2013 (Heisei 25)

Doctoral Thesis

Essays on the discretization of stochastic

differential equations and their applications

Doctoral Program in Integrated Science and Engineering
Graduate School of Science and Engineering

Ritsumeikan University

Hideyuki Tanaka






Acknowledgement

I would like to express my deepest gratitude to my supervisor Professor Arturo
Kohatsu-Higa, from whom I learn not only how to solve the mathematical problem
but also how to find a problem worth tackling. I must thank him for all of his
continuous supports, for example, organizing seminars and conferences, giving me
a chance to make presentations, and discussing mathematics in English with many
postdocs from foreign countries etc, which greatly improved this thesis.

I am grateful to Professor Jiro6 Akahori for his boundless support for almost ten
years, as well as Professor Setsuro Fujiie for his kindness, Professor Masatoshi Fu-
jisaki for his generous advice on the basics of nonlinear filtering theory, and Professor
Takahiro Aoyama for his encouragement.

I would like to thank Professor Akihiko Takahashi in University of Tokyo, and
also his student Toshihiro Yamada. A part of this thesis (Chapter 5) is inspired by
their innovative ideas. I would also like to thank several practitioners in Tokyo for
discussing problems from the practical point of view throughout my career.

I would like to give my sincere thanks to all my colleagues, Tomonori Nakatsu,
Go Yuki, Takafumi Amaba, and Hidemi Aihara for their kindness and many inter-
esting and usuful comments. I would like to acknowledge numerous members of our
probability group in Ritsumeikan University, in particular, Hoang-Long Ngo, Azmi
Makhlouf and Libo Li, who improved my English, Shunsuke Iwamoto and Yuya
Tanaka for helping me revise my knowledge of mathematics through earnest and
rigorous discussion of undergraduate/graduate-level textbooks.

Finally T must gratefully acknowledge my parents, who sadly passed away two
and five years ago, for letting me walk my own path.






Abstract

The discretization of stochastic differential equations (SDEs) has been very impor-
tant in many applications such as mathematical finance and nonlinear filtering. The
aim of this thesis is to establish methods to construct a higher-order (or high accu-
racy) discretization scheme for general SDEs.

In the first chapter we give an overview of this research and briefly review the
mathematical idea discussed throughout the thesis.

In the next three chapters, we propose several techniques for the construction
of higher-order weak approximations of SDEs. Chapter 2 is devoted to an operator
approach, often called the operator splitting method, which helps us to construct
a higher-order scheme and to determine the rate of convergence. The discussion
includes the analysis of approximations of Lévy-driven SDEs. Chapter 3 reviews
the cubature formulas introduced by Lyons-Victoir (2004) and their relation with
the operator splitting method. In Chapter 4, we introduce a space-time discretiza-
tion scheme which can be applied to the computation of conditional expectations
appeared in pricing American options and forward-backward SDEs.

In Chapter 5, several strong convergence results of an accelerated numerical
scheme applied to perturbed SDEs are shown. The scheme introduced here was
originally analyzed by Takahashi-Yoshida (2005) for weak approximations. We study
the scheme from the viewpoint of strong convergence and the multi-level Monte Carlo
method.

Finally in Chapter 6, we study a discrete-time approximation scheme for the
nonlinear filtering problem. Picard (1984) showed that the scheme is a first-order
approximation scheme under suitable conditions. We discuss a rigorous error anal-
ysis of the scheme using various techniques in infinite dimensional spaces, and in
particular give a generalization of Picard’s result.
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Chapter 1

Introduction

1.1 Overview

1.1.1 Weak approximation problem

The discrete-time approximation of stochastic differential equations (SDEs) plays a
crucial role in many applications. Historically, the approximation problem of SDEs
has been developed in the fields of multidimensional partial differential equations
via the Kolmogorov equation, and nonlinear filtering with countinuous-time obser-
vations in the latter half of the 20th century. Over the past few decades, there has
been more importance on the approximation problem due to the development of
mathematical finance.

We classify types of the error of approximations of SDEs. Let X; be the solution
of SDE and X7 be its discrete-time approximation with n steps. The convergence
of an approximation X is basically twofold. We call by strong convergence (strong
approximation)

E[| X7 — X2P]YP = 0,

and by weak convergence (weak approximation)
BLf(Xr)] - E[f(X})] = 0.

If we obtain the exact rate O(n%) for the convergence “— 07, the index « is called
the strong (resp. weak) rate of convergence.

Our main interest in the present thesis is the analysis of weak rate of convergence.
The weak approximation problem of stochastic differential equations has been stud-
ied by many authors. The Euler-Maruyama scheme ([64]) for stochastic differential
equations is of weak rate O(=), which has been shown by [90] for smooth f, and
by [6] for irregular f. A higher-order scheme based on the Ito-Taylor expansion has
been also analyzed in e.g. [45], and however, the scheme is not always implementable
due to the Lévy area whose distribution is unknown.
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Recently, motivated by the financial industry, a new method of approximations
of stochastic differential equations with high accuracy has been required, since prac-
titioners (quantitative analysts) are going to develop more complicated models to
control the financial risk. For the reason, we are concerned with the following two
methods in this thesis.

1. Higher-order weak approximation + QMC (or Lattice): Our goal is to find a
discrete approximation X' so that

Elf(Xr)] - Ef(Xp)] = O (L)

na

with a higher-order rate o than standard methods (e.g. Euler-Maruyama). The
second order (a = 2) schemes for stochastic differential equations have been
developed by Lyons and Victoir [63] and Ninomiya and Victoir [69]. Higher-
order schemes reduce the number of time partition n that is required for a given
accuracy. In other words, the dimension of the numerical integration E[f(X})]
decreases and such situation is preferable to the Quasi Monte Carlo (QMC)
method. The efficiency of higher-order schemes with QMC was studied in [69],
[68]. To make n small is also important in another idea by using recombining
tree or lattice, which is considered in [60], [92].

2. Multi-level Monte Carlo (MLMC): The multi-level Monte Carlo (MLMC) is
a kind of Romberg’s extrapolation method for L2-error in order to reduce
the computational cost of simulations of Wiener functionals (Giles [27]). The
purpose of the method is the same with weak approximations, that is, to
compute E[f(Xr)] with high accuracy. However, the computational efficiency
of the MLMC is based on the strong rate of convergence of the approximation

X™ rather than the weak rate of convergence.

In the following, we introduce mathematical aspects of higher-order weak ap-
proximations in Section 1.1.2 and of multi-level Monte Carlo in Section 1.1.3.

1.1.2 Three approaches in analysis of weak convergence

Throughout the present thesis, we often apply three methods introduced below to
the analysis of weak rate of convergence. To understand these methods is important
in both of the construction of new approximation schemes and the precise error
estimates for them.

Let us now describe the basic methodology of each method. In what follows, we
denote a Markov process by X;, its infinitesimal generator by £, and the associated
semigroup by F;.

12



(i) Short time expansion of semigroup: The short time expansion of the
semigroup P, is the most fundamental property in order to construct discrete time
approximations for X;. The expansion is formally expressed as

t2 t3
Pt:I‘|‘t£+§£2+E£3‘|‘"',

which can be considered as the formal exponential map exp(t£). This expansion
motivates us to construct an operator (); which has the same short time expansion
with P, up to higher-order terms and also has a stochastic representation Q;f(z) =
E[f(X,(x))] with some stochastic process X;(x) starting at x.

This idea has been applied to (ordinary) differential equations by [81], [82], [85],
[86] and to stochastic differential equations by [69], [24], [94].

(ii) Distance between two generators: Let P, be another Markov semigroup
and L be its generator. Then we can derive the following formula

(P,—P)f = /Ot P,_,(L — L)P,fds,

which is shown by taking the derivative of s — P,_,P,f. Roughly speaking, this
means
P, — P, = 0O(t) x distance between two generators.

From the above expression, it is possible to consider numerical approximations for
X, through the analysis of generators. This essential idea plays a key role in the
approximation of Lévy processes and more generally, Lévy-driven stochastic differ-
ential equations ([94], [47], [67], [46]).

(iii) Duality approach: It seems impossible to apply the above two approaches
to the situations at which we cannot use the Markov property, such as discrete-time
approximations of stochastic delay equations ([17]) and of nonlinear filters ([73],
[93]).

Instead of the Markov property, we can use a duality formula for Wiener func-
tionals in the following sense. Let F' be a Wiener functional with [to’s representation
F =FE[F|+ fOT &sd By, where & is an adapted process with finite moments and By is
a Brownian motion. Then for any adapted process 6, with finite moments, we have

E[F /t " esst} - E[ /t " gsesds]

The left hand side tells us that this seems to be of order O (/%11 — t;) from fttf“ -dBs
as it is. However from the representation of the right hand side, we might obtain
the better rate O(t;11 — t;). If F' is smooth in Malliavin’s sense, this formula can
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be understood as the following duality between the stochastic derivative D and the
stochastic integral dB

E[F /t o esst] - E[ /t tM(DsF)HSds].

Since the Markov property is not assumed for F', the above duality formula is ap-
plicable to many situations. For example, nonlinear filtering problems deal with a
conditional expectation of the form E[f(Xr)|Fr| for a given filtration (F;);>0, then
we are not able to apply the approach (i) even if X is a Markov process.

1.1.3 Multi-level Monte Carlo and strong convergence

The multi-level Monte Carlo method for Wiener functionals is formulated as follows.
Let us denote a stochastic process at time 7" by Xr and its discretizaion (e.g. Euler
scheme) by X2, where n is the number of time partition which is proportional to
computational time. Then we define the MLMC as the following decomposition of
Monte Carlo sampling by m + 1 terms:

A Zf (Xpoi) +ZNZZ< FXGE) = (X3

i0=1 ip=1

with ny, < nyyq and N, ii.d. sampling of X;’i‘ for each ¢ = 0,1,...,m. Here,
FXP) and f(X2"") should be simulated to be pathwisely close to each other.
Clearly the expectatlon of this sampling coincides with E[f(X}™)]. Hence the bias
in the sense of expectation is equal to that of the usual sampling E[f(X}™)] ~
LSV F(X7m"). On the other hand, the MLMC has a different structure in terms
of the bias of Monte Carlo simulation. Let us summarize the key points of MLMC:

e The total computational cost (time) is of the order O(>_)"  neNy).

e The computational cost for generating f(X-* "y — f(X;“‘l’i“) increases as {
increases.

e The bias of Monte Carlo for {f(X}0") — f(X}v ”)}u 1

increases.

N, decreases as (

-----

We might control the computational efficiency by choosing m and N,. The optimal
choice of these numbers is based on the L?-error of f(X7*) — f(X;*"), and by the
triangle inequality we have

IF(X7) = FX e < 1f(Xp) = FOXF) 2 + 11 (X7) = FXZ)]2.
If f is Lipschitz continuous, the above quantity is bounded by

| X7 — X35
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Therefore one of our interests in the MLMC method is to show the strong rate of
convergence of X7 — X" in L? sense. This is the key idea of the MLMC method
for Wiener functionals introduced in [27]. The MLMC is an alternative and pow-
erful numerical technique for general path-dependent functionals E[f((X¢)o<t<r)]
of the solution of a stochastic differential equation (X}), since a higher-order weak
approximation scheme for such functionals has not been found.

1.2 Outline of the thesis

In this thesis, we are interested in the several approximation methods of stochas-
tic differential equations described in the previous section. This thesis consists of
five chapters. In view of mathematical analysis, Chapter 2, 3 and 4 are based on
the higher-order weak approximations of SDEs with two approaches (i) and (ii) in
Section 1.1.2. Chapter 5 focuses on the strong rate of convergence related to Sec-
tion 1.1.3. Finally, Chapter 6 relies on a duality formula (iii) in Section 1.1.2. The
outline of each chapter is as follows.

In Chapter 2, we present a general framework, often called the operator split-
ting method, based on semigroup expansions for the construction of higher-order
discretization schemes and analyze its rate of convergence. The error analysis es-
sentially follows from the approaches (i) and (ii) in Section 1.1.2. We also apply the
framework to approximate general Lévy-driven stochastic differential equations

Chapter 3 is devoted to the concept of cubature formulas on Wiener space and
their connection to splitting methods for noncommutative exponential maps. More
specifically, the relation between some higher-order weak approximation schemes
(such as the Ninomiya-Victoir scheme) and cubature formulas is shown.

Chapter 4 presents a new class of higher-order space-time discretization schemes
for multidimensional diffusions via lattice systems which involve space interpola-
tion techniques. The key idea is to combine the weak approximation approach for
stochastic differential equations and some techniques on high-dimensional spaces to
break the curse of dimensionality. The first objective in this chapter is to investigate
the error estimates derived from short time asymptotics of certain semigroup oper-
ators, together with the discussion of numerical stability. As the second objective,
several computational experiments for some derivative pricing models are presented
in one and three dimensional settings.

In Chapter 5, we determine the strong rate of convergence for an accelerated
Euler-Maruyama scheme applied to perturbed stochastic differential equations. The
theoretical results can be applied to analyzing the MLMC method. Several numerical
experiments for the SABR stochastic volatility model are presented in order to
confirm the efficiency of the schemes.

In Chapter 6, we study the concept of nonlinear filtering problems and a discrete-
time approximation applied to them. Time discretizations for nonlinear filtering
problems are related to both of strong and weak approximations of stochastic differ-
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ential equations. We propose a new method of proof for the convergence of approxi-
mate nonlinear filter analyzed by Jean Picard, and show a more general result than
the original one. The analysis for the error estimate is based on a kind of duality
approach (iii) introduced in Section 1.1.2. For the proof, we develop an analysis of
Hilbert space valued functionals on Wiener space.
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Chapter 2

Operator splitting method

This chapter is based on the paper by Tanaka and Kohatsu-Higa [94] published
in Annals of Applied Probability and includes some improvements of the proofs of
theorems therein. Recent developments in this topics can be found in Kohatsu-Higa
and Tankov [47], Kohatsu-Higa, Ortiz-Latorre and Tankov [46], Ngo and Kohatsu-
Higa [67].

2.1 Introduction

Weak approximation problems play an important role in the numerical calculation
of E[f(Xi(x))] where X;(z) is the solution of the stochastic differential equation
(SDE for short)

Xi(x) =z + /O Vo(X,_(2))ds + /0 V(X,_(x))dB, + /0 h(X, (2))dYs.  (2.1)

with smooth coefficients Vy : RN — RN,V = (V4,...,Vy),h : RY — RN @ R%
Here B, is a d-dimensional standard Brownian motion and Y; is an d-dimensional
Lévy process associated with the Lévy triplet (b,0,r) satisfying the condition and
which has finite LP-moment for every p € N.

.....

LG ()] - Bl @) < SRS
We denote briefly by E[f(Xr(z))] — E[f(X}")(:c))] = O(1/n™) the above situa-
tion, and say that X}") is a m-th order discretization scheme for X; or that X;")
is an approximation scheme of order m. The Euler scheme is a 1st order scheme,
and has been studied by many researchers. Talay-Tubaro [90] shows the 1st order
convergence of the Euler scheme and 2nd order convergence with the Romberg ex-
trapolation for continuous diffusions. The fact that the convergence rate of the Euler
scheme also holds for certain irregular functions f under a Hérmander type condition

such that
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has been proved by Bally-Talay [6] using Malliavin calculus. For the general Lévy
driven case, the Euler-Maruyama scheme was first studied in Protter- Talay [75], see
also Jacod-Protter [40] and Jacod et al. [39] (for smooth f). The Ito-Taylor (weak-
Taylor) high order scheme is a natural extension of the Euler scheme although is
hard to simulate due to the use of multiple stochastic integrals. A discussion on the
Ito-Taylor scheme with the Romberg extrapolation can be found in Kloeden-Platen
[45].

In the continuous diffusion case, some new discretization schemes (also called
Kusuoka type schemes) which are of order m > 2 without the Romberg extrapolation
have been introduced by Kusuoka [53], Lyons-Victoir [63], Ninomiya-Victoir [69],
Ninomiya-Ninomiya [68], Fujiwara [25] (m = 6) and Oshima-Teichmann-Veluscek
[72] (m: even). The rate of convergence of these schemes is closely related to the
stochastic Taylor expansion, or series expansion of exponential maps on a noncom-
mutative algebra.

The actual simulation is carried out using Monte Carlo methods. That is, one
computes - S M S () where X7 (%), i = 1,..., M denotes M iid. copies

of Xé") (x). Therefore, the final error of L?-convergence is:

LSS @)~ Bl () = 0 (%M . nim) |

Then the optimal asymptotic choice of n is O(n™) = O(v/M).

The goal of the present chapter is two-fold. First, we introduce a general frame-
work to study weak approximation problems from the standpoint of operator (semi-
group) expansions. That is given two processes that have equal semigroup expan-
sions up to some order lead after composition to two processes that are closed in law.
This goal is not new. In fact, using PDE techniques, Milshtein and Talay between
others proved various weak approximation results. Although our proof is essentially
the same it gives a new viewpoint that will help in defining new approximation
schemes.

The next idea, is to decompose the generator associated with (2.1) in d + 2
components where each component is associated with each component of the driving
process (the whole Lévy process is considered as one component). Then we prove
that if each of these components is approximated with an error of order m + 1
then the composition gives an error of order m. In the particular case that each
component can be characterized as the semigroup of a flow-type process then the
composition leads to a composition-type approximation scheme.

Secondly, using the above strategy we provide approximations for solutions of
(2.1). In particular, our approximations are valid for infinite activity Lévy processes
Y. We prove that in fact, if one uses the Asmussen-Rosinski idea of approximating
the jumps of size smaller than € with a Brownian motion and we only simulate one
jump of size bigger than € per each time interval in the approximation is enough to
provide a first order approximation procedure. Furthermore we give the necessary
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estimate to determine € as a function of n. For this approximation, we found it
better to decompose the generator in d + 4 components.

This chapter is organized as follows. In Section 2.2, we introduce the main
example and the goal for the first part of this article in explicit mathematical terms.
The general framework is introduced in Section 2.3. In Section 2.4 we give the results
of convergence rates of numerical discretization schemes in the general framework. In
Section 2.5, we give a general result that states how to recombine the approximations
to coordinate processes in order to approximate the semigroup associated to (2.1).
Finally, in Section 2.6 we approximate each coordinate process and in particular, we
define approximation schemes for Lévy driven SDEs.

2.2 Weak approximation problem

In order to better understand the abstract formulation in Section 3, we introduce
here our main example. Let (Y;) be a d-dimensional Lévy process characterized by
Lévy-Khintchin formula:

(0, co)

B[] = expt (i<9, b) — 5 + /Rd(eiw’y) —1- i<977'(?/)>)’/(d?/)> (2.2)

where b € R%, ¢ € R? @ R? (symmetric, semi-positive definite) and v is a Borel
measure on Rg := R\ {0} satisfying that f\ylﬁl ly|?v(dy) < oo, which is called the
Lévy measure.

Throughout this chapter, we assume that

/I 1 lyPr(dy) < oo, forall p > 1. (2.3)
y|>

It is well known that (2.3) implies that Y; € N>, LP for all ¢. We also recall that 7
is a truncation function (e.g. 7(y) = ylyy<1}, the constant b and 7 depend on each
other). The triplet (b, ¢,v) is called the Lévy triplet.

The Lévy driven stochastic differential equation is given by

Xfe)=a+ [ VX @hdst [ V@B + [ K@Y, )

with smooth coefficients V, : RY — RN,V = (Vi,...,Va),h : RY — RN @ R4
whose derivatives of any order (> 1) are bounded. Here B, and Y; are independent
d-dimensional standard Brownian motion and Y; is a d-dimensional Lévy process
associated with the Lévy triplet (b, 0, v) satisfying the condition (2.3). Using general
semimartingale theory (see [74]) we have that the above equation has a unique

solution. We define Vj := Vj — %Z?Zl DOAPRA V;(j). Then (2.4) can be rewritten

j:l axj

19



in the following Stratonovich form:

— 4+ Z/ )odB! + /Ot h(X, (z))dYs

where B = t.

Before introducing the general framework of approximation, let us explain in
mathematical terms the goal in this article. Our main example corresponds to
the approximation of the semigroup P, defined as the semigroup associated to the
Markov process X;:

Fif(x) = E[f (Xi(2))]

where f: RY — R is a continuous function with polynomial growth at infinity.

Let @ = @} be an operator such that the semigroup property is satisfied in
{kT/n;k =0,...,n}. Assume that Q); approximates P; in the sense that it satisfies
the local error estimate (P, —Qy) f(x) = O(t™1). Then using the semigroup property
of both P, and (Qr/n), we notice that

3
,_.

Prf(x) = (Qrym)"f(x) = (QT/n) (Prm = Q) Pp_re1p f ().

0

TF

Therefore if we have good norm estimates of (QT/n)k and P, k14 in a sense to be

defined later (in particular the norm estimates have to be independent of n) then
we can expect that (Qr/,)" is an approximation of order m to Pp. Finally in order
to be able to perform Monte Carlo simulations we assume that () has a stochastic
representation. That is, there exists a stochastic process M = M,(z) starting at =
such that Q. f(z) = E[f(M;(z))]. Then clearly, we have the following representation.

Qrf(z) = (Qrm)" f(z) = E[f(M%/n 00 ?/n(x))]

where M., 7/ are independent copies of My, and o is defined as (M} o M})(z) =
M;(M] (x)).

The above ideas are well known and have been already used to achieve proofs
of weak convergence (for historical references, see [45]). Nevertheless, it seems to
us that this is the first time it appears in this general framework. For example, if
we take M(z) := & + Vy(x)t + V() B; + h(z)Y; for d = 1, one obtains the Euler-
Maruyama scheme.

Next to further simplify the procedure to obtain approximations we write the
operator P; as a composition of d + 2 operators as follows. First define the following
stochastic processes X;.(z), ¢ = 0,...,d + 1, usually called coordinate processes,
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which are the unique solutions of

Then we define
Qirf(x) == E[f(Xiu(2))] (2.5)

for continuous function f : R — R with polynomial growth at infinity.
For notational convenience we identify a smooth function V : RY — RY with a
smooth vector field Zf\il V@2 on RN Let us define (integro-)differential operators

L; acting on C? by

Lof() = (Vf)(@), Lif () = 5(V2D)(a), 1< i <d (2.6

Lo f(z) := V f(x)h(z)b + /(f(w +hx)y) — f(x) = Vf()h(x)7(y))v(dy).

It is well known that L := Zfiol L; is the generator of X and similarly L; is the
generator of X;;. Also et .= P, and etti = Qi+ respectively where we consider
these expressions as exponential maps on a noncommutative algebra. One notices
that these operators have the form

m
oL — Z
k=0

tk
LE ot (2.7)

-

- tF m
e =% HLf + O™t (2.8)
k=0

To approximate e'*, we would like to find some combination of operators satis-
fying

k
et = gehata L gtiilng = O () (2.9)
7j=1

with some t;; > 0, A; ; € {Lo, L1, ..., Lgr1 } and weights {&;} C [0, 1] with Zle £ =
1. This will correspond to an m-th order discretization scheme.

To find such schemes, one can perform formal Taylor expansions for ' in each
of the terms in (2.9). We remark that the result (2.9) will follow directly from (2.7)
and (2.8) independent of the specific form of the decomposition L := Zfiol L;. This
algebraic calculation has lead to the introduction of the following approximation
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schemes
Ninomiya-Victoir (a):

1 t t 1 t t
_62L06tl’1 e etLd+162L0 + _62L06tLd+1 Ce . etLleQLO (210)

2
Ninomiya-Victoir (b):

1 1
§€tL0 etLl . etLd+1 + _etLd+1 . etL1 etLo (211)

Splitting method:
eslo .. eslagtlatigzla . .. p5lo (2.12)

The semigroups generated by these operators have a probabilistic representation.
For example, Ninomiya-Victoir (a) corresponds to

lyc1 Xogsp © Xayre -+ X1 0 Xogsa(@) + LicpXogz 0 Xig o Xasre 0 Xoya(x)

where U is a uniform random variable taking values in [0, 1], independent of X ;.
However, since a closed-form solution X;; is not always available, one has to replace
X, with other approximations of order m + 1 so that the final approximation result
remains unchanged. Nevertheless the fact that there is only one driving process
simplifies this task. This problem will be discussed in Section 2.5.

2.3 Preliminaries

2.3.1 Notation and assumptions

In this section, we consider a general framework for weak approximations following
the arguments in Section 2.2, without using the specific form of the operator. We
first define the following functional spaces.

o O = CJM(RM): the set of C™ functions f : RV — R such that for each
multi-index a with 0 < |a| < m, |02 f(x)| < C(a)(1 + |z|*) for some positive
constant C'(«).

We also let C, = C}. Let us define a norm on C* by

[Fllog = inf{C > 0+ |02 f(2)] < C(1+ |2),0 < |a] < m,z € R}
where we denote |af :=a; + -+ ay for a = (ay,...,ay) € ZY.

e C)™([0,T] x RY), m > 2: the set of functions f : [0,7] x RY — R such
that s — f(s,z) is continuous differentiable for all z € RY and satisfies that
f(s.), 0uf(s,) € Cy" with supepo ry(1£ (s, )lley + 10:f (5, )l gmsz) < o0,
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From now on, we denote by Q; : Up>oC,(RY) — U,>oC,(RY) a linear operator
for0 <t <T.

Assumption (M) . If f € C, with p > 2, then Q,f € C, and

i 1Qeflle, < Kllflle,

te[0,T

for some constant K > 0 independent of ¢. Futhermore, we assume 0 < Q;f(z) <
Q:9(z) whenever 0 < f < g.

We now introduce two assumptions which are highly related to the convergence
rate of approximation schemes.

Assumption (M) . Q; satisfies (M), and for each f,(z) := |z|*" (p € N),
Qifp(x) < (14 Kt)f,(z) + K't (2.13)
for some constant K = K(T',p), K' = K'(T,p) > 0.

For m € N, §,, : [0,7] — R denotes a decreasing function which satisfies

Om (1
lim sup ( )
PN T Al

= 0.

Usually, we have 6,,(t) = t™.

Assumption R(m,d,,) . For each p > 2, there exists a constant ¢ = ¢(m,p) > p
and linear operators e, : C2F — Cpya (k=0,1,...,m) such that

(A): For every f € CQ(m H ) with 1 < m/ < m, the operator (); satisfies

m’

= (erf) (@)t + (Brr{™ ) (), t € 0,7, (2.14)

k=0

where egf = f, Errgm/) f € C,, and satisfies the following condition:
(B): If f € C’;;“" with m” > 2k, then e f € C’;’]ﬂ;% and there exists a constant
constant K = K(T,m) > 0 such that

oo < ! k= o . .
”ekf”cgjr%% ~ KHf”CP k 0,1, ,m (2 15)
Furthermore if f € CITN with m” > 2m/ 4 2,

(B fe, < 4 KO W g il <m
CINe = K, 0 flloge 3w =m

forall 0 <t <T.
(C): For every 1 < k < m and j > 2k, if f € C)7([0,T] x RY), then e,f €
Cplai™(10.T) x RY) and Ouerf = exd, .
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Remark 2.3.1. The condition (C) is only used for the Romberg extrapolation which
is discussed in Theorem 2.4.4.

In order to compare the finite power expansions of different operators, we intro-
duce the following notation.

JSm(Qt) = Ztkek
k=0
In(Q) = €.

J<m(Qy) is a linear operator, which is related to the series expansion of ¢ — e'X (cf.
Proposition 2.3.6). The following Lemma comprises some basic properties related
to the above definition. The proof is straightforward.

Lemma 2.3.2. The following properties are satisfied:
R(m + 17 5m+1) = R(mv tm)

R(m, 6m) = R(m, )
whenever 8, (t) < Ko, (t) and limsup, o, 0, (t)/t™ = 0.
(1) Let {& }1<i<e be deterministic positive constants with ), & = 1, and assume (M)
for Q1Y (i=1,....0). Then Y \_ & 9 4lso satisfies (M).
(i1) Let {& }1<i<e C R and assume R(m, d,,) for QY (i=1,...,0). Then>'_, QM
also satisfies R(m, dy,).

2.3.2 Properties of Lévy driven SDEs

We start with the differentiability properties of X;(x) in z. The following material
can be found in [40], [39], [49], [74] and [75]. We quote them here for completeness.

