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Abstract

The discretization of stochastic differential equations (SDEs) has been very impor-
tant in many applications such as mathematical finance and nonlinear filtering. The
aim of this thesis is to establish methods to construct a higher-order (or high accu-
racy) discretization scheme for general SDEs.

In the first chapter we give an overview of this research and briefly review the
mathematical idea discussed throughout the thesis.

In the next three chapters, we propose several techniques for the construction
of higher-order weak approximations of SDEs. Chapter 2 is devoted to an operator
approach, often called the operator splitting method, which helps us to construct
a higher-order scheme and to determine the rate of convergence. The discussion
includes the analysis of approximations of Lévy-driven SDEs. Chapter 3 reviews
the cubature formulas introduced by Lyons-Victoir (2004) and their relation with
the operator splitting method. In Chapter 4, we introduce a space-time discretiza-
tion scheme which can be applied to the computation of conditional expectations
appeared in pricing American options and forward-backward SDEs.

In Chapter 5, several strong convergence results of an accelerated numerical
scheme applied to perturbed SDEs are shown. The scheme introduced here was
originally analyzed by Takahashi-Yoshida (2005) for weak approximations. We study
the scheme from the viewpoint of strong convergence and the multi-level Monte Carlo
method.

Finally in Chapter 6, we study a discrete-time approximation scheme for the
nonlinear filtering problem. Picard (1984) showed that the scheme is a first-order
approximation scheme under suitable conditions. We discuss a rigorous error anal-
ysis of the scheme using various techniques in infinite dimensional spaces, and in
particular give a generalization of Picard’s result.
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Chapter 1

Introduction

1.1 Overview

1.1.1 Weak approximation problem

The discrete-time approximation of stochastic differential equations (SDEs) plays a
crucial role in many applications. Historically, the approximation problem of SDEs
has been developed in the fields of multidimensional partial differential equations
via the Kolmogorov equation, and nonlinear filtering with countinuous-time obser-
vations in the latter half of the 20th century. Over the past few decades, there has
been more importance on the approximation problem due to the development of
mathematical finance.

We classify types of the error of approximations of SDEs. Let Xt be the solution
of SDE and X̄n

t be its discrete-time approximation with n steps. The convergence
of an approximation X̄n

t is basically twofold. We call by strong convergence (strong
approximation)

E[|XT − X̄n
T |p]1/p → 0,

and by weak convergence (weak approximation)

E[f(XT )]−E[f(X̄n
T )] → 0.

If we obtain the exact rate O( 1
nα ) for the convergence “→ 0”, the index α is called

the strong (resp. weak) rate of convergence.

Our main interest in the present thesis is the analysis of weak rate of convergence.
The weak approximation problem of stochastic differential equations has been stud-
ied by many authors. The Euler-Maruyama scheme ([64]) for stochastic differential
equations is of weak rate O( 1

n
), which has been shown by [90] for smooth f , and

by [6] for irregular f . A higher-order scheme based on the Itô-Taylor expansion has
been also analyzed in e.g. [45], and however, the scheme is not always implementable
due to the Lévy area whose distribution is unknown.

11



Recently, motivated by the financial industry, a new method of approximations
of stochastic differential equations with high accuracy has been required, since prac-
titioners (quantitative analysts) are going to develop more complicated models to
control the financial risk. For the reason, we are concerned with the following two
methods in this thesis.

1. Higher-order weak approximation + QMC (or Lattice): Our goal is to find a
discrete approximation X̄n

t so that

E[f(XT )]− E[f(X̄n
T )] = O

(

1

nα

)

with a higher-order rate α than standard methods (e.g. Euler-Maruyama). The
second order (α = 2) schemes for stochastic differential equations have been
developed by Lyons and Victoir [63] and Ninomiya and Victoir [69]. Higher-
order schemes reduce the number of time partition n that is required for a given
accuracy. In other words, the dimension of the numerical integration E[f(X̄n

T )]
decreases and such situation is preferable to the Quasi Monte Carlo (QMC)
method. The efficiency of higher-order schemes with QMC was studied in [69],
[68]. To make n small is also important in another idea by using recombining
tree or lattice, which is considered in [60], [92].

2. Multi-level Monte Carlo (MLMC): The multi-level Monte Carlo (MLMC) is
a kind of Romberg’s extrapolation method for L2-error in order to reduce
the computational cost of simulations of Wiener functionals (Giles [27]). The
purpose of the method is the same with weak approximations, that is, to
compute E[f(XT )] with high accuracy. However, the computational efficiency
of the MLMC is based on the strong rate of convergence of the approximation
X̄n rather than the weak rate of convergence.

In the following, we introduce mathematical aspects of higher-order weak ap-
proximations in Section 1.1.2 and of multi-level Monte Carlo in Section 1.1.3.

1.1.2 Three approaches in analysis of weak convergence

Throughout the present thesis, we often apply three methods introduced below to
the analysis of weak rate of convergence. To understand these methods is important
in both of the construction of new approximation schemes and the precise error
estimates for them.

Let us now describe the basic methodology of each method. In what follows, we
denote a Markov process by Xt, its infinitesimal generator by L, and the associated
semigroup by Pt.
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(i) Short time expansion of semigroup: The short time expansion of the
semigroup Pt is the most fundamental property in order to construct discrete time
approximations for Xt. The expansion is formally expressed as

Pt = I + tL+
t2

2
L2 +

t3

6
L3 + · · · ,

which can be considered as the formal exponential map exp(tL). This expansion
motivates us to construct an operator Qt which has the same short time expansion
with Pt up to higher-order terms and also has a stochastic representation Qtf(x) =
E[f(X̄t(x))] with some stochastic process X̄t(x) starting at x.

This idea has been applied to (ordinary) differential equations by [81], [82], [85],
[86] and to stochastic differential equations by [69], [24], [94].

(ii) Distance between two generators: Let P̃t be another Markov semigroup
and L̃ be its generator. Then we can derive the following formula

(Pt − P̃t)f =

∫ t

0

P̃t−s(L− L̃)Psfds,

which is shown by taking the derivative of s 7→ P̃t−sPsf . Roughly speaking, this
means

Pt − P̃t = O(t)× distance between two generators.

From the above expression, it is possible to consider numerical approximations for
Xt through the analysis of generators. This essential idea plays a key role in the
approximation of Lévy processes and more generally, Lévy-driven stochastic differ-
ential equations ([94], [47], [67], [46]).

(iii) Duality approach: It seems impossible to apply the above two approaches
to the situations at which we cannot use the Markov property, such as discrete-time
approximations of stochastic delay equations ([17]) and of nonlinear filters ([73],
[93]).

Instead of the Markov property, we can use a duality formula for Wiener func-
tionals in the following sense. Let F be a Wiener functional with Itô’s representation
F = E[F ]+

∫ T

0
ξsdBs, where ξs is an adapted process with finite moments and Bs is

a Brownian motion. Then for any adapted process θs with finite moments, we have

E
[

F

∫ ti+1

ti

θsdBs
]

= E
[

∫ ti+1

ti

ξsθsds
]

.

The left hand side tells us that this seems to be of order O(
√
ti+1 − ti) from

∫ ti+1

ti
·dBs

as it is. However from the representation of the right hand side, we might obtain
the better rate O(ti+1 − ti). If F is smooth in Malliavin’s sense, this formula can
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be understood as the following duality between the stochastic derivative D and the
stochastic integral dB

E
[

F

∫ ti+1

ti

θsdBs
]

= E
[

∫ ti+1

ti

(DsF )θsds
]

.

