the origin of the name.

In addition, from the figure, it leaves only eight supercharges. By sending the
parametety’ to zero whilst keeping the other physical parameters finite as done in
the ADSCFT correspondencgl], gravity is decoupled. Moreover, by taking the
size of K3 to be large, the other modes except E-string are decoupled. Putting all
together, E-string theory is the six-dimensional theory on the M5-brane with eight
supercharges and tlig global symmetry.

Finally, we comment on fields in E-string theory. Actually, there is only one
oscillating mode of the M2-brane. It is a tensor multiplet which decomposes into
a vector multiplet when we perform dimensional reduction. In this sense, E-string
theory is said to be the simplest theory as the six-dimensional(dynamical) the-
ory. Nevertheless, we do not have its Lagrangian description yet, and in addition
its least supersymmetry makes the control of E-string theory weak, so it is too
difficult to analyse.

3.2 Two Prescriptions of E-string Theory

E-string theory is a (1,0) supersymmetric theory in six dimensions. The few su-
percharges, i.e. eight supercharges, makes us lose control. To obtAnh=th2
theory in four dimensions by compactification, we must keep all the supercharges.
This limitation leads us to toroidal compactificatiBifi x T2. However, this four-
dimensional theory is basically asymptotically nonffeéNevertheless, the the-

ory has the Seiberg-Witten descripti@f]. It is given by

_ Ea(7) 4 Es(7) 6 5
e Tl T
8F0 3:
5o - 87°i(¢p — 1) + const, (3.3)
¥

whereE, ¢ are the Eisenstein serieasa modulus of the torusg, ¢p are the Higgs

vev and its dualFg the prepotential, and const. denotes terms which do not de-
pend ony. We will recall this description again in the next section. Tracing the

history of N = 2 field theory, we naturally arrive at one more description, namely

the Nekrasov partition function. However, we can hope but can hardly obtain

1t depends on the number of hypermultiplets. For simplicity, we will treat the theory as being
conformal in the subsequent discussions.
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soon. Sakai hopefully searched and fourigi3t[14]:

2N 1 . .
2nig\[RI -1 (5 (a — My + (J —D)R), 7)
Z(e : H(ll;[Rk [T 91(2 (aw + hia (i, )A), 7)2

(3.4)

The details are given in the next section so we choose a short-cut. From this
Nekrasov-type partition function, the prepotential is reproduced by

Fo = (221N Z) 0. (3.5)

Here we would like to focus on the higher order termsibgxpansion. The
virtue of the Nekrasov partition functio12 we have seen in the last section is
to include the contribution of graviphotons in the higher order t&fnm$ow about
in E-string theory? The answer is negative. The prepoteRgiabn be interpreted
as the genus zero topological string amplitude on I(%M[M]. The all genus
amplitude is given by

Z8 = exp( ) 129 2F ), (3.6)
g=0
This amplitude satisfies the following holomorphic anomaly equ&ijah|
1., 1 1 143
> (Zma )(271 9, +1)Z2*. (3.7)

On the other hand, the Nekrasov-type partition function for E-string theory satis-
fies the following modular anomaly equation

I, 28" =

1., 1
Oe,Z = 5h (%a ) y4 (3.8)
with 7 expansion
Z= exp( 5Fo +O(°)). (3.9)

12In this papar, we did not treat , expansion of the Nekrasov partition function. However,
in E-string theoryi expansion corresponds to graviphoton expansion. For the details, see e.g.
[38,39 34].

3We here call holomorphic anomaly equation, following the associated paper. However, since
the equation shows the dependence of the partition functioB,pme call it modular anomaly
equation later, following the associated paper.
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For the genus zero topological string amplitude with massless hypermultiplets and
the prepotential of E-string theori8.[d) and B.8) coincide with each other:

de,Fo = i( !

2

%@Fo) . (3.10)
1

Thus we havd- = F5K3|mzo. However, for their higher order terms the anomaly
equations do not coincide. Hence we cannot say that the Nekrasov-type partition
function for E-string theory include the contribution of graviphotons. Due to this
reason, the discussions in the subsequent sections focus only on the genus zero
parfd,

4 Nekrasov-type Partition Function For E-string The-
ory

Thus far, we have reviewed some basics of E-string theory and analysis methods
for N = 2 gauge theories in four dimensions. Historically, as we have seen in the
last section, a major method for an analysis of E-string theory was the Seiberg-
Witten description. We here give again the Seiberg-Witten description for E-string
theory[L(]

E E
oFq

87%i(¢p — T9) + const, (4.1)
A

whereE, s are the Eisenstein seriesa modulus of the torus, ¢p are the Higgs
vev and its dual, and const. denotes terms which do not depead on

In 2012, following the history, the Nekrasov-type partition function was appeb3ed|
14

Z

e 1 91(z (@ — My + (j = )h),7)
~2rip\R n=1 712
; (&™) Q (i,lj)—e[Rk [T P15 (@ + hia (i, )R), )2

Fo (21% In Z) |0, (4.2)

14The author is deeply indebted to the referee28] [
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whereR is a set of Young diagranR = {Ry,--- , Ry}, N comes from théJ(N)
gauge theof# . ¥1(z ) defined on the torus is one of the Jacobi theta functions
defined as(see appendix B for more details)

D(z7) = 0 (1Y,

nezZ

192(2, T) — Zyn—l/Zq(n—l/Z)z/z’
93(27) = D Y
nez
Jaz7) = D (-1)yq2 (4.3)

nezZ

m, are fundamental matter masses #mdi, j) are the relative hook lengths de-
fined between Young diagram® andR. Most importantlyy, T anda are abso-
lutely different from[2.9). In 2.9), by g ~ €* we had the UV coupling constant

7 but we now have théliggs vevy andr is the modulus of the torus. More-
over,a in (2.9 were diagonal components of the Higgs vev but now they are just
constants on the torus. For consistency, we require a condition

N
Z;ak—zm:o. (4.4)

And concretely, for E-string theory we set
N=4, ag=wx1 (k=1---,4), my=—-my4 (n=1,---,4). (4.5)

This Nekrasov-type partition function was checked order by order and to satisfy
some physical conditions. For instance, it satisfies the following modular anomaly
equation

o1

0g,Z = ————
257 12(2x0)2

0%,Z. (4.6)

5This is a confusing problem. By the toroidal compactification, we haveNthe 2 U(1)
gauge theory in four dimensions. However, the Nekrasov-type partition function can be viewed as
the one generically for the(N) gauge theory with B fundamental matteiB, [25]. We do not
have the answer to the puzzle between them yet. HBndees not have any physical meaning at
present.
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Substituting a relation between Nekrasov-type partition function and prepotential

1
Z= exp(éFoh‘z +O(1°)) 4.7)
for this, we get
1,1 2
9g,Fo = ﬂ(%a“":o) , (4.8)

which is the modular anomaly equation obtained from the Seiberg-Witten desciadjion[
However it did not have any proof for all orders B3] [14]. In this section, we
give a proof[L5] following [12].

4.1 Proof: Nekrasov and Okounkov approach

The basic idea ofll2] is as follows. In the limit: — 0, which is calledhermodynamic
limit, we expect that there are some particular Young diagrams mainly contribut-
ing the partition function. So we firstly have to specify the diagrams. This is done
by the matrix model-like approach(see footnote 8). Next, under that situation, we
can find an elliptic function. This gives the Seiberg-Witten description. The story
flows in this order below.