Lemma 2.3.3. There exists a version of Xy(x) such that a map x — Xy(x) is infinite
times continuous differentiable almost surely and in the LP-sense. Moreover, we have
forp =2,

El sup [Xi(2)[") < Clp, T)(A + [2") (2.16)
and
sup E[ sup |09 X (2)|"] < o0 (2.17)

zeRN  0<i<T

for any multi-index o with |of > 1.

Proposition 2.3.4. Let f € Clwith p > 2.
(i)Then P.f € C'for allt > 0 and

. [Ecf lleg < Cll fllep (2.18)

S
telo,
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(it) If m > 2, then Lf € CV';)% and
ILfllemz < Cliflleg-

(iii) If f € CYm([0,T] x RN), then (D,Lf)(t,x) = (Lovf)(t, x)

Proof. The proof of (i) follows by interchange of derivation and expectation together
with the moment estimates in Lemma 2.3.3. Recall that L = Zfiol L; as defined in
(2.6).

(ii) We only do the proof for L;,; with m = 2. We have

| [+ b)) - f@) = V@)
= | [ Vi@ = rwtan + [ [ 0=0)g5 1+ o)
< Il a1+ 1)
U

Proposition 2.3.5. Let f € C7. Then P and L are commutative and ug(t, z) =
P, f(z) is the solution of the integro-differential equation:

{ %uf(t, x) = Luys(t, )
ur(0,2) = f(x).

Proof. 1. We first prove that ¢ — P,g(x) is continuous when g € C,(R"). Note
that

Elg(Xi(z)) = 9(Xi-(2))] = 0

since P(|Y; —Y:—| > 0) = 0 for a fixed time ¢. By this and Lemma 2.3.3, we deduce
the continuity of P,g.
2. By using It6’s formula (see e.g. [38]), for g € CZ(RY),

g(X.(x)) = g(x) + / Lg(Xu (2))du + M, (2.19)

where M, stands for some local martingale. By using Lemma 2.3.3 again, M, is a
martingale and hence E[M;] = 0. Taking expectations of the above equation (2.19),
we can show the continuous differentiability of ¢ — P,g(z) and 4 P,g(z) = P;Lg(x).

3. Apply the above calculation for ¢ = P,f and take the derivative of s —
P, sf = P,P,f around s = 0. Then we conclude that

d
PLf(x) = S Pf(x) = lim s (PP f(x) = Pif(2)) = LP f(2).
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Let f € C2™2. Then the commutativity of P, and L implies that L™uy (=

is differentiable in ¢t and the solution to similar integro-differential equations
is,

(L") (0, 2) = (L™ f) ().

for each m > 0. Consequently, applying Taylor’s expansion to uy, we have

{ g (LMug)(t, @) = L(L™uy)(t, 7)

Proposition 2.3.6. For f € C§m+27

Riw =3 g+ [ s

m)!

Furthermore, if f € CI* with m > 2. Then P,f € C}™.

Summarizing this section, we have

Corollary 2.3.7. P,f(z) = E[f(X,(2))] and Qif(x) = E[f(X(x))] (i = 0,1, ...

1) satisfy the conditions (M) and R(m,t™). That is, for p € N,
E[|X:(2)[*] < (1 + Kt)]z|” + K't
for some constant K = K(T,p), K' = K'(T,p) > 0 and

k

"t

k=0
7 - tk k
JSm(Qt) - Zng

e
Il
o

for any m € N.

2.4 Weak rate of convergence

Ume)
. That

In this section, we prove the rate of convergence for the approximating operator ()
under the assumptions (M), R(m,d,,). Throughout this section, we assume the

following assumption.

Assumption (Mp) . Forall f € C*, m > 2, p>1then Pf € C}™ and further-

more the following property is satisfied for some positive constant C"

sup || Pifllep < C|l fllep
t€[0,T]

forall f€C)',m=>0,p>1.
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Remark 2.4.1. The above assumption is satisfied for P, f(x) := E[f(X:(x))] under
the assumptions in Section 2.2.

Theorem 2.4.2. Assume (M) and R(m,0y,) for P; and Qp with J<p(Pr— Q) =0
Then for any f € Cz(mﬂ), there exists a constant K = K(T,x) > 0 such that

Pof(a) = (@Qu)" F(2)] < Ko ()l g (2.20)

For the proof, we need the following lemma.

Lemma 2.4.3. Under assumption (M), the operators P, and Q; satisfy

k
sup max Qry,, f(z) < oo

for any positive function f € C, with p > 0.

Proof. Let f,(x) = |z|* for p € N. By the assumption (M), we have

(QT/n)kfp( )— (QT/n)k_l(QT/nfp)( )
< (4 ) @u) o) +

with some constant C, C" independent of ¢, z, k,n. Since (1 + Q)’lC < €%, one proves

by induction that

Sup Inax (Qr/n)*fo(x) < “C' (1 + [af*).

0<k<n
This completes the proof. O

Proof of Theorem 2.4.2. Let f € Cz(mﬂ). Using the semigroup property and as-
sumption R(m, d,,), we have

>_A

Prf(z) = (Qrym)"f(z) = Z(an) (Pr/n = Qrjn) Pr_eap f(2)

:ﬁ
I
= O

(Qr/n)*(Exefl)) Py_is ) ()

where Errl™ is the error term of (P — Q) defined in (2.14).
We obtain from assumptions R(m, d,,) and (Mp)

m T T
(B P @) € K~ (=) (1 + 2l ) Pr_s fll s
KT . /T
< 5m<_) ]. q 2(m+1
< =0 () (U 2L gz
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and hence Lemma 2.4.3 leads to

m KT T
[(@ryn) (Brrf) Pr_sssg f)(@)] € =0 (=) 11l e (@) (1 + [2%)

K T
< = () Il s

n n

for some constant K = K (T, x). This completes the proof. O

The following theorem is an extension of Theorem 2.4.2, and is analogous to
Talay-Tubaro [90, Theorem 1].

Theorem 2.4.4. Assume (M) and R(m + 1,0,,41) for Q; with the conditions
J§m<Pt - Qt) =0

and

1B — Quflley,. < Ctlfllez- (2.21)

Then for each f € CE™ ™ we have

Pof(@) — Qe @) = =+ 0(() " Vi () @22)

where K = T™ [ PJyi1(P — Q) Pr_o f(x)ds.
Let us now prepare two auxiliary lemmas.

Lemma 2.4.5. Let f = fi(x) € C)*([0,T] x RY). Then a map s — P,fs(x) is
Lipschitz continuous for all x € RY.

Proof. Note that
|Pefe(w) — Pofs(o)] < |Pufix) = Pofs()| 4+ |Pifs(z) — Pofs(x)]
Using the Lipschitz properties of ¢ — f;(z) and t — P, fs(x), the proof follows. [

Lemma 2.4.6. Let g : [0,7] — R be a Lipschitz continuous function. Then we
have

=S gt - [ gtsyas] < A2, (2.23)

n

Proof. From the assumption we immediately obtain

o - [

(k=1)T/n

kT /n C
g(s)ds‘ < =

where C' depends on T and the Lipschitz coefficient of ¢g. This implies (2.23). U
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Proof of Theorem 2.4.4. We start by noting that as in the proof of Theorem 2.4.2,

(Prin = Qi) Proof @) = (1) s (P = Q)Pr_of () + (Bt Pr_uf)(o)

and therefore,

Pra)-(@o ) = (2) S Qo (P01 g f@H0(5 (1))

n
k=0

Now applying the proof of Theorem 2.4.2 to with J,,, 41 (P—Q) Py k+1Tf eC

p+2 (m+1)>
we obtain from the inequality (2.21) and (M), for k > 1,
|<(QT/n)k - PkT/n)Jerl(P - Q)PT—%TJ%'I)‘
Cl (T7 SL’)
< [ i1 (P — Q)P k+1Tf”C’p+2(m+l)
CQ<T7 SL’)
< LTy ) i,
Next, we have by hypothesis (M), for 0 <k <n—1
| PerjnImi1 (P — Q) Py + ki1 f(T) — P%TJmH(P - Q)PT—%TJC(I‘”
=|(I - PT/n>PkT/n m+1( Q)Pr %Tf(x)‘
Cs(T z)
1Psrmdmr (P = Q) Pp_keapfllcz,,
COu(T, x
< 4<n 2T

Note that Jy1(P—Q)Pr_.f € C2 o 2(mt1) and its Lipschitz constant with respect

to t is bounded by J,,, 41 (P—Q)0sPr_sf (see the assumption (C') in R(m, d,,)). Using
Lemmas 2.4.5, 2.4.6, we have

Tnfl T T
)Z;P e Jmi1 (P=Q) Pr s f(2)= /0 Py (P=Q) P (w)ds| < Tf@

Hence taking K = T™ fOT PyJnmi1(P — Q)Pr_sf(z)ds, we conclude that

Prf(e) = @u)"f@) = 2o+ 0(()" Vana (),

n

This concludes the proof. O
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2.5 Algebraic approximations of semigroup oper-
ators using coordinate operators

Throughout this section, we assume that P, t € [0,7] is a semigroup that satisfies
(M), (Mp) and R(m, d,,). Furthermore we suppose that

Jem(P) =T+ i

J
with e; = (Z‘j:ol LZ-> satisfying the properties stated in R(m,d,,). Similarly, we

assume that Q;:Up>oCp(RY) — Uys0Cp(RY), i = 0,...,d + 1 be a sequence of
operators such that they satisfy (M), (Mp) and R(m, d,,) with

mo
Jem(@Qid) =T+ al
j=1""

In what follows, Hle a; := aias - - - ay denotes a noncommutative product.

Theorem 2.5.1. Assume m = 2. That is, (M) and R(2,92) are satisfied for Q;;
(1=0,1,...,d+1). Then all the following operators satisfy (M) and R(2,0,):

N-V(a) Q' = 1Qo./ [15] QirQorsa + 1Qoss2 TT19) Qurai1 Qoo
N_V(b) Qg -2 HdJrl Qz t+ 3 B HdJrl Qd—f—l it
Splitting Q' = Qo2 - - - Quij2Qar14Qarsz - - Qo

Moreover, we have JSQ(QIE“)) = J<of l(gb)) = JSQ(QIESP)) = Zi:o %Lk. In partic-
ular, the above schemes define a second order approximation scheme.

The proof of Theorem 2.5.1 is an application of Theorem 2.4.2. The conditions
follow from the next lemma, together with an algebraic calculation as pointed out
at the end of Section 2.2.

This theorem can also be stated for third order approximation schemes.

Lemma 2.5.2. Let Q; and Q? : Up>oC,(RY) = U,50C,(RY) be two linear operators
and let Q1Q? be the composite operator. Then

(i) If (M) holds for Q}, Q?, then it also holds for QrQ?.
(11) If R(m, ,,) holds for Q}, Q?, then it also holds for Q;Q?.

Proof. (i) is obvious. We now prove (ii). Let m’ < m. We have by hypothesis that
= SN+ Y
k=0
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/

Q1 f (@) = D (K@i ) (@)t* + (Bxr™? f)(x)

0

3

W

for f € Cg(m/ﬂ), p > 2. Furthermore there exists ¢ = ¢(m,p) > 0 such that
Errl™ V£, Err{™? f € C,. Now we prove (A)-(C) in the definition of R(m, d,,).
(A): Note that for f € C2"™(RN),

/

QQif(z) =@, (Z(JkQ?f)(x)tk + (Errﬁm/’”f)(w)> :

k=0

Since J,Q2f € C J:;L,jl)*%, Qi (JxQ?%f) can be written as

(Q (@7 () = nik(ﬂ@iuk@?f»(xﬁf + (B U RQE) ().
As a result, we have 7
QIQI( kﬁ; i: (JeQF (@2 F)) (@)t + (Brrf™ 2 f) ()
where 7
(Er™ ™ 1) (o) = (QUER™? P)(a) + S Bt VR @, (220
i

We obtain from the properties of the error terms that Err(m L2)

¢ =q(mp)>q.
(B): For f € C;,”” with m” > 2(m’ + 1), we can derive for k + ¢ < m/,

f € Cy for some

I7eQ5 (@ )| - < KallJkQi fll meran < ol fll o
and by (2.24),
[Erei™ ") flle, < Ksl[Ere™? flle, + Kal|Eer{™ D 1@} f e,
2 m/+1
+ K5Z 1TkQi fll rant

Kt +1||f||cm// if m’ <m
Ktbu(t)|flyer i m! = m,

Finally, the proof of (C) is straightforward. O
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Proof of Theorem 2.5.1. Using this lemma, we end the proof, calculating J-,, for
each numerical discretization scheme. For instance, in the case of N-V(b) (i.e.
(2.11)), we obtain

1 1 4
g( Hta+ HQd+1 zt)

d+1 d+1

= %JSQ(HJSQ (ta>) + = J<2(HJ<2<Qd+1 zt))
01 (D) EET(| (Poraem)

1 /
:§<I+t;Li+§;Lf+ tQZLiLj)

i<j

d+1 2 1

<I+tZL + = ZL2+ tQZLL>
i>7

— J§2(Pt)
]

Another idea to construct construct higher order schemes is to use local Romberg
extrapolation. In order to do this we need to weaken the assumption {&;} C [0, 1].
This is done in the next theorem.

Theorem 2.5.3. Let m = 1 or 2. Assume (M) and R(2m,t*™) for P, and QY
(1=1,...,0) and (Mp) for P,. Furthermore, we assume

(1) J<om (Pt -3 & ,[f]) = 0 for some real numbers {&;Yie1 ¢ with S0 & =1

.....

(2) There exists a constant ¢ = q(m,p) > 0 such that for every f € C’;” with
m' >2(m+1), (P — ,EZ])f € C’Z,n,_Q(mH) and

sup [|(P — Q) )Fllgam—2ms2 < Crl| fll g™
t€[0,T]

Then we have for any f € Cp™ Y,

4
Prie) = Y &@f, ) s < S,

Proof. We first remark that the operator ZZ 1&6iQ; 1o longer satisfies the semigroup
property, i.e. El ) &(QT/n) (Ez ) S,QT/n) Thus the proof is nontrivial.
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Note that for f € C;A;(MH),

€= Prf(z Z& (@) f) ZSZ (Pr=(Q1.)") fl).

Using the semigroup property of P, and Q o we have

£~ 2@2 (@) (Prjm = @) Prsa f (2)

- Z gz Z PkT/n (PT/n QT/n) ’“Ile(:L‘)
i=1 =

T Z Si Z ( Q) =P kT/n) (PT/n - Q[Tﬂ/n> Pp_saqpf(x)
=1

We expand (QT /n) — Pir/n again, to obtain

—

l

n—

&= > (Prya)(Prim — D &Q%), ) Prosasy f(2)
k=0 =1
l n—1 k—1 - . ' -
#3063 (@) (@M = Prim) Pr_ssar (Pryu = Q1) Pr_sard (@)
=1 k=0 [=0

By the assumption (1), we have

3
—

‘ (Prio)* (P - g@'@[ﬁ/n) PT—%Tf@j)‘ < %

0

B
Il

Thus we end the proof by showing that

n—1 k—1

‘ZSZZ (QT/n) (Qgﬂ/n - F T/n) lelT(PT/n ng]/n> _enpf(2)
=1

CulTf.0)

an

<

Using here the assumption (2), we obtain

H <Q’[]Z"}/n - PT/n) PT—HTIT <PT/n Q[;w]/n) kzl
c(T)
- m+1

o)

— 2(m+1 ||f||c’4(m+1)

(PT/n - Q[Tﬂ/n) PTf%Tf’

Cg(m+1)
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and therefore

’ zgz & Z (Q[ziﬂ]/n)l (Q[ziﬂ]/n - PT/n) PTf%T(PT/n - Q[Tﬂ/n> PTf%Tf(x)

This completes the proof. O
Example 2.5.4. It is known that the Ninomiya-Victoir scheme

d+1 d+1

1 =z
( €2nLOHen ZeQnLO —|— €2nL0H6nLd+2 26271 )

is of order 2 (m = 2,d5(t) = t? in Theorem 2.4.2). By Theorem 2.5.3, the following
modified Ninomiya-Victoir scheme

d+1 1 d+1 "
T T T T T
(€2nL0 H en 1€2nLO> : (6%&) H eng+2—¢€%Lo)
=1

is also of order 2.

Example 2.5.5. Fujiwara [25] gives a proof of a similar version of the above theorem
and some examples of 4th and 6th order. General even order schemes are given
by [72]. We introduce the examples of 4th order which satisfies the conditions in
Theorem 2.5.3 with m = 2:

41,5 e o, ) 1 (1 1 4
L; L Lap1i 4 otLi tLas1—
(3 () - (T 3T
In order to complete the approximation procedure through (quasi) Monte Carlo
methods we need to find a stochastic characterization of the operators @); ;.

Definition 2.5.6. Given a stochastic process Y;(x) € N,>1L?, we say that Y is the
stochastic characterization of the linear operator Q; if Qif(x) = E[f(Yi(z))] for
f € Up>0C,. In such as case we use the notation Q; = Q) .

Remark 2.5.7. Given the operators QtZl (1t =1,...,¢) and the deterministic pos-
itive weights {& }1<i<¢ with Zi 1& = 1. Let U be a uniform random variable on

[0, 1] independent of (Z°); and define Z := ", 1(3-121& < U < 30, &) Z". Then

Qf f(w) = Blf(Zua))] = Y_&QF f(x)

Therefore by Lemma 2.3.2 if Q7" satisfy (M) and R(m,d,,) so does Q7. This
property will be used repeatedly in what follows.
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2.6 Applications

From this section on, we discuss the application of the previous approximation
results to the case of solutions of the SDE (2.1). From the results in Section 2.3.2
(see Corollary 2.3.7), it is clear that the semigroup P, f(z) := E[f(X;(z))] satisfies
the hypotheses (M) and R(m, d,,). We define various approximations generated via
a stochastic process X; with corresponding operator Qf(l (1=0,1,...,d+1).

Due to the previous results and in particular, Theorem 2.5.1, we see that is
enough to verify local conditions on the approximation operators to conclude global
properties of approximation. In particular, we only need to verify that the operator
associated with X; (the approximation to the coordinate process) satisfies (M) and
R(m, 6,,) and J<,, (Q) = I+, E—J,Lf for some m > 2 for L; given by (2.6). This
is the goal in most of the applications in this section.

Recall that the stochastic differential equation to be approximated is

Xt(:c):x+Z/o w(xs<x>>od3g+/0 W X,_(x))dYs.

In each of the following sections we consider different approximation processes for
the coordinate processes X;;. In each section, the notation for the approximating
process is always X;;. We hope that this does not raise confusion as the framework
in each section is clear.

2.6.1 Continuous diffusion component

a) Explicit solution: Let V : RY — R" be a smooth function satisfying the
linear growth condition [V (z)| < C(1 + |z]). The exponential map is defined as
exp(V)z = 2z () where z denotes the solution of the ordinary differential equation

dz(x)
dt

= V(z(x)), zo(x) = x. (2.25)
The solution of the coordinate sde is obtained in the following Proposition.
Proposition 2.6.1. Fori:=0,1,....d, the stochastic differential equation
t .
Xi(z) =2+ / Vi(X; s(x)) o dB; (2.26)
0
has a unique solution given by
X,4(x) = exp(BIV)z.

Proof. Apply 1to’s formula to g;(B;) with g;(y) = exp(yV;)z, y € R. O
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X +(z) is called the i-th coordinate process and its semigroup is denoted by Q.
This is a trivial example of the approximation of e'%i, i = 0,1, ..., d satisfying (M)
and R(m,t™). However, sometimes it is not easy to obtain the closed-form solution
to the ODE (2.25). In those cases, we shall approximate exp(tV)z. Here we will do
this with the Taylor expansion first and then the Runge-Kutta methods denoted by
b, and ¢, respectively.

b) Taylor expansion: We first prove the following lemmas which help us to find
the rate of convergence of the scheme to be defined later. The following Lemma
follows easily from Gronwall’s lemma.

Lemma 2.6.2. Let V' be a smooth function which satisfies the linear growth condi-
tion. Then |exp(tV)x| < C X1 4 |2|) fort € R, x € RV,

From now on we denote by ¢; : RV — R, the coordinate function e;(z) = x;
for j =1, ..., N. Furthermore, we also denote by V' the vector field operator defined
from V.

Lemma 2.6.3. Let f € CJ"*'. Then we have for i =0,1,...,d,

m

k t o m
Flepin) = Yo mvii) + [ et

and
Pt —u)m
‘ / T‘/@'mﬂf(exp(uvz)ﬂf)du‘ < Conl fllger eI (L 4 [Py )7+
0 .

for allt € R.

Proof. Assertion (2.6.3) follows application of Taylor expansion to the function
f(exp(tV)x) around t = 0. Next, as |V/"* f(z)] < CO(1 + |z[P*™F1), we obtain
from Lemma 2.6.2,

’ /Ot %Vimﬂf(GXp(uV)x)du

[t]
< Collfllegn / ORI 4 [P du
0
< O fll a1+ ) g,
]

Based on this Lemma, we define the approximation to the solution of the coor-
dinate equation (2.26) as follows

mook
b (6 V)e =Y =(V¥e)(x), j=1,..,N.
k=0

5| <
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Define ) |
Xip(x) = bomia (B, Vy)x for 1 = 0, ..., d.

Then we have the following approximation result.
Proposition 2.6.4. (i) For everyp > 1,
1G0(x) = Xio (@)l < Clpym, T)(L + [ H0)em

(i) Let f € C). Then we have

E[lf(Xis(x)) = f(Xia(@)]] < Clm, T)|| fllea (1 + |Pr20m e,
Proof. (i): Apply Proposition 2.6.1 and Lemma 2.6.3 with f = e;. Then we have

1Xia(2) = Ko@) o < E [|ConeIBI(L + 2 20t0) By 2m 0]

< C(l + |x‘2(m+1))tm+1

for some constant C' = C'(p,m,T).
(ii): We first apply the mean value theorem to obtain

BIf(Xerlw)) — F(Xise)l] )
< I lleglt + 10Xaew) + (1 = 0)Kog ()Pl Xia() — Kool 22
< Ol flle 1+ 1 Xeal@)P + 1Ko )Pl + a2 )em s,

We see by Lemma 2.6.2 that

sup |1+ | X;(2) " + [ Xio(2) P[22 < C'(1 + [a]")
t€[0,T]

from which the proof follows. O

As a result of this proposition we can see that R(m,t™) holds for the operators
associated with b,,(t,Vo)z and by, (B, Vi)z, 1 < i < d. Indeed, we have for
m’ < m,

=
=
=
S~—
=
I
!
=
—
>
=
=
_I_
=
—
—
Il
=
|
s
—
>
=
=

where
(B f) (@) = (Ber™ f)(@) + E[f(Xi0(2)) — f(Xia(2)]

and (Errtm/) f)(z) is defined through the residue appearing in Proposition 2.3.6, using
L; and @Q); instead of L and P. Furthermore, using Proposition 2.6.4 (ii), we have
that the error term EJ satisfies (B) in assumption R(m, t™).

It remains to prove that (M) holds for X;;(x). For the proof, we need an
additional growth condition for the vector field V;.
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Proposition 2.6.5. Assume that (Ve;) (2 <k <m,0<i<d, 1<j<N)
satisfies the linear growth condition then (M) holds for X, (z), i =0,...,d.

Proof. The assumption (M) follows from the smoothness and the linear growth
property of V:¥e;. We only prove the moment condition (2.13) for X, ,(z)i=1,...,d.
Consider the multiplication (p € IN)

z 2p i 2p
k avs k
‘Z k! Vzeﬂ )‘ ‘x+B +Z kl Vleﬂ z)
k=0 k=2
Taking into account that E[(B})*™] = 0, k € N. Then by the assumption, we
obtain the result. O

Therefore we obtain the main result.

Theorem 2.6.6. Assume that (\{/‘“ej) (2<k<m,0<i<d,1<j<N) salisfies
the linear growth condition. Let X, .(x) be defined by

_ . 1 . .
Xii(x) = bopy1 (B, Vi)x = Z —(Vk[)( ) / lodBj ---odB;,.
0 k! 0<ty <<ty <t

Denote by QtXi the semigroup a§sociated with X”( ). Then Qt)?i satisfies (M) and
R(m, t™). Furthermore J<p(Qy') =T+ 7 217

j=173!

c) Runge-Kutta methods: We say here that ¢, is an s-stage explicit Runge-
Kutta method of order m for the ODE (2.25) if it can be written in the form

Cm(t,V)e=a+1t 28: Bik;(t,V)x (2.27)
i=1

where k;(t,V)z defined inductively by

ki(t,V)x =V (z),

i—1
kl(t, V)Jj‘ = V(I‘ +tZai7jkj(t, V).CL’), 2<:i< S,
j=1

and satisfies
|exp(tV)a — o (t, V)| < CpeBIH (1 4 || ¢t

for some constants ((5;, a; ;j)i1<j<i<s). Runge-Kutta formulas of order less than or
equal to 7 are well known. For details, see e.g. Butcher [13].

The following proposition can be shown by the same argument as in the proof
of Proposition 2.6.4.
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Proposition 2.6.7 (stochastic Runge-Kutta). (i) For every p > 1,
14 (2) = comsr (B, Vi)l o < Clp,m, T)(L + |z D)t (2.28)
(i) Let f € C). Then we have
Bl f(Xia(@) = fleamr (B, Vi)l < Clm, D) flloy(1+ |« m0)emtt - (2.29)
Next we show that (M) still holds for the Runge-Kutta schemes.
Proposition 2.6.8. (M) holds for c¢,,(B!, Vi)x,i=0,...,d.

Proof. We first note that for every 1 < j < s, there exists a function of the form
p; = S23— a;i |t/ such that

|5 (&, V)| < p; (01 + |2]).

The assumption (M) follows from the smoothness and the linear growth property
of V;. We now prove (2.13). In the case i = 0, this is obvious by definition and the
inequality (2.6.1). In the case 1 <i < d, observe that

s s 1 d
Cm(t,V)e=a+t Z BiV(x)+t Z B / @V<x + 0t Z ay ik (t, V)x) do
1=1 = 0

= v+t Z BiV () 4+ Dy (t, V).

=1

Expanding multiplications and taking expectations, as in Proposition 2.6.5, we can
show that the terms containing odd powers of B have expectation 0. Finally, we
obtain from the boundedness of 0V, that

| Do (By, Vi)ae| < p(BY)(1 + |])
where p = p(t) is of the form >_;_, ax|t|*. Using this, we conclude the proof. O

Consequently, as in the Taylor scheme, R(m,t™) and (M) hold for the operators
associated with ¢, (t, Vo)z and copy1 (BY, Vi)z, 1 < i < d. For more on this method,
we refer the reader to [68].

d) Minor extension: In the previous approximation, the assumption that B, ~
N(0, I;) can be weakened. In fact, we can use v/tZ instead of B; where (Z°)%_, are
independent and

P(Z'=+V3) = % P(Z'=0) =<

foreachi=1,....,d.
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Proposition 2.6.9. Let B; be a 1-dimensional Brownian motion and Z be a R-
valued random variable such that for all 0 < k < m,

E((2)"] = E[(B1)"]

and
Elexp(c|Z])] < o0

for any ¢ > 0. Then, for every [ € C;TH;

|E[f(exp(BV)z)] — E[f (cm(VtZ,V))]] < C(m, T)(1 + |z|PmF)pm+D/2,

2.6.2 Compound Poisson case

Suppose that Y; is a compound Poisson process. That is,

N
=) Ji
i=1

where (N;) is a Poisson process with intensity A and (.J;) are i.i.d. R%valued random
variables independent of (NN;) with J; € Ny>1 LP.
In this case Y} is a Lévy process with generator of the form

| (rlas9) = sty

where 7 =0, b= 0, v(R%) = A < 0o and v(dy) = AP(J; € dy).
Then in this case

X p) =+ /Oth(XSdfl(:c))dYs, t€[0,T] (2.30)

which can be solved explicitly. Indeed, let (G;(x)) be defined by recursively
Go =X

G; = Gi—1 + h(Gi-1)J;.

Then the solution can be written as X (z) = G, (). Define for fixed M € N,
the approximation process Xg.1; = Gn,an(z). This approximation requires the
simulation of at most M jumps. In fact, the rate of convergence is fast as the
following result shows.

