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Abstract

In this thesis, the E-string theory, that is the interacting, non-gravitational local
quantum field theory with (1,0) supersymmetry and theE8 global symmetry in six
dimensions, is surveyed. By the toroidal compactification, we can obtain theN =
2 supersymmetric gauge theory in four dimensions. This theory is allowed to have
its Seiberg-Witten description. In 2012, the Nekrasov-type partition function for
E-string theory appeared. As the original Nekrasov partition function was required
the proof of the correctness, the Nekrasov-type partition function also was.“The
proof”is given by extracting the Seiberg-Witten description in the thermodynamic
limit from the Nekrasov-type partition function, following the idea by Nekrasov
and Okounkov. Due to the toroidal compactification, in E-string theory we obtain
an elliptic function on the way to prove. The elliptic function gives the Seiberg-
Witten description. The Nekrasov-type partition function is also valid in the cases
with the general Wilson lines. Moreover, the Nekrasov-type partition function
clarifies the dependence of the Seiberg-Witten curve on the Wilson lines.
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1 Introduction

String theory is the most reliable model for the study of the fundamental struc-
ture of an object. Superstring theory, or simply superstring, is the string theory
with supersymmetry. The study of superstring has given not only a lot of physical
predictions but also a lot of mathematical predictions. However, there are five
different types of superstrings, so we have a big problem: which can describe our
physics? However, E. Witten showed that there exists the theory in eleven di-
mensions which contains all the superstrings[1]. This eleven-dimensional theory
is calledM-theoryand is expected to be the more fundamental theory. M-theory
has membranes as the ingredients which are called anM2- and anM5-brane. One
of methods of study of M-theory is to study the worldvolume theory on the M5-
brane. The worldvolume theory is the six-dimensional theory and has supersym-
metry. The number of supersymmetry depends on the configuration of the M2-
and M5-branes. The six-dimensional theory can have three types of the number
of supersymmetry and they are called the (2,0), (1,1), and (1,0) theories respec-
tively1 . The six-dimensional (2,0) theory is the maximal supersymmetric theory.
Recent years, this theory has been intensively studied and has given a lot of in-
teresting results not only in physics but also in mathematics. One of these is the
AGT correspondence[2, 3]. The AGT correspondence relates the Nekrasov parti-
tion function of anN = 2 supersymmetric gauge theory in four dimensions to the
conformal block(roughly speaking, the correlation function) of a conformal field
theory in two dimensions.

The six-dimensional (1,0) theory is the minimal supersymmetric theory, on
the one hand. The six-dimensional (1,0) theory with the least field content, more
explicitly just one tensor multiplet, and theE8 global symmetry is called theE-
string theoryand this theory is the main subject in this thesis.

The history of E-string theory was started by P. Horava-E. Witten and O. J.
Ganor-A. Hanany[4, 5, 6]. Briefly speaking, Horava and Witten showed that in M-
theory onS1/Z2 eachE8 gauge field must live on the end-of-the-world brane(M9-
brane) to reproduce theE8 × E8 heterotic superstring theory in the smallS1/Z2

limit 2. Ganor and Hanany showed that, in such a case, in the limit where an M5-
brane between the M9-branes approaches one of the M9-branes, an M2-brane
between the M5-brane and the M9-brane becomes atensionlessandnon-critical

1We make some comments on the study of the (2,0) and (1,0) theories in Introduction. However
we make no mention of the (1,1) theory here.

2Before the discussion of a small instanton associated to theE8 × E8 heterotic superstring
theory, Witten discussed that assciated to theSO(32)heterotic superstring[7].
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string. This string is called theE-string and the theory which describes the be-
haviour of the E-string on the M5-brane is called theE-string theory. We will
review this theory in more detail in section 3.

E-string theory is known as the simplest, six-dimensional (1,0) theory. The
theory consists of just one tensor multiplet, namely has no gravity. In addition,
the theory has theE8 global symmetry. However, the theory does not have its
Lagrangian description at present.

When it comes to the four-dimensional theories, in particular with eight su-
percharges, we know a lot. More explicitly, the four-dimensionalN = 2 su-
persymmetric gauge theories have two major descriptions: the Seiberg-Witten
theory[8] and the Nekrasov partition function[11]. Thus in that sense, we can
say that the four-dimensionalN = 2 supersymmetric gauge theories are the best
understood theories. So we would like to move on from the world in six dimen-
sions to that in four dimensions. By taking two dimensions to be very small in
the six-dimensional theories, we can obtain the four-dimensionalN = 2 super-
symmetric gauge theories and study them. This procedure is calleddimensional
reduction. Then to keep supersymmetry, the two dimensions must be a compact
manifold, i.e.R4×M2 whereM2 denotes the two-dimensional compact manifold.
This procedure is calledcompactification. In E-string theory, the two dimensions
must be a torusT2 because we have to keep the eight supercharges. This is called
thetoroidal compactification. By the toroidal compactification, we can obtain the
four-dimensionalN = 2 supersymmetric gauge theory, but the nature of it is so
different from that of the ordinary four-dimensionalN = 2 supersymmetric gauge
theories[9]. For instance, the four-dimensionalN = 2 supersymmetric gauge the-
ory obtained from E-string theory is asymptotically non-free. More details will
be mentioned in section 3. Nevertheless, it was shown that it has the Seiberg-
Witten description[9, 10]. Hence, following the history of the four-dimensional
N = 2 supersymmetric gauge theories, namely the discovery of the Nekrasov
partition function several years later since the appearance of the Seiberg-Witten
description, it is natural to expect that there also exists the Nekrasov-type par-
tition function in E-string theory. The Nekrasov partition function includes the
Seiberg-Witten description as the special limit[11, 12]. Hence it is the very im-
portant problem to ask whether the Nekrasov-type partition function in E-string
theory exists or not for the development of E-string theory.

From such an expectation, in 2012 the Nekrasov-type partition function was
given by K. Sakai[13, 14]. The correctness or the validity of the Nekrasov-type
partition function was checked order by order, by comparing the values given by
the Nekrasov-type partiton function with the ones given by the partition function
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of theN = 4 topological super Yang-Mills theory on12K3[16] and the ones given
by the prepotential. In addition it was also checked that the Nekrasov-type parti-
tion function satisfies the holomorphic anomaly equation[35]. However,“ order
by order”means“ not all orders.”Namely, in order for the Nekrasov-type par-
tition function to be correct, i.e. it is theformula, that it is correct for all orders
has to be shown. The Nekrasov partition function and some statements associated
to it were given in [11] and then their correctness was given in the subsequent
paper[12]. Hence it is natural to expect that we can show the correctness of the
Nekrasov-type partition function for all orders by following the idea of [12]. K.
Sakai and the author showed it in [15]. More details will be discussed in section
3.

Briefly speaking, our goal is to show that we can extract the known Seiberg-
Witten description in E-string theory from the Nekrasov-type partition function.
Following the idea of Nekrasov and Okounkov[12], the Nekrasov-type partition
function is represented by some Young diagrams and functions associated to them
which are called theprofile functions. In the semiclassical limit which is called
the thermodynamic limit, we can fix them explicitly. Then in E-string theory,
due to the toroidal compactification, the profile functions are fixed by an elliptic
function. This elliptic function plays a crucial role in our discussion. Namely, we
showed that we can extract the Seiberg-Witten description if we give the elliptic
function depending on a case. Here“ case”means that for the special values of
the Wilson lines, the global symmetry would be partially broken.

In the subsequent paper[29], the author generalised the result of [15] to more
general cases. Namely, whilst in [15] we studied some cases with the Wilson
lines given the concrete values, in [29] the cases with three and four general Wil-
son lines were discussed. By the study[29], it was shown that the Nekrasov-type
partition function is also valid for the general case and was shown the dependence
of the Seiberg-Witten curve on the Wilson linesexplicitly. In particular, the lat-
ter is interesting for us. The Seiberg-Witten curve in the case with three general
Wilson lines is already known[26]. It was obtained by the so-calledgeometric en-
gineeringapproach. However, in that case, the dependence of the Seiberg-Witten
curve on the Wilson lines was not clear. We will comment about this point in
Conclusion again.

This thesis is organised as follows. In the next section, we briefly review the
Seiberg-Witten description and the Nekrasov partition function. In particular, we
will focus on the ideas which we will need for the later discussions. In section 3,
we will review the formulation of E-string theory, its Seiberg-Witten description,
and the Nekrasov-type partition function. In addition, we will see briefly the va-
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lidity, or in other words the interpretation of the Nekrasov-type partition function.
In section 4, we will prove the correctness of the Nekrasov-type partition func-
tion, i.e. we will show that we can extract the Seiberg-Witten description from
the Nekrasov-type partition function. In section 5, the result of section 4 is gener-
alised to the cases with the Wilson lines. In section 6, the examples of the cases
with the broken symmetries are summarised. Sections 4, 5, and 6 are the original
parts based on [15, 29]. Finally, in section 7 we will summarise the stories. In
appendix A, the functionγϵ1,ϵ2(x;Λ) which will be used in sections 2 and 4 will be
summarised. In appendix B, the definitions and the useful relations of the elliptic
functions which will be used in sections 4, 5, and 6 will be summarised.

2 Two Prescriptions in4dN = 2 Gauge Theory

In this section, we review the ordinaryN = 2 supersymmetric gauge theory in four
dimensions before we move on to our main discussion, that is, the Nekrasov-type
partition function for E-string theory. Firstly, we very briefly recall the Seiberg-
Witten description for the ordinary theory and E-string theory. And secondly, we
briefly review the discussion of the so-called Nekrasov partition function to move
on to that for E-string theory.

2.1 Seiberg-Witten description

In 1994, N. Seiberg and E. Witten determined the low-energy effective action in
theN = 2 supersymmetric gauge theory in four dimensions3[8]. More precisely
speaking, they gave the prescription to determine the prepotential of the theory
which gives the action(we say Lagrangian alternatively henceforth). Here the
low-energy e f f ectivemeans so-calledWilsonian, that is, by integrating out the
massive modes, we make the theory consist only of the almost massless modes.

The low-energy effective Lagrangian of the theory withN = 2 supersymmetry
is given by

Le f f =
1

8πi

∫
d2θ
∂2F (Φ)
∂Φ2

WαWα +
1

4πi

∫
d2θd2θ̄Φ†

∂F (Φ)
∂Φ

+ h.c. (2.1)

whereF denotes the prepotential,Φ(z) the complex scalar superfield, andWα the
chiral superfield including the vector field. Note, here, that from (2.1) we have the

3For the good review, see e.g. [40, 41].
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gauge couplingτ:

τ =
∂2F (Φ)
∂Φ2

. (2.2)

The prepotentialF (Φ) is a holomorphic function. Thus determining the holomor-
phic function is to give the Lagrangian. The prepotential can be written, byN = 2
supersymmetry, as

Prepotential= classical+ 1-loop+ non-perturbative. (2.3)

In the r.h.s., the first two terms can be determined by the classical discussion as

1
2
τcla

2 +
i

2π
a2 log

( a2

Λ2

)
, (2.4)

wherea denotes the Higgs vev andΛ the so-called QCD dynamical scale.
The long-standing problem was to determine the non-perturbative part. The

form was known as
∞∑

k=1

Fk

(Λ
a

)4k
a2. (2.5)

This is known as the so-calledinstanton expansion, which forms the series by
the instanton numberk. Seiberg and Witten showed that this can be determined
by using the period integrals in algebraic geometry which is known as the moduli
theory of torus.

The key ingredients of their discussion are a one-form, two one-cycles, and
an elliptic curve, which are called the Seiberg-Wittendi f f erential, theα- and
β-cycles, and the Seiberg-Wittencurverespectively. For instance, forS U(2), we
give just the result:

aD :=
∂F (a)
∂a
,

ω :=
∮
α

dz
y
, ωD :=

∮
β

dz
y
,

τ(a) =
∂aD

∂a
=
∂aD

∂u
∂u
∂a
, 2πi

∂aD

∂u
= ω, 2πi

∂a
∂u
= ωD,

a(u) =
∮
α

ds, aD(u) =
∮
β

ds, ds=
1
πi

z2dz
y
,

y2 = (z2 − u)2 − 4Λ2 =

2∏
i=1

(z− α−i )(z− α+i ). (2.6)
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Treating the Higgs veva and its dualaD as functions with respect to the modulus
u := ⟨Trϕ2⟩ = a2/2 is the basic idea. The prepotential is fixed by the beta-cycle
integral of the Seiberg-Witten differentialds. The two cycles are taken by two cuts
over [α−1 , α

+
1 ] and [α−2 , α

+
2 ]. The period integral or the Seiberg-Witten differential

is fixed by the Seiberg-Witten curvey2. The discussion by Seiberg and Witten
states that we are able to determine the prepotential by going up the river.