Since the Markov property is not assumed for F , the above duality formula is ap-
plicable to many situations. For example, nonlinear filtering problems deal with a
conditional expectation of the form E[f(XT )|FT ] for a given filtration (Ft)t≥0, then
we are not able to apply the approach (i) even if X is a Markov process.

1.1.3 Multi-level Monte Carlo and strong convergence

The multi-level Monte Carlo method for Wiener functionals is formulated as follows.
Let us denote a stochastic process at time T by XT and its discretizaion (e.g. Euler
scheme) by X̄n

T , where n is the number of time partition which is proportional to
computational time. Then we define the MLMC as the following decomposition of
Monte Carlo sampling by m+ 1 terms:

1

N0

N0
∑

i0=1

f(X̄n0,i0
T ) +

m
∑

ℓ=1

1

Nℓ

Nℓ
∑

iℓ=1

(

f(X̄nℓ,iℓ
T )− f(X̄

nℓ−1,iℓ
T )

)

with nℓ < nℓ+1 and Nℓ i.i.d. sampling of X̄n,iℓ
T for each ℓ = 0, 1, . . . , m. Here,

f(X̄nℓ,iℓ
T ) and f(X̄

nℓ−1,iℓ
T ) should be simulated to be pathwisely close to each other.

Clearly the expectation of this sampling coincides with E[f(X̄nm

T )]. Hence the bias
in the sense of expectation is equal to that of the usual sampling E[f(X̄nm

T )] ≈
1
N

∑N
i=1 f(X̄

nm,i
T ). On the other hand, the MLMC has a different structure in terms

of the bias of Monte Carlo simulation. Let us summarize the key points of MLMC:

• The total computational cost (time) is of the order O(
∑m

ℓ=0 nℓNℓ).

• The computational cost for generating f(X̄nℓ,iℓ
T ) − f(X̄

nℓ−1,iℓ
T ) increases as ℓ

increases.

• The bias of Monte Carlo for {f(X̄nℓ,iℓ
T ) − f(X̄

nℓ−1,iℓ
T )}iℓ=1,...,Nℓ

decreases as ℓ
increases.

We might control the computational efficiency by choosing m and Nℓ. The optimal
choice of these numbers is based on the L2-error of f(X̄nℓ

T )− f(X̄
nℓ−1

T ), and by the
triangle inequality we have

‖f(X̄nℓ

T )− f(X̄
nℓ−1

T )‖2 ≤ ‖f(XT )− f(X̄nℓ

T )‖2 + ‖f(XT )− f(X̄
nℓ−1

T )‖2.

If f is Lipschitz continuous, the above quantity is bounded by

‖XT − X̄nℓ

T ‖2.
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Therefore one of our interests in the MLMC method is to show the strong rate of
convergence of XT − X̄n

T in L2 sense. This is the key idea of the MLMC method
for Wiener functionals introduced in [27]. The MLMC is an alternative and pow-
erful numerical technique for general path-dependent functionals E[f((Xt)0≤t≤T )]
of the solution of a stochastic differential equation (Xt), since a higher-order weak
approximation scheme for such functionals has not been found.

1.2 Outline of the thesis

In this thesis, we are interested in the several approximation methods of stochas-
tic differential equations described in the previous section. This thesis consists of
five chapters. In view of mathematical analysis, Chapter 2, 3 and 4 are based on
the higher-order weak approximations of SDEs with two approaches (i) and (ii) in
Section 1.1.2. Chapter 5 focuses on the strong rate of convergence related to Sec-
tion 1.1.3. Finally, Chapter 6 relies on a duality formula (iii) in Section 1.1.2. The
outline of each chapter is as follows.

In Chapter 2, we present a general framework, often called the operator split-
ting method, based on semigroup expansions for the construction of higher-order
discretization schemes and analyze its rate of convergence. The error analysis es-
sentially follows from the approaches (i) and (ii) in Section 1.1.2. We also apply the
framework to approximate general Lévy-driven stochastic differential equations

Chapter 3 is devoted to the concept of cubature formulas on Wiener space and
their connection to splitting methods for noncommutative exponential maps. More
specifically, the relation between some higher-order weak approximation schemes
(such as the Ninomiya-Victoir scheme) and cubature formulas is shown.

Chapter 4 presents a new class of higher-order space-time discretization schemes
for multidimensional diffusions via lattice systems which involve space interpola-
tion techniques. The key idea is to combine the weak approximation approach for
stochastic differential equations and some techniques on high-dimensional spaces to
break the curse of dimensionality. The first objective in this chapter is to investigate
the error estimates derived from short time asymptotics of certain semigroup oper-
ators, together with the discussion of numerical stability. As the second objective,
several computational experiments for some derivative pricing models are presented
in one and three dimensional settings.

In Chapter 5, we determine the strong rate of convergence for an accelerated
Euler-Maruyama scheme applied to perturbed stochastic differential equations. The
theoretical results can be applied to analyzing the MLMCmethod. Several numerical
experiments for the SABR stochastic volatility model are presented in order to
confirm the efficiency of the schemes.

In Chapter 6, we study the concept of nonlinear filtering problems and a discrete-
time approximation applied to them. Time discretizations for nonlinear filtering
problems are related to both of strong and weak approximations of stochastic differ-
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ential equations. We propose a new method of proof for the convergence of approxi-
mate nonlinear filter analyzed by Jean Picard, and show a more general result than
the original one. The analysis for the error estimate is based on a kind of duality
approach (iii) introduced in Section 1.1.2. For the proof, we develop an analysis of
Hilbert space valued functionals on Wiener space.
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Chapter 2

Operator splitting method

This chapter is based on the paper by Tanaka and Kohatsu-Higa [94] published
in Annals of Applied Probability and includes some improvements of the proofs of
theorems therein. Recent developments in this topics can be found in Kohatsu-Higa
and Tankov [47], Kohatsu-Higa, Ortiz-Latorre and Tankov [46], Ngo and Kohatsu-
Higa [67].

2.1 Introduction

Weak approximation problems play an important role in the numerical calculation
of E[f(Xt(x))] where Xt(x) is the solution of the stochastic differential equation
(SDE for short)

Xt(x) = x+

∫ t

0

Ṽ0(Xs−(x))ds+

∫ t

0

V (Xs−(x))dBs +

∫ t

0

h(Xs−(x))dYs. (2.1)

with smooth coefficients Ṽ0 : RN → RN , V = (V1, . . . , Vd), h : RN → RN ⊗ Rd.
Here Bt is a d-dimensional standard Brownian motion and Yt is an d-dimensional
Lévy process associated with the Lévy triplet (b, 0, ν) satisfying the condition and
which has finite Lp-moment for every p ∈ N.

Our purpose is to find a discretization scheme (X
(n)
t (x))t=0,T/n,...,T for given T > 0

such that

|E[f(XT (x))]−E[f(X
(n)
T (x))]| ≤ C(T, f, x)

nm
.