Theorem 2.6.10. Let M € N. Then the process Gy, n(v) satisfies (M) and

R(M, tM=%) for arbitrary small k > 0. Furthermore J<p (Q; ") = I+, %Léﬂ.
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Proof. Note that for f € C,

Qi f(x) — QI f(x) = E[f(Gnonnt(2))] — E[f (G, (2))]
= E[(f(Gnam (7)) = F(GN(2)) LiTyspi<ty)

where Ty := inf{t > 0: N, = M}. By the Holder inequality,

QX f(x) — QU f(2)] < 2B[ sup | f(Gny ()75 P(Taa < 1)

0<t<T
t M 1
v oa=L ()\S) Y 5
=2F G 1|7y e d
[sup F(G @) |77) 5 ([ Smaeas)

<O fle, (1 + ) (x5

Take sufficiently small v > 1, then R(M,t~*) holds for Qfd“ where k= (1 —
1/9)(M + 1) > 0. Finally, we show (M). Let f,(z) = |z|* (p € N) and v < M.
Then using the above calculation and Corollary 2.3.7, we have

QI f(@) = QI (@) + Q7 fylw) = QFF fy(a)
< (1+ Kit)fyla) + Kot + Q7 fo() — Q1 ()]
< (1+ Kst)fp(z) + Kyt.

2.6.3 Infinite activity case

In this subsection, we consider the SDE (2.4) under the conditions v(R¢) = oc.
Without loss of generality, we assume that ¢ = 0.

a) Ignoring small jumps: Define for ¢ > 0 the finite activity (i.e. drift +
compound Poisson) Lévy process (V) with Lévy triplet (b,0,2°) where the Lévy
measure is defined by

V(E) =v(En{y: |yl >¢}), EcBRY). (2.31)
Consider the approximate coordinate SDE
i) =4 [ WX @)Y7,
0
whose generator is
Lyti f(x) = V f(x)h(x)b + /(f(x +h(x)y) — f(x) = Vf()h(x)7(y))v"(dy).

Now we derive the error estimate for X, by the distance between two gener-
ators using a kind of parametrix method.
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Theorem 2.6.11. Assume that 0 < ¢ = &(t) < 1 is chosen as to satisfy that

o?(g) = Iy‘<6|y|21/(dy) = O(tM). Then we have that Q"' satisfies (M) and
R(M,tM). Furthermore J<y( Xd“) =1+ Z;VI1 zj, L.

Proof. First, we remark that condition (M) follows from Proposition 5.2 in [39].
We start by noting that from Proposition 2.3.5, we have (see e.g. Kohatsu-Higa and
Tankov([47])

X bd X 1
) =@M @) = [ @ s

t _
— [ (Lt~ LE)QI ) (a)ds
0
Therefore the proof is achieved if we prove that

|(Lars = Lgg) f@)] < Cllf ez (1 + [afP+2)eM

For the proof, we change here the representation of the Lévy triplets of Y; and Y;?
as follows:

(b7 07 V)7T :> (b€707 I/)7T€
(b7 07 1/8)’ T # (b57 07 1/8)’ TE

where 7.(y) = y1{y<c}- Then
(Lo — LI @) < | [ VH@h@) @ - no) oy - F@)| @32
+ ‘// (1- d92 (1w + 6h()y)db(v(dy) — v*(dy))].
We first obtain that for € > 0,
=t - v (ag) =0
since the support of the measure (v — 1°) is {|y| < ¢}. Now we consider the sec-

ond term of (2.32). We can immediately show that due to the polynomial growth
property for f,

[ st ontyiototan) - )| < Clf ez -+ )

and hence as o?(¢) = O(tM), one obtains that J<y( Xd“) =1+, f,Lle

and that Qth“ satisfies (M) and R(M, t*) follows as in the proof of Proposition
2.6.10. U
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Using Theorem 2.5.1, we can incorporate the above approximating process X, d+1.t
to the whole approximation method. This will require to first simulate the jump
times of the approximating Lévy process Y and then solving ode’s between these
times. If the task is time consuming one can also separate the jump component from
the drift component as indicated by Theorem 2.5.1. The right size of ¢ is determined
by the condition o?(¢) < CtM.

b) Approximation of small jumps: We apply here the Asmussen-Rosiriski’s
approximation for small jumps of Lévy processes. The idea is that the small jumps
ignored in (2.31) are close to a Brownian motion with small variance o?(g) (see
details in [2]).

Consider the new approximate SDE

t

t
Xai14(2) :x+/ h(XdH,S(x))Z;/QdWSJr/ h(Xar1s—(2))dYs (2.33)
0 0

where W; is a new d-dimensional Brownian motion independent of B; and Y7, and
Y. is the symmetric and semi-positive definite d x d matrix defined as

5. = /| ), (2.34)

We remark that Y. is of the form AAA*, where A is an orthogonal matrix and A
is the diagonal matrix with entries A\j,..., Ay > 0 (eigenvalues). Thus we use the

notation $&/* = AA2. Since the above SDE is also driven by a jump-diffusion
process, we can also simulate it using the second order discretization schemes in
Theorem 2.5.1.

Now we prove that rate of convergence in this case is faster than in the case that
we ignore completely the small jumps (see Theorem 2.6.11).

Theorem 2.6.12. Assume that 0 < ¢ = e(t) < 1 is chosen as to satisfy that
f‘y|<€ ly[*u(dy) = O(M). Then we have that Q" satisfies (M) and R(M, ™).
Furthermore J<p (Qp ) =1 + Zjle %Ler

Proof. As before, condition (M) follows from Proposition 5.2 in [39]. The SDE
X441, corresponds to the generator

2,e 1 *
Lyt f (@) =V @)h(@)b+ 5 D 0 f(2)(h(w)Beh” (),
k.l
+ /(f(flj +h(x)y) = f(z) = V(2)h(z)r(y))v (dy).
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Using this representation, we have for f € C3

(Lt — L) / [ =0 e+ O ao) — )
——Zaklf ) ()

-/ / S M) dy) — v ),

Hence we finish the proof as in the proof of Theorems 2.6.10 and 2.6.11. O

If we put all the pieces together, we have the following final result. Here B,fj
denote i =1,...,d, j = 1,..., 2n denote 2nd independent standard Brownian motions
and By’ =t.

Theorem 2.6.13. Assume that Vi, V' and h are infinitely differentiable functions
with bounded derivatives with f‘y|>1 ly|Pv(dy) < oo for all p € N. Define e = (T, n)
so that [, lyPv(dy) = O(D)). Let X,(2) = es(BY,Vi)a, i = 0,...,d, j =
1,...,2n, 2n copies of the Runge-Kutta method of order 2 as defined in (2.27) and
Xj(x) § = 1,...,2n independent copies of the approzimation defined in (2.33).

Then the following schemes, Xén) =Y"oY" o...0oY!(x), are second order dis-
cretization schemes:

N-V(a) Y/(z ) UXOT/(Z) XlT/ X170 XOT/(Z (@) + QA =U)XE 1/am) ©
X;H Tjn © O X/ T/ © X} T/(2n)( ) where U; is a Bernoulli r.v. with P(U; =

1)=1/2, mdependent of everything else.

N-V(b) Y/(x) = UXd+1T/n oXéT/n( z) + (1 —=Uj) XéT/ 0.0 Xé+1T/n( x)
where U; is a Bernoulli r.v. with P(U; = 1) = 1/2, independent of everything
else.

o X7

Splitting Y/ (z) = X/ 4,T/(2n)

0.7/(2n) © o X7 o X"t Lo X! (x).

d+1,T/n © “d,1/(2n) © 0,7/(2n)

One can also write a similar result for higher order schemes using Theorem 2.5.3.

2.6.4 Limiting the number of jumps per interval for approx-
imations of infinite activity Lévy driven SDE’s

In the previous two approximations although ¢ € (0,1) may be relatively large
compared with the interval size T'/n, one still faces the possibility of having many
jumps in the interval [0,7]. Therefore we introduce the idea used in Section 2.6.2.
That is, we propose another approximation that restricts the numbers of possible
jumps to at most n. Throughout this section we assume that f\y|<1 lylv(dy) < oo

and without loss of generality, we assume that 7(y) = yljy<1.
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Then we decompose the operator

Lgi1 = LclH—l + L§+1 + L3+1

Lhaf (o) = Vi) (v [ rtpan)

<ly[<1

Ly f(@) = / (f(z + h(z)y) — f(z) = Vf(2)h(x)7(y))v(dy)

ly|<e
Lo f () = f@ +h(z)y) — [(x)v(dy).
e<[y|
The operator L}, can be easily approximated using any Runge-Kutta method for
the ordinary differential equation Xj, | , = 2+ (b - f€<‘y|<1 T(y)l/(dy)) fot h(Xi,) ds.
We denote by X} 114, the Euler scheme associated with this ordinary differential
equation. Therefore we only need to approximate L2 41 and L3 -

Let [ : R?* — R, be a localization function that may be used for impor-
tance sampling of the Lévy measure. Let F!(dy) = A\7'(y)1y<cv(dy) with A\, =
f‘ylgl(y)l/(dy). Let Y. ~ F. . Define X}*(z) = z + h(z)Wi/A., where W is a
d-dimensional Wiener process with covariance matrix given by ¥;; = [ (Ye)’lY;er
which is independent of everything else.

First we prove that X;°(z) satisfies assumption (M).

Lemma 2.6.14. Assume that forp > 2, sup.¢(o 1 f‘y|<€ |y|pl(y)*%1/(dy) < 00, then
assumption (M) is satisfied with

E||Xi@)] < (1 + Kolal + Kt

Proof. Let f(z) = |z|P, p > 2. Using Ito’s formula for p # 3 and an approximative
argument in the case p = 3 (as in the proof of the Meyer-Ito formula) one obtains
that

E[f(X/%(2))] = f(x) (2.35)
=B {er / (5= 1) IX25 @) (h(a)y=, X22(@))" + | X2()|" " [h(a) Y[ ds
We use the Lipschitz property of h to obtain that
X2 ()| = ’:1: + ()W

< (1+ 0w V) (L +a]).

Then, we have
B [f (%2°(0)] - )
<celal) [l (14 (i) )™ ) vian)

ly|<e
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Lemma 2.6.15. Assume that for p > 2,

v= s [ i) (1 (1) 00 ) vl < o0

e€(0,1]

and f|y‘<€ ly|*v(dy) < Ct then
B [F(XP)] = @) = tLg f@)] < CO) 1 fllgg (1+ a2
That is, X{*(x) satisfies assumption R(2,t2).

Proof. Let f € C’;l then applying I[to’s formula, one gets

E[f(X?)] = f(x) + %E /O S 0 F(X2) hagha(@)1(Y9) 1YY ds

i,9,k,l
t
= 1@y [ 3 @) + Ao
YISE 45,k

where by Lemma 2.6.14, we have

p—2

Re@)| < €Il (L4102 [ Jylii) (1 (9P 1) Aut) ) v(dy).

ly|<e

Furthermore
1

VS0 =5 [ 3ttt
YIS® ikl

— Z /|< /o (0i f(x + ah(x)y) — 0;; f (x)) adachhy(x)yryiv (dy).

/[:7j7k7l
Therefore

1

L@ =y [ ous@huatentd)
YISE 45,k

< C||f||cg(1+|x|p+3)/ ly[Pv(dy).

ly|<e

This finishes the proof. O

In the particular case that I(y) = y", r = 2, the above scheme corresponds to a
Asmussen-Rosinski type approach.

The approximation for L3, is defined as follows. Let G.,(dy) = C;’lll(y)lwxy(dy),
C.i = flybel(y)y(dy) and let Z%' ~ G.; and let S*! be a Bernoulli random vari-
able independent of Z%!. Then consider the following two cases. If S! = 0 define
X(2) = x, otherwise X () = x + h(z)I(Z5')~1Z%!. Then we have the following
results.
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Lemma 2.6.16. Assume that for p > 2, sup ¢y f‘y|>€ 1)~ |y[P ™ v(dy) < oo and
C;ZIP [S€ = 1] < Ct then assumption (M) is satisfied with

E [}ijl( )}”] < (1+ Kt)|z|] + K't.
Proof. The result follows clearly from (f(z) = |x|P)

Ps* =1]|E [f (x + h()(Z) ' 2°) — f(@)]]
—CiP[sE = 1] /| (e b))~ ) i)

< cut+1o) (1+ /| ) via)).

Lemma 2.6.17. Assume that for f € C’z we have that fly‘>€|y|2(l(y)_1 -1+
[yP*2[1(y) ™t = 1P (dy) < C and [C P [S5 = 1] —t| < CF then

B [f(X0)] = f(a) = tLi f(x)| < 2| fllgn (1+ [a”2).
Proof. As before let f € Cg then

E[f(XP9)] = f@) + B [f (v + Ma)l(Z7) 1 Z25') = f(x); $5' = 1]
= f(z) + /|> (f(z + h(2)i(y)"'y) — f(2)) ly)v(dy)C P [S' = 1] .

Then we clearly have that
}E [ Xg’a)} — f(z) - tL3+1f($)}

> (0if (@ + ah(@)l(y)'y) — 0:f (x + ah(z)y)) dah(z)yv(dy)

|
x C_}P S'” 1]

y|>e

+ fla+ h(z)y) — flz)v(dy)| |CP[S5 = 1] —¢]

ly|>e

< ClIflleg (1+ |aP)e2

This finishes the proof. O

Using the previous results we can propose various schemes of approximation of
order 1 as in Theorem 2.6.13. We state the simplest type of approximation.
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Theorem 2.6.18. Assume that Vi, V' and h are infinitely differentiable functions
with bounded derivatives with f‘y|>1 ly|Pv(dy) < oo for all p € N. Define e = (T, n)
so that the conditions on Lemmas 2.6.14, 2.6.15, 2.6.16 and 2.6.17 are satisfied
for t = T/n and for appropriate localization functions. Let Xf;t(:c),i =0,...,d,
Jj=1,..,n, n copies of the Euler-Maruyama method for X (x).

Also let X;jfT/ ,i=1,2,3,7=1,...,n ben independent copies of the schemes
defined above. Then the following scheme, X( =Y"oY" o . .oV (x), Yi(z)=
XélT/ o X) T/n © X;fle/n o Xjfle/n X;’fl]T/n(a:).z’s a first order discretization
scheme.

Achieving higher order schemes for the approximation of L2 41 can be easily
obtained from the proof of Lemma 2.6.15. In fact, the required conditions are as
follows. Assume that for p > 2,

/| i) (1 (P i) )T ) V(dy) < Ct (2.36)
/| o) < o (2.37)

For L3, ,, the idea used in the previous scheme is that the probability of having
more than one jump in an interval of size T'/n is of order (T'/n)? and therefore they
can be neglected if the goal is to achieve a scheme of order 1. Obviously, in order
to obtain a higher order scheme, one has to consider the possibility of more jumps
per interval. As an example, we consider the case of at most two jumps per interval
with localization | = 1.

For L3 | one can do the following: Let G.(dy) = C-'1 5.0 (dy), C. = fl sV v(dy)
and let 77, Z5 ~ G. independent between themselves and let S7 and S5 be two in-
dependent Bernoulli random variable independent of Z7, Z5. Then consider the fol-
lowing cases. If ¢ = 0 define X;°(z) = z, if S{ = 1 and S5 = 0 then X**(z) = = +
h(z)Z¢ and finally if S5 = 1 and S5 = 1 then X;°(x) = z+h(2) Zs4+h(x+h(zx) Z9) Z5.

Define

pe = P[ST =11+ P[S; =1]),
¢ = P[ST =1 P[S; = 1].

In this case we have

Lemma 2.6.19. If C-'P[S{=1,595=0] < Ct and C7?P[S{=1,55=1] < Ct
then assumption (M) is satisfied with

E Hijl( )m < (1+ Kt)|z|P + K't
for all p > 2.
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Proof. The result follows clearly from (f(x) = |z|P)

PIS; = 1,85 = 0| E[f (« + h2)Z°) — F()]] < Ct(1 + [a]?) (1 + [ ) |y|pu<dy>)
PIST= 1,55 = 1]|E[f (e + h(@)Z + i + h()Z0)Z5) — F(2)]

< CH(1 + [P (1 +( /| P v(dy>)2> |

Lemma 2.6.20. Assume that |C-'p. — t| < Ct? and |2C2q. — t?| < Ct3 then

12 2

B[00 - o) - 1t @) - § (182) 1@

< CF ||l gy (L + Ja7?) (1 ¥ ( / . |y|u<dy>)2) .

Proof. As before let f € C’g then

B |£(%57)]
— @)+ / U ) — F @) i) PIST = 1,55 =)

+E[ Ry b @) Z5) — F@td) | €IS = 1,55 =1

= f(2) + Li, f(2)CT P ST = 1,85 = 0]

t [ [ et o)  fd P IS = 1.5 - 1
Hence,

B f(X5)] = f(@) + Lia f@)CT (P[S7 = 1] + P[SF = 1,85 = 1))
+(L3) fx)C2P S = 1,55 = 1]

Therefore
B[00 - ) - 2t - § (142) 1)
< B @67~ o + |(24)" 10| |02 - .
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Finally note that

L3) f(x)
: (f(z + h(@)y + h(z + h@)y)u) — 2 (@ + h@)y) + £(2)) v(dy)v(dy)

e<ly| Je<|y|

= / y / " /0 Vf(x+ h(x)y + ah(x + h(z)y)y)h(x + h(x)y)y
— Vf(z + ah(x)y)h(x)ydav(dy,)v(dy)

—

Thus (L3,,)*f(x) is equal to

/E By / N / V /(x4 h(@)s + ah(z + hz)u)y)
x / Vh(x + Bh(e)y) h(x)ydBydav(dy,)(dy)

D?f(x + ah(x h(z)y; + o (h(x + h(x)y;) — h(x
+/|/|// F( + ah(z)y + Blh(x)y + o (h(z + h(z)m) — h(z)) )
Y [hmyl ta ( [ vhte vh(w)m)dwh(x)yl) ). h(ar)y} dBdav(dy)v(dy).

This finishes the proof. O

A similar statement can be achieved if we limit the number of jumps in any
interval. The parallel of Theorem 2.6.18 can also be stated in this case.

2.6.5 Example: Tempered stable Lévy measure

Now we consider the previous approximation in the case that the Lévy measure v
defined on Ry is given by

1

v(dy) = PES (c+e_“|y‘1y>o + c_e_A*‘y|1y<0> dy

The Lévy process associated with no Brownian term and the above Lévy measure
v is called by

e Gamma: A\ ,cy >0,c_ =0, a=0.
e Variance gamma: A, A_,cy,c. >0, a=0.
e Tempered stable: A\, A_jci,c. >0,0< a<?2.
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Then, we have that for « € [0, 1)
[ v~ ez
ly|<e

Then sup.¢ 1 f\ylSs lylv(dy) < oo. For L3, ,, we consider as localization function
l(y) = |y|", then the conditions of Lemma 2.6.15 are satisfied if & < r < 2 and
e =1t5s.

For L3, ,, we consider as localization I(y) = 1, then Lemma 2.6.17 is satisfied
for example in the following case. Let P[S® =1] = e %=t where C. ~ 79,
a(e,t) = —e*log ((t* +t)e*) as e = t3== then we have that

a 3—2«
a = —t3- log ((t + 1)tﬁ> .

In the case of Lemma 2.6.20, one choice of parameters is

P[S;=1]=tFa (t+1)(1 +177)
1
PSEZ:[ = .
55 =1 2(1 + t5s)

The choice of 7 in the above scheme is related with variance/importance sampling
issues.

Remark 2.6.21. In this chapter we have presented a general set-up to handle
what maybe called operator splitting methods. In particular, the method is useful
when considering approximations of expectations of functionals of diffusions. The
approximation problem is divided in components, each one driven by a single process.
This single process, called the coordinate process can be approximated to a high
order using an appropriate (stochastic) Runge-Kutta scheme if the driving process
is the Brownian motion. In the case that the driving process is a Lévy process one
can decompose the Lévy measure in various pieces to facilitate the analysis. Note
that sometimes is not needed to know how to simulate Y but only the functional form
of the Lévy measure. In comparison with the proposal presented in [45], where high
order multiple integrals driven by different Wiener processes have to be simulated
at each step, we believe that the present methodology is a better scheme.

The issue that local approximations of high order are interesting to study in com-
parison with Romberg extrapolations as introduced in [90] is similar to the discussion
of using Runge-Kutta approximations in comparison with Romberg extrapolations
to approximate solutions of ordinary differential equations. We believe that this
article helps to open the path in this direction. In fact, it is somewhat clear from
Theorem 2.4.4 that the leading constants in a Euler+Romberg method and a Runge
Kutta method do not coincide.

Finally, we used the structure of this construction to easily introduce and an-
alyze the asymptotic error of an approximating scheme for solutions of stochastic
differential equations driven by Lévy processes with possibly infinite activity.
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Chapter 3

A review of Cubature on Wiener
space

This chapter is based on the article by Tanaka [93] published in RIMS Kokyiroku.

3.1 Introduction

In this chapter, we consider the discretization of stochastic differential equations
driven by Brownian motions using cubature formulas on Wiener space and study
their connection to operator splitting methods discussed in Chapter 2.

A cubature formula for a finite measure v on R? is defined as follows: If there
exist positive weights \; and points z; € R? (1 <4 < k) such that for any polynomial
P with degree less than or equal to m

P(x)v(dx) = Z NiP(x;),

Rd

then we say that the pair (\;, x;)1<i<x defines a cubature formula with degree m. The
existence and construction of the above finite d-dimensional cubature formulas has
been well-studied (see e.g. Stroud [84]). One important application of the formula
(Ai, Ti)1<i<k is the numerical integration formula

- flx)v(dr) ~ Z Aif ()

for smooth functions f. The reason why this method works is based on the Taylor
expansion or polynomial approximation of f. Therefore the regularity of f is a
sufficient condition for the method to work well.

The main objective of this chapter is to review how to construct cubature for-
mulas on Wiener space using splitting methods which have been applied to many
research fields such as numerical partial differential equations (e.g. [30]). Cubature
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formulas on Wiener space play a similar role to that in finite dimensional space in
the calculation of infinite dimensional integrals.

Wiener space is defined as the space of continuous functions C'([0, 1]; R%) equipped
with the so-called Wiener measure, under which the mapping B; := w(t) for w €
C([0,1]; RY) is a standard Brownian motion. On this space, multiple integrals with
respect to the time variable ¢ — B, have a similar importance to polynomials in fi-
nite dimension. For example, the It6-Wiener chaos expansion theorem ([37]) shows
that L?-random variables on Wiener space can be expanded by series of the multiple
integrals. As seen later, cubature formulas on Wiener space can be applied to nu-
merical approximations of stochastic differential equations, which appear in finance,
physics, filtering etc. In this case, the stochastic Taylor expansion gives the error
estimation.

This chapter is organized as follows. In Section 3.2, we formulate the cubature
formula and prepare some basic tools to discuss algebraic properties of the formula.
In Section 3.3, we review the idea of splitting methods for exponential maps and
also give some results applicable to the construction of cubature formulas.

3.2 Cubature on Wiener space

3.2.1 Definitions

Let (B}, ..., B{)iep,q be a d-dimensional standard Brownian motion on a complete
probability space (Q, F, P), and set the (d+1)-dimensional path B = (B}, B}, ..., B{)icjo1]
with By =t. We use the following notation.

o Let a € Z:= {DU(Upen{0,1,...,d}*)} be an multi-index and then define the
degree of a by

k+#{a; =0}, a=(ay,...,q) €{0,1,...,d}" k>1
fof = { & o=

e Copy([0,t]; R™) : the set of all R*"-valued continuous functions g = (¢2, ..., 9%)sejo4
of bounded variation in [0,¢] and which start at zero.

o For a = (ay,...,a4) € {0,1,...,d}*, k > 1, we define the multiple Fisk-
Stratonovich integral as follows.

I(t,a,0dB) := / odBy* -0 dB.

0<tp<--<t1<t

e Similarly, for g = (g7, ... ,ggl)te[&l} € Co v ([0, 1]; R4, we define

I(t, o, dg) := / dgyt -+ - dgy'.
0<ty<-<ti<t
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e Throughout the present chapter, we say that a measurable application
w = (wi)efo, : 8 = Copv ([0, 1]; R
is a “random path” if it satisfies the moment condition
I(1,ar, dw|) € LY(Q, F, P)

for any a € Z and almost all w € 2. Here |- | denotes the total variation path,

Le., |wli 1= SUPg_tyct; coocty—t Zj:l |W§j - W§j71|-

e A random path w has finite mass if there exist finite functions (g;)1<i<z C
Cosv([0,1]; R and positive weights (p;)i<i<r such that P(w = ¢;) = p;

and 25:1 p; = 1.

Definition 3.2.1. A random path w defines a cubature formula with degree m if w
has finite mass and satisfies for every ||| < m

L
ElI(1,,0dB)] = E[I(1,a, dw)] ( =Y pl(La, dgi)). (3.1)
i=1
We denote the space of all random paths which define cubature formulas with degree
m by (Cub),,.

Remark 3.2.2. The original paper by Lyons and Victoir [63] assumes w’(t) = t.
However the above generalization is straightforward.

We extend (Cub),, to a more general class which includes Ninomiya-Victoir and
Ninomiya-Ninomiya schemes (degree 5 formulas). The random path w for these two
schemes already appeared in Kusuoka’s papers [54, 55].

Definition 3.2.3. A random path w defines a moment matching formula with degree
m if for every ||af < m

E[I(1,a,0dB)] = E[I(1,a, dw)]. (3.2)

We denote the space of all random paths satisfying (3.2) by (M),,. Clearly, (Cub),, C
(M)

Example 3.2.4. Here, we give two examples of random paths with moment match-
ing of degrees 3 and 5. That is, elements of (M),, with m = 3, 5.
(Degree 3) For each 0 < i < d, define

dw! = Bidt.

Then this w defines a degree 3 formula. Indeed, due to the symmetry of the Gaussian
law of By, if ||a|| = 1 or 3, E[I(1,«,0dB)] = E[I(1,«,dw)] = 0. Thus it is enough
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to check the case ||af| = 2. If ay # g, clearly E[I(1,«,0dB)] = E[I(1, «,dw)] = 0.
If a1 = ap =i > 1, we have by 1to’s formula, I(1,a,0dB) = (B})*/2 = I(1, o, dw).
(Degree 5) (Ninomiya-Victoir scheme) Let A be a random variable with prob-
ability
PA=1)=PA=-1)=1/2

and which is independent of (B;). Then we define a piecewise smooth path w by

(d+2)dt 1fz_0te[0’d+2)u[gi;’l)
dwi = (d+2)BZdt 1f1§z§d/\_1t€[diz’éi12)
¢ = (d—l—Q)BZdt if1<i<dA=-1,te [d:ljgi’dﬁ;i)
0, otherwise.

We remark w # .

Let w be a random path and then define the time-scaled path (ws[t])scpo,q by
tw? 1=0
s/t)
wiltl = { Vi, 1<i<d.

Under (Cub),, or (M),,, the scaling property for the Brownian motion (i.e. B; <

VtB; where 2 denotes equality in law, also called equality in distribution) implies
E[I(t,a,0dB)] = IV E[I(1, o, 0dB)] =tV E[I(1, o, dw)] = E[I(t, cv, dw|t])]

for every t > 0. Therefore, it is enough to reduce our attention to the case t = 1 for
the construction of cubature formulas.

3.2.2 Application: random ODE and stochastic Taylor ex-
pansion

Let X; = X[ be the unique solution to the stochastic differential equation (SDE)

d t
Xf=z+ Z/ Vi(X?) o dB! (3.3)
i=0 70

where V; € C°(RY; RY). We also define a random ordinary differential equation
(ODE)

d t
XP=xz+ Z/ Vi(X%)dw
i=0 70
We denote by X (dw) the solution.
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The well-known 1t0’s formula in stochastic calculus is a fundamental theorem of
calculus (or change of variable formula) as follows:

FO7) = @)+ Y [ () (2) o aB:

for a smooth function f, where V; acts on f as a vector field Ejvzl 1% % on RV,
J

We can apply this formula to the integrands of the (stochastic) integrals. Then we
get the so-called stochastic Taylor expansion

f(X7) = Z I(t, a, odB)(Vak » -Va1f> () + (remainder) .