2.2 Nekrasov partition function

As seen in the last subsection, we can obtain the prepotential by using theacrobatic
algebraic geometrically method. However, it is hard to determine the prepoten-
tial practically. A few years later, a new approach appeared. It can combina-
torially determine the prepotential and what we need is just the field content of
the theory. In other words, if we even know the field content, we can directly
give the prepotential. More precisely, it gives directly not the prepotential but the
partition f unction. More explicitly, Nekrasov proposed the expression4[11]

Z(a⃗, ϵ1, ϵ2,Λ) = exp
(
− F

inst(a⃗, ϵ1, ϵ2,Λ)
ϵ1ϵ2

)
. (2.7)

The detail including the notation is given later. The important thing is that the
partition functionZ(a⃗, ϵ1, ϵ2,Λ) and the instanton part of the prepotentialF inst are
both generic, that is, they are generalised by the two parametersϵ1,2. So Nekrasov
proposed one more strong relation[11]: in the limit ϵ1,2 → 0, (2.7) would repro-
duce the Seiberg-Witten description, i.e.5

F inst(a⃗, ϵ1, ϵ2,Λ)|ϵ1,2=0 is the instanton part of the prepotential of the low-energy theory.

(2.8)

In the rest of this subsection we review the so-called Nekrasov partition func-
tion more detail and pursue the idea of the proof of it, that is, extracting the
Seiberg-Witten description.

4The prepotential consists of the perturbative part and the non-perturbative part. Similarly, the
Nekrasov partition function also consists of the perturbative part and the non-perturbative part. In
this thesis, we restrict ourselves to the non-perturbative part, i.e. the instanton part. In the sense,
by the Nekrasov partition functionZ we mean the instanton partition function of the full partition
function.

5The full prepotential including the perturbative part is given by the full partition function.
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From now on, we also consider the Nekrasov partition function in the field the-
oretic limit, i.e.ϵ1 = −ϵ2 = ℏ and we take the gauge group to beS U(N). Then the
Nekrasov partition function can be expressed as the sum over the partitions[11]:

Z(a, ℏ,−ℏ,q) =
∑

k⃗

q|k|
∏

(l,i),(n, j)

aln + ℏ(kl,i − kn, j + j − i)

aln + ℏ( j − i)
. (2.9)

Herealn = al − an, ai denotes the diagonal components of the Higgs vev,q ∼ Λ2N

is the dynamical scale, andϵ1,2 are the deformation parameters which appear in
the Omega-background[11, 12]. Note that the dyanamical scale can be expressed
as

Λ2N ∼ µ2Ne
− 8π2

g2
0
+2πiϑ0

, (2.10)

whereµ is an UV cutoff6 andg0, ϑ0 are the bare couplings. The partition is defined
as follows:k⃗ = (k1, · · · , kN), k l = {kl,1 ⩾ kl,2 ⩾ · · · ⩾ kl,nl ⩾ kl,nl+1 = kl,nl+2 = · · · =
0}, |k⃗| = ∑

l,i kl,i. The indexesl,n run from 1 toN andi, j is 1 or above.
Including the perturbative part, the Nekrasov partition function can be totally

written as

Z(a, ℏ,Λ) =
∑

k⃗

Λ2N|k⃗|Zk⃗(a, ℏ),

Zk⃗(a, ℏ) = Zpert(a, ℏ)µ2
k⃗
(a, ℏ),

µ2
k⃗
(a, ℏ) =

∏
(l,i),(n, j)

aln + ℏ(kl,i − kn, j + j − i)

aln + ℏ( j − i)
. (2.11)

In the semiclassical limitℏ → 0, which is called thethermodynamic limit, this
partition function can be expressed as the genus expansion

Z(a, ℏ,Λ) = exp
( ∞∑

g=0

ℏ2g−2Fg(a,Λ)
)
. (2.12)

F0 is the prepotential of the low-energy effective theory:

F0(a⃗,Λ) = −1
2

∑
l,n

(al − an)
2
(
log

(al − an

Λ

)
− 3

2

)
+

∞∑
k=1

Λ2kN fk(a⃗). (2.13)
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Figure 1: A Young diagram and the profile function(red line). left: A set of
partitions(i.e. a Young diagram). right: A Russian style of the Young diagram
and the profile function. The piecewise-linear function becomes the continuous
function in the limitϵ1,2→ 0.

There are three different approaches to prove the correctness of the Nekrasov
partition function[12, 28, 32, 33]. Since we discuss the Nekrasov and Okounkov
approach for E-string theory in the next section, we review the approach only here.

Their idea is to represent the sum of the partitions by that of the Young dia-
grams(see the figure1). The shape(the red line in the figure) is expressed by a
piecewise-linear functionfk(x)

fk(x) = |x| +
∞∑

i=1

[
|x− ki + i − 1| − |x− ki + i| + |x+ i| − |x+ i − 1|

]
. (2.14)

We call this function thepro f ile f unction. In general, the profile function with
ϵ1,2 is expressed as

fk(x|ϵ1, ϵ2) = |x| +
∞∑

i=1

[
|x+ ϵ1 − ϵ2ki − ϵ1i| − |x− ϵ2ki − ϵ1i| − |x+ ϵ1 − ϵ1i| + |x− ϵ1i|

]
,

= |x| +
∞∑
j=1

[
|x+ ϵ2 − ϵ1k̃j − ϵ2 j| − |x− ϵ1k̃j − ϵ2 j| − |x+ ϵ2 − ϵ2 j| + |x− ϵ2 j|

]
.

(2.15)

6We use a letterµ just below again but it does not mean an UV cutoff.
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This general profile function satisfies the following conditions

f ′k(x|ϵ1, ϵ2) = ±1,

fk(x|ϵ1, ϵ2) ⩾ |x|, (2.16)

fk(x|ϵ1, ϵ2) = |x|, for |x| ≫ 0.

Moreover, the shifted profile function which is called a charged partition is defined
by

fa;k(x|ϵ1, ϵ2) = fk(x− a|ϵ1, ϵ2). (2.17)

Then, the instanton chargea and the size of the partitions|k|, i.e. the size of the
Young diagrams, are recovered from the charged profile function as

a =
1
2

∫
R

dx x f′′a;k(x|ϵ1, ϵ2) = −
1
2

∫
R

dx f′a;k(x|ϵ1, ϵ2),

|k| = a2

2ϵ1ϵ2
− 1

4ϵ1ϵ2

∫
dx x2 f ′′a;k(x|ϵ1, ϵ2) =

1
2ϵ1ϵ2

(
a2 −

∫
dx ( fa;k(x|ϵ1, ϵ2) − |x|)

)
,

(2.18)

where the integral of the rightmost hand side of the first line is defined by the
Caucy’s principal value one.

In the thermodynamic limitℏ→ 0 or ϵ1,2→ 0, the typical size of the partition
k contributing to the partition function is given by|k| ∼ 1/ϵ1ϵ2. This means that
the size of a box in a Young diagram becomes small, namely the piecewise-linear
profile function becomes a continuous profile function. Hence the sum of the par-
titions can be approximated by an integral over the space of the continuous profile
functions. This continuous profile function satisfies the following conditions7:

f (x) = |x|, |x| ≫ 0,

| f (x) − f (y)| ⩽ |x− y|,∫
R

dx f′(x) = 0,∫
R

dx( f (x) − |x|) < ∞, (2.19)

where the integral in the third condition is defined by the Caucy’s principal value
one.

7The second condition in the original paper[12] might be wrong.
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The approximation by the integral over the space of the continuous profile
functions is the saddle point one. Namely, our task is to find the saddle point of
the profile function from

Zk⃗(a⃗; ϵ1, ϵ2,Λ) = exp
(
− 1

4

∫
dxdy f′′

a⃗,k⃗
(x|ϵ1, ϵ2) f ′′

a⃗,k⃗
(y|ϵ1, ϵ2)γϵ1,ϵ2(x− y,Λ)

)
,

(2.20)

where the integral is defined by the Caucy’s principal value one andγϵ1,ϵ2(x) is
some function defined in Appendix A. Thus the partition function (2.11) becomes
the sum over the profile functions

Z(a⃗; ϵ1, ϵ2,Λ) =
∑

f∈Γdiscrete
a⃗

Zf (ϵ1, ϵ2,Λ), (2.21)

whereZf :=(2.20) andΓdiscrete
a⃗

is the set of the profile functionsf = fa⃗,k⃗.
Viewing (2.20) as the action written with the profile function, the profile func-

tion is known as thedensity f unctionand the saddle point equation obtained from
the action is known as theloop equationin the matrix model8. For ϵ1, ϵ2 → 0,
(2.20) is expressed as

Zf (a⃗; ϵ1, ϵ2,Λ) ∼ exp
(EΛ( f )
ϵ1ϵ2

)
, (2.22)

where

EΛ( f ) =
1
4

∫
y<x

dxdy f′′(x) f ′′(y)(x− y)2
(
log

( x− y
Λ

)
− 3

2

)
, (2.23)

where the integral is defined as the Caucy’s principal value one. This is the leading
term of the action (2.20) asϵ1,2 → 0. The prepotentialF0(a⃗,Λ) is given by the
saddle point of the action:

F0(a⃗,Λ) = −Crit f∈Γa⃗
EΛ( f ), (2.24)

whereΓa⃗ denotes a set of the profile functions of the form

f (x) =
N∑

l=1

fl(x− al), (2.25)

8For the good reviews of matrix model, see e.g. [36, 37], and as that closest to our discussion
we will see later, see [25].
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Figure 2: The formulation of E-string theory in terms of the M-theory picture.
When the M5-brane approaches one of the M9-branes, the M2-brane becomes the
non-critical, tensionless string.

with fl satisfying the conditions (2.19). This means, namely, that within all the
profile functions which dominate the Nekrasov partition function, only the critical
points of the space of the profile functions, namely only the dominant profile
functions give the prepotential.

For our main purpose, we will follow this idea in the later sections. There, we
will recall this idea again and will discuss more concretely.

3 E-string Theory

In this section, we formulate E-string theory in terms of M-theory picture. We
firstly see howE8 symmetries appear and then how E-string theory is defined.
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3.1 Formulation of E-string Theory

As said in Introduction, the history of E-string theory was started by P. Horava and
E. Witten[4, 5]. They considered what type of M-theory can reproduceE8 × E8

heterotic superstring theory in the limit where the M-theory direction becomes
zero. Now we see the story briefly following the discussions of [4, 5](see the
papers for more details).

First of all, we consider M-theory on an orbifoldR10×S1/Z2 whereZ2 acts on
S1 asX10→ −X10 and on the worldsheet as the orientation reversal. ThisZ2 action
breaks the original thirty-two supercharges to the half, i.e. sixteen supercharges.
This means that if M-theory in the zero radius limit can reproduce one of the five
known superstrings. It would be some one of Type I,E8×E8 heterotic andS O(32)
heterotic superstrings.

Next, we consider the gravitational anomaly of M-theory on the orbifold. Then
note that a metric onR10×S1/Z2 is same as one onR10×S1. We have a dynamical
metric on the orbifold, so we have its superpartner which has its spin 3/2 and is
commonly called the Rarita-Schwinger field[17]. Though we would like to con-
sider to obtain the effective action by integrating out the Rarita-Schwinger field,
this eleven-dimensional Rarita Schwinger field has the gravitational anomaly be-
cause it reduces in ten dimensions to a sum of infinitely many massive fields which
are anomaly-free and the ten-dimensional Rarita-Schwinger field which is anoma-
lous. Thus we have to know the form of the anomaly.

Under a spacetime diffeomorphismδXI = ϵvI whereI runs over 0, 1, · · · ,10,ϵ
is an infinitesimal quantity andvI a vector field, the change of the effective action
δΓ is generically written as

δΓ = iϵ
∫
R10×S1/Z2

d11X
√

gvI (X)WI (X), (3.1)

whereg is the eleven-dimensional metric andWI (X) a function on the orbifold.
Thus that there does not exist the anomaly implies generically thatWI (X) = 0.
However note thatX is not on the orbifold points. Hence on the orbifold points,
i.e. S1/Z2 = [0, π], WI (X) is a sum of delta functions. We denote the orbifold
points on where the delta functions are defined, i.e. hyperplanes which are called
the M9-branes later, byH′ andH′′ respectively, following [4]. Then (3.1) can be
decomposed into two parts

δΓ = iϵ
∫

H′
d10X

√
g′vIW′

I + iϵ
∫

H′′
d10X

√
g′′vIW′′

I , (3.2)
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where′ and′′ means restrictions toH′ andH′′ respectively. This is the standard
ten-dimensional anomaly. Therefore contributions ofW′

I andW′′
I to the anomaly

are even.
Here we have to care about that there are additional massless fields which live

only on the hyperplanes. These are ten-dimensional vector multiplets. We have
to count the number of these to cancel the anomaly. Though we have to recall the
discussion of the Green-Schwarz mechanism[18] to proceed our discussion more
precisely, we skip it and turn to the result directly.

