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Chapter 1

Introduction

The theory of stochastic calculus is one of the main mathematical subjects estab-

lished in the 20th century. It certainly evolved probability theory and mathematical

statistics, and made great efforts in many other fields. Stochastic processes having in-

dependent and stationary increments such as Wiener processes and Poisson processes

are usually called Lévy processes. The marginal distributions of Lévy processes are

always infinitely divisible in a certain sense. Conversely, every infinite divisible dis-

tribution induces a Lévy process and they are often studied analytically in terms of

characteristic functions. In this thesis, we pick up such processes and discuss some

prospects of stochastic calculus through characteristic functions in relation to number

theory and representation theory.

This thesis consists of three parts. Two of them are based on papers accepted

for publications in mathematical journals and the rest is of original results. The first

part is taken from Aoyama and Yoshikawa [7] with some modifications. Several defi-

nitions and propositions are added and the proof of one theorem which was omitted

in Aoyama and Yoshikawa [7] is also given. Chapter 2 is the first part, where we dis-

cuss multivariable and multiple zeta functions and their definable multidimensional

discrete distributions. Zeta functions are one of the rich classes of functions in math-

ematics. The Riemann zeta function is regarded as the prototype and now variously

extended. Historically, it is well-known that the Riemann zeta function generates a

one dimensional infinitely divisible discrete distribution in the region of absolute con-

vergence. As a generalization of the Riemann zeta function, the Hurwitz zeta function

is also well-known. In Hu, Iksanov, Lin and Zakusylo [14], the Hurwitz zeta distri-

butions are introduced, and their infinite divisibilities are studied. In recent years,

multidimensional Shintani zeta functions are introduced by Aoyama and Nakamura
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[5] which are of multivariable and multiple zeta functions. These functions enable

us to define a new class of multidimensional discrete distributions called multidimen-

sional Shintani zeta distributions which is also introduced by Aoyama and Nakamura

[5]. In this chapter, we show that this class includes many kinds of multidimensional

discrete distributions. In fact, multinomial or negative binomial distributions are of

the multidimensional Shintani zeta class, which allows us to define some classes re-

garded as their generalizations in view of zeta distributions. We draw exact outlines

of these classes by giving the necessary and sufficient conditions for some cases of

multidimensional Shintani zeta functions to generate probability distributions. We

also consider their infinite divisibilities.

The second part consists of original researches. In chapter 3, we show some results

of them, which are focused on Euler products. It is well-known that the Riemann

zeta function has the Euler product in the region of absolute convergence. This is

usually regarded as a key to show the prime number theorem. However, the infi-

nite divisibility of the Riemann zeta distribution also can be shown by this fact. As a

generalization of the Euler product, Aoyama and Nakamura [3, 4] introduced multidi-

mensional polynomial Euler products which were generalized to be multivariable and

multiple infinite products. Furthermore, they gave the necessary and sufficient condi-

tions for those products to generate some infinitely divisible characteristic functions.

In their cases, non-principal Dirichlet L-functions, which is one of the well-known

zeta function, are not included. As a new result, we show that these functions can

generate infinitely divisible characteristic functions in some cases. We also treat some

products of two multidimensional Shintani zeta functions and consider their possi-

bilities to generate characteristic functions. The necessary and sufficient condition

for a product of a real-valued Dirichlet L-function and the Riemann zeta function to

generate an infinitely divisible characteristic function is given as a main result.

The last part is based on Yoshikawa [26] in addition to several fundamental facts.

Chapter 4 is the part, which consists of a study of a Fermion Fock space on Wiener

functionals and its applications. As is well-known as the Wiener chaos expansion,

all Wiener functionals with finite second moment can be expanded by using Hermite

polynomials and an orthonormal Gaussian random basis. This expansion induces a

representation of the Heisenberg algebra with some symmetric structure, which is a

basis of Malliavin calculus. On the other hand, in Akahori et al. [2], an anti-symmetric

calculus is studied by constructing a representation of a Clifford algebra on Wiener
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functionals. First, in chapter 4, we obtain that all Wiener functionals in the Fermion

Fock space, which generated by the Clifford algebra acting on the vacuum, can be

expressed as a polynomial of first order integrals and second order anti-symmetric

integrals. The second order antisymmetric integrals are called (generalized) stochastic

areas, which have some relations with soliton solutions of the KdV equation (see,

Aihara et al. [1]). Since Lévy found that the characteristic function of the stochastic

area was explicitly given by trigonometric functions, there have been many studies

related to the formula (see, e.g. Helmes and Schwane [13]). Secondly, in chapter 4,

we see explicit forms of the characteristic functions of some joint distributions with

stochastic areas. As an application of the first and second results, we propose an

approximation scheme based on the anti-symmetric calculus over Wiener space.
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Chapter 2

Multinomial distributions in
Shintani zeta class

Multidimensional stochastic models in mathematical finance and so on are now well-

studied. As to obtain more properties of them, we focus on some multidimensional

discrete distributions in relation to a class of multiple zeta functions. The class of

multiple zeta functions called “multidimensional Shintani zeta functions” was first

introduced in Aoyama and Nakamura [5], where a class of probability distributions

called “multidimensional Shintani zeta distributions” associated with these zeta func-

tions is definable. In this chapter, we show that this class includes many kinds of

multidimensional discrete distributions. We pick up some cases of multidimensional

Shintani zeta functions and introduce some classes of probability distributions which

contain generalized multinomial and negative multinomial distributions. More pre-

cisely, we give some necessary and sufficient conditions for the functions to generate

probability distributions in view of zeta functions and consider their infinite divisi-

bilities as well.

2.1 Infinitely divisible distributions on Rd

Infinitely divisible distributions are known as one of the most important class of

probability distributions. They correspond to some essential stochastic processes such

as Wiener processes and Poisson processes. In 1930’s, such stochastic processes were

well-studied by P. Lévy and now we usually call them Lévy processes. We can find

the detail of Lévy processes in Sato [25]. First, we mention some known properties

of infinitely divisible distributions.
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Definition 2.1 (Infinitely divisible distribution (see, e.g. Sato [25])). A probabil-

ity measure µ on Rd is infinitely divisible if, for any positive integer n, there is a

probability measure µn on Rd such that

µ = µn∗n ,

where µn∗n is the n-fold convolution of µn.

Example 2.2. Normal, degenerate and Poisson distributions are infinitely divisible.

Let µ̂(z) :=
∫
Rd e

i⟨z,x⟩µ(dx), z ∈ Rd, be the characteristic function of a distribu-

tion µ on Rd, where ⟨·, ·⟩ is the standard inner product in Rd.

The following is well known.

Proposition 2.3 (Lévy-Khintchine representation (see, e.g. Sato [25])). (i) If µ is

an infinitely divisible distribution on Rd, then

µ̂(z) = exp

{
−1

2
⟨z, Az⟩+ i⟨γ, z⟩+

∫
Rd

(
ei⟨z,x⟩ − 1− i⟨z, x⟩

1 + |x|2
)
ν(dx)

}
, z ∈ Rd,

(2.1)

where A is a symmetric nonnegative-definite d × d matrix, ν is a measure on Rd

satisfying

ν({0}) = 0 and

∫
Rd

min{|x|2, 1} ν(dx) <∞, (2.2)

and γ ∈ Rd.

(ii) The representation of µ̂(z) in (i) by A, ν and γ is unique.

(iii) Conversely, if A is a symmetric nonnegative-definite d×d matrix, ν is a mea-

sure satisfying (2.2), and γ ∈ Rd, then there exists an infinitely divisible distribution

µ whose characteristic function is given by (2.1).

The measure ν and (A, ν, γ) is called the Lévy measure and the Lévy-Khintchine

triplet of an infinite divisible distribution µ, respectively. In chapter 2 and 3, we treat

the following infinitely divisible distributions called compound Poisson distributions.

Definition 2.4 (Compound Poisson distribution (see, e.g. Sato [25])). A probability

measure µ on Rd is called compound Poisson if its characteristic function can be

written by

µ̂(⃗t) = exp{c (ρ̂(⃗t)− 1)}, t⃗ ∈ Rd,

for some c > 0 and some probability measure ρ on Rd with ρ({0}) = 0.
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Here the measure cρ is the (finite) Lévy measure of a compound Poisson distri-

bution µ. The Poisson distribution is a special case when d = 1 and ρ = δ1, where δx

is a delta measure at x.

Remark 2.5. Note that any infinitely divisible distribution can be expressed as the

weak limit of a certain sequence of compound Poisson distributions.

Next, we mention Lévy processes.

Definition 2.6 (Lévy process (see, e.g. Sato [25])). A stochastic precess {Xt : t ≥ 0}
on Rd is a Lévy process (in law) if the following conditions are satisfied.

(1) For any choice of n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn, random variables

Xt0 , Xt1 − Xt0 , Xt2 − Xt1 , . . . , Xtn − Xtn−1 are independent (independent in-

crements property).

(2) Pr[X0 = 0] = 1.

(3) The distribution of Xs+t − Xs does not depend on s (stationary increments

property).

(4) It is stochastically continuous, that is lims→t Pr[|Xs − Xt| > ϵ] = 0 for any

ϵ > 0.

Remark 2.7. We note that if µ is an infinitely divisible distribution, then µt∗ is

definable for every t ≥ 0 and is also infinitely divisible. Let {Xt : t ≥ 0} be a

Lévy process on Rd and µ be the distribution of X1. Then, for every t ≥ 0, the

distribution of Xt is infinitely divisible and is given by µt∗. Conversely, for any

infinitely divisible distribution µ, there is a Lévy process whose distribution at time

1 is µ. This one-to-one correspondence shows the importance of the class of infinitely

divisible distributions in the studies of Lévy processes.

Example 2.8. Wiener processes and Poisson processes are Lévy processes.

We use the following Lévy precesses in section 2.5.

Definition 2.9 (Subordinator). An increasing Lévy process on R is called a subor-

dinator.
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Definition 2.10. Let {Xt : t ≥ 0} be a Lévy precess on Rd and {T (t) : t ≥ 0}
be a subordinator. Suppose that {Xt : t ≥ 0} and {T (t) : t ≥ 0} are independent

processes with right-continuities and left-limits. Then, a transformation {Yt : t ≥ 0}
of {Xt : t ≥ 0} defined by Yt = XT (t) is called a subordination by the subordinator

{T (t) : t ≥ 0}.

Subordinators and subordinations are often utilized. We can find more details of

the following two propositions in Sato [25].

Proposition 2.11. Let {T (t) : t ≥ 0} be a subordinator. Then, there exist a Lévy

measure ρ and a real number β such that

β ≥ 0 and

∫
(0,∞)

min{1, s} ρ(ds) <∞, (2.3)

and we have E[e−uT (t)] = etΨ(−u), t, u ≥ 0, where

Ψ(w) = βw +

∫
(0,∞)

(ews − 1) ρ(ds), w ∈ C with Rew ≤ 0. (2.4)

Proposition 2.12. Let {Yt : t ≥ 0} be a subordination of a Lévy process {Xt : t ≥ 0}
on Rd by a subordinator {T (t) : t ≥ 0} with a Lévy measure ρ, a real number β and

a function Ψ satisfying (2.3) and (2.4). Then, {Yt : t ≥ 0} is a Lévy process on Rd,

and we have

E[ei⟨z,Yt⟩] = etΨ(log µ̂(z)), t ≥ 0, z ∈ Rd.

2.2 Zeta functions and distributions

Zeta functions are one of valuable functions in mathematics and some other related

fields. In mathematical statistics, they appear in several objects. One is that discrete

distributions on R are definable by them. In this section, we introduce one variable

zeta functions and their definable discrete probability distributions on R. Then, we

also introduce multivariable zeta functions and corresponding discrete probability dis-

tributions on Rd. They include multidimensional discrete distributions with infinitely

many mass points which, we may say, is the case not treatable enough compared to

finitely many or continuous cases. By applying the infinite products representations

of zeta functions, the infinite divisibilities of them are focused as well.

First we introduce the Riemann zeta function and the Euler product.
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Definition 2.13 (Riemann zeta function, Euler product (see, e.g. Apostol [9])). Let

ζ(s) be a function of a complex variable s = σ + it ∈ C, for σ > 1, t ∈ R, given by

ζ(s) =
∞∑
n=1

1

ns
(2.5)

=
∏
p∈P

(
1− 1

ps

)−1

, (2.6)

where P is the set of all prime numbers. The function ζ(s) given by (2.5) and the

infinite product (2.6) are called the Riemann zeta function and the Euler product,

respectively.

It is well-known that the series in (2.5) and the infinite product (2.6) converge

absolutely in the region σ > 1. The Riemann zeta function ζ(s) is analytically

continuable to the whole complex plane as a meromorphic function by applying the

Riemann’s functional equation. We can find the basic properties of zeta functions in

Apostol [9].

Next, we introduce the following probability distribution on R associating with

the Riemann zeta function.

Definition 2.14 (Riemann zeta distribution). For each σ > 1, a probability measure

µσ on R is called a Riemann zeta distribution, if

µσ ({− log n}) = n−σ

ζ(σ)
, n ∈ N.

Then we have its characteristic function fσ as follows:

fσ(t) =

∫
R
eitx µσ(dx) =

ζ(σ + it)

ζ(σ)
, t ∈ R.

This class of distributions is introduced by Jessen and Wintner [15] without nor-

malization as to give an example in the studies of infinitely many times convolutions.

As a probability distribution, it is first appeared in Khinchine [16].

Proposition 2.15 (See, e.g. Gnedenko and Kolmogorov [12]). The characteristic

function fσ(t), t ∈ R, is a compound Poisson with a finite Lévy measure Nσ on R:

log fσ(t) =

∫ ∞

0

(e−itx − 1)Nσ(dx),

where

Nσ(dx) =
∑
p∈P

∞∑
r=1

p−rσ

r
δr log p(dx).
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This proposition implies that the Riemann zeta distribution is infinitely divisible.

As a generalization of the Riemann zeta distribution, the following zeta function can

also generate a probability distribution on R.

Definition 2.16 (Hurwitz zeta function (see, e.g. Apostol [9])). For 0 < u ≤ 1 and

σ > 1, the Hurwitz zeta function ζ(s, u) is defined by

ζ(s, u) =
∞∑
n=0

1

(n+ u)s
, s = σ + it, t ∈ R.

We note that ζ(s, 1) is the Riemann zeta function. For 0 < u ≤ 1 and σ > 1, put

fσ,u(t) :=
ζ(σ + it, u)

ζ(σ, u)
, t ∈ R.

Then fσ,u is a characteristic function of a probability distribution µσ,u on R which is

called the Hurwitz zeta distribution. This class of distribution is introduced by Hu,

Iksanov, Lin and Zakusylo [14] and its infinite divisibility is studied as well.

Proposition 2.17 (Hu, Iksanov, Lin and Zakusylo [14]). The Hurwitz zeta distribu-

tion µσ,u is infinitely divisible if and only if

u =
1

2
or u = 1.

This proposition comes from the fact that the Hurwitz zeta function has the Euler

product only when u = 1/2 or 1.

The Riemann zeta function is now variously extended. Let m, r ∈ N and s⃗ ∈ Cm.

For λlj, uj > 0, where 1 ≤ j ≤ r and 1 ≤ l ≤ m, a function

ζS(s⃗) :=
∞∑

n1,...,nr=0

m∏
l=1

(
λl1(n1 + u1) + · · ·+ λlr(nr + ur)

)−sl
is a generalized Barnes multiple zeta function called the Shintani zeta function.

Aoyama and Nakamura [5] introduced the following functions.

Definition 2.18 (Multidimensional Shintani zeta function, Aoyama and Nakamura

[5]). Let d,m, r ∈ N, s⃗ ∈ Cd and (n1, . . . , nr) ∈ Zr≥0. For λlj, uj > 0, c⃗l ∈ Rd,

where 1 ≤ j ≤ r and 1 ≤ l ≤ m, and a function θ(n1, . . . , nr) ∈ C satisfying

|θ(n1, . . . , nr)| = O((n1 + · · · + nr)
ε), for any ε > 0, we define a multidimensional

Shintani zeta function by

ZS(s⃗) :=
∞∑

n1,...,nr=0

θ(n1, . . . , nr)∏m
l=1(λl1(n1 + u1) + · · ·+ λlr(nr + ur))⟨c⃗l,s⃗⟩

. (2.7)
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Here we write ⟨c⃗, s⃗⟩ := ⟨c⃗, σ⃗⟩+ i⟨c⃗, t⃗⟩ for c⃗ ∈ Rd and s⃗ ∈ Cd, where σ⃗, t⃗ ∈ Rd and

s⃗ = σ⃗ + i⃗t. We call the function θ(n1, . . . , nr) a character of the multidimensional

Shintani zeta function, which is derived from Dirichlet characters (see Definition 3.1).

The absolute convergence of ZS(s⃗) is also given.

Proposition 2.19 (Aoyama and Nakamura [5]). The series ZS(s⃗) defined by (2.7)

converges absolutely in the region min1≤l≤m⟨c⃗l, σ⃗⟩ > r/m.