[l <m

Of course, we can also apply the fundamental of calculus to the bounded variation
function w, and then we have a similar formula

FX(dwl)) = 3 I(t 0, dwl) (vak LV, f) (z) + (remainder) .

lle[<m
We can show the following error estimates by using stochastic Taylor expansions.

Theorem 3.2.5. Let a random path w satisfy the condition (M),,. Then for any
[ € C°(RY;R), there exists a constant C' = C(m, f) such that

|BLf(X7)] = BLf (X7 (dwlt]))]| < 072,

Sketch of proof. The fundamental theorem of stochastic calculus (i.e. It6’s formula)
can be applied to w and B;

f(th) - Z I(t,a,odB) (Vak ’ "Voq.f) ("L‘) = Rﬁ(t,l‘),

[l <m

FRE@l) = 32 It o, doft]) (Voy -+ Ve S ) () =5 RE (1, 2),

el <m

We obtain from the assumption (M),,
E[ Z (t,a,0dB (V Va1f> ] E[ Z (t, o, dwlt] (Vak---Va1f>(x)].

el <m el <m

One can easily check that the remainders RX and Rff; consist of the multiple integrals
of B and w with degree m + 1 and m + 2. Therefore the result follows from the
time-scaling property for B, and w]t]. O

If ¢ is not small, we can use a Markov chain type approximation as follows. The
precise proof can be obtained by the semigroup approach in Chapter 2.
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Theorem 3.2.6. Let w(i) (1 < i < n) be i.i.d. random paths satisfying the condition
defining (M),,. Let us define a new random path & in [0,1] by

@ = (W) i—-1)m[n ]

fort € =L, L), Then for any f € C3°(RN;R), there exists a constant C = C(m, f)
such that

LX) B (X7 0] < s

3.2.3 Formal series and expansion of SDEs

When we investigate the short time asymptotics of the map t — E[f(XZ(dwlt]))],
the vector fields Vj, ..., Vj are considered just as the coefficients of the series. On the
other hand, we notice that the coefficient of t* is spanned by {V,, - - V., f; ||la|| = k}.
Hence it is natural to regard it as formal power series with respect to the variables
Vo, ..., Vg, and to forget the time parameter ¢t with t = 1.

To discuss formal power series with variables Vj, ..., V;, we use the following
notation.

o A={vg,v1, -+ ,uq}: Alphabets.

e Powers (words) of v = (vg, ..., v4):
R ay, ..., €40,1,...,d}F k> 1
1, a=10.

e R(A) : R-algebra of noncommutative polynomials on A.

e R((A)): R-algebra of noncommutative formal power series on A with product
topology. We regard R((A)) as the space of R-valued functions defined on all
powers of A.

e J,, : The projection from R((A)) to polynomials of degree less than or equal
to m, i.e.

I () := Z a0 for x = Zaavo‘ € R((4)), (a,) C R.

el <m

o exp(z) =14+ 17, "Z—If for x =37, )50 v and (as) C R. We note that this
mapping is well-defined since ay = 0 and so J;_;(2*) = 0 for every k.

e I['(-) : The linear map from R(A) to differential operators defined by I'(v*) :=
Vi -+ V.
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e I'(t,-) : The linear map from R(A) to differential operators defined by I'(¢, v*) :=
tIIaIIVak V.

Remark 3.2.7. In Lyons-Victoir [63], instead of polynomials on A, they consider
the expansion with respect to Lie polynomials generated by

[viw ['Ui2> [ o [Uik—wvik] o m

([vi, v;] == vivj—v;v;). 1t is shown that the existence of the function in Cy gy ([0, ¢]; R*™)
corresponding to the exponential map exp(L£) with arbitrary Lie polynomial £
(Chen’s theorem on Wiener space). Their approach for constructing cubature for-
mulas consists of two parts: The first is to find a pair of Welghts (p;) and Lie poly-
nomials (£;) such that Zlepijm(exp(ﬁi)) I (exp(vo + 5 ZZ L v?)). The second

is to construct bounded variation functions that come from exp(L;).

Let us define the R((A))-valued SDE:

d t
X, = 1+Z/ X, v; 0 dB’
i=0 /0

which has the unique solution given by

Xt_1+z (t,a, 0dB)v

llal>0
The following result is well-known (e.g. [63]).

Proposition 3.2.8.

ivf).

i=1

N | —

E[X;] = exp (vo +

Remark 3.2.9. The above result corresponds to the expansion (for f € C;°)

d

B = )+ 30 5 ( +;§;v?) r) +O(t*)

M»

1

J

= P<t, Jk<exp (vi + % zd:vf>>>f(x) +O(t").

1=

That is to say, the operation f(-) — E[f(X;)] has the structure of the form exp(tL)
where £ is the generator of the Markov process X; and is given by £ = V|, +

d
3> VA
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We next consider the R((A))-valued random ODE defined as

d t
X, =1+ Z/ X, vidw?. (3.4)
i=0 0

The solution is denoted by by X;(dw). As in the case of X;, we can solve X;(dw) as

X, (dw) =1+ Z I(t, o, dw)v®.

>0

To be more precise, we define the solution of (3.4) rigorously. Let g € Cy gy ([0, 1]; R4)
and a € R((A)) be fixed and consider the R((A))-valued linear ODE

d t
Y, =a+ Z/ Y, vidg’. (3.5)
i=0 /0

We say that (Y;)s>o is a solution of (3.5) if the coefficients of Y, (as a formal series)
are continuous function with respect to t and Y, satisfies the equation (3.5).

Lemma 3.2.10. The equation (3.5) has the unique solution given by

Proof. We can check that the function ¢ — a(1+ 37,50 L(t, o, dg)v®) is a solution

of (3.5). If (3.5) has another solution Y, then using the Taylor expansion we can
derive that J,,(Y; — Y;) = 0 for every m. Therefore the uniqueness of solutions
holds. O

We can define the solution of (3.4) pathwisely by means of the above lemma. By
Proposition 3.2.8, we obtain the equivalent condition for cubature formulas.

Theorem 3.2.11. Let w be a random path. Then we have the followings.
(1) For each m € N, w satisfies (M), if and only if

B[] (X (dw))] = Jm<exp (vo + % ivf))

1=

(17) Assume that w has finite mass. Then for each m € N, w satisfies (Cub),, if
and only if the above equality holds.

Proof. Notice that (M),, holds if and only if

E[Jp(Xi(dw))] - E[Jn(X0)] = Y <E[I(t, o, dw)] — E[I(t, a, odB)])vo‘ ~0.

el <m
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By using Proposition 3.2.8, this condition holds if and only if

E[Jn (X (dw))] — Jm<exp (vo + % ivf)) = 0.

1=

O

3.3 Splitting methods and construction of cuba-
ture formulas

In Chapter 2, we study the idea of splitting methods (or exponential product for-
mulas) that have been applied to approximations of ODEs, PDEs and more general
exponential maps (e.g. [81], [82], [85], [86], [30], [94]). For simplicity, we consider
two matrices A, B € R*** such that AB # BA. We can easily show by the Taylor
expansion

exp(tA) exp(tB) = exp(t(A + B)) + O(t%),
exp(=A) exp(tB) exp(%A) =exp(t(A+ B)) + O(#*),

DN | —~+

% exp(tA) exp(tB) + %exp(tB) exp(tA) = exp(t(A+ B)) + O(t%).

The above computation and basic ideas are applicable to more general (unbounded)
operator A, B. As mentioned in Remark 3.2.9, our interest is the case where
A,B(,C,D...) are generators of some Markov processes.

3.3.1 Splitting method for R((A))-valued SDEs

Let us define (d + 1) SDEs considered as the splitting of X; in each direction of
(BY, B}, ..., B%). Fori=0,1,...,d, define the R{(A))-valued SDE

X =1+ / X ;0 dBE.
0

We can immediately solve the above equations.

Lemma 3.3.1. (a)
X} = exp(vo).

(b) Fori>1,
X} = exp(Bjvy),

i v}
EX] = exp (5)
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Remark 3.3.2. The lemma is an algebraic version of the following probabilistic
consideration: Let B; be a one dimensional Brownian motion, W be a C°(RN; RY)-
vector field, and exp(sW )z be the solution to the ODE

Yi=u +/ W(Y,")dr.
0
Then using It6’s formula, we can show that exp(B;W )z is the solution to the SDE
t
X/ == +/ W(X?)odB,.
0

This equation has much better analytical tractability than the original SDE (3.3)
which is driven by a multidimensional Brownian motion. In other words, the split-
ting methods help us to avoid simulations of “Lévy areas” defined as

t s t s
19(t) = / / odB' o dBJ _/ / odB! o dB!
0 J0 0 JO

for ¢ # j. It is important to point out that (i) Levy areas naturally appear in the
stochastic Taylor expansion via fg Jy edBiodBl = L(B;B] +I'(t)). (ii) The exact
distribution of Lévy areas is not known and it is even difficult to know its moments.

We introduce some formulas of splitting methods with degree 5.

Theorem 3.3.3. [Ninomiya-Victoir scheme|: For Z = (Z1,...,Z%) ~ N(0, I,),

B[ (5 (explen/2) exp(Z'01) - - exp(Z04) exp(un,/2)
+ exp(ui/2) exp(Z%ua) -+ exp(Z'vn) exp(vo/2) ) |

=E [J5 (%(exp(vo) exp(Z'vy) - - - exp(Z%vq) + exp(Z?vg) - - - exp(Ztoy) eXp(vo))ﬂ

).

[Strang’s splitting type scheme]: For Z = (Z*1,..., Z?1) ~ N(0, Iyq_1),

1

= Jg,(exp <v0+§

(]~
<
o

=1

E|Js (exp(u/2) exp(Z'01/V2) -+ exp(Z7 a1/ V2) exp(Z04)

exp(Z4 Vg [V3) - exp(Z 01 /V2) exp(/2))|

= J5<exp <v0+%ivz~2>).

1=
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Proof. Using the independence of (Z%), we can derive
. . . . 1}2 U2»
Elexp(Z'v;) exp(Z7v;)| = Elexp(Z'v;)|Elexp(Z7v;)] = exp ( 5 ) exp ( 2j>

for i,7 > 1, i # j. Therefore we can obtain the desired results from formal compu-
tation of the Taylor series for exponential maps such as we have seen in previous for
the matrices A, B. O

Remark 3.3.4. The weight “%” corresponds to the probability weight of a Bernoulli
random variable independent of Z (recall Example 3.2.4).

Another formula is given by Ninomiya and Ninomiya ([68]). They focus on the
number of solving or approximating ODEs. The proof differs from Theorem 3.3.3
due to the lack of independence.

Theorem 3.3.5. [Ninomiya-Ninomiya scheme]: For Z = (Z',..., 7)) ~ N(0, I5,),
B[ (exe (5 + Z (37 + g7 )} e (5 + Z (37~ 57 ))]
:J5(exp<v0+ i ))

Proof. As in the proof of Theorem 3.3.3, it follows from the computation of the
moments of correlated Gaussian random variables with degree 2 and 4. O

3.3.2 Construction of paths of bounded variation

We give here a hint for construction of moment matching or cubature formulas of
degree 5.

Lemma 3.3.6. Let Z = (Z°,..., Z%) be a random variable and for 0 <i < d,

dwi = Z'dt.
Then
d
Xi(dw) = exp (Z Zivi)
=0

Proof. The result follows from

X1<dw):1+i(izivi>j/ dt; dtl—l—i-Z(Zszl)‘—
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The above lemma shows the relationship between the exponential eXp(ZfZO Z';)
and the random ODE X (dw). We now extend this lemma to discuss more general
compositions of the exponential maps including Ninomiya-Ninomiya type schemes.

Il i

random variable. Let us define for each 1 < j </

. . — 1 1
doi = 0Z0dt, te [‘77%) (3.6)

Then we have
d d
X, (dw) = exp (Z Z“vz) - exp (Z ZM’UZ').
i=0 i=0

Sl ) >

I i

Syl >) > Syl x) >

for any polynomial P on R¥ with degree less than or equal to m. Then a random
path w given by

defines a cubature formula with degree m.

Proof. The result (1) is obtained from Lemma 3.3.6 and the uniqueness of solutions
of Xy(dw) (Lemma 3.2.10). Indeed, for t € [1/¢,2/0),

exp (Zd: Z“vl) exp ((t —1/0) zd: ZZQUZ)
i=0 i=0
exp <(5 —1/0) ; Z 2vi> vidws)
: Ve : i1 i
:1+Z(/0 exp <SZZ;Z vi)vidws
+ /1/4 exp (izd;Z“vl) exp ((s —1/0) sz; Zi2vi> Uidw;).
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This implies X /y(dw) = exp (Z?:o Z“vi) exp (Z?:o Zi2vz~). We obtain the result

for X (dw) by induction.

Through the representation via exponential maps, we notice that the conditions
(M),, and (Cub),, depend only on the polynomials of Z with degree less than or
equal to m. Therefore the assertion (2) immediately follows. O

Remark 3.3.8. Theorem 3.3.7 lifts the original problem of cubature formula essen-
tially in infinite dimension down the finite dimensional problem of Gaussian measure.

Remark 3.3.9. Let a path of w in Theorem 3.3.7 be fixed. Then the random ODE
X;(dw) becomes an ODE which has piecewise random coefficients. We can apply
the Runge-Kutta method for the ODE in each interval (See [68], [94]).
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Chapter 4

Implementation using
interpolated-lattice

This chapter is based on the paper by Tanaka [92] published in Journal of Compu-
tational and Applied Mathematics.

4.1 Introduction

The aim of this chapter is to construct higher-order discretization schemes based
on Markov chain weak approximations and multidimensional interpolation methods.
The target problem is to speed up the computation of option prices under commonly
used N-dimensional stochastic processes with N < 5. We will emphasize through
computational experiments that the scheme is more effective than the Monte Carlo-
based approach in terms of CPU times in the three dimensional case.

Let us consider a Stratonovich stochastic differential equation defined as

Xw) =+ / Vi(X,(2)) 0 AWV (4.1)

with smooth coefficients V; : R — RY whose derivatives of any order (> 0) are
bounded. Here W; = (W}, ..., Wg) is a d-dimensional standard Brownian motion
on a probability space (Q, F, P) and W = t for convention. We assume that an
underlying asset dynamics (stock, interest rate, etc) follows the above SDE, and
attempt to evaluate the following values.

e European option price Prf:

P.f(x) = E[f(X;(x))] (at time ¢t = T maturity) (4.2)

e Bermudan option price Hr: For expiry dates 0 < Ty < --- <T; =T,

Hr g (x) = max(gk(:p),PTk+1_TkHT_Tk+1(x)) for k>1 (4.3)
Hrp(r) = PrHr 1 ()
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where f and (gx)1<x<; are Lipschitz continuous functions and set Hy = max(0, g;(x)).
The functions (gi) are sometimes represented as an expectation of SDEs such as
(4.2). Several approaches in numerical discretizations have been known. However,
as the dimension of the underlying asset process increases, we face the problem of
exponentially increasing computational cost, called the curse of dimensionality.

In derivative pricing problems, the dimensions N and d become higher (> 2)
when we evaluate some complex instruments or models such as basket options
(N,d > 2), cross currency derivatives (N,d > 3), equity/credit hybrid products
(N,d > 2), Asian or other path-dependent options (N + 1), multi-factor Markov-
functional interest rate models (N,d > 2), LIBOR market models (N:large, d > 2),
stochastic volatility models (N + 1, d + 1) and so on. In the following, we review
basic methods to evaluate them.

The well-known tree/lattice methods for some Markovian models (e.g. Brown-
ian motion, geometric Brownian motion) are very simple, and work well when the
dimension of the state space N is low. Similarly, the PDE approach such as finite dif-
ference methods, finite element methods and the method of lines (FDM,FEM,MOL
for short, see details in e.g. [78, 96, 34]) has advantages in low dimensional settings
(N = 1,2). However if N > 3, it turns out to be too hard to solve numerically
PDEs or Bellman equations that stem from (4.2), (4.3) since we need to solve un-
realistically large dimensional linear equations for them. For a similar reason, fast
Fourier transforms (FFTs, see e.g. [14]) that are very efficient approach for models
whose distributions are known cannot be used for higher dimensions.

Over the past two decade, the sparse grid method has been applied to FDMs,
FEMs, MOL and FFTs (e.g. [12], [76]) to overcome the curse of dimensionality.
The method decreases the computational cost with respect to “space” discretization
from exponential order m” to m(logm)™¥~! where m denotes here the number of
nodes for each direction. The essence of this reduction is the representation through
an orthogonal hierarchical basis on full grids, and the restriction of its support from
{ly,...,ly <1} CN¥ to {Z;VZI l; <1+ N — 1} where [; stands for the level of the
associated hierarchical basis of j-th direction. We will use the sparse grid techniques
in a part of our scheme explained later.

On the other hand, higher-order “time” discretization problems in the PDE
approach have not been used except special situations (Crank-Nicolson for N = 1,
the alternating direction implicit (ADI) method for N = 2 etc, [96]), because of
difficulty in performing stability analysis. Though it depends on the situation, time
discretization error often accounts for a majority in total error, and thus the second
order accuracy is desired.

Some higher-order time discretization algorithms arising from weak approxima-
tion problems have been introduced by several authors (cf. [63], [69], [68]; Section
4.2 for details). The weak approximation approach is based on (quasi-)Monte Carlo
simulations, therefore, it does not seem easy to use in order to evaluate Bermudan
or American options (see related works in [5], [10], [15], [62]). Besides, when we
use Monte Carlo simulations, we cannot avoid instability of sensitivity calculation.
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Hence, nontrivial variance reduction techniques will be required.

This chapter provides higher-order backward numerical schemes for pricing Eu-
ropean and Bermudan-style derivatives without Monte Carlo simulations. The goal
of this chapter is to find higher-order tree/lattice methods which rely on a semigroup
type discretization in order to generate trees. The semigroups can be approximated
using small size grids together with the interpolation methods. The sparse grid
method plays an important role in avoiding the curse of dimensionality to some
extent.

Roughly speaking, the implementation consists of the following steps:

1. Generate grid points G for each time step ¢, (0 =ty < --- < t, = T), and
begin recursion step 2 — 3 from k =n — 1 to 0.

2. If k =n — 1, then set ug := f on RM. If K < n — 1, then extend (interpolate
or extrapolate) the values u,_ (1) from the grid points G' to whole space RY
(or sufficiently large domain which contains G).

3. On each grid point x € G, calculate w,,_r(z) by

(%) = Elungern(Mi(x))]
~ E[Un—(k+1)(th+1)|th =] = Ptkﬂ—tkun—(kﬂ)@)

for some discrete-valued random variable My(x).

Then we expect that u, ~ Prf. We refer to this two-step backward scheme as the
interpolated lattice (I-L.) scheme. A pioneering work is Chevance [16] who introduces
a one-dimensional case of the above type scheme with the projection (choice of
the closest grid point) instead of interpolations. More recently, a projection type
technique called quantization has been developed in Bally et.al. [5]. Similar ideas
via interpolation methods (but, based on Monte Carlo grid sketching) can be found
in Berridge [7, chapter 5] and Kargin [43]. We will define an operator u; — u;1 (see
the definition (4.14)) which corresponds to the recursion step 2 — 3, and will show
that the operator can be represented by just multiplications of sparse matrices (see
the equation (4.21)). In other words, there exists the sparse matrix M such that

Ujtp1 = M x uj on G. (44)

This explicit form of the linear equation is similar to that of explicit FDMs. However,
they quite differ in the rate of convergence and the stability (Theorem 4.2.8 for
smooth payoffs and Theorem 4.2.10 for Lipschitz payoffs).

This chapter is organized as follows. In Section 4.2, we first explain the details
of the I-L scheme with some examples and formulate the convergence results. In
Section 4.3, we introduce a space interpolation technique known as the sparse grid
method to overcome the curse of dimensionality, and also explain how to implement
(4.4) effectively. Section 4.4 gives the precise error estimates for convergence of the

69



schemes. In Section 4.7 we also discuss the stability property for the approximations
in more general cases. Finally, computational tests are provided for some interest
rate and cross currency derivatives in Section 4.6. The discussion includes the
comparison of sparse grids and Monte Carlo simulations.

4.2 The algorithm

This section establishes numerical schemes for pricing European and Bermudan
options. First, we describe the idea of the I-L. scheme and discuss one-dimensional
examples in computational finance. After that, we state the I-L scheme for general
multidimensional diffusions and give our main result about the rate of convergence.
Finally, we will apply the scheme to pricing Bermudan-style derivatives.

4.2.1 The methodology and one-dimensional examples

Let u(t,z) := P,f(x) = E[f(Xi(z))] for the stochastic differential equation (X)
defined in (4.1). Then under appropriate conditions for f(€ C?), it is well-known
that u(t, z) is a solution of a second order parabolic PDE

Lu(t,z) = Lu(t, z)
{ u(0,z) = f(z). (4.5)

where £ is a second order differential operator which is given by
1
N Z V2

Here we identify a smooth function V : RY — RY with a smooth vector field
Zi\il V(")ﬁ on RY. Considering the Taylor expansion of ¢ + u(t, ) around t = 0,

we can prove u(t, x) = > 7" %(ﬁjf)(x) +O@t™ Y if f is regular (See Lemma 4.4.2).
Therefore u(t,z) = P,f(z) can be considered as a formal exponential map e**, and
as we will see in the following, this fact is useful for constructing higher-order time
discretization schemes.

We briefly review how to construct a numerical scheme satisfying that P, f(x) ~
Y. pif(y;) where y; = y;(t,x) are nodes in which the approximation process takes
values, and p; = p;(t,x) are their corresponding probabilities. Let M;(z) be a
random variable which is measurable on © x [0,7] x R™ and define the operator
Q: by Qif(x) = E[f(My(x))]. Then we have the following representation (Markov

chain representation):
(Qr/n)"f(x) = E[f (Mg, 0+ 0 My, (2))]
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where MY, /n, are independent copies of Mz, and o is defined as (Mi o M) (z) =
M} (M (z)). Using the semigroup property of P;, we notice that

3
—

Prf(z) = (Qr/)"f(2) = ) (Qrs)"(Prjn — Qrjn) Pr_enig f(2).

0

B
Il

From this expression, if the process M; approximates X; in the sense that it satisfies
the local error estimate (P, — Q;)f(z) = O(t™*1), then we can expect that the
Markov chain M}/n o---o Mp, converges with m-th order, i.e. E[f(Xr(x))] —
E[f(M%/n o---o Mg, ()] = O(n~™). Therefore, once we find an algorithm with
high acurracy on small time interval [0,¢], we can extend it to whole time interval
[0, T7.

Let us define the notation of ODEs, which are closely related to approximations
of Stratonovich SDEs. We denote by V' a smooth vector field on RY.

Definition 4.2.1. exp(V)z denotes z;(x) which is a solution at time 1 of the ordi-
nary differential equation

dz(x)
dt

Remark 4.2.2. exp(W/V)z is a solution of the SDE dX; = V(X;) o dW/. More
general relations are studied in Kunita [48].

=V{(z(x)), zo(x) = . (4.6)

Our interest in approximating P; by @, is to find a stochastic process X, satisfying
that

EIF ()] = 3 5 (E ) (@) + 0,

We define Ly := Vy and L; = %Vf (1 <7 < d), and consider approximations
of e** by combining the semigroup operations e**°, ... e**4. For example, when
d = 1, Strang’s splitting method [81] is defined as the operation e2loetligzlo —
etEotL) 1 O(#%). Notice that e** corresponds to the stochastic process exp(W;V;)x
by Remark 4.2.2, and moreover compositions of operators of the type (ewi)ogigd
correspond to combinations of Markov chains determined by (exp(W;'V;)z)o<i<4-
This is the key idea of construction of algorithms with respect to time discretization
(cf. [53], [63], [69], [68], [94]).

We now consider the case N = d = 1. Under the one-dimensional setting, we
can define a splitting tree algorithm with 3 successor nodes:

Xy(z) = exp(t/2Vp) exp(VEZVy) exp(t/2Vy)x (4.7)

where Z takes values in 4v/3, 0 with probability 1/6, 1/6 and 2/3 respectively. This
scheme corresponds to an approximation of Strang’s splitting ezfoetlieslo and is
known to be a second order method (see e.g. [94]).
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time

Figure 4.1: Interpolated lattice (N = 1): The dots represent grid points on G in
each time. p stands for the probability of a node of the lattice and w stands for the
weight induced by interpolations. 0 < p,w < 1.

Let us demonstrate an example of approximating X;, given by Hull-White short
rate model. The Hull-White model is the solution of the one-dimensional SDE
defined by

Tt = 9,5 + Xta dXt = —OéXtdt + O'dVVt, XO = 0

where 0; is a deterministic function which depends on the initial yield curve and
the parameters «, o, and also depends on the choice of numeraire (i.e. the choice
of forward measure). Then the tree for X, corresponding to (4.7) is X,(z) =
re 4 oe~2\/tZ. This is a non-recombining tree, whose computational cost grows
exponentially as the number n increases (compare with Hull-White [35]). To avoid
this difficulty, we shall develop in this chapter numerical tree/lattice schemes which
decrease grid points in which the conditional expectations are calculated even in the
multidimensional case.

We now consider approximating values of conditional expectations on given finite
grid points x; € G. For each time step tx, let us calculate the following values
at x € G, (g represents the conditional expectation which has been calculated in
backward recursion)

E[g(thH)‘th = SL’] ~ E[g<th+1*tk>|X0 = SL’] = thﬂ*tkg(x)' (48)

However, we do not know the corresponding values of g(-) since the random variable
X, does not always take its values in G. Therefore in order to obtain approximate
values of g(z) (z € G), we should interpolate its value by using the values g(x;) on
grids G = {z;}. The idea is viewed in Figure 4.1.

Let G ={-K =29 < -+ <2y, = K}, § := maxj<ij< |r; — 2;_1|, and assume
that the values g(x;) are known. Then we shall obtain the approximate values of
g(z), € [~K, K] by interpolations. Here for ¢ € C*([~K, K]), ¢ denotes its
k-th derivative.

Example 4.2.3 (Linear). Define g(z) = %g(xz) + o) for v €
["L‘iaxi-f-l]' Then for g€ 02([_K7 K]))

g = dllse < Cllg@ |00
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The piecewise linear interpolation has a lower rate of convergence than piecewise
polynomial interpolations, and in contrast, has the advantage of the monotonicity
of the L*-norm ||]lcc < ||9]|lso- This property allows us to avoid the numerical
oscillation from multiple iterations.

Example 4.2.4 (Natural cubic spline). Let g be a piecewise polynomial of degree 3
such that § € CY([~K, K]) and §®(z¢) = ¢®@(2,,,) = 0. Then for g € C*([-K, K]),

lg = Gllee < Cllg™ 6.
This approximate function can be obtained by solving a tridiagonal linear equation.

These procedures provide to approximate the values of E[f(Xr(z))] by backward
recursion with respect to the time (¢;) of the underlying processes as follows.

tree/latti
{thﬂ*tk e Qtn*tnq f(x)}:veRN 7"65_‘1> “ {th*tkﬂ thﬂ*tk e Qtn*tnq f<$l)}mZ€G

interpolation
— {thftklethﬁlftk T Qtn*tn—l f<x>}1'€RN

Note that the lattice can take the values out of [— K, K| near the boundary. There-
fore, in that case, we need an appropriate extrapolation technique.

In summary, the total error of the above scheme is represented by the following
three terms:

1. time discretization error
2. space discretization (interpolation) error
3. localization (extrapolation) error with respect to boundary parameter K

In the next subsection we shall formulate the problems in general multidimensional
settings.

4.2.2 The general algorithm and main result

We now turn to generalize the discussion in Section 4.2.1 to multidimensional
stochastic differential equation of the form (4.1). The generalization consists of two
parts; (i) multidimensional version of the formula (4.7) and (ii) general interpolation
method in dimension V.

We first consider a generalization of the numerical schemes with respect to the
formula (4.7), which is interpreted as cubature formulas for multidimensional Gaus-
sian measures and some computation of noncommutative exponential maps. The

following formula is a multidimensional generalization for Z that we used in the
formula (4.7).
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Assumption 4.1 (Gaussian cubature formula with degree 5). Let Z = (Z*,..., Z9)
be a finite discrete-valued random variable on R¢ satisfying that

E[Z°] = E[WY]
for |a| < 5. Here we denote X = (X1)1 ... (X9)% for a R%vector X.