To cancel the anomaly, we need 496 additional vector multiplets. This means
that the superstring with sixteen supercharges has the gauge group whose dimen-
sion is 496. As noted above, since contributions of the two hyperplanes to the
anomaly is even, 496 is divided by two, which implies 248 each. This result
shows that 248 vector multiplets, i.e. the gauge group whose dimension is 248,
live on each hyperplane.E8 × E8 heterotic superstring is only allowed in this re-
sult.

The picture which we have seen above was that theE8 gauge symmetry lives
on each end-of-the-world brane, i.e. the M9-brane. We now picture an addition of
an M2-brane and an M5-brane between the M9-branes(see the figure2).

We consider the M2-brane as oscillating modes on the M5-brane9. When the
M5-brane approaches one of the M9-branes(the left in the figure2), the M2-brane
looses one of three directions it spans and then it looks like a string. This string-
like M2-brane is tensionless and non-critical[6, 20](and10 [21]). Such a string
is called the E-string.”E”of the name comes from theE8 symmetry as fol-
lows: firstly, E8 gauge fields live on the two M9-branes, but when the M5-brane
approaches one of the M9-branes, another M9-brane is much far from the M5-
brane. Hence, it is too far for the world on the M5-brane where the E-string lives
that it can be neglected and itsE8 symmetry does not affect. Secondly, theE8

gauge symmetry on the M9-brane near by the M5-brane becomes the global sym-

9We can consider multiple M5-branes or M2-branes and in those cases, such theories are called
the E-string theories[19]. In this thesis, we are locked up in the usual E-string theory, i.e. one
M2- and M5-brane.

10We have a comment on the references here. As mentioned in Introduction(footnote 2), before
considering theE8 × E8 heterotic superstring theory with small instantons, the case ofS O(32)
heterotic superstring was considered by Witten[7]. E8 × E8 andS O(32) heterotic superstrings are
not same but they are related with each other by T-duality, more precisely moduli spaces of them
on S1 are identical[22]. The string-like object was considered by Witten in type IIB superstring
on K3[21] and was called thenon-critical string[20]. Based on these ideas, Ganor and Hanany
studied the tensionless, non-critical string, namely E-string[6].
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metry because it is out of the M5-brane. Hence, E-string theory has theE8 global
symmetry and it is the origin of the name.

In addition, from the figure, it leaves only eight supercharges. By sending the
parameterα′ to zero whilst keeping the other physical parameters finite as done in
the AdS/CFT correspondence[51], gravity is decoupled. Moreover, by taking the
size of K3 to be large, the other modes except E-string are decoupled. Putting all
together, E-string theory is the six-dimensional theory on the M5-brane with eight
supercharges and theE8 global symmetry.

Finally, we comment on fields in E-string theory. Actually, there is only one
oscillating mode of the M2-brane. It is a tensor multiplet which decomposes into
a vector multiplet when we perform dimensional reduction. In this sense, E-string
theory is said to be the simplest theory as the six-dimensional(dynamical) the-
ory. Nevertheless, we do not have its Lagrangian description yet, and in addition
its least supersymmetry makes the control of E-string theory weak, so it is too
difficult to analyse.

3.2 Two Prescriptions of E-string Theory

E-string theory is a (1,0) supersymmetric theory in six dimensions. The few su-
percharges, i.e. eight supercharges, makes us lose control. To obtain theN = 2
theory in four dimensions by compactification, we must keep all the supercharges.
This limitation leads us to toroidal compactificationR4 × T2. However, this four-
dimensional theory is basically asymptotically non-free11. Nevertheless, the the-
ory has the Seiberg-Witten description[10]. It is given by

y2 = 4x3 − E4(τ)
12

u4x− E6(τ)
216

u6 + 4u5,

∂F0

∂φ
= 8π3i(φD − τφ) + const., (3.3)

whereE4,6 are the Eisenstein series,τ a modulus of the torus,φ, φD are the Higgs
vev and its dual,F0 the prepotential, and const. denotes terms which do not de-
pend onφ. We will recall this description again in the next section. Tracing the
history ofN = 2 field theory, we naturally arrive at one more description, namely
the Nekrasov partition function. However, we can hope but can hardly obtain

11It depends on the number of hypermultiplets. For simplicity, we will treat the theory as being
conformal in the subsequent discussions.
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soon. Sakai hopefully searched and found it[13, 14]:

Z =
∑

R

(
e−2πiφ)|R| N∏

k=1

∏
(i, j)∈Rk

∏2N
n=1ϑ1( 1

2π(ak −mn + ( j − i)ℏ), τ)∏N
l=1ϑ1( 1

2π(akl + hk,l(i, j)ℏ), τ)2
.

(3.4)

The details are given in the next section so we choose a short-cut. From this
Nekrasov-type partition function, the prepotential is reproduced by

F0 = (2ℏ2 ln Z)|ℏ=0. (3.5)

Here we would like to focus on the higher order terms byℏ expansion. The
virtue of the Nekrasov partition function (2.12) we have seen in the last section is
to include the contribution of graviphotons in the higher order terms12. How about
in E-string theory? The answer is negative. The prepotentialF0 can be interpreted
as the genus zero topological string amplitude on local1

2K3[34]. The all genus
amplitude is given by

Z
1
2 K3 = exp

( ∞∑
g=0

ℏ2g−2F
1
2 K3
g

)
. (3.6)

This amplitude satisfies the following holomorphic anomaly equation13[35]

∂E2Z
1
2 K3 =

1
24
ℏ2

( 1
2πi
∂φ

)( 1
2πi
∂φ + 1

)
Z

1
2 K3. (3.7)

On the other hand, the Nekrasov-type partition function for E-string theory satis-
fies the following modular anomaly equation

∂E2Z =
1
12
ℏ2

( 1
2πi
∂φ

)2
Z (3.8)

with ℏ expansion

Z = exp
( 1
2ℏ2

F0 + O(ℏ0)
)
. (3.9)

12In this papar, we did not treatϵ1,2 expansion of the Nekrasov partition function. However,
in E-string theory,ℏ expansion corresponds to graviphoton expansion. For the details, see e.g.
[38, 39, 34].

13We here call holomorphic anomaly equation, following the associated paper. However, since
the equation shows the dependence of the partition function onE2, we call it modular anomaly
equation later, following the associated paper.
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For the genus zero topological string amplitude with massless hypermultiplets and
the prepotential of E-string theory, (3.7) and (3.8) coincide with each other:

∂E2F0 =
1
24

( 1
2πi
∂φF0

)2
. (3.10)

Thus we haveF0 = F
1
2 K3
0 |mi=0. However, for their higher order terms the anomaly

equations do not coincide. Hence we cannot say that the Nekrasov-type partition
function for E-string theory include the contribution of graviphotons. Due to this
reason, the discussions in the subsequent sections focus only on the genus zero
part14.

4 Nekrasov-type Partition Function For E-string The-
ory

Thus far, we have reviewed some basics of E-string theory and analysis methods
for N = 2 gauge theories in four dimensions. Historically, as we have seen in the
last section, a major method for an analysis of E-string theory was the Seiberg-
Witten description. We here give again the Seiberg-Witten description for E-string
theory[10]

y2 = 4x3 − E4(τ)
12

u4x− E6(τ)
216

u6 + 4u5,

∂F0

∂φ
= 8π3i(φD − τφ) + const., (4.1)

whereE4,6 are the Eisenstein series,τ a modulus of the torus,φ, φD are the Higgs
vev and its dual, and const. denotes terms which do not depend onφ.

In 2012, following the history, the Nekrasov-type partition function was appeared[13,
14]

Z =
∑

R

(
e−2πiφ)|R| N∏

k=1

∏
(i, j)∈Rk

∏2N
n=1ϑ1( 1

2π(ak −mn + ( j − i)ℏ), τ)∏N
l=1ϑ1( 1

2π (akl + hk,l(i, j)ℏ), τ)2
,

F0 = (2ℏ2 ln Z)|ℏ=0, (4.2)

14The author is deeply indebted to the referee of [29].
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whereR is a set of Young diagramsR = {R1, · · · ,RN}, N comes from theU(N)
gauge theory15 . ϑ1(z, τ) defined on the torus is one of the Jacobi theta functions
defined as(see appendix B for more details)

ϑ1(z, τ) := i
∑
n∈Z

(−1)nyn−1/2q(n−1/2)2/2,

ϑ2(z, τ) :=
∑
n∈Z

yn−1/2q(n−1/2)2/2,

ϑ3(z, τ) :=
∑
n∈Z

ynqn2/2,

ϑ4(z, τ) :=
∑
n∈Z

(−1)nynqn2/2. (4.3)

mn are fundamental matter masses andhk,l(i, j) are the relative hook lengths de-
fined between Young diagramsRk andRl. Most importantly,φ, τ andal are abso-
lutely different from (2.9). In (2.9), by q ∼ e2πiτ we had the UV coupling constant
τ but we now have theHiggs vevφ andτ is the modulus of the torus. More-
over,al in (2.9) were diagonal components of the Higgs vev but now they are just
constants on the torus. For consistency, we require a condition

2
N∑

k=1

ak −
2N∑
n=1

mn = 0. (4.4)

And concretely, for E-string theory we set

N = 4, ak = ωk−1 (k = 1 · · · ,4), mn = −mn+4 (n = 1, · · · ,4). (4.5)

This Nekrasov-type partition function was checked order by order and to satisfy
some physical conditions. For instance, it satisfies the following modular anomaly
equation

∂E2Z =
ℏ2

12
1

(2πi)2
∂2

E2
Z. (4.6)

15This is a confusing problem. By the toroidal compactification, we have theN = 2 U(1)
gauge theory in four dimensions. However, the Nekrasov-type partition function can be viewed as
the one generically for theU(N) gauge theory with 2N fundamental matters[13, 25]. We do not
have the answer to the puzzle between them yet. HenceN does not have any physical meaning at
present.
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Substituting a relation between Nekrasov-type partition function and prepotential

Z = exp
(1
2

F0ℏ
−2 + O(ℏ0)

)
(4.7)

for this, we get

∂E2F0 =
1
24

( 1
2πi
∂φF0

)2
, (4.8)

which is the modular anomaly equation obtained from the Seiberg-Witten description[24].
However it did not have any proof for all orders in [13, 14]. In this section, we
give a proof[15] following [12].

4.1 Proof: Nekrasov and Okounkov approach

The basic idea of [12] is as follows. In the limitℏ→ 0, which is calledthermodynamic
limit, we expect that there are some particular Young diagrams mainly contribut-
ing the partition function. So we firstly have to specify the diagrams. This is done
by the matrix model-like approach(see footnote 8). Next, under that situation, we
can find an elliptic function. This gives the Seiberg-Witten description. The story
flows in this order below.

For our purpose, it is convenient to rewrite the Nekrasov-type partition func-
tion (4.2) as

Z =
∑

R

e2πiφ̃|R|ZR,

ZR =

N∏
k,l=1

∞∏
i, j=1

(k,i),(l, j)

ϑ1( 1
2π(akl + (µk,i − µl, j + j − i)ℏ))

ϑ1( 1
2π(akl + ( j − i)ℏ))

×
N∏

k=1

2N∏
n=1

∏
(i, j)∈Rk

ϑ1( 1
2π(ak −mn + ( j − i)ℏ)), (4.9)

where

φ̃ :=

{
φ if N is odd
φ + 1

2 if N is even
. (4.10)

Now we introduce a functionγ(z; ℏ) which satisfies a difference equation

γ(z+ ℏ; ℏ) + γ(z− ℏ; ℏ) − 2γ(z; ℏ) = lnϑ1

( z
2π

)
(4.11)
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and which has the expansion(see appendix A for more details)

γ(z; ℏ) =
∞∑

g=0

ℏ2g−2γg(z). (4.12)

Most importantly, we have the fact

γ′′0 (z) = lnϑ1

( z
2π

)
. (4.13)

Then, using this function, we can rewriteZR as

ZR = exp

[
− 1

4

∫
dzdw f′′(z) f ′′(w)γ(z− w; ℏ) +

1
2

2N∑
n=1

∫
dz f′′(z)γ(z−mn; ℏ)

+

N∑
k,l=1

γ(ak − al; ℏ) −
N∑

k=1

2N∑
n=1

γ(ak −mn; ℏ)

]
, (4.14)

where the integrals are defined by the Cauchy’s principal value ones. The function
f (z) which is called apro f ile f unctionor its second derivative

f (z) =
N∑

k=1

[ ℓ(Rk)∑
i=1

(|z− ak − ℏ(µk,i − i + 1)| − |z− ak − ℏ(µk,i − i)|)

+|z− ak + ℏℓ(Rk)|
]
,

f ′′(z) = 2
N∑

k=1

[ ℓ(Rk)∑
i=1

(
δ(z− ak − ℏ(µk,i − i + 1))− δ(z− ak − ℏ(µk,i − i))

+δ(z− ak + ℏℓ(Rk))
)]

= 2
N∑

k=1

[ ∞∑
i=1

(
δ(z− ak − ℏ(µk,i − i + 1))− δ(z− ak − ℏ(µk,i − i))

−δ(z− ak + ℏ(i − 1))+ δ(z− ak − ℏi)
)
+ δ(z− ak)

]
(4.15)

knows Young diagrams mainly contributing to the partition function (4.14) since
the delta functions within the profile function characterise the shapes of them[12].
Such a functionf ′′(z) can be viewed as a density function in matrix model. We

21



assume that they are separated from each other. Letz = ak be points where the
delta functions take values,Ck be the local support around them, andC their union
C = ∪N

k=1Ck. Then it follows that

ak =
1
2

∫
Ck

z f′′(z)dz,

|R| = 1
4

∫
C

dzz2 f ′′(z) −
N∑

k=1

a2
k

2
. (4.16)

Then the original partition function (4.9) can be approximated by an integral over
the space of the delta functions

Z ≃
∫
D f ′′dNλexp

( 1
2ℏ2
F0 + O(ℏ0)

)
, (4.17)

where

F0[ f ′′, λk] = −
1
2

∫
C

dzdw f′′(z) f ′′(w)γ0(z− w) +
2N∑
n=1

∫
C

dz f′′(z)γ0(z−mn)

+4πiφ̃
(1
4

∫
C

dzz2 f ′′(z) −
N∑

k=1

a2
k

2

)
+2

N∑
k=1

λk

(1
2

∫
Ck

dzz f′′(z) − ak

)
, (4.18)

where the integrals of the first line are defined by the Cauchy’s principal value ones
and we have introduced Lagrange multipliersλk taking account of the constraints
(4.16). Here we have to care about the functionF0, which is slightly different
from the prepotentialF0 as we will see later.