We denote by DS the region min1≤l≤m⟨c⃗l, σ⃗⟩ > r/m of absolute convergence of

the series ZS(s⃗). Suppose that θ(n1, . . . , nr) is non-negative or non-positive definite,

then we can define the following class of distributions on Rd.

Definition 2.20 (Multidimensional Shintani zeta distribution, Aoyama and Naka-

mura [5]). For each σ⃗ ∈ DS, a probability measure µσ⃗ on Rd is called a multidimen-

sional Shintani zeta distribution if, for all (n1, . . . , nr) ∈ Zr≥0,

µσ⃗

({
−

m∑
l=1

cl1 log
( r∑
k=1

λlk(nk+uk)
)
, . . . ,−

m∑
l=1

cld log
( r∑
k=1

λlk(nk+uk)
)})

=
θ(n1, . . . , nr)

ZS(σ⃗)

m∏
l=1

( r∑
k=1

λlk(nk+uk)
)−⟨c⃗l,σ⃗⟩

.

Then, its characteristic function fσ⃗ is given by the normalization of ZS(s⃗) as the

Riemann zeta case.

Proposition 2.21 (Aoyama and Nakamura [5]). Let fσ⃗ be a characteristic function

of a multidimensional Shintani zeta distribution µσ⃗. Then fσ⃗(s⃗) is given as follows.

fσ⃗ (⃗t) =

∫
Rd

ei⟨t⃗,x⟩ µσ⃗(dx) =
ZS(σ⃗ + i⃗t)

ZS(σ⃗)
, t⃗ ∈ Rd.

Remark 2.22. This class contains both infinitely divisible and non infinitely divis-

ible distributions on Rd. By applying the Euler products, some simple examples of

compound Poisson case on R2 and generalized cases on Rd are given in Aoyama and

Nakamura [3] and Aoyama and Nakamura [4], respectively.

As in this section, by following the history of zeta functions and distributions,

Aoyama and Nakamura [5] introduced multidimensional Shintani zeta functions and

their definable distributions on Rd. In Aoyama and Nakamura [5], some examples

of known distributions which belong to the multidimensional Shintani zeta class are
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given. Though, it is not sufficient for understanding this new class. In this chapter,

we focus on the characters of multidimensional Shintani zeta functions and show the

relations with some known discrete distributions on Rd. We also consider the infinite

divisibilities of them which were also studied by applying generalized Euler products

called the multidimensional polynomial Euler products introduced by Aoyama and

Nakamura [3, 4]. Our purpose is to give them and show some new results. We show

that multinomial and negative binomial distributions belong to the multidimensional

Shintani zeta class in section 2.3 and 2.5, respectively. In section 2.4, we give some

necessary and sufficient conditions for certain multivariate functions to be characteris-

tic functions which contain generalized multinomial distributions. Some properties of

characters and infinite divisibilities are also studied throughout these three sections.

2.3 Generalized multinomial distributions

Many discrete distributions including the multinomial ones can be represented in

terms of multidimensional Shintani zeta functions by choosing suitable characters. In

this section, we consider and study some cases of them.

First, we consider a generalization of multinomial distributions by expressing

them such as multidimensional Shintani zeta functions.

Definition 2.23. Let d,m ∈ N, σ⃗, c⃗l = (clj)
d
j=1 ∈ Rd\{0}, ϕ(l) ∈ R and j(l) ∈ N\{1},

where 1 ≤ l ≤ m. For each N ∈ Z≥0, we define a character θN by

θN(n1, . . . , nm) =

N !
m∏
l=1

(ϕ(l))kl

kl !

(
nl + 1 = (j(l))kl ,

m∑
l=1

kl = N
)
,

0 (otherwise),

(2.8)

where (n1, . . . , nm) ∈ Zm≥0, and a N -multinomial function ZS,N by

ZS,N(s⃗) =
∞∑

n1,...,nm=0

θN(n1, . . . , nm)∏m
l=1(nl + 1)⟨c⃗l,s⃗⟩

, s⃗ = σ⃗ + i⃗t ∈ Cd, t⃗ ∈ Rd.

Here we regard 0 ! = 1, 00 = 1. We can see that all of these functions are of the

multidimensional Shintani zeta class and, by the multinomial theorem, we have

ZS,N(s⃗) =
∑

k1+···+km=N

N !
m∏
l=1

(ϕ(l))kl(j(l)−⟨c⃗l,s⃗⟩)kl

kl !
=

( m∑
l=1

ϕ(l)(j(l))−⟨c⃗l,s⃗⟩
)N

.

14



Now we put

fσ⃗,N (⃗t) :=
ZS,N(σ⃗ + i⃗t)

ZS,N(σ⃗)
, t⃗ ∈ Rd,

and

q(l) :=
ϕ(l)(j(l))−⟨c⃗l,σ⃗⟩∑m

l0=1 ϕ(l0)(j(l0))
−⟨c⃗l0 ,σ⃗⟩

, x⃗l := (xlk)
d
k=1, xlk := −clk log j(l).

Suppose that ϕ(1), . . . , ϕ(m) have the same sign. Then, the character θN is

nonnegative or nonpositive definite, so that fσ⃗,N is the characteristic function of a

multidimensional Shintani zeta distribution µσ⃗ given by

µσ⃗

({
−

m∑
l=1

cl1 log(nl + 1), . . . ,−
m∑
l=1

cld log(nl + 1)
})

=
θN(n1, . . . , nm)

ZS,N(σ⃗)

m∏
l=1

(nl + 1)−⟨c⃗l,σ⃗⟩

=

N !
m∏
l=1

(q(l))kl

kl!

(
nl + 1 = (j(l))kl ,

m∑
l=1

kl = N
)
,

0 (otherwise).

We note that
∑m

l=1 q(l) = 1 and q(l) ≥ 0 for all 1 ≤ l ≤ m, therefore we can define

the following subclass of the multidimensional Shintani zeta class.

Definition 2.24. Let N ∈ N, x⃗1, . . . , x⃗m ∈ Rd and q(1), . . . , q(m) ≥ 0 such that∑m
l=1 q(l) = 1. A probability measure µN on Rd is called a generalized N -multinomial

distribution, if

µN

({ m∑
l=1

xl1nl, . . . ,
m∑
l=1

xldnl

})
= N !

m∏
l=1

(q(l))nl

nl!
,
(
when

m∑
l=1

nl = N
)
.

The class of multinomial distributions is a special case of this class above when

m = d and x⃗1, . . . , x⃗d are the standard basis of Rd. We have that the characteristic

function of µN is fσ⃗,N and, by using q(l), it can be written as follows:

fσ⃗,N (⃗t) =

( m∑
l=1

q(l)ei⟨x⃗l ,⃗t⟩
)N

.

Next, we consider a class of compound distributions including the class of gener-

alized N -multinomial distributions.
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Definition 2.25. Let σ⃗, c⃗l ∈ Rd \{0}, ϕ(l) ∈ R and j(l) ∈ N\{1}, where 1 ≤ l ≤ m,

and θN be a character given by (2.8). For each nonnegative integer valued random

variable T satisfying

Pr(T = 0) ̸= 1 and
∞∑
N=0

Pr(T = N)
( m∑
l=1

|q(l)|
)N

<∞, (2.9)

we define a character θT by

θT (n1, . . . , nm) =
∞∑
N=0

Pr(T = N)
θN(n1, . . . , nm)

(
∑m

l=1 ϕ(l)(j(l))
−⟨c⃗l,σ⃗⟩)N

, (2.10)

where (n1, . . . , nm) ∈ Zm≥0, and a T -multinomial function ZS,T by

ZS,T (s⃗) =
∞∑

n1,...,nm=0

θT (n1, . . . , nm)∏m
l=1(nl + 1)⟨c⃗l,s⃗⟩

, s⃗ = σ⃗ + i⃗t ∈ Cd, t⃗ ∈ Rd.

We also can see that all of these functions are of the multidimensional Shin-

tani zeta class. The character θT is nonnegative or nonpositive definite whenever

ϕ(1), . . . , ϕ(m) have the same sign. Therefore, T -multinomial functions can generate

the following subclass of the multidimensional Shintani zeta class when θT is so.

Definition 2.26. Let σ⃗ ∈ Rd and nonnegative integer valued random variable T sat-

isfying (2.9). A probability measure µσ⃗,T on Rd is called a T -multinomial distribution

if, for all (n1, . . . , nm) ∈ Zm≥0,

µσ⃗,T

({
−

m∑
l=1

cl1 log(nl + 1), . . . ,−
m∑
l=1

cld log(nl + 1)
})

=
θT (n1, . . . , nm)

ZS,T (σ⃗)
∏m

l=1(nl + 1)⟨c⃗l,σ⃗⟩
.

The characteristic function fσ⃗,T of µσ⃗,T is given by

fσ⃗,T (⃗t) =
ZS,T (σ⃗ + i⃗t)

ZS,T (σ⃗)
, t⃗ ∈ Rd.

The series ZS,T (σ⃗ + i⃗t) converges absolutely by the condition (2.9), and so that we

have

ZS,T (σ⃗ + i⃗t) =
∞∑
N=0

Pr(T = N)

(
∑m

l=1 ϕ(l)(j(l))
−⟨c⃗l,σ⃗⟩)N

∞∑
n1,...,nm=0

θN(n1, . . . , nm)∏m
l=1(nl + 1)⟨c⃗l,σ⃗+i⃗t⟩

=
∞∑
N=0

Pr(T = N)

(
∑m

l=1 ϕ(l)(j(l))
−⟨c⃗l,σ⃗⟩)N

( m∑
l=1

ϕ(l)(j(l))−⟨c⃗l,σ⃗+i⃗t⟩
)N
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=
∞∑
N=0

Pr(T = N)
( m∑
l=1

q(l)ei⟨x⃗l ,⃗t⟩
)N

, t⃗ ∈ Rd,

and ZS,T (σ⃗) =
∑∞

N=0 Pr(T = N) = 1. Thus, we obtain

fσ⃗,T (⃗t) =
∞∑
N=0

Pr(T = N)
( m∑
l=1

q(l)ei⟨x⃗l ,⃗t⟩
)N

, t⃗ ∈ Rd,

which is a characteristic function of some compound distribution.

Next, we show that some important distributions belong to this class.

Proposition 2.27. The class of T -multinomial distributions includes the following

distributions.

(i) N -multinomial distributions.

(ii) A compound Poisson distribution with a finite Lévy measure Nσ⃗ on Rd given by

Nσ⃗(dx) = λ

m∑
l=1

q(l) δx⃗l(dx),

where λ > 0 and q(1), . . . , q(m) > 0.

(iii) Let K ∈ N. A compound Poisson distribution with a finite Lévy measure

Nσ⃗,G(γ,K) on Rd given by

Nσ⃗,G(γ,K)(dx) =
∞∑
r=1

(rK) ! γr

r

∑
n1+···+nm=rK

(q(l))nl

nl !
δ∑m

l=1 nlx⃗l(dx),

where 0 < γ < 1 and q(1), . . . , q(m) > 0 with
∑m

l=1 q(l) = 1. In particular,

when l = 1, fσ⃗,G(γ,1) is the characteristic function of a geometric distribution

with a parameter 1− γ and a vector x⃗1.

In the following, we give the proofs and note that the logarithm is taken as the

distinguished one whole through this thesis.

Proof. (i) Let δN be a delta measure. If T = δN , then we have θT (n1, . . . , nm) =

θN(n1, . . . , nm) for all (n1, . . . , nm) ∈ Zm≥0. Hence, we have fσ⃗,T= fσ⃗,N .

(ii) Let λ > 0 and Po(λ) be a Poisson random variable with mean λ. If T =

Po(λ), then we have

fσ⃗,Po(λ)(⃗t) =
∞∑
N=0

λN

N !
e−λ
( m∑
l=1

q(l)ei⟨x⃗l ,⃗t⟩
)N

= exp

{
λ
( m∑
l=1

q(l)ei⟨x⃗l ,⃗t⟩ − 1
)}

, t⃗ ∈ Rd.
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This is the characteristic function of a compound Poisson distribution with a finite

Lévy measure Nσ⃗.

(iii) Let 0 < γ < 1, K ∈ N and G(γ,K) be a nonnegative integer valued random

variable whose distribution is given by

Pr(G(γ,K) = KN) = (1− γ)γN , N ∈ Z≥0.

If T = G(γ,K), then we have, for each t⃗ ∈ Rd,

fσ⃗,G(γ,K)(⃗t) =
∞∑
N=0

(1− γ)γN
( m∑
l=1

q(l)ei⟨x⃗l ,⃗t⟩
)KN

=
1− γ

1− γ (
∑m

l=1 q(l)e
i⟨x⃗l ,⃗t⟩)K

.

This is the characteristic function of a compound geometric and also a compound

Poisson distribution. Its Lévy measure is given by Nσ⃗,G(γ,K), since we have

fσ⃗,G(γ,K)(⃗t) =
1− γ

1− γ (
∑m

l=1 q(l)e
i⟨x⃗l ,⃗t⟩)K

= exp

{
− log

(
1− γ

( m∑
l=1

q(l)ei⟨x⃗l ,⃗t⟩
)K)

− log(1− γ)−1

}
= exp

{ ∞∑
r=1

γr

r

( m∑
l=1

q(l)ei⟨x⃗l ,⃗t⟩
)rK

− log(1− γ)−1

}
= exp

{ ∞∑
r=1

γr

r

∑
n1+···+nm=rK

(rK) !
(q(l))nl

nl !
ei⟨

∑m
l=1 nlx⃗l ,⃗t⟩ − log(1− γ)−1

}
= exp

{∫
Rd

(ei⟨x,⃗t⟩ − 1)Nσ⃗,G(γ,K)(dx)

}
, t⃗ ∈ Rd.

In the equation above, we note that Nσ⃗,G(γ,K)(Rd) = log(1− γ)−1.

2.4 Conditions to be characteristic functions

In the previous section, we treated cases with nonnegative or nonpositive definite

characters. Therefore, we now consider the case when the characters are not so.

We again use the notations in section 2.3. Under some additional conditions, the

following lemma gives a criteria for fσ⃗,T to be a characteristic function.

Lemma 2.28. Let j(1), . . . , j(m) be relatively prime. Suppose that Rd-valued vectors

c⃗1, . . . , c⃗m are linearly independent over R or c⃗1 = · · · = c⃗m (̸= 0). If there exists

1 ≤ l0 ≤ m such that q(l0) < 0, then there exists t⃗0 ∈ Rd such that Re fσ⃗,T (⃗t0) > 1.
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If this lemma holds, then fσ⃗,T is not to be a characteristic function. By applying

Lemma 2.28, we have the following result.

Theorem 2.29 (The necessary and sufficient condition for fσ⃗,T to be a characteris-

tic function). Let j(1), . . . , j(m) be relatively prime. Suppose that Rd-valued vectors

c⃗1, . . . , c⃗m are linearly independent over R or c⃗1 = · · · = c⃗m (̸= 0). Then, fσ⃗,T is a

characteristic function if and only if ϕ(1), . . . , ϕ(m) have the same sign.

For the proof of Lemma 2.28, we use the linear independence of real numbers

and the Kronecker’s approximation theorem in the same way as in Aoyama and

Nakamura [3, 4]. The Baker’s theorem given below is useful to discriminate the linear

independence of real numbers.

Proposition 2.30 (Baker [11]). The numbers γβ11 · · · γβ11 are transcendental for any

algebraic numbers γ1, . . . , γn, other than 0 or 1, and any algebraic numbers β1, . . . , βn

with 1, β1, . . . , βn are linearly independent over the rationals.

By using this fact, we have the following.

Proposition 2.31 (Nakamura [22]). Let j(1), . . . , j(n) be relatively prime and ω1,

ω2, . . . , ωm with ω1 = 1 be algebraic real numbers which are linearly independent over

the rationals. Then {ωl log j(l) | 1 ≤ l ≤ m} is also linearly independent over the

rationals.

The (first form of) Kronecker’s approximation theorem given below is a key of

the proofs in this section.

Proposition 2.32 (See, e.g. Apostol [10]). If r1, . . . , rn are arbitrary real numbers,

if real numbers θ1, . . . , θn are linearly independent over the rationals, and if ϵ > 0 is

arbitrary, then there exist a real number t and integers h1, . . . , hn such that

|tθk − hk − rk| < ϵ, 1 ≤ k ≤ n.

Proof of Lemma 2.28. Put

L :=
∑
l ̸=l0

q(l)− q(l0) >
m∑
l=1

q(l) = 1,

and take n0 ∈ N and 0 < ϵ < L such that

Pr(T = n0) > 0, ((L− ϵ)(1− ϵ)− 1)Pr(T = n0)− 2ϵ > 0. (2.11)
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Then, we note that

L− ϵ > 1, (L− ϵ)(1− ϵ) > 1.

By the absolute convergence of the series (2.9), there exists a natural number N > n0

such that∣∣∣∣ N∑
n=0

Pr(T = n)− 1

∣∣∣∣ < ϵ, (2.12)

sup
t⃗∈Rd

∣∣∣∣ ∞∑
n=N+1

Pr(T = n)
( m∑
l=1

q(l)ei⟨cl ,⃗t⟩ log j(l)
)n∣∣∣∣ ≤ ∞∑

n=N+1

Pr(T = n)
( m∑
l=1

|q(l)|
)n

< ϵ.

