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Abstract

In this thesis, we shall give some results on the existence of the den-
sity function and sensitivity analysis concerning the maximum of some
stochastic differential equations (SDEs, in short). The Malliavin calculus
(or stochastic calculus of variations) plays an important role to obtain
the results of this thesis.

In Chapter 1, we present the introduction of this thesis and the pre-
liminary of Malliavin calculus.

In Chapter 2, we consider an m-dimensional SDE with coefficients
which depend on the maximum of the solution. First, we prove the
absolute continuity of the law of the solution. Then we prove that the
joint law of the maximum of the ith component of the solution and the
i′th component of the solution is absolutely continuous with respect to
the Lebesgue measure in a particular case.

In Chapter 3, we give a decomposition formula to calculate the vega
index (the sensitivity of an option contract with respect to changes in
volatility) for options depending on the extrema (maximum or minimum)
of a general one-dimensional model and study its behavior. Moreover,
we compare the vega index obtained in this one-dimensional model with
the one in the Black-Scholes model. Our mathematical and numerical
results provide mainly three interesting properties of the vega index for
barrier type options in the one-dimensional model: First, the vega index
can be decomposed into three components which can be called extrema
sensitivity, terminal (feature) sensitivity and drift sensitivity. Second, by
using an example of up-in call options, we show that there is a barrier
value at which the importance of extrema and terminal sensitivity are
reversed. Third, extrema sensitivity is important only for options with
short maturity as far as the vega index is concerned. The comparison of
the vega index in two different models clarifies that the behavior of the
vega index in the one-dimensional model considered in this thesis is far
away from that in the Black-Scholes model. In the case of binary barrier
options, each component of the decomposition formula for the vega index
involves the Dirac delta functionals. Kernel methods are used in order
to estimate the vega index in this setting.
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Chapter 1

Introduction and preliminary

1.1 Problem of the existence of the density function

In probability theory, we often consider an infinite-dimensional probability space, called the Wiener
space. On the Wiener space, computing the expectation of a random variable implies integrating the
random variable with respect to a probability measure defined on this infinite-dimensional space, called
the Wiener measure. If we can prove the existence of the density function of the random variable, this
integral with respect to the Wiener measure can be transformed to the integral with respect to the
Lebesgue measure, namely, a measure on a finite-dimensional space.

Meanwhile, in mathematical finance, we often deal with options with non-smooth payoff functions
(e.g. European call option or European put option). The price of options is defined by the expectation of
random variables and the risks involved in options are defined by the sensitivities of the price of options
with respect to market parameters. Thus, in order to compute these sensitivities, we are required to
differentiate non-smooth payoff functions. The existence of the density function of the random variable
guarantees that we can differentiate non-smooth payoff functions, as long as the Lebesgue measure of
the set of all non-smooth points of the payoff functions is zero.

Therefore, to study the existence of the density function of random variables is one of the most
important subject from a theoretical and a practical point of view.

Chapter 2 of this thesis is concerned with the problem of the existence of the density functions of
an SDE whose coefficients are dependent on the maximum of the solution. One may interpret a result
obtained in this chapter as an extension of a result in [7]. However, we shall give some results on the
joint laws which are not considered in [7]. The results of Chapter 2 are taken from the published paper
[15].

1.2 Problem of the computation of Greeks

In mathematical finance, the computation of the risks involved in options, called Greeks, is one of the
most important problem since practitioners begin the hedging procedures for options based on the values
of Greeks. There are some kinds of Greeks. For example, the sensitivity of option prices with respect to
the current underlying asset’s price price is called the delta, and the sensitivity of the delta with respect
to the current asset price is called the gamma. A market parameter which describes the variance of asset
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1.3. PRELIMINARY OF MALLIAVIN CALCULUS

prices is called the volatility, and the sensitivity with respect to the volatility is called the vega or vega
index.

In the Black-Scholes model, the simplest financial model, the Greeks can be computed explicitly.
However, in the other models which may perform better than the Black-Scholes model, the Greeks do
not have the explicit formulas, therefore we are required to use some numerical techniques to compute
the Greeks, such as the Monte Carlo simulation. Hence, the problem how we can express the Greeks is
an interesting and important problem, mathematically and practically.

In practice, various types of options are traded by practitioners. A European option may be exercised
only at the expiration date of the option (e.g. European call option or European put option). An option
whose payoff is determined by the average underlying price over some pre-set period of time is called an
Asian option. A lookback option is an option with the payoff depends on the maximum (or minimum)
underlying asset’s price occurring over the life of the option. A barrier option is an option on the
underlying asset whose price breaching the pre-set barrier level either springs the option into existence
or extinguishes an already existing option.

In [6], the authors used the Malliavin calculus to calculate the Greeks for the first time. They obtained
some expressions to compute the Greeks of some European options and Asian options, and showed that
these expressions provide the better numerical results than ones obtained by a classical method, called
the finite difference method. One can find a formula to compute the vega index for Asian options, in
[1]. In [9], a method to compute the delta and gamma of lookback and barrier options is discussed and
numerical results are also given.

In Chapter 3, we focus on the problem of the computations of the vega index for lookback and barrier
options. We shall give an expression of the vega index, numerical results and a method to simulate the
vega index for some specific options. The results of Chapter 3 are taken from the submitted paper [16].

1.3 Preliminary of Malliavin calculus

Recent advances of a differential calculus on the Wiener space, called the Malliavin calculus (or stochastic
calculus of variations) provides many useful tools to us in order to try the problems mentioned in the
previous subsections.

We introduce some basic tools of Malliavin calculus that will be used throughout the thesis. We refer
to [17] to introduce Malliavin calculus. Let (Ω,F , P ) be the canonical Wiener space which supports a
d-dimensional Brownian morion W .

The class of real random variables of the form F = f(Wt1 , · · · ,Wtn), f ∈ C∞
b (Rnd;R), 0 ≤

t1, · · · , tn ≤ t is denoted by S. D1,p denotes a Banach space which is the completion of S with re-
spect to the norm

∥F∥1,p = E[|F |p]
1
p +

E

∫ t

0

d∑
j=1

|Dj
rF |2dr


p
2




1
p

,

where

Dj
rF =

n∑
i=1

∂f

∂xji
(Wt1 , · · · ,Wtn)1[0,ti](r).
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CHAPTER 1. INTRODUCTION AND PRELIMINARY

Dk,p is defined analogously, and its associated norm is denoted by ∥ · ∥k,p. Also, we define Dk,∞ =

∩p≥1Dk,p and D∞ = ∩p≥1∩k≥1Dk,p. For F,G ∈ D1,2 we define ⟨DF,DG⟩H :=
∫ t

0

∑d
j=1D

j
rFD

j
rGdr and

∥DF∥2H :=
∫ t

0

∑d
j=1 |Dj

rF |2dr.
Now let us introduce a localization of Dk,p. Dk,p

loc denotes the set of random variables F such that
there exists a sequence {(Ωn, Fn), n ≥ 1} ⊂ F × Dk,p with the following properties:

(i) Ωn ↑ Ω, a.s.

(ii) F = Fn, a.s. on Ωn.

The following theorem is well-known and we shall use this theorem of obtain the results in Chapter
1.

Theorem 1. (Theorem 2.1.2 of [17]) Let F = (F 1, · · · , Fm) be a random vector satisfying the following
conditions.

(i) F i belongs to the space D1,p
loc , p > 1, for all i = 1, · · · ,m.

(ii) The matrix γF := (⟨DF i, DF j⟩H)1≤i,j≤m is invertible a.s.

Then the law of F is absolute continuous with respect to the Lebesgue measure on Rm.
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Chapter 2

Absolute continuity of the laws of a
multi-dimensional stochastic
differential equation with coefficients
depending on the maximum

2.1 Introduction

In this chapter, we deal with the following m-dimensional stochastic differential equation (SDE):

Xi
t = xi0 +

d∑
l=1

∫ t

0

Ai
l(s,Xs,Ms)dW

l
s +

∫ t

0

Bi(s,Xs,Ms)ds, 1 ≤ i ≤ m (2.1)

where W denotes a d-dimensional Brownian motion, Ai
l, B

i : [0,∞) × R2m → R , 1 ≤ i ≤ m, 1 ≤ l ≤ d
are measurable functions and Ms = (M1

s , · · · ,Mm
s ) := (maxu≤sX

1
s , · · · ,maxu≤sX

m
s ). The purpose of

this chapter is to prove the absolute continuity of the joint law concerning the solution to (2.1) with
Lipschitz continuous coefficients using Malliavin calculus. In [7], the authors proved that if m = d = 1,
A and B are Hölder continuous, for t > 0 the law of Xt is absolutely continuous with respect to the
Lebesgue measure on R, where Xt is a weak or strong solution to (2.1). The authors used the method
to analyze the characteristic function of Xt to prove the absolute continuity of the law of Xt in [7].

In this chapter, first we prove the absolute continuity of the law of Xt = (X1
t , · · · , Xm

t ) with respect
to the Lebesgue measure on Rm. Then we prove the absolute continuity of the law of (M i

t , X
i′

t ), 1 ≤
i, i′ ≤ m, with respect to the Lebesgue measure on R2 when Ai

l does not depend on the second space

variable. To analyze the law of (M i
t , X

i′

t ) may be important in the field of applications such as finance.
Throughout this chapter, we use C or Ci, i ∈ N to denote a positive constant which may depend on
constants K,L, d, p, t and x0.
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2.2. THE EXISTENCE, UNIQUENESS AND DIFFERENTIABILITY OF THE SOLUTION TO
(2.1) AND THE ABSOLUTE CONTINUITY OF THE PROBABILITY LAW OF XT

2.2 The existence, uniqueness and differentiability of the solu-
tion to (2.1) and the absolute continuity of the probability
law of Xt

In this section, firstly we prove the existence, uniqueness and differentiability of the solution to (2.1).
Secondly we prove for t > 0, the absolute continuity of the probability law of Xt where X is the solution
to (2.1).

We assume the following:

(A1) There exist K,M, c > 0 such that

|A(t, x1, x2)−A(t, x′1, x
′
2)|+ |B(t, x1, x2)−B(t, x′1, x

′
2)| ≤ K(|x1 − x′1|+ |x2 − x′2|)

|A(t, x1, x2)|+ |B(t, x1, x2)| ≤ L,

for any x1, x2, x
′
1, x

′
2 ∈ Rm and t ≥ 0,

(A2) A(t, x1, x2) is continuous with respect to (t, x1, x2),

(A3) there exists c > 0 such that

|vTA(t, x1, x2)|2 ≥ c|v|2,

for any v ∈ Rm and x1, x2 ∈ Rm and t ≥ 0.

First, let us state a lemma on the existence of a unique solution to (2.1).

Lemma 1. Assume (A1), then (2.1) has a unique strong solution for any initial value x0 ∈ Rm.
Moreover we have E[|M i

t |p] ≤ C for any t ≥ 0, 1 ≤ i ≤ m and p ≥ 2.

Proof. For s ∈ [0, t] we define

X(0),i
s := xi

X(n+1),i
s := xi +

d∑
l=1

∫ s

0

Ai
l(u,X

(n)
u ,M (n)

u )dW l
u +

∫ s

0

Bi(u,X(n)
u ,M (n)

u )du, 1 ≤ i ≤ m, n ≥ 0,

(2.2)

where X
(n)
u := (X

(n),1
u , · · · , X(n),m

u ) and M
(n)
u := (maxv≤uX

(n),1
v , · · · ,maxv≤uX

(n),m
v ). From Hölder’s

inequality and Burkholder-Davis-Gundy’s inequality, it is easy to see that

E

[
max
u≤s

∣∣X(n+1),i
u −X(n),i

u

∣∣2]
≤ C

(
d∑

l=1

E

[∫ s

0

(
Ai

l(u,X
(n)
u ,M (n)

u )−Ai
l(u,X

(n−1)
u ,M (n−1)

u )
)2
du

]
+E

[∫ s

0

(
Bi(u,X(n)

u ,M (n)
u )−Bi(u,X(n−1)

u ,M (n−1)
u )

)2
du

])
6
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holds for s ∈ [0, t] and 1 ≤ i ≤ m. By (A1) and a trivial inequality |maxv≤uX
(n),i
v −maxv≤uX

(n−1),i
v | ≤

maxv≤u |X(n),i
v −X

(n−1),i
v |, we get

E

[
max
u≤s

∣∣X(n+1),i
u −X(n),i

u

∣∣2]
≤ CE

[∫ s

0

(
|X(n)

u −X(n−1)
u |2 + |M (n)

u −M (n−1)
u |2

)
du

]
≤ C

∫ s

0

E

[
m∑
i=1

max
v≤u

|X(n),i
v −X(n−1),i

v |2
]
du,

therefore,

E

[
m∑
i=1

max
u≤s

|X(n+1),i
u −X(n+1),i

u |2
]
≤ C1

∫ s

0

E

[
m∑
i=1

max
v≤u

|X(n),i
v −X(n−1),i

v |2
]
du, (2.3)

for s ∈ [0, t] and n ∈ N.
We define, for s ∈ [0, t] and n ∈ N, f (n)(s) := E

[∑m
i=1 maxu≤s |X(n+1),i

u −X
(n+1),i
u |2

]
, then we have

f (n)(s) ≤ Cn
1

∫ s

0

∫ u1

0

· · ·
∫ un−1

0

f (0)(un)dun · · · du1,

by (2.3). Now due to (A1), we obtain

f (0)(s) = E

[
m∑
i=1

max
u≤s

|X(1),i
u − x0|2

]
≤ C2,

for s ∈ [0, t], thus we have

E

[
m∑
i=1

max
u≤s

|X(n+1),i
u −X(n),i

u |2
]
= f (n)(s) ≤ (C1s)

n

n!
C2. (2.4)

Relation (2.4) and the Čebyšev’s inequality give

P

[
m∑
i=1

max
s≤t

|X(n+1),i
s −X(n),i

s | ≥ 1

2n+1

]
≤ 2C2

(2C1t)
n

n!
, (2.5)

for n ∈ N and the right hand side of (2.5) is a convergent series. From the Borel-Cantelli’s lemma,
there exists Ω̃ ∈ F with P (Ω̃) = 1 such that for every ω ∈ Ω̃ there exists N(ω) ∈ N with∑m

i=1 maxs≤t |X(k+1),i
s −X

(k),i
s | < 2−(k+1) for k ≥ N(ω). Moreover, this implies that

m∑
i=1

max
s≤t

|X(k+m′),i
s −X(k),i

s | ≤ 2−k, (2.6)

for every m′ ∈ N, k ≥ N(ω). We see then that the sequence of sample paths {X(n)
s , s ∈ [0, t]} is

convergent in the supremum norm on continuous functions, which concludes the existence of a continuous
limit {Xs, s ∈ [0, t]} for all ω ∈ Ω̃.
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Now let us prove that {Xs, s ∈ [0, t]} satisfies (2.1). Firstly, we shall consider the Lebesgue integral
part. Due to (A1), we have for s ∈ [0, t]∣∣∣∣ ∫ s

0

Bi(u,X(n)
u ,M (n)

u )du−
∫ s

0

Bi(u,Xu,Mu)du

∣∣∣∣2 ≤ C

∫ s

0

|M (n)
u −Mu|2du,

and (2.6) gives that maxu≤s |Xi
u −X

(n),i
u | ≤ 2−n for n ≥ N(ω). Thus, we get that∣∣∣∣ ∫ s

0

Bi(u,X(n)
u ,M (n)

u )du−
∫ s

0

Bi(u,Xu,Mu)du

∣∣∣∣2 → 0,

holds as n→ ∞, a.s.
Next, we shall consider the stochastic integral part. We observe from (2.4) that for fixed u ∈ [0, t],

the sequence of random variables {M (n),i
u }n∈N is a Cauchy sequence in L2(Ω,F , P ). Indeed, from (2.4)

we get

E
[
|M (n),i

u −M (n′),i
u |2

]
≤ E

[
max
v≤u

|X(n),i
v −X(n′),i

v |
]

≤
n−1∑
j=n′

E

[
max
v≤u

|X(j+1),i
v −X(j),i

v |2
]
→ 0,

as n, n′ → ∞. Therefore, there exists M̃ i
u such that M

(n),i
u → M̃ i

u in L2(Ω,F , P ). Since M
(n),i
u → M i

u,

a.s., we have E[|M i
u−M̃ i

u|] ≤ lim infn→∞E[|M (n),i
u −M̃u|] = 0 and this implies that E[|M (n),i

u −M i
u|2] → 0

as n→ ∞. From (A1), we have for s ∈ [0, t]

E

[∣∣∣∣ d∑
l=1

∫ s

0

(
Ai

l(u,X
(n)
u ,M (n)

u )−Ai
l(u,Xu,Mu)

)
dW l

u

∣∣∣∣2
]
≤ C

∫ s

0

E
[
|M (n)

u −Mu|2
]
du. (2.7)

By (A1), we have E[|M (n),i
u |2] ≤ C3 and Fatou’s lemma gives E[|M i

u|2] ≤ lim infn→∞E[|M (n),i
u |2] ≤ C3.