For our purpose, it is convenient to rewrite the Nekrasov-type partition func-

tion (4.2 as

z = ) ez,
R
N (@ + (g + - D)
Zn =
" kl=1 m , (5@ + (j —)n))
(ki)=(L.1)
N 2N
U] 1T 92— ma+ (G-, (4.9)

k=1 n=1 (i,j)eR

where

. {(,0 if N is odd (4.10)

| ¢+3 if Niseven”
Now we introduce a functiof(z; ) which satisfies a dierence equation

Yz + T h) +y(z— T h) - 2y(zF) = In 191(%) (4.11)
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and which has the expansion(see appendix A for more details)
Y(Zh) = Z 792y,(2). (4.12)
g=0
Most importantly, we have the fact

Y@ =In 01(%). (4.13)

Then, using this function, we can rewrifg as

2N
R = exp[—%fdzdwf’(z)f"(w)y(z—w;h)+%Zfdzf”(z)y(z—mn;h)
n=1

N 2N
+ Zy(ak—aa;h)—ZZy(ak—w;h)], (4.14)
kl=1 k=1 n=1

where the integrals are defined by the Cauchy’s principal value ones. The function

f(2) which is called gorofile functionor its second derivative

N R
1@ = D | > (12— ac—hug — i+ 1) - |z— a— A — 1))
k=1L i=1
+z—a + hf(Rk)I],
N R
'@ = 2)| ) (6z—ac—Tiui —i+1)) - 62— & — il — i)
k=1L i=1

52— A+ hf(Rk»)]

N 00
= ZZ[Z(é(Z_ak_h(/Jk,i —i+1))-6(z— ax — A(ux; — 1))

k=1L i=1

—0(z—ac+nh(i — 1))+ 6(z— a — hi)) + 6(z— &) (4.15)

knows Young diagrams mainly contributing to the partition functiddd) since
the delta functions within the profile function characterise the shapes of1&em]

Such a functionf”(z) can be viewed as a density function in matrix model. We
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assume that they are separated from each otherz keg, be points where the
delta functions take valueSy be the local support around them, antheir union
C = UN, Cr. Then it follows that

a = ; f 28" (2)dz,

Rl = fdzif"(z) ZN:
k=1

Then the original partition functio(9) can be approximated by an integral over
the space of the delta functions

(4.16)

NI;@’N

~ 77 AN 0
~ f Df"d™1exp( 2h2%+0(h )). (4.17)

where

2N
7l 4l = 5 [ dzawr @ voz-w+ Y [ dzt@ytz-m)

N L2
4 dzZf"” @
+7r|<p fz (2 - ;2
N
+2Zak(% dzzf'(2) - &), (4.18)

k=1 Ck

where the integrals of the first line are defined by the Cauchy’s principal value ones
and we have introduced Lagrange multipligggaking account of the constraints
(4.19. Here we have to care about the functigg which is slightly diferent

from the prepotentiaFy as we will see later.

In this situation, we take the thermodynamic limiit— 0. Then, there are
some dominant Young diagrams .14 and the delta functions know them.
We evaluate the partition functiod.'d) by the saddle point approximation. We
obtain, by the variation aofy with respect tof’(2)

2N
fdwf”(w)yo(z - W) — Z yo(z—my) —7igZ - 3z=0, zeCr (4.19)
¢ n=1

This saddle point equation can be viewed asltiog equationn matrix model.
We would like to solve this equation but it is generically a big problem. Here we
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introduce an analytic function

2N
0@ = [ Wy wdw= ) yiz-m)
n=1

2N
144 B — rrh
- fcf (w)|nﬂ1(22nw)dw—;|nﬁl(22n ) (4.20)

We use this function instead df’ to solve the saddle point equation. Moreover,
recalling matrix model, we define the resolver{) using the function above as

w(2) .= Q' (2. (4.21)

By this definition, we called the functidd(z) theantiderivative of the resolvent
in the papelly]. Then the functionf” is recovered as

27if"(2) = w(z— i€) — w(z+i€), zeC, (4.22)

wheree = §zis an infinitesimal deformation along the cuts.
We consider the second derivative of the saddle point equddidi® (with
respect t@

%(Q(z— i€) + Q(z+ie)) - 27y =0, zeC. (4.23)

We now solve this. To do it, we introduce a meromorphic function on the torus,
whose poles are at=m,

G(2) := X7 4 g A+2m?, (4.24)

whilst the functionQ(z) has logarithmic branch points as well as square root
branch points. By the conditio®{4), G(2) is doubly periodic, i.e. it is an el-
liptic function of order A on the torus. Using this function, the resolvent can be
written as

_ G'(9
VGR@ +2)G@) -2
Let us count the number of the branch points. SiG¢g) + 2 have AN branch

points each¢w(2) has totally AN branch points. However, the actualz) should
have N branch points. This mismatch is resolved if the function

w(?)

(4.25)

= cosH (%(Q(z) - 27i§)) (4.26)
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hasN zeroes of multiplicity two instead off2 simple zeroes. The singularities of
H(2) are the single poles at= m,. Such an elliptic function is determined as

HE = P2 _ (TN, 91(5%)y?

= <o =X FYES (4.27)

wherekx and i are some constants. The locations of zeroes and poles have to
satisfy

N 2N
22@-2%:0 (4.28)
=1 n=1

Here the equality should be understood modulo periods of the torus. Then the
antiderivativeQ)(2) is obtained as

Q2 = 2In(VH@ + VH(@ - 1) + 27i¢, (4.29)
and therefore, the resolvent is obtained as

20, VA
VH@ -1

Finally, we make a comment on the constantThe functionf” has to satisfy
the constraint4.16). In terms of the resolvent, it is expressed as

w(2) = (4.30)

a = % 9§k zw(2)dz (4.31)

This holds ifw(2) satisfies
w@—z+ie) =w(ax+z+ie) for ax+ze Cx. (4.32)
This holds if the functiorH(2) satisfies

VH(@ -2 = —H(a +2) for a+z€Cy. (4.33)

By requiring this property, the values gf are fixed.
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4.2 The case of E-string theory

We here focus on the case of E-string theory, i.e. withBjglobal symmetry. In
this case, the setup is given by

N=4, ¢=0,n,—n—nt,nt), my=(0,0,0,0) (4.34)
or[13
N=3 &=wx=(-n-nr,n7r), my,=(0,0,0). (4.35)

We here choose the latter. Then the functi®(® andQ(z) are expressed as

). Q@ = 01(%)6. (4.36)

3
P@ = i [ | ha(-
k=1

Therefore the functiofd(2) is written as
1
H(2) = —Zug)’(z)z, (4.37)

where we have used the identity

9@ =n | | Pz )2. (4.38)
k=1

Heregp’(2) is the derivative of the Weierstrass’ elliptic function apd= n(r) the
Jacobi eta function. Also, we have defined the paramedesr

4k
Then the resolvent is written as
280”(2)

w(2) = (4.40)

This Riemann surface has three cuts near wy, and the three cuts shrinks as

lu] increases. In particular, whanis sent to infinity, all cuts disappear and the
Riemann surface becomes the torus. This is reminiscent of the classical limit of
the Seiberg-Witten curvél(l) and therefore lets us identifywith the Coulomb
branch moduli parameter.
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Next we would like to consider the Seiberg-Witten description, i.eathend
B-cycle integrals. We first consider tlecycle integral. To do this, we use the

following fact
= 95 in (2

whereC,(7) is some function inr. An important thing is not the explicit form
of C4(7) but thatC,(7) is independent ofv and invariant under continuous defor-
mation of the integration contour. This fact can be shown as follows: since the
theta function is quasi-periodit; (z + 1) = —9,(2), the functlon -Indy (5 W)2 g
single-valued modul@ along a loop belonging to the cycte Recall also that
the theta function is regular fda] < oo, so that the integral is invariant under the
continuous deformation of the loop.