(2.13)

First we consider the case when c⃗1, . . . , c⃗m are linearly independent over Rd. Let

ω1, ω2, . . . , ωm with ω1 = 1 be algebraic real numbers which are linearly indepen-

dent over the rationals. Then, there exits t⃗1 ∈ Rd such that (⟨c⃗1, t⃗1⟩, . . . , ⟨c⃗m, t⃗1⟩) =
(ω1, ω2, . . . , ωm), since c⃗1, . . . , c⃗m are linearly independent over R. In this case, we put

θl =
ωl log j(l)

2π
(1 ≤ l ≤ m), cosNα = 1− ϵ

(
−π
2
< α <

π

2

)
.

Next, we consider the case when c⃗1 = · · · = c⃗m ( ̸= 0). In this case, we put

θl =
log j(l)

2π
(1 ≤ l ≤ m), cosNα = 1− ϵ

(
−π
2
< α <

π

2

)
.

In both cases, we have that θ1, . . . , θm are linearly independent over the rationals.

Therefore, by Proposition 2.32, there exists T0 ∈ Rd such that

|ei2πT0θl0 + 1| < min{ϵ, | sinα|}
( m∑
l=1

|q(l)|
)−1

,

|ei2πT0θl − 1| < min{ϵ, | sinα|}
( m∑
l=1

|q(l)|
)−1

(l ̸= l0).

Now we have∣∣∣∣ m∑
l=1

q(l)ei2πT0θl − L

∣∣∣∣ ≤∑
l ̸=l0

|q(l)||ei2πT0θl − 1|+ |q(l0)||ei2πT0θl0 + 1|

< min{ϵ, | sinα|}.

This implies that∣∣∣∣Re( m∑
l=1

q(l)ei2πT0θl − L
)∣∣∣∣ ≤ ∣∣∣∣ m∑

l=1

q(l)ei2πT0θl − L

∣∣∣∣ < ϵ,
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∣∣∣∣Im( m∑
l=1

q(l)ei2πT0θl
)∣∣∣∣ ≤ ∣∣∣∣ m∑

l=1

q(l)ei2πT0θl − L

∣∣∣∣ < | sinα|,

so that, for each 1 ≤ n ≤ N , we have

Re

(( m∑
l=1

q(l)ei2πT0θl
)n)

≥
(
Re
( m∑
l=1

q(l)ei2πT0θl
))n

cosnα (2.14)

> (L− ϵ)n cosNα

> (L− ϵ)(1− ϵ).

By taking t⃗0 ∈ Rd such that t⃗0 = T0 t⃗1 when c⃗1, . . . , c⃗m are linearly independent

over R, or T0 = ⟨c⃗1, t⃗0⟩ when c⃗1 = · · · = c⃗m, and by the inequalities (2.11), (2.12),

(2.13) and (2.14), we obtain

Re fσ⃗,T (⃗t0) = Re

( ∞∑
n=0

Pr(T = n)
( m∑
l=1

q(l)ei2πT0θl
)n)

> Re

( N∑
n=0

Pr(T = n)
( m∑
l=1

q(l)ei2πT0θl
)n)

− ϵ

> (L− ϵ)(1− ϵ)
N∑
n=1

Pr(T = n) + Pr(T = 0)− ϵ

=
N∑
n=0

Pr(T = n) + ((L− ϵ)(1− ϵ)− 1)
N∑
n=1

Pr(T = n)− ϵ

> 1 + ((L− ϵ)(1− ϵ)− 1)Pr(T = n0)− 2ϵ > 1.

We have treated only the cases with nonnegative or nonpositive definite char-

acters. In the following, we give an example of characteristic functions when the

characters are not so.

Example 2.33. We retake σ⃗, c⃗1, . . . , c⃗m ∈ Rd \ {0}, ϕ(1), . . . , ϕ(m) > 0 and j(1),

. . . , j(m) ∈ N \ {1} such that

m∑
l=1

ϕ(l)(j(l))−⟨c⃗l,σ⃗⟩ < 1.

Let En be the Euler numbers which are integers given by

1

coshx
=

2

ex + e−x
=

∞∑
n=0

En
n !

xn.
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For each (n1, . . . , nm) ∈ Zm≥0, we define a new character by

θEN(n1, . . . , nm) =
∞∑
n=0

(π
2

)nEn
n !

θn(n1, . . . , nm),

where θn is the character given by (2.8). Then, for each n ∈ Z≥0, θEN(j(1)
k1 ,

. . . , j(m)km) > 0 if
∑m

l=1 kl = 4n, and θEN(j(1)
k1 , . . . , j(m)km) < 0 if

∑m
l=1 kl =

2(2n+ 1). Therefore, this character θEN is neither nonnegative nor nonpositive defi-

nite.

However, the multidimensional Shintani zeta function ZS,EN corresponding to

the character θEN converges absolutely and we have

ZS,EN(σ⃗ + i⃗t) :=
∞∑

n1,...,nm=0

θEN(n1, . . . , nm)∏m
l=1(nl + 1)⟨c⃗l,σ⃗+i⃗t⟩

=
∞∑
n=0

(π
2

)n En
n !

∞∑
n1,...,nm=0

θn(n1, . . . , nm)∏m
l=1(nl + 1)⟨c⃗l,σ⃗+i⃗t⟩

=
∞∑
n=0

(π
2

)n En
n !

( m∑
l=1

ϕ(l)(j(l))−⟨c⃗l,σ⃗+i⃗t⟩
)n

=

(
cosh

(π
2

m∑
l=1

ϕ(l)j(l)−⟨c⃗l,σ⃗⟩ei⟨x⃗l ,⃗t⟩
))−1

, t⃗ ∈ Rd.

We also have the following equation.

1

cosh(πz/2)
= exp

{∫
R
(ezx − 1− zx) ν(dx)

}
, z ∈ C, |z| < 1,

where ν is a Lévy measure on R given by

ν(dx) = dx/x(ex − e−x).

Thus, we obtain

ZS,EN(σ⃗ + i⃗t)

= exp

{∫
R

(
ex

∑m
l=1 ϕ(l)j(l)

−⟨c⃗l,σ⃗⟩ei⟨x⃗l,⃗t⟩ − 1− x
m∑
l=1

ϕ(l)j(l)−⟨c⃗l,σ⃗⟩ei⟨x⃗l ,⃗t⟩
)
ν(dx)

}
= exp

{ ∞∑
j=2

1

j !

∫
R
xj
( m∑
l=1

ϕ(l)j(l)−⟨c⃗l,σ⃗⟩ei⟨x⃗l ,⃗t⟩
)j
ν(dx)

}

= exp

{ ∞∑
j=2

∑
k1+···+km=j

(∫
R
xj ν(dx)

) m∏
l=1

(ϕ(l)j(l)−⟨c⃗l,σ⃗⟩)kl

kl !
ei

∑m
l=1 kl⟨x⃗l ,⃗t⟩

}
.
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Then, we can see that

fσ⃗,E (⃗t) :=
ZS,EN(σ⃗ + i⃗t)

ZS,EN(σ⃗)

= exp

{ ∞∑
j=2

∑
k1+···+km=j

(∫
R
xj ν(dx)

) m∏
l=1

(ϕ(l)j(l)−⟨c⃗l,σ⃗⟩)kl

kl !

(
ei

∑m
l=1 kl⟨x⃗l ,⃗t⟩ − 1

)}
is a characteristic function of a compound Poisson distribution with a finite Lévy

measure Nσ⃗,ν given by

Nσ⃗,ν(dx) =
∞∑
j=2

∑
k1+···+km=j

(∫
R
xj ν(dx)

) m∏
l=1

(ϕ(l)j(l)−⟨c⃗l,σ⃗⟩)kl

kl !
δ∑m

l=1 klx⃗l
(dx).

Therefore, some of multidimensional Shintani zeta functions may generate probability

distributions even if their characters are neither nonnegative nor nonpositive.

2.5 Generalized negative multinomial distributions

In this section, we treat characteristic functions of negative multinomial distributions

in the sense of multidimensional Shintani zeta functions, and consider the infinite

divisibilities of them as well.

Definition 2.34. Let d,m ∈ N, σ⃗, c⃗1, . . . , c⃗m ∈ Rd \ {0}, ϕ(0), . . . , ϕ(m) ∈ R and

j(1), . . . , j(m) ∈ N \ {1} such that

min
1≤l≤m

⟨c⃗l, σ⃗⟩ ≥ 1,
m∑
l=1

|ϕ(l)| < ϕ(0). (2.15)

For each c > 0 and a character θneg(c) given by

θneg(c)(n1, . . . , nm)

=


(

−c∑m
l=1 kl

)
ϕ(0)−c−

∑m
l=1 kl (

m∑
l=1

kl) !
m∏
l=1

(−ϕ(l))kl
kl !

(
nl + 1 = (j(l))kl

)
,

0 (otherwise),

where (n1, . . . , nm) ∈ Zm≥0, we define a c-negative multinomial function by

ZS,neg(c)(s⃗) =
∞∑

n1,...,nm=0

θneg(c)(n1, . . . , nm)∏m
l=1(nl + 1)⟨c⃗l,s⃗⟩

, s⃗ = σ⃗ + i⃗t ∈ Cd, t⃗ ∈ Rd.
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Here(
m
0

)
= 1,

(
m
n

)
=
m(m− 1) · · · (m− (n− 1))

n !
, n ∈ N, m ∈ C.

We can see that all of these functions are of the multidimensional Shintani zeta class.

By the condition (2.15), the series ZS,neg(c)(s⃗) converges absolutely and we have

ZS,neg(c)(s⃗) =
∞∑
N=0

(
−c
N

)
ϕ(0)−c−N

∑
k1+···+km=N

N !
m∏
l=1

(−ϕ(l))kl
kl !

·
m∏
l=1

j(l)−kl⟨c⃗l,s⃗⟩

=
∞∑
N=0

(
−c
N

)
ϕ(0)−c−N

∑
k1+···+km=N

N !
m∏
l=1

(−ϕ(l)j(l)−⟨c⃗l,s⃗⟩)kl

kl !

=
∞∑
N=0

(
−c
N

)
ϕ(0)−c−N

(
−

m∑
l=1

ϕ(l)j(l)−⟨c⃗l,s⃗⟩
)N

=

(
ϕ(0)−

m∑
l=1

ϕ(l)j(l)−⟨c⃗l,s⃗⟩
)−c

, s⃗ = σ⃗ + i⃗t ∈ Cd, t⃗ ∈ Rd.

Note that the last equation above is obtained by the generalized binomial theorem.

For 1 ≤ l ≤ m, we put

q(0)−1 :=
ϕ(0)

ϕ(0)−
∑m

l0=1 ϕ(l0)j(l0)
−⟨c⃗l0 ,σ⃗⟩

, q(l) :=
ϕ(l) j(l)−⟨c⃗l,σ⃗⟩

ϕ(0)−
∑m

l0=1 ϕ(l0)j(l0)
−⟨c⃗l0 ,σ⃗⟩

.

Then, we have

q(0) + q(0)
m∑
l=1

q(l) = 1 (2.16)

and, for t⃗ ∈ Rd, we also put

fσ⃗,neg(c)(⃗t) :=
ZS,neg(c)(σ⃗ + i⃗t)

ZS,neg(c)(σ⃗)
= q(0)c

(
1− q(0)

m∑
l=1

q(l)e−i⟨c⃗l ,⃗t⟩ log j(l)
)−c

.

Suppose that ϕ(l) ≥ 0 for all 1 ≤ l ≤ m. Then the character θneg(c) is nonneg-

ative, so that fσ⃗,neg(c) is a characteristic function. Therefore, c-negative multinomial

functions can generate the following subclass of multidimensional Shintani zeta class

as in section 2.3.
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Definition 2.35. Let x⃗1, . . . , x⃗m ∈ Rd and q(0), . . . , q(m) ≥ 0 satisfying (2.16).

A probability measure µneg(c) on Rd is called a generalized c-negative multinomial

distribution, if

µneg(c)

({ m∑
l=1

xl1nl, . . . ,
m∑
l=1

xldnl

})
=

(
−c
N

)
q(0)c+N N !

m∏
l=1

(−q(l))n(l)

n(l) !

(
when nl, N ∈ Z≥0 and

m∑
l=1

nl = N
)
.

The class of negative binomial distributions is a special case of this class above

when m = d = 1 and x1 = 1. We have that the characteristic function of µneg(c) is

fσ⃗,neg(c). Moreover, generalized c-negative distributions are compound Poisson since

we have

fσ⃗,neg(c)(⃗t) = exp

{
−c log

(
1− q(0)

m∑
l=1

q(l)ei⟨x⃗l ,⃗t⟩
)
+c log q(0)

}
= exp

{
c

∞∑
r=1

1

r

(
q(0)

m∑
l=1

q(l)ei⟨x⃗l ,⃗t⟩
)r

− c log q(0)−1

}
= exp

{
c

( ∞∑
r=1

∞∑
n1,...,nm=0

q(r : {nl}) ei
∑m

l=1 nl⟨x⃗l ,⃗t⟩ − log q(0)−1

)}
= exp

{∫
Rd

(ei⟨x,⃗t⟩ − 1)Nneg(c)(dx)

}
, t⃗ ∈ Rd,

where {nl} = (n1, . . . , nm) ∈ Zm≥0 and

q(r : {nl}) :=

(r − 1) ! q(0)r
m∏
l=1

(q(l))nl

nl !

(
when

m∑
l=1

nl = r
)
,

0 (otherwise).

Therefore, its finite Lévy measure Nneg(c) on Rd is given by

Nneg(c)(dx) = c
∞∑
r=1

∞∑
n1,...,nm=0

q(r : {nl}) δ∑m
l=1 nlx⃗l(dx).

Next, we consider a subordination. Let {Xσ⃗(t) : t ≥ 0} be a Lévy process whose

distribution at time 1 is a generalized 1-negative multinomial distribution µneg(1)

generated by a c-negative function ZS,neg(1). We take {T (t) : t ≥ 0} as a subordinator

independent of {Xσ⃗(t) : t ≥ 0} and satisfies

E
[
q(0)T

(
1− q(0)

m∑
l=1

|q(l)|
)−T]

<∞. (2.17)
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We also put T := T (1) and α := ϕ0 −
∑m

l=1 ϕ(l)j(l)
−⟨c⃗l,σ⃗⟩.

Definition 2.36. For any subordinator {T (t) : t ≥ 0} satisfying (2.17), we define a

new character ΘT by

ΘT (n1, . . . , nm) = E
[
θneg(T )(n1, . . . , nm)/α

T
]
,

where (n1, . . . , nm) ∈ Zm≥0, and a T -negative multinomial function ZS,neg(T ) by

ZS,neg(T )(s⃗) =
∞∑

n1,...,nm=0

ΘT (n1, . . . , nm)∏m
l=1(nl + 1)⟨c⃗l,s⃗⟩

, s⃗ = σ⃗ + i⃗t ∈ Cd, t⃗ ∈ Rd.

Under the condition that ϕ(l) ≥ 0 for all 1 ≤ l ≤ m, we put

fσ⃗,neg(T )(⃗t) :=
ZS,neg(T )(σ⃗ + i⃗t)

ZS,neg(T )(σ⃗)
.

We can see that fσ⃗,neg(T ) is the characteristic function of a multidimensional Shintani

zeta distribution with a character ΘT . Therefore, we also can define the following

subclass of multidimensional Shintani zeta class.

Definition 2.37. Let σ⃗ ∈ Rd \{0} and {T (t)}t≥0 be a subordinator satisfying (2.17).

A probability measure µσ⃗,neg(T ) on Rd is called a T -negative multinomial distribution

if, for (n1, . . . , nm) ∈ Zm≥0,

µσ⃗,neg(T )

({
−

m∑
l=1

cl1 log(nl + 1), . . . ,−
m∑
l=1

cld log(nl + 1)
})

=
ΘT (n1, . . . , nm)

ZS,neg(T )(σ⃗)

m∏
l=1

(nl + 1)−⟨c⃗l,σ⃗⟩.

Since ZS,neg(T )(σ⃗) = 1, for t⃗ ∈ Rd, we have

fσ⃗,neg(T )(⃗t) = E
[
1

αT

∞∑
n1,...,nm=0

ΘT (n1, . . . , nm)∏m
l=1(nl + 1)⟨c⃗l,σ⃗+i⃗t⟩

]

= E
[
q(0)T

(
1− q(0)

m∑
l=1

q(l) e−i⟨c⃗l ,⃗t⟩ log j(l)
)−T]

= E
[
exp

{
T
( ∞∑
r=1

∞∑
n1,...,nm=0

q(r : {nl})(ei
∑m

l=1 nl⟨c⃗l ,⃗t⟩ log j(l) − 1)
)}]

.