In this situation, we take the thermodynamic limitℏ → 0. Then, there are
some dominant Young diagrams in (4.17) and the delta functions know them.
We evaluate the partition function (4.17) by the saddle point approximation. We
obtain, by the variation ofF0 with respect tof ′′(z)∫

C
dw f′′(w)γ0(z− w) −

2N∑
n=1

γ0(z−mn) − πiφ̃z2 − λkz= 0, z ∈ Ck. (4.19)

This saddle point equation can be viewed as theloop equationin matrix model.
We would like to solve this equation but it is generically a big problem. Here we
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introduce an analytic function

Ω(z) :=
∫
C

f ′′(w)γ′′0 (z− w)dw−
2N∑
n=1

γ′′0 (z−mn)

=

∫
C

f ′′(w) lnϑ1

(z− w
2π

)
dw−

2N∑
n=1

lnϑ1

(z−mn

2π

)
. (4.20)

We use this function instead off ′′ to solve the saddle point equation. Moreover,
recalling matrix model, we define the resolventω(z) using the function above as

ω(z) := Ω′(z). (4.21)

By this definition, we called the functionΩ(z) theantiderivative o f the resolvent
in the paper[15]. Then the functionf ′′ is recovered as

2πi f ′′(z) = ω(z− iϵ) − ω(z+ iϵ), z ∈ C, (4.22)

whereϵ = δz is an infinitesimal deformation along the cuts.
We consider the second derivative of the saddle point equation (4.19) with

respect toz:

1
2

(Ω(z− iϵ) + Ω(z+ iϵ)) − 2πiφ̃ = 0, z ∈ C. (4.23)

We now solve this. To do it, we introduce a meromorphic function on the torus,
whose poles are atz= mn

G(z) := eΩ(z)−2πiφ̃ + e−Ω(z)+2πiφ̃, (4.24)

whilst the functionΩ(z) has logarithmic branch points as well as square root
branch points. By the condition (4.4), G(z) is doubly periodic, i.e. it is an el-
liptic function of order 2N on the torus. Using this function, the resolvent can be
written as

ω(z) =
G′(z)

√
(G(z) + 2)(G(z)) − 2

. (4.25)

Let us count the number of the branch points. SinceG(z) ± 2 have 2N branch
points each,ω(z) has totally 4N branch points. However, the actualω(z) should
have 2N branch points. This mismatch is resolved if the function

H(z) :=
G(z) + 2

4
= cosh2

(1
2

(Ω(z) − 2πiφ̃)
)

(4.26)
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hasN zeroes of multiplicity two instead of 2N simple zeroes. The singularities of
H(z) are the single poles atz= mn. Such an elliptic function is determined as

H(z) = κ
P(z)2

Q(z)
= κ

(
∏N

k=1ϑ1(
z−ζk
2π ))2∏2N

n=1ϑ1(
z−mn

2π )
, (4.27)

whereκ and ζk are some constants. The locations of zeroes and poles have to
satisfy

2
N∑

k=1

ζk −
2N∑
n=1

mn = 0. (4.28)

Here the equality should be understood modulo periods of the torus. Then the
antiderivativeΩ(z) is obtained as

Ω(z) = 2 ln
( √

H(z) +
√

H(z) − 1
)
+ 2πiφ̃, (4.29)

and therefore, the resolvent is obtained as

ω(z) =
2∂z
√

H(z)
√

H(z) − 1
. (4.30)

Finally, we make a comment on the constantζk. The functionf ′′ has to satisfy
the constraint (4.16). In terms of the resolvent, it is expressed as

ak =
1

4πi

∮
γk

zω(z)dz. (4.31)

This holds ifω(z) satisfies

ω(ak − z± iϵ) = ω(ak + z± iϵ) for ak + z ∈ Ck. (4.32)

This holds if the functionH(z) satisfies√
H(ak − z) = −

√
H(ak + z) for ak + z ∈ Ck. (4.33)

By requiring this property, the values ofζk are fixed.
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4.2 The case of E-string theory

We here focus on the case of E-string theory, i.e. with theE8 global symmetry. In
this case, the setup is given by

N = 4, ζk = (0, π,−π − πτ, πτ), mn = (0,0,0,0) (4.34)

or[13]

N = 3, ζk = ωk = (π,−π − πτ, πτ), mn = (0,0,0). (4.35)

We here choose the latter. Then the functionsP(z) andQ(z) are expressed as

P(z) = −iq−1/4
3∏

k=1

ϑk+1

( z
2π

)
, Q(z) = ϑ1

( z
2π

)6
. (4.36)

Therefore the functionH(z) is written as

H(z) = −1
4

u℘′(z)2, (4.37)

where we have used the identity

℘′(z)2 = η12
3∏

k=1

ϑk+1( z
2π)

2

ϑ1( z
2π)

2
. (4.38)

Here℘′(z) is the derivative of the Weierstrass’ elliptic function andη := η(τ) the
Jacobi eta function. Also, we have defined the parameteru as

u :=
4κ

q1/2η12
. (4.39)

Then the resolvent is written as

ω(z) =
2℘′′(z)√
℘′(z)2 + 4u−1

. (4.40)

This Riemann surface has three cuts nearz = ωk and the three cuts shrinks as
|u| increases. In particular, whenu is sent to infinity, all cuts disappear and the
Riemann surface becomes the torus. This is reminiscent of the classical limit of
the Seiberg-Witten curve (4.1) and therefore lets us identifyu with the Coulomb
branch moduli parameter.
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Next we would like to consider the Seiberg-Witten description, i.e. theα- and
β-cycle integrals. We first consider theα-cycle integral. To do this, we use the
following fact

1
2π2i

∮
α

lnϑ1

(z− w
2π

)
dz= C1(τ) modZ, (4.41)

whereC1(τ) is some function inτ. An important thing is not the explicit form
of C1(τ) but thatC1(τ) is independent ofw and invariant under continuous defor-
mation of the integration contour. This fact can be shown as follows: since the
theta function is quasi-periodicϑ1(z+ 1) = −ϑ1(z), the function 1

2πi lnϑ1(z−w
2π )2 is

single-valued moduloZ along a loop belonging to the cycleα. Recall also that
the theta function is regular for|z| < ∞, so that the integral is invariant under the
continuous deformation of the loop.

Now we use the fact (4.41) with the function (4.20). And also we knowf ′′ to
be a set of the delta functions from (4.15). Hence we obtain

1
2π2i

∮
α

Ω(z)dz =
1

2π2i

∮
α

∫
C

f ′′(w) lnϑ1

(z− w
2π

)
dwdz

− 1
2π2i

∮
α

2N∑
n=1

lnϑ1

(z−mn

2π

)
dz modZ,

=⇒ 1
4π2i

∮
α

Ω(z)dz = 0 modZ, (4.42)

whereC1’s cancel with each other. Here using the relation betweenΩ(z) andH(z),
(4.29), we obtain

φ̃ =
i

2π2

∮
α

ln
( √

H(z) +
√

H(z) − 1
)
dz modZ. (4.43)

Now we have arrived at the important stage where we give the Seiberg-Witten
description explicitly. Recalling that the functionH(z) includes the Coulomb
moduli parameteru, we differentiate the Higgs vev (4.43) with respect tou:

∂φ

∂u
=

i
4π2u

∮
α

dz√
1− H(z)−1

. (4.44)

Note that this is not affected by the difference betweenφ andφ̃ = φ + 1
2. In the

case of the E-string theory with theE8 global symmetry, the functionH(z) was
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given by (4.37). Therefore we get

∂φ

∂u
=

i
4π2u

∮
α

℘′(z)dz√
℘′(z)2 + 4u−1

. (4.45)

The Seiberg-Witten curve should be given as the Riemann surface of the integrand.
However, we have to pay attention to that the double-periodic sheet has three cuts
nearz= ωk and we have two copies of it. Hence, whilst the Seiberg-Witten curve
is of genus one, the Riemann surface of the integrand is of genus four. To solve
this problem, we use the identity

℘′(z)2 = 4℘(z)3 − E4(τ)
12
℘(z) − E6(τ)

216
(4.46)

and perform a change of variables as

℘(z) = u−2x. (4.47)

Then (4.45) is expressed as

∂φ

∂u
=

i
4π2

∮
α̃

dx
y
, (4.48)

whereα̃ is the image ofα by the map (4.47) andy is given by

y2 = 4x3 − E4(τ)
12

u4x− E6(τ)
216

u6 + 4u5. (4.49)

This is exactly the Seiberg-Witten curve for the E-string theory (4.1). Thus one
of the Seiberg-Witten description has been reproduced from the Nekrasov-type
partition function.

Next we would like to reproduce the relation between the prepotential and
the Higgs vev, i.e. consider the beta-cycle integral. To do this, we need two
ingredients: the modular transformation law of the theta function

ϑ1

( z
2π
, τ

)
= e3πi/4τ−1/2 exp

(
− iz2

4πτ

)
ϑ1

( z
2πτ
,−1
τ

)
(4.50)
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and the fact (4.41) with the modulus−1/τ. Then we can show that

1
2π2iτ

∫ z0+2πτ

z0

lnϑ1

(z− w
2π
, τ

)
dz

= − 1
8π3τ2

∫ z0+2πτ

z0

(z− w)2dz

+
1

2π2iτ

∫ z0+2πτ

z0

lnϑ1

(z− w
2πτ
,−1
τ

)
dz+

3
4
− 1

2πi
ln τ

= − 1
8π3τ2

∫ z0+2πτ

z0

(z− w)2dz+C1

(
− 1
τ

)
+

3
4
− 1

2πi
ln τ modZ

= − 1
4π2τ

w2 +
( 1
2π
+

z0

2π2τ

)
w+C2(z0, τ) modZ, (4.51)

whereC2(z0, τ) is some function inz0 andτ. Putting this, (4.15) and (4.20) to-
gether, we obtain

1
4π2iτ

∫ z0+2πτ

z0

Ω(z)dz

= − 1
8π2τ

∫
C

w2 f ′′(w)dw+
( 1
4π
+

z0

4π2τ

) ∫
C

w f ′′(w)dw modZ

=
i

8π3τ

(∂F0

∂φ
+ 2πi

N∑
k=1

a2
k

)
+

( 1
2π
+

z0

2π2τ

) N∑
k=1

ak modZ. (4.52)

C2’s cancel with each other in the first equality and the integrals with respect tow
are defined by the Caucy’s principal value ones. To show the second equality, we
have used (4.16) and (4.18) with

∂F0

∂φ
=
∂F0

∂φ

∣∣∣∣∣∣
extremum

=

[(∂F0

∂φ

)
f ′′
+

(δF0

δ f ′′
)
φ

∂ f ′′

∂φ

]
extremum

=

[(∂F0

∂φ

)
f ′′

]
extremum

.

(4.53)

Here (∂F0/∂φ) f ′′ denotes the partial derivative ofF0 with respect toφ, holding f ′′

constant.
Now we focus on the E-string theory with theE8 global symmetry. Since the

setup

N = 3, ζk = ak = ωk, mn = (0,0,0), (4.54)
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the integral (4.52) becomes

1
4π2iτ

∫ z0+2πτ

z0

Ω(z)dz

=
i

8π3τ

(∂F0

∂φ
+ 2πi

3∑
k=1

ω2
k

)
. (4.55)

Hence the integral does not depend on the choice ofz0 and this result makes the
integral the beta-cycle one, i.e.