Now we use the facld(4]) with the function@.20). And also we knowf” to
be a set of the delta functions fro#.15. Hence we obtain

dz Ci(r) modZ, (4.41)

1 1 ., Z-Ww
5 9§Q(z)dz = %ﬁ Cf (W) In 9 > )dwdz
1 2N z—m,
_ ﬁggzlnﬁl( )Jdz modz,
n=
Q(z)dz = 0 modZ, (4.42)

a2

whereC;’s cancel with each other. Here using the relation betvigi@handH(2),

4.29, we obtain

¢= >3 Sgln \/H(z) + VH(@ - 1)dz modZ. (4.43)

Now we have arrived at the important stage where we give the Seiberg-Witten
description explicitly. Recalling that the functidd(2) includes the Coulomb
moduli parameten, we diferentiate the Higgs ve(43 with respect tau:

(4.44)

Op _ [ 56 dz

ou  4n2uJ, J1— H(Z)—l'
Note that this is notféected by the dierence betweep andy = ¢ + % In the
case of the E-string theory with tH& global symmetry, the functiokl(2) was
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given by B.37). Therefore we get

8_(/; o ¢'(2dz
ou  4Ar2uJ, o (@2 + dut

The Seiberg-Witten curve should be given as the Riemann surface of the integrand.
However, we have to pay attention to that the double-periodic sheet has three cuts
nearz = wyx and we have two copies of it. Hence, whilst the Seiberg-Witten curve

is of genus one, the Riemann surface of the integrand is of genus four. To solve
this problem, we use the identity

(4.45)

2 s Ea(7) _ Es(7)
9@ = 49 - 590 - ¢ (4.46)
and perform a change of variables as
0(2) = u2x. (4.47)
Then B.45) is expressed as
d¢ _ [ dx
w Py (4.48)
wherea’is the image ofr by the mapl4.47) andy is given by
poae- B0 B 4 (4.49)

12 216

This is exactly the Seiberg-Witten curve for the E-string thedil)( Thus one
of the Seiberg-Witten description has been reproduced from the Nekrasov-type
partition function.

Next we would like to reproduce the relation between the prepotential and
the Higgs vey, i.e. consider the beta-cycle integral. To do this, we need two
ingredients: the modular transformation law of the theta function

2
0a(2.7) = e exp( — 2oy, ) (4.50)
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and the facti4.47) with the modulus-1/7. Then we can show that

1 20+21T Z—W
i J, o5

20+21T
- f (z— w)?dz

3.2
8m3t2 J,,

1 Zo+2rT z-w 1 3 1
+— InY¥ ,——)dz+ - - —1In
27T2|TL 1( 2nt T) 4  2ni T

1 20+21T 1 3
= ——f (z—-w)’dz+ Cl( - —) +>—-—Int modZ
Vo)

8r312 4 277

V4
= —E_V\/2 (E + 271'_2)W+ Cz(ZQ,T) mOdZ, (451)

whereC,(zy, 7) is some function irgy andr. Putting this, {.15) and @.20 to-
gether, we obtain

20+21T
1. f Q(2)dz

47r2IT %
_ f wzf”(w)dw+ 2 f wf”(w)dw modZ
8n?r 4
i 8F0 N S
_ 8ﬂ3T a5t .; )kZ;ak modZ. (4.52)

C,’'s cancel with each other in the first equality and the integrals with resp&ct to
are defined by the Caucy’s principal value ones. To show the second equality, we

have used4.16) and @.18 with

E s I C B I (TN
extremum 880 ” 5f” ¢ 690 extremum a(P r extremum

dp Oy
(4.53)

Here 0%Fo/0¢)¢» denotes the partial derivative & with respect tap, holding f”
constant.

Now we focus on the E-string theory with tiig global symmetry. Since the
setup

N = 3a {k = ak = (Uk, nﬂh = (07 O’ 0)9 (4'54)
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the integrall[@.52 becomes

20+21T
1 f Q(2dz

>
4Ariit Jyy
3

i ,O0F .
_ #(8_; + 2ni ; Wf)- (4.55)

Hence the integral does not depend on the choicg ahd this result makes the
integral the beta-cycle one, i.e.

1

i OF . .
= %(%+2ﬂ|;wﬁ). (4.56)

Now we have arrived at the point where we can obtain the Seiberg-Witten descrip-
tion. Firstly, using[@.29, the I.h.s. of @.58) is written as

1 1 ~
ye SéQ(z)dz = 5 9gln(\/H(z) + VH@ - Ddz+§

1
——@p + ¢ + const, (4.57)
-

where we have identified thaual Higgs vevep as

¥p = # 9§In(\/H(z) + y/H(2 - 1)dz+ const (4.58)

from the analogy 0f4.43. Here const.’s are some functionszibut are indepen-
dent ofp. Secondly, the summation term of the r.h.s.[@Bg) can be written as
const. becausey consists ofr andr only. Puttinig all together, hence, we finally
obtain

Fo

= 8% (¢p — T¢) + const. (4.59)
@

The Seiberg-Witten description has completely been reproduced in here.
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5 The Generalisation to the Cases with Wilson Lines

In the previous section, we proved that the Nekrasov-type partition function for
E-string theory is correct, namely starting the Nekrasov-type partition function
we can reproduce the Seiberg-Witten description. E-string theory we have seen
is the simplest case in the sense that the theory does not have any Wilson lines.
Therefore the natural question arises: is the Nekrasov-type partition function also
correct in the cases with Wilson lines? In this section, we answer the question
positivelyin a sense that the Nekrasov-type partition function with Wilson lines
can reproduces the Seiberg-Witamrve However, as mentioned in section 3, the
higher order terms in the expansion cannot interpret the graviphoton expansion
as in the original Nekrasov partition function. Hence we stress again that we focus
on the genus zero part. We discuss the cases with three Wilson lines firstly and the
cases with four Wilson lines secondly. And also, we focus only on the alpha-cycle

integral @.44).

5.1 The cases with three Wilson lines

In these cases, we chob%e
N=3 &=wk M= (2rmy,2xmp, 21mg). (5.1)
Then the functiorH(2) is written as

(Hk 1 91(5)?
H@ =
(2 anl ﬂl(z—zzz:rrrh)
D1(2 )20 (BE )20 ()
ﬁ (Z—27rm1)219 (Z—27rm2)2ﬂ (Z—Zﬂmg)Zﬁ (Z+27rm1)219 (Z+27rmz)2ﬂ (Z+2n'm3)2

(5.2)

We need two tools here. One, we need the transformation laws of the theta func-
tions which are given in Appendix B for the numerator. And two, we need the
identity

Z+W) (Z—W
1

ﬁl( 2 2

)= —U_Gﬁl(é)zﬂl(%)z(m@) — p(W)) (5.3)

18| this section, we take the Wilson lines to be mptbut 2rm, for convenience.
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for the denominator. Then we can express the funcfioB (vritten in terms of
the theta functions which depend pas the Weierstrags-functions and obtain

HE) = kn°p' (2)?
qY/291(my)*91(mp)*91(Me)*(9(2) — 9(21my))(9(2) — p(21Me))(9(2) — (27Me))
_ un°’(2)*
A9 ()20 (Mp)201(Me)2(9(2) — p(2rm))(9(2) — 9(21))(9(2) — p(2rm))”

(5.4)

where we have used the moduli paramefe89. To proceed the story following
the last section, we would like to identify the Seiberg-Witten curve in the alpha-
cycle integralff.49) in the present case. The integrand of the alpha-cycle integral
(4.49 is now written as

dz _ VH(2)dz _ ¢’ (2dz
VI-H@T VH@-1 p@2-aM(p -9y - 929 - 93)

(5.5)

where

o(m) %wﬁxml)zﬁl(mzﬂlm)z,

P = p(2mm). (5.6)