This implies that fσ⃗,neg(T ) is the characteristic function of the distribution of Xσ⃗(T (1))

which is compound Poisson. Moreover, similar to Theorem 2.29, we also have a

necessary and sufficient condition for fσ⃗,neg(T ) to be a characteristic function.
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Theorem 2.38. Let j(1), . . . , j(m) be relatively prime. Suppose that Rd-valued vec-

tors c⃗1, . . . , c⃗m are linearly independent over R or c⃗1 = · · · = c⃗m (̸= 0). Then, for

any subordinator {T (t) : t ≥ 0} satisfying (2.17), fσ⃗,neg(T ) is a characteristic function

if and only if ϕ(l) ≥ 0 for all 1 ≤ l ≤ m. Moreover, it is compound Poisson when

ϕ(l) ≥ 0 for all 1 ≤ l ≤ m.

The following is the proof of theorem 2.38 which was omitted in Aoyama and

Yoshikawa [7].

Proof. Suppose that there exists 1 ≤ l0 ≤ m such that ϕ(l0) < 0. Then, we have

q(0) + q(0)
∑
l ̸=l0

q(l)− q(0)q(l0) > q(0) + q(0)
m∑
l=1

q(l) = 1.

Since

q(0)
∑
l ̸=l0

q(l)− q(0)q(l0) = ϕ(0)−1

(∑
l ̸=l0

ϕ(l)j(l)−⟨c⃗l,σ⃗⟩ − ϕ(l0)j(l0)
−⟨c⃗l0 ,σ⃗⟩

)

≤ ϕ(0)−1

( m∑
l=1

|ϕ(l)|j(l)−⟨c⃗l,σ⃗⟩
)
< 1,

we obtain

0 < 1− q(0)
∑
l ̸=l0

q(l) + q(0)q(l0) < q(0).

Put

L := 1− q(0)
∑
l ̸=l0

q(l) + q(0)q(l0)

and take n0 ∈ N and 0 < ϵ < q(0)L−1 such that

Pr(1 ≤ T ≤ n0) > 0,
(
(q(0)L−1 − ϵ)(1− ϵ)− 1

)
Pr(1 ≤ T ≤ n0)− 3ϵ > 0. (2.18)

Then, we note that

q(0)L−1 − ϵ > 1, (q(0)L−1 − ϵ)(1− ϵ) > 1.

It follows from (2.17) that there exists a natural number N > n0 such that∣∣∣Pr(T ≤ N)− 1
∣∣∣ < ϵ, (2.19)
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sup
t⃗∈Rd

∣∣∣∣∫
(N,∞)

q(0)u
(
1− q(0)

m∑
l=1

q(l)e−i⟨c⃗l ,⃗t⟩ log j(l)
)−u

ρT (du)

∣∣∣∣ (2.20)

≤
∫
(N,∞)

q(0)u
(
1− q(0)

m∑
l=1

|q(l)|
)−u

ρT (du) < ϵ,

where ρT is the distribution of T . We can take −π/2 < α < π/2 such that cosNα =

1− ϵ, and δ > 0 such that

|q(0)z−1 − q(0)L−1| < min{ϵ, | sinα|} whenever |z − L| < δ, z ∈ C.

Now we follow the proof of Lemma 2.28. In the case when c⃗1, . . . , c⃗m are linearly

independent over R, let ω1, ω2, . . . , ωm with ω1 = 1 be algebraic real numbers which

are linearly independent over the rationals. Then, there exits t⃗1 ∈ Rd such that

(⟨c⃗1, t⃗1⟩, . . . , ⟨c⃗m, t⃗1⟩) = (ω1, ω2, . . . , ωm), so that we put

θl :=
ωl log j(l)

2π
(1 ≤ l ≤ m).

In other case when c⃗1 = · · · = c⃗m ( ̸= 0), we put

θl :=
log j(l)

2π
(1 ≤ l ≤ m).

In both cases, we have that θ1, . . . , θm are linearly independent over the rationals.

Therefore, by Proposition 2.32, there exists T0 ∈ R such that

|ei2πT0θl0 + 1| < δ

(
q(0)

m∑
l=1

|q(l)|
)−1

,

|ei2πT0θl − 1| < δ

(
q(0)

m∑
l=1

|q(l)|
)−1

(l ̸= l0).

Now we have∣∣∣∣1− q(0)
m∑
l=1

q(l)ei2πT0θl − L

∣∣∣∣ ≤ q(0)

(∑
l ̸=l0

|q(l)||ei2πT0θl − 1|+ |q(l0)||ei2πT0θl0 + 1|
)

< δ.

This implies that∣∣∣∣Re(q(0)(1− q(0)
m∑
l=1

q(l)ei2πT0θl
)−1

− q(0)L−1

)∣∣∣∣ < ϵ,
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∣∣∣∣Im(q(0)(1− q(0)
m∑
l=1

q(l)ei2πT0θl
)−1
)∣∣∣∣ < | sinα|,

so that, for each 0 < c ≤ N , we have

Re

(
q(0)c

(
1− q(0)

m∑
l=1

q(l)ei2πT0θl
)−c)

(2.21)

≥
(
Re
(
q(0)

(
1− q(0)

m∑
l=1

q(l)ei2πT0θl
)−1))c

cosNα

> (1− ϵ)
(
q(0)L−1 − ϵ

)c
.

By taking t⃗0 ∈ Rd such that t⃗0 = T0 t⃗1 when c⃗1, . . . , c⃗m are linearly independent

over R, or T0 = ⟨c⃗1, t⃗0⟩ when c⃗1 = · · · = c⃗m, and by the inequalities (2.18), (2.19),

(2.20) and (2.21), we obtain

Re fσ⃗,T (⃗t0)

= ReE
[
q(0)T

(
1− q(0)

m∑
l=1

q(l)e−i⟨c⃗l ,⃗t0⟩ log j(l)
)−T]

> Re

(∫ N

0

q(0)c
(
1− q(0)

m∑
l=1

q(l)e2πT0θl
)−c

ρT (dc)

)
− ϵ

> (1− ϵ)Pr(T < 1) + (q(0)L−1 − ϵ)(1− ϵ)Pr(1 ≤ T ≤ N)− ϵ

= Pr(T ≤ N) +
(
(q(0)L−1 − ϵ)(1− ϵ)− 1

)
Pr(1 ≤ T ≤ N)− ϵ (1 + Pr(T < 1))

> 1 +
(
(q(0)L−1 − ϵ) (1− ϵ)− 1

)
Pr(1 ≤ T ≤ n0)− 3ϵ > 1.
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Chapter 3

Infinite products in Shintani zeta
class

In the previous chapter, we have treated some multiple zeta functions which are of

multiple series. Similar to the fact that the Riemann zeta function has the Euler

product, some of them can be written by infinite products. We have mentioned

that the Hurwitz zeta distribution is compound Poisson if and only if the Hurwitz

zeta function has the Euler product. Infinite divisibilities of some of distributions

associated with the generalized Euler products are studied by Aoyama and Nakamura

[3, 4], so that we treat several cases of multidimensional Shintani zeta distributions

which can be written by those products in the present chapter.

3.1 Generalized Euler products

In this section, we give a brief introduction to generalized Euler products. First, we

mention Dirichlet characters and Dirichlet L-functions.

Definition 3.1 (Dirichlet character (see, e.g. Apostol [9])). Let q be a positive

integer. A function χ is called a Dirichlet character mod q if it is a non-vanishing

group homomorphism from the group (Z/qZ)∗ of prime residue classes modulo q to

C∗ = C \ {0}.

The character which is identically one is called the principal. By setting χ(n) =

χ(a) for n ≡ a mod q, χ(q) = 0, we can extend the character to a completely

multiplicative arithmetic function on Z. We also note that |χ| = 1, which follows

from its group homomorphism.

30



Definition 3.2 (Dirichlet L-function (see, e.g. Apostol [9])). For s = σ + it ∈ C,
σ > 1, t ∈ R, the Dirichlet L-function L(s, χ) attached to a character χ mod q is

given by

L(s, χ) :=
∞∑
n=1

χ(n)

ns
=
∏
p∈P

(
1− χ(p)

ps

)−1

.

The Riemann zeta function is the case when its character is the principal. As in

the definition, the Dirichlet L-functions L(s, χ) have forms of infinite products and

also converge absolutely in the same region σ > 1 as the Riemann zeta function. It

is well-known that we can prove the prime number theory by Dirichlet L-functions.

As a generalization of the Euler product, the following multidimensional polyno-

mial Euler products are introduced by Aoyama and Nakamura [4].

Definition 3.3 (Multidimensional Euler Product, Aoyama and Nakamura [4]). Let

d,m ∈ N and s⃗ ∈ Cd. For −1 ≤ αl(p) ≤ 1 and c⃗l ∈ Rd, 1 ≤ l ≤ m and p ∈ P, we
define a multidimensional polynomial Euler product given by

ZE(s⃗) =
∏
p∈P

m∏
l=1

(
1− αl(p)p

−⟨c⃗l,s⃗⟩
)−1

. (3.1)

The absolute convergence of ZE is also given.

Proposition 3.4 (Aoyama and Nakamura [4]). The product ZE converges absolutely

and has no zeros in the region min1≤l≤m⟨c⃗l, σ⃗⟩ > 1.

For each σ⃗ ∈ Rd with min1≤l≤m⟨c⃗l, σ⃗⟩ > 1, put

fσ⃗,E (⃗t) :=
ZE(σ⃗ + i⃗t)

ZE(σ⃗)
.

Note that every fσ⃗,E is not always to be a characteristic function. Aoyama and

Nakamura [4] showed that there are several necessary and sufficient conditions for

some fσ⃗,E to be so.

Now we consider the following two conditions.

(LI) Rd-valued vectors c⃗1, . . . , c⃗m are linearly independent over R.

(LR) Rd-valued vectors c⃗1, . . . , c⃗m are linearly dependent but linearly independent

over the rationals : c⃗l = ψlc⃗, 1 ≤ l ≤ m, where ψl are algebraic real numbers

and linearly independent over the rationals.
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Then, the following is also known.

Proposition 3.5 (Aoyama and Nakamura [4]). Suppose that Rd-valued vectors c⃗1,

. . . , c⃗m satisfy the condition (LI) or (LR) in (3.1). Then fσ⃗,E is a characteristic

function if and only if αl(p) ≥ 0 for all 1 ≤ l ≤ m, p ∈ P. Moreover, when αl(p) ≥ 0

for all 1 ≤ l ≤ m, p ∈ P, fσ⃗,E is a compound Poisson characteristic function with its

finite Lévy measure Nσ⃗ on Rd given by

Nσ⃗(dx) =
∑
p∈P

∞∑
r=1

m∑
l=1

1

r
αl(p)

rp−r⟨c⃗l,σ⃗⟩δ−r log p c⃗l(dx).

3.2 Products of multidimensional Shintani zeta func-

tions

In this section, we see products of multidimensional Shintani zeta functions. One

of interesting objects is a class of the products which can generate characteristic

functions even if their characters are neither nonnegative nor nonpositive.

First, we consider a product of the Riemman zeta function and a Dirichlet L-

function with multivariable. Let N be a positive integer and χ be a real valued non-

principal Dirichlet character mod N . For each σ⃗, σ⃗′, c⃗ ∈ Rd with ⟨c⃗, σ⃗⟩ > 1, ⟨c⃗l, σ⃗′⟩ >
1, u⃗ = σ⃗ + i⃗t, v⃗ = σ⃗′ + i⃗t, t⃗ ∈ Rd, we define the following functions:

ζ(c⃗)(v⃗) :=
∞∑
n=1

1

n⟨c⃗,v⃗⟩ =
∏
p∈P

(
1− 1

p⟨c⃗,v⃗⟩

)−1

, (3.2)

L(c⃗)(u⃗, χ) :=
∞∑
n=1

χ(n)

n⟨c⃗,u⃗⟩ =
∏
p∈P

(
1− χ(p)

p⟨c⃗,u⃗⟩

)−1

, (3.3)

fσ⃗,σ⃗′ (⃗t) :=
L(c⃗)(σ⃗ + i⃗t, χ) ζ(c⃗)(σ⃗

′ + i⃗t)

L(c⃗)(σ⃗, χ) ζ(c⃗)(σ⃗′)
.

These functions are of multidimensional Shintani zeta class. We have that ζ(c⃗)

induces a multidimensional Shintani zeta distribution, but, by Proposition 3.5, L(c⃗)

does not. However, the product of ζ(c⃗) and L(c⃗) may generate characteristic functions

under some conditions. The following example is given in Aoyama and Nakamura [4].

Example 3.6. We consider the case when d = 1. Define a character χ4 mod 4 by

χ4(n) :=


1 n ≡ 1 mod 4,

−1 n ≡ 3 mod 4,

0 n ≡ 0, 2 mod 4.
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For s = σ + it, σ > 1, t ∈ R, put

ζQ(i)(s) := L(s, χ4)ζ(s), fσ(t) := ζQ(i)(σ + it)/ζQ(i)(σ)

Then, ζQ(i) is the Dedekind zeta function of a quadratic field Q(i) of discriminant −1.

The Dedekind zeta function is defined by a sum of the absolute norms of ideals of

an algebraic number fields, and is also a product taken over all prime ideals. This

function is also well-known as the Riemann zeta function in number theory.

In view of the probability theory, Aoyama and Nakamura [4] showed that fσ(t)

was a compound Poisson characteristic function with a finite Lévy measure Nσ on R
given by

Nσ(dx) =
∞∑
r=1

2−rσ

r
δr log 2(dx) +

∑
p∈P\{2}

∞∑
r=1

(
1 + (−1)

r(p−1)
2

)p−rσ
r

δr log p(dx).

As a new result, we have the following.

Theorem 3.7. We have that fσ⃗,σ⃗′ is a characteristic function if and only if ⟨c⃗, σ⃗ −
σ⃗′⟩ ≥ 0. Moreover, when ⟨c⃗, σ⃗ − σ⃗′⟩ ≥ 0, fσ⃗,σ⃗′ is a compound Poisson characteristic

function with a finite Lévy measure Nσ⃗,σ⃗′ on Rd given by

Nσ⃗,σ⃗′(dx) =
∑
p∈P

∞∑
r=1

1

r
(p−r⟨c⃗,σ⃗

′⟩ + χ(p) p−r⟨c⃗,σ⃗⟩) δ−r log p c⃗(dx).

Proof. First, we show that fσ⃗,σ⃗′ is a compound Poisson characteristic function when

⟨c⃗, σ⃗ − σ⃗′⟩ ≥ 0. Suppose that ⟨c⃗, σ⃗ − σ⃗′⟩ ≥ 0. Then, Nσ⃗,σ⃗′ is a measure on Rd since

p−r⟨c⃗,σ⃗
′⟩ + χ(p) p−r⟨c⃗,σ⃗⟩ ≥ p−r⟨c⃗,σ⃗

′⟩ − p−r⟨c⃗,σ⃗⟩ = p−r⟨c⃗,σ⃗
′⟩(1− p−r⟨c⃗,σ⃗−σ⃗

′⟩) ≥ 0

for all r ∈ N. Moreover, we have

Nσ⃗,σ⃗′(Rd) =
∑
p∈P

∞∑
r=1

1

r
(p−r⟨c⃗,σ⃗

′⟩ + χ(p) p−r⟨c⃗,σ⃗⟩)

≤
∑
p∈P

∞∑
r=1

1

r
(p−r⟨c⃗,σ⃗

′⟩ + p−r⟨c⃗,σ⃗⟩) ≤
∞∑
n=2

∞∑
r=1

(n−r⟨c⃗,σ⃗′⟩ + n−r⟨c⃗,σ⃗⟩)

=
∞∑
n=2

( n⟨c⃗,σ⃗′⟩

1− n⟨c⃗,σ⃗′⟩ +
n⟨c⃗,σ⃗⟩

1− n⟨c⃗,σ⃗⟩

)
= 2

∞∑
n=2

(n⟨c⃗,σ⃗′⟩ + n⟨c⃗,σ⃗⟩)

= 2
(
ζ(⟨c⃗, σ⃗′⟩) + ζ(⟨c⃗, σ⃗⟩)− 2

)
<∞,
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so that Nσ⃗,σ⃗′ is a finite measure on Rd.

If ⟨c⃗, σ⃗⟩ > 1 and ⟨c⃗, σ⃗⟩ > 1, both ζ(c⃗)(v⃗) and L(c⃗)(u⃗, χ) converge absolutely and

they can be written by Euler products as in (3.2) and (3.3). Therefore, we have

log fσ⃗,σ⃗′ (⃗t) = log
ζ(c⃗)(σ⃗

′ + i⃗t)

ζ(c⃗)(σ⃗′)

L(c⃗)(σ⃗ + i⃗t, χ)

L(c⃗)(σ⃗, χ)

=
∑
p∈P

log
(1− p−⟨c⃗,σ⃗′⟩)(1− χ(p) p−⟨c⃗,σ⃗⟩)

(1− p−⟨c⃗,σ⃗′+i⃗t⟩)(1− χ(p) p−⟨c⃗,σ⃗+i⃗t⟩)

=
∑
p∈P

∞∑
r=1

1

r
(p−r⟨c⃗,σ⃗

′⟩ + χ(p) p−r⟨c⃗,σ⃗⟩)(p−ir⟨c⃗,⃗t⟩ − 1)

=

∫
Rd

(ei⟨x,⃗t⟩ − 1)Nσ⃗,σ⃗′(dx). (3.4)

Thus fσ⃗,σ⃗′ is a compound Poisson characteristic function with a finite Lévy measure

Nσ⃗,σ⃗′ on Rd.