For details of cubature formulas with degree 5, we refer the reader to Stroud [84]
and Victoir [98], in which the cubature formulas with O(d?) or O(d?) points can be
found. We now introduce a three dimensional formula (14 points, [98]):

P(7= (n/3.0.0)) = P(7= (0.0 3.0)) = P(2 = (00m/3)) =

P(7 = (m5.mvimv)) =

where n; = £1, 7 =1,...,6.

Before proceeding to the construction of general lattice schemes, we addition-
ally introduce the explicit Runge-Kutta methods for approximating the ODEs since
sometimes it is not easy to obtain the closed-form solution.

200

Definition 4.2.5. We say here that expgf;g(ﬂ/) is an s-stage explicit Runge-Kutta
method of order m for the ODE (4.6) if it can be written in the form

expi(tV)z =z +1 Y Biki(t,V)z (4.9)
i=1

where k;(t,V)z defined inductively by
i—1
k(t, Ve =V(z), kit V)r = V(x 3 anhyt, V)x), 2<i<s,
j=1

and satisfies
|exp(tV)x — eXpRK(tV)x\ < Cpt]™ . (4.10)

The Runge-Kutta formulas ((5;, o j)1<j<i<s) of order less than or equal to 7 are well
known (cf. Butcher [13] for more details).

We are now ready to state a general lattice scheme, inspired by Strang [81] and
Ninomiya-Victoir [69], as a multidimensional generalization of the formula (4.7) in
Section 4.2.1.

Define a time approximation operator @Q; on L>°(R") by

Quf (x) = E[f(X())] (4.11)
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where
Xt (.T) =

expgk(t/ZVO) expg((\/fZlvl) . -expgk(\/deVd) expg;((t/QVO)x ifA=1
expg}((t/QVO) expg((\/deVd) . ~expg’}((\/fZlvl) expg}((t/QVO)x if A=—1

with a Bernoulli random variable independent of Z and P(A =1) = P(A = —1) =
1/2. This approximation comes from (an approximation of) the operation of expo-
nential maps

t t 1 t t
Lo tL tLy Lo =Lo tL1 tLy  =Lo
—e2™0ed ... e €2 + —e27% ceeedez s

which is formally equal to e'* + O(#%).

We next begin with the extension of interpolations from one to N dimension.
We denote by CF(RY) the set of all C* functions with bounded derivatives of any
order (less than or equal to k). Define a seminorm on CF(RY) by [|fleos =
> r<tal<k 10% flloo = 221 < o)<k SUPzer [0 f(2)]. In particular, we often write Cy(RN)
as CP(RY). Let C,1;,»(RY) be the set of all bounded Lipschitz functions. The Lip-
schitz constant for f € Cy 1, (RY) is denoted by || f]|zip-

We denote D := [Ly, B)] X - -+ x [Ly, Ry] a domain for interpolations, and D° =
{x;}7L, its space discretization (i.e. finite subset in D) with meshwidth parameter

5. Let C(D) be the set of all continuous functions on D, and a norm || - [|p is
defined by || f||p := sup,ep | f(2)]. Similarly let C*(D) be the set of all C* functions
with a seminorm |[f{lpx := >21<0j<k [[07f]lp. In general, D should be included

by supp(Px,(z)) which defines the support of the law of Xp(z) for a fixed z. For
example if (X;) moves only on [0,00)", D should be a subset of [0,00)". We note
that, if an approximation Xén) (x) converges Xr(z) in law, then P(Xé")(x) Z0)~
P(Xr(x) ¢ O) = 0 for any open set that includes supp(Px,(z))-

Let IP be an interpolation and extrapolation operator defined for any measurable

fuction f on R by
M

I f () =) by() () (4.12)

j=1
for z € RY with coefficients (b;)1<j<r determined independently of f. We consider
the following technical assumption:

Assumption 4.2. (1) If f € C,(RY), then IPf € Cy 1;,(RY).
(2) Order of accuracy: There exist some 8 > 0, §* € N and C' > 0 (independent of
D) such that for any f € C(RY) with f|p € C* (D),

15 f = fllo < C&°|| fllp,s--
(3) Probabilistic representation: b;(z) > 0 for every j and z € RY, and

ij(x) = 1.
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We note that the assumption 4.2-(3) implies ||[IP f|loc < [|f|leo, and IPf < IPg if
f<g

Remark 4.2.6. The index £* might depend on the dimension N.
For mathematical simplicity, we also assume

Assumption 4.3 (extrapolation by boundary values). We define for z € D¢

I f(x) = I3 f(x.)
where x, is defined by

‘ w29 € [Lj, Ryl
SL’i = Rj x) > Rj
Lj ZL‘j < Lj.

On the whole space RY, we also define IPf := f on D, and IPf(z) := f(x.)
on D¢. Clearly, we have [[IPg|ls < ||g]/oo- It is important to point out that under

Assumption 4.2 (3) and 4.3, there exist transition probability measures PP (dy),
PP(dy) such that

(IPf)(z) = . FW)Py(dy) and (I3 f)(x) = . Fy)Pr(dy) (4.13)

for f € Cy(RY). In fact, using the Dirac measure d,(dy) concentrated at x € R, we
can derive that PP (dy) = 6,, (dy) and PP°(dy) = [q~ doi<j<M b;(2)0a, (dy) PP (dz).

The concrete algorithms can be seen in Example 4.2.3-4.2.4, and in Section 4.3.
The calculation process IP usually consists of two procedures. The first procedure
is called only once to determine its coefficients, and the approximate values of f(z)

are obtained by calls to fast separate routine (the second procedure).

Remark 4.2.7. The assumption 4.2-(3) is not satisfied in the case of general spline
functions. That is, there exist constants M, m(d) > 1 such that

m(0) < sup ([l flln/Ilfllp) < M.
feC(D),f#0

The detailed explanation can be found in de Boor [21, chapter XIII].

We now define a space-time approximation operator f’D by

PP =Qolf. (4.14)
Let 0 =ty <t; <--- <t, =T be a partition of [0,7]. We will use the backward
algorithm Qfﬁto . 'QfLLD_rtn_thwtn_l f(z) for the approximation of the final value
Prf(z).

Through the probabilistic representations (4.11) and (4.13), we can define three
R”-valued Markov chains as follows:
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e Under Assumption 4.1, let X (")( ) be a Markov chain determined by X, én) (r) =

r and Q- Qr—t,_ f(x) = E[f(X(n)( )] for every 1 < k < n, f €
Cy(RY).

e Under Assumption 4.1 and 4.3, let Xf:’p) () be a Markov chain determined
by Xo"(x) = @, X7 (@) = X (@) and Quoyy - (IPQumn ) f (@) =
E[f(X"P)(z))] for every 2 < k <n, | € Cy(RY).

e Under Assumption 4.1, 4.2 and 4.3, let )_(t(:’é’p)(:p) be a Markov chain deter-
mined by X§"*”(z) = &, X{"*P(x) = X[ (x) and Q, 4, - - (IPQu 4, ) f () =
E[f()_(f:’é’p)(x))] for every 2 < k <mn, f € C,(RY).

These will be used to analyze the extrapolation error.
Our main result of the present chapter in terms of error estimates is the following.

Theorem 4.2.8. Let t; (0 <i<mn). Suppose Assumption 4.1, 4.2 and 4.3
hold. Then for f € CSVB ( ) we have

Prf(@) = (@) ' Qrnf @) < Cillfllaos 72 + Coll fllcpr 6”  (4.15)
+ C3l|V flloov/n | max | P(X77 (2) & D).

Here the constants (C})1<;<3 depend only on T

In particular, if D = [— Ky, Ki|x- - -x[—= Ky, Kx]|, the tail probability P(X,gl}fnp)( ) &
D) is evaluated as follows: For any p € N, there exist constants Cy j, Ca; (1 < j <
N) depending on p, T,z such that

Cij+ C2,j]€(5ﬁ

P(ng“jnp ( ) g D) Z szp

1<j<N
Remark 4.2.9. We remark some theoretical and practical points.

(i) The convergence rate of the form n=® + ndé”® (a, 8 > 0) has been investigated
in earlier works by Chevance [16] and Bally et al. [5].

(ii) For a general domain D = [Ly, 4] X - -+ X [Ly, Ry], we should consider the
estimate for the tail probabilities (c]( X (0D (x)) & [c;(L;),cj(R;)]) with
some monotone increasing functions (cj)1<J< N-

(iii) Note that, in explicit FDMs, the choice of n (i.e. At) strongly depends on § due
to the stability condition in order to avoid numerical oscillation. In contrast,
the scheme introduced above does not cause high numerical oscillation in terms
of the choice of large At. In addition, considering the fact that the time
discretization error converges to zero with second order accuracy, we expect
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that the error is sufficiently small even if the mesh size At = T'/n is not
so small (for example, n = 10 with 7" = 1). Conversely, as the number of
partition n increases, the space discretization error grows linearly. However,
since the number n need not be so large, the error is acceptable to some extent
in practice (see numerical tests given later). Incidentally, compared with the
time and space discretization error, the error of localization (the third term
on the right hand side of (4.15)) is practically negligible.

(iv) Let us consider general SDEs with time-dependent coefficients V;(¢,x). In
general we can add an extra process X = t to the original process (X})i<i<n,
and consider the (N + 1)-dimensional SDE (X7, (X})1<;<n), which is of the
form (4.1). Therefore the space-time approximation QT’/Dn has to be defined

on the extended state space [0,00) x RY. In the particular case of interest
rate products we can proceed as follows: Let (T])gcz1 be maturity dates at
which plain options (swaptions) are tradable in a financial market. Then we
often use financial models with V;(t,z) = Vi(T}, x),t € [T}, Tj41), so that the
approximation Q‘(;’Tf =Ty)/ng with the state space R™ can be applied for each

partition [T}, Tj11).

4.2.3 Alternative methods for time discretization

The other efficient numerical schemes which give second order accuracy with re-
spect to time discretization can be seen in Ninomiya and Ninomiya [68] and Lyons
and Victoir [63]. Ninomiya-Ninomiya scheme uses 2d (correlated) Gaussian random
variables, so that the number of nodes become more than the above one. On the
other hand, Lyons-Victoir scheme uses cubature formulas for multiple Wiener inte-
grals with degree 5, which the number of nodes also tends to increase more than
that for Gaussian measures. However, in spite of such limitations, we should not
conclude that the scheme described above is best since the total computational cost
is also composed of the other aspects such as approximating ODEs, the size of the
constants C;, and so on. At any rate, we shall use the above scheme based on
Ninomiya-Victoir throughout this chapter.

When d = 1, using the negative time solution of the ODE for Vj, we can find a
scheme with more than third order convergence. An example of such consideration
is found in Alfonsi [1]. Another very high order scheme with d = 1 or 2 (based on a
cubature formula for multiple Wiener integrals) is given by Gyurké and Lyons [32].

4.2.4 Bermudan-style derivatives

The approximation result in previous section can be applied to pricing Bermudan-
style derivatives. Let 0 < Ty < --- < Ty be expiry dates and define

HT_TIc (x) = ma’X(gk(l‘)7 PTk+1—Tk HT—Tk+1 (x))
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where

f (x (option)
gr(r) = ¢ Gr(7) (plain vanilla swaption)
gr(x) + P, —1,9k+1(z) (exotic swaption)

as its price at t = Tj,.

Gk is, for example, of the form gi(z) = .., ¢;D(T}, T, x) with closed-form
bond price (discount function) formulas D(T}, 1}, ).

The reason why we call the third case “exotic” swaption is that the swap value
may not be obtained by closed-form depending on the pricing model or products. In
this case, the parallel backward calculation for Pr ., 5 Hr 7, and Pr, 7, k41
will be required.

If the partition Ty ; — T} is not so small (e.g. half year), we can identify the
numerical procedure on [Ty, Tj1] as the one explained in European option case
on [0,Tk11 — Tk]. Since the function max(-,-) is not smooth, we cannot apply di-
rectly the result in Theorem 4.2.8 to pricing Bermudan-style derivatives even if f is
smooth. For this, we shall discuss later some estimates derived from Malliavin calcu-
lus. Specifically we review a property of the derivatives of P, f under the uniformly
elliptic condition in the next subsection.

4.2.5 The case of irregular functionals

This subsection describes the results of the rate of convergence when f is not smooth
but Lipschitz continuous.

Theorem 4.2.10. Suppose Assumption 4.1, 4.2, 4.3 and the uniformly elliptic
condition, i.e. there exists € > 0 such that inf,egn S0 (Vi(x),€)2 > €€]? for all
e RN, Let s, =t —ty_1 > 0 and &, > 0 for each time step. Then we have for
any Lipschitz continuous function f,

[Pr(e) = Q@i 0t )

n—1 n—1 B
5k
< Il (X =t Vo) + O e
k=1 k=1

n—2
+C3 Y e P () ¢ D))
k=0

Here the constants (C})i1<;<3 depend only on T

Remark 4.2.11. This theorem asserts that if f has no smooth property, the mesh-
width s, and d; should be refined smaller near the final time (maturity date) 7.

The algorithm given in this section for Bermudan options is justified by The-
orem 4.2.10. Indeed, let us consider time interval [T}, T;41] as [0,T] in the case
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of pricing European options. By the inequality || max(gx, Pr,,,—7,Hr—7,,,)|zip <
max (|| gk Lip, | Pry,—1 Hr—13 ., || Lip), We can use the convergence result in Theorem
4.2.10 as f = max(gx, Pr,,—7, Hr_1,,,) for each expiry date.

More generally, let us consider a bounded measurable function f and compute

E[f(Xr + veW)]

where W is a standard normal random variable independent of X;. Then the discus-
sion given in previous can be applied to this expectation since its k-th derivatives
grow like ¢*/2 as ¢ | 0 near the maturity date 7. For example, this formulation
can be applied to pricing discretely monitored barrier options, if the convolution
y — E[f(y + /cW)] is obtained by closed-form (or easy to be approximated).

4.3 Grid sketching and implementation issues

As stated in previous section, we have a motivation to approximate functions by
space discretizations. In this section we introduce interpolation techniques on full
(rectangular) grids, and on so-called sparse grids.

For notational convenience we use the bijective map b : D — [0, 1] by b(z) =
(]9;11:2117 . E’;JJVV:%IVV), = (z',...,2") € RY and consider [0, 1] as the region [L;, R;]
for each j = 1,..., N. Of course, considering the importance of accuracy in each
node, we may use the other (nonlinear) coordinate transforms instead of b defined

above.

4.3.1 Uniform full grids

This subsection summarizes basic results on the interpolation theory. We denote
by D° = {(z{", ... 2™y ==V ectangular grids in D = [0, 1]V with equidistant

i1 ) 0N 0<i;<m
meshwidth 6 = 1/m (i.e. 27 = i/m).

Piecewise linear interpolation

One simple algorithm is the linear interpolation, which is defined by

IPf(z) = > bise(@) flx 2N ) (4.16)
k=(k1,....kx)e{0,1}N

if 7 € o)), 2(7}], where bi(x) = 57 [ cjan (1= ky) (2l —27) + k(a7 —2))),

i = (i,...,iy). Note that IP is well-defined when 2/ = 29 for some i and j.

This method satisfies Assumption 4.2 with § = p* = 2. The computational cost

at one point z is very small (/N times binary searches and some arithmetric oper-

ations). However, the number of nodes needed for the total calculation procedure

( glz)nleT/nf is O(m™) x (n — 1), so that it does not work well for large N.
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Spline interpolation

More generally, we can use piecewise polynomials (®;)1<;<,, as follows.

m

IPf) =) adi(x) (4.17)

i=1

with f(z;) = IPf(x;) for every x; € D°. This approximation is also written in
the form (4.12). As seen in Example 4.2.4, we expect that the rate of convergence
is sup,ep |f(x) — IP f(x)| < C6° with 8 > 3. Therefore, higher-order convergence
may decrease the number m needed for required accuracy. However even so, the
order O(m™) still seems to be too large for N > 4. We remark that polynomial
interpolations generally do not satisfy the condition (3) in Assumption 4.2.

Remark 4.3.1 (Least-Square Monte Carlo). We are interested in constructing
approximations of f(z) := FE[g(Xy,,)|X:, = x| for the SDE (X}), such as the
form of (4.17) with some basis functions (®;). Let (z;,y,)i<j<m be ii.d. copies
of (X4,,9(X4,,,)). Then the Least-Square Monte Carlo method ([15], [62]) is formu-

lated as
m 2
(yj - Zaﬂ%(aﬁj))
i=1

in order to get an approximation » ", a;®; ~ f. In this method, what basis func-
tions we should use for general diffusions has not been clarified.

min
{a;} <

M
J=1

4.3.2 Sparse grids for higher dimensions

In this subsection we explain the sparse grid interpolation techniques to break the
curse of dimensionality. It is expected that the method is more effective for the
dimension 3 < N < 10, although it may not work like Monte Carlo simulations for
several hundred dimensions. For detailed information, see e.g. Bungartz and Griebel
[12], Reisinger and Wittum [76], Leentvaar and Oosterlee [59] and the references
therein.

A sparse grid interpolation for a function f(z) in dimension N (z € RY) is an
operator IP of the type (4.12) such that

sup | f () — 17" f ()] < C6%1og, (67) 7| fllc.2 (4.18)

z€D

and its computational time is O(log,(6~ )N 1), and the number of grid points is
O(0711ogy(67H)N"1) as 6 | 0. This means that the scheme breaks the curse of
dimensionality to some extent. Unfortunately, the assumption 4.2-(3) is not satisfied
in the case of sparse grid interpolations explained below. Therefore, we need to
derive some fine properties of Qf’p with respect to the stability. We will discuss it
in Section 4.5.
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We now introduce the details of the methodology. Let ¢;; : [0,1] — [0,1] be a
shape function

(1 |a/h—il, @€ (i— Dy, (i+ k) N[0,1]
dri(x) = { 0, l otherwise l l

with iy = 27V and i = 0,1,...,2". We also define a product of N piecewise linear
functions by

N
bri(r) = H@j,zj (27)
j=1

with 1 = (Iy,...,ly) € (NU{0})Y and i = (4y,...,in). Let 1§ be an associated
space spanned by ¢p;, i; = 0,1,...,25, 1 < j < N. Namely, V; corresponds to the
space which is spanned by piecewise linear functions on full grids with meshwidth
27l for each direction.

Starting from the above basis functions, we reformulate the linear interpolation
(4.16) on full grids. First we consider the case N = 1. Let ay; be given by

flxrioa) + flrria)
2

Qpg = f(ﬁz,i) -

where x;; = j27' and f : [0,1] — R. In particular, let a9 = f(210) and
ajot = f(x121). Let us denote this operation oy; by [—%, 1, —%]lif. For general
N-dimensional spaces, define the coefficients oy; by tensor prodﬁcts, that is, for
each function f: [0, 1Y — R,

Qi = <ﬂ [—%, 1, —%] f) =go € R,

j: lj,ij

where gy := f, g; : [0,1]Y — R is defined as

gj(xl,...,:pj):: —,1,—= gj+1(x1,...,x],-)
2 20,
l]+lvlj+1

for 1 < 7 < N —1 inductively, and g := [—%, 1, —%]11,2‘191- Then the piecewise linear

interpolation denoted by f; has another representation
h In
h= Z T Z QIRTIRE
=0  iny=0

From now on, we explain how to decrease the number of summations without serious
deterioration of the rate of convergence.
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Figure 4.2: Two dimensional sparse grids with level mg = 2 (left) and m, = 3

(right).

Hierarchical subspace: For 1 € (N U{0})", define the hierarchical subspace of
by

Wi = span{¢; | i € Bi}
where the index set Bj is given by

03,25 =1, ifl; >0,
1

.
Bi={ie (NU{oHN; Y . 1§j§N.}
! { ( {}) ’lj:O lfleO,

We define the sparse grids of level mg (> 1) by

Vii= @ wm

Mi1<ms+N—-1

where ||1||; = Zjvzl max(l;,1). Figure 4.2 represents the sparse grids in the case
N =2.
We now describe the dimension of the sparse grids (see e.g. [12, Lemma 3.6]).

Lemma 4.3.2. The number of inner grid points in the subspace V;, is given by
V.| = 0@ mI ™).

The comparison of the full grids and the sparse grids can be viewed in Table 4.1.
While the number of grid points of the full grids grows exponentially, the one of the
sparse grids grows asymptotically linearly.

Sparse grid interpolation: The linear interpolation on the sparse grids is given

by
e = Z Z STRIURE (4.19)

11 <ms+N—1i€B

It is known that the above approximation for sufficiently smooth functions fulfills
the convergence property (4.18) with 6 = 27™=_ that is, sup,cp |f(x) — IP f(z)] <
C272msmN 71| fllco.2 (cf. Bungartz and Griebel [12, Theorem 3.8]).
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level 2ms full grid sparse grid V>
5 32 35,937 1,505
6 64 274,625 3,713
7 128 2,146,689 8,961
8 256 16,974,593 21,249
9 512 135,005,697 49,665
10 1024 1,076,890,625 114,689

Table 4.1: Number of grid points (N = 3)

Combination techniques (Smolyak’s algorithm): An alternative approach to for-
mulate sparse grid interpolations is the so-called combination techniques. Using the
relationship between hierarchical basis and nodal basis on full grids, one obtains

N-1 N1
= er (YY) X s
p=0 b ly=ms+N—1-p
;>0

that is, a weighted sum of full grid interpolations on few hierarchical subspaces.
The procedure of interpolations on full grids is clear as we have seen in (4.16), and
requires some arithmetric operations (whose cost depends only on N) and binary
searches. One notices that binary searches are needed only N-times for computing
(fo)je<met+n—-1, and therefore the computational time of the binary searches is of
O(Nmy) and ignorable compared with the other costs. Hence, we conclude that the
total computational time to obtain a value of f; ~is proportional to the number of
summation, O(mN1).

An extension of sparse grid interpolation is non-equidistant sparse grids. Let ~
be a non-negative vector (usually, only one element is positive) and define a y-non-
equidistant sparse grid interpolation as

e (VY)Y g (4.20

p=0 ly=ms+N—1-p
1;>0
Denote the corresponding grid points by V> _. Since currency (or stock) options
with stochastic interest rates are mainly dominated by the currency dynamics due
to its high volatility compared with interest rate dynamics, it is more effective to
refine the mesh of the currency dynamics (see also Leentvaar and Oosterlee [59]).
The same argument is also valid for stochastic volatility models.

Data structure: From the above mentioned schemes, the exact computation is
due to the correspondence between the pairs of levels 1 and coordinate vectors i, and
the addresses of data (grid points, function values) which queues up irregularly as
follows.

key (L,1) Lot index (address) p — grid points x,, values fob™!(z,).
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The so-called hash table allows us to run the mapping with the cost of O(1). Sev-
eral libraries, such as Boost C++ libraries(unordered_map), provide hash tables for
arbitrary data type. For more efficient implementations, see Feuersianger [23].

4.3.3 Sparse matrix formulation: sparse grid interpolated
lattice

It may be natural to compute (4.20) for each node of lattice, and each time step.
However it could be very expensive in total computational time, since tensor product
operations become too many even if we use sparse grids. Let us denote the inner
grid points in V;;, by {z;}1<i<n,. To reduce the computational time, we would like
to investigate propertles of a matrix M = M(7'/n, 6, D) € R™ ® R"™ such that

Q2 fm) = (v x£)”

where f := (f(z1),..., f(2,,))" € R™ and (v)*®) denotes k-th elemnt of the vector
v € R™. We can see that the rows of the matrix M are sparse vectors through the
representation

QT/nf sz s,y XT/n xku sz< XT/n Ty T )757 D)7f>Rnp

<sz v(Xr/u(1,7),6,D), >R"P (4.21)

=1

where (XT/n(:L‘k, i))!_, are the finite lattice points of XT/n(:L‘k) defined in (4.11).
Here v(y, d, D) are the sparse vectors determined by tensor calculation for f;, _(y)
on hierarchical subspaces.

Without loss of generality, we may assume v = (0,...,0). From the definition of
tensor calculation on full grids and hierarchical structure of sparse grids, one obtains
the following estimates.

Proposition 4.3.3. The number of nonzero elements in M is bounded by
Newy X Ngp X |V |

where N, is the number of lattice points depending only on the dimension d, and
Ny, is the number of nodes used in hierarchical tensor products with O(mY=1).

Remark 4.3.4.

(i) Clearly, the above upper bound is not optimal because the nodes called by the
interpolations are full of redundancies for each lattice point.
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(ii) A similar formulation of the matrix form can be used in full grid interpolations
(4.16) with the number of nonzero elements & N, x 2V x (2™ + 1)V,

(iii) The computational time mainly consists of generating the matrix M. Fur-
thermore, the bottleneck could be the hash function lookup. We note that
the matrix can be used without recalculation to tackle a class of instruments
with the same underlying asset dynamics. This property is very convenient
for pricing and risk managing large derivative portfolios.

Coarse-grained parallelization: One notices that the operation (4.21) can be run
in parallel for each row. Indeed, through the careful consideration to avoid storage
confilict, we can use parallel computing techniques for sparse grid interpolated lattice
schemes. The detailed procedure is the following.

1. Construct a hash table (on the global memory).

2. For each processor, set (small) local memories used in lattice construction,
binary search, tensor calculation, etc.

3. For each processor, execute the operation (4.21) in parallel by using the cor-
responding local memory.

4.4 Local and global error analysis

The goal of this section is to give the precise error estimates of the rates of conver-
gence, which have been partially indicated in Theorem 4.2.8. The crucial task is to
investigate the short time asymptotics of the operators P, and Q).

4.4.1 Basic lemmas for SDEs with smooth coefficients

Lemma 4.4.1 (e.g. [74]). There ezists a version of X,(x) such that a map x — X;(z)
1s infinite times continuous differentiable almost surely and in LP-convergence sense.
Moreover, we have

El sup | Xy(2)["] < C(T,p)(1 + |zf") < o0,
0<t<T

sup E[ sup |07 Xy(2)["] < C(T'p,a) < o0

zeRN  0<t<T
for any p > 2 and multi-index o with |a] > 1.

Lemma 4.4.2. If f € C™(RYN), then Pif € CX"™(RY) and |0°P.f|o <
Ci(T,m)|| flloc ol for || < 2(m + 1). Moreover, we have

- t/ J ! (t — S)m m
Pf(a) = Y2 50t + | e s
and | Pf — S5 L7 fllae < ColT,m) £ oy
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4.4.2 Proof of Theorem 4.2.8

The following theorem proves the second order convergence (thus locally third order)
with respect to the time discretization. The proof is similar to that of [1], [68], and
[94].

Theorem 4.4.3. Let f € C$(RY). Then we have

1Pif = Qiflloe < C||fllooss:
Proof. We first define an approximate operator without Runge-Kutta scheme:

1
K

Qi f(x) =5 E[f (exp(t/2Vo) exp(VIZ' V1) - - exp(VEZVy) exp(t/2Vo)z)]

—

2
+ S E[f(exp(t/2V0) exp(VEZVy) - - - exp(VEZ'V1) exp(t/2Vp) ).

DO | —

In the following we prove that both P, —Q; and @Qf — Q) converge to zero with third
order accuracy.

Step 1: To show the third order convergence of P, — )}, let us prepare the
Taylor formula for ODEs. Expanding ¢ — f(exp(tV;)z) around ¢t = 0, we have for
any 0 <m <6,

t—u)m

Flespe) = S Dvire) + / =)™ it (Vi)

m)!