From (2.7) and the bounded convergence theorem, we have

E

[∣∣∣∣ d∑
l=1

∫ s

0

(
Ai

l(u,X
(n)
u ,M (n)

u )−Ai
l(u,Xu,Mu)

)
dW l

u

∣∣∣∣2
]
→ 0,

as n→ ∞, thus, by taking a subsequence one has∣∣∣∣ d∑
l=1

∫ s

0

(
Ai

l(u,X
(n)
u ,M (n)

u )−Ai
l(u,Xu,Mu)

)
dW l

u

∣∣∣∣2 → 0, (2.8)

as n→ ∞, a.s. Therefore, for t > 0, {Xs, s ∈ [0, t]} satisfies (2.1).
Next, we shall prove the pathwise uniqueness of the equation (2.1). We assume that for fixed t > 0,

{Xs, s ∈ [0, t]} and {X̌s, s ∈ [0, t]} satisfy (2.1). From (A1), it is easy to see that

E

[
max
u≤s

|Xi
u − X̌i

u|2
]
≤ C

∫ s

0

E

[
m∑
i=1

max
u≤v

|Xi
u − X̌i

v|2
]
dv,

8
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thus,

E

[
m∑
i=1

max
u≤s

|Xi
u − X̌i

u|2
]
≤ C

∫ s

0

E

[
m∑
i=1

max
u≤v

|Xi
u − X̌i

v|2
]
dv

holds, then by defining g(s) := E
[∑m

i=1 maxu≤s |Xi
u − X̌i

u|2
]
and applying the Gronwall’s lemma to g(s),

we have E
[∑m

i=1 maxu≤s |Xi
u − X̌i

u|2
]
= 0 for s ∈ [0, t]. Therefore, one has the pathwise uniqueness of

the solution {Xs, s ∈ [0, t]} to (2.1) for fixed t > 0 by the continuity of {Xs, s ∈ [0, t]}.
Since t > 0 is arbitrary, we have the existence of a unique strong solution {Xs, s ∈ [0,∞)} to (2.1).
Moreover, E[|M i

t |p] ≤ C for p ≥ 2 is a consequence of (A1).

Now, let us prove the property of the time when one-dimensional process {Xi
s, s ∈ [0, t]} attains its

maximum on [0, t]. This property plays an important role to prove the absolute continuity of the joint
law of (M i

t , X
i′

t ).

Lemma 2. Under (A1)-(A3), for any t ≥ 0 and 1 ≤ i ≤ m, {Xi
s, s ∈ [0, t]} attains its maximum on

[0, t] on a unique point τ it and 0 < τ it < t, a.s.

Proof. We define a new probability measure P̃ by

dP̃

dP
:= exp

[
−

d∑
l=1

∫ t

0

Cl(s,Xs,Ms)dW
l
s

]
,

where for x1, x2 ∈ Rm and s > 0, d-dimensional vector C(s, x1, x2) is defined by C(s, xs, x2) :=
[AT (AAT )−1B](s, x1, x2). Define a d-dimensional process W̃ by

W̃s :=W l
s +

∫ s

0

Cl(u,XuMu), 1 ≤ l ≤ d.

Then by the Girsanov’s theorem, {W̃s, s ∈ [0, t]} is a d-dimensional Brownian motion under P̃ , therefore
{Xs, s ∈ [0, t]} can be expressed as

Xi
s = xi0 +

d∑
l=1

∫ s

0

Ai
l(u,Xu,Mu)dW̃

l
u, 1 ≤ i ≤ m, (2.9)

and for each 1 ≤ i ≤ m, {Xi
s, s ∈ [0, t]} is a martingale by (A1). Let {Fs, s ∈ [0, t]} be the augmentation

of the Brownian filtration generated by {W̃s, s ∈ [0, t]}. For s ∈ [0, t], we define T (s) := inf{t > 0 :
⟨Xi⟩t > s} then the time-changed process

Bs := Xi
T (s),Gs := FT (s), s ∈ [0, t]

is a standard one-dimensional Brownian motion. Moreover, by (A3), {Xi
s, s ∈ [0, t]} can be written as

Xi
s = xi0 +B⟨Xi⟩s

for s ∈ [0, t].

9
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First, let us prove that

P̃

(
max
s≤t

Xi
s = xi0

)
= 0.

By the law of iterated logarithm for Brownian motion, we have

lim sup
s↓0

Xi
s − xi0√

2⟨Xi⟩s log log
(

1
⟨Xi⟩s

) = lim sup
s↓0

B⟨Xi⟩s√
2⟨Xi⟩s log log

(
1

⟨Xi⟩s

) = 1,

P̃ -a.s., thus

P̃

(
max
s≤t

Xi
s = xi0

)
≤ P̃

(
Xi

s ≤ xi0, ∀s ∈ [0, t]
)
= 0.

Then, we shall prove that

P̃

(
max
s≤t

Xi
s = Xi

t

)
= 0.

We note that for t > 0, ⟨Xi⟩t is a stopping time for the filtration Gs, since

{⟨Xi⟩t ≤ s} = {T (s) ≥ t} ∈ FT (s) = Gs.

We define

B̌s :=

{
Bs, s ∈ [0, t]

Bt + Ŵs − Ŵt, s ∈ (t,∞)
(2.10)

and F̌s := σ(Bu, u ≤ s) ∨ σ(W̃u, u ≤ s), where {Ŵs, s ∈ [0,∞)} is a one-dimensional Brownian motion
independent of B, then we find that {B̌s, s ∈ [0,∞)} is a one-dimensional Brownian motion, since we can
easily check that {B̌s, s ∈ [0,∞)} is a F̌s-martingale and its quadratic variation is given by {s, s ∈ [0,∞)}.
Let {B′

s, s ∈ [0,∞)} be a one-dimensional Brownian motion independent of {B̌s, s ∈ [0,∞)}. Define

B̂s :=

{
B̌s, s ∈ [0,∞)
B′

−s, s ∈ (−∞, 0)
(2.11)

then {B̂s, s ∈ (−∞,∞)} is a two sided Brownian motion. By the definition of F̌s, ⟨Xi⟩t is a stopping
time for the filtration F̌s, therefore from Exercise 2.4 of [14], {B̂⟨Xi⟩t−s − B̂⟨Xi⟩t , s ∈ [0,∞)} is a one-
dimensional Brownian motion. Again, by the law of iterated logarithm for Brownian motion, we have

−1 = lim inf
s↓0

B̂⟨Xi⟩t − B̂⟨Xi⟩t−s√
2s log log(1s )

= lim inf
s↓0

B̂⟨Xi⟩t − B̂⟨Xi⟩t−s√
2(⟨Xi⟩t − ⟨Xi⟩t−s) log log

(
1

⟨Xi⟩t−⟨Xi⟩t−s

)
= lim inf

s↓0

B⟨Xi⟩t −B⟨Xi⟩t−s√
2(⟨Xi⟩t − ⟨Xi⟩t−s) log log

(
1

⟨Xi⟩t−⟨Xi⟩t−s

)
= lim inf

s↓0

Xi
t −Xi

t−s√
2(⟨Xi⟩t − ⟨Xi⟩t−s) log log

(
1

⟨Xi⟩t−⟨Xi⟩t−s

) ,
10
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P̃ -a.s. Therefore,

P̃

(
max
s≤t

Xi
s = Xi

t

)
≤ P̃

(
Xi

s ≤ Xi
t ,∀s ∈ [0, t]

)
= 0.

Finally, let us prove the uniqueness of τ it on [0, t]. As mentioned before, we can write

Xi
s = xi0 +B⟨Xi⟩s

for s ∈ [0, t]. Define

θ̄t := sup

{
s ≤ t : B⟨Xi⟩s = sup

0≤u≤t
B⟨Xi⟩u

}
,

θt := inf

{
s ≤ t : B⟨Xi⟩s = sup

0≤u≤t
B⟨Xi⟩u

}
,

and

τ̄t := sup

{
s ≤ t : Bs = sup

0≤u≤t
Bu

}
,

τ t := inf

{
s ≤ t : Bs = sup

0≤u≤t
Bu

}
.

Then by the definitions, we have

θ̄t = ⟨Xi⟩−1
τ̄⟨Xi⟩t

, θt = ⟨Xi⟩−1
τ⟨Xi⟩t

.

Thus, one has

P̃
(
θt < θ̄t < t

)
= P̃

(
τ ⟨Xi⟩t < τ̄⟨Xi⟩t < ⟨Xi⟩t

)
= P̃

 ∪
r1,r2∈Q
r1<r2

{
τ ⟨Xi⟩t < r1 < τ̄⟨Xi⟩t < r2 < ⟨Xi⟩t

}
=

∑
r1,r2∈Q
r1<r2

P̃
(
τ ⟨Xi⟩t < r1 < τ̄⟨Xi⟩t < r2 < ⟨Xi⟩t

)
,

where Q denotes the set of all rational numbers. On {τ ⟨Xi⟩t < r1 < τ̄⟨Xi⟩t < r2 < ⟨Xi⟩t}, the definition
of τ̄ shows

τ̄⟨Xi⟩t = sup

{
s ≤ r2 : Bs = sup

0≤u≤r2

Bu

}
, (2.12)

and the definition of τ shows

τ ⟨Xi⟩t = inf

{
s ≤ r1 : Bs = sup

0≤u≤r1

Bu

}
. (2.13)

11
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Since Bτ̄⟨Xi⟩t
= Bτ⟨Xi⟩t

holds P̃ -a.s., (2.12) and (2.13) imply that

sup
0≤u≤r1

Bu = sup
0≤u≤r2

Bu

holds P̃ - a.s. Therefore, we have

P̃
(
τ ⟨Xi⟩t < r1 < τ̄⟨Xi⟩t < r2 < ⟨Xi⟩t

)
≤ P̃

(
τ̄⟨Xi⟩t ∈ (r1, r2), sup

0≤u≤r1

Bu = sup
0≤u≤r2

Bu

)
= P̃

(
sup

{
s ≤ r2 : Bs = sup

0≤u≤r2

Bu

}
∈ (r1, r2), sup

0≤u≤r1

Bu = sup
0≤u≤r2

Bu

)
= 0,

where the last equality follows from Proposition 4 in Section VI of [2]. This finishes the proof.

Let us prove a lemma on the differentiability of the maximum of a continuous process which is similar
to Proposition 2.1.10 of [17]

Lemma 3. For t ≥ 0, let {X̂s, s ∈ [0, t]} be a one-dimensional continuous process. Suppose that

(i) E[sups≤t |X̂s|2] <∞,

(ii) for any s ∈ [0, t], X̂s ∈ D1,2 and E[sups≤t ∥DX̂t∥2H ] <∞.

Then M̂t = sups≤t X̂s ∈ D1,2 and we have

E
[
∥DM̂t∥2H

]
≤ E

[
sup
s≤t

∥DX̂s∥2H
]
. (2.14)

Moreover, if we assume that

(iii) {X̂s, s ∈ [0, t]} attains its maximum on a unique point τ̂∗t ,

(iv) for 1 ≤ j ≤ d, and almost every r, {Dj
rX̂s, s ∈ [0, t]} is continuous except for s = r, and

(v) for 1 ≤ j ≤ d, E[
∫ t

0
supr≤s≤t |Dj

rX̂s|2dr] <∞,

then we have

Dj
rM̂t = DrX̂τ̂∗

t
, a.e.r, (2.15)

where we have defined DrX̂τ̂∗
t
:= DrX̂s|s=τ̂∗

t
.

Proof. Let {tk}k≥0 be a dense subset of [0, t] and define

M̂n
t := max{X̂t1 , · · · , X̂tn}.

Define

A1 := {X̂t1 = M̂n
t }, Ak := {X̂t1 ̸= M̂n

t , · · · , X̂tk−1
̸= M̂n

t , X̂tk = M̂n
t }, 2 ≤ k ≤ n.

12
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Then, by the local property of operator D we have

DM̂n
t =

n∑
k=1

1Ak
DX̂tk .

By Proposition 2.1.10 of [17], M̂t = sup0≤s≤t X̂s belongs to D1,2 and DM̂n
t → DM̂t (n → ∞) in

the weak topology of L2(Ω;L2([0, t];Rd)) under (i) and (ii). We obtain (2.14) from E[∥DM̂t∥2H ] ≤
lim infn→∞E[∥DM̂n

t ∥2H ].
Let us prove (2.15). For ω ∈ Ak we define τ̂∗n := tk. Then τ̂

∗
n → τ̂∗t , a.s. due to (iii), and we have

DM̂n
t =

n∑
k=1

1Ak
DX̂τ̂∗

n
= DX̂τ̂∗

n
,

where we have defined DX̂τ̂∗
n
:= DX̂s|s=τ̂∗

n
. Note that, if r = τ̂∗n, then DX̂τ̂∗

n
is not well defined, due to

the discontinuity; thus the rigorous meaning of the above equality is that DrM̂
n
t = DrX̂τ̂∗

n
for almost

every r with probability 1.
Now let us prove

E

∫ t

0

d∑
j=1

Dj
rX̂τ̂∗

n
ujrdr

→ E

∫ t

0

d∑
j=1

Dj
rX̂τ̂∗

t
ujrdr

 , (2.16)

for any u ∈ L2(Ω;L2([0, t];Rd)). We have

E

∫ t

0

d∑
j=1

Dj
rX̂τ̂∗

n
ujrdr

− E

∫ t

0

d∑
j=1

Dj
rX̂τ̂∗

t
ujrdr

 = E

∫ t

0

d∑
j=1

(Dj
rX̂τ̂∗

n
−Dj

rX̂τ̂∗
t
)ujrdr

 . (2.17)

From (iv), we have Dj
rX̂τ̂∗

n
→ Dj

rX̂τ̂∗
t

for r ̸= τ̂∗t then Dj
rX̂τ̂∗

n
→ Dj

rX̂τ̂∗
t
, for almost every r with

probability 1. As |Dj
rX̂τ̂∗

n
−Dj

rX̂τ̂∗
t
|2 ≤ 2 sup0≤s≤t |Dj

rX̂s|2 and (v), we have∫ t

0

d∑
j=1

|Dj
rX̂τ̂∗

n
−Dj

rX̂τ̂∗
t
|2dr → 0 (n→ ∞), a.s.

Due to E[|Dj
rX̂τ̂∗

n
−Dj

rX̂τ̂∗
t
|2] ≤ 2E[sup0≤s≤t |Dj

rX̂s|2] and (v), we have

lim
n→∞

E

∫ t

0

d∑
j=1

|Dj
rX̂τ̂∗

n
−Dj

rX̂τ̂∗
t
|2
 dr = 0.

Then we obtain (2.16). Since DM̂n
t converges to DM̂t weakly in L2(Ω;L2([0, t];Rd)) and (2.16) holds,

we have

E

∫ t

0

d∑
j=1

(
Dj

rX̂τ̂∗
t
−Dj

rM̂t

)
ujrdr

 = 0,

13
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for any u ∈ L2(Ω;L2([0, t];Rd)). By the fact that M̂t belongs to D1,2 and (v), we have {DrX̂τ̂∗
t
−

DrM̂t, r ∈ [0, t]} ∈ L2(Ω;L2([0, t];Rd)). Therefore we have (2.15) with taking ur = DrX̂τ̂∗
t
−DrM̂t and

this finishes the proof.

Remark 1. In Lemma 3, if we assume that {X̂s, s ∈ [0, t]} is adapted, then we have DrX̂τ̂∗
t
= 0 for

almost every r such that r > τ̂∗t . Thus, in this case, we can write DrM̂t = 1[0,τ̂∗
t )
(r)DrX̂τ̂∗

t
, for almost

every r.

Next, let us prove the differentiability of the solution to (2.1) in Malliavin sense.

Lemma 4. Assume (A1)-(A3). Then, for s ∈ [0, t] and 1 ≤ i ≤ m, Xi
s,M

i
s belong to D1,2. Moreover,

{Dj
rX

i
s, s ∈ [r, t]} satisfies the following equation:

Dj
rX

i
s = Ai

j(r,Xr,Mr) +

∫ s

r

(Āi
k,l(u)D

j
rX

k
u + Ãi

k,l(u)D
j
rM

k
u )dW

l
u

+

∫ t

r

(B̄i
k(u)D

j
rX

k
u + B̃i

k(u)D
j
rM

k
u )du (2.18)

for r ≤ s, a.e., and

Di
rX

i
s = 0, (2.19)

for r > s, a.e., where Āk,l(u), Ãk,l(u), B̄k(u) and B̃k(u) are uniformly bounded and adapted m-
dimensional processes.