1
4π2iτ

∮
β

Ω(z)dz

=
i

8π3τ

(∂F0

∂φ
+ 2πi

3∑
k=1

ω2
k

)
. (4.56)

Now we have arrived at the point where we can obtain the Seiberg-Witten descrip-
tion. Firstly, using (4.29), the l.h.s. of (4.56) is written as

1
4π2iτ

∮
β

Ω(z)dz =
1

2π2iτ

∮
β

ln
( √

H(z) +
√

H(z) − 1
)
dz+ φ̃

= −1
τ
φD + φ + const., (4.57)

where we have identified thedualHiggs vevφD as

φD =
i

2π2

∮
β

ln
( √

H(z) +
√

H(z) − 1
)
dz+ const. (4.58)

from the analogy of (4.43). Here const.’s are some functions inτ but are indepen-
dent ofφ. Secondly, the summation term of the r.h.s. of (4.56) can be written as
const. becauseωk consists ofπ andτ only. Puttinig all together, hence, we finally
obtain

∂F0

∂φ
= 8π3i(φD − τφ) + const.. (4.59)

The Seiberg-Witten description has completely been reproduced in here.
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5 The Generalisation to the Cases with Wilson Lines

In the previous section, we proved that the Nekrasov-type partition function for
E-string theory is correct, namely starting the Nekrasov-type partition function
we can reproduce the Seiberg-Witten description. E-string theory we have seen
is the simplest case in the sense that the theory does not have any Wilson lines.
Therefore the natural question arises: is the Nekrasov-type partition function also
correct in the cases with Wilson lines? In this section, we answer the question
positivelyin a sense that the Nekrasov-type partition function with Wilson lines
can reproduces the Seiberg-Wittencurve. However, as mentioned in section 3, the
higher order terms in theℏ expansion cannot interpret the graviphoton expansion
as in the original Nekrasov partition function. Hence we stress again that we focus
on the genus zero part. We discuss the cases with three Wilson lines firstly and the
cases with four Wilson lines secondly. And also, we focus only on the alpha-cycle
integral (4.44).

5.1 The cases with three Wilson lines

In these cases, we choose16

N = 3, ζk = ωk, mn = (2πm1,2πm2,2πm3). (5.1)

Then the functionH(z) is written as

H(z) = κ
(
∏3

k=1ϑ1(
z−ζk
2π ))2∏6

n=1ϑ1(
z−2πmn

2π )

= κ
ϑ1( z−π

2π )2ϑ1(z+π+πτ
2π )2ϑ1( z−πτ

2π )2

ϑ1(
z−2πm1

2π )2ϑ1(
z−2πm2

2π )2ϑ1(
z−2πm3

2π )2ϑ1(
z+2πm1

2π )2ϑ1(
z+2πm2

2π )2ϑ1(
z+2πm3

2π )2
.

(5.2)

We need two tools here. One, we need the transformation laws of the theta func-
tions which are given in Appendix B for the numerator. And two, we need the
identity

ϑ1

(z+ w
2π

)
ϑ1

(z− w
2π

)
= −η−6ϑ1

( z
2π

)2
ϑ1

( w
2π

)2
(℘(z) − ℘(w)) (5.3)

16In this section, we take the Wilson lines to be notmn but 2πmn for convenience.
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for the denominator. Then we can express the function (5.2) written in terms of
the theta functions which depend onz as the Weierstrass℘-functions and obtain

H(z) =
κη6℘′(z)2

q1/2ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2(℘(z) − ℘(2πm1))(℘(z) − ℘(2πm2))(℘(z) − ℘(2πm3))

=
uη18℘′(z)2

4ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2(℘(z) − ℘(2πm1))(℘(z) − ℘(2πm2))(℘(z) − ℘(2πm3))
,

(5.4)

where we have used the moduli parameter (4.39). To proceed the story following
the last section, we would like to identify the Seiberg-Witten curve in the alpha-
cycle integral (4.44) in the present case. The integrand of the alpha-cycle integral
(4.44) is now written as

dz√
1− H(z)−1

=

√
H(z)dz

√
H(z) − 1

=
℘′(z)dz√

℘′(z)2 − α(m)(℘ − ℘1)(℘ − ℘2)(℘ − ℘3)
,

(5.5)

where

α(m) :=
4

uη18
ϑ1(m1)

2ϑ1(m2)
2ϑ1(m3)

2,

℘i := ℘(2πmi). (5.6)

By a change of variables℘(z) = x, we identify this integrand written in terms of
the variablex with the Seiberg-Witten curve, i.e. we put

y2
0 = ℘

′(z)2 − α(m)(℘(z) − ℘1)(℘(z) − ℘2)(℘(z) − ℘3)

= (4− α)℘3 + ασ1℘
2 − (E4 + ασ2)℘ − (E6 − ασ3), (5.7)

where

σ1 := ℘1 + ℘2 + ℘3, σ2 := ℘1℘2 + ℘2℘3 + ℘1℘3, σ3 := ℘1℘2℘3, (5.8)

and we have dropped the coefficients ofE4 and E6, namely we definedE′4 :=
E4/12 andE′6 := E6/216 and then we dropped the prime. For later convenience,
we change the variablez into x below. We have to now recall that the sheet which
the functions are defined has three cuts and we have two copies of them. Hence
the curve (5.7) is of genus four. To obtain the genus one curve, taking into account
that the curve (5.7) is inCP2, we perform the appropriate change of variables as

x := α−2(4− α)℘, y := 2(4− α)α−3y0. (5.9)
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More concretely and explicitly, we follow the computation minutely and so we
take five steps to make the curve (5.7) be the correct Seiberg-Witten curve: one is
to redefine the variables, two to eliminate the second-order term, three to redefine
the variables, four to didvide byα6 and redefine the variables to rewriteα into the
modulusu, and five to express the curve in terms of the modulusu. First step,
we multiply both sides of (5.7) by (4 − α)2 and perform a change of variables
x0 := (4− α)℘:

(4− α)2y2
0 = x3

0 + ασ1x2
0 − (E4 + ασ2)(4− α)x0 − (4− α)2(E6 − ασ3). (5.10)

Second step, we perform a shiftx0 = x − ασ1/3 to eliminate the square term of
x0:

(4− α)2y2
0 =

(
x− ασ1

3

)3
+ ασ1

(
x− ασ1

3

)2

−(E4 + ασ2)(4− α)
(
x− ασ1

3

)
− (4− α)2(E6 − ασ3).

(5.11)

From this, we get the curve

(4− α)2y2
0 = x3 − f̃ x− g̃. (5.12)

Third step, multiplying both sides of (5.12) by four and redefining the variabley0

asy := 2(4− α)y0, we get the curve

y2 = 4x3 − f x− g, (5.13)

where f := 4 f̃ andg := 4g̃:

f = 16E4 + (16σ2 − 4E4)α +
(4σ2

1

3
− 4σ2

)
α2,

g = 64E6 −
(16

3
E4σ1 + 32E6 + 64σ3

)
α

+
(
4E6 +

4
3

E4σ1 −
16
3
σ1σ2 + 32σ3

)
α2 −

( 8
27
σ3

1 −
4
3
σ1σ2 + 4σ3

)
α3.

(5.14)

Fourth step, dividing both side of (5.13) by α6, the curve (5.13) becomes

y2

α6
= 4

x3

α6
− f
α4

x
α2
− g
α6
. (5.15)
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We redefine the variables as

ỹ := y/α3, x̃ := x/α2. (5.16)

Then the curve (5.15) is written as

ỹ = 4x̃3 − f ′ x̃− g′, (5.17)

where f ′ := f /α4 andg′ := g/α6:

f ′ = 16E4α
−4 + (16σ2 − 4E4)α

−3 +
(4σ2

1

3
− 4σ2

)
α−2,

g′ = 64E6α
−6 −

(16
3

E4σ1 + 32E6 + 64σ3

)
α−5

+
(
4E6 +

4
3

E4σ1 −
16
3
σ1σ2 + 32σ3

)
α−4 −

( 8
27
σ3

1 −
4
3
σ1σ2 + 4σ3

)
α−3.

(5.18)

Thus far, we have taken four steps to get the correct Seiberg-Witten curve, i.e. we
wanted the genus one curve, the Weierstrass form, and the expression in terms of
the modulusu as the ingredients. To rewriteα into the modulusu is the rest of
the steps. Fifth step, finally, we do it. However, that we have stopped here is not
that we waste the time because by this step an important result is shown. Now we
recallα(m) := 4ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2/uη18. So we define the new modulus ˜u as

ũ := α−1 =
η18

ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2
u. (5.19)

Then (5.18) is rewritten as

f ′ = 16E4ũ
4 + (16σ2 − 4E4)ũ

3 +
(4σ2

1

3
− 4σ2

)
ũ2,

g′ = 64E6ũ
6 −

(16
3

E4σ1 + 32E6 + 64σ3

)
ũ5

+
(
4E6 +

4
3

E4σ1 −
16
3
σ1σ2 + 32σ3

)
ũ4 −

( 8
27
σ3

1 −
4
3
σ1σ2 + 4σ3

)
ũ3.

(5.20)

This curve is the Seiberg-Witten curve we wanted. We can check the correctness
by comparing this curve with the curve obtained in [26], i.e. this curve is in
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agreement with the curve obtained in [26]17. However, the author guess that the
judicious reader notices that this curve (5.20) is divergent atmn = 0. To solve the
problem, we take one step further. We recall the new modulus (5.19). The curve
is written in terms of the new modulus. The one step we need is to take the new
modulusũ back to the old modulusu. Namely, we rewrite the curve (5.20) as

f ′ = 16E4

( η18

ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2
u
)4
+ (16σ2 − 4E4)

( η18

ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2
u
)3

+
(4σ2

1

3
− 4σ2

)( η18

ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2
u
)2
,

g′ = 64E6

( η18

ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2
u
)6
−

(16
3

E4σ1 + 32E6 + 64σ3

)( η18

ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2
u
)5

+
(
4E6 +

4
3

E4σ1 −
16
3
σ1σ2 + 32σ3

)( η18

ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2
u
)4

−
( 8
27
σ3

1 −
4
3
σ1σ2 + 4σ3

)( η18

ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2
u
)3
. (5.22)

Then multiplying the whole of the curve with these coefficients by (4ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2/η18)6,
we obtain(4ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2

η18

)6
ỹ2 = 4

(4ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2

η18

)6
x̃2

−
(4ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2

η18

)6
f ′ x̃

−
(4ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2

η18

)6
g′. (5.23)

17For the perfect match up to the numerical factors, note that the difference between the nota-
tions is

16Eours
4 = f Mohri′s

0 , 64Eours
6 = gMohri′s

0 , 4℘ours
i = ℘Mohri′s

i . (5.21)

In addition, we have two more terms−32E6ũ5 and 32σ3ũ4 and a different coefficient of−64σ3ũ5

compared with the Mohri’s result (9.18) in [26]. But we checked that those two terms and the
coefficient of (9.18) have been stolen.
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Finally, we redefine the variables and the coefficients as

Y :=
(4ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2

η18

)3
ỹ, X :=

(4ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2

η18

)2
x̃,

F :=
(4ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2

η18

)4
f ′, G :=

(4ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2

η18

)6
g′.

(5.24)

Then we obtain

Y2 = 4X3 − FX −G,

F = 16E4u
4 + (16σ2 − 4E4)α

′(m)u3 +
(4σ2

1

3
− 4σ2

)
α′(m)2u2,

G = 64E6u
6 −

(16
3

E4σ1 + 32E6 + 64σ3

)
α′(m)u5

+
(
4E6 +

4
3

E4σ1 −
16
3
σ1σ2 + 32σ3

)
α′(m)2u4 −

( 8
27
σ3

1 −
4
3
σ1σ2 + 4σ3

)
α′(m)3u3,

α′(m) :=
4ϑ1(m1)2ϑ1(m2)2ϑ1(m3)2

η18
, (i.e. α(m) = α′(m)/u). (5.25)

We can easily see that this curve is not divergent atmn = 0 and gives the Seiberg-
Witten curve for the E-string theory with theE8 global symmetry. We can take
the limit limm→0℘(2πm)ϑ1(m)2 = η6. By using this in (5.25), we obtain

Y2 = 4X3 − 16E4u
4X − 64E6u

6 + 256u5, (5.26)

where the last term 256u5 comes from the term−64σ3α
′(m)u5 within G. This

is precisely the Seiberg-Witten curve for the E-string theory with theE8 global
symmetry18.

By the discussion we have seen thus far, it was shown that the Nekrasov-type
partition function gives the Seiberg-Witten curves also in the cases with three
Wilson lines. And also, it was shown that, comparing our result with the result
obtained in [26], ours explicitly includes the dependence of the Seiberg-Witten
curve on the Wilson lines.