We denote briefly by E[f(XT (x))] − E[f(X
(n)
T (x))] = O(1/nm) the above situa-

tion, and say that X
(n)
T is a m-th order discretization scheme for Xt or that X

(n)
T

is an approximation scheme of order m. The Euler scheme is a 1st order scheme,
and has been studied by many researchers. Talay-Tubaro [90] shows the 1st order
convergence of the Euler scheme and 2nd order convergence with the Romberg ex-
trapolation for continuous diffusions. The fact that the convergence rate of the Euler
scheme also holds for certain irregular functions f under a Hörmander type condition
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has been proved by Bally-Talay [6] using Malliavin calculus. For the general Lévy
driven case, the Euler-Maruyama scheme was first studied in Protter- Talay [75], see
also Jacod-Protter [40] and Jacod et al. [39] (for smooth f). The Itô-Taylor (weak-
Taylor) high order scheme is a natural extension of the Euler scheme although is
hard to simulate due to the use of multiple stochastic integrals. A discussion on the
Itô-Taylor scheme with the Romberg extrapolation can be found in Kloeden-Platen
[45].

In the continuous diffusion case, some new discretization schemes (also called
Kusuoka type schemes) which are of orderm ≥ 2 without the Romberg extrapolation
have been introduced by Kusuoka [53], Lyons-Victoir [63], Ninomiya-Victoir [69],
Ninomiya-Ninomiya [68], Fujiwara [25] (m = 6) and Oshima-Teichmann-Veluscek
[72] (m: even). The rate of convergence of these schemes is closely related to the
stochastic Taylor expansion, or series expansion of exponential maps on a noncom-
mutative algebra.

The actual simulation is carried out using Monte Carlo methods. That is, one
computes 1

M

∑M
i=1 f(X

(n),i
T (x)) where X

(n),i
T (x), i = 1, ...,M denotes M i.i.d. copies

of X
(n)
T (x). Therefore, the final error of L2-convergence is:

1

M

M
∑

i=1

f(X
(n),i
T (x))−E[f(XT (x))] = O

(

1√
M

+
1

nm

)

.

Then the optimal asymptotic choice of n is O(nm) = O(
√
M).

The goal of the present chapter is two-fold. First, we introduce a general frame-
work to study weak approximation problems from the standpoint of operator (semi-
group) expansions. That is given two processes that have equal semigroup expan-
sions up to some order lead after composition to two processes that are closed in law.
This goal is not new. In fact, using PDE techniques, Milshtein and Talay between
others proved various weak approximation results. Although our proof is essentially
the same it gives a new viewpoint that will help in defining new approximation
schemes.

The next idea, is to decompose the generator associated with (2.1) in d + 2
components where each component is associated with each component of the driving
process (the whole Lévy process is considered as one component). Then we prove
that if each of these components is approximated with an error of order m + 1
then the composition gives an error of order m. In the particular case that each
component can be characterized as the semigroup of a flow-type process then the
composition leads to a composition-type approximation scheme.

Secondly, using the above strategy we provide approximations for solutions of
(2.1). In particular, our approximations are valid for infinite activity Lévy processes
Y . We prove that in fact, if one uses the Asmussen-Rosiński idea of approximating
the jumps of size smaller than ε with a Brownian motion and we only simulate one
jump of size bigger than ε per each time interval in the approximation is enough to
provide a first order approximation procedure. Furthermore we give the necessary
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estimate to determine ε as a function of n. For this approximation, we found it
better to decompose the generator in d+ 4 components.

This chapter is organized as follows. In Section 2.2, we introduce the main
example and the goal for the first part of this article in explicit mathematical terms.
The general framework is introduced in Section 2.3. In Section 2.4 we give the results
of convergence rates of numerical discretization schemes in the general framework. In
Section 2.5, we give a general result that states how to recombine the approximations
to coordinate processes in order to approximate the semigroup associated to (2.1).
Finally, in Section 2.6 we approximate each coordinate process and in particular, we
define approximation schemes for Lévy driven SDEs.

2.2 Weak approximation problem

In order to better understand the abstract formulation in Section 3, we introduce
here our main example. Let (Yt) be a d-dimensional Lévy process characterized by
Lévy-Khintchin formula:

E[ei〈θ,Yt〉] = exp t

(

i〈θ, b〉 − 〈θ, cθ〉
2

+

∫

Rd
0

(ei〈θ,y〉 − 1− i〈θ, τ(y)〉)ν(dy)
)

(2.2)

where b ∈ Rd, c ∈ Rd ⊗ Rd (symmetric, semi-positive definite) and ν is a Borel
measure on Rd

0 := Rd \ {0} satisfying that
∫

|y|≤1
|y|2ν(dy) < ∞, which is called the

Lévy measure.

Throughout this chapter, we assume that

∫

|y|>1

|y|pν(dy) < ∞, for all p ≥ 1. (2.3)

It is well known that (2.3) implies that Yt ∈ ∩p≥1L
p for all t. We also recall that τ

is a truncation function (e.g. τ(y) = y1{|y|≤1}, the constant b and τ depend on each
other). The triplet (b, c, ν) is called the Lévy triplet.

The Lévy driven stochastic differential equation is given by

Xt(x) = x+

∫ t

0

Ṽ0(Xs−(x))ds+

∫ t

0

V (Xs−(x))dBs +

∫ t

0

h(Xs−(x))dYs (2.4)

with smooth coefficients Ṽ0 : RN → RN , V = (V1, . . . , Vd), h : RN → RN ⊗ Rd

whose derivatives of any order (≥ 1) are bounded. Here Bt and Yt are independent
d-dimensional standard Brownian motion and Yt is a d-dimensional Lévy process
associated with the Lévy triplet (b, 0, ν) satisfying the condition (2.3). Using general
semimartingale theory (see [74]) we have that the above equation has a unique

solution. We define V0 := Ṽ0 − 1
2

∑d
i=1

∑N
j=1

∂Vi

∂xj
V

(j)
i . Then (2.4) can be rewritten
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in the following Stratonovich form:

Xt(x) = x+

d
∑

i=0

∫ t

0

Vi(Xs−(x)) ◦ dBi
s +

∫ t

0

h(Xs−(x))dYs

where B0
t = t.

Before introducing the general framework of approximation, let us explain in
mathematical terms the goal in this article. Our main example corresponds to
the approximation of the semigroup Pt defined as the semigroup associated to the
Markov process Xt:

Ptf(x) = E[f(Xt(x))]

where f : RN → R is a continuous function with polynomial growth at infinity.

Let Qt ≡ Qn
t be an operator such that the semigroup property is satisfied in

{kT/n; k = 0, ..., n}. Assume that Qt approximates Pt in the sense that it satisfies
the local error estimate (Pt−Qt)f(x) = O(tm+1). Then using the semigroup property
of both Pt and (QkT/n), we notice that

PTf(x)− (QT/n)
nf(x) =

n−1
∑

k=0

(QT/n)
k(PT/n −QT/n)PT− k+1

n
Tf(x).

Therefore if we have good norm estimates of (QT/n)
k and PT− k+1

n
T in a sense to be

defined later (in particular the norm estimates have to be independent of n) then
we can expect that (QT/n)

n is an approximation of order m to PT . Finally in order
to be able to perform Monte Carlo simulations we assume that Q has a stochastic
representation. That is, there exists a stochastic process M = Mt(x) starting at x
such thatQtf(x) = E[f(Mt(x))]. Then clearly, we have the following representation.