Proof. We will use the Picard approximation from Lemma 1, so X
(n)
s , M

(n)
s are the processes con-

structed by recurrence there. The proof of this lemma uses the proof of Theorem 2.2.1 of [17]. We
need to extend the proof to equation with coefficients which depend on the maximum process. We

start by proving X
(n),i
s ∈ D1,2 for s ∈ [0, t], 1 ≤ i ≤ m and n ≥ 0. If we assume X

(n),i
s ∈ D1,2 and

E[
∫ s

0
supu≤v ∥DX

(n),i
u ∥2Hdv] <∞ for s ∈ [0, t] then we have M

(n),i
s ∈ D1,2 for s ∈ [0, t] by Lemma 3 and

E

[∫ t

0

∫ t

0

|Dj
r(A

i
l(u,X

(n)
u ,M (n)

u ))|2drdu
]

≤ C

(
m∑

k=1

E

[∫ t

0

∫ t

0

|Dj
rX

(n),k
u |2drdu

]
+

2m∑
k=m+1

E

[∫ t

0

∫ t

0

|Dj
rM

(n),k
u |2drdu

])

= C

(
m∑

k=1

∫ t

0

E

[∫ u

0

|Dj
rX

(n),k
u |2dr

]
du+

2m∑
k=m+1

∫ t

0

E

[∫ u

0

|Dj
rM

(n),k
u |2dr

]
du

)

≤ C

 m∑
k=1

∫ t

0

E

∫ u

0

d∑
j=1

|Dj
rX

(n),k
u |2dr

 du+

2m∑
k=m+1

∫ t

0

E

∫ u

0

d∑
j=1

|Dj
rM

(n),k
u |2dr

 du


= C

(
m∑

k=1

E

[∫ t

0

sup
u≤s

∥DX(n),k
u ∥2Hds

]
+

m∑
k=1

E

[∫ t

0

sup
u≤s

∥DM (n),k
u ∥2Hds

])

≤ C
m∑

k=1

E

[∫ t

0

sup
u≤s

∥DX(n),k
u ∥2Hds

]
<∞ (2.20)
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by (2.14). Therefore, from Proposition 1.3.8 of [17], we have for s ∈ [0, t], X
(n+1),i
s ∈ D1,2 and

Dj
rX

(n+1),i
s

= Ai
j(r,X

(n)
r ,M (n)

r ) +

∫ s

r

[
Ā

(n),i
k,l (u)Dj

rX
(n),k
u + Ã

(n),i
k,l (u)Dj

rM
(n),k
u

]
dW l

u

+

∫ t

r

[
B̄

(n),i
k (u)Dj

rX
(n),k
u + B̃

(n),i
k (u)Dj

rM
(n),k
u

]
du,

where Ā
(n)
k,l , Ã

(n)
k,l , B̄

(n)
k and B̃

(n)
k are uniformly bounded and adapted m-dimensional processes. Now, by

(A1) and (2.14), one has

E

sup
u≤s

d∑
j=1

∫ u

0

∣∣∣∣ d∑
l=1

m∑
k=1

∫ u

r

[
Ā

(n),i
k,l (v)Dj

rX
(n),k
v + Ã

(n),i
k,l (v)Dj

rM
(n),k
v

]
dW l

v

∣∣∣∣2dr


≤ E

sup
u≤s

d∑
j=1

∫ u

0

sup
u≤s

∣∣∣∣ d∑
l=1

m∑
k=1

∫ u

r

[
Ā

(n),i
k,l (v)Dj

rX
(n),k
v + Ã

(n),i
k,l (v)Dj

rM
(n),k
v

]
dW l

v

∣∣∣∣2dr


=
d∑

j=1

∫ s

0

E

[
sup
u≤s

∣∣∣∣ d∑
l=1

m∑
k=1

∫ u

r

[
Ā

(n),i
k,l (v)Dj

rX
(n),k
v + Ã

(n),i
k,l (v)Dj

rM
(n),k
v

]
dW l

v

∣∣∣∣2
]
dr

≤ C

d∑
j=1

∫ s

0

E

[
d∑

l=1

∫ s

r

∣∣∣∣ m∑
k=1

[
Ā

(n),i
k,l (v)Dj

rX
(n),k
v + Ã

(n),i
k,l (v)Dj

rM
(n),k
v

]
dv

∣∣∣∣2
]
dr

≤ C
d∑

j=1

∫ s

0

E

[
d∑

l=1

∫ s

r

m∑
k=1

(
|Dj

rX
(n),k
v |2 + |Dj

rM
(n),k
v |2

)
dv

]
dr

= C

d∑
j=1

∫ s

0

E

[
d∑

l=1

∫ s

0

m∑
k=1

(
|Dj

rX
(n),k
v |2 + |Dj

rM
(n),k
v |2

)
dv

]
dr

= C
d∑

j=1

∫ s

0

E

[
d∑

l=1

∫ s

0

m∑
k=1

(
|Dj

rX
(n),k
v |2 + |Dj

rM
(n),k
v |2

)
dr

]
dv

= C

d∑
j=1

∫ s

0

E

[
d∑

l=1

∫ v

0

m∑
k=1

(
|Dj

rX
(n),k
v |2 + |Dj

rM
(n),k
v |2

)
dr

]
dv

= C
m∑

k=1

∫ s

0

E
[
∥DX(n),k

v ∥2H + ∥DM (n),k
v ∥2H

]
≤ C

m∑
k=1

∫ s

0

E

[
sup
u≤v

∥DX(n),k
u ∥2

]
dv,

and the same computation as the above gives

E

[
sup
u≤s

∫ u

0

∣∣∣∣ m∑
k=1

∫ s

r

[
B̄

(n),i
k (v)Dj

rX
(n),k
v + B̃

(n),i
k (v)Dj

rM
(n),k
v

]
dv

∣∣∣∣2dr
]
≤ C

m∑
k=1

∫ s

0

E

[
sup
u≤v

∥DX(n),k
u ∥2

]
dv.

Thus, we have

m∑
i=1

E

[
sup
u≤s

∥DX(n+1),i
u ∥2H

]
≤ C1 + C2

∫ s

0

m∑
i=1

E

[
sup
u≤v

∥DX(n),i
u ∥2H

]
dv, (2.21)
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and this implies M
(n+1),i
s ∈ D1,2 and E[

∫ s

0
supu≤v ∥DX

(n+1),i
u ∥2Hdv] <∞ for s ∈ [0, t] by Lemma 3.

Due to (2.21) and Lemma 3, we have supnE[∥DX(n),i
s ∥2H ] < ∞ and supnE[∥DM (n),i

s ∥2H ] ≤
supnE[supu≤s ∥DX

(n),i
u ∥] < ∞. By the fact that X

(n),i
s → Xi

s, M
(n),i
s → M i

s in L2(Ω) and Lemma

1.2.3 of [17], Xi
s and M i

s belong to D1,2 for s ∈ [0, t]. Moreover DX
(n),i
s and DM

(n),i
s converge to DXi

s

and DM i
s in the weak topology of L2(Ω;L2([0, t];Rd)).

Let us prove (2.18). We have

E

[∫ t

0

∫ t

0

|Dj
r(A

i
l(u,Xu,Mu))|2drdu

]
≤ C

m∑
k=1

∫ t

0

E
[
∥DXk

u∥2H + ∥DMk
u∥2H

]
du <∞

by the same calculation as (2.20), the fact that E[∥DMk
u∥2H ] ≤ lim infn→∞E[∥DM (n),k

u ∥2H ] ≤
lim infn→∞E[supv≤u ∥DX

(n),k
v ∥2H ] holds and (2.21). Therefore, we have (2.18) and the proof is com-

pleted.

Lemma 5. Assume (A1)-(A3). Then, for {Xi
s, s ∈ [0, t]} and p ≥ 2 we have

E

[∫ s

0

sup
r≤u≤s

|DjXi
u|pdr

]
<∞, (2.22)

and assumptions (i)-(v) of Lemma 3 hold. Moreover, for s ∈ [0, t] and p ≥ 2, Xi
s,M

i
s ∈ D1,p.

Proof. First, let us prove (2.22) for p = 2. We have

d∑
j=1

E

[∫ s

0

sup
r≤u≤s

|Dj
rX

i
u|2dr

]

≤ C1 + C2

(∫ s

0

E

[
sup

r≤u≤s

∣∣∣∣ ∫ u

r

d∑
l=1

(
Āi

k,l(v)D
j
rX

k
v + Ãi

k,l(v)D
j
rM

k
v

)
dW l

v

∣∣∣∣2
]
dr

+

∫ s

0

E

[
sup

r≤u≤s

∣∣∣∣ ∫ u

r

(
B̄i

k(v)D
j
rX

k
v + B̃i

k(v)D
j
rM

k
v

)
dv

∣∣∣∣2
]
dr

)

≤ C1 + C2

(∫ s

0

E

[
d∑

l=1

∫ s

r

(
Āi

k,l(v)D
j
rX

k
v + Ãi

k,l(v)D
j
rM

k
v

)2
dv

]
dr

+

∫ s

0

E

[∫ s

r

(
B̄i

k(v)D
j
rX

k
v + B̃i

k(v)D
j
rM

k
v

)2
dv

]
dr

)
≤ C1 + C2

∫ s

0

E

[∫ s

r

m∑
k=1

(
∥Dj

rX
k
v ∥2 + ∥Dj

rM
k
v ∥2
)
dv

]
dr

= C1 + C2E

[∫ s

0

∫ s

0

m∑
k=1

(
∥Dj

rX
k
v ∥2 + ∥Dj

rM
k
v ∥2
)
drdv

]

= C1 + C2

∫ s

0

E

[∫ v

0

m∑
k=1

(
∥Dj

rX
k
v ∥2 + ∥Dj

rM
k
v ∥2
)
dr

]
dv

= C1 + C2

m∑
k=1

∫ s

0

E
[
∥DXk

v ∥2H + ∥DMk
v ∥2H

]
dv <∞, (2.23)
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by the fact that E[∥DMk
v ∥2H ] ≤ lim infn→∞E[∥DM (n),k

v ∥2H ] ≤ lim infn→∞E[supu≤v ∥DX
(n),k
u ∥2H ] is

true, (2.18) and (2.21). This implies that (v) holds for Xi. (i) follows from Lemma 1 and we have (ii)
by (2.22) for p = 2. (iii) holds due to Lemma 2 and we have (iv) by (2.18) and (2.19).

Let us prove (2.22) for p > 2. It suffices to prove

E

∫ t

0

m∑
i=1

d∑
j=1

sup
r≤s≤t

|Dj
rX

i
s|pdr

 ≤ C1 + C2

∫ t

0

E

∫ u

0

m∑
i=1

d∑
j=1

sup
r≤s≤u

|Dj
rX

i
s|pdr

 du. (2.24)

However, we get (2.24) from the same computation as (2.23) and an inequality

∥DMk
u∥

p
H ≤ C

d∑
j=1

∫ u

0

sup
r≤s≤u

|Dj
rX

k
u |pdr,

which follows from (2.18), (2.19) and (2.15). From (2.22) we have Xi
s,M

i
s ∈ D1,p for s ∈ [0, t] and

p ≥ 2.

Now we consider two m×m matrix-valued process defined by

Y i
j (s) = δij +

∫ s

0

Āi
k,l(u)Y

k
j (u)dW l

u +

∫ s

0

B̄i
k(u)Y

k
j (u)du , 1 ≤ i, j ≤ m (2.25)

and

Zi
j(s) = δij −

∫ s

0

Zi
k(u)Ā

k
j,l(u)dW

l
u −

∫ s

0

Zi
k(u)[B̄

k
j (u)− Āk

α,l(u)Ā
α
j,l(u)]du, 1 ≤ i, j ≤ m. (2.26)

By the argument in section 2.3 of [17], we have Y −1(s) = Z(s). Let us express Dj
rX

i
s by using Y (s) and

Z(s).

Lemma 6. For s ∈ [r, t] and 1 ≤ i ≤ m, 1 ≤ j ≤ d, DjXi
s satisfies

Dj
rX

i
s = Y i

k (s)Z
k
k′(r)Ak′

j (r) + Y i
k (s)

∫ s

r

Zk
k′(u)Ãk′

l′,l(u)D
j
rM

l′

u dW
l
u

+Y i
k (s)

∫ s

r

Zk
k′(u)[B̃k′

l′ (u)− Āk′

α,lÃ
α
l′,l(u)]D

j
rM

l′

u du. (2.27)

Proof. From (2.18), (2.25), (2.26) and Itô’s formula, one has for 1 ≤ i ≤ m and 1 ≤ j ≤ d,

m∑
k′=1

Zi
k′(s)Dj

rX
k′

s =
m∑

k′=1

Zi
k′(r)Ak′

j (r,Xr,Mr) +
m∑

k′=1

∫ s

r

Zi
k′(u)d(Dj

rX
k′

u ) +
m∑

k′=1

∫ s

r

Dj
rX

k′

u dZ
i
k′(u)

+
m∑

k′=1

∫ s

r

d⟨Zi
k′(·), Dj

rX
k′

· ⟩u

= Zi
k′(r)Ak′

j (r,Xr,Mr) +

∫ s

r

Zi
k′(u)Āk′

l′,l(u)D
j
rM

l′dW l
u

+

∫ s

r

Zi
k′(u)[B̃k′

l′ (u)− Āk′

α,l(u)Ã
α
l′,l(u)]D

j
rM

l′

u du.
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By the definition of (2.25) and (2.26), we have

Dj
rX

i
s =

m∑
k,k′=1

Y i
k (s)Z

k
k′(s)DjXk′

s ,

therefore, the result follows.

Now we prove the absolute continuity of the law of Xt which is the main theorem of this section.

Theorem 2. Assume (A1)-(A3), then for t > 0, Xt has the absolutely continuous probability law with
respect to the Lebesgue measure on Rm.

Proof. Let us prove
∫ t

0
|vTDrXt|2dr > 0 for nonzero vector v ∈ Rm. By (2.27) and a trivial inequality

(a+ b)2 ≥ a2

2 − b2, a, b ∈ R, we have

|vTDrXt|2

≥ 1

2

d∑
j=1

∣∣∣∣ m∑
i=1

viY
i
k (t)Z

k
k′(r)Ak′

j (r)

∣∣∣∣2

−
d∑

j=1

∣∣∣∣ m∑
i=1

viY
i
k (t)

(∫ t

r

Zk
k′(s)Ãk′

l′,l(s)D
j
rM

l′

s dW
l
s +

∫ t

r

Zk
k′(s)[B̃k′

l′ (s)− Āk′

α,lÃ
α
l′,l(s)]D

j
rM

l′

s ds

) ∣∣∣∣2

=:
1

2

d∑
j=1

∣∣∣∣ m∑
i=1

viY
i
k (t)Z

k
k′(r)Ak′

j (r)

∣∣∣∣2 +Ar,t.

Then we have

E

[
1

ε

∫ t

t−ε

Ar,tdr

]

≤ 1

ε
E

∫ t

t−ε

d∑
j=1

∣∣∣∣ m∑
i=1

viY
i
k (t)

(∫ t

r

Zk
k′(s)Ãk′

l′,l(s)D
j
rM

l′

s dW
l
s

+

∫ t

r

Zk
k′(s)[B̃k′

l′ (s)− Āk′

α,lÃ
α
l′,l(s)]D

j
rM

l′

s ds

) ∣∣∣∣2dr
]

≤ C

ε

d∑
j=1

m∑
i=1

|vi|2E
[∫ t

t−ε

∣∣∣∣Y i
k (t)

(∫ t

r

Zk
k′(s)Ãk′

l′,l(s)D
j
rM

l′

s dW
l
s

+

∫ t

r

Zk
k′(s)[B̃k′

l′ (s)− Āk′

α,lÃ
α
l′,l(s)]D

j
rM

l′

s ds

) ∣∣∣∣2dr
]

≤ C

ε

d∑
j=1

m∑
i=1

|vi|2
(
E

[∫ t

t−ε

∣∣∣∣Y i
k (t)

∫ t

r

Zk
k′(s)Ãk′

l′,l(s)D
j
rM

l′

s dW
l
s

∣∣∣∣2dr
]

+E

[∫ t

t−ε

∣∣∣∣Y i
k (t)

∫ t

r

Zk
k′(s)[B̃k′

l′ (s)− Āk′

α,lÃ
α
l′,l(s)]D

j
rM

l′

s ds

∣∣∣∣2dr
])

.
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Now, one has

E

[∫ t

t−ε

∣∣∣∣Y i
k (t)

∫ t

r

Zk
k′(s)Ãk′

l′,l(s)D
j
rM

l′

s dW
l
s

∣∣∣∣2dr
]

= E

∫ t

t−ε

m∑
k,k′,l′=1

∣∣∣∣Y i
k (t)

∫ t

r

Zk
k′(s)Ãk′

l′,l(s)D
j
rM

l′

s dW
l
s

∣∣∣∣2dr


≤ C

m∑
k=1

E

[
|Y i

k (t)|2
∫ t

t−ε

∣∣∣∣ ∫ t

r

Zk
k′(s)Ãk′

l′,l(s)D
j
rM

l′

s dW
l
s

∣∣∣∣2dr
]

≤ C
m∑

k,k′=1

E

[
|Y i

k (t)|2
∫ t

t−ε

∣∣∣∣ ∫ t

r

Zk
k′(s)Ãk′

l′,l(s)D
j
rM

l′

s dW
l
s

∣∣∣∣2dr
]

≤ C
m∑

k,k′,l′=1

E

[
|Y i

k (t)|2
∫ t

t−ε

∣∣∣∣ ∫ t

r

Zk
k′(s)Ãk′

l′,l(s)D
j
rM

l′

s dW
l
s

∣∣∣∣2dr
]

≤ C

m∑
k,k′,l′=1

E
[
|Y i

k (t)|4
] 1

2

∫ t

t−ε

E

[∣∣∣∣ d∑
l=1

∫ t

r

Zk
k′(s)Ãk′

l′,l(s)D
j
rM

l′

s dW
l
s

∣∣∣∣4
] 1

2

dr

≤ C
m∑

k,k′,l′=1

E
[
|Y i

k (t)|4
] 1

2

∫ t

t−ε

E

(∫ t

r

d∑
l=1

|Zk
k′(s)Ãk′

l′,l(s)D
j
rM

l′

s |2ds

)2
 1

2

dr

≤ C
m∑

k,k′,l′=1

E
[
|Y i

k (t)|4
] 1

2

∫ t

t−ε

E

[
d∑

l=1

(∫ t

r

|Zk
k′(s)Dj

rM
l′

s |2ds
)2
] 1

2

dr

≤ C
m∑

k,k′,l′=1

E
[
|Y i

k (t)|4
] 1

2

∫ t

t−ε

E

[∫ t

r

|Zk
k′(s)Dj

rM
l′

s |4ds
] 1

2

(t− r)
1
2 dr

≤ εC
m∑

k,k′,l′=1

E
[
|Y i

k (t)|4
] 1

2

(∫ t

t−ε

E

[∫ t

r

|Zk
k′(s)Dj

rM
l′

s |4ds
]
dr

) 1
2

≤ εC
m∑

k,k′,l′=1

E
[
|Y i

k (t)|4
] 1

2

(∫ t

t−ε

∫ t

0

E
[
|Zk

k′(s)Dj
rM

l′

s |4
]
dsdr

) 1
2

≤ εC

m∑
k,k′,l′=1

E
[
|Y i

k (t)|4
] 1

2

(∫ t

t−ε

E

[
|Zk

k′(s)|4
∫ t

t−ε

sup
r≤s≤t

|Dj
rX

l′

s |4dr
]
ds

) 1
2

≤ ε
3
2C

m∑
k,k′,l′=1

E
[
|Y i

k (t)|4
] 1

2 E

[
sup

0≤s≤t
|Zk

k′(s)|4
∫ t

0

sup
r≤s≤t

|Dj
rX

l′

s |4dr
] 1

2

≤ ε
3
2C

m∑
k,k′=1

E
[
|Y i

k (t)|4
] 1

2 E

[
sup

0≤s≤t
|Zk

k′(s)|8
] 1

4
m∑

l′=1

(
E

[∫ t

0

sup
r≤s≤t

|Dj
rX

l′

s |8dr
]) 1

4

,
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and

E

[∫ t

t−ε

∣∣∣∣Y i
k (t)

∫ t

r

Zk
k′(s)[B̃k′

l′ (s)− Āk′

α,l(s)Ã
α
l′,l(s)]D

j
rM

l′

s ds

∣∣∣∣2dr
]

≤ C
m∑

k,k′,l′=1

E
[
|Y i

k (t)|8
] 1

4 E

[
sup

0≤s≤t
|Zk

k′(s)|8
] 1

4

E

(∫ t

t−ε

(∫ t

r

|Dj
rM

l′

s |ds
)2

dr

)2
 1

2

≤ C
m∑

k,k′,l′=1

E
[
|Y i

k (t)|8
] 1

4 E

[
sup

0≤s≤t
|Zk

k′(s)|8
] 1

4

E

[(∫ t

t−ε

∫ t

t−ε

|Dj
rM

l′

s |2(t− r)drds

)2
] 1

2

≤ C
m∑

k,k′,l′=1

E
[
|Y i

k (t)|8
] 1

4 E

[
sup

0≤s≤t
|Zk

k′(s)|8
] 1

4

×E

(∫ t

t−ε

(∫ t

t−ε

|Dj
rM

l′

s |4dr
) 1

2
(∫ t

t−ε

|t− r|2dr
) 1

2

ds

)2


1
2

= ε
3
2C

m∑
k,k′,l′=1

E
[
|Y i

k (t)|8
] 1

4 E

[
sup

0≤s≤t
|Zk

k′(s)|8
] 1

4

E

(∫ t

t−ε

(∫ t

t−ε

|Dj
rM

l′

s |4dr
) 1

2

ds

)2


1
2

≤ ε
3
2C

m∑
k,k′,l′=1

E
[
|Y i

k (t)|8
] 1

4 E

[
sup

0≤s≤t
|Zk

k′(s)|8
] 1

4

E

[∫ t

0

∫ t

0

|Dj
rM

l′

s |4drds
] 1

2

≤ ε
3
2C

m∑
k,k′=1

E
[
|Y i

k (t)|8
] 1

4 E

[
sup

0≤s≤t
|Zk

k′(s)|8
] 1

4
m∑

l′=1

(
E

[∫ t

0

sup
r≤s≤t

|Dj
rX

l′

s |4dr
]) 1

2

.