We apply this expansion to the functions inside the expectation (4.11). Then the
representation

fexp(soVo) exp(siVh) - exp(saVa) exp(sasiVo)a) = Y pla s, V, f)(x)

lall<5

+ remainder,

is obtained where [|a|| := 2(ap + agr1) + 2?21 a; and the functions p(a,s,V, f) €
Co(RN) (5= (80, +,8a41), @ = (g, ..., ag11) € (NU{0})¥?) have the form

p<a7 s, V, f) = aasgo e ng—?(Vao T Vad+1f)

for some a, € R. For obtaining the constants a, of p(«, s, V, f), we refer the reader

to e.g. [68], [94]. We can observe here that 3, p(a, s, V. f) = [,

d 2
S
> s Vif) = (so+sa)Vof + ) SVEF+ ) sisiViVif,

[lef|=2 i=1 1<i<j<d
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sg + s5 d
Z plas,V.f) = (% + sosar)Ve S + Z(SdHS?VOViQ + 5057V Vo) f
Jal=4 —
d S"1 1 3252, P
7 197
IR I S
=1 1<i<j<d

+ > p(a, s, V, f),

laf|=4,1<3i<d s.t. a;=1

and the remainder term is bounded by
C'(s5+ 81+ + sa + Sas1) 1 f llocs-
On the other hand, we obtain by 4.4.1
t2
IPif = (f L]+ 5L lloe < Crt?l|f oo

Accordingly, the moment condition for Z up to the order 5 shows that

IPif = Qi flloo < Cot?|| fllooss-
Step 2: Let now derive the error estimate of Q); — @);. It holds that

d+1 d+1

Lot — [Lexlitons

i=0 i=0

d+1 i—1
<Z‘(Hexp s5;V; )exp (s;V3) ( H eXpRK 5 J>
J=t+1

(Hexp SJVJ)> eXpRK s; Vi ( H eXpRK s;V; ) ‘
7=0 Jj=i+1

where we denote Vyyq := Vo, ko = kg1 = 2 and k; = 5 (1 < i < d). Using the
Lipschitz continuity |exp(sV;)z — exp(sV;)y| < C"e“"*llz — y| (that follows from
Gronwall’s inequality), we can show that

d+1 d+1

RHS < Z(C) O Zimolsil (exp(si\/;) expﬁf&(s,%))( H exp%}?(sjvj))x)
i=0 j=i+1
d+1
< Z CreC" o lsil |5, |Fi
i=0

Consequently, since f is Lipschitz continuous, we have

Q7 f = Qifllos < C3t?[[V flloo-
This is the end of the proof. O
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Now we prove the result in global order of convergence when f is smooth.
Proof of Theorem 4.2.8. First of all, we consider the decomposition
Pif = Q7f = (Pf = Quf) + Qulf = I7f) (4.22)

for f € Cgvﬁ*(RN). By Theorem 4.4.3, the first term is bounded by C1¢3| f]]oo.6-
Assumption 4.2 (2) for the space discretization gives that

QU = IPFY)] < Cot?|| s +1Qu((f = T2 F)10e) ()]
Note that if y € D, we have
Q:((f =I5 lpe) (y)] < CHVfHoo(ilelg 1X:(y) = yll=(@mm)) P(Xi(y) & D)
< |V fllwVEP(Xi(y) € D). (4.23)

Here we used Assumption 4.3 for the first inequality and Assumption 4.1 for the
second inequality.
By the semigroup property, we have

Prf — Q)" Qrynf = (QT/n) Py — Qrpn) f
+Z Q) (Prym = Q7) Pr_ia o f.

We also have by the assumptions [|Q7"fllec < IIIPflloe < ||floe- (This property
implies the stability of the scheme for multiple iterations.) We now recall that
P,f € C{¥7 (see 4.4.1). Accordingly, we have

Prf(z) (@T/n)"*@mf@))
< Cillogn™ + l o

+ Z I QT/n QT/n (Pr k;’;le - [?PT—%Tf)lDC)(x)‘-

Since (Q(ST})n)’LC acts on the values in D, we obtain from (4.23)

‘(QT/n) Qr/n ((PTJ““TJC —I5 P ’f“Tf)lDC)(x)‘
< Crl|Vflloen 2P(X{50 0 () ¢ D).

This finishes the proof of the first claim (4.15).

Finally, we turn to prove the second claim. We notice that P(X kgﬂfp () ¢ D) <

S ejen PGP (@) ¢ [-K; K]), and for any p € N, KPP(X5077(x) ¢

kT /n
n5
[~ K, K)) < BIX 500 (2)]%).
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We can give the following estimate for X;: Let f,(z) := |z|?, z € RY. Then

Qufop(@) = Bl fap(Xe(@))] < (1 + Cprt) fop(2) + Cp 1.

(See also the above estimate in [94, Lemma 4.1, Proposition 6.7] under more general
settings.) Combining the above estimate and Assumption 4.2, we have

I3 Qufop(w) < (1+ Cort) (I3 fop)(2) + Cp it < (1 + Cyrt) fap(w) + Cp it + Gyl 6”.

The second inequality is obtained from f,, € C*. This implies E[|X Ig’ff)’j (2)]?] <

C1; + Co kP for some Cj,Cy;, and therefore Kpr(X]g;’ff),j ¢ D) < C; +

027]‘14?5[3 < 0Q. O

4.4.3 Proof of Theorem 4.2.10

As already seen in the previous proof, the smoothness of P,f plays an important
role for the error estimates, and thus some regularity results for 0“P, f are required.
The following theorem can be found in [57, 83].

Theorem 4.4.4. Under the uniformly elliptic condition, we have
o _lal-1
[0°Puflloc < Ct™ = [Vl (4.24)

for multi-indez o and f € C)*(RY).

Remark 4.4.5. Similar extended results in [57], [52] show that P,f has same esti-
mates (at least) to the direction of the vector fields instead of 9°.

The above result in Malliavin calculus allows us to prove

Proof. By simple calculation, we can show that the inequality

1Pf = Quflloe S NIPS = flloo + I1f = Qiflloe < CLVE|V floo

holds. As in the proof of Theorem 4.4.3, we have for f € C’fvﬁ* and s > 0,

PP f(y) = QPP f(y)] < Cut*|| Pofllocs + Co0” | Pof oo,
+ |Qt((Psf - I(?Psf)ll?c)(y”
Therefore Theorem 4.4.4 implies

£ bl
RHS < Ci 51V £lloo + Co gz IV flloo + |Qu((Pof = 17 Pof)1pe) (y)]-

Consequently, we obtain by approximations of f the above result with bounds || f|| L,
instead of ||V f]| - 0O
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4.5 Discussion: stability analysis

As a further research, it is quite important to provide the error estimates for in-
terpolated lattice schemes inducing general interpolations; for example, cubic spline
interpolations (N = 1), sparse grid interpolations (N > 2). Because of lack of
stability by means of Assumption 4.2-(3), we have only obtained the local error es-
timates (i.e. consistency) in Theorem 4.4.3 and (4.22) for such general interpolation
algorithms.

In the present chapter, we cannot indicate a precise answer (i.e. the exact rate
of convergence) to this problem. But we shall give some hints in order to deal with
them.

Throughout this section, we use the notation of a norm || - ||, which is defined on
a subspace of Cy(RY), and is not only || - [|c. The norm || - || satisfies at least that

Q] < q(t) = 1+ O(1).
4.5.1 Von Neumann stability analysis

First, through the matrix representation of the scheme, we can analyze the stability
of matrix multiplications.
Consider Fourier series on D = [Ly, Ry] X --- x [Ln, Ry| for f:

Z Crexp(v—1(k, z;))

keZN

and also for M[f = QT/nf (on D?):

Mf)(x;) = Y CuMexp(v=1(k,")))(z;)

keZN

where C is the Fourier coefficients of f. Then define an amplification factor p™ by

(Mexp(v—1(k, )))(z;)
exp(v—1(k, z;))

p(k) = Inax
Tj €Ds

for each N-component k.

By the discussion of Lax-Richtmyer theorem in [58], the upper bound estimates
for M| = HQT/nH is given by the estimates for sup, p™ = sup, p™(T'/n, 6, D). We
are concerned with when it holds that

sup p(k) ~ 1.
k

Sometimes sup, p¥ is analyzed theoretically, for instance, in case of some FDMs.
In the case where explicit calculation of p® is difficult, computational experiments
will help us to understand (empirically) whether the scheme is stable or not.
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4.5.2 An analysis of operator norm

Second we give a direct approach using an operator norm defined on Cy(RY). We
consider an inequality

1779l < c(a)llg

instead of Assumption 4.2-(3). The analysis of the asymptotics of ¢(9) is equivalent
to that of

1779l
g€C,g7#0 ||9||

O —

where a certain subspace C C C,(RY) includes the error functions Pyyy, f — (QT /n) f,
1 <k <n-—1for a fixed initial function f.
A key problem is to ascertain whether it holds that

c(0) - 1asd 0.

This is known as a very complex problem in the field of interpolation theory (see e.g.
[21]). If the above type estimate holds, then we rewrite Theorem 4.2.8 as follow:

1Py — (Q77)* FIl < 1(Prym — Q30) Pyryn f|
+11Q%), (Poe—1yrym — (7)) /|
< (local error) + q(T/n)c(8)||(Pu—1yr/m — (Q7,)* /|

and hence
(global error) < n (q(T/n)c(6))" x (local error)

with ¢(6) — 1. In practice, only several tens of the number of partition n is needed.
Thus the ¢(0)™ term may have a small effect on total error.

Under such general conditions, we show a partial result of the behaviour of the
error Pr/, — (Q(STf/Dn)’LC f with the supremum norm.

Modify the assumptions introduced in Section 4.2 as follows.

Assumption 4.4. Assumption 4.2-(3) is not satisfied, and alternatively suppose
that
(1) Convergence for Lipschitz continuous functions:
lim || 17 =0
im |19 — gllp =
for any Lipschitz continuous function g.
(2) Uniformly boundedness: For a fixed §* > 0,

" 12290
p sup
0<3<8* geC(D),g#0 lgllp
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Now we can prove the next lemma.

Lemma 4.5.1. Suppose that (gs), g are Lipschitz continuous and limso ||gs — gllec =
0. Then

lim |17 g5 — I glloe = 0
i [|£5°95 = 179

Proof. Tt immediately follows from [[I7gs — IPgllec < 11595 — I3 9lloc + 1159 —
IPglle < ||I(;D||Oo||g5 — gl + ||I§)g — IPg||o and Assumption 4.4. O

Additionally, one can easily obtain

Lemma 4.5.2. For any Lipschitz continuous function g, P,g and Qg are also Lip-
schitz continuous.

We can eventually obtain the following convergence result.

Theorem 4.5.3. Under Assumption 4.1, 4.3 and 4.4, we have for [ € CEVB* (RY)

lim | Prf(2) = (Q4)" Qryad ()] < Cullfllocon ™
+03||Vf||oo\/_ Jnax: P( kT/ ( ) € D).

Proof. From Lemma 4.5.1, we obtain (Q?/Dn)n_lQT/nf — (QT/NID)n_lQT/nf as
5 — 0. O

4.6 Numerical experiments

4.6.1 1-dimensional example

In this section, we provide computational tests for a widely used interest rate model
of Hull and White, which has been introduced in Section 4.2.1.
Under the Hull-White model, the zero-coupon bond price of maturity S follows

D(t,S) = D(t, S, r(t))

0_2

s
= eXp(—/t F(0,8)ds + B(t, $)(f(0,4) = r(t)) = .=(1 = e ™) B(t, 5)°)
where B(t,S) = (1 — e *9)/a and t — £(0,t) is the initial forward rate curve.
Let now consider European options on zero-coupon bonds with maturity S, ex-
piry date T and strike price L. For the computaion, let us change the numeraire
from the bank account to the bond of maturity 7. Under the so-called T-forward
measure, we can obtain the expression

dX, = —aXdt+ocdW!, (W] :Brownian motion)
o’ —« t02 —a(T—s)\ ,—a(t—s
0, = f(0, t)+ﬁ(1—e t)Q—/E(l—e (T=s)ygmalt=s) s
0

93



(see e.g. [9]). Then the price of European put bond options follows
D(0,T)E" [max(0, L — D(T, S, 07 + X7))| X0 = 0]

where ET stands for the expectation under 7T-forward measure. We now provide
computational tests for the expectation by using an I-L scheme.

Let us take the parameters as T = 1.0, S = 5.0, f(0,¢) = 0.02, ¢ = 0.005,
a=1.0, L = e %02%49 and in the following, the boundary [- K, K] = [-0.02,0.02].
We will describe the absolute error, that is, |approximate price — true price|, where
the true price (= 0.1165 with notional amount = 100) is obtained by the analytical
bond price formula. In the tests, we do not use here coordinate transform techniques
(i.e. non-uniform grid sketching) which could give higher accuracy.

Figure 4.3 demonstrates the convergence results of the I-L. scheme with linear
interpolations. On the left, the absolute error is plotted for fixed n as the number
of grid points m increases. On the right, the absolute error is plotted for fixed m
in contrast to the left. For insufficient number of grid points m, we can see that
the space discretization error grows like O(n). (Note that linear interpolations for
convex functions have positive bias.) The practical acceptable error, such as 1074,
is achieved for about (n,m) = (15,400).

Figure 4.4 shows the results in the case of spline interpolations. As far as we can
see the results, spline interpolations work within the interpolated lattice framework,
better than linear interpolations.

In Table 4.2, we illustrate the approximate prices for various strike prices. The
error seems to be larger around at-the-money since the non-differentiability of the
payoff function affects the rate of convergence (Theorem 4.2.10). Even if, in the case
of a deep out-of-the-money, the absolute error looks quite small.

4.6.2 3-dimensional example

We next consider pricing cross currency options as a 3-dimensional example. Cross
currency options with two stochastic interest rates on some standard models fortu-
nately have analytical formulas, so that we can evaluate an accuracy of sparse grid
interpolated lattice (SGIL for short) schemes. We can apply the methods explained
below to exotic cross currency derivatives such as cancelable PRDC swaps.

Let now consider a spot FX rate S and two stochastic interest rate dynamics (i.e.
domestic and foreign) which are given by r4(t) = 04(t)+Xa(t), r¢(t) = 0(t)+ X (1),

dS(t)/S(t) = (ra(t) —rs(t))dt + cdW},
dXd<t) = —OédXd (t)dt + O'dthz,
de(t) = —Ozfo(t)dt + O'de/Vt3

under the risk-neutral measure (the spot-martingale measure). The correlation of
the Brownian motion (W}, W2 W}?) is given by d(W* W7), = p;;dt.
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Figure 4.3: Convergence of I-L scheme (linear interpolation).
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Figure 4.4: Convergence of I-L scheme (cubic spline interpolation).
price
linear cubic spline
n 10 20 10 20 analytical
m 200 400 200 400 200 400 200 400
L =0.915]0.00027 | 0.00026 | 0.00028 | 0.00027 | 0.00026 | 0.00026 | 0.00027|0.00027| 0.00027
L =0.920]0.02219{0.02216 {0.02229 0.02218 |0.02214|0.02214|0.02214|0.02215| 0.02216
L =0.925]0.23145(0.23139(0.23165|0.23149|0.23138|0.23137|0.23142|0.23143| 0.23146
L =0.930]0.67580|0.67580|0.67582|0.67581 |0.67579|0.67579|0.67580|0.67580| 0.67580
L =0.935]1.16484|1.16484|1.16484|1.16484|1.16484|1.16484|1.16484|1.16484| 1.16484

Table 4.2: Bond option price (notional amount = 100): convergence

various strike prices.
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We start approximating the values of European put option with maturity 7" and
strike price L. The price is determined by the expression D(0,T)E” [max(0, L — St)]
under domestic T-forward measure. Through the change of measure, one obtains

ET[max(0, L — Sr)] = E'[max(0, L — S(0) exp(Vp + X1))] (4.25)

where we have used Vp = fOT(Hg(t) - 9?@) — 0&(t))dt — Jz_QTv

2 t 9
93;(1;) = f (O t) —+ gﬂ _ e*adt)Q . /0 Z_Z(l _ efozd(Tfs))efozd(tfs)dg7
d

¢ gq0
Hf(t) = f(0,t)+ —2(;2 (1—e )2 — / (0osp1s + P2304 f(l  emaalT=s)y)gmap(t=) g
f 0 Qq

05(t) = pro—t(l— o),
g

and X, follows

dX(t) = (X2(t) — X3(t))dt + odW,,
AX%(t) = —agX2(t)dt + ogdW,?,
AdX3(t) = —apX3(t)dt + opdW,?

where (W,7) stands for a 3-dimensional Brownian motion with the same correla-
tion structure as (W}). Noticing that the corresponding vector fields Vi, Va, V3 are
commutative, we obtain a second order scheme by the simple expression

exp(t/2Vy) exp(VH(Z'Vi + Z%Va + Z3V3)) exp(t/2Vo)x (4.26)

with 14 successor nodes.

We take the parameters as follows: T' = 1.0, So = 100, f4(0,t) = 0.02, f;(0,t) =
0.06, o = 0.15, 04 = 0.005, o7 = 0.015, ag = ay = 1.0, pay = ps1 = psz = 0.1. We
now evaluate an at-the-money(ATM) forward put option, that is, L = Sye(©-02-0-06)T
n (4.25).

We set the boundary [— K7, K] X [—Ks, K] x[— K3, K3] = [—0.6,0.6] x[—0.02,0.02] X
[—0.06,0.06], and use a coordinate transform for each direction by

(z + K;)/8K; /2)

3/4+ (v — K;/8) /2K, ]/8 /2)

€K
€[-K

V(z) =1 1/4+2(z+ K;/8)/K; €~ /8 /8)
S

15/16 + (z — K;/2)/8K; xe[ K;/2, K]

This transform has an effect of reducing the constant C'5 in Theorem 4.2.8 and 4.2.10.
In Table 4.3 we show the results when non-equidistant sparse grid interpolation
techniques are used. Here we take the number n = 20, that is, At = T'/n = 0.05.
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M price absolute error  relative error  time [sec, 1 thread]  time [sec, 2 thread]

= (07 0, 0)
5 5.65937 0.03786 0.674% <0.1 <0.1
6 5.63067 0.00916 0.163% 0.2 0.1
7 5.62320 0.00169 0.030% 0.8 0.5
8 5.62130 0.00021 0.004% 2.7 1.7
9 5.62126 0.00025 0.004% 9.7 5.8
Y= (17 0, 0)
4 5.65954 0.03803 0.677% <0.1 <0.1
5 5.63072 0.00921 0.164% 0.1 <0.1
6 5.62318 0.00167 0.030% 0.5 0.3
7 5.62130 0.00021 0.004% 1.7 1.2
8 5.62126 0.00025 0.004% 6.1 3.7
7 =(2,0,0)
4 5.63154 0.01003 0.178% 0.1 <0.1
5 5.62333 0.00186 0.032% 0.3 0.2
6 5.62132 0.00019 0.003% 1.1 0.7
7 5.62126 0.00025 0.004% 4.0 2.4
v =(3,0,0)
4 5.62405 0.00254 0.045% 0.2 0.1
5 5.62146 0.00005 0.001% 0.7 0.4
6 5.62129 0.00022 0.004% 2.5 1.5

Table 4.3: Results of SGIL for ATM forward currency put options, when we fix
n = 20 (At = 0.05). The analytical price is 5.62151. Test on Intel(R) Core(TM)
i5-661 @3.33GHz, 4GB RAM with C++ and OpenMP programming (Visual C++
compiler).

Comparing with the results which can be obtained for different -, we confirm that
the space discretization error is mainly dominated by currency dynamics. If 1072
absolute error is admissible in practical views, the computation takes less than 1
second.

Comparison of sparse grids and plain Monte Carlo: The Monte Carlo method
is a simple and very powerful tool for computing expectations. Using the equation
(4.26) with standard normal random variables Z, we test the accuracy of Monte
Carlo simulations from a viewpoint of statistical error.

num. of simulation | price 1 StDev ~ +1 StDev 2 StDev / Price time [sec, 1 thread]
100,000 5.60012 0.024 [5.576, 5.624] 0.850% 0.4
500,000 5.63425 0.011 [5.624, 5.645] 0.379% 1.8
1,000,000 5.63602 0.008 [5.628, 5.644] 0.268% 3.6
10,000,000 5.62296 0.002 [5.621, 5.625] 0.085% 35.0

Table 4.4: Results of Monte Carlo simulations with n = 20 in the equation (4.26).
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Table 4.4 shows the results of plain Monte Carlo simulations. If the target
error (in the sense of confidence interval) is about 0.01-0.05, there is no significant
difference of sparse grids and plain Monte Carlo. When we require more precision,
for e.g. calibration and computing sensitivities, the sparse grid method has the
superiority, which will be more remarkable in computing Bermudan or American
options.

4.7 Some remarks

Higher-order convergence of space-time discretization allows us to reduce dramati-
cally computational time through few time steps and efficient grid sketching. Sparse
grid interpolated lattice schemes are well-suited for several dimensional models, and
are simple to be implemented as long as cubature formulas and sparse grid inter-
polations are provided. We do not have to be bothered by solving linear equations
arising from discretized PDEs.

The notable features of (sparse grid) interpolated lattice schemes are summarized
below.

e Second order accuracy: From the practical viewpoint, one may argue that
there are advantages to converge with second order accuracy with respect to
time discretization.

e Breaking the curse of dimensionality: By virtue of celebrated works on
cubature formulas and sparse grid methods, we can compute the approximate
values of expectations within the interpolated lattice framework for higher
dimensions (2 < N <4 or 5, probably depending on PC performance).

e Stability: There is no need to choose smaller and smaller At depending on
our choice of §. Probabilistic constructions of time discretization schemes au-
tomatically allow us to avoid instability due to the positiveness of probabilities.
Conversely, a weak point is the fact that the space discretization error may
grow linearly in proportion to the number of partition n. However, it does def-
initely not cause high oscillation, and the method has practically acceptable
accuracy in the field of option pricing.

e Flexibility: Since the method is based on the weak approximations of SDEs,
a broad class of models with unknown distributions is covered.

e Parallelization: The operations of sparse grid interpolated lattice schemes
are compatible with coarse-grained parallel computing. In addition, once we
obtain the sparse matrix M, it can be used in computing a derivative portfolio
with the same pricing model and parameters.

The reader might hope to find and use a scheme which has a higher accuracy
to deal with, for example, long-term swaptions. A way to obtain such a scheme is
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to develop higher order (more than third order) space-time discretization schemes.
However, recall that higher order methods take in general more time per unit opera-
tion, therefore, this does not always speed up the computation in practice. Another
way is to find a case-by-case methodology which reduces the constants appeared in
the error estimates (cf. Theorem 4.2.8); see Chapter 5 in this thesis. Of course from
a viewpoint of implementations, some developments in computer science, such as
parallel computing, more effective algorithms for sparse grid tensor products, faster
hash table storage, and sparse BLAS for multiplications of the matrix M, help us
to improve the computational efficiency.
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Chapter 5

Strong approximation with
asymptotic method

This chapter is based on the paper by Tanaka and Yamada [95] accepted for publi-
cation in International Journal of Theoretical and Applied Finance.

5.1 Introduction

In the present chapter, we study an asymptotic method that accelerates numerical
schemes for perturbed random variables. The general concept is as follows. Suppose
that F'° is a random variable depending on a small parameter €. Let us consider an
approximation F¢ for F independently with respect to e. Then the bias F¢ — '€
may be close to the bias F® — F, since € has a small effect on the value of F¢ — F*.
Therefore, we expect that

F¢— F° + FY is a better approximation than F*. (5.1)

In particular, our interest is to study the above property when F€ is a functional of
a stochastic process and F¢ comes from time discretization for it. In many cases, F°
is a simpler model than F¢ and its exact distribution is well-known (e.g. Gaussian
random variables or functionals of Gaussian processes). Even if the exact distribu-
tion of F° is unknown, it seems to be possible to provide a new scheme F¢— FO 4 F°
with another more efficient scheme F° for F°.

A further development of the above acceleration can be considered through the
Taylor expansion of € — F° — [, that is,

_ _ d _
FE—FGzFO—F€+%(FE—FE)|E:0+---. (5.2)

The idea (5.1) comes from the 0-th order term in (5.2). Therefore if it is possible to
compute %(F ¢ — F9)|.—o easily, we can expect to construct a higher-order scheme
with respect to €. This new idea has not been taken into account in this thesis, and
should be studied with concrete examples in future work.
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We now turn to consider the error estimates for the type of acceleration (5.1).
Here, we are interested in the following three error structures:

e Strong error:
E[|F¢ — (F¢ — F° 4 FO)p]V/. (5.3)
e Weak error:

|E[F] — (E[F] - E[F°] + E[F°))|. (5.4)

e Monte Carlo bias estimator for ﬁ >
an i.i.d. sampling of F*:

M (Fei — F%) + E[F°] where (F/); be

J

Var< ! i Fed — o) ) (5.5)

J=1

Notice that in the case of Monte Carlo bias (5.5), the term - ij‘i1<F0,j) — E[FY]
works as a control variates method. For applications in strong error (5.3), we need
an exact or accurate numerical simulation method for F°. On the other hand, in
the cases of weak error (5.4) and Monte Carlo bias (5.5), we have to know the value
of E[F°], and therefore we need a closed formula or an accurate numerical scheme
for E[F°] such as the fast Fourier transform in one dimension.

When F¢ denotes a functional of a stochastic differential equation X§, F* cor-
responds to a certain time discretization scheme X () (n: number of partition).
Takahashi-Yoshida [88] derived the following results in weak error sense (5.4) and

Monte Carlo bias sense (5.5) for the Euler-Maruyama scheme X; (),

BLA(X5)] = (B (XE™)] = B ™)) + B3] = 0(5)

n
1 & €
€, (n),J v0,(n),7
Var' (5 SDUE) = (53 ) = 0(577).
]:
and hence the total error (the root-mean-squared error; RMSE) is equal to

1 M

Var2(B[f(Xp)] = == SO(F(KF™) = f(X29) = ELF(X9))

j=1
n O( Mel/Z)

Here they assumed some appropriate conditions for f and the coefficients of X;.
This is the case where F¢ = f(X5) and F€ = ()_(r;’(")) in (5.4), and F* = f()_(;’(n))
n (5.5). In order to make the total error O(~) with weak and Monte Carlo bias, the
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standard Euler-Maruyama scheme with i.i.d. sampling requires the computational
cost n- M = O(y7?), and in contrast, the accelerated Euler-Maruyama scheme with
i.i.d. sampling requires the cost O(e3y~3). That is, the asymptotic method (5.1)
for the Euler-Maruyama scheme is O(e?)-times faster than the standard method.
Moreover, we can construct a sampling scheme whose computational cost turns out
to be O(e!=9y~2(logy/€)?) for any 6 > 0 and Lipschitz continuous function f via
the multi-level Monte Carlo method. See Theorem 5.4.5.

In this chapter, we develop the error analysis for the Euler-Maruyama and Mil-
stein schemes with the asymptotic method in strong sense (5.3). Under suitable
conditions, we will show that for any p > 2,

_ 1/p
Bl sup |X; — (X0 - 2P 4 x0T = 0(5) (5.6)

0<t<T ne

with a = 1/2 (= 1) for the Euler-Maruyama (Milstein, resp.) scheme X; )AL
though strong convergence is usually very slow, the asymptotic method (5.1) helps
to improve the speed of convergence.

A simplest example of (5.6) is for the case where the SDE becomes the ODE
when € = 0, namely,

dX; = b(X;)dt + eo(X;)dB,.

However, from the viewpoint of applications, we can also consider the (Oth-order)
e-expansion around linear models like Black-Scholes (See an analytical expansion
in Kunitomo-Takahashi [51] and Takahashi-Yamada [87]). Indeed, we can treat a
perturbed stochastic differential equations such as

dX; = b X;dt + \/os X;dB,,
db; = hy(b)dt + €Vi,(by)d By,
doy = hy(oy)dt + €V, (0})dBy.

Notice that X becomes the Black-Scholes model with time-dependent coefficients.
Therefore there are many applications in the models of dynamic assets with stochas-
tic volatility and/or stochastic interest rate. In particular, we will discuss more gen-
eral stochastic differential equations so-called local-stochastic volatility type models.
This chapter is organized as follows: Section 5.2 is devoted to state theoretical
results for strong convergence (5.6). In Section 5.3 we discuss pathwise simulation
of stochastic volatility models. In Section 5.4, we introduce the multi-level Monte
Carlo method and its acceleration by the asymptotic method. In Section 5.5 some
numerical experiments for the SABR stochastic volatility model are given.