QTf(x) = (QT/n)
nf(x) = E[f(M1

T/n ◦ · · · ◦Mn
T/n(x))]

where M i
T/n are independent copies of MT/n and ◦ is defined as (M i

t ◦ M j
t )(x) :=

M i
t (M

j
t (x)).

The above ideas are well known and have been already used to achieve proofs
of weak convergence (for historical references, see [45]). Nevertheless, it seems to
us that this is the first time it appears in this general framework. For example, if
we take Mt(x) := x + Ṽ0(x)t + V (x)Bt + h(x)Yt for d = 1, one obtains the Euler-
Maruyama scheme.

Next to further simplify the procedure to obtain approximations we write the
operator Pt as a composition of d+2 operators as follows. First define the following
stochastic processes Xi,t(x), i = 0, ..., d + 1, usually called coordinate processes,
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which are the unique solutions of

X0,t(x) = x+

∫ t

0

V0(X0,s(x))ds

Xi,t(x) = x+

∫ t

0

Vi(Xi,s(x)) ◦ dBi
s 1 ≤ i ≤ d

Xd+1,t(x) = x+

∫ t

0

h(Xd+1,s−(x))dYs.

Then we define
Qi,tf(x) := E[f(Xi,t(x))] (2.5)

for continuous function f : RN → R with polynomial growth at infinity.
For notational convenience we identify a smooth function V : RN → RN with a

smooth vector field
∑N

i=1 V
(i) ∂

∂xi
onRN . Let us define (integro-)differential operators

Li acting on C2 by

L0f(x) := (V0f)(x), Lif(x) :=
1

2
(V 2

i f)(x), 1 ≤ i ≤ d (2.6)

Ld+1f(x) := ∇f(x)h(x)b +

∫

(f(x+ h(x)y)− f(x)−∇f(x)h(x)τ(y))ν(dy).

It is well known that L :=
∑d+1

i=0 Li is the generator of X and similarly Li is the
generator of Xi,t. Also etL := Pt and etLi := Qi,t respectively where we consider
these expressions as exponential maps on a noncommutative algebra. One notices
that these operators have the form

etL =

m
∑

k=0

tk

k!
Lk +O(tm+1) (2.7)

etLi =
m
∑

k=0

tk

k!
Lk
i +O(tm+1) (2.8)

To approximate etL, we would like to find some combination of operators satis-
fying

etL −
k
∑

j=1

ξje
t1,jA1,j · · · etℓj ,jAℓj,j = O(tm+1) (2.9)

with some ti,j > 0, Ai,j ∈ {L0, L1, . . . , Ld+1} and weights {ξj} ⊂ [0, 1] with
∑k

j=1 ξj =
1. This will correspond to an m-th order discretization scheme.

To find such schemes, one can perform formal Taylor expansions for etA in each
of the terms in (2.9). We remark that the result (2.9) will follow directly from (2.7)
and (2.8) independent of the specific form of the decomposition L :=

∑d+1
i=0 Li. This

algebraic calculation has lead to the introduction of the following approximation
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schemes
Ninomiya-Victoir (a):

1

2
e

t
2
L0etL1 · · · etLd+1e

t
2
L0 +

1

2
e

t
2
L0etLd+1 · · · etL1e

t
2
L0 (2.10)

Ninomiya-Victoir (b):

1

2
etL0etL1 · · · etLd+1 +

1

2
etLd+1 · · · etL1etL0 (2.11)

Splitting method:
e

t
2
L0 · · · e t

2
LdetLd+1e

t
2
Ld · · · e t

2
L0 (2.12)

The semigroups generated by these operators have a probabilistic representation.
For example, Ninomiya-Victoir (a) corresponds to

1U< 1
2
X0,t/2 ◦Xd+1,t · · ·X1,t ◦X0,t/2(x) + 1 1

2
≤UX0,t/2 ◦X1,t · · ·Xd+1,t ◦X0,t/2(x)

where U is a uniform random variable taking values in [0, 1], independent of Xi,t.
However, since a closed-form solution Xi,t is not always available, one has to replace
Xi,t with other approximations of order m+1 so that the final approximation result
remains unchanged. Nevertheless the fact that there is only one driving process
simplifies this task. This problem will be discussed in Section 2.5.

2.3 Preliminaries

2.3.1 Notation and assumptions

In this section, we consider a general framework for weak approximations following
the arguments in Section 2.2, without using the specific form of the operator. We
first define the following functional spaces.

• Cm
p ≡ Cm

p (RN): the set of Cm functions f : RN → R such that for each
multi-index α with 0 ≤ |α| ≤ m, |∂α

x f(x)| ≤ C(α)(1 + |x|p) for some positive
constant C(α).

We also let Cp ≡ C0
p . Let us define a norm on Cm

p by

‖f‖Cm
p
:= inf{C ≥ 0 : |∂α

x f(x)| ≤ C(1 + |x|p), 0 ≤ |α| ≤ m, x ∈ RN}

where we denote |α| := α1 + · · ·+ αN for α = (α1, . . . , αN) ∈ ZN
+ .

• C1,m
p ([0, T ] × RN), m ≥ 2: the set of functions f : [0, T ] × RN → R such

that s 7→ f(s, x) is continuous differentiable for all x ∈ RN and satisfies that
f(s, ·), ∂sf(s, ·) ∈ Cm−2

p+2 with sups∈[0,T ](‖f(s, ·)‖Cm
p
+ ‖∂sf(s, ·)‖Cm−2

p+2
) < ∞.
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From now on, we denote by Qt : ∪p≥0Cp(R
N) → ∪p≥0Cp(R

N) a linear operator
for 0 ≤ t ≤ T .

Assumption (M0) . If f ∈ Cp with p ≥ 2, then Qtf ∈ Cp and

sup
t∈[0,T ]

‖Qtf‖Cp ≤ K‖f‖Cp

for some constant K > 0 independent of t. Futhermore, we assume 0 ≤ Qtf(x) ≤
Qtg(x) whenever 0 ≤ f ≤ g.

We now introduce two assumptions which are highly related to the convergence
rate of approximation schemes.

Assumption (M) . Qt satisfies (M0), and for each fp(x) := |x|2p (p ∈ N),

Qtfp(x) ≤ (1 +Kt)fp(x) +K ′t (2.13)

for some constant K = K(T, p), K ′ = K ′(T, p) > 0.

For m ∈ N, δm : [0, T ] → R+ denotes a decreasing function which satisfies

lim sup
t→0+

δm(t)

tm−1
= 0.

Usually, we have δm(t) = tm.

Assumption R(m, δm) . For each p ≥ 2, there exists a constant q = q(m, p) ≥ p
and linear operators ek : C2k

p → Cp+2k (k = 0, 1, . . . , m) such that

(A): For every f ∈ C
2(m′+1)
p with 1 ≤ m′ ≤ m, the operator Qt satisfies

Qtf(x) =

m′
∑

k=0

(ekf)(x)t
k + (Err

(m′)
t f)(x), t ∈ [0, T ], (2.14)

where e0f = f , Err
(m′)
t f ∈ Cq, and satisfies the following condition:

(B): If f ∈ Cm′′

p with m′′ ≥ 2k, then ekf ∈ Cm′′−2k
p+2k and there exists a constant

constant K = K(T,m) > 0 such that

‖ekf‖Cm′′−2k
p+2k

≤ K‖f‖Cm′′
p

k = 0, 1, . . . , m. (2.15)

Furthermore if f ∈ Cm′′

p with m′′ ≥ 2m′ + 2,

‖Err(m′)
t f‖Cq ≤

{

Ktm
′+1‖f‖Cm′′

p
if m′ < m

Ktδm(t)‖f‖Cm′′
p

if m′ = m

for all 0 ≤ t ≤ T .
(C): For every 1 ≤ k ≤ m and j ≥ 2k, if f ∈ C1,j

p ([0, T ] × RN), then ekf ∈
C1,j−2k

p+2k ([0, T ]×RN) and ∂sekf = ek∂sf .
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Remark 2.3.1. The condition (C) is only used for the Romberg extrapolation which
is discussed in Theorem 2.4.4.