Next, we show that there exists t⃗0 ∈ Rd such that |fσ⃗,σ⃗′ (⃗t0)| > 1 when ⟨c⃗, σ⃗−σ⃗′⟩ <
0. This implies that fσ⃗,σ⃗′ is not a characteristic function. Suppose that ⟨c⃗, σ⃗− σ⃗′⟩ < 0.

Put

D(⃗t) := log |fσ⃗,σ⃗′ (⃗t)|

=
1

2

(
log fσ⃗,σ⃗′ (⃗t) + log fσ⃗,σ⃗′(−t⃗)

)
=

1

2

∑
p∈P

∞∑
r=1

ϕ(p, r)(p−ir⟨c⃗,⃗t⟩ + pir⟨c⃗,⃗t⟩ − 2),

where ϕ(p, r) := (p−r⟨c⃗,σ⃗
′⟩ + χ(p) p−r⟨c⃗,σ⃗⟩)/r, and P− := {p ∈ P | χ(p) = −1}. If

⟨c⃗, σ⃗ − σ⃗′⟩ < 0, then we have ϕ(p, r) < 0 for all p ∈ P− and r ∈ N. Note that P− is

not an empty set since χ is a real valued non-principal Dirichlet character. We can

take 0 < ϵ < −ϕ(p0, 1)/2 and K ∈ N such that K > p0 and

1

2

m∑
l=1

∑
p,r>2K

|ϕ(p, r)| < ϵ/4, (3.5)

where
∑

p,r>2K is a sum taken over all r ∈ N and p ∈ P with r > K or p > K. Now

we put

P+
2K := {p ∈ P | 2 ≤ p ≤ 2K, χ(p) = 1},

P−
2K := {p ∈ P | 2 ≤ p ≤ 2K, χ(p) = −1},
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C1 :=
1

2

∑
p∈P+

2K

2K∑
r=1

ϕ(p, r) > 0, C2 :=
1

2

∑
p∈P−

2K

K∑
r=1

ϕ(p, 2r) < 0,

C3 :=
1

2

∑
p∈P−

2K

K∑
r=1

ϕ(p, 2r − 1) < −ϵ

and take

0 < ϵ′ <
ϵ

4K(C1 − C3)
.

Then, as in the proof of Lemma 2.28, it follows from Proposition 2.30, Proposition

2.31 and Proposition 2.32 that there exists T0 ∈ R such that

|pi2T0 + 1| < ϵ′, p ∈ P−
2K , |qi2T0 − 1| < ϵ′, q ∈ P+

2K .

Respectively, by using three factorizations;

xr − 1 = (x− 1)(xr−1 + · · ·+ 1),

x2r − 1 = (x+ 1)(x− 1)(x2r−2 + x2r−4 + · · ·+ 1),

x2r−1 + 1 = (x+ 1)(x2r−2 − x2r−3 + · · ·+ 1),

we have the following inequalities;

|pirT0 − 1| < rϵ′, 1 ≤ r ≤ 2K, p ∈ P+
2K ,

|pi2rT0 − 1| < 2rϵ′, 1 ≤ r ≤ K, p ∈ P−
2K ,

|pi(2r−1)T0 + 1| < (2r − 1)ϵ′, 1 ≤ r ≤ K, p ∈ P−
2K .

These inequalities imply that

−4Kϵ′ < pirT0 + p−irT0 − 2 ≤ 0, 1 ≤ r ≤ 2K, p ∈ P+
2K ,

−4Kϵ′ < pi2rT0 + p−i2rT0 − 2 ≤ 0, 1 ≤ r ≤ K, p ∈ P−
2K ,

−4 ≤ pi(2r−1)T0 + p−i(2r−1)T0 − 2 < −4 + 4Kϵ′, 1 ≤ r ≤ K, p ∈ P−
2K .

Thus, by (3.5) and taking t⃗0 ∈ Rd such that T0 = ⟨c⃗, t⃗0⟩, we have

D(⃗t0) > −ϵ+ 1

2

{ ∑
p∈P+

2K

2K∑
r=1

ϕ(p, r)
(
pirT0 + p−irT0 − 2

)
+
∑
p∈P−

2K

K∑
r=1

ϕ(p, 2r)
(
pi2rT0 + p−i2rT0 − 2

)
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+
∑
p∈P−

2K

K∑
r=1

ϕ(p, 2r − 1)
(
pi(2r−1)T0 + p−i(2r−1)T0 − 2

)}
> −ϵ− 4KC1ϵ

′ + 0 · C2 + (4Kϵ′ − 4)C3

= −ϵ− 4C3 − 4K(C1 − C3)ϵ
′

> −ϵ+ 4ϵ− ϵ = 2ϵ > 0.

Hence we have |fσ⃗,σ⃗′ (⃗t0)| > 1. This completes the proof.

Next, we consider another product of multidimensional Shintani zeta functions.

Let m = 1, r ∈ N, and λ1k = 1, k = 1, . . . , r. We take u1, . . . , ur ∈ R and c⃗, σ⃗ ∈ Rd

such that
∑r

j=1 uj = 1 and ⟨c⃗, σ⃗⟩ > r. For each function ψ from N to R satisfying

|ψ(n)| = O(nϵ) for any ϵ > 0, we define a character θψ by

θψ(n1, . . . , nr) = ψ(n1 + · · ·+ nr + 1), (n1, . . . , nr) ∈ Zr≥0,

and for s⃗ = σ⃗ + i⃗t ∈ C, t⃗ ∈ Rd, we also define a multidimensional Shintani zeta

function ZL(s⃗, ψ) by

ZL(s⃗, ψ) =
∞∑

n1,...,nr=0

θψ(n1, . . . , nr)∏m
l=1(λl1(n1 + u1) + · · ·+ λlr(nr + ur))⟨c⃗l,s⃗⟩

.

Then, we have

ZL(s⃗, ψ) =
∞∑

n1,...,nr=0

θψ(n1, . . . , nr)∏m
l=1(λl1(n1 + u1) + · · ·+ λlr(nr + ur))⟨c⃗l,s⃗⟩

=
∞∑

n1,...,nr=0

ψ(n1 + · · ·+ nr + 1)

(n1 + · · ·+ nr + 1)⟨c⃗,σ⃗⟩

=
∞∑
n=0

A(r, n)
ψ(n+ 1)

(n+ 1)⟨c⃗,σ⃗⟩
,

where A(r, n) := ♯{(n1, . . . , nr) ∈ Zr≥0 | n1 + · · · + nr = N}. Here we denote by ♯S

the number of elements in a set S.

We have the following.

Lemma 3.8. Fix r ∈ N and N ∈ Z≥0. Then, we have

(i) A(r + 1, N) =
∑N

l=0A(r,N − l),
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(ii) A(r + 1, N + 1) = A(r,N + 1) + A(r + 1, N),

(iii) (1− x)−r =
∑∞

n=0A(r, n) x
n for |x| < 1,

(iv) A(l, k) = A(k + 1, l − 1) if k ≥ l ≥ 1,

(v) there exist P (r + 1, 1), . . . , P (r + 1, r) > 0 such that, for all n ∈ Z≥0

P (r + 1, 1) + · · ·+ P (r + 1, r) = 1, A(r + 1, n) =
r∑
j=1

P (r + 1, j) (n+ 1)j.

(3.6)

Proof. We have (i), since

A(r + 1, N) = ♯{(n1, . . . , nr, nr+1) ∈ Zr≥0 | n1 + · · ·+ nr + nr+1 = N}

= ♯

{ N∪
l=0

{(n1, . . . , nr, l) ∈ Zr≥0 | n1 + · · ·+ nr + l = N}
}

=
N∑
l=0

♯{(n1, . . . , nr, l) ∈ Zr≥0 | n1 + · · ·+ nr + l = N}

=
N∑
l=0

A(r,N − l).

We also have (ii), since

A(r + 1, N + 1) =
N+1∑
l=0

A(r,N + 1− l)

= A(r,N + 1) +
N∑
l=0

A(r,N − l)

= A(r,N + 1) + A(r + 1, N)

by (i).

Now we show (iii). Since the function (1− x)−1 =
∑∞

n=0 x
n converges absolutely

in the region |x| < 1, we have

(1− x)−r =
( ∞∑
n=0

xn
)r

=
∞∑

n1,...,nr=0

xn1+···+nr =
∞∑
n=0

A(r, n)xn.
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By differentiating both side of the equation of (iii) j times, we have

r(r + 1) · · · (r + k − 1)(1− x)−r−j =
∞∑
n=j

n(n− 1) · · · (n− j + 1)A(r, n)xn−j.

Since (1− x)−r−j =
∑∞

n=0A(r+ j, n) xn, it follows from comparing the coefficients of

the variable x in the above equation that

(r + j − 1) !

(r − 1) !
A(r + j, n) =

(n+ j) !

n !
A(r, n+ j), n ∈ Z≥0. (3.7)

Take n = l − 1, j = k − l + 1, r = l, then the equation of (iv) holds.

Finally, we show (v). Obviously, we have A(2, n) = n + 1 for n ∈ Z≥0. So (3.6)

holds when P (2, 1) = 1. Assume that r ≥ 2 and there exist P (r, 1), . . . , P (r, r−1) > 0

such that

P (r, 1) + · · ·+ P (r, r − 1) = 1, A(r, n) =
r−1∑
j=1

P (r, j) (n+ 1)j, n ∈ Z≥0.

By (3.7) and the assumption, we have

∞∑
n=0

A(r + 1, n) xn =
1

r

∞∑
n=0

(n+ 1)A(r, n+ 1) xn

=
1

r

∞∑
n=0

r−1∑
j=1

P (r, j)(n+ 2)j(n+ 1)xn

=
1

r

∞∑
n=0

r−1∑
j=1

P (r, j)

j∑
l=0

(
j
l

)
(n+ 1)l+1 xn.

By comparing the coefficients of the variable x in the above equation for each n ∈ Z≥0,

we obtain

A(r + 1, n) =
1

r

r−1∑
j=1

P (r, j)

j+1∑
l=1

(
j

l − 1

)
(n+ 1)l

=
1

r

r∑
j=1

(n+ 1)j
r−1∑
l=j−1

(
l

j − 1

)
P (r, l).

Put

P (r + 1, j) :=
1

r

r−1∑
l=j−1

(
l

j − 1

)
P (r, l), 1 ≤ j ≤ r.
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Then, we have

A(r + 1, n) =
r∑
j=1

P (r + 1, j) (n+ 1)j, n ∈ Z≥0,

where

P (r + 1, j) > 0, 1 ≤ j ≤ r, P (r + 1, 1) + · · ·+ P (r + 1, r) = 1,

since P (r, j) > 0, 1 ≤ j ≤ r − 1, and A(r + 1, 0) = 1. Inductively, we have (v).

Now we focus on Lemma 3.8 (v), which causes a certain compound distribution

when a product of a multidimensional Shintani zeta function and ZL(s⃗, ψ) can be a

characteristic function.

Example 3.9. Let r ≥ 2. Put ψ = χ, where χ be a real valued Dirichlet character.

We consider a normalized multidimensional Shintani zeta function f̃σ⃗,σ⃗′ given by

f̃σ⃗,σ⃗′ (⃗t) :=
ZL(σ⃗ + i⃗t, χ) ζ(c⃗)(σ⃗

′ + i⃗t)

ZL(σ⃗, χ) ζ(c⃗)(σ⃗′)
, t⃗ ∈ Rd.

For s⃗ = σ⃗ + i⃗t ∈ C, t⃗ ∈ Rd, and σ⃗j ∈ Rd with ⟨c⃗, σ⃗j⟩ = ⟨c⃗, σ⃗⟩ − j, we have

ZL(s⃗, χ) =
∞∑
n=0

A(r, n)
χ(n+ 1)

(n+ 1)⟨c⃗,σ⃗⟩
=

r−1∑
j=1

P (r, j)L(c⃗)(σ⃗j + i⃗t, χ)

by Lemma 3.8 (v). Thus we obtain

f̃σ⃗,σ⃗′ (⃗t) =
ZL(σ⃗ + i⃗t, χ) ζ(c⃗)(σ⃗

′ + i⃗t)

ZL(σ⃗, χ) ζ(c⃗)(σ⃗′)

=
r−1∑
j=1

P (r, j)

ZL(σ⃗, χ) ζ(c⃗)(σ⃗′)
L(σ⃗j + i⃗t, χ) ζ(c⃗)(σ⃗

′ + i⃗t)

=
r−1∑
j=1

P̃ (r, j) fσ⃗j ,σ⃗′ (⃗t),

where P̃ (r, j) := P (r, j)L(σ⃗j, χ)/ZL(σ⃗, χ) ≥ 0. Note that
∑r−1

j=1 P̃ (r, j) = 1.

By Theorem 3.7, for each 1 ≤ j ≤ r − 1, fσ⃗j ,σ⃗′ is a characteristic function if and

only if ⟨c⃗, σ⃗j − σ⃗′⟩ ≥ 0. If ⟨c⃗, σ⃗ − σ⃗′⟩ ≥ r − 1, then fσ⃗j ,σ⃗′ is a characteristic function

for all 1 ≤ j ≤ r− 1. Therefore, we can see that f̃σ⃗,σ⃗′ is a characteristic function of a

compound distribution.
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Chapter 4

An approximation scheme for
diffusion processes based on an
anti-symmetric calculus on Wiener
space

In this chapter, we show that every anti-symmetric multiple stochastic (Ito’s) integral

has a polynomial form of single and double ones. As an application, a new approxi-

mating scheme for the solution to a stochastic differential equation is proposed.

4.1 Backgrounds

LetX be a diffusion process in Rd, d ≥ 1, given by a solution to a stochastic differential

equation, which is written in the Stratonovich form as

Xt = x+
d∑
j=0

∫ t

0

Vj(Xs) ◦ dW j
s , (4.1)

where x ∈ Rd,W = (W 1, . . . ,W d) is a d-dimensional Wiener process, dt is denoted by

dW 0
t by a convention, and Vj, j = 0, 1, . . . , d are in C∞

b (Rd → Rd), smooth functions

whose derivatives of any order are bounded.

For the purpose of approximating the law of X, we use the so-called stochastic

Taylor expansion (or Itô-Taylor expansion);

Xt − x

∼
N∑
n=1

d∑
j1,...,jn=0

Vj1Vj2 · · ·Vjn(x)
∫ t

0

∫ s1

0

· · ·
∫ sn−1

0

◦dW jn
sn ◦ dW jn−1

sn−1
· · · ◦ dW j1

s1

(4.2)

40



which is often a key ingredient (see e.g. Kloeden and Platen [17]). Here, as is

common in the literature, we identify the functions Vji , . . . , Vjn−1 with the vector

field
∑

i V
i
j1
∂i, and so on (Vjn is still a function). The expansion of N = 1, with

x → Xui and Xt → Xui+1
, and by the repetition in i, implies the Euler-Maruyama

approximation. The expansions of N > 1 also imply a higher-order method, but the

method becomes by far problematic since when d ≥ 2, no explicit form of the joint law

of multiple stochastic integrals are available. Many new schemes on this higher-order

higher-dimensional approximation problem have been proposed in recent years driven

by growing needs from financial practices. Among these, so-called Kusuoka’s scheme

(Kusuoka [18], see also Kusuoka and Ninomiya [19]), including Ninomiya-Victoir’s

[24] and Ninomiya-Ninomiya’s [23], and the cuvature method by T. Lyons and N.

Victoir [20] are well appreciated.

In the present chapter, we propose a new framework in which we rely on, instead

of generic multiple Wiener integrals, symmetric and anti-symmetric ones. It is well-

known that the former integrals are actually expressed by an Hermite polynomial of

first order integrals. In this chapter we point out that

• the latter are also expressed as a polynomial of first- and the second order

anti-symmetric integrals (stochastic areas),

• for which semi-explicit forms (the Fourier transform) of the joint distribution

are available.

These are the contributions of the present paper to the literature.

Here we state briefly another background of our study. Akahori et al. [2] con-

structed an isomorphism between L2(Wd, ud) and the anti-symmetric Fock space over

L2([0, 1] → Rd);

L2(Wd, ud) w
∞⊕
n=0

∧
n

L2([0, 1] → Rd).

With this, all L2-martingales can be identified with an infinite series expansion of

multiple anti-symmetric stochastic integrals. In the present paper, we show that all

such integrals have polynomial forms of single and double ones. This will lead to a

new (anti-symmetric) calculus though this paper will not study further this subject.

This chapter is organized as follows. First, in section 4.2, a representation of a

Clifford algebra on L2(Wd, ud) is constructed as in the same way as in Akahori et al.
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[2]. Secondly, in section 4.3 given are the main result of this chapter and its proof.

Then in section 4.4, the new scheme is introduced, with some discussions.

4.2 Construction of a Clifford algebra on L2(Wd, ud)

Let H be a real Hilbert space with an orthonormal basis {en | n ∈ Z+ 1
2
}. First, we

will construct a Clifford algebra acting on the Fock space over H.