5.2 Strong convergence results

As seen in the previous intruduction, the asymptotic method (5.1) for discretizing
stochastic processes is very natural to speed up the discretization procedure. We
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state here the basic setting to discuss the approximation schemes. Let us consider
a stochastic differential equation (SDE) of the form

dX¢ = b(X{, €)dt + o(X[, €)dBy,, X = o, (5.7)

where b € C(RN x[0,1]; RY), 0 € C(RV x[0,1]; R¥ xR%), and B; is a d-dimensional
standard Brownian motion on a probability space (§2, F, P) with a filtration (F3)¢>0
satisfying usual conditions. Throughout the present chapter, we use the equidistant
partition ¢; = %T , 0 < i < n. The Euler-Maruyama and Milstein schemes will be
considered with some smoothness conditions for the coefficients of the SDE.

5.2.1 The Euler-Maruyama scheme with asymptotic method
Let X, ™ he the Euler-Maruyama scheme for the SDE Xf (Maruyama [64]): For
t € [ti tia],

X = XE 0K O — 1) + o (X (B - B (59)

The implementation of (5.8) is very simple. Indeed, practitioners only need to
know how to simulate normal random variables. The error of the scheme has been
analyzed deeply by many researchers (see e.g. [90], [45], [6]). Roughly speaking, the
strong order of convergence is equal to 1/2, and the weak order is equal to 1.

We now prepare the assumptions for X.

(H1): |b(z, )| + |o(z,€)] < C(1 + [x]).
(Hy): [b(z,€) = by, €)| + |o(z,€) = oy, e)| < Cle —y.
(H3): |b(x,€) —b(x,0)| + |o(z,€) — o(z,0)] < Ce(1 + |z]).

(H,): Forevery e, b(-,€),0(-,¢) € C* and |9b(x, €) —b(y, 0)|+ |00 (x, €) — Do (y,0)] <
Cle+ |z —yl).

The above constant C' is independent of (z,y,¢) € RY x RN x [0, 1].
Let us define the accelerated Euler-Maruyama scheme as

}/tgv(n) = va(n) _ X?v(n) + Xto
The property (5.1) for strong convergence is formulated rigorously as follows.

Theorem 5.2.1. Suppose that (Hy)-(Hy) hold. Then for any p > 2, there exists a
constant C' = C (T, xy,p) such that

_ 1/p
E| sup |X;-V"p| " <o

0<t<T — nl/?
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In particular, if we consider the small volatility model d X = b(Xf)dt + edB; and
the ODE dX? = b(X?)dt, then intuitively speaking, (Xf — Xf) — (X? — X?) cancels
out the error from the drift term (except the effect of €), and the error from small
volatility € only remains. Hence the total error is proportional to e.

Of course, more general situations can be considered, for example, if b and o
depends on time ¢, then some smoothness assumptions with respect to (¢,¢€) are
needed in addition to (H;)-(Hs). We will not attempt to prove this, but basically
the asymptotic method works as well.

Remark 5.2.2. The rate of convergence of the Euler-Maruyama scheme basically
relies on the smoothness (or the Lipschitz continuity) of coefficients of SDEs. If the
coefficients are not smooth but Holder continuous, the speed of convergence may be
slow, as seen in the paper by Yan [97]. For obtaining the strong rate of convergence
O(n=/?) with o(x) = 2* (1/2 < a < 1), a modified Euler-type scheme (called
a symmetrized Euler scheme) was developed by Berkaoui et al. ([8]). We should
mention that the Euler-Maruyama scheme may not converge strongly when the
coefficients are non-globally Lipschitz continuous. For example, in [36] a sufficient
condition that the scheme explodes is given.

5.2.2 The Milstein scheme with asymptotic method

We next discuss the Milstein scheme which has a higher order rate of convergence
than the Fuler-Maruyama scheme in strong sense. Just for notational convenience,
we only consider the case d = 1. Of course, in general dimensional setting with
commutative vector fields (07);<;j<4, we can use the (accelerated) Milstein scheme
as well.

Throughout this section, we assume the following smoothness.

e For every ¢, o(-,€) € C2.
The Milstein scheme X} ™ for the SDE X; is defined by

XM= X e p(Xe ™t — 1) + o(X0™, €)(B, — By,)

+ oo’ (XM e //dBdB

= X7 4 p(Xo™ et — ) + o(X™ e)(B, — By)
1 €,(n
+ 500" (X (B~ B — (¢~ 1)

for t € [tz, ti—i—l]-
We use the (stronger) assumptions for X.

(H): (Hy) & |oo’(x,€)| + [bo’(x,€)| + |0%0" (2, €)| < C(1 + |z]).
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(H3): (H>) & |oo’(x,€) =00’ (y, €)|+[bo" (w,€) =bo’ (y, €) |+ |00 (2, €) 00" (. €)| <
Clz —yl.

(HS): (Hy) & |00’ (z, €)= 00" (3, 0)] +[b0” (2, €) —bo' (2, 0)] +] 00" (s, €) 0?0 (z, 0)| <
Ce(1+ |z]).
(H}): (Hy) & [(00") (x,€) — (00") (y,0)] < Ce + |z —yl).
Let us define the accelerated Milstein scheme as
Cre,(n -€,(n -0,(n
}/t()::Xt()_Xt()‘I“X?'
Then we can get the higher order convergence rate.

Theorem 5.2.3. Suppose that (Hy)-(H}) hold. Then for any p > 2, there exists a
constant C' = C (T, xy,p) such that

A 1/p
E| swp |X;-v0p] T <ol
0<t<T n

5.2.3 Proof of Theorem 5.2.1 and 5.2.3

We use the following notations.
[} ’T](S) = tz if s € [tiutiJrl)-
° )_(te = Xf’("), Xte = Xf’(n).
We will apply the Burkholder-Davis-Gundy (BDG) inequality
2 2
& E[(M?] < E[ sup |M,[') < C,E[(M)}]

0<t<T

to the proofs below: Here p > 0 and M, is a continuous local martingale.
Using the BDG inequality and Gronwall inequality, we can show the following
moment estimates. (See [45] for the proof in the case of L?-norm.)

Lemma 5.2.4. (i) Suppose that the assumptions (Hy)-(Hz) hold. Then for any
p > 2, we have

sup B[ sup |X{[’] + sup E[sup |X{|"] < oo,
ecl0,1]  0<t<T e€0,1]  0<t<T

sup max FE[ sup |Xf—Xti_|p]SC(T,xO,p)/nl/Q.

eefo,1]0=i=n—1 <<y

sup E[ sup |X; — X{|] < C(T, o, p)/n'/.
cc0,]]  0<t<T

(i) Suppose that the assumptions (H;)-(HY%) hold. Then for any p > 2, we have

sup E[ sup |X{["] < oo,
e€l0,1]  0<i<T

sup E| sup |X; — Xﬂp] < (T, zo,p)/n.

e€l0,1]  0<t<T
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We now give an important lemma for the proof of the main theorems.
Lemma 5.2.5. (i) Under (Hy)-(H3), we have for any p > 2,

1/
B[ sup |X; - XPP| " < O(T,20,p)e, (5.9)

0<t<T

and
€ € 0 0 1/p €
max B[ swp [X; - (Xp = X2+ X0)P] < O w0,)-

Osisn=1 - Ly<i<tipg

(5.10)
(ii) Under (Hy)-(Hs), for any p > 2,

_ —0 1/p
E[ sup |X; — X |p} < C(T, xg, p)e.

0<t<T

(i1i) Under (H1)-(Hj), for any p > 2,

N S0 1/p
E[ sup |X; — X |p} < C(T, xg, p)e.

0<t<T

Proof. (i): We first note that
t t
X; - X0 = [ 0050 b 0pds + [ (o050~ (X2, 0)dBs,
0 0
and by the BDG inequality for the stochastic integral term,

E[sup |X¢— X°P] <C / Ib(XE, €) — b(XP,0 )\ds)p]

+E[(/O( o(X¢, )—o(XE,O))zds)p/ZD.

Using the conditions (H;)-(Hs) for the above, we have immediately

t
G(t) :== E[sup |X&— X2P] < Oref + 02/ G(s)ds
0<s<t 0
Here the constants C and C5 do not depend on €. Thus from the Gronwall inequality
we obtain (5.9).
We next consider the second result (5.10). Since

t t

(b(XE, €)—b(X?, 0))ds + / (0(X¢,€)—(X°,0))dB,,

n(t)

Xf—(Xf,(t)—XrO,(t)+XtO) = /()
n(t

the inequality (5.10) follows from (Hs)-(H3) and (5.9).
The proofs for (ii) and (iii) are straightforward as in (5.9). O
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The following lemma will be used such as the Lipschitz continuous property.
Lemma 5.2.6. (i) Assume that (Hy)-(H,) hold. Then
e, €) = blys,©) + (32, 0) = b2, 0|
< C((e+ |z — 2| + [y1 — yol) (@1 — y1) + |21 — Y1 + y2 — 22]).

lo(x1,€) — o(y1,€) + 0 (y2,0) — o(x2,0)|
< CO((e+ |1 — 2o| + |y1 — yal) (w1 — Y1) + |21 — Y1 + Y2 — 22]).

(ii) Assume that (Hy)-(H}) hold. Then
loo’(z1,€) — o0’ (y1, €) + 00’ (y2,0) — 00’ (x4,0)]
< O(e+ [z = mao| + 11 — w2) (@1 — 1) + 21 — 41 + 2 — 22]).

Proof. We only prove for b. By the mean value theorem,
b(x1,€) = by, €) + b(y2,0) — b(2,0) = £, (21— 11) + &), 1, (2 — 22)

where £ = fol Ob(pr + (1 — ply,e)dp = & ,. Taking the difference again in the
right hand side, we have

& (@ — 1) = (&, 50 — o) (@1 — Y1) + &y (T1 — 1)

€ _¢0

11— Sanyn)> We Obtain the result. O

Finally, using the assumption (Hy) for (
Now we shall prove the theorems.

Proof of Theorem 5.2.1. Let us define

Gi(t) = E[sup [X; =Y.

0<s<t

By using the Gronwall inequality, our goal becomes to show the following:
eP ¢
Gl(t) S CIW + CQ/O Gl(S)dS

where €} and C5 depend only on T, zg, p.
We now compute

Xg =YW = ect) + e(t)

where
t
(1) = / (b(X500)r€) — B(XC ) + (X0, 0) — B(XT,,), 0))ds

t
+ /O <U<Xn(s)7 6) - O-<X;(s)7 6) + 0<X7?(5)7 0) - 0<X2(s)7 O))st
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and
t
e(t) = / (b(XE, €) — B(Xy€) + (XY, 0) — b(XY,0))ds
0
t
+/ (0(XS,e) — o (s)> €) + O'(Xg(s), 0) — o(X?,0))dB,.
0

For é(t), we obtain from Lemma 5.2.6,

< C((6+P<'§—X0|+| Koy = X DIXS = X5
+ X5 — (Xp) — Xo(s)+X0)|)

and
lo(X5,€) — a( Xy €) +U(Xo(s) 0) — o(X?,0)]
< C((e+ X7 = X7+ X — X DIXT — Xl
+ X5 — (X — Xo(s) +XO)D
Hence the integral term in () is evaluated by

T

Elsup [ [ (b(XS,€) —b( €) + b(X0), 0) — b(X, 0))ds”]

0<r<t 0 n(s
< Oy(( +2 sup [IX = XDI3,) sup (X5~ X[,
0<s<t
+ sup || X — (X&q — X2, +X0 )
Ossgt I (Xns) = Xns) )[4

By using the BDG inequality, the stochastic integral term in €(¢) also has the same
bound (except the size of constant C3). Consequently, we have by Lemma 5.2.4,
5.2.5,

E[sup |e(s)|P] < Cy——

0<s<t p/2

Applying a similar calculus to e(t), we also get

t

Blsup [¢(5)1") < C=z +Co [ BIINy = (X = Xty + X5 Pl
< 05 + CG/ Gl ds.

This finishes the proof of Theorem 5.2.1. O
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Proof of Theorem 5.2.3. Similarly to the proof of Theorem 5.2.1, we shall show that
for Ga(t) 1= Elsupgc,<; | X5 — v,

P t
Golt) < C1— + Cy / Ga(s)ds
np 0

Now we consider the decomposition

where
e(t) = /Ot(b(X;(s)’ €) — b( A;(s)a €) + b(f(g(s), 0) = b(X D), 0))ds
+ /t( 0(Xg),€) — 0(Xy),€) + (XD, 0) — 0(XY,). 0))dB,
/ / 00 (X5, €) = 00" (X, €)

+ oo (XO(T), 0) — oo (XO ,0))dB,dBs,

and

/ / (bo (X<, €) — bo' (X0, 0))drd B,
n(s)

/ / 0%0"(X{6) — 50%0" (X2, 0))drdB,
n(s)

= / / (00’ (X, €) — 00" ( Xy, €) + 0'(7/<X7(7](r), 0) — o0’ (X?,0))dB,dB,.
(s

By a similar manner as in the proof of Theorem 5.2.1, we can also obtain

¢
E[sup (| (s |p+Z| <Cl—+02/ Go(s)ds.

0<s<t

Indeed, compared with Theorem 5.2.1, the reason why we can get the rate n™? above
is due to the additional integrals f:(s) - dr or f;(s) - dB, inside the error terms. [

5.3 Application to pathwise simulation of stochas-
tic volatility models

Our goal in this section is to construct a faster pathwise approximation for perturbed
stochastic differential equations which appear in financial modeling of volatility.
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5.3.1 An accelerated scheme for SABR model

In financial modeling, the SABR model plays a role to fit the implied volatility
especially in short time. The model is given by the SDE (Hagan et al. [33])

dS, = /a;S/ dB}
doy = vay(pdB} + /1 — p2dB}).

The volatility is not a mean-reversion process, hence this model does not suit for
pricing long-dated options. If § < 1, as far as the authors know, there is no exact
pathwise simulation method for the above SDE. In weak sense, several accurate
simulation methods via Bessel processes are known.

To avoid that the volatility process a; becomes negative in approximation pro-
cedures, we use a logarithmic transform for ay.

dS; = /g exp(&t)bdet1

2
dé, = —%dt +v(pdBl + /1= p2dB?).

Consider € = v. Since we do not know exact pathwise simulation methods for S?,
we substitute the Milstein scheme SP for S?. Therefore, we can use an O(ﬁ +3)-
scheme defined by

}7? = S§—§?+S?.

When v is small enough, a typical sample path is like Figure 5.1. Here we use
n = 16 for the standard Euler-Maruyama scheme (Standard E-M) and the above
accelerated scheme (Accelerated).

We next turn to consider another formal approximation scheme. Formally, 2? ~
x when &~ 1 and especially z ~ 1. Thus consider the scaling L; := S;/Sy, 5 = [(e).

dL; = /oy exp(&t)Sg_l(LE)ﬁdBtl,

ALY = /oSS ' LVdB}.

Here Sg ~! is just a constant coming from the scaling, thus we do not change the
constant S " even when e = 0. The accelerated scheme that we want to use is

Y= 57 = So(Li = LY).

Since LY is a log-normal process, it is useful to compute the path ¢ — X? and
E[f(X2)]. We will check the efficiency of Y through a numerical test later.
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Figure 5.1: A sample path of discretized SABR model when v is small.

5.3.2 General stochastic volatility models

The following model is an extension of local-stochastic volatility models applicable
to both short and long term contingent claims in financial markets.

dS, = puSydt + \/a; S/ dB} + S,_d.J,
doy = N0 — ay)dt + va] (pdB} + /1 — p2dB?)

where J; is a compound Poisson process, which is often used to adapt especially
short-dated large volatility smile/skew.

We remark that it is difficult to fit short-dated volatility smile/skew under the
Heston model (5 =1, v =1/2, J, = 0), and then v can take very large value. On
the other hand, under general models with  and J;, the parameter v need not to
be so large.

Let {7;} be the random jump times associated to J, and consider a new time
partition {f;} := {t;} U {r;}. On the time interval [}, ;) we can regard the ap-
proximation problem for S; as the one for a continuous SDE. In particular by taking
e = v = 0, the model becomes the CEV model with time-dependent coefficients.
For a technical reason, we should consider some carefull treatments around zero of
the function (+)7 (See [11, 8, 61]).

5.4 Application to multi-level Monte Carlo method

The theoretical results we obtained in previous can be applied to the multi-level
Monte Carlo method (MLMC in short). We propose an accelerated Monte Carlo
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sampling for Takahashi-Yoshida’s weak convergence method.

5.4.1 A brief review of MLMC with Euler-Maruyama scheme

We forget the parameter € for the time being, and denote by X; the continuous SDE
X¢ defined by (5.7). Let us define P := f(Xr) and P, := f()?}"’)), and consider
the time-step size T'/n; = T/k! for a fixed k € N. Let L € N and the sampling of
multi-level Monte Carlo is defined by

where each Y is independently distributed and is given by

1 <~ [ PY if 1 =0
%:_Z{O’c>- ’
N (P= P9, i
with i.i.d. sampling Péj) or (F,—P_1)Y, j=1,...,N;. The most important point
is to use the same Brownian motion path (B;):>¢ for simulating P, and P_4, and so
the concept of the multi-level Monte Carlo method concerns the strong (pathwise)
convergence rate.
Clearly we show that

E[P] - E[Y] = E[P] - B[P,

therefore the weak rate of convergence depends only on the last number L. Moreover,
we obtain from the independence of (Y}),

L
1
Var(Y) = E Nl\/ar(Yl).
1=0

and by definition Var(Y;) = Var(P, — P,_,). Suppose some suitable conditions for f
and X;. Then one can obtain

E[P,— P] = O(1/n),
Var'/?(P,— Bi.1) < |Bi— P2+ |1 — P2
= 0(1/n").

The last estimate is the strong convergence result in L2
The total computational cost C' is determined by the level L, the number of
sampling (N;)£,, and the number of partition n;(= k') so that

L
C = Z Nlnl.
=0
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Suppose that the required RMSE is O(7). Then by choosing N; = O(y~2Ln; "), the
total variance Var(Y') is of O(y?). Now if we set L = log(y~!')/log(k)+O(1), then the
total time discretization error E[P, — P] = O(v). Consequently C' = O(y~2(log7)?)
for the required accuracy O(7).

5.4.2 Accelerated MLMC sampling (with smooth payoffs)

From now on, we reconsider the sampling of the accelerated Euler-Maruyama scheme
introduced by Takahashi and Yoshida from the standard Monte Carlo method

Z (X9 — FXP™)) + B[f(X2)]

to the multi-level Monte Carlo method via
Ppe = f(X™) = f(XF™) + BF(XD))
Remark 5.4.1. We can also consider another MLMC sampling method via
o= f(X5 = Xy + Xp),

whose computational cost is O(e?*y~2(log~y/¢€)?) for Lipschitz functions f. However,
in this case we cannot take advantage of the explicit formula for the term E[f(X3%)].

Giles [27] assumed that f is Lipschitz continuous to analyze the variance of esti-
mator. On the other hand, we need f € C? := {g € C*(R";R) | 9,9 and 9;;¢ are bounded, 1 <
i,7 < N} in order to use the asymptotics with respect to ¢ (Notice that |f(x;) —
fy1) + f(y2) — f(x2)| £ Clzy — y1 + y2 — x2| in general). Our analysis follows from
the lemma below.

Lemma 5.4.2. For f € C’f,

|f(z1) = f(yn) + fy2) — fl22)] < (|21 — 22| + |y1 — y2l) |71 — 11

IV llsclzr = y1 + y2 — 22,

IV2f oo
2

Proof. This can be proved immediately by using the mean value theorem twice (See
also Lemma 5.2.6). O

Then we have the following variance estimate.

Proposition 5.4.3. Assume that (Hy)-(Hy) hold. For f € CF, we have

Var!/2(Prev — prev) < Cenl_l/Z
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Proof. The variance of the difference PP — PPV is estimated as

Var 2 (B — Pry) < 1 F(X™) = f(Xp™) = (PR ) = F(X )]s
< IF(Xg) — FERT) + F(XP")) = F(X)]2
FFXE) — FXEM) 4 FXETD) = (XD o

Thus by Lemma 5.4.2,

€ n On
1F(X5) — FXE) 4+ F(XR) = F(XD)]s
€ n v0,(n € € (n
< O((I1 X5 — X4+ [ X5 — X9 )15 — X2
€ v E (N 0,(n
X5 — X 4 X - X2,).

Hence using Lemma 5.2.4-5.2.5 and Theorem 5.2.1, we get the rate of convergence.

O

For the use of the multi-level Monte Carlo method, we have obtained the results
as follows.

EIR™ = P] = Ole/m)
Var 2(B = BEY) = O(e/n ")

So the estimator for (PP°V);so has an equivalent effect to the one for (P);>¢ with
the required error O(v/e). Consequently we get the order of computational cost
O(e*y%(log(v/€))™2). Both the asymptotic method and multi-level Monte Carlo
method are very easily computable, so that practitioners will get large benefit only
with small additional implementation cost.

Remark 5.4.4. Clearly, we can also check the variance estimate for the accelerated
Milstein scheme. Let PPV := f(X3 )y (XY ")y © E[f(X9)]. By a similar
argument, we derive that under (Hp)-(H}) and f € CZ,

Varl/2(PreY — Prevy < Cen; ™t (5.11)

We have not obtained weak convergence results for the accelerated Milstein scheme
yet. However, we guess that from the basic proof of Takahashi-Yoshida [88], it holds
that

BIF(x5)] - (BF(X) - B ™) + B =0(5)  (5.12)

n

under some smoothness conditions for f and the coefficients of X;. Thus combining
the results (5.11), (5.12) and the discussion in Giles [27, 26], we finally conclude
that the total computational cost is O(€*y~?2).
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5.4.3 Lipschitz payoffs

Let us consider the first component (X5)®) as an asset dynamics. Our interest
is pricing an option f((X5)®)) with Lipschitz payoffs f : R — R. Set PPV =
FUXEmYO) = p(XEMNYDY 4 B[f((X9)M)]. Then we can obtain an upper bound
estimate as follows.

Theorem 5.4.5. Assume (Hy)-(Hy) and f : R — R is a Lipschitz continuous
function whose weak derivative has bounded variation in R. In addition, suppose
(X2)Y has a bounded density, and (X2)Y) also has a bounded density uniformly
with respect to n. Then we have for any small 6 > 0,

Var1/2(Plnew . Plrffv) < 06(1—6)/2,”;1/2.
Proof. See 5.4.5. O

This theorem implies that the required computational cost turns out to be
O(e!=°y7%(log v/€)?), with L = log(ey~1)/log(k) + O(1) and N; = O(e!~°~y~2Ln; ).

We now summarize strong rate of convergence for P, — P,_; and PP — PPV in
Table 5.1.

‘ Payoft ‘ Standard E-M ‘ Accelerated E-M ‘
G O(n ") Ofen, ™)
Lipschitz O(n, %) O(e1=0/2 /%)

Digital | O(n, """, (3], [28]) -

Table 5.1: Strong rate of convergence of P, — Py and PreY — Prey.

5.4.4 Localization for irregular payoffs

The regularity of f seems to be essential for the accelerated MLMC method intro-
duced in previous. For example, we will see through computational experiments
that the acceleration with discontinuous functions f does not work so well.

We now propose a localization technique for this problem. Let us define a de-
composition

f - f s+ f ir

where f is a smooth (at least Lipschitz continuous) function with f ~ f;. Then we
apply the accelerated MLMC to the smooth part fs and the standard MLMC to the
irregular part f;.. In other words, we consider the MLMC method for

Pr(fs) = f(X7) = fo(X7) + E[fo(X7)].

The standard MLMC for discontinuous functions was studied in Avikainen [3] and
Giles et al. [28].
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5.4.5 Proof of Theorem 5.4.5

Throughout this section, we use the following notations without confusion:
o f(Xp)=fIXPW), f(XF) = FI(XF)W).
o [|fllip == nf{K = 0:|f(x) = f(y)| < K|z —y], for all 2,y € R}.

o [[fllrv = Sup_oocngcncapeoo 2ujmr 1 () = f@j-1)l-

We say f has bounded variation in R if || f||rv < oc.
The following lemma plays a crucial role in the proof of the theorem.

Lemma 5.4.6 (Avikainen [3], Theorem 2.4). Let X and X be real valued random
variables with X, X € LP (p > 1). In addition, suppose X has a bounded density.
Then for any function f of bounded variation in R and q > 1, there exists a constant
C > 0 depending on p,q, and the essential supremum for a density of X such that

1£(X) = F(X)|lg < Cllfllov]|X — X||q<p+n

By the next lemma, we can obtain an approximation sequence of the payoff f.

Lemma 5.4.7. Let f be a bounded Lipschitz continuous function whose weak deriva-
tive has bounded variation in R. Then there exists a sequence (f;)j>1 C C*(R) such
that

| f = fille =0, asj— oo,
HfJ/HOO <\|[fllip forallj>1,
1fillov < [ f'lev for all j > 1.

Proof. The approximate sequence can be constructed by mollifier convolutions f :
(f * &), that is, ¢, := +¢(%) with the conditions (i) ¢ € C*, (ii) supp(¢) C {|z|
1}, (iii) ¢ > 0, and (iv) [ ¢(z)dz = 1.

OIA i

Proof of Theorem 5.4.5. Assume that f is a bounded C! function whose derivative
has bounded variation. As seen in Proposition 5.4.3, note that

1£(X5) = F(XT) + f(X7) — F(X)]2
< H/O (f'(pX5 + (1= p)X5) = f'(pX7 + (1= p)X7))dp - (X7)" — (X)D)]|2
+ [ fllipl| X7 — X+ X7 — X7

The final line is bounded by || f||Lip x O(e/n'/?), and thus we turn to focus on the
estimate for the second line. The second line is bounded by

I / (f' (pX7 + (1= p)X7) = f(pX7 + (1 = p) X7))dpllp | X7 — X2

< ZIT/S” / 1P (02X + (1= p)X5) — S/ (pX %+ (1= p)X9)) lopdlp
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for any p,q > 1 such that 1/p+1/q = 1. Now using Lemma 5.4.6, we have

/0 I(F (p X7 + (1= p)X7) = ['(pX7 + (1 = p) X7))l|2pdp

T

1
< Cp,r”f/HTV/O 1(pX7 + (1= p)X7) — (pX7 + (1= p) X757 dp

< CporTao || | v €307,

To obtain the result, we choose small p > 1 and large r > 1 such that 2p(:+1) > %—5.

Finally, for general f, consider fx = (f A K)V (—=K) for K > 0 as a first
approximation, and apply Lemma 5.4.7 to fx. Then we obtain the desired result
by taking the limit. O

5.5 Simulations

5.5.1 Numerical experiments for SABR model

In this section, we want to study an estimator of L?-norm (47 Zjﬂil(X;’j—?TE’(n)’j)Q)l/Q
for the SABR model. As a reference path, we use X;’("“f) instead of Xf.

We set the parameters as follows.

_ _ _ 2(1-8) , _ _ _
e Sy =100, 8=0.9, ap =0.16 x 5 ,v=01p=-06,T=1
o n.p =2 n =28, 16,32, 64,128, 256.

Here we considered a scaling for ag (via Sy ~ SS_B S7 ). The number of simulation
M for the test is 10°. The results are given in Figure 5.2. The accelerated scheme
is faster than the standard method in both cases of L*-error.

We next study the case with several v. Let us compute the L?-error ratio for a
random variable Z which is defined as

E[|S:(Fnref) _ Z|2]1/2
E[| Sy — Sy )/

x 100 (%).

We fix the other parameters in the previous. In Figure 5.3, we can check the efficiency
of the asymptotic method (only) when v is small enough.

Finally we compare Y and Y with different 8. Figure 5.4 shows that the efficiency
of Y is very close to that of Y as 8 ~ 1. Therefore if 8 ~ 1, we can apply the
analytical tractability of Y to pathwise simulation, computing expectations, or so
on.
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Figure 5.2: L?-error : E[|5’§Fnref) — ?T(")|2]1/2 for the left and F[maxo<i<n,,
Y/;En)|2]1/2 for the right.

5.5.2 Numerical tests for MLMC

To show that the accelerated method is more efficient than the standard mﬁethod
with MLMC, we take a numerical test for E[P" — P] = O(¢/n;), and Var'/?(Prev —

Prev) = O(e/nll/Q) under the SABR model with small parameter v. Let us consider
payoff functions (European and digital options)

f(x) = max(0,z — 100) or f(x) = l{z—100>0}
and the parameters
e S5o=100,8=1,0=0.16,v=0.1, p=—-0.6, T =1

The level structure of MLMC is given by k = 4, i.e., n; = 4!. As a localization for
digital option, we use

fs(x) = (max(x — 100 + h,0) — max(z — 100 — h,0))/2h.