This shows that 1
ε

∫ t

t−ε
Ar,tdr → 0 in L1(Ω) as ε tends to 0. Note that we must choose ε > 0 such that

t− ε > 0 holds. Therefore, there exists {εn}n∈N such that

lim
n→∞

1

εn

∫ t

t−εn

Ar,tdr = 0, a.s.

On the other hand, by the continuity of Ai
j , we have

lim
n→∞

1

εn

∫ t

t−εn

d∑
j=1

∣∣∣∣ m∑
i=1

viY
i
k (t)Z

k
k′(r)Ak′

j (r,Xr,Mr)

∣∣∣∣2dr = d∑
j=1

∣∣∣∣ m∑
i=1

viA
i
j(t,Xt,Mt)

∣∣∣∣2 > 0,

for any nonzero vector v ∈ Rm by (A3). By Lemma 5 and Theorem 1 the proof is completed.

2.3 The absolute continuity of the probability law of (X i
t ,M

i′
t )

In this section, we prove the absolute continuity of the law of (Xi
t ,M

i′

t ), 1 ≤ i, i′ ≤ m, in a special case.
That is:
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CHAPTER 2. ABSOLUTE CONTINUITY OF THE LAWS OF A MULTI-DIMENSIONAL
STOCHASTIC DIFFERENTIAL EQUATION WITH COEFFICIENTS DEPENDING ON THE
MAXIMUM

(A4) Ai
l, 1 ≤ i ≤ m, 1 ≤ l ≤ d, do not depend on the second space variable,

in addition to (A1)-(A3).

Remark 2. Under (A4), Ãk′

l′,l = 0 in (2.27).

The following theorem is the main theorem of this section.

Theorem 3. Assume (A1)-(A4). Then, for t > 0 and 1 ≤ i, i′ ≤ m, the law of (Xi
t ,M

i′

t ) is absolutely
continuous with respect to the Lebesgue measure on R2.

Proof. Let v1, v2 ∈ R\{0}. Note that, by Lemma 3 and 5, for t > 0, we have DjM i′

t = 1[0,τ i′
t )(r)D

j
rX

i′

τ i′
t

.

First, we assume v1 ̸= 0, v2 ̸= 0. By Schwarz’s inequality and a trivial inequality a2 + b2 ≥ 2ab, a, b ∈
R, we have∫ t

0

∣∣∣∣(v1, v2)( D1
rX

i
t · · ·Dd

rX
i
t

D1
rM

i′

t · · ·Dd
rM

i′

t

) ∣∣∣∣2dr
=

∫ t

0

d∑
j=1
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Let us prove that ∫ τ i′
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From the same computation as the proof of Theorem 2, we get
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Therefore, one has
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as ε tends to 0. By (2.30) and the proof of Theorem 2, there exists {εin}n∈N and {εi′n}n∈N such that
εin ↓ 0, εi

′

n ↓ 0 (n→ ∞) and
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and
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almost surely, where we have used the fact that limn→∞ 1{τ i′
t −εi′n>0} = 1, a.s., which is a consequence of

Lemma 2. By Lemma 2, we have t > τ it , thus, there exists N ′ ∈ N such that∫ t
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for any n ≥ N ′, almost surely. This implies that (2.29) is true. Therefore, the right hand side of (2.28)
is strictly positive for any v ∈ R2 such that v1 ̸= 0, v2 ̸= 0.

Second, in the case v1 = 0 or v2 = 0 we have∫ t
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Therefore, we obtain ∫ t
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by (2.31) and (2.32). This finishes the proof.

Remark 3. The general 2m-dimensional study of the law of (X1
t , · · · , Xm

t ,M
1
t , · · · ,Mm

t ) does not follow
with the arguments presented here, due to the particular structure used in the calculation of (2.28).
Indeed, in the proof of Theorem 3, we have used an inequality a2 + b2 ≥ 2ab, a, b ∈ R.

Corollary 1. Under (A1)-(A4), by the same calculation as that in Theorem 3, for t > 0 and 1 ≤ i ̸=
i′ ≤ m, we can prove the absolute continuity of the law of (M i

t ,M
i′

t ) conditioned by the set {τ it ̸= τ i
′

t }.

Now we give an example for Ai
l and A

i′

l that {τ it ̸= τ i
′

t } holds, a.s.

Example 1. For each k = i, i′, let {Xk
s , s ∈ [0, t]} satisfies

Xk
s = xk +

∫ s

0

Bk(u,Xu,Mu)du+Ak
kW

k
s ,

where Ak
k is a nonzero constant then τ it ̸= τ i

′

t , a.s.

Proof. By Girsanov theorem, the independence of Brownian motions, and the explicit density function
for τkt , k = i, i′ (Problem 8.17 in Chapter 2 of [11]), we obtain the existence of the density function for
τ it − τ i

′

t . Then we have P (τ it = τ i
′

t ) = 0.
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2.4 A concluding remark

In this chapter, we proved the absolute continuity of the law of Xt and (Xi
t ,M

i′

t ) with Lipschitz coef-
ficients under some additional assumptions. We end this chapter with some remarks on the law of the
maximum of processes. There are some theoretical and applicable results about the law of the maximum
of continuous processes. In [17] the smoothness of the density function of the maximum of the Wiener
sheet is proven. In [9], authors derived some integration by parts formulae involving the maximum and
minimum of a one dimensional diffusion to compute the sensitivities of the price of financial products
with respect to market parameters called Greeks. Recently, the smoothness of density function of the
joint law of a multi-dimensional diffusion at the time when a component attains its maximum time was
proven in [10]. In these articles, Garsia-Rodemich-Rumsey’s lemma (Lemma A.3.1 of [17]) plays an
important role to obtain the results.
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Chapter 3

Volatility risk for options depending
on extrema and its estimation using
kernel methods

3.1 Introduction

The Black-Scholes model has been widely used by practitioners due to its simplicity and the existence
of some explicit probability density functions concerning the model. This model assumes a constant
volatility. However, in the option market data, we observe that the volatility can not be a constant.
This phenomenon is often called “volatility smile” after the shape of observed data-implied volatilities
(see [5] or [8]). For this reason, it is natural to consider a general model which may perform better
than the Black-Scholes model. On the other hand, in a general model, usually one knows neither the
associated explicit density functions nor explicit formulas for option prices. Therefore, the risks involved
in options, called Greeks, can only be computed through numerical approximations.

In this chapter, we consider the sensitivity of the model to changes in the volatility parameter for
options depending on the extrema (maximum or minimum). We call this sensitivity the vega index
and we focus our discussion on the calculation of the vega index. In a general model, the volatility is
not a constant and this makes the discussion complicated mathematically. We introduce a perturbation
parameter to consider the directional derivatives for the diffusion coefficients to calculate the vega index.
In particular, this problem has been discussed by some authors. In [6], the authors obtained a formula
to calculate the vega index for options whose payoffs depend on the prices of underlying at fixed times
through Malliavin calculus. Other Greeks, such as delta and gamma, which are defined by the sensitivities
with respect to the current price of the underlying, for options depending on the extrema are discussed
in [9]. In [1], a formula to compute the vega index was obtained in the case of options with payoffs
depending on the underlying smoothly (e.g. Asian type option) by using Malliavin calculus.

However, the vega index for options depending on the extrema has not been considered yet, since
the extrema of a diffusion process is not sufficiently smooth and therefore difficult to treat from the
mathematical point of view. In mathematical finance various credit linked and barrier type products
have this kind of feature.

There are mainly two goals in this chapter: One is to consider various options which may depend on

25



3.1. INTRODUCTION

the extrema of the underlying and obtain some financial conclusions about the properties of the vega
index in a one-dimensional model. The other is to give a methodology to compute the vega index for a
specific option by using so-called kernel methods.

To study the structure of vega index, we draw the vega risk profiles in the one-dimensional model
and compare the vega index obtained in this one-dimensional model with the one in the Black-Scholes
model (see Table 3.1 and Figure 3.4). According to Table 3.1 and Figure 3.4, these different models
give different values of the vega index, even if the payoff functions are the same, and this difference is
crucial for practitioners, since in practice hedging procedures are done based on the value of vega index
obtained in each model.

Technically, in this chapter, we consider a one-dimensional stochastic differential equation (SDE) with
time-independent coefficients as the dynamics of an asset price under the pricing measure P . The results
obtained in this chapter may be a breakthrough to study the Greeks in so-called stochastic volatility
models which are often used by practitioners (see [4], for a relationship between one-dimensional models
and stochastic volatility models). To deal with the extrema of diffusion process, we use the Lamperti
method (see Exercise 5.2.20 of [11], for example). That is, first we transform the SDE using Girsanov’s
theorem to a Stratonovich type SDE without drift coefficient which can then be expressed as a monotone
transformation of a Wiener process. This method is different from the one considered in [9] where the
Garsia-Rodemich-Rumsey’s lemma (see Lemma A.3.1 of [17]) plays an important role. Although tech-
niques used in [9] are quite interesting, the formulas obtained there have high computational complexity.
However, the formula obtained in this chapter is much simpler.

By working under a new measure, we can express the extrema of diffusion process in a simple fashion
and calculate the directional derivatives. In addition, we use the duality formula of Malliavin calculus
as it appears in [17, Page 37] to obtain a formula that may give a better expression to the vega index
for some numerical methods such as Monte Carlo simulation.

The formula of the vega index obtained in this chapter allows one to decompose it into three compo-
nents: the extrema and maturity feature of options, and a by-product of the Girsanov transformation.
The intention of the current research is to try to reveal some properties of the structure of these three
components for realistic options. Through simulation studies in Section 3 of this chapter, one can see
that the decomposition of the vega index for barrier type options has some interesting properties. For
example, when we consider an up-in call option, our Monte Carlo analysis shows that for the option
with lower barrier, the vega index is mostly conveyed by the maturity feature of the payoff, while for the
option with higher barrier, the extrema feature controls most of the vega index. We can see the existence
of a barrier that determines which component in the decomposition is of most importance (see Figure
3.1). Moreover, we observe that for the options with short maturity, we have to pay more attention to
the change of the value of vega index with respect to the maturity (see Figure 3.2 and 3.3). These results
seem to be valid among several types of options, according to our numerical experiments.

Unfortunately, each component of the decomposition formula obtained here for binary barrier options
involves the Dirac delta functionals, therefore, we give a method to approximate the delta functionals
called kernel methods. The kernel method is quite effective to some numerical problems appearing in
various fields such as finance. A basic kernel method to estimate probability density functions is given in
[18, Chapter 2-4], and it is applied in [13] to compute the Greeks for options with discontinuous payoffs.
To address this method, we shall define an estimator for the delta functional by using a so-called kernel
function and bandwidth parameter. The bandwidth parameter controls the bias and variance of the
estimator, therefore, its choice is quite important for using the kernel method. In order to choose the
best bandwidth, we define an asymptotic mean squared error (AMSE) as an error for the estimator,
then we look for a bandwidth so that the AMSE is as small as possible. If there exists a bandwidth
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which minimizes the AMSE, then we call it the optimal bandwidth. A theorem to express the optimal
bandwidth is stated as the main theorem of Section 4 and some numerical results obtained by the kernel
method are also given.

This chapter is organized as follows. In Section 2, we provide the mathematical result on the decom-
position of vega index. In Section 3, we carry out Monte Carlo simulations and obtain some results on
the structure of vega index as mentioned in the previous paragraph. In Section 4, we consider a binary
barrier option and discuss the kernel method. Then we apply it to the computation of the vega index
for this option. Some numerical results obtained with the kernel method are given in Section 5. In the
Appendices, we give some lemmas and proofs of our results.

Throughout the chapter, we use Ck
b (A,B) to denote the space of B-valued k times continuously

differentiable functions defined on A with bounded derivatives. For a differentiable function F from Rm

to R where m ∈ N, we define ∂iF (x) :=
∂F
∂xi

(x) for x ∈ Rm and 1 ≤ i ≤ m. The letters C and Ci, i ∈ N
denote positive constants which may depend on f, p, x and T that will appear in this chapter, and the
values of C and Ci may change from line to line. We define R+ := (0,∞) and EP as the expectation
under a probability measure P .

3.2 Main result: Vega index for options depending on the ex-
trema

Let (Ω,F , P ) be a complete probability space which supports a one-dimensional Wiener process {Wt, t ∈
[0, T ]}. For σ, σ̂, b : R → R and x > 0, we consider the following stochastic differential equation (SDE in
short), {

dSε
t = b(Sε

t )dt+ σε(Sε
t )dWt

Sε
0 = x,

(3.1)

where σε is of the form σε(z) = σ(z) + εσ̂(z), ε ∈ [0, 1].

For f : R2 → R, we consider the quantity Πε := EP [f(max0≤t≤T S
ε
t , S

ε
T )]. We assume the following

hypotheses.

(H1) σ, σ̂ ∈ C2
b (R+,R+) and b ∈ C2

b (R+,R+).

(H2) There exists σ0 > 0 such that σε(y) ≥ σ0y for all y ∈ R+ and ε ∈ [0, 1].

(H3) There exists r0 ∈ (0, 1] and σ1 > 0 such that σ0y ≤ σε(y) ≤ σ1y, for all y ∈ R+ such that |y| < r0.

(H4) The function b
σε is bounded.

(H5) f ∈ C1
b (R2

+,R+).

Note that by (H1), for all ε ∈ [0, 1], (3.1) has a unique strong solution, and let Sε = {Sε
t , t ∈ [0, T ]}

be the solution to (3.1). In finance, Πε defines a perturbed option price with a payoff function f . We
consider the quantity ∂Πε

∂ε

∣∣
ε=0

and we call this the vega index of this option.

Our main result is the following theorem. It gives the decomposition formula for vega index.
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Theorem 4. Assume the above hypotheses (H1)-(H5). Then the following expression for vega index
is valid.

∂Πε

∂ε

∣∣∣∣
ε=0

= EP

[
∂1f( max

0≤t≤T
St, ST )σ( max

0≤t≤T
St)

∫ max
0≤t≤T

St

x

σ̂

(σ)2
(y)dy

]

+EP

[
∂2f( max

0≤t≤T
St, ST )σ(ST )

∫ ST

x

σ̂

(σ)2
(y)dy

]

+EP

[∫ T

0

(
∂1f( max

0≤t≤T
St, ST )YηI[0,η](t) + ∂2f( max

0≤t≤T
St, ST )YT

)

×
{
(b′σ − bσ′ − (σ)2σ′′

2 )(St)

Yt

(∫ St

x

σ̂

(σ)2
(y)dy

)
−

( bσ̂σ + σσ̂′

2 )(St)

Yt

}
dt

]
(3.2)

where St := S0
t , Yt :=

∂St

∂x and η := argmax0≤t≤T St.

Before giving the proof of theorem, let us state some remarks and prove some preparatory lemmas.

Remark 4. A. One can prove that η in Theorem 4 is almost surely unique by using Theorem 5 of this
chapter and the fact that the time at which the maximum of a one-dimensional Wiener process over
[0, T ] is attained is almost surely unique (see Remark 2.8.16 of [11]).

B. We have given the above theorem a general mathematical form. In finance, we should assume
that P is the equivalent martingale measure, the interest rate is zero for convenience and that Sε is
a martingale. Then, in that particular case, Πε has the interpretation of a perturbed option price.
Furthermore, as our main goal is to describe the structure of vega index, we do not discuss the possible
mathematical extensions to payoff functions f to avoid cumbersome technicalities and long arguments.
In Section 3, we will obtain some numerical results for irregular f with special b, σ and σ̂. This extension
can be done by using the explicit density functions for max0≤t≤T St and (max0≤t≤T St, ST ). The proof
of this extension can be found in Appendix B.

C. The first term of (3.2) comes from the differentiation with respect to the maximum of asset price,
the second term is due to the maturity price of the asset and the third term is a result of a change of
measure. We call these three terms “extrema sensitivity”, “terminal sensitivity” and “drift sensitivity”,
respectively.