In order to compare the finite power expansions of different operators, we intro-
duce the following notation.

J≤m(Qt) :=

m
∑

k=0

tkek

Jm(Q) := em.

J≤m(Qt) is a linear operator, which is related to the series expansion of t 7→ etLi (cf.
Proposition 2.3.6). The following Lemma comprises some basic properties related
to the above definition. The proof is straightforward.

Lemma 2.3.2. The following properties are satisfied:

R(m+ 1, δm+1) ⇒ R(m, tm)

R(m, δm) ⇒ R(m, δ̃m)

whenever δm(t) ≤ Kδ̃m(t) and lim supt→0+ δ̃m(t)/t
m−1 = 0.

(i) Let {ξi}1≤i≤ℓ be deterministic positive constants with
∑

i ξi = 1, and assume (M)

for Q
(i)
t (i = 1, . . . , ℓ). Then

∑ℓ
i=1 ξiQ

(i)
t also satisfies (M).

(ii) Let {ξi}1≤i≤ℓ ⊂ R and assume R(m, δm) for Q
(i)
t (i = 1, . . . , ℓ). Then

∑ℓ
i=1 ξiQ

(i)
t

also satisfies R(m, δm).

2.3.2 Properties of Lévy driven SDEs

We start with the differentiability properties of Xt(x) in x. The following material
can be found in [40], [39], [49], [74] and [75]. We quote them here for completeness.

Lemma 2.3.3. There exists a version of Xt(x) such that a map x 7→ Xt(x) is infinite
times continuous differentiable almost surely and in the Lp-sense. Moreover, we have
for p ≥ 2,

E[ sup
0≤t≤T

|Xt(x)|p] ≤ C(p, T )(1 + |x|p) (2.16)

and
sup
x∈RN

E[ sup
0≤t≤T

|∂α
xXt(x)|p] < ∞ (2.17)

for any multi-index α with |α| ≥ 1.

Proposition 2.3.4. Let f ∈ Cm
p with p ≥ 2.

(i)Then Ptf ∈ Cm
p for all t ≥ 0 and

sup
t∈[0,T ]

‖Ptf‖Cm
p
≤ C‖f‖Cm

p
(2.18)

24



(ii) If m ≥ 2, then Lf ∈ Cm−2
p+2 and

‖Lf‖Cm−2
p+2

≤ C‖f‖Cm
p
.

(iii) If f ∈ C1,m
p ([0, T ]×RN), then (∂tLf)(t, x) = (L∂tf)(t, x)

Proof. The proof of (i) follows by interchange of derivation and expectation together
with the moment estimates in Lemma 2.3.3. Recall that L =

∑d+1
i=0 Li as defined in

(2.6).
(ii) We only do the proof for Ld+1 with m = 2. We have

∣

∣

∣

∫

(f(x+ h(x)y)− f(x)−∇f(x)h(x)τ(y))ν(dy)
∣

∣

∣

=
∣

∣

∣

∫

∇f(x)h(x)(y − τ(y))ν(dy) +

∫ ∫ 1

0

(1− θ)
d2

dθ2
f(x+ θh(x)y)dθν(dy)

∣

∣

∣

≤ C‖f‖C2
p
(1 + |x|p+2).

Proposition 2.3.5. Let f ∈ C2
p . Then Pt and L are commutative and uf(t, x) :=

Ptf(x) is the solution of the integro-differential equation:

{

d
dt
uf(t, x) = Luf(t, x)

uf(0, x) = f(x).

Proof. 1. We first prove that t 7→ Ptg(x) is continuous when g ∈ Cp(R
N). Note

that
E[g(Xt(x))− g(Xt−(x))] = 0

since P (|Yt − Yt−| > 0) = 0 for a fixed time t. By this and Lemma 2.3.3, we deduce
the continuity of Ptg.

2. By using Itô’s formula (see e.g. [38]), for g ∈ C2
p (R

N),

g(Xs(x)) = g(x) +

∫ s

0

Lg(Xu−(x))du+Ms (2.19)

where Ms stands for some local martingale. By using Lemma 2.3.3 again, Ms is a
martingale and hence E[Ms] = 0. Taking expectations of the above equation (2.19),
we can show the continuous differentiability of t 7→ Ptg(x) and

d
dt
Ptg(x) = PtLg(x).

3. Apply the above calculation for g = Ptf and take the derivative of s 7→
Pt+sf = PsPtf around s = 0. Then we conclude that

PtLf(x) =
d

dt
Ptf(x) = lim

s→0+
s−1(PsPtf(x)− Ptf(x)) = LPtf(x).
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Let f ∈ C2m+2
p . Then the commutativity of Pt and L implies that Lmuf (= uLmf)

is differentiable in t and the solution to similar integro-differential equations. That
is,

{

d
dt
(Lmuf)(t, x) = L(Lmuf)(t, x)

(Lmuf)(0, x) = (Lmf)(x).

for each m ≥ 0. Consequently, applying Taylor’s expansion to uf , we have

Proposition 2.3.6. For f ∈ C2m+2
p ,

Ptf(x) =
m
∑

k=0

tk

k!
Lkf(x) +

∫ t

0

(t− s)m

m!
Ps(L

m+1f)(x)ds

Furthermore, if f ∈ Cm
p with m ≥ 2. Then Ptf ∈ C1,m

p .

Summarizing this section, we have

Corollary 2.3.7. Ptf(x) = E[f(Xt(x))] and Q
i
tf(x) = E[f(X i

t(x))] (i = 0, 1, . . . , d+
1) satisfy the conditions (M) and R(m, tm). That is, for p ∈ N,

E[|Xt(x)|2p] ≤ (1 +Kt)|x|2p +K ′t

for some constant K = K(T, p), K ′ = K ′(T, p) > 0 and

J≤m(Pt) =

m
∑

k=0

tk

k!
Lk

J≤m(Q
i
t) =

m
∑

k=0

tk

k!
Lk
i

for any m ∈ N.

2.4 Weak rate of convergence

In this section, we prove the rate of convergence for the approximating operator Q
under the assumptions (M), R(m, δm). Throughout this section, we assume the
following assumption.

Assumption (MP ) . For all f ∈ Cm
p , m ≥ 2, p ≥ 1 then P·f ∈ C1,m

p and further-
more the following property is satisfied for some positive constant C:

sup
t∈[0,T ]

‖Ptf‖Cm
p
≤ C‖f‖Cm

p

for all f ∈ Cm
p , m ≥ 0, p ≥ 1.
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Remark 2.4.1. The above assumption is satisfied for Ptf(x) := E[f(Xt(x))] under
the assumptions in Section 2.2.