Here we set h = 1.0.

Figure 5.5 and 5.6 show the numerical results. We used the number of simulation
M = 107 for the left, and M = 10° for the right. The results basically imply
that the accelerated method works better than the standard one as in preceding
numerical experiments. Remarkably the accelerated method performs worse in the
case of variance estimates for digital option, likely due to discontinuity of the payoff
function. In contrast, the localized scheme (Accelerated_loc) performs better than
the others to some extent. We note that for general 1/2 < f < 1, the (semi-
Janalytical formula for CEV option pricing model can be used in order to compute

E[f(S7)] (See [79]).
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Chapter 6

Discrete approximation for
nonlinear filtering

This chapter is based on the unpublished paper by Tanaka [93] (arXiv preprint:
1311.6090).

6.1 Introduction

The aim of this chapter is to determine the convergence rate of Picard’s filter for
nonlinear filtering in a more general condition than that of Picard ([73]), and to
understand deeply why the scheme can perform with the rate. Although Picard’s
filter is based on an Euler-type approximation of stochastic differential equations,
the error estimate does not rely on the standard argument of strong and weak
convergence of the Euler-type scheme. As seen in the following, the properties of
stochastic integrals under a conditional probability make the proof of convergence
much more complicated.

Let us first formulate the nonlinear filtering problem with continuous time ob-
servations. Consider a stochastic process (X;);>o (often called the signal process)
defined as the solution of an N-dimensional stochastic differential equation

X, = x+/0t b(X,)ds + /Otcr(XS)st (6.1)

with 2 € RY and an N-dimensional standard Brownian motion B = (B;);> on a
probability space (2, F, P) with a filtration (F;);>¢ satisfying the usual conditions.
We observe another d-dimensional process (Y;);>o (called the observation process)
defined by

t
Y, = / h(X,)ds + W,
0

where W = (W})>0 is a d-dimensional standard Brownian motion independent of
B. We denote the filtrations associated to B and Y by (FF) and (F}) respectively.

123



The primary goal of nonlinear filtering problem is to investigate the evolution of the
conditional distribution of Xt under the observation (Y;)o<i<r. In other words, we
are interested in computing the value

E(g(Xr)|Fr]. (6.2)

For this purpose, we consider the new probability measure ) on Fo = 0(Up>0F7)
under which (Y};) is a standard Brownian motion independent of (X;), and (X;) has
the same law under P and (). Throughout this chapter, we denote the expectation
under @) by E[ - |. Then the conditional expectation (6.2) has the expression

E[Q(XT)(I)TU:%/]
E[Qr|F7]

BY[g(Xr)|F7] =

with the Radon-Nikodym derivative

d t 1 [t
O, = ex ( (/ i(X, Ysj——/ I2(X, ))
p=exp (Y W)Y =5 | (WP )ds
This is called the Kallianpur-Striebel formula (cf. [42], [4]). We need time discretiza-
tion methods in order to compute E[g(X7)®7|F¥] since the stochastic integral term
cannot be computed exactly.

Fix T > 0 and n(t) = t; := iT/n if t € [iT/n,(i + 1)T/n). Let us use the
notations: |||, = || - llp.o := El| - [P]*? and || - ||,.p := E¥]| - [P]*/?. We now consider
an approximation by a Riemann sum for ®,. Jean Picard showed the following
surprizing result of L2-convergence.

Theorem 6.1.1 ([73]). Assume that g, b and o are Lipshilz continuous and h €
CZRN;R%). Then

| Blg(xn)01 7] - Blg(Xn)®r| 7| < (63

where

d

d, = §y(X) := exp <Z (/t W (Xy))dY? — %/Ot(hjf(Xn(s))ds)).

j=1 70

Remark 6.1.2. The assumption ||hl/, < oo can be weakened (see [73], [18]). For
example, Picard ([73]) discusses the condition

E[exp ((1 + s)TH( sup |Xt|)>] < oo, for some e >0

0<t<T

where
d
T

J

(W) )i lel <y}

1
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The convergence error (6.3) is related to both of weak convergence of FZ- mea-
surable random variables and strong convergence of JFr-measurable random vari-
ables. Very roughly speaking, the order of convergence of the error is mainly from
fOT(h(XS) — h(X,s)))dY;. We notice that the difference h(X;) — h(X, ) has the
weak error of O(1/n), but this is averaged over the trajectory of (Y;). That is why
the rate of convergence is not so obvious. The proof given by Picard is quite compli-
cated since we have to deal carefully with fOT - dY, under the conditional expectation
E[ - |FY]. In this work, we generalize the result (6.3) in terms of the regularity of g
and LP-estimates with p > 2 using several techniques in Malliavin calculus, and how-
ever, h is basically assumed to be bounded because of the difficulty in LP-moment
estimates for @7 and ®7. See Theorem 6.2.1 and its proof.

In general situation, the distribution of X; is unknown, and therefore some ap-
proximation schemes need to be applied to X;. Let X be a time discretization
scheme of X, such as the Euler-Maruyama approximation or the stochastic ODE
approximations via cubature formulas on Wiener space ([63], [69]). Then we have
to analyze the error

| Elo(xXn)ér(X)1 73] - Blg(Xn)®r(X)1F)] (6.4)

p

and this type of problem is discussed in e.g. [19], [20]. In the case where X is
Euler-Maruyama scheme, several researchers give error estimates for (6.3) and (6.4)
simultaneously (e.g. [89], [65]).

It remains to discuss simulations of E[g(X7)®7(X)|FY] by Monte Carlo. In
practice, the procedure of estimation for this is performed step-by-step for each
observation time 7" = ty,--- ,t,,---. Hence it is important to construct special
simulation methods, recursively in time 7', to avoid the recalculation of the condi-
tional expectation and explosion of time series data. For the reason, particle filters
(or sequencial Monte Carlo methods) were originally developed by [31] and [44] for
discrete time filtering. Recent developments of particle filters can be found in [22]
and references therein.

Another approach to the computational problem for (6.2) is known as the stochas-
tic partial differential equation (SPDE) approach. We can derive the equation of
the dynamics of t — E[g(X;)®:|FY] (g € C?) which is called the Zakai equation (cf.
[4], [50]). The Zakai equation follows a SPDE with the finite dimensional noise Y.
In that case, we have to consider time discretizations for the SPDE and give some
error estimates for strong convergence (see e.g. [29]). We point out the relationship
between the Zakai equation and Picard’s filter E[g(X,)®,|F}] in Remark 6.2.4.

The present chapter is organized as follows. In Section 6.2, we state the main
result which is an extension of Picard’s theorem, and shall give only the outline
of the proof. In Section 6.3, we show the main part of the proof using infinite
dimensional analysis on Wiener space.
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6.2 [’-convergence result

6.2.1 An extension of Picard’s theorem

Let us fix T' > 0. Throughout this chapter, the condition
BP0 =1 (6.5)

is always assumed to define the probability measure Q on Fr, i.e. Q(A) := E[1,0,']
for A € Fr. The assumptions (A2)-(A3) introduced below imply the condition (6.5).
See Kallianpur [41], Section 11.3.

We shall extend Picard’s theorem as follows.

Theorem 6.2.1. Assume that the following conditions hold:

(A1) The function g : RY — R is a measurable function such that g(Xr) €
Mp>1 LP(Q, Fr, Q).

(A2) The coefficients b and o are Lipshitz continuous.

(A3) The function h : RN — R is a C?-function of polynomial growth with all
derivatives.

(A4) For everyp > 1,

1@z, + sup | @7, < K (p,T) < oo.

Then for every p > 1, there exists a constant C' = C(p,T) > 0 such that

<< (6.6)

p n

| Blg(xr)or| 711 - Elg(X2)®rlF)]

A typical example of (A4) is that h is bounded. The following corollary is an
immediate consequence of Theorem 6.2.1.

Corollary 6.2.2. Suppose the assumptions (A1)-(A3) hold, and moreover h is as-
sumed to be bounded. Then for every p > 1, there exists a constant C' = C'(p,T") > 0
such that '

Proof. Let pr(g) := Elg(X7p)®r|FY] and pr(g) == Elg(X7p)®r|FYX]. The error is
expressed as

E[g(XT)(i)TLF’}/]
E[®7|FY]

<
p, P

E*[g(X0)| 7] - °

pr(g) _ prlg) _ pr(g) — pr(y) pr(9)
pr(1)  pr(1) pr(1) pr(1)pr(1)




It is possible to show from the boundedness of h that the LP(Q2, Fr, Q)-norms of
Op, Or, pr(1)~' and pr(1)~! are bounded for every p > 1. Hence we obtain from
Cauchy-Schwartz’s inequality

_ [ pr(g) _ pr(g)
p.P pr(1)  pr(1)
< Cu(p: T)llpr(9) = pr(g)llap = Colp, T)lpr(1) = pr(1)]l2p,

which proves the desired result. O

2 1/p
q

‘ pr(g)  pr(g)
pr(1)  pr(1)

Remark 6.2.3. For the proof of Theorem 6.2.1, the probability space (2, Fr, Q)
can be replaced by any other probability space on which (Xy, Y;)o<i<r has the same
law. In the following, we fix the probability space so that (B;)o<i<r and (Y)o<i<r
are independent Brownian motions, and (X;)o<t<r is the solution of (6.1). The
probability space will be assumed to be the Wiener space in Section 6.3.

Remark 6.2.4. As mentioned in the introduction, the time evolution
pi(g) - t = Elg(X)®|F], (9 € CF)

solves the Zakai equation

pt(g)zpo(gH/O ps(ﬁg)d8+/0 ps(gh")dY,

where po(g) = E[g(Xo)] = g(z) and L is the generator of X i.e.

(£a)(a) = Y @G @) + 5 D () )5y (o).

Picard’s filter j,(g) : t — E[g(X,)®7|F)] can be understood as a semigroup-type
approximation (or Markov chain approximation) in the following sense. Let X be a
stochastic flow of the SDE (6.1) and (P,g)(z) := E[g(X})]. Define a parameterized
operator P?, y € R? by

d

(BYg)(x) = (Pg) () exp (3 (W) — 5(9)(0)t)).

j=1
Then we can deduce that for t; <t < t;,1,

~Ytl_YtO ~Yti_Yti,1 NK&*Y'ti

ﬁt(g) = Ptl—t() O”'Opti—ti_l oPt—ti (g)7

and ]5;?; Y (g9)(x) is a solution of the evolution equation

t t
DHYi—Yt, HYs—Yt, HYs—Yt,
R0 =gta)+ [ P (e [ B (@ @)y,
ti t;
which can be considered as the Zakai equation with the freezing coefficient h(x).
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6.2.2 OQOutline of proof

The proof of Theorem 6.2.1 is entirely different from the original one in [73]. Let us
compute

9(X7)Pr — g(XT)(i)T

FT; (/OT(hj(Xs) - hj(Xn(s)))dYsj . %/OT«hj)Q(Xs) B (hj)Q(Xn(s)))d8>

where ['y = fo Tr(p)dp, Tr(p) = exp(plog(®r) + (1 — p)log(®r)). Applying Itd’s
formula to ¢(X) with ¢ = 17 or (h/)* € C?, we have

(X — (X)) = / ( V(X0 (X,)aB, + / ( (£,

So the error E[g(X7)®r|FY] — Elg(X1)®r|FY] can be decomposed into four parts
(Ei)i<izat

By = Blg(Xn)Tr de / o [ w05, )avy
£, gXTrTz / ([ e
By = —25]g XTrTz/ /w X,)o(X,)dB, ) ds
R XTrTz / ([ £ )ar)as

We are going to prove that

FY ]

FY }

FY }

7.

L, p, T
2, <S4 D)

for p > 2 and 1 <17 < 4. The estimation for F; is the most difficult task since F;
includes both dB and dY parts. First, we give the estimates for Fy and Ej.

Proposition 6.2.5. Under the assumption (A1)-(A4), for every p > 1, there exists
a constant C'= C(p,T) > 0 such that

Q

[ Eallp, + || Eall, < s

Proof. We only prove ||Es||, < C/n. By the assumption (A4), it holds that

ITzlly < [|@7lly + 1 @r]l, < K(g,T) < o0
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for every ¢ > 1. Using the Cauchy-Schwartz inequality and Burkholder-Davis-
Gundy inequality, we have

d T s ‘ N 2p71/2p
1Byl < Hg(XT)FTHQPE[(Z/O (/n( )EhJ(Xr)dr)dYSJ) ]
j=1 °

camn$Sel( [ (] ooy |

J=1

We can finally get the estimate

E[(/OT </n(; Ehj<XT>dT)2dS)p:| 1/2p - E[OEI:ET|(£hj)(Xr>|2p</0T(s - n(s))2d8>p] 1/2p

S 02(]77 T)
n

0

6.3 The estimation via infinite dimensional anal-
ysis

6.3.1 A brief review of Malliavin calculus and Hilbert space
valued martingales

Let (2, F, Q) be a d-dimensional Wiener space and (B;)o<t<r be the d-dimensional
canonical Brownian motion on (2, F, Q). More precisely, Q@ = C([0,T];RY), F is
the Borel o-field on €2, and () is the Wiener measure under which the coodinate map
t — By, B € €2 becomes a standard Brownian motion.

The Malliavin derivative D : L*(Q) D Dom(D) — L?(; L*([0, T]; R?)) is defined
as the extension of the following closable operator for smooth Wiener functional F":

F= f(/OT hl(s)st,...,/OT hm(s)st>

where f: R™ — R is a polynomial function and (h;) C L%([0, T]; R%). Then

DF = i(@f)(/: hl(s)st,...,/OT hm(s)st)hi.

The Skorohod integral ¢ : L*(Q; L*([0, T]; R%)) D Dom(8) — L*(Q2) is the adjoint
operator of D. Let K be a real separable Hilbert space. We can similarly define D
and ¢ for K-valued Wiener functionals. The spaces D (K) C LP(Q; K) are defined
as the Sobolev spaces induced by the derivative operator D for K-valued Wiener
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functionals. For the details of the precise formulation of Malliavin calculus, we refer
to [80] and [70].
We prepare some results for the Skorohod integral ¢ (cf. [70]).

Lemma 6.3.1. For u(-) = > Fily4,..)() € L*([0,T]; RY) with F; € D**(RY),

we have )
n n ti+1 ‘ ‘
5(u) =S F- (Buy, —Bu) =Y / S DWEDdr.
i=1 i=1 7t j=1

Lemma 6.3.2 (Continuity of 0). Let p > 1. There exists C > 0 such that
[6(u)]lp < Cllullprozeorimrey
for every u € DY?(L2([0, T]; RY))
We will use a kind of Fubini’s theorem below.

Lemma 6.3.3. Let (u,)o<s<r € L*([0, T}; DY2(L2([0, T]; RY))), then

/OTé(us(~))ds:5</0Tus(~)ds> a.s. (6.7)

Proof. Let uf = Y_* al?lB?(s) with af € D"?(L*([0,T];R?)) and B} € B([0,T))

j=1"7
such that u* — w in the norm of L2([0,T]; DY?(L2([0,T]; R%))) as k — oo. Clearly

we have
[ stkenas =o( [ i)

It suffices to check the limit of both sides. By taking L?-norm,
T T 9 T
| [ atubenas— [ stus]; < n [ 16t - ulgas

T
g@Arwo—%o%wmmmmw

and

H5</OTUI§(')dS) — 5(/0Tus(-)ds)

2

2 T

<CH/ B = uy())d

<ol [ato—weal, o
T

saﬂrwo—%@%wmmmmw

Thus we obtain the result (6.7) as k — oo. O

We can derive the following fundamental inequalities for Hilbert space valued
martingales.
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Lemma 6.3.4. Let M; be a continuous K-valued martingale with respect to a fil-
tration (F;) which satisfies the usual conditions. Then for every p > 0, there exists
positive constants K, ¢, < C, such that

Doob’s inequality:

E[ sup |Mt|’;<} < KpE[|MT|§’<].

0<t<T

Burkholder-Davis-Gundy’s inequality:

GE[(M?] < B| sw M| <GB [ (07,

0<t<T
Proof. See e.g. [80, Theorem 3.1]. O
Lemma 6.3.5. If F € LP(FE; K) for some p > 2, then there exists an unique pro-
cess fs = (fL,..., f%) such that fi are K-valued progressively measurable processes
satisfying
T
+ | gas.
0
and

T d
A p/2
B[( [ Einfias)"] < c,BIPR (63)
i=1
In particular, if F € DY2(FE; K), then we have the so-called Clark-Ocone formula
fo(w) = E[D,F|FP)(w) a.e. (s,w) € [0,T] x Q.

Proof. We check only (6.8) using the inequalities in Lemma 6.3.4:

E[(/:i\fﬁ@ds) "l < / fuaB,|"
= Ci(p)E[|F — E[F ]|p]
< Co(p) E[|Ff]-

p/

6.3.2 Infinite dimensional It6 calculus for FEj

Let us define two Wiener spaces (Wg, B(Wg), PV5) and Wy, B(Wy), P"Y) on
which (By)o<i<r and (Y;)o<i<r are canonical Brownian motions respectively. From
now on we specify

(Q,F,Q) = Wg, BWp), P"VB) x Wy, BWy), P"7).
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We denote by E"2 and E™Yr the expectations under PV2 and P™¥ respectively.
Since B and Y are independent, we notice that E[ - |FX] = E™e[ - ].

We now return to prove ||Es||, = O(1/n). The fundamental idea to get the order
of convergence is as follows (see also [17]): Let F' € L*(Wpg x Wy; R) and 6, be a

FB_adapted process with finite moments. We are going to give the error estimates
for the type of EVE[F ['*'0,dB,]. Let us consider

L*(Wg x Wy; R) = L*(Wp; L*(Wy; R)).
By Lemma 6.3.5, we obtain the representation F' = EYE[F] + fOT fsdBg, which has
already appeared in Picard’s paper [73, Proposition 1]. Applying this representation
to EVE[F fti'“ 0,dB,], we obtain a conditional duality formula

tit1
EWs [F / esst] _ EWB[
t;

tit1
fsﬁsds] e L2 Wy R).

t;
This means that it is possible to prove the convergence of O(1/n) from the term

f;”l - ds if (fs) has good moment estimates.
Lemma 6.3.6. Let p > 2 and suppose F' € LP(Wpg X Wy; R) has the representation

F = EVs[F] +fOT fsdBs (in Lemma 6.3.5), then there ezists a constant C' = C(p) >
0 such that

E[(/OT\fS\2d5>p/2] < CE[|F]. (6.9)

Proof. Recall that | - | is the norm on R?. Let us consider the L*(Wy; R)-valued
martingale fg f+dB as the R-valued stochastic integral for the R%valued F2 v FY-
progressively measurable process fs on (Q, F, Q) (see e.g. [18, Lemma 21.2]). We
can apply Lemma 6.3.4 with K = R to it. O

Proposition 6.3.7. Under the assumption (A1)-(A4), for every p > 1, there exists

a constant C'= C(p,T) > 0 such that
C
1Bl < =

Proof. We prove only the one dimensional case. Let 6, = 1(h?)'(X,)o(X,). Using
[to’s formula for stochastic integrals with respect to B, we can deduce that

T s
BV [EWB [g(X7)Tr] /0 / ( )HrdBrds] —0
n(s

d
T T ps T T s
e / f.dB, / / 0,dB,ds| - / e / f+dB, / 0.4B, | ds
0 0 n(s) 0 0 n(s)

T s
— /O EWB[ » f,,erd'r]ds

T s
- / / EWB(f.0,|drds.
0 Jn(s)
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We notice that
P40, < BV LY sup BP0,

<r<T

Therefore the estimate (6.9) in Lemma 6.3.6 implies

HEWB [/OT /() fre,,drds}
"

p
< sup EWB[|9,~|2]M2
P 0<r<T

2| / /n:>8)+T/n B[\ 1, ) drds)|

<a (CY el [ vy

l9(Xr)Trll}

<&
npk

for some constant Cy = Cy(p, T). O

6.3.3 Partial Malliavin calculus for FE;

For analyzing F1, we study partial Malliavin calculus introduced in [71]. Consider
Malliavin calculus for each space of (Wg, B(Wg), PYV&) and (Wy, B(OWy ), P""Y).
Let us denote the Sobolev spaces, the Malliavin derivative, and the Skorohod in-
tegral on (Wg, B(Ws), PV?) by D DE. 65, and on (Wy, B(Wy), P"YY) by DEP,
DY, §y. We note that DP and DY are naturally extended to (N + d)-dimensional
Wiener space (Q, F,Q), and the pair (D?, DY) coincides with the standard Malli-
avin derivative D : Q — L2([0,T]; RN*) in the following sense: Let us consider an
orthogonal decomposition

L*([0,T; RY) = L © Ly
with
L3 ={f e L¥[0,T;RN*) . fU =0 for N < j < N +d} = L*([0,T);R"Y),
L3 ={f e L*([0,T);RN*) : fU) =0 for 1 <j < N} = L([0, T}; R?).
Let Iz and Iy be the projections from L?([0, T]; RN*?) to L% and L% respectively.

Then we can define D := Iz o D and DY :=Ily o D on the (N + d)-dimensional
Wiener space (2, F, Q). This formulation is called the “partial” Malliavin calculus

([56], [71]).
Let K be a real separable Hilbert space and G € L*(Wpg; K). We define by

JP the projection so that G = EVE|G] + fOT JB(G)dB,. 1In particular, if G €

S

]DE’Q(]D;’Q (R)) C 12 (W ]D%/’Q(R ), we have by the Clark-Ocone formlua
JEB(G) = E™?[DPG|FP) € DIP(R). (6.10)
We note that DEQ(D;’Q(R)) # D?ﬁy)(R)'

Let us first present auxiliary lemma which will be used in later computations.
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Lemma 6.3.8. (i): For G € L*(Wp;Dy*(K)),
DYE™s[G] = EV?[DYG] a.s.

(ii): If € € DEP(L([0, T); RY) with some p > 2, then [, £,dY, € D (Dy*(R)) and

D /0 Ceav,) - /O C(DPeay.
([ ean) =
DYDB(/T gdeS> _ DBDY(/T ngYS> _ DP¢.
0 0

Proof. (i): We choose an approximation sequence (Gy) of the form Gy = > 7" | Sila,,
S; € Dy*(K) and A; € B(WS3). For each k, G}, clearly satisfies the desired equality.
Thus we obtain the result using the continuity of D. (ii): This is a version of the
proof of [70, Proposition 1.3.8], recall that DB(Y;) = 0. O

We will take an approximation sequence (Z;), C D (R) such that Z, — g(X7)
in L?(Wp) as £ — oo. The following lemma plays a key role for the estimate of F).

Lemma 6.3.9. Let p > 2 and Z € D (R). Then under the assumptions (A2)-
(Ad), ZT'r(p) € ]D)lp(]D)IQ(R)). Moreover, let (6,) be a R%valued continuous FZ-
progressively measurable process with E[supy«,<p [05|%]"/* < M, then there exists a
constant C' = C(p,T) such that o

T p/2
B ((( [ esssup |E¥*(DY 22(20a(p) - 0P as) "] < A€l TR (o),
0

0<r<T

Proof. We can check that X; € mpzl]])gp under Assumption (A2). Using the chain
rule of Malliavin derivative, we obtain from Lemma 6.3.8 and Assumption (A4)

k log FT
E Dlp 12

Thus taking the limit £ — oo, we can show that

€ (D5 (DY (R

p>1

which implies ZI'r(p) € Dg”(Dy*(R)).
Applying the Clark-Ocone formula (6.10) to ZI'r(p), we deduce that

D, I (ZT1(p) = Dy E™#[DJ(ZT1(p))|F7] = B [D(Z Dy Tr(p)) | F)).
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We notice that

DYTr(p) = exp(plog(®r) + (1 — p) log(P7)) (ph(X,) + (1 — p)h(X,))

and then

DZ(ZD; Tr(p)) =D (ZT1(p))(ph(X.) + (1 = p)h( X))
+ Z01(p) DY (ph(X,) + (1 = p)h(Xy(r)))-

This formula and the Cauchy-Schwartz inequality for the conditional expectation
E[|F7] imply

B2 (DY J5(ZT1(p)) - 6,
< 270 (|15(ZD0(p)) PIEY# [[(ph(X,) + (1 — p)h(X ) - 6,
+ 2BY9 (| ZD0(p) P12 (| DE(ph(X,) + (1 = p)h(X ) - 6,7,

We refer for the reader to the basic estimate ([70]): for any ¢ > 1,

EWB[ sup |Xt|q] + sup EWB[ sup |DPX,|1 < Ci(q,T) < . (6.11)

0<t<T 0<s<T 0<t<T
The above inequality allows us to show that
|EY2 (DY T2 (ZT1(p)) - 05]1° < Colp, THE™? (|17 (ZT1(p)) "] + B2 (| ZT1(p)[?])-

We can show by Jensen’s inequality and Lemma 6.3.6 that

T p/2 T p/2
| ( / EW (I8 (ZTr(p))ds) | < B|( / [IE(ZT(p))[ds) |
< G3(p)E[|ZT7(p)["]-
Using these inequalities, we obtain the constant C' in the assertion. O
We now finish the proof of the main theorem.

Proposition 6.3.10. Let the assumptions (Al)-(A4) hold. Then for every p > 2,
there exists a constant C' = C(p,T') > 0 such that

C
1B, < —

Proof. We first define

R = Eloxoren Y- [ ( [ w008 )av| 7]

135



and then
1
||E1||p§/ 1E1(p)llpdp < sup [[E1(p)]]p-
0 0<p<1

So it suffices to give an estimate for ||E1(p)][,-
Let us define for Z € D3 (R)

Ei(p, 7) = [ZPT i/T(

We shall show that

S

V(W)(X,)o(X,)dB, )Y}

FX ] .
n(s)

C
1Ev(p, 2)lp < — 11207 (p)lp, (6.12)

and then taking an approximation sequence (Z,), C D*’(R) such that Z, — g(X7)
in L%, we have

12, < S loxore(), < S8,

n

which is what we want to prove.
For notational simplicity, we prove (6.12) only the case where B and Y are one
dimensional Brownian motions. Let 6, = (h) (X,)o(X,). By Ito’s formula,

tit1 tit1
/ / 0,dB,dY, = Z / 0, dB th V) —/ (Y, — Y;i)esst)
t;

Let us define f, = fi(p, Z) := JP(ZTr(p)). We can deduce that

W [EWB[ZFT(/))] /0 : / S erdBrdﬁfs} ~0

and

T T s
EWE [ / f.dB, / / 9,,dBrdYs]
0 0 Jn(s)

e [ /0 ' fsstji; (( /t ’tm esst) (Yo = Yi) = /t tm(ys - Yti)esdgsﬂ
5 16,5 ) (Y., - / (V- Vi) fubds) |

=2 ((
([ ertodas) i, - v - [ 00 viopiae).

i=0 ti
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By using Lemma 6.3.1 and the fact that DY E"V5[.]

= EY5[DY ] in Lemma 6.3.8, it
holds that
n—1 tivt W
S ([ B i, - Vi)
i=0 ti
n—1 tit1 tit1 tit1
= (X (/ EY1£,0,)5) ) +Z/ / EYE((DY £,)0,]dsdr,
i=0 Yl ti
and
n—1

[ o vopisa

= [ (3B ) + / " B ((DY f0.)dr ) ds

(s)

:5Y(nzl(/ti+lEWB[fs] Lt // EWYs[(DY £,)0,]drds.
2\ J

Here we used Lemma 6.3.3 in the second equality. Consequently we derive the
formula

EWB / deB// edBdY
n(s)

_5y(;(/ EVE(f, s]ds Litstiin) ( / /(r) EYE[(DY £.,)0,]dsdr.

Using the above formula and Lemma 6.3.2, we finally get the estimate

C T p/2
120, 2l < 2B [( [ 11Fas)"]
it1 i+1 /2
+WEWY Z/ / |EVe[(DY f,) S]|2dsdr) ]

C ’ p/2
< n—;’HZFT(/ﬂ)HZ 4EWY[</ esssup\EWB[(D}{fS)QS”?dS) ]
0

0<r<T

Applying Lemma 6.3.9 to the last term, we obtain the result (6.12). This finishes
the proof. O
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