D. When we consider the following measure change

dQ(ε)

dP
:= exp

{∫ T

0

(
σε′

2
− b

σε

)
(Sε

t )dWt −
1

2

∫ T

0

(
σε′

2
− b

σε

)2

(Sε
t )dt

}
,

where we have defined σε′ := (σε)′, then under Q(ε)

Ŵ ε
t :=Wt −

∫ t

0

(
σε′

2
− b

σε

)
(Sε

u)du

is a one-dimensional Wiener process. Note that due to the boundedness for b
σε and σε′ the Novikov

condition is clearly satisfied. Then under Q(ε), Sε can be written as{
dSε

t =
1
2σ

εσε′(Sε
t )dt+ σε(Sε

t )dŴ
ε
t = σε(Sε

t ) ◦ dŴ ε
t ,

Sε
0 = x,
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where ◦ dŴ ε
t denotes Stratonovich integral. Finally, we can write Πε as follows,

Πε = EP [f( max
0≤t≤T

Sε
t , S

ε
T )] = EQ(ε)

[
f( max

0≤t≤T
Sε
t , S

ε
T )

dP

dQ(ε)

]
.

E. Under Q(ε), Sε is driven by Ŵ ε and the distribution of Ŵ ε does not depend on ε under Q(ε).
Let (Ω̃, F̃ , Q̃) be another complete probability space and W̃ be a one-dimensional Wiener process under
Q̃. Then Πε is written as

Πε = EQ̃[f( max
0≤t≤T

Sε
t , S

ε
T ) exp(X

ε
T )],

where Sε
t satisfies {

dSε
t = σε(Sε

t ) ◦ dW̃t

Sε
0 = x,

(3.3)

and

Xε
T = −

∫ T

0

(
σε′

2
− b

σε

)
(Sε

t )dW̃t −
1

2

∫ T

0

(
σε′

2
− b

σε

)2

(Sε
t )dt.

We use the SDE of the form (3.3) to write down Sε with only W̃ so that we can express max0≤t≤T S
ε
t

by max0≤t≤T W̃t. From now on, we use the notation XT := X0
T .

We introduce a function Fε which is used to express the solution to (3.3) in an explicit form.

Definition 1. (Lamperti transform) For ε ∈ [0, 1], define Fε : R+ → R as

Fε(z) :=

∫ z

1

1

σε(y)
dy.

Note that the inverse function F−1
ε exists, since Fε is a continuous monotone increasing function due

to the assumption (H2). Furthermore, it is clear that Fε and F−1
ε are differentiable with respect to z

and we have

∂Fε

∂z
(z) =

1

σε(z)
,

∂F−1
ε

∂z
(z) =

1
∂Fε

∂z (F−1
ε (z))

= σε(F−1
ε (z)). (3.4)

In this set-up one has the following result.

Theorem 5. Under hypothesis (H1)-(H2), there exists a unique strong solution to (3.3). Furthermore,
under Q̃, the solution to the SDE (3.3) can be written as follows,

Sε
t = F−1

ε (Fε(x) + W̃t). (3.5)

Therefore, one has max0≤t≤T S
ε
t = F−1

ε (Fε(x) + max0≤t≤T W̃t).
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Proof. By (3.4) and applying Itô’s formula for Stratonovich integral to F−1
ε (Fε(x) + z), it is easy to see

that (3.5) is a solution to (3.3). On the other hand, if there exists a solution to (3.3), then, again by
applying Itô’s formula for Stratonovich integral to Fε(z), the solution can be expressed by (3.5). Thus,
one obtains the uniqueness.

The equality max0≤t≤T S
ε
t = F−1

ε (Fε(x) + max0≤t≤T W̃t) is a conclusion of the monotonicity for
F−1
ε (z).

Remark 5. Although the representation of F−1
ε (Fε(x)+W̃t) is clearly continuous in (t, ε), this does not

imply the continuity of the solution to (3.3) in ε, since the exceptional set such that Itô’s formula does
not hold may depend on ε.

To overcome this problem, we modify the solution to (3.3) to be continuous in (t, ε). This procedure
will be done in Appendix A.2.

The above representation is the key formula which allows us to obtain Theorem 4. Our next step is

to state some results on the regularity of Sε
t and Xε

T with respect to ε and the exchange between EQ̃[·]
and ∂

∂ε (·)|ε=0. The following four lemmas will be listed and their proofs can be found in Appendix A.

Lemma 7. Let (H1)-(H2) be satisfied. Let Sε be the solution to (3.3). Then, max
0≤t≤T

Sε
t is differentiable

with respect to ε ∈ [0, 1] and the following equation holds,

∂

∂ε

(
max
0≤t≤T

Sε
t

) ∣∣∣∣
ε=0

= σ( max
0≤t≤T

St)

∫ max
0≤t≤T

St

x

σ̂

(σ)2
(y)dy, a.s.

Lemma 8. Let (H1)-(H2) be satisfied. Let Sε be the solution to (3.3). Then, Sε is differentiable with
respect to ε ∈ [0, 1] and we have

Zt :=
∂Sε

t

∂ε

∣∣∣∣
ε=0

= σ(St)

∫ St

x

σ̂

(σ)2
(y)dy, ∀t ∈ [0, T ], a.s. (3.6)

Lemma 9. Let (H1)-(H3) be satisfied. Then, Xε
T is differentiable with respect to ε ∈ [0, 1] and it holds

that

∂Xε
T

∂ε

∣∣∣∣
ε=0

= −1

2

∫ T

0

(σ′′(St)Zt + σ̂′(St)) dW̃t

+

∫ T

0

(b′σ)(St)Zt − b(St) (σ
′(St)Zt + σ̂(St))

(σ)2(St)
dW̃t

−1

2

∫ T

0

(
σ′

2
− b

σ

)
(St) (σ

′′(St)Zt + σ̂′(St)) dt

+

∫ T

0

(
σ′

2
− b

σ

)
(St)

(b′σ)(St)Zt − b(St) (σ
′(St)Zt + σ̂(St))

(σ)2(St)
dt, a.s.

From the above three lemmas one can see the correspondence of the derivatives to (3.2). In fact, the
three lemmas correspond to the derivative of the maximum, the underlying at maturity and the change
of measure with respect to ε, respectively.

In addition to the above lemmas, we need the following lemma about the exchange between EQ̃[·]
and ∂

∂ε (·)|ε=0.
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Lemma 10. Let (H1)-(H5) be satisfied. Then, we have the following equation,

∂

∂ε

(
EQ̃[f( max

0≤t≤T
Sε
t , S

ε
T ) exp(X

ε
T )]

) ∣∣∣∣
ε=0

= EQ̃

[
∂

∂ε

(
f( max

0≤t≤T
Sε
t , S

ε
T ) exp(X

ε
T )

) ∣∣∣∣
ε=0

]
.

Now, let us prove the main theorem.
Proof of Theorem 4. As mentioned in Remark 4.E, Πε is expressed using Q̃ which does not depend
on ε, therefore, we have

∂Πε

∂ε

∣∣∣∣
ε=0

= EQ̃

[
∂1f( max

0≤t≤T
Sε
t , S

ε
T )

∂

∂ε

(
max
0≤t≤T

Sε
t

)
exp(Xε

T )

∣∣∣∣
ε=0

]
· · · (i)

+ EQ̃

[
∂2f( max

0≤t≤T
Sε
t , S

ε
T )
∂Sε

∂ε
(T ) exp(Xε

T )

∣∣∣∣
ε=0

]
· · · (ii)

+ EQ̃

[
f( max

0≤t≤T
Sε
t , S

ε
T )

∂

∂ε
(exp(Xε

T ))

∣∣∣∣
ε=0

]
· · · (iii).

(i).By Theorem 5 and Lemma 7 we obtain that (i) equals the first term on the right of (3.2) after the
application of Girsanov’s theorem.
(ii).By Lemma 8 as in the proof of (i), the result is trivial.

(iii).By Lemma 9,
∂Xε

T

∂ε

∣∣
ε=0

is

∂Xε
T

∂ε

∣∣∣∣
ε=0

= −1

2

∫ T

0

(σ′′(St)Zt + σ̂′(St))dW̃t +

∫ T

0

(b′σ)(St)Zt − b(St)(σ
′(St)Zt + σ̂(St))

(σ)2(St)
dW̃t

−
∫ T

0

(
1

2
σ′ − b

σ

)
(St)

{
1

2
(σ′′(St)Zt + σ̂′(St))−

(b′σ)(St)Zt − b(St)(σ
′(St)Zt + σ̂(St))

(σ)2(St)

}
dt

(3.7)

where Zt is defined by (3.6). By Lemma 8, we can express Z as follows;

Zt = (σG)(St). (3.8)

where G is defined as

G(z) :=

∫ z

x

σ̂

(σ)2
(y)dy.

Using (3.7), (3.8) and the duality formula in Malliavin calculus we obtain

(iii) = EQ̃

[
f( max

0≤t≤T
St, ST ) exp(XT )

{
−
∫ T

0

(
σσ′′G+ σ̂′

2
− (σ)2b′G− b(σσ′G+ σ̂)

(σ)2

)
(St)dW̃t

−
∫ T

0

(
σ′

2
− b

σ

)(
σσ′′G+ σ̂′

2
− (σ)2b′G− b(σσ′G+ σ̂)

(σ)2

)
(St)dt

}]

= EP̂

[
f( max

0≤t≤T
St, ST )

{
−
∫ T

0

(
σσ′′G+ σ̂′

2
− (σ)2b′G− b(σσ′G+ σ̂)

(σ)2

)
(St)dBt

}]

= EP̂

[∫ T

0

Dt

(
f( max

0≤t≤T
St, ST )

){(
b′ − bσ′

σ
− σσ′′

2

)
G−

(
bσ̂

(σ)2
+
σ̂′

2

)}
(St)dt

]
,
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where we have used a change of measure dP̂
dQ̃

:= exp(XT ) and B is a P̂ -Wiener process. Moreover, in the

above equality, Dt denotes Malliavin derivative operator with respect to B.
Furthermore, we have

Dt

(
f( max

0≤t≤T
St, ST )

)
= ∂1f( max

0≤t≤T
St, ST )Dt

(
max
0≤t≤T

St

)
+ ∂2f( max

0≤t≤T
St, ST )Dt(ST ).

Due to Theorem 2.2.1 of [17] and Lemma 3, we obtain

Dt

(
max
0≤t≤T

St

)
=
Yη
Yt
σ(St)I[0,η](t),

where Yt :=
∂St

∂x and η := arg max
0≤t≤T

Sε
t , and

Dt(ST ) =
YT
Yt
σ(St).

Finally we obtain (3.2).

Remark 6. In the calculation of (iii), it is clear that we can avoid the appearance of the derivative of
f without the duality formula and obtain

(iii) = EP̂

[
f( max

0≤t≤T
St, ST )

{
−
∫ T

0

(
σσ′′G+ σ̂′

2
− (σ)2b′G− b(σσ′G+ σ̂)

(σ)2

)
(St)dBt

}]
.

(3.9)

However, we still prefer to avoid the stochastic integrals in (3.9) in order to obtain the stability of Monte
Carlo estimates.

Remark 7. We can apply the above technique to obtain the representation of the vega index for options
whose payoffs depend on the minimum of the asset. We define Π̃ε := EP [f( min

0≤t≤T
Sε
t , S

ε
T )], then we have

the following formula for the vega index,

∂Π̃ε

∂ε

∣∣∣∣
ε=0

= EP

[
∂1f( min

0≤t≤T
St, ST )σ( min

0≤t≤T
St)

∫ min
0≤t≤T

St

x

σ̂

(σ)2
(y)dy

]

+ EP

[
∂2f( min

0≤t≤T
St, ST )σ(ST )

∫ ST

x

σ̂

(σ)2
(y)dy

]

+ EP

[∫ T

0

(
∂1f( min

0≤t≤T
St, ST )Yη̃I[0,η̃](t) + ∂2f( min

0≤t≤T
St, ST )YT

)

×
{
(b′σ − bσ′ − (σ)2σ′′

2 )(St)

Yt

(∫ St

x

σ̂

(σ)2
(y)dy

)
−

( bσ̂σ + σσ̂′

2 )(St)

Yt

}
dt

]
,

where η̃ := arg min
0≤t≤T

St. This formula provides possibilities to applications to credit linked products.
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3.3 Numerical experiment 1: Structure of the vega index

In this section, we obtain some numerical results by using (3.2). There are mainly two aims to carry
out the numerical experiments: One is to study the structure of the vega index in the model of form
(3.1), and the other is to compare the values of vega index obtained with (3.2) with the values of vega
obtained in the Black-Scholes model.

In this section, for convenience, we call the vega index obtained in (3.2) “LV vega” (LV stands for
“local volatility”) and the vega in the Black-Scholes model “BS vega”. BS vega will be defined in the
next subsection.

3.3.1 Preliminary: assumptions of the one-dimensional model and the defi-
nition of the vega in the Black-Scholes model

The one-dimensional model we will consider is specified as follows. Let b(z) = 0, σ(z) = σ̃z and

σ̂(z) =

{
az (z ≤ c),
ac1−β

β zβ + (1− 1
β )ac (z > c),

(3.10)

where a > 0, 0 < β ≤ 1, c > 1 and σ̃ > 0 are constants. This setting characterizes the Black-Scholes
model perturbed using a CEV like model. Note that the parameter “a” is the gradient and “β” is the
convexity of the volatility surface. We introduce the parameter “c” so that σ̂ satisfies hypothesis (H3).

The function σ̂(z) defined by (3.10) does not satisfy (H1), since σ̂′′(z) is not continuous at z = c.
However, we have the following lemma. The proof can be found in Appendix C.

Lemma 11. Let b(z) = 0, σ(z) = σ̃z. Assume that σ̂ is defined by (3.10). Then, (3.2) holds for
f ∈ C1

b (R2
+,R+).

Now, let us define the vega in the Black-Scholes model (“BS vega”). Let SBS be the solution to{
dSBS

t = σ̃SBS
t dWt,

SBS
0 = x,

(3.11)

where σ̃ > 0 is a positive constant called the volatility parameter of Black-Scholes model. For a payoff
function f we define ΠBS(σ̃) by

ΠBS(σ̃) := EP [f( max
0≤t≤T

SBS
t , SBS

T )],

and we define “BS vega” by

∂ΠBS

∂σ̃
(σ̃). (3.12)

Note that we can obtain the explicit formula for ∂ΠBS

∂σ̃ (σ̃) using the explicit density function for
(max0≤t≤T S

BS
t , SBS

T ).

Remark 8. Under the above assumptions, we have Π0 = ΠBS(σ̃) for all σ̃ > 0 and payoff functions f ,
therefore, the prices of options are the same in two models (3.1) and (3.11).
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To compute LV vega, we set the initial price of a stock x = 80 and the volatility σ̃ = 0.3. For the
parameters of the perturbation function we set a = 3, β = 0.9 and c = 50. We first consider options
with the strike K = 100 and the maturity T = 1, then we shall change the value of maturity T . We set
the number of partitions of the interval [0, T ] n = 103 and the number of simulations N = 106, since
under this setting our preparatory simulations converged well.

We consider first the case of payoff function which depends only on the maximum in Subsection 3.3.2
and then another that depends on the maximum and the terminal value of the stock, in Subsection 3.3.3,
so that we can study the three components of LV vega as mentioned in Remark 4.C.

3.3.2 The case of payoff functions depending on only one component

We assume f is of the form

f(y, z) = f(y) = (y −K)+,

where K > x. This option is called a lookback call option with strike K. In this case we can show that
(3.2) is valid with

f ′(y) := I(K,∞)(y),

although f does not belong to C1
b (R2

+,R+). Namely, the following equation holds (recall that η =
argmax0≤t≤T St),

∂Πε

∂ε

∣∣∣∣
ε=0

=
1

σ̃
EP

[
I(K,∞)( max

0≤t≤T
St) max

0≤t≤T
St

∫ max
0≤t≤T

St

x

σ̂(y)

y2
dy

]

− σ̃
2
EP

[
I(K,∞)( max

0≤t≤T
St) max

0≤t≤T
St

∫ η

0

σ̂′(St)dt

]
. (3.13)

The proof of (3.13) can be found in Appendix B. We have the following numerical results,

LV vega BS vega

Lookback call option 171.523 60.145
European call option 79.791 26.757

Table 3.1: Vega index in two models.

In Table 3.1, LV vega for a European call option is obtained by replacing the payoff function f(y, z) =
(y −K)+ with f(y, z) = (z −K)+ and max0≤t≤T St with ST in (3.13).

We observe from the above table that there is a large difference between LV vega and BS vega while
these two different models provide the same option price for an arbitrary payoff function (see Remark 8).
This difference may be crucial for traders of financial institutions, since once they trade an option, they
start hedging procedures using the risks calculated at the same time with the option price. Therefore, if
they use only Black-Scholes model, they have much hedging (model) error in the case that the volatility
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surface changes in the direction previously indicated in (3.10). At this point, the difference of the values
of vega index between the lookback call option and the European call option is large.

We will study the extrema and maturity features of LV vega in details with an example of a barrier
type option.

3.3.3 The case of payoff functions depending on the extrema and the termi-
nal value of the underlying

We assume f is of the form

f(y, z) = I(U,∞)(y)(z −K)+,

where x < K < U . This option is called an up-in call option with the strike K and barrier U . In this
case we have

∂Πε

∂ε

∣∣∣∣
ε=0

=
1

σ̃
EP

[
δU ( max

0≤t≤T
St)(ST −K)+ max

0≤t≤T
St

∫ max
0≤t≤T

St

x

σ̂(y)

y2
dy

]

+
1

σ̃
EP

[
I(U,∞)( max

0≤t≤T
St)I(K,∞)(ST )ST

∫ ST

x

σ̂(y)

y2
dy

]

−1

2
EP

[
I(U,∞)( max

0≤t≤T
St)(ST −K)+

∫ T

0

σ̂′(St)dBt

]
=: E(U,K) + T (U,K) +D(U,K), (3.14)

where δU denotes the Dirac delta functional at U . For drift sensitivity D(U,K), we have used the
expression of the form (3.9) to avoid the appearance of the delta functional as we mentioned in Remark
6. Note that we can compute extrema sensitivity E(U,K) and terminal sensitivity T (U,K) explicitly
from the explicit density function for (max0≤t≤T St, ST ).