18For the reader who does not like the different numerical factors, the redefinitionXnew := Xold/4
is required.
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5.2 The cases with four Wilson lines

In these cases, we choose the setup as

N = 4, ζk = (0, ωi), mn = (2πm1,2πm2,2πm3, 2πm4). (5.27)

This is the most general setup. The functionH(z) is given by

H(z) = κ
(
∏4

k=1ϑ1(
z−ζk
2π ))2∏8

n=1ϑ1(
z−mn

2π )

= κ
ϑ1( z

2π)
2ϑ1( z−π

2π )2ϑ1(z+π+πτ
2π )2ϑ1( z−πτ

2π )2

ϑ1(
z−2πm1

2π ) · · ·ϑ1(
z−2πm4

2π )ϑ1(
z+2πm1

2π ) · · ·ϑ1(
z+2πm4

2π )
.

(5.28)

Following the discussion in the previous subsection, we obtain

y2
0 = ℘

′(z)2 + α(m)(℘(z) − ℘1)(℘(z) − ℘2)(℘(z) − ℘3)(℘(z) − ℘4)

= 4℘3 − E4℘ − E6 + α(℘
4 − σ1℘

3 + σ2℘
2 − σ3℘ + σ4), (5.29)

where

α(m) :=
4

uη24
ϑ1(m1)

2ϑ1(m2)
2ϑ1(m3)

2ϑ1(m4)
2,

σ1 := ℘1 + ℘2 + ℘3 + ℘4,

σ2 := ℘1℘2 + ℘2℘3 + ℘3℘4 + ℘1℘3 + ℘1℘4 + ℘2℘4,

σ3 := ℘1℘2℘3 + ℘1℘2℘4 + ℘1℘3℘4 + ℘2℘3℘4,

σ4 := ℘1℘2℘3℘4. (5.30)

This curve (5.29) is superficially a quartic curve. To get a cubic curve, we need
two tools. Firstly, we restore the homogeneous coordinates as19

x1 = ℘, x2 = y0, , x0 , 1. (5.31)

Secondly, we recall the fact that the curve (5.29) is

x0x2
2 = 4x3

1 − E4x2
0x1 − E6x3

0 (5.32)

19In the cases with three Wilson lines we saw in the previous subsection, one of the homoge-
neous coordinatesx0 was just one. So we didn’t have to use the homogeneous coordinates.
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atu = ∞. By using these tools, the quartic curve (5.29) is rewritten as

x0x2
2 = 4x3

1 − E4x2
0x1 − E6x3

0

+ α((x1/x0)(x0x2
2 + E4x2

0x1 + E6x3
0)/4− σ1(x0x2

2 + E4x2
0x1 + E6x3

0)/4+ σ2x0x2
1 + σ4x3

0).

(5.33)

This curve is arranged as20

(a0x0 − αx1)x
2
2 = 16x3

1 + a1x0x2
1 + a2x2

0x1 + a3x3
0, (5.34)

where

a0 := 4+ ασ1,

a1 := αE4 + 4ασ2,

a2 := −4E4 + αE6 − αE4σ1 − 4ασ3,

a3 := −4E6 − αE6σ1 + 4ασ4. (5.35)

We here do not continue to compute this anymore. Note, however, that the quar-
tic curve (5.29) already indicates that the Nekrasov-type partition function re-
produces the Seiberg-Witten curve21. We do not explicitly give the Seiberg-
Witten curve in this case but we make some comments on that we can reproduce
the Seiberg-Witten curve from the Nekrasov-type partition function from another
viewpoint in the next subsection.

5.3 The derivation of theS L(3,C) invariant curve

Finally, in this subsection, we see another derivation of the Seiberg-Witten curves
in the cases with three and four Wilson lines. In this section, we have seen that
the elliptic functionH(z) gave the cubic or quartic curve and they led us to the
Seiberg-Witten curves. In particular, we concretely derived the Seiberg-Witten
curve (5.25) from the cubic curve (5.7). There is another derivation of the Seiberg-
Witten curve. It is a mathematical formula and does not need the technical cal-
culation. However, it becomes complicated for the general case. We here do not
give the explanation of the formula and do extract the result, so for the details see
[10, 26]. We follow the discussion of [26] here.

20Unlike the cases with three Wilson lines, the calculations in the cases with four Wilson lines
make the author feel blue. If the reader wants to check the calculations, they require biting the
bullet.

21Actually, we can compare the quartic curve with the result obtained in [26].
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The cubic curveP + αQ = 0 leads us to the Seiberg-Witten curve. In order
for this Seiberg-Witten curve to be correct, it must beS L(3,C) invariant. Such a
curve is given by a map

R 7→ x0x2
2 − 4x3

1 + f x2
0x1 + gx3

0, (5.36)

whereR := P+ αQ is defined as

R :=
∑

p+q+r=3

( 3!
p!q!r!

)
apqrx

p
0xq

1xr
2. (5.37)

Then the coefficientsapqr determine the coefficients f andg of the Seiberg-Witten
curve. We do not list the formula explicitly so see Appendix A in [26].

We here give the Seiberg-Witten curve by using the result of the formula.
Firstly, we do in the case with three Wilson lines. The cubic curve is (5.7):

R= P+ αQ = x0x2
2 − (4− α)x3

1 − ασ1x0x2
1 + (E4 + ασ2)x

2
0x1 + (E6 − ασ3).

(5.38)

In terms of the modulusu, this is written as

uR= uP+ Q = ux0x2
2 − (4u− 1)x3

1 − σ1x0x2
1 + (uE4 + σ2)x

2
0x1 + (uE6 − σ3).

(5.39)

Note, here, that we have absorbed the other factors intou, i.e. we have denoted
u/α′ = α−1 just byu. And also, we denoteuRby R from now on. The coefficients
apqr are

3a102 = u, a030 = 1− 4u, 3a120 = −σ1,

3a210 = uE4 + σ2, a300 = uE6 − σ3. (5.40)
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Then the coefficients f andg are reproduced by

f ∼ S = a2
120a

2
102− a030a210a

2
102

= (−σ1/3)2(u/3)2 − (1− 4u)((uE4 + σ2)/3)(u/3)2

=
1
81

(12E4u
4 − 3E4u

3 + 12σ2u
3 + σ2

1u
2 − 3σ2u

2), (5.41)

g ∼ T = 8a3
120a

3
102+ 4a300a

2
030a

3
102− 12a120a210a

3
102a030

= 8(−σ1/3)3(u/3)3 + 4(uE6 − σ3)(1− 4u)2(u/3)3

− 12(−σ1/3)((uE4 + σ2)/3)(u/3)3(1− 4u)

=
1
81

(
12 · 16E6u

6 − 12 · 16σ3u
5 − 12 · 8E6u

5 − 16σ1E4u
5

+ 12E6u
4 + 12 · 8σ3u

4 + 4σ1E4u
4 − 16σ1σ2u

4 − 8
9
σ3

1u
3 − 12σ3u

3 + 4σ1σ2u
3
)
,

(5.42)

where we have extractedS andT from [26]. We arrive at the Seiberg-Witten
curve (5.20) with the scalingsf = 108S andg = 27T . We also arrive at (5.25) by
multiplying the whole thing byα′6, of course.

Next, we move on to the case with four Wilson lines. In this case, the cubic
curve is given by (5.34):

R= P+ αQ = a0x0x2
2 − αx1x2

2 − 16x3
1 − a1x0x2

1 − a2x2
0x1 − a3x3

0

= (4+ ασ1)x0x2
2 − αx1x2

2 − 16x3
1 − α(E4 + 4σ2)x0x2

1

+ (4E4 − αE6 + αE4σ1 + 4ασ3)x
2
0x1 + (4E6 + αE6σ1 − 4ασ4)x

3
0.

(5.43)

In terms of the modulusu, it is written as

uR= uP+ Q = (4u+ σ1)x0x2
2 − x1x2

2 − 16ux3
1 − (E4 + 4σ2)x0x2

1

+ (4E4u− E6 + E4σ1 + 4σ3)x
2
0x1 + (4E6u+ E6σ1 − 4σ4)x

3
0.

(5.44)

Here we (have) use(d) the same notation above. The coefficientsapqr are

3a102 = 4u+ σ1, 3a012 = −1, a030 = −16u, 3a120 = −(E4 + 4σ2),

3a210 = 4E4u− E6 + E4σ1 + 4σ3, a300 = 4E6u+ E6σ1 − 4σ4. (5.45)
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Then the coefficients f andg are given by

f ∼ S = −a300a120a
2
012− a300a030a102a012− a210a120a102a012

+ a2
210a

2
012− a030a210a

2
102+ a2

120a
2
102

= −(4E6u+ E6σ1 + 4σ4)(−(E4 + 4σ2))(−1/3)2

− (4E6u+ E6σ1 − 4σ4)(−16u)((4u+ σ1)/3)(−1/3)

− ((4E4u− E6 + E4σ1 + 4σ3)/3)(−(E4 + 4σ2)/3)((4u+ σ1)/3)(−1/3)

+ ((4E4u− E6 + E4σ1 + 4σ3)/3)2(−1/3)2

− (−16u)((4E4u− E6 + E4σ1 + 4σ3)/3)((4u+ σ1)/3)2

+ (−(E4 + 4σ2)/3)2((4u+ σ1)/3)2,

(5.46)

g ∼ T = 4a3
012a

2
300a030+ 8a3

120a
3
102+ 8a3

012a
3
210+ 4a300a

2
030a

3
102

− 12a120a210a
3
102a030− 12a012a120a300a030a

2
102− 12a2

012a300a030a102a210

− 12a012a
2
120a210a

2
102+ 24a012a

2
210a

2
102a030− 12a3

012a300a210a120

+ 24a2
012a

2
120a300a102− 12a2

012a120a
2
210a102

= 4(−1/3)3((4E6u+ E6σ1 − 4σ4)2(−16u) + 8(−(E4 + 4σ2)/3)3((4u+ σ1)/3)3

+ 8(−1/3)3((4E4u− E6 + E4σ1 + 4σ3)/3)3

+ 4(4E6u+ E6σ1 − 4σ4)(−16u)2((4u+ σ1)/3)3

− 12(−(E4 + 4σ2)/3)((4E4u− E6 + E4σ1 + 4σ3)/3)((4u+ σ1)/3)3(−16u)

− 12(−1/3)(−(E4 + 4σ2)/3)(4E6u+ E6σ1 − 4σ4)(−16u)((4u+ σ1)/3)2

− 12(−1/3)2(4E6u+ E6σ1 − 4σ4)(−16u)((4u+ σ1)/3)((4E4u− E6 + E4σ1 + 4σ3)/3)

− 12(−1/3)(−(E4 + 4σ2)/3)2((4E4u− E6 + E4σ1 + 4σ3)/3)((4u+ σ1)/3)2

+ 24(−1/3)((4E4u− E6 + E4σ1 + 4σ3)/3)2((4u+ σ1)/3)2(−16u)

− 12(−1/3)3(4E6u+ E6σ1 − 4σ4)((4E4u− E6 + E4σ1 + 4σ3)/3)(−(E4 + 4σ2)/3)

+ 24(−1/3)2(−(E4 + 4σ2)/3)2(4E6u+ E6σ1 − 4σ4)((4u+ σ1)/3)

− 12(−1/3)2(−(E4 + 4σ2)/3)((4E4u− E6 + E4σ1 + 4σ3)/3)2((4u+ σ1)/3).

(5.47)

We stop computing this anymore here but note that the order ofu in f is at most
fourth and that ing is at most sextic.

We have seen the derivation of the Seiberg-Witten curve from the cubic curve
by using the mathematical formula. However, it is so complicated to obtain ex-
plicitly the Seiberg-Witten curve for more general case even if we use the mathe-
matical formula22.

22In fact, in the case with four Wilson lines, it is said, in [26], that“ the Weierstrass form of the
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6 Examples of the Cases with the Broken Symme-
tries

We have seen in the last two sections the way to obtain the Seiberg-Witten de-
scription from the Nekrasov-type partition function, and its generalisation. In this
section, we see the other examples with the broken symmetries[15]. For more
detail discussion for each case, see [14].

We reconfirm the procedure again. It is simple: firstly we give the elliptic
function H(z) from the setup which is fixed by some conditions for parameters
we have seen in the section five, and secondly we find the appropriate change of
variables because we want an elliptic curve with genus one.