Theorem 2.4.2. Assume (M) and R(m, δm) for Pt and Qt with J≤m(Pt−Qt) = 0.

Then for any f ∈ C
2(m+1)
p , there exists a constant K = K(T, x) > 0 such that

∣

∣

∣
PTf(x)− (QT/n)

nf(x)
∣

∣

∣
≤ Kδm

(T

n

)

‖f‖
C

2(m+1)
p

. (2.20)

For the proof, we need the following lemma.

Lemma 2.4.3. Under assumption (M), the operators Pt and Qt satisfy

sup
n

max
0≤k≤n

Qk
T/nf(x) < ∞

for any positive function f ∈ Cp with p ≥ 0.

Proof. Let fp(x) = |x|2p for p ∈ N. By the assumption (M), we have

(QT/n)
kfp(x) = (QT/n)

k−1(QT/nfp)(x)

≤ (1 +
C

n
)(QT/n)

k−1fp(x) +
C ′

n

with some constant C,C ′ independent of t, x, k, n. Since (1 + C
n
)k ≤ eC , one proves

by induction that

sup
n

max
0≤k≤n

(QT/n)
kfp(x) ≤ eCC ′(1 + |x|2p).

This completes the proof.

Proof of Theorem 2.4.2. Let f ∈ C
2(m+1)
p . Using the semigroup property and as-

sumption R(m, δm), we have

PTf(x)− (QT/n)
nf(x) =

n−1
∑

k=0

(QT/n)
k(PT/n −QT/n)PT− k+1

n
Tf(x)

=

n−1
∑

k=0

(QT/n)
k(Err

(m)
T/nPT− k+1

n
Tf)(x)

where Err
(m)
t is the error term of (P −Q) defined in (2.14).

We obtain from assumptions R(m, δm) and (MP )

|(Err(m)
T/nPT− k+1

n
Tf)(x)| ≤ K1

T

n
δm

(T

n

)

(1 + |x|q)‖PT− k+1
n

Tf‖C2(m+1)
p

≤ K2T

n
δm

(T

n

)

(1 + |x|q)‖f‖
C

2(m+1)
p
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and hence Lemma 2.4.3 leads to

|(QT/n)
k(Err

(m)
T/nPT− k+1

n
Tf)(x)| ≤

K2T

n
δm

(T

n

)

‖f‖
C

2(m+1)
p

(QT/n)
k((1 + |x|q))

≤ K

n
δm

(T

n

)

‖f‖
C

2(m+1)
p

for some constant K = K(T, x). This completes the proof.

The following theorem is an extension of Theorem 2.4.2, and is analogous to
Talay-Tubaro [90, Theorem 1].

Theorem 2.4.4. Assume (M) and R(m+ 1, δm+1) for Qt with the conditions

J≤m(Pt −Qt) = 0

and
‖Ptf −Qtf‖Cp+2 ≤ Ct‖f‖C2

p
. (2.21)

Then for each f ∈ C
2(m+2)
p , we have

PTf(x)− (QT/n)
nf(x) =

K

nm
+O

((T

n

)m+1

∨ δm+1

(T

n

))

(2.22)

where K = Tm
∫ T

0
PsJm+1(P −Q)PT−sf(x)ds.

Let us now prepare two auxiliary lemmas.

Lemma 2.4.5. Let f = fs(x) ∈ C1,2
p ([0, T ] × RN). Then a map s 7→ Psfs(x) is

Lipschitz continuous for all x ∈ RN .

Proof. Note that

|Ptft(x)− Psfs(x)| ≤ |Ptft(x)− Ptfs(x)|+ |Ptfs(x)− Psfs(x)|

Using the Lipschitz properties of t 7→ ft(x) and t 7→ Ptfs(x), the proof follows.

Lemma 2.4.6. Let g : [0, T ] → R be a Lipschitz continuous function. Then we
have

∣

∣

∣

T

n

n
∑

k=1

g(kT/n)−
∫ T

0

g(s)ds
∣

∣

∣
≤ C(T, g)

n
. (2.23)

Proof. From the assumption we immediately obtain

∣

∣

∣

T

n
g(kT/n)−

∫ kT/n

(k−1)T/n

g(s)ds
∣

∣

∣
≤ C

n2

where C depends on T and the Lipschitz coefficient of g. This implies (2.23).
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Proof of Theorem 2.4.4. We start by noting that as in the proof of Theorem 2.4.2,

(PT/n −QT/n)PT−sf(x) =
(T

n

)m+1

Jm+1(P −Q)PT−sf(x) + (Err
(m+1)
T/n PT−sf)(x)

and therefore,

PTf(x)−(QT/n)
nf(x) =

(T

n

)m+1
n−1
∑

k=0

(QT/n)
kJm+1(P−Q)PT− k+1

n
Tf(x)+O

(

δm+1

(T

n

))

.

Now applying the proof of Theorem 2.4.2 to with Jm+1(P−Q)PT− k+1
n

Tf ∈ C2
p+2(m+1),

we obtain from the inequality (2.21) and (MP ), for k ≥ 1,

|((QT/n)
k − PkT/n)Jm+1(P −Q)PT− k+1

n
Tf(x)|

≤ C1(T, x)

n
‖Jm+1(P −Q)PT− k+1

n
Tf‖C2

p+2(m+1)

≤ C2(T, x)

n
‖f‖

C
2(m+2)
p

.

Next, we have by hypothesis (MP ), for 0 ≤ k ≤ n− 1

|PkT/nJm+1(P −Q)PT− k+1
n

Tf(x)− P k+1
n

TJm+1(P −Q)PT− k+1
n

Tf(x)|
= |(I − PT/n)PkT/nJm+1(P −Q)PT− k+1

n
Tf(x)|

≤ C3(T, x)

n
‖PkT/nJm+1(P −Q)PT− k+1

n
Tf‖C2

p+2(m+1)

≤ C4(T, x)

n
‖f‖

C
2(m+2)
p

.

Note that Jm+1(P−Q)PT−sf ∈ C1,2
p+2(m+1) and its Lipschitz constant with respect

to t is bounded by Jm+1(P−Q)∂sPT−sf (see the assumption (C) inR(m, δm)). Using
Lemmas 2.4.5, 2.4.6, we have

∣

∣

∣

T

n

n−1
∑

k=0

P k+1
n

TJm+1(P−Q)PT− k+1
n

Tf(x)−
∫ T

0

PsJm+1(P−Q)PT−sf(x)ds
∣

∣

∣
≤ C(T, f, x)

n
.

Hence taking K = Tm
∫ T

0
PsJm+1(P −Q)PT−sf(x)ds, we conclude that

PTf(x)− (QT/n)
nf(x) =

K

nm
+O

((T

n

)m+1

∨ δm+1

(T

n

))

.

This concludes the proof.
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2.5 Algebraic approximations of semigroup oper-

ators using coordinate operators

Throughout this section, we assume that Pt, t ∈ [0, T ] is a semigroup that satisfies
(M), (MP ) and R(m, δm). Furthermore we suppose that

J≤m(Pt) = I +

m
∑

j=1

tj

j!
ej

with ej =
(

∑d+1
i=0 Li

)j

satisfying the properties stated in R(m, δm). Similarly, we

assume that Qi,t:∪p≥0Cp(R
N) → ∪p≥0Cp(R

N), i = 0, ..., d + 1 be a sequence of
operators such that they satisfy (M), (MP ) and R(m, δm) with

J≤m(Qi,t) = I +

m
∑

j=1

tj

j!
Lj
i .