As we mentioned in the previous subsection, in order to obtain the above equation we have to extend
f to an irregular function. This extension can be done using the same method in the proof of (3.13).
Thus, we omit the proof.

Using (3.14), we have the following numerical results,
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Figure 3.1: Decomposition of LV vega.
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In Figure 3.1, we plot the values of each sensitivity in LV vega against the barrier U . We can observe
that in the range of U ≤ 130, extrema sensitivities are smaller than terminal sensitivities, while the
results are inverted if U > 130. The existence of this critical barrier (say U∗) is important, since in the
case U ≤ U∗ we are required to pay more attention to LV vega caused by the terminal feature than the
maximum feature, and the opposite occurs in the case U > U∗. We will give a result on the existence of
U∗ later (Theorem 6).

In Figure 3.2, we plot LV vega against the maturity T . The value of barrier is fixed with U = 130.
We observe that for large T , extrema sensitivities are small. The mathematical reasoning is that, for
this option, extrema sensitivity becomes small as the probability of {ω ∈ Ω : max0≤t≤T St < U <
max0≤t≤T S

ε
t } (Sε

t denotes the solution to (3.1) with its perturbation parameter ε) becomes small. Note
that this probability is small for large T . From this result we can conclude that extrema sensitivity is
less important than terminal sensitivity and drift sensitivity for the option with long maturity. Thus, for
barrier options with long maturity, we may ignore LV vega due to the extrema of the underlying when
constructing a hedging strategy by using LV vega.

Next, let us observe the standardized LV vega which is defined by LV vega divided by the maturity
T . We set U = 130. In Figure 3.3, we plot the values of standardized LV vega against the maturity in
order to understand LV vega per unit of time. We observe that the growth of each sensitivity is sharp for
small T and almost linear for large T . This numerical result shows that we must be more careful about
LV vega of the options with short maturity than that of the options with long maturity. Moreover, from
Figure 3.3, we can observe that, for small T , the behavior of extrema sensitivity is the sharpest one of
three sensitivities.

Finally, we observe the values of vega index obtained in two different models. We compare LV vega
with BS vega which is defined by (3.12). The value of maturity is fixed with T = 1. In Figure 3.4, we
plot the values of LV vega and BS vega against the barrier U . The difference between LV vega and BS
vega in Figure 3.4 (and Table 3.1) represents the importance of the selection of pricing models from the
point of view of vega index, since the prices of options are the same in these two different models, as
we have mentioned in Remark 8. This figure implies that, as far as the vega index is concerned, the
property of one-dimensional model dealt in this chapter is far away from the Black-Scholes model.

Now we give a theorem that guarantees the existence of U∗.

Theorem 6. Assume (H1)-(H4) and σ(z) = σ̃z, f(y, z) = I(U,∞)(y)(z − K)+, x < K < U . Let
E(U,K) and T (U,K) be defined in (3.14). Then for any K > 0 there exists U∗(> K) such that
E(U∗,K) = T (U∗,K).

Proof. By (H1)-(H4), we have

E(U,K) ≥ σ0
σ̃
EP

δU ( max
0≤t≤T

St)(ST −K)+ max
0≤t≤T

St log

 max
0≤t≤T

St

x

 ,
T (U,K) ≤ K1

σ̃
EP

[
I(U,∞)( max

0≤t≤T
St)I(K,∞)(ST )ST

(
logST + log x+

1

ST
+

1

x

)]
.

It is easy to obtain

lim
U→∞

T (U,K)

E(U,K)
= 0,
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by using the joint density function

P

(
max
0≤t≤T

(− σ̃
2
t+Wt) ∈ dy,− σ̃

2
T +WT ∈ dz

)
=

2(2y − z)

T
√
2πT

e−
σ̃
2 z− σ̃2

8 T− 1
2T (2y−z)2dydz, y ≥ z

which is obtained from Formula 1.1.8 of [3].

3.4 Kernel method

In this section, we assume that the payoff function f is of the form f(y, z) = I(U,∞)(y)I(K,∞)(z), where
x < K < U . This option is called a binary barrier option with strike K and barrier U . In this case, each
component of (3.2) involves delta functionals.

The goal of this section is to introduce a method to compute (3.2) for this option by using the so-
called kernel method. We shall provide the results under the simplest assumption for the coefficients of
(3.1). Still, we may extend the results obtained in this section to more general cases with some additional
assumptions which are remarked as Remark 11.

We consider the method to compute three components (extrema, terminal and drift sensitivity) in
(3.2), altogether. In the case of an up-in call option, we have seen the existence of a barrier value at
which the importance of extrema and terminal sensitivity are reversed in Figure 3.1 of Subsection 3.3.3.
This interesting property still holds under the assumptions in this section, when we focus on the behavior
of each individual component of (3.2). However, we omit giving the figures on it, since the goal of this
section is to compute the components of (3.2) all at once. In the case that we consider a separate kernel
method for each component in (3.2), the results in this section are not applicable.

In this section we assume b(z) = 0, σ(z) = σ̃1z and σ̂(z) = σ̃2z, where σ̃1, σ̃2 are positive constants,
moreover, we define Mε

T := max0≤t≤T S
ε
t for simplicity of notations.

Under these assumptions, (3.2) is represented as

∂Πε

∂ε

∣∣∣∣
ε=0

=
σ̃2
σ̃1
EP

[
δU (MT )I(K,∞)(ST )MT log

(
MT

x

)]
+
σ̃2
σ̃1
EP

[
δK(ST )I(U,∞)(MT )ST log

(
ST

x

)]
− σ̃1σ̃2

2
EP

[
δU (MT )I(K,∞)(ST )MT · η + δK(ST )I(U,∞)(MT )ST · T

]
= E(U,K) + T (U,K) +D(U,K) =: V (U,K). (3.15)

Remark 9. Under our assumptions in this section, we can compute Πε = EP [I(U,∞)(M
ε
T )I(K,∞)(S

ε
T )]

explicitly, thus, we obtain the explicit formula for ∂Πε

∂ε

∣∣
ε=0

. Nevertheless, in general, neither Πε nor
∂Πε

∂ε

∣∣
ε=0

has the explicit formula.

Now let us consider a problem to compute (3.15) by using Monte Carlo simulation. Equation (3.15)
involves the delta functionals, therefore, we will define estimators for E(U,K), T (U,K) and D(U,K) by
approximating the delta functionals using so-called kernel functions.

Let us give the definition of a kernel function.

Definition 2. (Kernel function) We call a symmetric function K : R → R+ a kernel function if K
satisfies the following three properties,∫

R
K(y)dy = 1,

∫
R
yK(y)dy = 0,

∫
R
y2K(y)dy <∞. (3.16)
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Now let us define the estimators for E(U,K), T (U,K) and D(U,K) by using kernel functions. Let
K1 and K2 be two kernel functions and h1 > 0, h2 > 0. We define

Ê(U,K) :=
σ̃2
σ̃1

1

N

N∑
i=1

1

h1
K1

(
U −M

(i)
T

h1

)
I(K,∞)(S

(i)
T )M

(i)
T log

(
M

(i)
T

x

)
,

T̂ (U,K) :=
σ̃2
σ̃1

1

N

N∑
i=1

1

h2
K2

(
K − S

(i)
T

h2

)
I(U,∞)(M

(i)
T )S

(i)
T log

(
S
(i)
T

x

)
,

D̂(U,K) := − σ̃1σ̃2
2

1

N

N∑
i=1

[
1

h1
K1

(
U −M

(i)
T

h1

)
I(K,∞)(S

(i)
T )M

(i)
T η(i)

+
1

h2
K2

(
K − S

(i)
T

h2

)
I(U,∞)(M

(i)
T )S

(i)
T T

]
V̂ (U,K) := Ê(U,K) + T̂ (U,K) + D̂(U,K), (3.17)

where {M (i)
T }1≤i≤N , {S(i)

T }1≤i≤N and {η(i)}1≤i≤N are sequences of independent random variables defined
on (Ω,F , P ) with the same laws as MT , ST and η, respectively. We note that (h1, h2) is called the
bandwidth parameter and (h1, h2) depends on N , although we omit the dependence on N for simplicity
of notation.

For Ki and hi, i = 1, 2, we assume the following conditions.

(K1) There exist c1 > 0 and c2 > 3 such that for each i = 1, 2, Ki(y) ≤ c1|y|−c2 holds for all y ∈ R.

(K2) For each i = 1, 2, Ki is bounded and
∫
R Ki(y)|y|3dy <∞ holds.

(K3) For each i = 1, 2, hi → 0 and Nhi → +∞, as N tends to infinity.

(K4) There exist c3 > 0 and c4 > 0 such that c3 ≤ h1

h2
≤ c4 holds for all N ∈ N.

Note that (K2) implies
∫
R |Ki(y)|2dy <∞, i = 1, 2.

One can show that Ê(U,K), T̂ (U,K) and D̂(U,K) converge in probability to E(U,K), T (U,K) and
D(U,K) respectively as N → ∞. Thus V̂ (U,K) converges to V (U,K) in probability, as N tends to
infinity. We can compute Ê(U,K), T̂ (U,K) and D̂(U,K) with Monte Carlo simulation, since they do
not involve the delta functionals any more. To compute Ê(U,K), T̂ (U,K) and D̂(U,K), we are required
to choose (h1, h2) appropriately for fixed N . For this, we define the following so-called mean squared
error.

Definition 3. (Mean squared error) We define the mean squared error of the estimator V̂ (U,K) by

MSE(U,K) := EP [|V̂ (U,K)− V (U,K)|2]. (3.18)

The following lemma decomposes MSE(U,K) into the bias part and the variance part of V̂ (U,K).

Lemma 12. We have the following decomposition for MSE(U,K),

MSE(U,K) = EP [V̂ (U,K)− V (U,K)]2 + V ar[V̂ (U,K)]. (3.19)

Proof. The result follows from the definition of V̂ (U,K) easily.
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Now our aim is to find (h1, h2) so that MSE(U,K) is as small as possible. Unfortunately, it seems
difficult to express MSE(U,K) by (h1, h2) explicitly. Therefore, we define an asymptotic mean squared
error of the estimator V̂ (U,K).

Definition 4. (Asymptotic mean squared error) We define an asymptotic mean squared error of the
estimator V̂ (U,K) by

AMSE(U,K) :=

([
1

2

σ̃2
σ̃1

(ψ1pM )′′(U)− σ̃1σ̃2
4

(ϕ1pM )′′(U)

]
µ2(K1)h

2
1

+

[
1

2

σ̃2
σ̃1

(ψ2pS)
′′(K)− σ̃1σ̃2

4
(ϕ2pS)

′′(K)

]
µ2(K2)h

2
2

)2

+

[(
σ̃2
σ̃1

)2

Ψ1(U)− σ̃2
2Ψ2(U) +

σ̃2
1 σ̃

2
2

4
Ψ3(U)

]
pM (U)R2(K1)

1

Nh1

+

[(
σ̃2
σ̃1

)2

Φ1(K)− σ̃2
2Φ2(K) +

σ̃2
1 σ̃

2
2

4
Φ3(K)

]
pS(K)R2(K2)

1

Nh2
,

(3.20)

where R(Ki) :=
∫
R Ki(y)

2dy, µ2(Ki) :=
∫
R y

2Ki(y)dy, i = 1, 2 and pM (y), pS(z) denote the probability
density functions of MT and ST , respectively, and

ψ1(y) := y log
(
y
x

)
EP [I(K,∞)(ST )|MT = y],

ψ2(y) := y log
(
y
x

)
EP [I(U,∞)(MT )|ST = y],

ϕ1(y) := yEP [I(K,∞)(ST )η|MT = y],

ϕ2(y) := yTEP [I(U,∞)(MT )|ST = y],

Ψ1(y) := y2
(
log
(
y
x

))2
EP [I(K,∞)(ST )|MT = y],

Ψ2(y) := y2 log
(
y
x

)
EP [I(K,∞)(ST )η|MT = y],

Ψ3(y) := y2EP [I(K,∞)(ST )η
2|MT = y],

Φ1(y) := y2
(
log
(
y
x

))2
EP [I(U,∞)(MT )|ST = y],

Φ2(y) := y2 log
(
y
x

)
TEP [I(U,∞)(MT )|ST = y],

Φ3(y) := y2T 2EP [I(U,∞)(MT )|ST = y].



(3.21)

The following lemma provides the justification to use AMSE(U,K). The proof can be found in
Appendix D.

Lemma 13. Assume (K1)-(K4). Let MSE(U,K) and AMSE(U,K) be defined by (3.18) and (3.20),
respectively. Then, we have

AMSE(U,K) =MSE(U,K) + o(h41 + h42 +
1

Nh1
+

1

Nh2
).

The main result in this section is the following theorem on the optimal selection of (h1, h2).
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Theorem 7. Let AMSE(U,K) be defined by (3.20). We define

a1 :=
[
1
2
σ̃2

σ̃1
(ψ1pM )′′(U)− σ̃1σ̃2

4 (ϕ1pM )′′(U)
]
µ2(K1)

a2 :=
[
1
2
σ̃2

σ̃1
(ψ2pS)

′′(K)− σ̃1σ̃2

4 (ϕ2pS)
′′(K)

]
µ2(K2)

b1 :=

[(
σ̃2

σ̃1

)2
Ψ1(U)− σ̃2

2Ψ2(U) +
σ̃2
1 σ̃

2
2

4 Ψ3(U)

]
pM (U)R2(K1)

1
N

b2 :=

[(
σ̃2

σ̃1

)2
Φ1(K)− σ̃2

2Φ2(K) +
σ̃2
1 σ̃

2
2

4 Φ3(K)

]
pS(K)R2(K2)

1
N


(3.22)

and assume that a1, a2, b1, b2 > 0. Then, (h∗1, h
∗
2) given by

(h∗1, h
∗
2) =


 b1

4a21 + 4
(

a5
1a2b22
b21

) 1
3


1
5

,

 b2

4a22 + 4
(

a1a5
2b

2
1

b22

) 1
3


1
5

 (3.23)

minimizes AMSE(U,K).

Proof. Under the condition a1, a2, b1, b2 > 0, AMSE(U,K) is a strictly convex function with respect to
(h1, h2), then the result follows easily.

Remark 10. pS , pM and many of (3.21) can be computed explicitly under assumptions in this section.
Indeed, the conditional expectations in (3.21) which do not involve η can be calculated explicitly from the
joint density function for (MT , ST ). Moreover, the conditional expectations in (3.21) involving η can
be expressed by using the joint density function for (MT , ST , η), therefore, we can compute them with
numerical integrations. The joint density function for (MT , ST , η) can be obtained by using Formula
1.13.8 of [3].

Remark 11. Lemma 13 can be extended to more general cases by assuming the smoothness and bounded
derivatives of some density functions (the smoothness and bounded derivatives of the density function
of MT and ST ) and conditional expectations (e.g. the smoothness and bounded derivatives of y 7→
EP [I(K,∞)σ(ST )

∫MT

x
σ̂

(σ)2 (z)dz|MT = y]).

Moreover, if we obtain the values of these derivatives, then we can compute the optimal bandwidth
for the general cases by the same method as Theorem 7.

Remark 12. In general, when we use the kernel method to estimate a d-dimensional probability density
function, to find the optimal bandwidth is a quite difficult problem, since in this case the bandwidth is a
d × d-symmetric matrix. Meanwhile, in our case, two delta functionals appear independently in (3.15),
thus the problem is much easier and we can successfully find out the optimal bandwidth.

3.5 Numerical experiment 2: Estimation of the vega index us-
ing the kernel method

In this section, we obtain some numerical results by using (3.17), (3.22) and (3.23). We use the optimal
bandwidth given by (3.23). We use parameters x = 80, σ̃1 = 0.3, σ̃2 = 1 for the model and K = 85, U =
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90, T = 1 for the option. Under this setting, a1, a2, b1 and b2 in (3.22) are calculated as follows,

a1 a2 b1 b2

0.003110 0.000428 1.89× 10−7 3.95× 10−8

Table 3.2: Values of (3.22).

Therefore, we can apply Theorem 7 to obtain the optimal bandwidth and it is computed as

h∗1 h∗2

0.3337 0.3834

Table 3.3: Optimal bandwidth.

By using the above optimal bandwidth, we have the following numerical result for the vega index,
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Figure 3.5: KEM vs True value.
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Figure 3.6: Bias of V̂ (K,U).
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Figure 3.7: Variance of V̂ (K,U).

In Figure 3.5, we plot the vega index obtained by using (3.17) (denoted by KEM in the figure) and
the explicit formula (denoted by true value in the figure) against the number of partitions of time to
maturity. The number of Monte Carlo simulations is fixed with N = 106. We have used the density
function of the normal distribution with the mean 0 and variance 1 for the kernel functions (i.e. Ki(y) =
1√
2π
e−

y2

2 , i = 1, 2). Figure 3.5 shows that (3.17) converges to the true value when we increase the number

of partitions.
Next, let us focus on the bias and variance of the estimator V̂ (K,U). We fix the number of partitions

of the interval [0, T ] with n = 5 × 104. In Figure 3.6 and 3.7, we plot the squared bias and variance of
the estimator V̂ (K,U) against the number of simulations N , respectively. The squared bias of V̂ (K,U)
is defined by EP [V̂ (U,K) − V (U,K)]2 and the variance is defined by EP [V̂ (U,K)2] − EP [V̂ (U,K)]2.
In Figure 3.6, the solid line (with left axis) represents the values of squared bias and the broken line

(with right axis) expresses the values of “squared bias×N 4
5 ”. In Figure 3.7, the values of variance and

“variance×N 4
5 ” are represented by the solid line (with left axis) and the broken line (with right axis),

respectively.
From the above figures, we can observe that the variance decreases with the order N− 4

5 as the number
of simulations increases. Moreover, we may see that, for large N , the squared bias converges with the
order N− 4

5 . Therefore, Figure 3.6 and 3.7 indicate that the order of MSE(U,K) defined by (3.18) with

the optimal bandwidth (3.23) is N− 4
5 , numerically.