By a change of variableg(z) = x, we identify this integrand written in terms of
the variablex with the Seiberg-Witten curve, i.e. we put

Yo

9 (2% - a(M(p(D — p1) (@) — 92)(P(2) - 93)
= (4-a)p°+ac1p® — (Es + aor)p — (Es — o), (5.7)

where

O1= Q1+ P2+ 03, 02:= 9192 + 9293 + 9193, 03 = 919203, (5.8)

and we have dropped the dbeients of E, and Eg, namely we defined, :=

E4/12 andEj := Es/216 and then we dropped the prime. For later convenience,
we change the variableinto x below. We have to now recall that the sheet which
the functions are defined has three cuts and we have two copies of them. Hence
the curvelb.7) is of genus four. To obtain the genus one curve, taking into account
that the curve.7) is in CP?, we perform the appropriate change of variables as

X:=a2(4-a)p, ¥:=204-a)a 3y (5.9)
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More concretely and explicitly, we follow the computation minutely and so we
take five steps to make the curgd) be the correct Seiberg-Witten curve: one is

to redefine the variables, two to eliminate the second-order term, three to redefine
the variables, four to didvide hy® and redefine the variables to rewriténto the
modulusu, and five to express the curve in terms of the modulug-irst step,

we multiply both sides off.7) by (4 — «)? and perform a change of variables

X = (4 - a)p:
(4 - a)Y3 = X+ ao1Xé — (E4 + ao2)(4 — @)% — (4 — @)*(Es — ao3). (5.10)

Second step, we perform a shig = X — ao1/3 to eliminate the square term of
Xo:

Q0 1\3 QO 1\2
(4- )%y = (X - Tl) + 0/0'1(X - Tl)
~(Eq + aoy)(4 - a)(x - “;;1) — (4 - @)X(Eg — a0s).
(5.11)
From this, we get the curve
(4-a)=x-fx-8 (5.12)

Third step, multiplying both sides db(12) by four and redefining the variabjg
asy := 2(4-— a)yo, we get the curve

Y2 =4C - fx—g, (5.13)

wheref := 4f andg := 4§;
2

4'0-1 2
f 16E4 + (160, — 4E4)a + (? — 4o3)a?,

16
g = 64E¢ — (E Esoq + 32E¢ + 640'3)&’

+

4 16 8 4
(4E6 + §E40'1 — 30'10'2 + 320'3)0’2 - (2—70'? - 50'10'2 + 40'3)0’3.
(5.14)

Fourth step, dividing both side dB{I3 by b, the curve.13 becomes

L g2 2_ 2 . (5.15)



We redefine the variables as
¥:=vy/a®, X:=x/a (5.16)
Then the curved.15) is written as
y=4%-f'%-¢g, (5.17)

wheref’ := f/o* andg’ := g/a®:

40.2
f = 16Esa*+ (1605 — 4E5)a "3 + (?1 — 4o2)a?,

16
g = 64Eg®- (EEW1 + 32E + 64073)a
4 16 8 4
+ (4E6 + §E40'1 - 30'10'2 + 320'3)0_4 - (2—70'2 - 50'10'2 + 40'3)0’_3.

(5.18)

Thus far, we have taken four steps to get the correct Seiberg-Witten curve, i.e. we
wanted the genus one curve, the Weierstrass form, and the expression in terms of
the modulusu as the ingredients. To rewrite into the modulusu is the rest of
the steps. Fifth step, finally, we do it. However, that we have stopped here is not
that we waste the time because by this step an important result is shown. Now we
recalla(m) := 49, (my)?91(my)%91(mg)?/un'®. So we define the new modulusas
1 7718
Ui=a" = u. 5.19
G020 5(me)? (5:49)

Then £.19 is rewritten as

2

4o
f = 165" + (160 — 4E)0° + (5 - 400,

16
g 64E4T° — (§E4al + 32E¢ + 6405)il°
4 16 o 8 4 ~
(4E6 + §E40'1 - 30'10'2 + 320'3)[]4 - (2—70'2 - 50'10'2 + 40'3)U3.
(5.20)

—+

This curve is the Seiberg-Witten curve we wanted. We can check the correctness
by comparing this curve with the curve obtained [#€][ i.e. this curve is in
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agreement with the curve obtained BE[XZ. However, the author guess that the
judicious reader notices that this curfeZ0 is divergent atn, = 0. To solve the
problem, we take one step further. We recall the new mod&dg) The curve

is written in terms of the new modulus. The one step we need is to take the new
modulusu’back to the old modulus. Namely, we rewrite the curv& (20 as

18 18

f' = 16E4( ! )" + (160, — 4ES)( ] )

F1 (e 205 (mp) D3 (me)? B2 (e )20, (M9 (m)?
e e e |
3 291 () 291 (Mp)201 (mg)2 7
o L 6 (16 U 5
9 = O ) (g Bt 32 003y )
4 16 e 4
* (4E6 - §E40—1 BN 32U3)(191(m1)2191](7%)2191(m3)2 u)
8 , 4 i U 3 5.22
(2—70'1 ~ 30102 + 3)(ﬂ1(m1)2191(mz)2191(ms)2 u) : (5.22)

Then multiplying the whole of the curve with these fiagents by (41 (my)?91(mp)?91(mg)?/n*8)¢,
we obtain

(401(m1)2191(rnz)201(rns)2)6§,2

S 4( 491 (my) 201 (mp) %9 1(”‘3)2)6;(2

]718

( 4191(m1)2’l9]]_7(;:2)2191(n]3)2 )6 f ’ >~<

(4191(”11)215*1(”12)2?9 1(mg)?

6 /
i )g. (5.23)

17For the perfect match up to the numerical factors, note that thereince between the nota-
tions is

16E2urs: fé\llohri’s, 64Egurs: g(l;/lohri’s’ 4ppurs: S{)il\llohri’s. (5_21)

In addition, we have two more terms82E¢li® and 323" and a dfferent coéicient of —64o-50°
compared with the Mohri's result (9.18) i2€]. But we checked that those two terms and the
codficient of (9.18) have been stolen.
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Finally, we redefine the variables and the ffimgents as

v - (4ﬁ1(m1)2ﬁ;(lr:z)2ﬂ1(rns)2)3y’ - (401(m1)219?7(1r£lz)201(%)2)2)~(,
2 2 2 2 2 2
F o (4191(”11) 0177(12‘2) P1(ms) )4f,, G = (4191(”\1) 191,7(1?2) J1(ms) )69,_

(5.24)
Then we obtain

Y2 = 4X®-FX-G,
2

4o
F = 16E.U* + (1605 — 4E) e’ (MW + (?1 — 4ora)e/ (M),

1
G = 64E6U6 - (§E40'1 + 32E5 + 640'3)@’(m)u5

4 16 8 4
+ (4E6 + §E40'1 - 30’10’2 + 320'3)(l’,(m 2U4 - (2—70'§ - :—))0'10'2 + 40'3)(1’,(m 3U3,

491 (my) 201 (my) 291 (mg)?

a'(m) = , (i.e.a(m) = o’(M)/u). (5.25)

7718

We can easily see that this curve is not divergemhat O and gives the Seiberg-
Witten curve for the E-string theory with thgg global symmetry. We can take
the limit limy,_o p(2rm)¥1(mM)? = 1°. By using this in[6.25), we obtain

Y? = 4X3 — 16E,u*X — 64E¢U° + 256.°, (5.26)

where the last term 256 comes from the term-64o3a’(m)u® within G. This
is precisely the Seiberg-Witten curve for the E-string theory withEbelobal
symmetr{&,

By the discussion we have seen thus far, it was shown that the Nekrasov-type
partition function gives the Seiberg-Witten curves also in the cases with three
Wilson lines. And also, it was shown that, comparing our result with the result
obtained in 26], ours explicitly includes the dependence of the Seiberg-Witten
curve on the Wilson lines.