We explain our convention we use here. Our Nekrasov-type partition func-
tion is the special case of the elliptic generalisation of the Nekrasov partition
function[25, 13, 14]. The special cases where the Wilson line parameters are set
to mn = (0, 1

2,m1,m2) can be described by the Nekrasov-type partition functions
for the gauge theories with the fewer colours[14]:

Z = ZSU(4)
Nf=8

(
ℏ;φ, τ; 0,

1
2
,−1+ τ

2
,
τ

2
; 0,

1
2
,m1,m2,0,−

1
2
,−m1,−m2

)
= ZSU(3)

Nf=6

(
ℏ;φ, τ;

1
2
,−1+ τ

2
,
τ

2
;
1
2
,m1,m2,−

1
2
,−m1,−m2

)
= ZSU(2)

Nf=4

(
ℏ;φ, τ;−1+ τ

2
,
τ

2
; m1,m2,−m1,−m2

)
. (6.1)

Note that for our convention in this paper the Wilson line parameters are set to
mn = (0, π, 2πm1,2πm2) multiplied by 2π, so the half-periods of the torus and the
Wilson lines in the partition functions above should be multiplied by 2π. The
cases with the broken symmetriesE7 ⊕ A1, E5 ⊕ A3 andD8 are the cases and are
discussed below.

6.1 E7 ⊕ A1

In this case, the setup is given by

N = 2, ζk = ωk+1 = (−π − πτ, πτ), mn = (0,0). (6.2)

cubic pencilP+ tQ is so complicated that we do not attempt to describe it here.”
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Then the elliptic functionH(z) becomes

H(z) = κ
(
∏2

k=1ϑ1(
z−ζk
2π ))2∏4

n=1ϑ1(
z−mn

2π )

= κ
ϑ1( z+π+πτ

2π )2ϑ1( z−πτ
2π )2

ϑ1( z
2π)

4

= −κq−1/2
ϑ3( z

2π)
2ϑ4( z

2π)
2

ϑ1( z
2π)

4
. (6.3)

Here using the identities (B.8) and (B.9), (6.3) is written as

= −κq−1/2η−12
ϑ1( z

2π)
2

ϑ2( z
2π)

2
℘′(z)2

= −u
4

ϑ′21
(2π)2ϑ2

2

℘′(z)2

℘(z) − e1

= − u
16

ϑ2
2ϑ

2
3ϑ

2
4

ϑ2
2

℘′(z)2

℘(z) − e1

=:
uϑ2

3ϑ
2
4

16
℘′(z)2

℘(z) − e1
, (6.4)

where in the last lineu is defined in (4.39) but with opposite sign.
The appropriate change of variables is given by

℘(z) − e1 = u−2x. (6.5)
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Then the alpha-cycle integral is expressed as

∂φ

∂u
=

i
4π2u

∮
α

dz
√

1− H−1

=
i

4π2u

∮
α

dz√
1− 16(℘(z) − e1)/uϑ2

3ϑ
2
4℘
′(z)2

=
i

4π2u

∮
α

℘′(z)dz√
℘′(z)2 − 16(℘(z) − e1)/uϑ2

3ϑ
2
4

=
i

4π2u

∮
α

℘′(z)dz√
4(℘(z) − e1)(℘(z) − e2)(℘(z) − e3) − 16(℘(z) − e1)/uϑ2

3ϑ
2
4

=⇒ i
4π2u

∮
α̃

u−2dx√
4u−2x(u−2x+ e1 − e2)(u−2x+ e1 − e3) − 16x/u3ϑ2

3ϑ
2
4

=
i

4π2u

∮
α̃

dx√
4u−2x3 + 4(2e1 − e2 − e3)x2 + 4(e1 − e2)(e1 − e3)u2x− 16ux/ϑ2

3ϑ
2
4

=
i

4π2

∮
α̃

dx√
4x3 + 4(2e1 − e2 − e3)u2x2 + 4(e1 − e2)(e1 − e3)u4x− 16u3x/ϑ2

3ϑ
2
4

.

(6.6)

Hence we obtain

y2 = 4x3 + 4(2e1 − e2 − e3)u
2x2 + 4(e1 − e2)(e1 − e3)u

4x− 16u3x

ϑ2
3ϑ

2
4

. (6.7)

Here using (B.9), the specific values ofei, we get

y2 = 4x3 +
1
3

(3ϑ4
3 + 3ϑ4

4)u
2x2 +

1
36

(−ϑ4
2 + ϑ

4
3 + 2ϑ4

4)(ϑ
4
2 + 2ϑ4

3 + ϑ
4
4)u

4x− 16u3x

ϑ2
3ϑ

2
4

= 4x3 + (ϑ4
3 + ϑ

4
4)u

2x2 +
1
4
ϑ4

3ϑ
4
4u

4x− 16u3x

ϑ2
3ϑ

2
4

.

(6.8)

This is in agreement with the Seiberg-Witten curve in the case with the global
symmetryE7 ⊕ A1.
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6.2 E6 ⊕ A2

This case is given by

N = 3, ζk = ωk, mn = (2π/3,2π/3,2π/3). (6.9)

Then the elliptic functionH(z) becomes

H(z) = κ
(
∏3

k=1ϑ1(
z−ζk
2π ))2∏6

n=1ϑ1(
z−mn

2π )

= κ
ϑ1( z−π

2π )2ϑ1( z+π+πτ
2π )2ϑ1( z−πτ

2π )2

ϑ1( z
2π −

1
3)3ϑ1( z

2π +
1
3)3

= −κq−1/2
ϑ2( z

2π)
2ϑ3( z

2π)
2ϑ4( z

2π)
2

ϑ1( z
2π −

1
3)3ϑ1( z

2π +
1
3)3
. (6.10)

Here using the identity

ϑ1

( z
2π
− 1

3

)
ϑ1

( z
2π
+

1
3

)
= −3

η(3τ)2

η(τ)6

(
℘(z) − 1

4
α2

3

)
ϑ1

( z
2π

)2
, (6.11)

where

α3 := ϑ3(0,2τ)ϑ3(0, 6τ) + ϑ2(0,2τ)ϑ2(0,6τ), (6.12)

(6.10) is rewritten as

= κq−1/2
ϑ2( z

2π)
2ϑ3( z

2π)
2ϑ4( z

2π)
2

27η(3τ)6(℘(z) − 1
4α

2
3)

3ϑ1( z
2π)

6/η(τ)18

= κq−1/2β2
3

ϑ2( z
2π)

2ϑ3( z
2π)

2ϑ4( z
2π)

2

27(℘(z) − 1
4α

2
3)

3ϑ1( z
2π)

6
,

(6.13)

where we have defined

β3 :=
η(τ)9

η(3τ)3
. (6.14)

Here using the identity (B.8), we obtain

H(z) = κq−1/2β2
3

℘′(z)2

27η12(℘(z) − 1
4α

2
3)

3

=
uβ2

3℘
′(z)2

108(℘(z) − 1
4α

2
3)

3
. (6.15)
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In the present case, the appropriate change of variables is given by

℘(z) − 1
4
α2

3 =
x

u(u− 27β−2
3 )
. (6.16)

Therefore the alpha-cycle integral becomes

∂φ

∂u
=

i
4π2u

∮
α

dz
√

1− H−1

=
i

4π2u

∮
α

dz√
1− (108(℘(z) − 1

4α
2
3)

3/uβ2
3℘
′(z)2)

=
i

4π2u

∮
α

℘′(z)dz√
℘′(z)2 − (108(℘(z) − 1

4α
2
3)

3/uβ2
3)

=
i

4π2u

∮
α

℘′(z)dz√
4℘(z)3 − E4

12℘(z) − E6
216 − (108(℘(z) − 1

4α
2
3)

3/uβ2
3)

=⇒ i
4π2u

∮
α̃

dx

u(u− 27β−2
3 )

× 1√
4( x

u(u−27β−2
3 )
+
α2

3
4 )3 − E4

12( x
u(u−27β−2

3 )
+
α2

3
4 ) − E6

216 − (108 x3

u4β23(u−27β−2
3 )3 )

=
i

4π2

∮
α̃

dx

uW
√

4(x/W+ α2
3/4)3 − E4(x/W+ α2

3/4)/12− E6/216− 108x3/uβ2
3W

3
,

(6.17)

where in the last line we have defined

W := u(u− 27β−2
3 ). (6.18)
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The Seiberg-Witten curve should be given byy2 =(the denominator)2. It is ex-
pressed as

y2 = u2W2
(
4
( x
W
+
α2

3

4

)3
− E4

12

( x
W
+
α2

3

4

)
− E6

216
− 108x3

uβ2
3W

3

)
=

4u2x3

W
+ 3u2α2

3x2 +
3u2Wα4

3x

4
+

u2W2α6
3

16

− u2WE4x
12

−
u2W2α2

3E4

48
− u2W2E6

216
− 108ux3

β2
3W

= 4
(u2β2

3 − 27u

β2
3W

)
x3 + 3u2α2

3x2 +
9α4

3 − E4

12
u2Wx+

u2W2

8

(α6
3

2
−
α2

3E4

6
− E6

27

)
.

(6.19)

Here we consider this term by term. The first term is

4
(u2β2

3 − 27u

β2
3W

)
x3 = 4

( u2β2
3 − 27u

β2
3u(u− 27β−2

3 )

)
x3

= 4
(uβ2

3 − 27

uβ2
3 − 27

)
x3 = 4x3. (6.20)

Nothing worthwhile for the second term but the rest two are technical. For the rest
two, we use the relations

E4 = 9α4
3 − 8α3β3, E6 = −27α6

3 + 36α3
3β3 − 8β2

3. (6.21)

Then the third term is written as

9α4
3 − E4

12
u2Wx =

9α4
3 − (9α4

3 − 8α3β3)

12
u3(u− 27β−2

3 )x

=
2
3
α3β3u

3(u− 27β−2
3 )x, (6.22)

and the fourth term is written as

u2W2

8

(α6
3

2
−
α2

3E4

6
− E6

27

)
=

u4(u− 27β−2
3 )2

8

(α6
3

2
−
α2

3(9α
4
3 − 8α3β3)

6
−
−27α6

3 + 36α3
3β3 − 8β2

3

27

)
= u4(u− 27β−2

3 )2 β
2
3

27

=
β2

3u
6

27
− 2u5 +

27u4

β2
3

. (6.23)
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Hence the Seiberg-Witten curve (6.19) is expressed as

y2 = 4x3 + 3u2α2
3x2 +

2
3
α3

(
β3u−

27
β3

)
u3x+

1
27

(
β3u−

27
β3

)2
u4. (6.24)

This is in agreement with the Seiberg-Witten curve in the case with the broken
symmetryE6 ⊕ A2.

6.3 D8

This case is given by

N = 2, ζk = ωk+1 = (−π − πτ, πτ), mn = (π, 0). (6.25)

Then the elliptic functionH(z) becomes

H(z) = κ
(
∏2

k=1ϑ1(
z−ζk
2π ))2∏4

n=1ϑ1(
z−mn

2π )

= κ
ϑ1( z+π+πτ

2π )2ϑ1( z−πτ
2π )2

ϑ1(z−π
2π )2ϑ1( z

2π)
2

= −κq−1/2
ϑ3( z

2π)
2ϑ4( z

2π)
2

ϑ1( z
2π)

2ϑ2( z
2π)

2

= −κq−1/2η−12
ϑ1( z

2π)
4℘′(z)2

ϑ2( z
2π)

4

= −u
4

ϑ′41
(2π)4ϑ4

2(℘(z) − e1)2
℘′(z)2

= −u
4

η12

ϑ4
2(℘(z) − e1)2

℘′(z)2

= − u
64

ϑ4
3ϑ

4
4

(℘(z) − e1)2
℘′(z)2,

(6.26)

where we have used in the last three lines the relation (B.9). The appropriate
change of variables is given by

℘(z) − e1 = u−2x. (6.27)
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Therefore the alpha-cycle integral becomes

∂φ

∂u
=

i
4π2u

∮
α

dz√
1+ (64(℘(z) − e1)2/uϑ4

3ϑ
4
4℘
′(z)2)

=
i

4π2u

∮
α

℘′(z)dz√
℘′(z)2 + (64(℘(z) − e1)2/uϑ4

3ϑ
4
4)

=⇒ i
4π2u

∮
α̃

dx

u2
√

4u−2x(u−2x+ e1 − e2)(u−2x+ e1 − e3) + (64x2/u5ϑ4
3ϑ

4
4)

=
i

4π2

∮
α̃

dx√
4u4x(u−2x+ e1 − e2)(u−2x+ e1 − e3) + (64ux2/ϑ4

3ϑ
4
4)
.

(6.28)

Amazingly, here, comparing the change of variables (6.27) with the one in the
E7 ⊕ A1 case (6.5), and the alpha-cycle integral (6.28) with that of that case (6.6),
we notice they are very similar. Thus utilising the curve (6.8), we obtain

y2 = 4x3 + (ϑ4
3 + ϑ

4
4)u

2x2 +
1
4
ϑ4

3ϑ
4
4u

4x+
64ux2

ϑ4
3ϑ

4
4

= 4x3 +
(
(ϑ4

3 + ϑ
4
4)u+

64

ϑ4
3ϑ

4
4

)
ux2 +

1
4
ϑ4

3ϑ
4
4u

4x.

(6.29)

This is in agreement with the Seiberg-Witten curve in the case with the broken
symmetryD8.