3.6 Conclusion and final remarks

In this chapter, we have obtained a formula to calculate the vega index for options whose payoff functions
may depend on the maximum or minimum of a one-dimensional SDE. The key technique is the Lamperti
transform which enables us to calculate the directional derivatives with respect to the diffusion coefficient.
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This formula gives a decomposition of the vega index into three sensitivities: extrema sensitivity, terminal
sensitivity and drift sensitivity. Numerical tests illustrate that there are some important relationships
between extrema sensitivity and terminal sensitivity in realistic options.

In [10], formulas of this type in the multi-dimensional case under some commutativity conditions
on the diffusion coefficient are used to prove the smoothness of the density function concerning the
supremum of a multi-dimensional diffusion. The authors obtain the formulas by means of Garsia-
Rodemich-Rumsey’s lemma.

The numerical result on the comparison of the vega index in two different models tells us that the
traditional Black-Scholes model is far away from the one-dimensional model dealt in this chapter as far
as the vega index is concerned. Today, some practitioners are using so-called stochastic volatility models
which deal with stochastic diffusion coefficients to express the dynamics of economy (see [8], for example).
There are many difficulties to deal with stochastic volatility models, however to compute the vega index
for exotic options in stochastic volatility models is a challenging problem for the future. According to
[4], there is a relationship between a one-dimensional model and a stochastic volatility model, when we
consider some exotic options. Thus, the results obtained in [4] may be applied to this problem.

The kernel method has been used to compute the vega index for a specific option in this chapter.
The bandwidth selection problem in this chapter can be successfully solved, since it is much simpler
than general bandwidth selection problems that appear in the kernel density estimation problems for
multi-dimensional density functions. Our numerical result shows the optimal bandwidth works well for
the problem considered in this chapter.

Appendix A

In Appendix A, we shall give the proof of Lemma 8, 7, 9 and 10 which we have used in Section 3.2.
We use some preparatory lemmas. We denote by Ki, i = 1, 2 the appropriate Lipschitz constants that
appear in the hypothesis (H1).

Appendix A.1

In this subsection, we shall prove some properties which are used in order to prove Lemma 8, 7, 9 and
10.

Lemma A1. Assume (H1) and (H2). Then, we have the following inequalities,

1

2K1

∣∣∣∣ log(1 + z

2

) ∣∣∣∣ ≤ |Fε(z)| ≤ 1

σ0
| log(z)|,∀z > 0∣∣∣∣ ∫ z

x

σ̂

σε1σε2
(y)dy

∣∣∣∣ ≤ K1

σ2
0

(∣∣∣∣1z − 1

x

∣∣∣∣+ ∣∣∣∣ log ( zx)
∣∣∣∣) , ∀x, z > 0.

Proof. In fact, the proof follows by using the lower bound for σε in the hypothesis (H2) and the upper
bounds for σε and σ̂ in the hypothesis (H1).

Lemma A2. Assume (H1), (H2) and (H3). Then, F−1
ε can be evaluated as follows,

eσ0z ≤ F−1
ε (z) ≤ 2e2K1z, if z ≥ 0

r0e
σ1z ≤ F−1

ε (z) ≤ eσ0z, if z < 0.
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Proof. To prove this lemma, we consider two cases according to the sign of z. In the case that z is
negative, we use hypothesis (H3) in addition to (H1) and (H2). In both cases, we use the monotonicity
of Fε and F−1

ε . We leave the details to the reader.

Let us prove a lemma on the regularity of F−1
ε (z).

Lemma A3. Assume (H1) and (H2). Then, F−1
ε (z) is differentiable with respect to ε and

∂F−1
ε

∂ε
(z) = σε(F−1

ε (z))

∫ F−1
ε (z)

1

σ̂

(σε)2
(y)dy.

Furthermore ∂
∂ε

(
F−1
ε (Fε(x) + z)

)
exists and

∂

∂ε

(
F−1
ε (Fε(x) + z)

)
=

∂F−1
ε

∂z
(Fε(x) + z)

∂Fε

∂ε
(x) +

∂F−1
ε

∂ε
(Fε(x) + z)

= σε(F−1
ε (Fε(x) + z))

∫ F−1
ε (Fε(x)+z)

x

σ̂

(σε)2
(y)dy. (A.1)

Proof. The proof follows from the implicit function theorem applied to z = Fε(F
−1
ε (z)) and the chain

rule for partial differentiation.

Now we shall prove Lemma 7, 8 and 9. For convenience, let us prove Lemma 8 first.

Appendix A.2

In this subsection, we prove Lemma 8.
The result in Theorem 5 implies that if σ and σ̂ satisfy (H1) and (H2), and ε ∈ [0, 1] and x > 0 are

fixed, then there exists a stochastic process Sε such that it satisfies

Sε
t = x+

∫ t

0

σε(Sε
u) ◦ dW̃u, ∀t ∈ [0, T ], a.s. (A.2)

However, the exceptional set where the above equality is not satisfied may depend on ε. In order to
consider the differentiation of the solution to (3.3), we modify the solution so that the exceptional set
does not depend on ε. Let us prove that the solution to (3.3) is continuous with respect to ε so that we
can discuss its differentiability.

We refer [12] to obtain the continuity in ε.

Lemma A4. Assume (H1)-(H2). Let Si
t be the solution to{

dSi
t = σεi(Si

t) ◦ dW̃t

(
= σεi(Si

t)dW̃t +
1
2σ

εi(σεi)′(Si
t)dt

)
Si
0 = x,

(A.3)

εi ∈ [0, 1], i = 1, 2. Then, for p > 2 there exists a constant C > 0 such that

EQ̃[|S2
t2 − S1

t1 |
p] ≤ C

{
|ε2 − ε1|p + |t2 − t1|

p
2

}
.
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Proof. We have

EQ̃[|S2
t2 − S1

t1 |
p] ≤ 2p−1

{
EQ̃

[
|F−1

ε2 (Fε2(x) + W̃t2)− F−1
ε2 (Fε1(x) + W̃t1)|p

]
+ EQ̃

[
|F−1

ε2 (Fε1(x) + W̃t1)− F−1
ε1 (Fε1(x) + W̃t1)|p

]}
=: 2p−1

{
EQ̃[|I1|p] + EQ̃[|I2|p]

}
.

The arguments to deal with the above expectations are standard and similar to the proof of continuity
of flows associated with the solution of stochastic differential equations. We do not give all the arguments
here and only stress that to obtain the result one uses the lemmas in Appendix Appendix A.1 together
with hypotheses (H1)-(H2) and the fact that the Wiener process has finite exponential moments.

Lemma A4 implies that there exists a continuous modification of the solution Sε with respect to two
variables (t, ε) so that (3.3) is satisfied for all (t, ε), a.s. Then we can consider the differentiation of the
solution to (3.3).
Proof of Lemma 8. Combining Lemma A3 and Lemma A4, the proof is straightforward.

Appendix A.3

This subsection is devoted to the proof of Lemma 7.
Using the fact that Fε(z) and F−1

ε (z) are continuous monotone increasing functions, the term
max0≤t≤T S

ε
t can be expressed as max0≤t≤T S

ε
t = F−1

ε (Fε(x) + max0≤t≤T W̃t) under Q̃. We have the
following continuity lemma.

Lemma A5. Assume (H1) and (H2). For i = 1, 2, let Si
t be the solutions to (A.3). Then, for any

p > 2, there exists a constant C > 0 such that

EQ̃

[∣∣∣∣ max
0≤t≤T

S2
t − max

0≤t≤T
S1
t

∣∣∣∣p] ≤ C|ε2 − ε1|p.

Proof. The proof is similar to the proof of Lemma A4. We obtain the result by replacing exponential
moments of W̃t by the respective ones of max0≤t≤T W̃t.

Proof of Lemma 7. Using the above lemma, the explicit expression for max0≤t≤T S
ε
t in Theorem 5

and (A.1), we obtain the result.

Appendix A.4

The goal of this subsection is to prove Lemma 9.

First, let us prove the following lemma about Lp-boundedness of Sε
t , logS

ε
t ,

∂Sε
t

∂ε and
∂2Sε

t

∂ε2 under the
hypotheses (H1)-(H3).

Lemma A6. Assume (H1)-(H3). Let Sε be the solution to (A.2). Then, for any p > 2 there exists
C1 > 0 such that

EQ̃[|Sε
t |p] + EQ̃[| logSε

t |p] ≤ C1.

Moreover, for any real number p there exists C2 > 0 such that

EQ̃[|Sε
t |p] ≤ C2.
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Proof. The estimate for EQ̃[|Sε
t |p] follows from Lemma A1 and Lemma A2. Let us consider the finiteness

of EQ̃[| logSε
t |p]. Using the fact that Sε

t ≥ 1 ⇔ Fε(x) + W̃t ≥ 0 and Sε
t < 1 ⇔ Fε(x) + W̃t < 0 together

with Lemma A2, we have

EQ̃ [| logSε
t |p]

= EQ̃ [(logSε
t )

p
: Sε

t ≥ 1] + EQ̃

[(
log

1

Sε
t

)p

: Sε
t < 1

]
≤ EQ̃

[(
log
(
2e2K1(Fε(x)+W̃t)

))p
: Fε(x) + W̃t ≥ 0

]
+EQ̃

[(
log

(
1

r0
e−σ1(Fε(x)+W̃t)

))p

: Fε(x) + W̃t < 0

]
≤ 2p−1

{
| log 2|p + (2K1)

pEQ̃
[∣∣Fε(x) + W̃t

∣∣p]}+ 2p−1

{(
log

(
1

r0

))p

+ σp
1E

Q̃
[∣∣Fε(x) + W̃t

∣∣p]} .
Then by Lemma A1, we have

EQ̃
[∣∣Fε(x) + W̃t

∣∣p] ≤ 2p−1

(
1

σp
0

| log(x)|p + EQ̃

[∣∣∣∣ max
0≤t≤T

W̃t

∣∣∣∣p]) ,
and the result follows.

Now, we consider the Lp-boundedness of
∂Sε

t

∂ε and
∂2Sε

t

∂ε2 . Note that as σε(z) and
∫ z

x
1

(σε)2 (y)dy are

continuously differentiable with respect to ε and z,
∂2Sε

t

∂ε2 exists for ε ∈ [0, 1] and t ∈ [0, T ], a.s. by Lemma
8.

Lemma A7. Assume (H1)-(H3). Let Sε be the solution to (A.2). Then, for any p > 2 there exists
C > 0 such that

EQ̃

[∣∣∣∣∂Sε
t

∂ε

∣∣∣∣p]+ EQ̃

[∣∣∣∣∂2Sε
t

∂ε2

∣∣∣∣p] ≤ C.

Proof. EQ̃
[∣∣∂Sε

t

∂ε

∣∣p] part follows from the explicit form of
∂Sε

t

∂ε , Lemma A1, A6 and (H1). Then, the

upper bound for EQ̃
[∣∣∂2Sε

t

∂ε2

∣∣p] is calculated as follows. By the differentiability of
∫ z

x
σ̂

(σε)2 (y)dy with

respect to ε and z, we have

∂2Sε
t

∂ε2
=

(
∂Sε

t

∂ε
σε′(Sε

t ) + σ̂(Sε
t )

)∫ Sε
t

x

σ̂

(σε)2
(y)dy − 2σε(Sε

t )

∫ Sε
t

x

σ̂2

(σε)3
(y)dy +

σ̂

σε
(Sε

t )
∂Sε

t

∂ε
.

Thus, the result follows from Lemma A6 and the inequality∣∣∣∣ ∫ z

x

σ̂2

(σε)3
(y)dy

∣∣∣∣ ≤ K2
1

σ3
0

(
1

2

∣∣∣∣ 1x2 − 1

z2

∣∣∣∣+ 2

∣∣∣∣ 1x − 1

z

∣∣∣∣+ ∣∣∣∣ log ( zx)
∣∣∣∣) .

For the proof of Lemma 9, we use the following theorem which is proved in Theorem 10.6 of [12]. We
shall use this theorem without the proof.
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Theorem A7. (Theorem 10.6 of [12]) Let (Ω,F , P ) be a complete probability space equipped with a
filtration σ-field {Ft, t ∈ [0, T ]} satisfying the usual condition. Let ft(ε), (t, ε) ∈ [0, T ] × [0, 1]d be a
measurable random field satisfying the following properties.

(i) For each ε, ft(ε) is predictable.

(ii) For any p > 2, there is a positive constant C1 such that∫ T

0

EP [|ft(ε)|p]dt ≤ C1,

for any ε.

(iii) For any p > 2, there is a positive constant C2 such that∫ T

0

EP [|ft(ε1)− ft(ε2)|p]dt ≤ C2|ε1 − ε2|αp,

where 0 < α ≤ 1.

(iv) ft(ε) is m-times continuously differentiable in ε for all t, a.s. and derivatives ∂kft
∂εk

(ε), |k| ≤ m
satisfy conditions (ii) and (iii).

Let Mt be a continuous local martingale such that ⟨M⟩t − ⟨M⟩s ≤ t − s for any t > s, a.s. Then there
is a modification of the integral which is continuous in (t, ε) and m-times continuously differentiable.
Furthermore, it holds that

∂k

∂εk

(∫ t

0

fs(ε)dMs

)
=

∫ t

0

∂kfs
∂εk

(ε)dMs

for any ∂k

∂εk
such that |k| ≤ m.

Proof of Lemma 9. Firstly, we prove the stochastic integral term of Xε
T . For the proof, we use

Theorem A7 on the differentiability of the stochastic integral with ε-dependent integrand. For ft(ε) :=

−(σ
ε′

2 − b
σε )(S

ε
t ), it is straightforward to check that ft(ε) satisfies the sufficient conditions of Theorem

A7 by (H1) and Lemma A6 and A7.
Secondly, let us consider the Lebesgue integral term of Xε

T . It suffices to prove that there exists At

such that ∣∣∣∣ ∂∂ε
(
(σε)′

2
− b

σε

)2

(Sε
t )

∣∣∣∣ ≤ At, ∀t ∈ [0, T ], a.s.,

and
∫ T

0
Atdt <∞, a.s., where At does not depend on ε. This follows from the fact that

∂

∂ε

(
(σε)′

2
− b

σε

)2

(Sε
t )

=

(
(σε)′

2
− b

σε

)
(Sε

t )

{
σ′′(Sε

t )
∂Sε

t

∂ε
+ σ̂′(Sε

t ) + εσ̂′′(Sε
t )
∂Sε

t

∂ε

}

−2

(
(σε)′

2
− b

σε

)
(Sε

t )
b′(Sε

t )
∂Sε

t

∂ε σ
ε(Sε

t )− b(Sε
t )
{
σ′(Sε

t )
∂Sε

t

∂ε + σ̂(Sε
t ) + εσ̂′(Sε

t )
∂Sε

t

∂ε

}
(σε)2(Sε

t )
.

Then, Sε
t ,

1
Sε
t
and

∂Sε
t

∂ε can be evaluated above due to Lemma A1 and A2.
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Appendix A.5

In this subsection, we shall prove Lemma 10.
We have already checked that

H(ε, h) :=
1

h

{
f( max

0≤t≤T
Sε+h
t , Sε+h

T ) exp(Xε+h
T )− f( max

0≤t≤T
Sε
t , S

ε
T ) exp(X

ε
T )

}
→ ∂

∂ε

(
f( max

0≤t≤T
Sε
t , S

ε
T ) exp(X

ε
T )

)
, ε ∈ [0, 1], a.s.

as h tend to 0. Then it suffices to prove the uniform integrability of H(ε, h) with respect to h.
To prove the uniform integrability, we need the following lemma.

Lemma A8. Assume (H1)-(H3). Then, for p > 2, there exists C > 0 such that

EQ̃ [|Xε2
T −Xε1

T |p] ≤ C|ε2 − ε1|p.

Proof. It suffices to check that there exists C > 0 such that

EQ̃

[∣∣∣∣∂Xε
T

∂ε

∣∣∣∣p] ≤ C.

By using the proof of Lemma 9, we have the explicit form of
∂Xε

T

∂ε . Thus, the result follows by Burkholder-
Davis-Gundy’s inequality and Lemma A6 and A7.

Now let us prove the uniform integrability.

Lemma A9. Assume (H1)-(H5). Let ε ∈ [0, 1) be fixed. Then, for any p > 2, we have

sup
h∈(0,1−ε)

EQ̃[|H(ε, h)|p] <∞.

Proof. A straighforward calculation yields∣∣∣∣f( max
0≤t≤T

Sε+h
t , Sε+h

T ) exp(Xε+h
T )− f( max

0≤t≤T
Sε
t , S

ε
T ) exp(X

ε
T )

∣∣∣∣p
≤ 3p−1

{
C1

∣∣ max
0≤t≤T

Sε+h
t − max

0≤t≤T
Sε
t

∣∣pepXε+h
T

+ C2|Sε+h
T − Sε

T |pepX
ε+h
T + |f( max

0≤t≤T
Sε
t , S

ε
T )|p|Xε+h

T −Xε
T |p
∣∣∣∣ ∫ 1

0

ev((X
ε+h
T −Xε

T ))+Xε
T dv

∣∣∣∣p} .
The first and second term of the right-hand side can be evaluated as

EQ̃

[∣∣ max
0≤t≤T

Sε+h
t − max

0≤t≤T
Sε
t

∣∣pepXε+h
T

]
+ EQ̃[|Sε+h

T − Sε
T |pepX

ε+h
T ] ≤ C|h|p.

due to the boundedness of σε′, b
σε and Lemma A4, A5. For the third term, we have

EQ̃

[
|f( max

0≤t≤T
Sε
t , S

ε
T )|p|Xε+h

T −Xε
T |p
∣∣∣∣ ∫ 1

0

ev((X
ε+h
T −Xε

T ))+Xε
T dv

∣∣∣∣p]

≤ EQ̃[|Xε+h
T −Xε

T |2p]
1
2EQ̃[|f( max

0≤t≤T
Sε+h
t , Sε+h

T )|4p] 14
(∫ 1

0

EQ̃
[
e4pvX

ε+h
T +4p(1−v)Xε

T

]
dv

) 1
4

.
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Moreover, by the boundedness of σε′, b and b
σε we have

EQ̃
[
e4pvX

ε+h
T +4p(1−v)Xε

T

]
≤ C <∞.