We consider its n-th antisymmetric power Hn :=
∧
nH, and define the creation

operator φ+
h indexed by a vector h ∈ H : φ+

h maps Hn into Hn+1 as follows: For

uj ∈ H (j = 1, · · · , n),

φ+
h (u1 ∧ · · · ∧ un) = h ∧ u1 ∧ · · · ∧ un

where ∧ is the exterior product. The annihilation operator φ−
h′ is indexed by an

element h′ of the dual space H∗ of H, mapping Hn+1 into Hn as follows: For uj ∈
H∗ (j = 1, · · · , n+ 1)

φ−
h′(u1 ∧ · · · ∧ un+1) =

n+1∑
i=1

(−1)ih′(ui)u1 ∧ · · · ûi · · · ∧ un+1,

where a hat on a vector means that it is omitted. In particular, for the vacuum vector

|1⟩(= 1 ∈ R), φ+
h |1⟩ = h, φ−

h′ |1⟩ = 0.

Here, we note that the creation and annihilation operators have the linearity and

the boundedness, so that they are extended to the whole space.

Next we denote by e′n the dual element of en, and define

φn := φ+
en , φ∗

n := φ−
e′n
.

Then, some calculations lead to the relations

[φn, φm]+ = [φ∗
n, φ

∗
m]+ = 0, [φn, φ

∗
m]+ = δn+m,0,

where [A,B]+ = AB + BA is the anti-commutator and δn,m = 1 if n = m, δn,m = 0

if n ̸= m, n, m ∈ N. Therefore, the creation and annihilation operators {φn, φ∗
m |

n,m ∈ Z+ 1
2
} generate a Clifford algebra A, which acts on the Fock space

⊕∞
n=0

∧
nH

over H.

Secondly, let H = L2([0, 1] → Rd) and we will identify the Fock space over

H with L2 space of Wiener functionals in the following way. Let (wk)
d
k=1 be the
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canonical basis of Rd and ⊗ be its tensor product. For each n ∈ N we write ∆n :=

{(s1, . . . , sn) ∈ [0, 1]n | s1 < s2 < · · · < sn}, and for each gn ∈ L2(∆n → (Rd)⊗n),

gn(s1, . . . , sn) =
d∑

i1,··· ,in=1

gni1,...,in(s1, . . . , sn)wi1 ⊗ · · · ⊗ win .

Then, we can define its multiple stochastic integral:

In(g
n) :=

d∑
i1,...,in=1

∫ 1

0

∫ s1

0

· · ·
∫ sn−1

0

gni1,...,in(s1, . . . , sn)dW
in
sn · · · dW

i1
s1
,

where W = (W k)dk=1 is the Brownian motion on Wd.

It is well known in the standard Malliavin calculus that there exists an isomor-

phism

∞⊕
n=0

L2(∆n → (Rd)⊗n) → L2(Wd, ud), gn 7→ In(g
n).

We have also another isomorphism

∞⊕
n=0

∧
n

H →
∞⊕
n=0

L2(∆n → (Rd)⊗n), g̃n 7→ gn

by gn(s1, . . . , sn) = n ! g̃n(s1, . . . sn) for (s1, . . . , sn) ∈ ∆n. (Here we note that a tensor

product ⊗′ in H is identified as follows:

(u1 ⊗′ · · · ⊗′ un)(s1, . . . , sn) =
d∑

i1,...,in=1

ui11 (s1) · · ·uinn (sn)wi1 ⊗ · · · ⊗ win ,

for uj = (ukj )
d
k=1 ∈ H. Then, u1 ⊗′ · · · ⊗′ un ∈ L2([0, 1]n → (Rd)⊗n), and the exterior

product ∧ in H is naturally defined through the tensor product ⊗′).

Hence, the composition of the two isomorphisms brings about the isomorphism

∞⊕
n=0

∧
n

H w L2(Wd, ud).

which induces an action of a Clifford algebra on L2(Wd, ud) by the one on
⊕∞

n=0

∧
nH.

In the following, we consider the elements of the form φ1φ2 · · ·φn|1⟩ in L2(Wd, ud).

For simplicity, we will see the case of d = 2 where a basis of L2([0, 1] → R2) is

given as follows:

en(s) =

(
hn(s)
0

)
, e−n(s) =

(
0

hn(s)

)
, n ∈ Z≥0 +

1

2
,
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where {hn | n ∈ Z+ 1
2
} is a basis of L2([0, 1] → R).

It is easy to see that for n,m ∈ Z≥0 +
1
2
,

φn|1⟩ =
∫ 1

0

hn(s)dW
1
s , φ−m|1⟩ =

∫ 1

0

hm(s)dW
2
s

φnφ−m|1⟩ =
1

2

(∫ 1

0

hn(t)

∫ t

0

hm(s)dW
2
s dW

1
t −

∫ 1

0

hm(t)

∫ t

0

hn(s)dW
1
s dW

2
t

)
,

· · · etc.

In the next section, we shall see that the elements of the form φ1φ2 · · ·φn|1⟩ in
L2(Wd, ud), are actually polynomials of φi|1⟩, φiφj|1⟩, (i, j = 1, . . . , n).

4.3 Anti-symmetric expansion

Let {(eki )di=1 | k ≥ 1} be a family of functions in L2([0, 1] → Rd). Define

fnk(s) :=
d∑
i=1

∫ s

0

enk
i (u)dW i

u, s ∈ [0, 1],

and

fn1,n2,...,nk(s) :=
d∑
i=1

∫ s

0

enk
i (u)fn1,n2,...,nk−1(u)dW i

u, s ∈ [0, 1],

where W = (W i) is a d-dimensional Wiener process on some probability space and∫
HdW denotes the Itô integral of H with respect to W . Then, the integration-by-

parts formula tells us that for p, q ≥ 1 and s ∈ [0, 1], we have

fn1,n2,...,np(s) fm1,m2,...,mq(s)

=
d∑
i=1

∫ s

0

e
np

i (u)fn1,n2,...,np−1(u)fm1,m2,...,mq(u)dW i
u

+
d∑
i=1

∫ s

0

e
mq

i (u)fm1,m2,...,mq−1(u)fn1,n2,...,np(u)dW i
u

+
d∑
i=1

∫ s

0

e
np

i (u)e
mq

i (u)fn1,n2,...,np−1(u)fm1,m2,...,mq−1(u)du.

Note that fn1,n2,...,np−1(u) := 1 if p = 1.
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Put

(en1 ∧ en2 ∧ · · · ∧ enk
)W :=

∑
σ∈Sk

sgn(σ)fnσ(1),nσ(2),...,nσ(k)(1),

where Sk is the k-th symmetric group. Then we have the following.

Theorem 4.1. For n1, n2, . . . , nk ∈ N, there is a polynomial F such that

(en1 ∧ en2 ∧ · · · ∧ enk
)W

= F
(
(en1)W , . . ., (enk

)W , (en1 ∧ en2)W ,

. . . , (en1 ∧ enk
)W , (en2 ∧ en3)W , . . . , (enk−1

∧ enk
)W
)
.

In particular, when k is even, we have

(en1 ∧ en2 ∧ · · · ∧ enk
)W = Pf[((eni

∧ enj
)W )1≤i,j≤k],

where Pf[A] is the Pfaffian of an antisymmetric matrix A := (Aij)1≤i,j≤2n defined by

Pf(A) :=
1

n ! 2n

∑
σ∈S2n

sgn(σ)
n∏
i=1

Aσ(2i−1)σ(2i).

When k is odd, we have

(en1 ∧ en2 ∧ · · · ∧ enk
)W =

k∑
l=1

cl (enl
)W Pf[((eni

∧ enj
)W )1≤i,j≤k, i,j ̸=l],

for some c1, . . . , ck ∈ R.

Remark 4.2. If {(eki )di=1 | k ≥ 1} is a basis for L2([0, 1] → Rd), then we have

φnk
φn2 · · ·φn1 |1⟩ =

1

k!
(en1 ∧ en2 ∧ · · · ∧ enk

)W ,

where φn1φn2 · · ·φnk
are creation operators in section 4.2.

We shall use the following lemmas to prove the theorem.

Lemma 4.3. For each p, q ∈ N,∑
σ∈Sp+q

sgn(σ)fσ(1),...,σ(p)(1)fσ(p+1),...,σ(p+q)(1)

=
∑
λ∈Λp,q

sgn(σλ)(ek1 ∧ · · · ∧ ekp)W (el1 ∧ · · · ∧ elp)W ,
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where the sum in the right-hand-side is taken over the set defined by {{ki}pi=1, {lj}
q
j=1}

∈ Λp,q if and only if (i) ki, lj ∈ N and ki ̸= lj for 1 ≤ i ≤ p, 1 ≤ j ≤ q, (ii) 1 ≤
k1 < k2 < · · · < kp ≤ p + q, 1 ≤ l1 < l2 < · · · < lq ≤ p + q, and for each

λ := {{ki}pi=1, {lj}
q
j=1} ∈ Λp,q, σ

λ := (k1, . . . , kp, l1, . . . , lq) is a permutation such that

σλ(i) = ki, σ
λ(p+ j) = lj (1 ≤ i ≤ p, 1 ≤ j ≤ q).

Proof. It suffices to rearrange the elements of the symmetric group.

Lemma 4.4. For each s ∈ [0, 1] and k ∈ N,∑
σ∈S2k

sgn(σ)fnσ(1)(s)fnσ(2),...,nσ(2k)(s) = 0.

Proof. It is clear that ∑
σ∈S2

sgn(σ)fnσ(1)(s)fnσ(2)(s) = 0.

For k ≥ 2 and l = 1, 2, . . . , k, we assume that∑
σ∈S2l

sgn(σ)fnσ(1)(s)fnσ(2),...,nσ(2l)(s) = 0.

Then, we have ∑
σ∈S2k+2

sgn(σ)fnσ(1)(s)fnσ(2),...,nσ(2k+2)(s)

=
∑

σ∈S2k+2

sgn(σ)fnσ(1)(s)
{
fnσ(2k+2)(s)fnσ(2),...,nσ(2k+1)(s)

−
d∑
i=1

∫ s

0

e
nσ(2k+1)

i (u)fnσ(2),...,nσ(2k)(u)fnσ(2k+2)(u)dW i
u

−
d∑
i=1

∫ s

0

e
nσ(2k+2)

i (u)e
nσ(2k+1)

i (u)fnσ(2),...,nσ(2k)(u)du
}
.

On the other hand, we obtain∑
σ∈S2k+2

sgn(σ)fnσ(1)(s)fnσ(2k+2)(s)fnσ(2),...,nσ(2k+1)(s) = 0,

and for i = 1, 2, . . . , d,∑
σ∈S2k+2

sgn(σ)fnσ(1)(s)

∫ s

0

e
nσ(2k+2)

i (u)e
nσ(2k+1)

i (u)fnσ(2),...,nσ(2k)(u)du = 0.

46



Then by the assumption, we have∑
σ∈S2k+2

sgn(σ)fnσ(1)(s)

∫ s

0

e
nσ(2k+1)

i (u)fnσ(2),...,nσ(2k)(u)fnσ(2k+2)(u)dW i
u = 0.

Hence, the lemma follows from induction since∑
σ∈S2k+2

sgn(σ)fnσ(1)(s)fnσ(2),...,nσ(2k+2)(s) = 0.

Lemma 4.5. For k ∈ N and p = 0, 1, . . . , k − 1,∑
σ∈S2k+2

sgn(σ)fσ(1),σ(2)(s)fσ(3),...,σ(2k+2)(s)

=
∑

σ∈S2k+2

sgn(σ)
{ p∑

l=0

fσ(3),...,σ(2k−2l+2),σ(1),σ(2),σ(2k−2l+3),...,σ(2k+2)(s)

+
d∑

i1=1

d∑
i2=1

. . .

d∑
i2p+4=1

∫ s

0

e
σ(2k+2)
i1

(s1)

∫ s1

0

e
σ(2k+1)
i2

(s2)

∫ s2

0

. . .

∫ s2p+3

0

e
σ(2k−2p+1)
i2p+4

(u)

· fσ(3),...,σ(2k−2p)(u)fσ(1),σ(2)(u)dW i2p+4
u dW i2p+3

s2p+3
· · · dW i1

s1

}
,

where fσ(3),...,σ(2k−2p)(u) := 1 if p = k − 1.

Proof. Observe that∑
σ∈S2k+2

sgn(σ)fσ(1),σ(2)(s)fσ(3),...,σ(2k+2)(s)

=
∑

σ∈S2k+2

sgn(σ)
d∑
i=1

{∫ s

0

e
σ(2)
i (u)fσ(1)(u)fσ(3),...,σ(2k+2)(u)dW i

u

+

∫ s

0

e
σ(2k+2)
i (u)fσ(3),...,σ(2k+1)(u)fσ(1),σ(2)(u)dW i

u

+

∫ s

0

e
σ(2)
i (u)e

σ(2k+2)
i (u)fσ(1)(u)fσ(3),...,σ(2k+1)(u)du

}
=

∑
σ∈S2k+2

sgn(σ)
d∑
i=1

{∫ s

0

e
σ(2)
i (u)fσ(1)(u)fσ(3),...,σ(2k+2)(u)dW i

u

+

∫ s

0

e
σ(2k+2)
i (u)fσ(3),...,σ(2k+1)(u)fσ(1),σ(2)(u)dW i

u

}
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=
∑

σ∈S2k+2

sgn(σ)
d∑
i=1

d∑
j=1

{∫ s

0

e
σ(2)
i (u)

∫ u

0

e
σ(1)
j (v)fσ(3),...,σ(2k+2)(v)dW j

v dW
i
u

+

∫ s

0

e
σ(2)
i (u)

∫ u

0

e
σ(2k+2)
j (v)fσ(3),...,σ(2k+1)(v)fσ(1)(v)dW j

v dW
i
u

+

∫ s

0

e
σ(2)
i (u)

∫ u

0

e
σ(1)
j (v)e

σ(2k+2)
j (v)fσ(3),...,σ(2k+1)(v)dvdW i

u

+

∫ s

0

e
σ(2k+2)
i (u)

∫ u

0

e
σ(2)
j (v)fσ(3),...,σ(2k+1)(v)fσ(1)(v)dW j

v dW
i
u

+

∫ s

0

e
σ(2k+2)
i (u)

∫ u

0

e
σ(2k+1)
j (v)fσ(3),...,σ(2k)(v)fσ(1),σ(2)(v)dW j

v dW
i
u

+

∫ s

0

e
σ(2k+2)
i (u)

∫ u

0

e
σ(2)
j (v)e

σ(2k+1)
j (v)fσ(1)(v)fσ(3),...,σ(2k)(v)dvdW i

u

}
.

It is clear that∑
σ∈S2k+2

sgn(σ)

∫ s

0

e
σ(2)
i (u)

∫ u

0

e
σ(1)
j (v)e

σ(2k+2)
j (v)fσ(3),...,σ(2k+1)(v)dvdW i

u

=
∑

σ∈S2k+2

sgn(σ)

∫ s

0

e
σ(2k+2)
i (u)

∫ u

0

e
σ(2)
j (v)e

σ(2k+1)
j (v)fσ(1)(v)fσ(3),...,σ(2k)(v)dvdW i

u

= 0.

From Lemma 4.4, we have∑
σ∈S2k+2

sgn(σ)

∫ s

0

e
σ(2)
i (u)

∫ u

0

e
σ(2k+2)
j (v)fσ(3),...,σ(2k+1)(v)fσ(1)(v)dW j

v dW
i
u

=
∑

σ∈S2k+2

sgn(σ)

∫ s

0

e
σ(2k+2)
i (u)

∫ u

0

e
σ(2)
j (v)fσ(3),...,σ(2k+1)(v)fσ(1)(v)dW j

v dW
i
u

= 0.

Hence we have∑
σ∈S2k+2

sgn(σ)fσ(1),σ(2)(s)fσ(3),...,σ(2k+2)(s)

=
∑

σ∈S2k+2

sgn(σ)
{
fσ(3),...,σ(2k+2),σ(1),σ(2)(s)

+
d∑
i=1

d∑
j=1

∫ s

0

e
σ(2k+2)
i (u)

∫ u

0

e
σ(2k+1)
j (v)fσ(3),...,σ(2k)(v)fσ(1),σ(2)(v)dW j

v dW
i
u

}
.