Why could we do the comparison, however? We try to interpret it from the
viewpoint of the Dynkin diagram. In E-string side, we took the broken symmetry
asE8 → E7 ⊕ A1. Here we breakD8 to D8 → D7 ⊕ A1. These two symmetries
have the infinitesimal structure in common, i.e.E7 ⊕ A1 � D7 ⊕ A1. D7 ⊕ A1 is
the infinitesimal structure of thealmostwhole D8 but not. The subtle difference
changes the last term in (6.8).

7 Conclusion

In this final section, we summarise the stories totally and comment about top-
ics which we have not seen in this thesis. In this thesis, we have reviewed the
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Seiberg-Witten description and the Nekrasov partition function in the ordinary
N = 2 supersymmetric gauge theory in four dimensions and the ones in E-string
theory. Stringy- or supersymmetric gauge theoretical-historically, the worlds are
drastically changed in 1994. Seiberg and Witten completely determined the low-
energy effective theory, i.e. the prepotential, by using the duality. At least for ten
years since that time, the worddualityhas played the central key role in the study
of string theory and supersymmetric gauge theory23.

On the other hand, the various topological field theories which we didn’t dis-
cuss here were developed24. As its application, Nekrasov gave the partition func-
tion formula which directly determines the prepotential and the partition function
from the field content of the theory, without using the duality and the period inte-
grals.

Based on these two main results in theN = 2 supersymmetric gauge theories
in four dimensions, the supersymmetric gauge theories themselves, string theory,
and M-theory have widely developed. As one of these, it was shown that these
two approaches exist even in E-string theory. In section 3, we have seen that the
elliptic function H(z) gives the profile function and also the Seiberg-Witten de-
scription. This implies that the Nekrasov-type partition function can reproduce
the Seiberg-Witten description in the thermodynamic limit, namely the Nekrasov-
type partition function is correct in the sense. Given the concrete setup, the elliptic
function leads us to the Seiberg-Witten curve. In section 4, this result was gener-
alised to the cases with the Wilson lines. In particular, the Seiberg-Witten curve
in the case with three Wilson lines was given explicitly. As mentioned in Intro-
duction, the Seiberg-Witten curve in the case with three Wilson lines is already
given in [26]. However, unlike that result, our result has explicitly shown the
dependence on the Wilson lines. We would like to attempt to interpret this differ-
ence as follows: in [26] the Seiberg-Witten curve was obtained by the geometric
engineering approach. As shown in the name, the information of the theory is ex-
tracted from the geometric construction. For example, the cubic or quartic curve
P + tQ = 0 corresponds to it. Thent ∼ u but we cannot see anything other
than the information of the modulusu. On the one hand, recall that the ordinary
Nekrasov partition function includes the Seiberg-Witten description as the special
limit. What we have seen in section 3 is that the Nekrasov-type partition function
is the same as the Nekrasov partition function in that sense, of course. Namely, the

23In this thesis, we have not seen the topic“duality.”It is no exaggeration to say that the duality
has been in the centre of the study of superstring. As the related papers, see, e.g. [48, 49].

24For the details, see the author’s master thesis[42].
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Nekrasov-type partition function knowsall the information of the Seiberg-Witten
description. This is why the dependence of the Seiberg-Witten curve on the Wil-
son lines explicitly appeared in our result. This fact is very important. This fact
implies that the Nekrasov-type partition function is the essential tool in E-string
theory as well as the Nekrasov partition function is so in the four-dimensional
N = 2 supersymmetric gauge theories25.

Finally, we make some comments on the future works. Firstly, we have seen
that our generalisation is not the genuine generalisation actually. We expect that
more general cases without the restrictionmn = −mn+4 are given. Secondly, since
we got the Nekrasov-type partition function, we expect that there exits the AGT
correspondence even in E-string theory. Sure that it would give the highly non-
trivial correspondence if it exists, since the interpretation of the parameters in-
cluded in the Nekrasov-type partition function is different from that of the ones
included in the Nekrasov partition function. However, to tackle this interesting
problem, we need one more step: dividing the parameterℏ into the two deforma-
tion parametersϵ1,2. And thirdly, in connection with it, the worldsheet description
of E-string theory is desired. At present, the worldsheet description escapes from
our investigation26. This is why we study E-string theory mainly in the viewpoint
of the target space. We believe that the Nekrasov-type partition function leads us
to the new developments of E-string theory.
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A The function γϵ1,ϵ2(x;Λ)

In this appendix, we briefly summarise the functionγϵ1,ϵ2(x;Λ) we used in section
2 and section 4. This follows the appendix in [12](and see it for more details).

The functionγϵ1,ϵ2(x;Λ) is defined as that which satisfies the following differ-
ence equation:

γϵ1,ϵ2(x;Λ) + γϵ1,ϵ2(x− ϵ1 − ϵ2;Λ) − γϵ1,ϵ2(x− ϵ1;Λ) − γϵ1,ϵ2(x− ϵ2;Λ) = log
(Λ

x

)
.

(A.1)

Or, more explicitly, the function is defined by

γϵ1,ϵ2(x;Λ) =
d
ds

∣∣∣∣
s=0

Λs

Γ(s)

∫ ∞

0

dt
t

ts e−tx

(eϵ1t − 1)(eϵ2t − 1)
. (A.2)

In particular, for−ϵ1 = ϵ2 = ℏ, we have

γℏ(x;Λ) = γ−ℏ,ℏ(x;Λ). (A.3)

This function is characterised by the following property forℏ → 0 together with
the difference equation (A.1):

γℏ(x;Λ) =
∞∑

g=0

ℏ2g−2γg(x). (A.4)

More explicitly, all the terms are fixed by the properties as

γ0(x) =
1
2

x2 log
( x
Λ

)
− 3

4
x2,

γ1(x) = − 1
12

log
( x
Λ

)
,

γ2(x) = − 1
240

1
x2
,

...

γg(x) =
B2g

2g(2g− 2)
1

x2g−2
, g > 1, (A.5)
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whereBn is the Bernoulli number

t
et − 1

=

∞∑
n=0

Bn

n!
tn. (A.6)

B The notations

In this appendix, we summarise the notations and the transformation laws of the
functions we use in this paper.

The Jacobi theta functions are defined as

ϑ1(z, τ) := i
∑
n∈Z

(−1)nyn−1/2q(n−1/2)2/2,

ϑ2(z, τ) :=
∑
n∈Z

yn−1/2q(n−1/2)2/2,

ϑ3(z, τ) :=
∑
n∈Z

ynqn2/2,

ϑ4(z, τ) :=
∑
n∈Z

(−1)nynqn2/2, (B.1)

wherey = e2πiz andq = e2πiτ, and we use these functions divided the variablez by
2π in the main text:ϑk( z

2π , τ). We often use the following abbreviated notation

ϑk(z) := ϑk(z, τ), ϑk := ϑk(0, τ). (B.2)

The transformation laws of the functions (B.1) under the half periodsωi = (π,−π−
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πτ, πτ) on the torus are

ϑ1

(z− π
2π

)
= i

∑
n∈Z

(−1)n
(
e2πi(z−π)/2π)n−1/2q(n−1/2)2/2

= i
∑
n∈Z

(−1)n(e−πi)n−1/2yn−1/2q(n−1/2)2/2

= ϑ2

( z
2π

)
,

ϑ1

(z+ π + πτ
2π

)
= i

∑
n∈Z

(−1)n
(
e2πi(z+π+πτ)/2π)n−1/2q(n−1/2)2/2

= i
∑
n∈Z

(−1)n(eπi)n−1/2yn−1/2(eπiτ)n−1/2q(n−1/2)2/2

=
∑
n∈Z

yn−1/2q−1/8qn2/2

= q−1/8y−1/2ϑ3

( z
2π

)
,

ϑ1

(z− πτ
2π

)
= i

∑
n∈Z

(−1)n
(
e2πi(z−πτ)/2π)n−1/2q(n−1/2)2/2

= i
∑
n∈Z

(−1)n
(
e−πiτ

)n−1/2yn−1/2q(n−1/2)2/2

= i
∑
n∈Z

(−1)nyn−1/2q((n−1)2− 1
4 )/2

= i
∑
N∈Z

(−1)N+1yN+1/2q−1/8qN2/2 (N := n− 1)

= −iy1/2q−1/8ϑ4

( z
2π

)
. (B.3)

The Dedekind eta function is defined as

η(τ) := q1/24
∞∏

n=1

(1− qn). (B.4)

The Eisenstein series are given by

E2n(τ) = 1+
2

ζ(1− 2n)

∞∑
k=1

k2n−1qk

1− qk
, (B.5)

whereζ(n) is the Riemann zeta function. We often abbreviateη(τ), E2n(τ) as
η, E2n respectively.
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The Weierstrass℘-function is defined as

℘(z) = ℘(z; 2ω1,2ω3) :=
1
z2
+

∑
(m,n)∈Z2

,(0,0)

[ 1
(z−Ωm,n)2

− 1
Ω2

m,n

]
, (B.6)

whereΩm,n = 2mω1 + 2nω3 and

ω1 + ω2 + ω3 = 0,
ω3

ω1
= τ. (B.7)

In the main text, we use the following identities

℘′(z)2 = 4℘(z)3 − π4

12ω4
1

E4℘(z) − π6

216ω6
1

E6

= 4(℘(z) − e1)(℘(z) − e2)(℘(z) − e3)

=
π6

ω6
1

η12
3∏

k=1

ϑk+1( z
2π)

2

ϑ1( z
2π)

2
, (B.8)

whereek := ℘(ωk) and in the main text alwaysω1 = π so the ratioπ/ω1 = 1.
Finally we list the useful relations for the Jacobi theta functions and the Weier-

strass elliptic function：

℘k = ℘(z) − ek =
ϑ′21 ϑk+1( z

2π)
2

ϑ2
k+1ϑ1( z

2π)
2
,

ϑ′1 = 2πη3,

4η6 = ϑ2
2ϑ

2
3ϑ

2
4,

e1 =
ϑ4

3 + ϑ
4
4

12
, e2 =

ϑ4
2 − ϑ4

4

12
, e3 =

−ϑ4
2 − ϑ4

3

12
,

ϑ4
3 − ϑ4

4 − ϑ4
2 = 0 (Jacobi′s abstruse identity). (B.9)

Note that in the main text we take the conventionϑk( z
2π) and℘(z), soϑ′1|z=0 =

1
(2π)2ϑ

′
1| z

2π=0, and the notation℘i := ℘(mi).

C The Wilson lines

In E-string theory, the Wilson lines which appear when we perform the toroidal
compactification are identified with the masses of the fundamental hypermulti-
plets. However, by the toroidal compactification, we obtain theN = 2, U(1)
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supersymmetric gauge theory. The reader is really confused by all this. So we see
how the hypermultiplets appear following the discussion of [9].

By the toroidal compactification, we have two additional parameters, i.e. the
two radiiR5 andR6 of S1 × S1.27

For the two circles, we have respectively the eight rotation elementsαi andβi

which take values inS O(2)8 ⊂ S O(16)⊂Spin (16)⊂ E8. In four dimensions, they
are combined into the complex numberwi = αi + βiσ whereσ is the complex
structure of the torus. A set of these Wilson lines (w1, · · · ,w8) with the identifica-
tion

(w1, · · · ,w8) ∼ (w1 + n1 +m1σ, · · · , w8 + n8 +m8σ), ni ,mi ∈ Z,∑
ni ≡

∑
mi ≡ 0 (mod 2),

(C.1)

where the mod 2 condition comes from that we have chosenS O(16) instead of
the maximal subgroupS pin(16), gives a point in theE8 instanton moduli space.

Now we consider the appropriate scaling limit where the moduli space in-
cludes the Seiberg-Witten curve for theN = 2, S U(2) super Yang-Mills theory
with fundamental matters. For the real axis of the torus, we take the special Wilson
lines in the adjoint representation ofE8 to be

W =

(
I120×120 0

0 −I128×128

)
. (C.2)

We take T-duality asR5→ 1/R5. Then theE8 heterotic string onS1 with the radius
R5 maps toSO(32) heterotic string onS1 with the radius 1/R5. This theory with
the smallSO(32) instanton is, in the low energy, described by theSU(2)gauge
theory with half-hypermultiplets in the (2,32) of S p(1) × S O(32)[7]. However,
in our case, by the T-duality ofW, SO(32)is broken toSO(16)(or in our case we
haveSO(16)⊂ E8). Hence we have the 16 half-hypermultiplets.

The vev of the scalar in the tensor multiplet becomes theSp(1)Wilson line
together with the eight Wilson lines. These Wilson lines give the massesmi to
the 16 half-hypermultiplets. Moving away from the point where is given by the
special Wilson line (C.2), the 16 (half-)hypermultiplets28 get their massesmi by

δwi =
R5

2π
mi . (C.3)

27Actually, there is one more additional parameterφ which is the angle between the two radii.
But we do not need it in this discussion.

28In [9], there is not the word ”half.”
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