In what follows,
∏ℓ

i=1 ai := a1a2 · · · aℓ denotes a noncommutative product.

Theorem 2.5.1. Assume m = 2. That is, (M) and R(2, δ2) are satisfied for Qi,t

(i = 0, 1, . . . , d+ 1). Then all the following operators satisfy (M) and R(2, δ2):

N-V(a) Q
(a)
t = 1

2
Q0,t/2

∏d+1
i=1 Qi,tQ0,t/2 +

1
2
Q0,t/2

∏d+1
i=1 Qd+2−i,tQ0,t/2

N-V(b) Q
(b)
t = 1

2

∏d+1
i=0 Qi,t +

1
2

∏d+1
i=0 Qd+1−i,t

Splitting Q
(sp)
t = Q0,t/2 · · ·Qd,t/2Qd+1,tQd,t/2 · · ·Q0,t/2

Moreover, we have J≤2(Q
(a)
t ) = J≤2(Q

(b)
t ) = J≤2(Q

(sp)
t ) =

∑2
k=0

tk

k!
Lk. In partic-

ular, the above schemes define a second order approximation scheme.

The proof of Theorem 2.5.1 is an application of Theorem 2.4.2. The conditions
follow from the next lemma, together with an algebraic calculation as pointed out
at the end of Section 2.2.

This theorem can also be stated for third order approximation schemes.

Lemma 2.5.2. Let Q1
t and Q2

t : ∪p≥0Cp(R
N) → ∪p≥0Cp(R

N) be two linear operators
and let Q1

tQ
2
t be the composite operator. Then

(i) If (M) holds for Q1
t , Q

2
t , then it also holds for Q1

tQ
2
t .

(ii) If R(m, δm) holds for Q1
t , Q

2
t , then it also holds for Q1

tQ
2
t .

Proof. (i) is obvious. We now prove (ii). Let m′ ≤ m. We have by hypothesis that

Q1
tf(x) =

m′
∑

k=0

(JkQ
1
t f)(x)t

k + (Err
(m′,1)
t f)(x)
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Q2
t f(x) =

m′
∑

k=0

(JkQ
2
t f)(x)t

k + (Err
(m′,2)
t f)(x)

for f ∈ C
2(m′+1)
p , p ≥ 2. Furthermore there exists q = q(m, p) > 0 such that

Err
(m′,1)
t f , Err

(m′,2)
t f ∈ Cq. Now we prove (A)-(C) in the definition of R(m, δm).

(A): Note that for f ∈ C
2(m′+1)
p (RN),

Q1
tQ

2
t f(x) = Q1

t

(

m′
∑

k=0

(JkQ
2
t f)(x)t

k + (Err
(m′,2)
t f)(x)

)

.

Since JkQ
2
tf ∈ C

2(m′+1)−2k
p+2k , Q1

t (JkQ
2
t f) can be written as

(Q1
t (JkQ

2
tf))(x) =

m′−k
∑

ℓ=0

(JℓQ
1
t (JkQ

2
tf))(x)t

ℓ + (Err
(m′−k,1)
t JkQ

2
tf)(x).

As a result, we have

Q1
tQ

2
t f(x) =

m′
∑

k=0

m′−k
∑

ℓ=0

(JℓQ
1
t (JkQ

2
tf))(x)t

k+ℓ + (Err
(m′,1,2)
t f)(x)

where

(Err
(m′,1,2)
t f)(x) = (Q1

tErr
(m′,2)
t f)(x) +

m′
∑

k=0

(Err
(m′−k,1)
t JkQ

2
t f)(x)t

k. (2.24)

We obtain from the properties of the error terms that Err
(m′,1,2)
t f ∈ Cq′ for some

q′ = q′(m, p) > q.
(B): For f ∈ Cm′′

p with m′′ ≥ 2(m′ + 1), we can derive for k + ℓ ≤ m′,

‖JℓQ
1
t (JkQ

2
t f)‖Cm′′−2(k+ℓ)

p+2(k+ℓ)

≤ K1‖JkQ
2
t f‖Cm′′−2k

p+2k
≤ K2‖f‖Cm′′

p

and by (2.24),

‖Err(m′,1,2)
t f‖Cq′

≤ K3‖Err(m
′,2)

t f‖Cq +K4‖Err(m
′,1)

t J0Q
2
t f‖Cq′

+ K5

m′
∑

k=1

‖JkQ
2
t f‖Cm′′−2k

p+2k
tm

′+1

≤
{

Ktm
′+1‖f‖Cm′′

p
if m′ < m

Ktδm(t)‖f‖Cm′′
p

if m′ = m.

Finally, the proof of (C) is straightforward.
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Proof of Theorem 2.5.1. Using this lemma, we end the proof, calculating J≤m for
each numerical discretization scheme. For instance, in the case of N-V(b) (i.e.
(2.11)), we obtain

J≤2

(1

2

d+1
∏

i=0

Qi,t +
1

2

d+1
∏

i=0

Qd+1−i,t

)

=
1

2
J≤2

(

d+1
∏

i=0

J≤2

(

Qit

))

+
1

2
J≤2

(

d+1
∏

i=0

J≤2

(

Qd+1−i,t

))

=
1

2
J≤2

(

d+1
∏

i=0

(

2
∑

k=0

tk

k!
Lk
i

))

+
1

2
J≤2

(

d+1
∏

i=0

(

2
∑

k=0

tk

k!
Lk
d+1−i

))

=
1

2

(

I + t

d+1
∑

i=1

Li +
t2

2

d+1
∑

i=1

L2
i + t2

∑

i<j

LiLj

)

+
1

2

(

I + t

d+1
∑

i=1

Li +
t2

2

d+1
∑

i=1

L2
i + t2

∑

i>j

LiLj

)

= J≤2(Pt).

Another idea to construct construct higher order schemes is to use local Romberg
extrapolation. In order to do this we need to weaken the assumption {ξi} ⊂ [0, 1].
This is done in the next theorem.

Theorem 2.5.3. Let m = 1 or 2. Assume (M) and R(2m, t2m) for Pt and Q
[i]
t

(i = 1, . . . , ℓ) and (MP ) for Pt. Furthermore, we assume

(1) J≤2m

(

Pt −
∑ℓ

i=1 ξiQ
[i]
t

)

= 0 for some real numbers {ξi}i=1,...,ℓ with
∑l

i=1 ξi = 1

(2) There exists a constant q = q(m, p) > 0 such that for every f ∈ Cm′

p with

m′ ≥ 2(m+ 1), (Pt −Q
[i]
t )f ∈ C

m′−2(m+1)
q and

sup
t∈[0,T ]

‖(Pt −Q
[i]
t )f‖Cm′−2(m+1)

p
≤ CT‖f‖Cm′

q
tm+1.

Then we have for any f ∈ C
4(m+1)
p ,

∣

∣

∣
PTf(x)−

ℓ
∑

i=1

ξi(Q
[i]
T/n)

nf(x)
∣

∣

∣
≤ C(T, f, x)

n2m
.