18For the reader who does not like thédrent numerical factors, the redefiniti¥fey .= Xoa/4
is required.
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5.2 The cases with four Wilson lines

In these cases, we choose the setup as
N=4 &=(0w) m=(2rmy,2rm,, 2rmg, 2rmy). (5.27)
This is the most general setup. The functld(z) is given by
K(H‘k‘zl 91(%5%))?
[To, (52

D1(£)291(5E5) 291 (BEEE) 20, (B )?

K .
92(EZm) -y (T )9 (B - - 9 (25E)

H()

2n 2n
(5.28)
Following the discussion in the previous subsection, we obtain
Yo = 9@+ (M@ - 900 - 92)(9@D — 93)(©(2) — 94)
= 4503— E450— EG+a/(go4—0'1503+0'2502—03g)+0'4), (529)
where
4
a(m) = Wﬁl(ml)zﬂl(”b)zﬂl(nb)zﬁl(rm)z,
o1 = @1+ @2+ 93+ Pa,
02 = @192+ 9293 + P304 + Y193 + Y194 + P24,
03 = 919203+ 919294 + 919394 + P2394,
04 = P1920394. (5.30)

This curve (.29 is superficially a quartic curve. To get a cubic curve, we need
two tools. Firstly, we restore the homogeneous coordinaf@s as

X1 =g, X =Y, X #1 (5.31)
Secondly, we recall the fact that the curfge2D is

X0X5 = 4% — Eaxgxa — Eexg (5.32)

¥In the cases with three Wilson lines we saw in the previous subsection, one of the homoge-
neous coordinateg was just one. So we didn’t have to use the homogeneous coordinates.
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atu = co. By using these tools, the quartic curled9 is rewritten as

Xoxg = 4Xi - E4X(2)X]_ - Eg)%
+ a((X1/%0)(X0%5 + EaXd%1 + EeX3) /4 — o1 (XoX3 + EaxoXy + EgX3) /4 + 02X0X2 + 04X3).
(5.33)

This curve is arranged &s

(30X — aX)X5 = 16X + arXoX] + apX3Xy + agX3, (5.34)
where
a = 4+aoy,
y = aF4+4dao,,
A = —4E4+Q’E6—0’E40'1—4Q’0'3,
az = —4Eg - aEgo1 + daos. (535)

We here do not continue to compute this anymore. Note, however, that the quar-
tic curve B£.29 already indicates that the Nekrasov-type partition function re-
produces the Seiberg-Witten cuUfe We do not explicitly give the Seiberg-
Witten curve in this case but we make some comments on that we can reproduce
the Seiberg-Witten curve from the Nekrasov-type partition function from another
viewpoint in the next subsection.

5.3 The derivation of theS L(3, C) invariant curve

Finally, in this subsection, we see another derivation of the Seiberg-Witten curves
in the cases with three and four Wilson lines. In this section, we have seen that
the elliptic functionH(2) gave the cubic or quartic curve and they led us to the
Seiberg-Witten curves. In particular, we concretely derived the Seiberg-Witten
curve £.25 from the cubic curvedg. 7). There is another derivation of the Seiberg-
Witten curve. It is a mathematical formula and does not need the technical cal-
culation. However, it becomes complicated for the general case. We here do not
give the explanation of the formula and do extract the result, so for the details see
[10, 26]. We follow the discussion oiZ6] here.

20ynlike the cases with three Wilson lines, the calculations in the cases with four Wilson lines
make the author feel blue. If the reader wants to check the calculations, they require biting the
bullet.

2Actually, we can compare the quartic curve with the result obtain€2@h [
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The cubic curve® + aQ = 0 leads us to the Seiberg-Witten curve. In order
for this Seiberg-Witten curve to be correct, it must®i3, C) invariant. Such a
curve is given by a map

R XX — 4G + X5x1 + 9%, (5.36)

whereR := P + aQ is defined as

R:= Z (%)apqrxgx(l‘xg. (5.37)

p+g+r=3

Then the cofficientsa,, determine the cd&cientsf andg of the Seiberg-Witten
curve. We do not list the formula explicitly so see Appendix A28][

We here give the Seiberg-Witten curve by using the result of the formula.
Firstly, we do in the case with three Wilson lines. The cubic curv.ig:(

R=P+aQ= x0x§ -(4- a)Xi - cw'lxoxi + (B4 + cwz)xéxl + (Ee — ao3).
(5.38)

In terms of the modulus, this is written as

UR=UP+ Q = UxpX5 — (4u — 1) — 01 X0%X¢ + (UE4 + 02)X5% + (UEs — 073).
(5.39)

Note, here, that we have absorbed the other factorsunte. we have denoted
u/e’ = @ just byu. And also, we denoteRby R from now on. The coficients
Apqr are

a0, = U, apgzp=1-4u, 3aipn=-01,
38.210 = UE4 + 0, dzoo = UE@ — 03. (540)
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Then the cofficientsf andg are reproduced by

f~8

a8 0, — 80308210850,
= (-0r1/3)(u/3)* = (1 - 4u)((UE4 + 072)/3)(u/3)

1
= 8—1(12E4u4 — 3E4U° + 1205U° + 02U — 307,UP), (5.41)

g~7T = 8aj,i@,+ 4830085308502 — 1281208210850,8030
= 8(-01/3)*(u/3)® + 4(UEs — 073)(1 - 4u)*(u/3)’
— 12(-01/3)((UE4 + 02)/3) (u/3)*(1 - 4u)

1
= 8—1(12- 16Eu® — 12 160-5U° — 12- 8EgU° — 160, E4U°

8
+ 12Equ* + 12 803u* + 40 E4u* — 16071075U” - §a§u3 — 1203u°% + 401<Tzu3),

(5.42)

where we have extractefl and 7 from [26]. We arrive at the Seiberg-Witten
curve 6.20 with the scalingd = 108S andg = 277". We also arrive aff.25) by
multiplying the whole thing byr’®, of course.

Next, we move on to the case with four Wilson lines. In this case, the cubic

curve is given by$.34):

R=P+aQ ApXoX5 — aX1X5 — 1655 — ayXoX] — apX3Xy — agXy
(4 + @o1)%Xa — aX X5 — 16X — a(E4 + 402)%oX5
(4E4 —aBg + aEq0q + 4&0’3)X§X1 + (4E6 + aBgo1 — 4&0’4))(8

(5.43)

+

In terms of the modulus, it is written as

UR=UP+Q = (4U+01)XXs — X1 X5 — 16U — (Ej4 + 40mp)XoXS
+ (4E4U - Ee + Eqoq + 40'3)XSX1 + (4E6U + E60'1 - 40'4)X8
(5.44)

Here we (have) use(d) the same notation above. Thiiceatsa,, are

3a102
3az10

4u+ oy, 3ap2=-1, apo=-16U, 3a0=—(Es+40y),
4E4u — Eg + Eqoq + 403, azgo = 4EeU + Egor1 — 4074, (545)
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Then the cofficientsf andg are given by

f~8

—asooalzoaglz — 8300903021028012 — 8210812021028012
85108612 — 03082108507 + 85208707
~(4Esu + Egory + 40a)(—~(Ea + 402))(-1/3)?
(4EsU + Egory — 4o4)(—16u)((4u + 01)/3)(=1/3)
((4Equ — Es + Eq01 + 4073)/3)(—(Ea + 4072)/3)((4U + 01)/3)(-1/3)
((4Eau - Ee + Eaory + 409) /3)(-1/3)°
(—16U)((4E4U — Eg + E40y + 4073)/3)((4u + 071) /3)°
(—(Es + 402) /3)*((4u + 1) /3,
(5.46)