By calculating fσ(3),...,σ(2k)(v)fσ(1),σ(2)(v) similarly and repeating the procedure to

fσ(3),...,σ(2k−2)(w) fσ(1),σ(2)(w), . . . , fσ(3),...,σ(2k−2p+2)(r)fσ(1),σ(2)(r), we see that this lemma

now follows.
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Proof of Theorem 4.1. Fix k ∈ N. If n = 2k + 1, then we have

(e1 ∧ · · · ∧ en)W
=
∑
σ∈Sn

sgn(σ)fσ(1),...,σ(n)(1)

=
∑
σ∈Sn

sgn(σ)
{
fσ(n)(1)fσ(1),...,σ(n−1)(1)

−
d∑
i=1

∫ 1

0

e
σ(n−1)
i (u)fσ(1),...,σ(n−2)(u)fσ(n)(u)dW i

u

−
d∑
i=1

∫ 1

0

e
σ(n−1)
i (u)e

σ(n)
i (u)fσ(1),...,σ(n−2)(u)du

}
=
∑
σ∈Sn

sgn(σ)
{
fσ(n)(1)fσ(1),...,σ(n−1)(1)

−
d∑
i=1

∫ 1

0

e
σ(n−1)
i (u)fσ(1),...,σ(n−2)(u)fσ(n)(u)dW i

u

}
=
∑
σ∈Sn

sgn(σ)fσ(n)(1)fσ(1),...,σ(n−1)(1) (∵ Lemma4.4)

=
∑

λ∈Λn−1,1

sgn(σλ)(ek1 ∧ · · · ∧ ekn−1)W (el1)W . (∵ Lemma4.3)

If n = 2k + 2, then Lemma 4.5 shows that∑
σ∈Sn

sgn(σ)fσ(1),σ(2)(1)fσ(3),...,σ(n)(1)

= (p+ 1)(e1 ∧ · · · ∧ en)W

+
d∑

i1=1

· · ·
d∑

i2p+4=1

∫ 1

0

e
σ(2k+2)
i1

(s1)

∫ s1

0

· · ·
∫ s2p+3

0

e
σ(2k−2p+1)
i2p+4

(u)

· fσ(3),...,σ(2k−2p)(u)fσ(1),σ(2)(u)dW i2p+4
u dW i2p+3

s2p+3
· · · dW i1

s1
.

Taking p = k − 1, then above equation yields that∑
σ∈Sn

sgn(σ)fσ(1),σ(2)(1)fσ(3),...,σ(n)(1) = (k + 1)(e1 ∧ · · · ∧ en)W ,

so that

(e1 ∧ · · · ∧ en)W

=
2

n

∑
σ∈Sn

sgn(σ)fσ(1),σ(2)(1)fσ(3),...,σ(n)(1)
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=
2

n

∑
λ∈Λ2,n−2

sgn(σλ)(ek1 ∧ ek2)W (el1 ∧ · · · ∧ eln−2)W . (∵ Lemma4.3)

Now, suppose that

(en1 ∧ en2 ∧ · · · ∧ en2k
)W = Pf[((eni

∧ enj
)W )1≤i,j≤2k].

Then, we have

(e1 ∧ · · · ∧ e2k+2)W =
1

k + 1

∑
λ∈Λ2,2k

sgn(σλ)(ek1 ∧ ek2)W (el1 ∧ · · · ∧ el2k)W

=
1

(k + 1) ! 2k+1

∑
λ∈Λ2,2k,τ∈S2k

sgn(σλτ)
(
(ek1 ∧ ek2)W

− (ek2 ∧ ek1)W
) k∏
i=1

(elτ(2i−1)
∧ elτ(2i))W

=
1

(k + 1) ! 2k+1

∑
σ∈S2k+1

sgn(σ)
k+1∏
i=1

(eσ(2i−1) ∧ eσ(2i))W .

By induction, we have completed the proof.

Corollary 4.6. Let {(eki )di=1 | k ≥ 1} be a family of continuous functions from [0, 1]

to Rd with finite variation. Put

f̃nk(s) :=
d∑
i=1

∫ s

0

enk
i (u) ◦ dW i

u, s ∈ [0, 1],

and

f̃n1,n2,...,nk(s) :=
d∑
i=1

∫ s

0

enk
i (u)fn1,n2,...,nk−1(u) ◦ dW i

u s ∈ [0, 1],

where
∫
H ◦ dW denotes the Stratonovich integral of H with respect to W . Define

(en1 ∧ en2 ∧ · · · ∧ enk
)W̃ :=

∑
σ∈Sk

f̃nσ(1),nσ(2),...,nσ(k) .

Then, we have

(en1 ∧ en2 ∧ · · · ∧ enk
)W = (en1 ∧ en2 ∧ · · · ∧ enk

)W̃
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Proof. By Theorem 4.1, there exits a polynomial F such that

(en1 ∧ en2 ∧ · · · ∧ enk
)W

= F
(
(en1)W , . . ., (enk

)W , (en1 ∧ en2)W ,

. . . , (en1 ∧ enk
)W , (en2 ∧ en3)W , . . . , (enk−1

∧ enk
)W
)
.

and similarly

(en1 ∧ en2 ∧ · · · ∧ enk
)W̃

= F
(
(en1)W̃ , . . ., (enk

)W̃ , (en1 ∧ en2)W̃ ,

. . . , (en1 ∧ enk
)W̃ , (en2 ∧ en3)W̃ , . . . , (enk−1

∧ enk
)W̃
)
.

Therefore, it is enough to prove that (en1)W = (en1)W̃ and (en1∧en2)W = (en1∧en2)W̃ .

However, it is clear that

(en1)W̃ =
d∑
i=1

∫ 1

0

enk
i (u) ◦ dW i

u =
d∑
i=1

∫ 1

0

enk
i (u) dW i

u = (en1)W

and

(en1 ∧ en2)W̃ =
d∑
i=1

d∑
j=1

{∫ 1

0

en2
i (s)

∫ s

0

en1
j (u) ◦ dW j

u ◦ dW i
s

−
∫ 1

0

en1
i (s)

∫ s

0

en2
j (u) ◦ dW j

u ◦ dW i
s

}
=

d∑
i=1

d∑
j=1

{∫ 1

0

en2
i (s)

∫ s

0

en1
j (u) dW j

udW
i
s +

δij
2

∫ 1

0

en2
i (s)en1

j (s) ds

−
∫ 1

0

en1
i (s)

∫ s

0

en2
j (u)dW j

udW
i
s −

δij
2

∫ 1

0

en1
i (s)en2

j (s) ds
}

= (en1 ∧ en2)W .

Remark 4.7. Let X = (X i)di=1 be a continuous semimartingale and the the quadratic

covariation of the distinct X i and Xj be zero. Then, even though we replace the

Wiener process W with X and the family of functions {(eki )di=1 | k ≥ 1} with one

which enables us to define the stochastic integral by X, the claim is also correct.
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4.4 Applications

In this section, we introduce a new approximating scheme for the solution of a stochas-

tic differential equation, which could be an application of Theorem 4.1.

The basic idea is as follows: If the joint distribution of (en1)W , . . . , (enk
)W , (en1 ∧

en2)W , (en1∧en3)W , . . . , (enk−1
∧enk

)W , k = 1, 2, . . . are available, then we can explicitly

calculate the expectation of G({(en1 ∧ · · · ∧ enk
)W : n1, n2, . . . , nk ∈ Z+ 1

2
}k=1,2,...) for

a measurable function G. This can be an anti-symmetric counterpart of the standard

Gaussian based approximations. In our new framework, the (joint) distribution of

the stochastic area(s) plays a central role.

Example 4.8. Here is an example. Let d = 2 and put

enk(s) :=
1√
n

(
I[ k
n
, k+1

n
](s)

0

)
, en−k(s) :=

1√
n

(
0

I[ k
n
, k+1

n
](s)

)
, 0 ≤ k ≤ n− 1,

where I[ k
n
, k+1

n
](s) is the indicator function of the interval [ k

n
, k+1

n
]. Then, for each

0 ≤ k < l ≤ n− 1, we have the following equations.

(enk)W =
1√
n

(
W 1

k+1
n

−W 1
k
n

)
, (en−k)W =

1√
n

(
W 2

k+1
n

−W 2
k
n

)
,

(enk ∧ enl )W =
1

n

(
(W 1

l+1
n

−W 1
l
n

)(W 1
k+1
n

−W 1
k
n

)
)
,

(en−k ∧ en−l)W =
1

n

(
(W 2

l+1
n

−W 2
l
n

)(W 2
k+1
n

−W 2
k
n

)
)
,

(enk ∧ en−l)W =
1

n

(
(W 2

l+1
n

−W 2
l
n

)(W 1
k+1
n

−W 1
k
n

)
)
,

(en−k ∧ enl )W =
1

n

(
(W 2

k+1
n

−W 2
k
n

)(W 1
l+1
n

−W 1
l
n

)
)
,

(en−k ∧ enk)W =
1

n

(∫ k+1
n

k
n

∫ t

k
n

dW 2
s dW

1
t −

∫ k+1
n

k
n

∫ t

k
n

dW 1
s dW

2
t

)
.

The Fourier transform of the joint distribution have been obtained by Aihara et al.

[1].

When we approximate the solution to a SDE, we rely on the stochastic Taylor

expansion (4.2), as is remarked in the introduction. The expansion gives, however,

a linear combination of multiple Wiener integrals, which is neither necessarily sym-

metric nor anti-symmetric. So we need to work on the following class:
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Definition 4.9. For the stochastic differential equation (4.1), or equivalently, its

associated vector fields V0, V1, . . . , Vd, we say that it has a k-th order reduction if for

each n ≤ k, the linear combination of stochastic integrals

d∑
j1,...,jn=0

Vj1Vj2 · · ·Vjn(x)
∫ t

0

∫ s1

0

· · ·
∫ sn−1

0

◦dW jn
sn ◦ dW jn−1

sn−1
· · · ◦ dW j1

s1
(4.3)

is represented as a finite sum of polynomials of (el) and (el ∧ em)W for a finite set of

functions e1, . . . , eM in L2([0, T ] → Rd).

We note that every SDE has a 2nd order reduction since

Vi,j

∫ ∫
dW idW j

=
Vi,j
2

(∫ ∫
dW idW j +

∫ ∫
dW jdW i

)
+
Vi,j
2

(∫ ∫
dW idW j −

∫ ∫
dW jdW i

)
.

Since every symmetric multiple integral is represented by an Hermite polynomial,

an SDE has a k-th order reduction if (4.3) is decomposed into a sum of symmetric

and anti-symmetric integrals. The following lemma gives a necessary and sufficient

condition for that:

Proposition 4.10. We keep the notations in the section 4.3. A linear combination

of multiple Wiener integrals

X =
∑
k

∑
1≤i1≤···≤ik≤d

∑
σ∈Sk

aiσ(1),...,iσ(k)
f iσ(1),...,σ(k)(1), (4.4)

becomes a sum of symmetric and anti-symmetric integrals if and only if the following

condition satisfied: For each k > 2, 1 ≤ i1 ≤ · · · ≤ ik ≤ d, there exist Ai1,...,ik and

Bi1,...,ik such that for all sgn(σ) = 1 and sgn(τ) = −1 (σ, τ ∈ Sk),

Ai1,...,ik = aiσ(1),...,iσ(k)
+ aiτ(1),...,iτ(k) , Bi1,...,ik = aiσ(1),...,iσ(k)

− aiτ(1),...,iτ(k) . (4.5)

Proof. Suppose that X is a linear combination of multiple stochastic integrals given

by (4.4) and there exist Ai1,...,ik and Bi1,...,ik satisfying (4.5) for all σ ∈ S+
k := {σ ∈

Sk | sgn(σ) = 1} and τ ∈ S−
k := {σ ∈ Sk | sgn(σ) = −1}. Then, we have

X =
∞∑
k=1

∑
1≤i1≤···≤ik

{ ∑
σ∈S+

k

aiσ(1),...,iσ(k)
+
∑
σ∈S−

k

aiσ(1),...,iσ(k)

}
f iσ(1),...,iσ(k)(1)
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=
∞∑
k=1

∑
1≤i1≤···≤ik

{ ∑
σ∈S+

k

Ai1,...,ik +Bi1,...,ik

2
+
∑
σ∈S−

k

Ai1,...,ik −Bi1,...,ik

2

}
f iσ(1),...,iσ(k)(1)

=
∞∑
k=1

∑
1≤i1≤···≤ik

{
Ai1,...,ik

∑
σ∈Sk

f iσ(1),...,iσ(k)(1) +
Bi1,...,ik

2

∑
σ∈Sk

sgn(σ)f iσ(1),...,iσ(k)(1)
}

=
∞∑
k=1

∑
1≤i1≤···≤ik

{
Ai1,...,ik(ei1 ⊙ ei2 ⊙ · · · ⊙ eik)W +

Bi1,...,ik

2
(ei1 ∧ ei2 ∧ · · · ∧ eik)W

}
,

where (ei1 ⊙ ei2 ⊙ · · · ⊙ eik)W is a symmetric integral defined by

(ei1 ⊙ ei2 ⊙ · · · ⊙ eik)W :=
∑
σ∈Sk

f iσ(1),...,iσ(k)(1).

Therefore X is a sum of symmetric and anti-symmetric integrals.

Conversely, if X is a sum of symmetric and anti-symmetric integrals given by

X =
∞∑
k=1

∑
1≤i1≤···≤ik

{
Ci1,...,ik(ei1 ⊙ ei2 ⊙ · · · ⊙ eik)W +Di1,...,ik(ei1 ∧ ei2 ∧ · · · ∧ eik)W

}
,

then X is a linear combination of multiple stochastic integrals whose coefficients

aiσ(1),...,iσ(k)
and aiτ(1),...,iτ(k) in (4.4) are equal to (Ci1,...,ik + 2Di1,...,ik)/2 and (Ci1,...,ik −

2Di1,...,ik)/2 for each σ ∈ S+
k and τ ∈ S−

k , respectively.

We give an example without 3-th order reduction, which is a 3rd-order scheme

in dimension 2.

Example 4.11. We use the Itô expression;

Xt = X0 +

∫ t

0

a(Xs) ds+
2∑
j=1

∫ t

0

bj(Xs) dW
j
s ,

where a = (a1, a2), b1 = (b11, b
2
1), b2 = (b12, b

2
2) ∈ C4(R2 → R2). For f = (f 1, f 2) ∈

C2(R2 → R2), Itô formula implies that

f(Xt) = f(X0) +

∫ t

0

(
(f ′a)(Xs) +

1

2

2∑
j=1

(b∗jf
′′bj)(Xs)

)
ds+

2∑
j=1

∫ t

0

(f ′bj)(Xs)dW
j
s ,

where f ′a and b∗jf
′′bj are functions from R2 to R2 defined by

(f ′a)i(x) =
2∑

k=1

∂f i

∂xk
(x)ak(x), (b∗jf

′′bj)
i(x) =

2∑
k=1

2∑
l=1

∂2f i

∂xk∂xl
(x)bkj (x)b

l
j(x), x ∈ R2.
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By apply Itô formula to a and b respectively, we have

Xt −Xs =a(Xs)(t− s) +
2∑
j=1

bj(Xs)(W
j
t −W j

s )

+

∫ t

s

∫ u

s

(
a′a+

1

2

2∑
j=1

b∗ja
′′bj

)
(Xv) dv du+

2∑
j=1

∫ t

s

∫ u

s

a′bj(Xv)dW
j
v du

+
2∑
j=1

∫ t

s

∫ u

s

(
b′ja+

1

2

2∑
k=1

b∗kb
′′
j bk

)
(Xv) dv dW

j
u

+
2∑
j=1

2∑
k=1

∫ t

s

∫ u

s

b′jbk(Xv) dW
k
v dW

j
u

For each j, k = 1, 2, put

c00 := a′a+
1

2

2∑
j=1

b∗ja
′′bj, cj0 := a′bj, c0j := b′ja+

1

2

2∑
k=1

b∗kb
′′
j bk ckj := b′jbk

and we also apply Itô formula to them, then we have

Xt −Xs =a(Xs)(t− s) +
2∑
j=1

bj(Xs)(W
j
t −W j

s ) +
2∑
j=0

2∑
k=0

ckj(Xs)

∫ t

s

∫ u

s

dW k
v dW

j
u

+
2∑
j=0

2∑
k=0

∫ t

s

∫ u

s

∫ v

s

(
(c′kja)(Xr) +

1

2

2∑
l=1

(b∗l c
′′
kjbl)(Xr)

)
dW 0

r dW
k
v dW

j
u

+
2∑
j=0

2∑
k=0

2∑
l=1

∫ t

s

∫ u

s

∫ v

s

(c′kjbj)(Xs) dW
l
r dW

k
v dW

j
u .

Note that W 0
t = t in a convention.

Next, we consider a discretization of XT . For each N ∈ N and n = 0, 1, . . . , N ,

let ∆ = T/N and tn = n×∆. We take {em | m ∈ Z≥0} as an orthonormal basis for

L2([0, 1] → R) with e0 = 1, and observe the Fourier expansion of triple integral :∫ tn+1

tn

∫ u

tn

∫ v

tn

dW l
r dW

k
v dW

j
u

d
= ∆o(l,k,j)

∫ 1

0

∫ u

0

∫ v

0

dW l
r dW

k
v dW

j
u

= ∆o(l,k,j)

∞∑
m=0

(∫ 1

0

em(r)W
l
r dr
)∫ 1

0

∫ u

0

em(v) dW
k
v dW

j
u
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d
=

∞∑
m=0

(∫ tn+1

tn

eNm(u)

∫ u

tn

dW l
r du

)∫ tn+1

tn

∫ u

tn

eNm(v) dW
k
v dW

j
u ,

where o(l, k, j) := (3 + δ0,l + δ0,k + δ0,j)/2 and

eNm(u) :=
1√
∆
em((u− tn)/∆), tn < u ≤ tn+1.