Finally, by Lemma A8 we have

EQ̃

[
|f( max

0≤t≤T
Sε+h
t , Sε+h

T )|p|Xε+h
T −Xε

T |p
∣∣∣∣ ∫ 1

0

ev((X
ε+h
T −Xε

T ))+Xε
T dv

∣∣∣∣p] ≤ C|h|p.

The proof is completed.

Proof of Lemma 10. The result in Lemma 10 follows from Lemma A9.

Appendix B

In this section, we shall prove equation (3.13).
In order to prove (3.13), we use the mollifier approximation of f(z) = (z −K)+. Define

j(z) =

{
Ce

1
z2−1 (|z| < 1)

0 (|z| ≥ 1)
(B.1)

where C is a constant such that
∫∞
−∞ j(z)dz = 1. We consider

fn(z) := (jn ∗ f)(z) :=
∫ ∞

−∞
jn(z − y)f(y)dy, (B.2)

where jn(z) = nj(nz). Then by the Lipschitz continuity of f , we have fn(z) ↗ f(z), uniformly as
n→ ∞. Moreover, f ′n exists and we have

f ′n(z) =

∫ n(z−K)

−∞
j(y)dy,

therefore, we have that limn→∞ f ′n(z) → I(K,∞)(z), for almost every z and f ′n is bounded.

Proof of (3.13). For h ∈ (0, 1] we define Πh
n := EQ̃[fn(max0≤t≤T S

h
t ) exp(X

h
T )] and ϕn(h), ϕ(h) by

ϕn(h) :=
Πh

n −Π0
n

h
, ϕ(h) :=

Πh −Π0

h
.

Then, we have

lim
n→∞

sup
0<h≤1

|ϕn(h)− ϕ(h)| = 0. (B.3)

Let us prove (B.3). We define gn(z) := fn(z)− f(z), then we have

ϕn(h)− ϕ(h) =
1

h
EQ̃[(gn( max

0≤t≤T
Sh
t )− gn( max

0≤t≤T
St))e

Xh
T ]− 1

h
EQ̃[gn( max

0≤t≤T
St)(e

Xh
T − eXT )].

(B.4)
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The second term on the right-hand side of (B.4) can be evaluated by Lemma A8 as

1

h
EQ̃[gn( max

0≤t≤T
St)(e

Xh
T − eXT )] ≤ CEQ̃[|gn( max

0≤t≤T
St)|2]

1
2 ,

and this goes to 0 as n→ ∞ by the uniform convergence of fn.
Now let us evaluate the first term on the right-hand side of (B.4). By the definition of gn we have

gn(z)− gn(z
′) = (z − z′)

∫ 1

0

[f ′n(v(z − z′) + z′)− I(K,∞)(v(z − z′) + z′)]dv. (B.5)

Using (B.5) we have

EQ̃[|gn( max
0≤t≤T

Sh
t )− gn( max

0≤t≤T
St)|2] ≤ EQ̃[|gn( max

0≤t≤T
Sh
t )− gn( max

0≤t≤T
St)|4]

1
2

× EQ̃

[∣∣∣∣ ∫ 1

0

{
f ′n(v max

0≤t≤T
Sh
t + (1− v) max

0≤t≤T
St)− I(K,∞)(v max

0≤t≤T
Sh
t + (1− v) max

0≤t≤T
St)

}
dv

∣∣∣∣4
] 1

2

.

The second expectation of right-hand side of the above inequality can be written as∫ 1

0

∫ ∞

0

∣∣∣∣f ′n(vF−1
h (Fh(x) + z) + (1− v)F−1(F (x) + z))

−I(K,∞)(vF
−1
h (Fh(x) + z) + (1− v)F−1(F (x) + z))

∣∣∣∣4pM (z)dzdv, (B.6)

where pM (z) is the density function of max0≤t≤T W̃t. We define gv,h(z) := vF−1(Fh(x) + z) + (1 −
v)F−1(F (x) + z) and consider a change of variable gv,h(z) = u, then, by Lemma A2, we have du

dz ≥ C,
where C does not depend on v, h and z. Thus, we can show that the term in (B.6) is bounded by

1

C

∫ 1

0

∫ ∞

x

|f ′n(u)− I(K,∞)(u)|4pM (g−1
v,h(u))dudv,

which goes to 0 as n→ ∞ by the dominated convergence theorem, therefore, we have (B.3).
The limit in (B.3) asserts that

∂Πε

∂ε

∣∣∣∣
ε=0

= lim
n→∞

∂Πε
n

∂ε

∣∣∣∣
ε=0

.

Then (3.13) follows from the dominated convergence theorem, the monotone convergence theorem and
the existence of the density of max0≤t≤T St.

Appendix C

This section is devoted to the proof of Lemma 11.
Define

σ̂n(z) :=

∫ ∞

−∞
jn(z − y)σ̂(y)dy, (C.1)
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where σ̂ is defined by (3.10) and jn is defined by (B.2). Furthermore, we define

Πε,n := EP [f( max
0≤t≤T

Sε,n
t , Sε,n

T )],

where Sε,n denotes the solution to (3.1) with b(z) = 0, σ(z) = σ̃z and σ̂ is defined by (C.1). Then by
(3.2), we have

∂Πε,n

∂ε

∣∣∣∣
ε=0

=
1

σ̃
EP

[
∂1f( max

0≤t≤T
St, ST ) max

0≤t≤T
St

∫ max
0≤t≤T

St

x

σ̂n(y)

y2
dy

]

+
1

σ̃
EP

[
∂2f( max

0≤t≤T
St, ST )ST

∫ St

x

σ̂n(y)

y2
dy

]

− σ̃
2
EP

[
∂1f( max

0≤t≤T
St, ST )Sη

∫ η

0

σ̂′
n(St)dt+ ∂2f( max

0≤t≤T
St, ST )ST

∫ T

0

σ̂′
n(St)dt

]
.

(C.2)

From the fact that σ̂ ∈ C1
b (R+;R+), we get σ̂n → σ̂, uniformly as n→ ∞. Thus, one has

1

σ̃
EP

[
∂1f( max

0≤t≤T
St, ST ) max

0≤t≤T
St

∫ max
0≤t≤T

St

x

σ̂n(y)

y2
dy

]

→ 1

σ̃
EP

[
∂1f( max

0≤t≤T
St, ST ) max

0≤t≤T
St

∫ max
0≤t≤T

St

x

σ̂(y)

y2
dy

]
,

1

σ̃
EP

[
∂2f( max

0≤t≤T
St, ST )ST

∫ St

x

σ̂n(y)

y2
dy

]

→ 1

σ̃
EP

[
∂2f( max

0≤t≤T
St, ST )ST

∫ St

x

σ̂(y)

y2
dy

]
,

as n→ ∞.
By the definition of σ̂n, one has σ̂n(z) → σ̂(z) for almost every z. Moreover, we have

EP

[
∂f( max

0≤t≤T
St, ST )Sη

∫ η

0

(σ̂′
n(St)− σ̂′(St))dt

]
≤ C

(∫ T

0

EP
[
|σ̂′

n(St)− σ̂′(St)|2
]
dt

) 1
2

.

Due to the boundedness of σ̂′
n and σ̂′, and the existence of the density function of St, we get

σ̃

2
EP

[
∂1f( max

0≤t≤T
St, ST )Sη

∫ η

0

σ̂′
n(St)dt+ ∂2f( max

0≤t≤T
St, ST )ST

∫ T

0

σ̂′
n(St)dt

]

→ − σ̃
2
EP

[
∂1f( max

0≤t≤T
St, ST )Sη

∫ η

0

σ̂′(St)dt+ ∂2f( max
0≤t≤T

St, ST )ST

∫ T

0

σ̂′(St)dt

]
,

as n→ ∞.

52



CHAPTER 3. VOLATILITY RISK FOR OPTIONS DEPENDING ON EXTREMA AND ITS
ESTIMATION USING KERNEL METHODS

Finally, let us prove that

lim
n→∞

lim
ε→0

Πε,n −Π0,n

ε
= lim

ε→0
lim

n→∞

Πε,n −Π0,n

ε
. (C.3)

We define φn(ε) :=
Πε,n−Π0,n

ε and φ(ε) := Πε−Π0

ε , then

φn(ε)− φ(ε) =
1

ε
EP

[
f( max

0≤t≤T
Sε,n
t , Sε,n

T )− f( max
0≤t≤T

Sε
t , S

ε
T )

]
,

where Sε denotes the solution to (3.1) with b(z) = 0, σ(z) = σ̃z and σ̂ is defined by (3.10). From
Burkholder-Davis-Gundy’s inequality, we have

EP
[
|Sε,n

T − Sε
T |2
]

≤ C1 sup
y

|σ̂n(y)− σ̂(y)|2ε2 + C2

∫ T

0

EP [|Sε,n
t − Sε

t |2]dt,

EP

[
| max
0≤t≤T

Sε,n
t − max

0≤t≤T
Sε
t |2
]

≤ C1 sup
y

|σ̂n(y)− σ̂(y)|2ε2 + C2

∫ T

0

EP

[
max
0≤u≤t

|Sε,n
u − Sε

u|2
]
dt.

This implies that limn→∞ sup0≤ε≤1 |φn(ε) − φ(ε)| = 0 is true and, therefore, (C.3) holds. The proof is
completed.

Appendix D

In this section, we shall prove Lemma 13.
The proof is divided in two steps: in the first step, we deal with the bias part of (3.19), then we

consider the variance part of (3.19) in the second step.
step1. Let us consider the bias part of (3.19). By the change of variables we have

EP [Ê(U,K)] =
σ̃2
σ̃1

∫ U−K
h1

−∞
K1(y)(ψ1pM )(U − h1y)dy. (D.1)

From the explicit expression for (ψ1pM ), we know that y ∈ (K,∞) 7→ (ψ1pM )(y) ∈ R+ is smooth. We
use the Taylor’s theorem and (K2), and obtain

σ̃2
σ̃1

∫ U−K
h1

−∞
K1(y)ψ1pM (U − h1y)dy

=
σ̃2
σ̃1

∫ U−K
h1

−∞
K1(y)

[
ψ1pM (U)− h1y(ψ1pM )′(U) +

1

2
h21y

2(ψ1pM )′′(U)

]
+ o(h21).

Due to (3.16) and (K1) it is easy to see

1

h21

(∫ U−K
h1

−∞
K1(y)dy −

∫ ∞

−∞
K1(y)dy

)
→ 0,

1

h1

∫ U−K
h1

−∞
yK1(y)dy → 0,∫ U−K

h1

−∞
K1(y)y

2dy → µ2(K1),
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as h1 tends to 0. This implies that

EP [Ê(U,K)]− E(U,K) =
1

2

σ̃2
σ̃1

(ψ1pM )′′(U)µ2(K1)h
2
1 + o(h21).

By the same arguments, we have

EP [T̂ (U,K)]− T (U,K) =
1

2

σ̃2
σ̃1

(ψ2pS)
′′(K)µ2(K2)h

2
2 + o(h22)

EP [D̂(U,K)]−D(U,K) = − σ̃1σ̃2
4

[
(ϕ1pM )′′(U)µ2(K1)h

2
1 + (ϕ2pS)

′′(K)µ2(K2)h
2
2

]
+ o(h21 + h22).

step2. Now, let us consider the variance part of (3.19). The term V ar[V̂ (U,K)] is calculated as

V ar[V̂ (U,K)]

=
1

N
EP

[{
1

h1

σ̃2
σ̃1

K1

(
U −MT

h1

)
I(K,∞)(ST )MT log

(
MT

x

)
+

1

h2

σ̃2
σ̃1

K2

(
K − ST

h2

)
I(U,∞)(MT )ST log

(
ST

x

)
− 1

h1

σ̃1σ̃2
2

K1

(
U −MT

h1

)
I(K,∞)(ST )MT η −

1

h2

σ̃1σ̃2
2

K2

(
K − ST

h2

)
I(U,∞)(MT )STT

}2
]

− 1

N
EP

[
1

h1

σ̃2
σ̃1

K1

(
U −MT

h1

)
I(K,∞)(ST )MT log

(
MT

x

)
+

1

h2

σ̃2
σ̃1

K2

(
K − ST

h2

)
I(U,∞)(MT )ST log

(
ST

x

)
− 1

h1

σ̃1σ̃2
2

K1

(
U −MT

h1

)
I(K,∞)(ST )MT η −

1

h2

σ̃1σ̃2
2

K2

(
K − ST

h2

)
I(U,∞)(MT )STT

]2
=: I1 − I2. (D.2)

Let us check that I2 in (D.2) is o( 1
Nh1

+ 1
Nh2

). Using the same calculation as in (D.1), we have

EP

[
1

h1

σ̃2
σ̃1

K1

(
U −MT

h1

)
I(K,∞)(ST )MT log

(
MT

x

)]
=
σ̃2
σ̃1

∫ U−K
h1

−∞
K1(y)(ψ1pM )(U − h1y)dy.

Due to the fact that |ψ1(y)| ≤ |y|2
|x| , ∀y ∈ (K,∞) and (K1), we obtain

lim
h1→0

∫ U−K
h1

−∞
K1(y)(ψ1pM )(U − h1y)dy <∞.

We use the same calculations for the other terms of the second part of (D.2), then we can show that
I2 of (D.2) is o( 1

Nh1
+ 1

Nh2
).
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Then, we focus on I1 part of (D.2). Clearly, we have

I1 =
1

N
EP

[
1

h21
K1

(
U −MT

h1

)2

M2
T I(K,∞)(ST )

(
σ̃2
σ̃1

log

(
MT

x

)
− σ̃1σ̃2

2
η

)2
]

+
2

N
EP

[
1

h1h2
K1

(
U −MT

h1

)
MT I(K,∞)(ST )

(
σ̃2
σ̃1

log

(
MT

x

)
− σ̃1σ̃2

2
η

)
×K2

(
K − ST

h2

)
ST I(U,∞)(MT )

(
σ̃2
σ̃1

log

(
ST

x

)
− σ̃1σ̃2

2
T

)]
+

1

N
EP

[
1

h22
K2

(
K − ST

h2

)2

S2
T I(U,∞)(MT )

(
σ̃2
σ̃1

log

(
ST

x

)
− σ̃1σ̃2

2
T

)2
]

=: I1,1 + I1,2 + I1,3. (D.3)

Let us show that I1,2 = o( 1
Nh1

+ 1
Nh2

). We define

J1 := EP

[
1

h1h2
K1

(
U −MT

h1

)
MT I(K,∞)(ST )K2

(
K − ST

h2

)
×ST I(U,∞)(MT )

(
σ̃2
σ̃1

)2

log

(
MT

x

)
log

(
ST

x

)]

=

(
σ̃2
σ̃1

)2
1

h1h2

∫ ∞

U

K1

(
U − y

h1

)
(ΦpM )(y)dy,

where Φ(y) := y log( yx )E
P [I(K,∞)(ST )K2(

K−ST

h2
)ST log(ST

x )|MT = y]. By the change of variables, we
obtain

J1 =

(
σ̃2
σ̃1

)2
1

h2

∫ 0

−∞
K1(y)(ΦpM )(U − h1y)dy.

Now let us focus on EP [I(K,∞)(ST )K2(
K−ST

h2
)ST log(ST

x )|MT = y]. For y ∈ (K,∞), again by the change
of variables, we have

EP

[
I(K,∞)(ST )K2

(
K − ST

h2

)
ST log

(
ST

x

) ∣∣∣∣MT = y

]
=

∫ y

K

K2

(
K − z

h2

)
z log

( z
x

)
pS|M (z|y)dz

=
1

pM (y)

∫ y

K

K2

(
K − z

h2

)
z log

( z
x

)
pM,S(y, z)dz

=
h2

pM (y)

∫ 0

K−y
h2

K2(z)(K − h2z) log

(
K − h2z

x

)
pM,S(y,K − h2z)dz,

where pS|M (y|z) denotes the conditional density function of ST given by MT and pM,S(y, z) denotes the
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joint density function of (MT , ST ). Therefore, we have

J1 =

(
σ̃2
σ̃1

)2 ∫ 0

−∞
K1(y)(U − h1y) log

(
U − h1y

x

)
×
∫ 0

K−y
h2

K2(z)(K − h2z) log

(
K − h2z

x

)
pM,S(U − h1y,K − h2z)dzdy,

and J1 = o( 1
Nh1

+ 1
Nh2

). The same calculation yields that the other terms of I1,2 are also o( 1
Nh1

+ 1
Nh2

).
Finally, we consider I1,1 and I1,3 of (D.3). By using Ψ1, Ψ2 and Ψ3, we have the following expression

for I1,1,

I1,1 =
1

Nh1

[(
σ̃2
σ̃2

)2 ∫ U−K
h1

−∞
K1(y)

2(Ψ1pM )(U − h1y)dy − σ̃2
2

∫ U−K
h1

−∞
K1(y)

2(Ψ2pM )(U − h1y)dy

+
σ̃2
1 σ̃

2
2

4

∫ U−K
h1

−∞
K1(y)

2(Ψ3pM )(U − h1y)dy

]
.

Thus, by applying the Taylor’s theorem for (Ψ1pM )(y), (Ψ2pM )(y) and (Ψ3pM )(y), due to (K2), we get

I1,1 =

[(
σ̃2
σ̃1

)2

Ψ1(U)− σ̃2
2Ψ2(U) +

σ̃2
1 σ̃

2
2

4
Ψ3(U)

]
pM (U)R2(K1)

1

Nh1
+ o(

1

Nh1
).

For I1,3, the same calculation applies and we obtain

I1,3 =

[(
σ̃2
σ̃1

)2

Φ1(K)− σ̃2
2Φ2(K) +

σ̃2
1 σ̃

2
2

4
Φ3(K)

]
pS(K)R2(K2)

1

Nh2
+ o(

1

Nh2
).

This completes the proof, due to (K4).
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