43(3)125‘%003030 + 85@203?02 + 833123310 + 433003(2)303302
12841 20821085 0,8030 — 12801281208300803082p — 12331,8300203021028210
1230123‘%203-2103-%02 + 2430123%103-%023-030 - 123(3)1233003-2103-120
2483 1,84 ,033008102 — 1283 ,8120951 0102
4(-1/3)%((4Eeu + Egory — 4074)*(—16u) + 8(—(E4 + 4072)/3)*((4u + 01) /3)°
8(-1/3)3((4E4u — Eg + E4oy + 4073)/3)°
4(4Esu + Egor1 — 404)(-16U)%((4u + 01)/3)°
12(~(E4 + 402)/3)((4E4u — Eg + Eqory + 4073)/3)((4u + 071) /3)*(— 16u)
12(=1/3)(=(E4 + 405)/3)(4Egu + Ego1 — 4om4)(—16u)((4u + 01)/3)
12(=1/3Y(4EsuU + Egory — 404)(—16U)((4U + 01)/3)((A4E4u — Eg + Eacy + 4073)/3)
12(-1/3)(—(E4 + 402)/3*((4E4u — Eg + E40ry + 4073)/3)((4u + 071) /3)?
24(-1/3)((4E4u — Eg + Eqoy + 403)/3)%((4u + 01) /3)(—16u)
12(-1/3)*(4Eeu + Egory — 404)((4E4u — Eg + Eqoy + 403)/3)(—(E4 + 402)/3)
24(-1/3)(~(E4 + 402) /3 (4EcU + Egory — 4ora)((4u + 01)/3)
12(-1/3)%(~(E4 + 402) /3)((4E4u — Eg + E40r1 + 4073)/3)*((4u + 071)/3).

(5.47)

We stop computing this anymore here but note that the ordeirof is at most
fourth and that irg is at most sextic.

We have seen the derivation of the Seiberg-Witten curve from the cubic curve
by using the mathematical formula. However, it is so complicated to obtain ex-
plicitly the Seiberg-Witten curve for more general case even if we use the mathe-
matical formul&2,

2|n fact, in the case with four Wilson lines, it is said, Bf], that “ the Weierstrass form of the
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6 Examples of the Cases with the Broken Symme-
tries

We have seen in the last two sections the way to obtain the Seiberg-Witten de-
scription from the Nekrasov-type partition function, and its generalisation. In this
section, we see the other examples with the broken symmatslesfFor more
detail discussion for each case, s&d] [

We reconfirm the procedure again. It is simple: firstly we give the elliptic
function H(2) from the setup which is fixed by some conditions for parameters
we have seen in the section five, and secondly we find the appropriate change of
variables because we want an elliptic curve with genus one.

We explain our convention we use here. Our Nekrasov-type partition func-
tion is the special case of the elliptic generalisation of the Nekrasov partition
function25, (13, [14]. The special cases where the Wilson line parameters are set
tom, = (O, % my, my) can be described by the Nekrasov-type partition functions
for the gauge theories with the fewer colo1#jf

1 1+77 1 1
SU4)( 1. . .
Z = ZNfz(g)(h!Sc)’T’ O’ 57 _T’ E’O’ 57 ml, rnZ90,_§9 _ml9 _rnZ)
1 1+7 71 1
_ SUB)( . . .
- ZNf:6 (h1 o, T, Ea _77 éa é’ My, My, _E’ —y, _mZ)
l1+7 7
23 o mi === 5, mp, =y, —mp). (6.1)

Note that for our convention in this paper the Wilson line parameters are set to
m, = (0, z, 2rmy, 27my) multiplied by 2r, so the half-periods of the torus and the
Wilson lines in the partition functions above should be multiplied by Zhe
cases with the broken symmetries® A;, Es @ A; andDg are the cases and are
discussed below.

6.1 E;ro A

In this case, the setup is given by

N=2 =uwk1=(-r-nr,n7t), my=(0,0). (6.2)

cubic pencilP + tQ is so complicated that we do not attempt to describe it Here.
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Then the elliptic functiorH(z) becomes

KGTilﬂK%§»2
[They (5
ﬂl(z+7;nr)2ﬁl(z—_277:1)2
h(z)*
P3(£)*0a(£)?
= —kq VPR 6.3
q () (6:3)

Here using the identitie®3(8) and B.9), (6.3 is written as

H(2)

-1/2 —12&2_21);)/(2)2
2(5)
u 97  ¢'(2?
42022 9(2) - &
u 939395 (2
16 92 9(@-e
ui; o' (2)?

= —Kq

=! , 6.4
16 v - 4
where in the last linel is defined in[€.39 but with opposite sign.
The appropriate change of variables is given by
02— e =u’x (6.5)
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Then the alpha-cycle integral is expressed as

dp i 95 dz
ou  4ruJ, Vi—H-L
B i 95 dz
- 2
U J1-1660(2) - en) ui33e (22
B i 36 ¢’ (2dz
- 2
U o @2 - 16(0(2) - en)/ute;
B i 95 ¢’ (2dz
= 73
e a0 - e)(9(@) - e)(9(d) - &) - 166 - er)/usZH’
i u-2dx
— a0 ),
& \/4u—2x(u—2x + e, — &) (Uu2X + e — e3) — 16x/uP¥59%
B i 36 dx
= —
4ru Js \/4u-2x3 +4(26, — & — €)% + 4(e1 — &) (&1 — €3)UPX — 16UX/ 9292
3 [ 96‘ dx
= O ,
an® J \/4x3 +4(2e; — & — e3)UPX? + 4(e1 — &) (1 — e3)utx — 16ux/9593
(6.6)
Hence we obtain
2.2 4, 16U%X
Y = 4 + 4(2e; — & — ex)UPX + 4(er — &) (er — ex)utx - gz (6.7)
3V4
Here using[B.9), the specific values &, we get
1 1 16u°
Vo= A3+ S(3095 + 30DUDKE + (=15 + U5 + 20%) (5 + 205 + Futx — 62” ZX
3 36 9292
1 16ux
= 4 + (95 + IYUAE + Z9505utx — :
4 9202
(6.8)

This is in agreement with the Seiberg-Witten curve in the case with the global
symmetryE; @ A;.
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6.2 Esd A
This case is given by

N=3 &=we M= (21/3 21/3, 21/3). (6.9)
Then the elliptic functiorH(z) becomes

K(HE=1 91(5%))>
oy (52
D1(5E)* 01 (B )9, (BE)?
(£ - 2P0 (E + 3)°

9o 2)205(Z)20a(Z)?
D1(Z — 3)°0(Z +3)°

H@) =

Here using the identity

(g~ Pz +3) = - od - d(2). 6D
where
s 1= 95(0, 20)95(0, 67) + 9,(0, 27)9,(0, 67), (6.12)
(©.10 is rewritten as
e 92(5)?03(5: ) 04(%)?