Therefore, we discretize XT by replacing the triple integrals such as∫ t

s

∫ u

s

∫ v

s

c(Xr) dr dv du

and ∫ t

s

∫ u

s

∫ v

s

c(Xr) dW
l
r dW

k
v dW

j
u , (l, k, j) ̸= (0, 0, 0)

with

c(Xr)

∫ t

s

∫ u

s

∫ v

s

dr dv du = c(Xr)(t− u)3/6

and

c(Xr)
N∑
m=0

(∫ t

s

eNm(u)

∫ u

s

dW l
r dr
)∫ t

s

∫ u

s

eNm(v) dW
k
v dW

j
u , (l, k, j) ̸= (0, 0, 0).

The N -th approximation of X(N) of X is given by the following.

X
(N)
0 =X0,

X
(N)
tn+1

=X
(N)
tn + a(X

(N)
tn )∆ +

2∑
j=1

bj(X
(N)
tn )∆W j

n +
2∑
j=0

2∑
k=0

ckj(X
(N)
tn )∆Ak,jn,0

+
(
(c′00a)(X

(N)
tn ) +

1

2

2∑
l=1

(b∗l c
′′
00bl)(X

(N)
tn )

)
∆3/6

+
2∑

j,k=0,(j,k) ̸=(0,0)

(
(c′kja)(X

(N)
tn ) +

1

2

2∑
l=1

(b∗l c
′′
kjbl)(X

(N)
tn )

) N∑
m=0

∆Ā0,0
n,m∆A

k,j
n,m

+
2∑
j=0

2∑
k=0

2∑
l=1

(c′kjbj)(X
(N)
tn )

N∑
m=0

∆Āl,0n,m∆A
k,j
n,m,

where ∆W j
n = W j

tn −W j
tn−1

,

∆Ak,jn,m :=

∫ tn

sn

∫ u

sn

enm(v) dW
k
v dW

j
u , ∆Āl,0n,m :=

∫ tn

sn

enm(r)

∫ u

sn

dW l
r du.
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This corresponds to 2(+α) weak Taylor scheme, which needs to simulate double

stochastic integral. We can obtain an explicit form of the Fourier transform of their

joint distribution when we take a good orthonormal basis {em | m ∈ Z≥0} such as

Walsh functions. In fact, we see that

∆A0,j
n,m

d
=

1√
n

∫ 1

0

e0(u)

∫ u

0

em(v) dv dW
j
u

=
1

2
√
n

(
δj,1(ēm)W + δj,2(em)W − (ē0 ∧ em)j

)
,

∆Aj,0n,m
d
=

1√
n

∫ 1

0

e0(u)

∫ u

0

em(v) dW
j
v du

=
1

2
√
n

(
δj,1(ēm)W + δj,2(em)W + (ēm ∧ e0)j

)
,

∆A1,1
n,m

d
=

1

n

∫ 1

0

e0(u)

∫ u

0

em(v) dW
1
v dW

1
u =

1

2n

(
((ēm)W )2 − (ē0 ∧ ēm)W

)
,

∆A2,2
n,m

d
=

1

n

∫ 1

0

e0(u)

∫ u

0

em(v) dW
2
v dW

2
u =

1

2n

(
((em)W )2 − (e0 ∧ em)W

)
,

∆A1,2
n,m

d
=

1

n

∫ 1

0

e0(u)

∫ u

0

em(v) dW
1
v dW

2
u =

1

2n

(
(ēm)W (e0)W − (e0 ∧ ēm)W

)
,

∆A2,1
n,m

d
=

1

n

∫ 1

0

e0(u)

∫ u

0

em(v) dW
2
v dW

1
u =

1

2n

(
(em)W (ē0)W + (em ∧ ē0)W

)
,

∆Āj,0n,m
d
=

1√
n

∫ 1

0

em(u)

∫ u

0

e0(v) dW
j
v du

=
1

2
√
n

((∫ 1

0

em(s) ds
)
(δj,1(ē0)W + δj,2(e0)W ) + (ē0 ∧ em)j

)
=

1

2
√
n
(ē0 ∧ em)j.

Here j = 1, 2, δjj = 1, δjk = 0 (j ̸= k) and

ēm(s) :=

(
em(s)
0

)
, em(s) :=

(
0

em(s)

)
,

(ēl ∧ em)j :=
∫ 1

0

em(u)

∫ u

0

el(v) dW
j
v du−

∫ 1

0

el(u)

∫ u

0

em(v) dv dW
j
u .

In above equations, it follows from the integration by parts formula:(∫ 1

0

en(s) dW
k

)(∫ 1

0

em(s) dW
l

)
=

∫ 1

0

en(s)

∫ s

0

em(u)dW
l
udW

k
s +

∫ 1

0

em(s)

∫ s

0

en(u)dW
k
u dW

l
s, k, l = 0, 1, 2.
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To obtain the Fourier transform of their joint distribution, we need that of W 1
1 , W

2
1 ,

Aij, U1 and U2, where

Aij =

∫ 1

0

W j
s dW

i
s −

∫ 1

0

W i
s dW

j
s , U i =

∫ 1

0

W i
s ds−

∫ 1

0

s dW i
s ,

which can be obtained by Proposition 4.12 below.

The following proposition is supplementary to a result by Helmes and Schwane

[13].

Proposition 4.12. For each λij ∈ R satisfying

v2 :=
d∑

k=1

(λ1k − λk1)
2 = · · · =

d∑
k=1

(λdk − λkd)
2,

let Λ, S and V λ be matrices given by Λij := λij−λji and S = ΛΛ∗, respectively. Here

Λ∗ denotes the transposed matrix of Λ. Denote unite matrix by Id, and put

G(λ) :=
d∏
i=1

( √
vλi

sinh
√
vλi

) 1
2
, F (λ) = diag

(√
vλi coth

√
vλi − 1

2vλi

)
and H(λ) := O(λ)∗F (λ)O(λ), where O(λ) is an orthogonal matrix and a diagonal

matrix V λ = diag(vλi ) such that S = O(λ)∗V λO(λ). For each η, ζ ∈ Rd, we have

E
[
exp

{√
−1

d∑
i=1

d∑
j=1

λijA
ij +

√
−1

d∑
j=1

(ηjU
j + ζjW

j
1 )
}]

=
G(λ)√

det(Id + 2ΛH(λ)Λ∗)
exp

{
2⟨(Id + 2ΛH(λ)Λ∗)−1ΛH(λ)η,ΛH(λ)η⟩ − ⟨H(λ)η, η⟩

− 2
√
−1⟨(Id + 2ΛH(λ)Λ∗)−1ΛH(λ)η, ζ⟩ − 1

2
⟨((Id + 2ΛH(λ)Λ∗)−1ζ, ζ⟩

}
.

In particular, when d = 2, for each λ, η1, η2, ζ1 and ζ2 ∈ R, we have

E
[
exp

{√
−1(λA+ η1U1 + η2U2 + ζ1W

1
1 + ζ2W

2
1 )
}]

=
1

coshλ

(
λ cothλ− 1

2λ3 cothλ

(
2λ

√
−1(η1ζ2 − η2ζ1)− η21 − η22

)
− ζ21 + ζ22

2λ cothλ

)
.

Proof. For each n ∈ N, put

e0(θ) := 1,
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en(θ) :=
√
2 sin 2nπθ, e∗n(θ) :=

√
2 cos 2nπθ

and

a0(s) :=

∫ s

0

e0(θ) dθ = s,

an(s) :=

∫ s

0

en(θ) dθ =
1

2
cn (

√
2e0(s)− e∗n(s)),

a∗n(s) :=

∫ s

0

e∗n(θ) dθ =
1

2
cn en(s),

where cn = 1/nπ. Let ⟨f, g⟩L2 be the inner product in L2([0, 1]) := L2([0, 1] → R)
given by

⟨f, g⟩L2 =

∫ 1

0

f(s) g(s) ds, f, g ∈ L2([0, 1]).

Then we have the following equations.

⟨a0, e0⟩L2 =
1

2
, ⟨an, e0⟩L2 =

√
2

2
cn, ⟨a∗n, e0⟩L2 = 0,

⟨a0, en⟩L2 = −
√
2

2
cn, ⟨a0, e∗n⟩L2 = 0,

⟨an, em⟩L2 = ⟨a∗n, e∗m⟩L2 = 0,

⟨an, e∗m⟩L2 = −1

2
cnδn,m, ⟨a∗n, em⟩L2 =

1

2
cnδn,m.

We also put

ξi,0 :=

∫ 1

0

e0(s) dW
i
s , ξi,n :=

∫ 1

0

en(s) dW
i
s , ξ∗i,n :=

∫ 1

0

e∗n(s) dW
i
s .

Then, {ξi,0, ξi,n, ξ∗i,n | i = 1, . . . , d, n ∈ N} is a collection of independent Gaussian

random variables with mean 0 and variance 1, since {e0, en, e∗m | n,m ∈ N} is an

orthonormal basis of L2([0, 1]). By the Fourier expansion to the Brownian motion,

we have

W i
t = ⟨W i, e0⟩L2 +

∞∑
n=1

(
⟨W i, en⟩L2en(t) + ⟨W i, e∗n⟩L2e∗n(t)

)
,

so that ∫ i

0

W j
s dW

i
s = ⟨W j, e0⟩L2ξi,0 +

∞∑
n=1

(
⟨W j, en⟩L2ξi,n + ⟨W j, e∗n⟩L2ξ∗i,n

)
.
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By the integral-by-parts formula, we also have

⟨W j, en⟩L2 =

∫ 1

0

W j
s en(s) ds

=W j
1an(1)−

∫ 1

0

an(s) dW
j
s

= −
∫ 1

0

⟨an, e0⟩L2e0(s) dW
j
s

−
∞∑
m=1

{∫ 1

0

⟨an, em⟩L2em(s) dW
j
s +

∫ 1

0

⟨an, e∗m⟩L2e∗m(s) dW
j
s

}
=

1

2
cn (ξ

∗
j,n −

√
2ξj,0).

⟨W j, e∗n⟩L2 =

∫ 1

0

W j
s e

∗
n(s) ds

=W j
1a

∗
n(1)−

∫ 1

0

a∗n(s) dW
j
s

= −
∫ 1

0

⟨a∗n, e0⟩L2e0(s) dW
j
s

−
∞∑
m=1

{∫ 1

0

⟨a∗n, em⟩L2em(s)dW
j
s +

∫ 1

0

⟨a∗n, e∗m⟩L2e∗m(s) dW
j
s

}
= −1

2
cn ξj,n.

⟨W j, e0⟩L2 =

∫ 1

0

W j
s e0(s) ds

=W j
1 −

∫ 1

0

s dW j
s

=W j
1 −

∫ 1

0

⟨a0, e0⟩L2e0(s)dW
j
s

−
∞∑
m=1

{∫ 1

0

⟨a0, em⟩L2em dW
j
s +

∫ 1

0

⟨a0, e∗m⟩L2e∗m dW
j
s

}
=

1

2

(
ξj,0 +

√
2

∞∑
n=1

cnξj,n

)
.

Hence, we obtain

Aij =

∫ 1

0

W j
s dW

i
s −

∫ 1

0

W i
s dW

j
s

=
∞∑
n=1

{√
2cn(ξi,0ξj,n − ξi,nξj,0) + cn(ξi,nξ

∗
j,n − ξ∗i,nξj,n)

}
.
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and

U i :=

∫ 1

0

W i
s ds−

∫ 1

0

s dW i
s

=

∫ 1

0

(1− 2s) dW i
s

= ξi,0 − 2

∫ 1

0

a0(s) dW
i
s

= ξi,0 − 2

∫ 1

0

⟨a0, e0⟩L2e0(s) dW
i
s

− 2
∞∑
m=1

{∫ 1

0

⟨a0, em⟩L2em(s) dW
i
s +

∫ 1

0

⟨a0, e∗m⟩L2e∗m(s) dW
i
s

}
=

√
2

∞∑
n=1

cn ξi,n.

Observe that

Ln(λ, η : z)

= E
[
exp

{√
−1

d∑
i=1

d∑
j=1

λij
{√

2cn(ξi,0ξj,n − ξi,nξj,0) + cn(ξi,nξ
∗
j,n − ξ∗i,nξj,n)

}
+
√
−1

d∑
j=1

ηj(
√
2cnξj,n)

}∣∣∣ξ1,0 = z1, . . . , ξd,0 = zd

]

=
( 1√

2π

)2d ∫
R2d

exp
{√

−1
d∑
i=1

d∑
j=1

λijcn
{√

2(zixj − xizj) + (xiyj − yixj)
}

+
√
−1

d∑
j=1

√
2cnηjxj −

1

2

d∑
j=1

(x2j + y2j )
}
dx1 · · · dxd dy1 · · · dyd

=
( 1√

2π

)d ∫
Rd

exp
{√

−1
d∑
i=1

d∑
j=1

√
2cn(λij − λji)zixj

− c2n
2

d∑
j=1

( d∑
i=1

(λij − λji)xi

)2
+
√
−1

d∑
j=1

√
2cnηjxj −

1

2

d∑
j=1

x2j

}
dx1 · · · dxd

=
( 1√

2π

)d ∫
Rd

exp
{√

−1
d∑
j=1

√
2cn

(
ηi +

d∑
i=1

(λij − λji)zi

)
xj

− 1

2

d∑
i=1

(
1 + c2n

d∑
j=1

(λij − λji)
2
)
x2i
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− c2n
2

d∑
k=1

d∑
i,j=1,i̸=j

(λik − λki)(λjk − λkj)xixj

}
dx1 · · · dxd.

Now, for each i, j = 1, . . . , d, we put

λ̃ij := λij − λji, σjn :=

(
1 + c2n

d∑
i=1

λ̃2ij

)− 1
2

= (1 + c2nv
2)−

1
2 .

Let Dn be a matrix defined by Dn := diag(σ1
in(λ)) and Z1, . . . , Zd be independent

random variables whose distributions are standard normal. Then, we have that S is

symmetric, positive definite, and therefore, there exist an orthogonal matrix O and a

diagonal matrix V λ := diag(vλi ) such that S = O∗V λO. Since

E
[
exp

{√
−1⟨⃗t,DnZ⟩ −

c2n
2
⟨SDnZ,DnZ⟩+

v2c2n
2

⟨DnZ,DnZ⟩
}]

= E
[
exp

{√
−1⟨Ot⃗,ODnZ⟩ −

c2n
2
⟨V λODnZ,ODnZ⟩+

v2c2n
2

⟨ODnZ,ODnZ⟩
}]

= (2π)−
d
2

∫
Rd

exp
{
(1 + c2nv

2)−
1
2

√
−1⟨Ot⃗, x⟩ − 1

2
⟨Mnx, x⟩

}
dx

= (detMn)
− 1

2 exp
{
− 1

2
(1 + c2nv

2)−1⟨M−1
n Ot⃗,Ot⃗⟩

}
,

where Mn := (1 + c2nv
2)−1Id + c2n(1 + c2nv

2)−1V λ, we obtain

Ln(λ, η : z) = (1 + c2nv
2)−

d
2E
[
exp

{√
−1⟨

√
2cn(η + Λ∗z), DnZ⟩

− c2n
2
⟨SDnZ,DnZ⟩+

v2c2n
2

⟨DnZ,DnZ⟩
}]

= (1 + c2nv
2)−

d
2 (detMn)

− 1
2

· exp
{
− c2n(1 + c2nv

2)−1⟨M−1
n O(η + Λ∗z), O(η + Λ∗z)⟩

}
By well-known formulas;

∞∏
n=1

(1 + v2c2n)
− d

2 (detMn)
− 1

2 =
d∏
i=1

∞∏
n=1

( 1

1 + vλi c
2
n

) 1
2
=

d∏
i=1

( √
vλi

sinh
√
vλi

) 1
2
= G(λ),

∞∑
n=1

c2n
1 + c2nv

2
M−1

n = diag

( ∞∑
n=1

1

π2n2 + vλi

)
= diag

(√
vλi coth

√
vλi − 1

2vλi

)
= F (λ),

we have the following.

E
[
exp

{√
−1

d∑
i=1

d∑
j=1

λijA
ij +

√
−1

d∑
j=1

(ηjU
j + ζjW

j
1 )
}]
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= (
√
2π)−d

∫
Rd

exp
{√

−1⟨ζ, z⟩ − 1

2
⟨z, z⟩

} ∞∏
n=1

Ln(λ, η : z) dz

= (
√
2π)−dG(λ) exp

{
− ⟨H(λ)η, η⟩

}
·
∫
Rd

exp
{√

−1⟨ζ, z⟩ − 1

2
⟨(Id + 2ΛH(λ)Λ∗)z, z⟩ − 2⟨ΛH(λ)η, z⟩

}
dz

=
G(λ)√

det(Id + 2ΛH(λ)Λ∗)
exp

{
2⟨(Id + 2ΛH(λ)Λ∗)−1ΛH(λ)η,ΛH(λ)η⟩ − ⟨H(λ)η, η⟩

− 2
√
−1⟨(Id + 2ΛH(λ)Λ∗)−1ΛH(λ)η, ζ⟩ − 1

2
⟨((Id + 2ΛH(λ)Λ∗)−1ζ, ζ⟩

}
.
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