= K0 27n(30)%(p(2) — 303)%01(2)°/n(7)*8

_1/2 02 ﬂ2(2_31)2ﬂ3(2_2ﬂ)2ﬁ4(§)2
27(0(2) - 1a2)391(2)’

(6.13)
where we have defined
n(r)°
= . 14
SMTEER ©19
Here using the identityB.8), we obtain
’ 2
H(2) = xa /252 ©'(2
@ = e - Ly
2 1 Z 2
. W@ (6.15)

108((2) — 2a2)®
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In the present case, the appropriate change of variables is given by

1, X
2)--a3=— . 6.16
Therefore the alpha-cycle integral becomes

9o _ 95 Z
ou  4n2 Vi—H-1

4’”‘95 J1- (1086 - g)S/uﬁgga 27
(z)dz

47r2u 95, \/50’(2)2 — (108@(2) — 7a2)3/uB?)
: ¢’'(2dz

4r2u 9§ \/450(2)3 - 20(2 - 2= - (108(p(2) — 2a2)3/us?)

|

4n2u 9§ u(u — 275;%)
1

\/4(u(u 27,3 2) 3)3 12 u(u— 27,3 2) 3) 216 (108u4132(u 27’3 2)3)
i dx

2 / £l
an* Ja uW\/4(x/W + 02/4)% — Eo(x/W + a2/4)/12 - E/216— 108 /us2W3

(6.17)

where in the last line we have defined

W = u(u - 2785%). (6.18)

45



The Seiberg-Witten curve should be given yy=(the denominatof) It is ex-
pressed as

2
a3

X 3 E, x a3 E¢ 108¢
= WAL £ 3 =22 I8y =5 _

Y = W5+ 2) -nlwt 7)1 uﬁgw3)
42 x3 3uPWadx  uPW2a8

= l\JNX + 3UPalx + 4% +— 6%

WPWExX UW23Es WwWPEs  108ux
12 48 216  BW

uB3 — 27u
_ (ﬁg—w

9&’4—E4
2 22 3 2
)x3+3u 03X + — 5 — WX+ —

Here we consider this term by term. The first term is

u?B2 — 27u u?B2 — 27u
w7 = iz
2_ 07
4 ig — 27)x3 = 4. (6.20)

Nothing worthwhile for the second term but the rest two are technical. For the rest
two, we use the relations

Es = 903 — 8383, Es = —27a3 + 36383 — 865. (6.21)
Then the third term is written as
93 -E4 , 93 — (93 — 8a3Bs) , "
Tu Wx = 12 u(u— 27639)x
2
= §a3ﬁ3u3(u — 273X, (6.22)

and the fourth term is written as
WwW2 o o3Es  Es B ut(u— 278392 a5  a5(9a3 — 8agBs) —27a5 + 36a3B; — 865
8 ( ) - 8 ( 2 6 27 )

4 2P
u*(u— 27659 >

2,6 4
u 27u
22+

- = (6.23)
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Hence the Seiberg-Witten cuni&.L9 is expressed as

2 27 1 27.\2
= 4 + 3U%a2X + —aa(BaU — — JUPX + —(Bsu — — ) u”. 6.24
' X'+ 3 3(,33 2 ) 27(,33 2 ) (6.24)

This is in agreement with the Seiberg-Witten curve in the case with the broken
symmetryEg & A,.

6.3 Dg

This case is given by
N=2 (=uwkyi=(n-nr,nt), m,=(r,0). (6.25)
Then the elliptic functiorH(z) becomes

K(Hﬁ:lﬂl(%&))z
[They D1(50
O (BEHET) 29, (5E0)?
1 (55)*01()?
_ _1/2193(%)2794(%)2
B1(3)?P2(52)?
e 12P(£) ' (@)?
P2(5)*
u A ,
" iy e @

u 12

_ _- n ’ 2
= 190 —ay” @

= _E%@'(Z)Z
64(p(2 —e)> "’

H(2 =

(6.26)

where we have used in the last three lines the relali®f)( The appropriate
change of variables is given by

9(2) — e = U?x (6.27)
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Therefore the alpha-cycle integral becomes
dp i 9€ dz

AT 14 (646 - e /uoie (2

i 95 ¢ (2dz
U Ja [0 @ + (646 — e)?/usipd)

[ 95 dx
ar*u J u? \/4u—2x(u—2x + e — e)(U?x+ e — &) + (64x2/uP9397)
i_ 96‘ dx -
an? J \/4u4x(u—2x + e — &)(U2X + € — &3) + (64ux2/939%)

(6.28)

Amazingly, here, comparing the change of variablg21) with the one in the
E; @ A; casel6.5), and the alpha-cycle integrd.28 with that of that caséq6),
we notice they are very similar. Thus utilising the cuf@eg), we obtain

64ux2
Y 9494
3V4

1
A3 + (95 + IPUPX* + Zﬁg‘ﬁﬁu“x +

64 1
4C + (95 + 0Pu + %)ux? + Zﬁgﬂﬁu“x.

(6.29)

This is in agreement with the Seiberg-Witten curve in the case with the broken
symmetryDs.

Why could we do the comparison, however? We try to interpret it from the
viewpoint of the Dynkin diagram. In E-string side, we took the broken symmetry
asEg — E;® A;. Here we brealDg to Dg — D7 @ A;. These two symmetries
have the infinitesimal structure in common, i ® A; = D;® A;. D ® AL IS
the infinitesimal structure of thelmostwhole Dg but not. The subtle dlierence
changes the last term ii6.9).

7 Conclusion

In this final section, we summarise the stories totally and comment about top-
ics which we have not seen in this thesis. In this thesis, we have reviewed the
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Seiberg-Witten description and the Nekrasov partition function in the ordinary
N = 2 supersymmetric gauge theory in four dimensions and the ones in E-string
theory. Stringy- or supersymmetric gauge theoretical-historically, the worlds are
drastically changed in 1994. Seiberg and Witten completely determined the low-
energy &ective theory, i.e. the prepotential, by using the duality. At least for ten
years since that time, the woddiality has played the central key role in the study
of string theory and supersymmetric gauge th&bry

On the other hand, the various topological field theories which we didn’t dis-
cuss here were develofddAs its application, Nekrasov gave the partition func-
tion formula which directly determines the prepotential and the partition function
from the field content of the theory, without using the duality and the period inte-
grals.

Based on these two main results in fRe= 2 supersymmetric gauge theories
in four dimensions, the supersymmetric gauge theories themselves, string theory,
and M-theory have widely developed. As one of these, it was shown that these
two approaches exist even in E-string theory. In section 3, we have seen that the
elliptic function H(2) gives the profile function and also the Seiberg-Witten de-
scription. This implies that the Nekrasov-type partition function can reproduce
the Seiberg-Witten description in the thermodynamic limit, namely the Nekrasov-
type partition function is correct in the sense. Given the concrete setup, the elliptic
function leads us to the Seiberg-Witten curve. In section 4, this result was gener-
alised to the cases with the Wilson lines. In particular, the Seiberg-Witten curve
in the case with three Wilson lines was given explicitly. As mentioned in Intro-
duction, the Seiberg-Witten curve in the case with three Wilson lines is already
given in [26]. However, unlike that result, our result has explicitly shown the
dependence on the Wilson lines. We would like to attempt to interpret tiiies-di
ence as follows: in26] the Seiberg-Witten curve was obtained by the geometric
engineering approach. As shown in the name, the information of the theory is ex-
tracted from the geometric construction. For example, the cubic or quartic curve
P +tQ = 0 corresponds to it. Theh ~ u but we cannot see anything other
than the information of the modulus On the one hand, recall that the ordinary
Nekrasov partition function includes the Seiberg-Witten description as the special
limit. What we have seen in section 3 is that the Nekrasov-type partition function
is the same as the Nekrasov partition function in that sense, of course. Namely, the

23|n this thesis, we have not seen the toptuality.” It is no exaggeration to say that the duality
has been in the centre of the study of superstring. As the related papers, s&8 49. [
24For the details, see the author’'s master thdg]s|
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Nekrasov-type partition function knovedl the information of the Seiberg-Witten
description. This is why the dependence of the Seiberg-Witten curve on the Wil-
son lines explicitly appeared in our result. This fact is very important. This fact
implies that the Nekrasov-type partition function is the essential tool in E-string
theory as well as the Nekrasov partition function is so in the four-dimensional
N = 2 supersymmetric gauge theofes

Finally, we make some comments on the future works. Firstly, we have seen
that our generalisation is not the genuine generalisation actually. We expect that
more general cases without the restrictmp= —m,,4 are given. Secondly, since
we got the Nekrasov-type partition function, we expect that there exits the AGT
correspondence even in E-string theory. Sure that it would give the highly non-
trivial correspondence if it exists, since the interpretation of the parameters in-
cluded in the Nekrasov-type partition function igfdrent from that of the ones
included in the Nekrasov partition function. However, to tackle this interesting
problem, we need one more step: dividing the paranietato the two deforma-
tion parameters; ;. And thirdly, in connection with it, the worldsheet description
of E-string theory is desired. At present, the worldsheet description escapes from
our investigatioff. This is why we study E-string theory mainly in the viewpoint
of the target space. We believe that the Nekrasov-type partition function leads us
to the new developments of E-string theory.
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A The function y,, (X A)

In this appendix, we briefly summarise the functign,(x; A) we used in section
2 and section 4. This follows the appendix/i?[(and see it for more details).

The functiony,, ,(X; A) is defined as that which satisfies the followingfeli-
ence equation:

A
761,62()(; A) + yél,ez(x — €1~ €, A) - 761,62()( — €1, A) - 761,62()( - €, A) = |Og (;)

(A.1)
Or, more explicitly, the function is defined by
d AS [ dt g X
TA) = — —t° . A.2
Yae(XA) ds’s;or‘(s) 0 tt (et —1)(e=t - 1) (A-2)

In particular, for-¢; = €, = i, we have
Ya(X A) = yona(X; A). (A.3)

This function is characterised by the following property fior 0 together with
the diference equatiofd1):

MOGA) = ) 19 Pyg(X). (A.4)
g=0
More explicitly, all the terms are fixed by the properties as
1, Xy 3,
(¥ = 5xlog(+) - 7%
1 X
1 = -55l0g(+)
11
y2(X) = T 540"
B2
Ye(¥) = . g>1 (A.5)

29(2g — 2) x29-2°
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whereB, is the Bernoulli number
t — B,
— = —t". A.6
eg-1 nZ:; n! (A.6)

B The notations

In this appendix, we summarise the notations and the transformation laws of the
functions we use in this paper.
The Jacobi theta functions are defined as

$1(z7) = 0y (<1)y TRV

nez

92(z,7) 1= yn—1/2q(n—1/2)2/2,
S4(z7) = Zynan/Z’
nez
Jaz7) = D (1Y (B.1)

nez

wherey = Z andq = €7, and we use these functions divided the variailg
2 in the main text:(5-, 7). We often use the following abbreviated notation

ﬂk(Z) = ﬁk(Z, T), Ty = ﬂk(O, T). (BZ)

The transformation laws of the functiofi8.f) under the half periods; = (r, —7—
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nT, nT) on the torus are

Z—7T)

191( >

| ) (-1 zgn-2r2
nezZ

— | Z(_1)n(e—7ri)n—1/2yn—1/2q(n_1/2)2/2

nezZ

2

z . : _
191( T +7TT) _ IZ(_l)n(ezm(mw)/zn)n L2gn-1/27/2

nez

= 1) (F1)(E) YAy g R

nez

_ Z yn—l/zq—l/sqn2/2

nez

_ q—1/8y—1/2193(£)’

ﬂl(Z—TFT) _ iZ(_1)n(e2ni(Z—7r‘r)/Zn)n—l/Zq(n—l/Z)Z/Z

nez

- Z(_l)n(e—niT)n—l/zyn—l/Zq(n—l/Z)Z/Z

nez

— Z (- 1)nyn71/2q((n71)27 /2

nez

— Z(_l)N+1yN+1/2q—1/8qN2/2 (N:=n-1)

NeZzZ

= —iyl/zq‘1/8ﬁ4(%). (B.3)

The Dedekind eta function is defined as

n(r) = g (-, (B.4)
n=1

The Eisenstein series are given by

2 *© k2n—lqk
+ K
{1-2n) & 1-q

Ex(r) =1 (B.5)

where/(n) is the Riemann zeta function. We often abbrevigte), E,n(7) as
n, Ean respectively.
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The Weierstrasg-function is defined as

1 1 1
0@ = p(z 2w, 203) = 5+ > | - =, (B.6)
z (Mn)ezz ) (2= an) an
whereQm, = 2mw; + 2nw; and

w
w1+ wr+ w3 =0, =B (B.7)
w1
In the main text, we use the following identities

4 6

V@ = 490 - B - s
= 40D - )@ - )@ - &)
_ ﬂlzﬁ Oka(z2)? (B.8)
w; B1(5)? .

whereg, ;= p(wx) and in the main text always; = x so the ratior/w; = 1
Finally we list the useful relations for the Jacobi theta functions and the Weier-
strass elliptic function

P21 (Z)?
Pk = @(Z)—ek——z”z,
k+1ﬁ1(27r)
¥ = 2’
b = 9395092,
12 ° 12 ° 12 °
93 -93-19; = 0 (Jacolis abstruse identity) (B.9)

Note that in the main text we take the conventityi-) and p(2), SO ¥1l-0 =

a1l 2-0, and the notatiog; := p(m).

C The Wilson lines

In E-string theory, the Wilson lines which appear when we perform the toroidal
compactification are identified with the masses of the fundamental hypermulti-
plets. However, by the toroidal compactification, we obtain Me= 2, U(1)
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supersymmetric gauge theory. The reader is really confused by all this. So we see
how the hypermultiplets appear following the discussiorhf [

By the toroidal compactification, we have two additional parameters, i.e. the
two radii Rs andRs of St x S22

For the two circles, we have respectively the eight rotation elemgrsdg;
which take values is Q(2) ¢ SQ(16) cSpin (16} Eg. In four dimensions, they
are combined into the complex number = «a; + Sjo whereo is the complex
structure of the torus. A set of these Wilson lines,( - - , wg) with the identifica-
tion

(Wi, -+ ,Wg) ~ (Wy + Ny + Myo, -+, Wg + Ng + Mgor), Ni,m € Z,

Zni EZm =0 (mod 2)
(C.1)

where the mod 2 condition comes from that we have ch&€&(16) instead of
the maximal subgrou$ pin16), gives a point in th&g instanton moduli space.

Now we consider the appropriate scaling limit where the moduli space in-
cludes the Seiberg-Witten curve for the = 2, SU(2) super Yang-Mills theory
with fundamental matters. For the real axis of the torus, we take the special Wilson
lines in the adjoint representation B§ to be

W= l120¢120 0 _
0 —l128¢128

(C.2)

We take T-duality a®s — 1/Rs. Then theEg heterotic string or$* with the radius
Rs maps toSQ(32) heterotic string oi$! with the radius 1Rs. This theory with
the smallSQ(32) instanton is, in the low energy, described by 8i#(2) gauge
theory with half-hypermultiplets in the2(32) of S 1) x SQ32)[7]. However,
in our case, by the T-duality &, SO(32)is broken toSO(16jor in our case we
haveSO(16x Eg). Hence we have the 16 half-hypermultiplets.

The vev of the scalar in the tensor multiplet becomesSpé&l)Wilson line
together with the eight Wilson lines. These Wilson lines give the massés
the 16 half-hypermultiplets. Moving away from the point where is given by the
special Wilson linelC.2), the 16 (half-)hypermultiplet8 get their masses by

Rs

oW, = Zm. (C.3)

27Actually, there is one more additional paramegerhich is the angle between the two radii.
But we do not need it in this discussion.
28|n [9], there is not the word "half.”
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