Proof. We first remark that the operator
∑ℓ

i=1 ξiQ
[i]
t no longer satisfies the semigroup

property, i.e.
∑ℓ

i=1 ξi(Q
[i]
T/n)

n 6= (
∑ℓ

i=1 ξiQ
[i]
T/n)

n. Thus the proof is nontrivial.
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Note that for f ∈ C
4(m+1)
p ,

E := PTf(x)−
ℓ
∑

i=1

ξi

(

Q
[i]
T/n

)n

f(x) =

ℓ
∑

i=1

ξi

(

PT −
(

Q
[i]
T/n

)n)

f(x).

Using the semigroup property of Pt and Q
[i]
k
n
T
, we have

E =

ℓ
∑

i=1

ξi

n−1
∑

k=0

(Q
[i]
T/n)

k
(

PT/n −Q
[i]
T/n

)

PT− k+1
n

Tf(x)

=

ℓ
∑

i=1

ξi

n−1
∑

k=0

PkT/n

(

PT/n −Q
[i]
T/n

)

PT− k+1
n

Tf(x)

+
ℓ
∑

i=1

ξi

n−1
∑

k=0

(

(Q
[i]
T/n)

k − PkT/n

)(

PT/n −Q
[i]
T/n

)

PT− k+1
n

Tf(x)

We expand (Q
[i]
T/n)

k − PkT/n again, to obtain

E =

n−1
∑

k=0

(PT/n)
k
(

PT/n −
ℓ
∑

i=1

ξiQ
[i]
T/n

)

PT− k+1
n

Tf(x)

+
ℓ
∑

i=1

ξi

n−1
∑

k=0

k−1
∑

l=0

(

Q
[i]
T/n

)l(

Q
[i]
T/n − PT/n

)

PT− l+1
n

T

(

PT/n −Q
[i]
T/n

)

PT− k+1
n

Tf(x).

By the assumption (1), we have

∣

∣

∣

n−1
∑

k=0

(PT/n)
k
(

PT/n −
ℓ
∑

i=1

ξiQ
[i]
T/n

)

PT− k+1
n

Tf(x)
∣

∣

∣
≤ C1(T, f, x)

n2m
.

Thus we end the proof by showing that

∣

∣

∣

ℓ
∑

i=1

ξi

n−1
∑

k=0

k−1
∑

l=0

(

Q
[i]
T/n

)l(

Q
[i]
T/n − PT/n

)

PT− l+1
n

T

(

PT/n −Q
[i]
T/n

)

PT− k+1
n

Tf(x)
∣

∣

∣

≤ C2(T, f, x)

n2m
.

Using here the assumption (2), we obtain
∥

∥

∥

(

Q
[i]
T/n − PT/n

)

PT− l+1
n

T

(

PT/n −Q
[i]
T/n

)

PT− k+1
n

Tf
∥

∥

∥

Cq′

≤ C(T )

nm+1

∥

∥

∥

(

PT/n −Q
[i]
T/n

)

PT− k+1
n

Tf
∥

∥

∥

C
2(m+1)
q

≤ C ′(T )

n2(m+1)
‖f‖

C
4(m+1)
p
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and therefore

∣

∣

∣

ℓ
∑

i=1

ξi

n−1
∑

k=0

k−1
∑

l=0

(

Q
[i]
T/n

)l(

Q
[i]
T/n − PT/n

)

PT− l+1
n

T

(

PT/n −Q
[i]
T/n

)

PT− k+1
n

Tf(x)
∣

∣

∣

≤
n−1
∑

k=0

k−1
∑

l=0

C2(T, f, x)

n2(m+1)
≤ C2(T, f, x)

n2m
.

This completes the proof.

Example 2.5.4. It is known that the Ninomiya-Victoir scheme

(1

2
e

T
2n

L0

d+1
∏

i=1

e
T
n
Lie

T
2n

L0 +
1

2
e

T
2n

L0

d+1
∏

i=1

e
T
n
Ld+2−ie

T
2n

L0

)n

is of order 2 (m = 2, δ2(t) = t2 in Theorem 2.4.2). By Theorem 2.5.3, the following
modified Ninomiya-Victoir scheme

1

2

(

e
T
2n

L0

d+1
∏

i=1

e
T
n
Lie

T
2n

L0

)n

+
1

2

(

e
T
2n

L0

d+1
∏

i=1

e
T
n
Ld+2−ie

T
2n

L0

)n

is also of order 2.

Example 2.5.5. Fujiwara [25] gives a proof of a similar version of the above theorem
and some examples of 4th and 6th order. General even order schemes are given
by [72]. We introduce the examples of 4th order which satisfies the conditions in
Theorem 2.5.3 with m = 2:

4

3

(

1

2

(

d+1
∏

i=0

e
t
2
Li

)2

+
1

2

(

d+1
∏

i=0

e
t
2
Ld+1−i

)2
)

− 1

3

(

1

2

d+1
∏

i=0

etLi +
1

2

d+1
∏

i=0

etLd+1−i

)

In order to complete the approximation procedure through (quasi) Monte Carlo
methods we need to find a stochastic characterization of the operators Qi,t.

Definition 2.5.6. Given a stochastic process Yt(x) ∈ ∩p≥1L
p, we say that Y is the

stochastic characterization of the linear operator Qt if Qtf(x) = E [f(Yt(x))] for
f ∈ ∪p≥0Cp. In such as case we use the notation Qt ≡ QY

t .

Remark 2.5.7. Given the operators QZi

t (i = 1, . . . , ℓ) and the deterministic pos-
itive weights {ξi}1≤i≤ℓ with

∑l
i=1 ξi = 1. Let U be a uniform random variable on

[0, 1] independent of (Z i)i and define Z :=
∑ℓ

i=1 1(
∑i−1

j=1 ξj ≤ U <
∑i

j=1 ξj)Z
i. Then

QZ
t f(x) ≡ E[f(Zt(x))] =

ℓ
∑

i=1

ξiQ
Zi

t f(x).

Therefore by Lemma 2.3.2 if QZi

t satisfy (M) and R(m, δm) so does QZ
t . This

property will be used repeatedly in what follows.
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2.6 Applications

From this section on, we discuss the application of the previous approximation
results to the case of solutions of the SDE (2.1). From the results in Section 2.3.2
(see Corollary 2.3.7), it is clear that the semigroup Ptf(x) := E[f(Xt(x))] satisfies
the hypotheses (M) and R(m, δm). We define various approximations generated via

a stochastic process X̄i with corresponding operator QX̄i
t (i = 0, 1, . . . , d+ 1).

Due to the previous results and in particular, Theorem 2.5.1, we see that is
enough to verify local conditions on the approximation operators to conclude global
properties of approximation. In particular, we only need to verify that the operator
associated with X̄i (the approximation to the coordinate process) satisfies (M) and

R(m, δm) and J≤m(Q
X̄i
t ) = I+

∑m
j=1

tj

j!
Lj
i for some m ≥ 2 for Li given by (2.6). This

is the goal in most of the applications in this section.
Recall that the stochastic differential equation to be approximated is

Xt(x) = x+

d
∑

i=0

∫ t

0

Vi(Xs−(x)) ◦ dBi
s +

∫ t

0

h(Xs−(x))dYs.

In each of the following sections we consider different approximation processes for
the coordinate processes Xi,t. In each section, the notation for the approximating
process is always X̄i,t. We hope that this does not raise confusion as the framework
in each section is clear.

2.6.1 Continuous diffusion component

a) Explicit solution: Let V : RN → RN be a smooth function satisfying the
linear growth condition |V (x)| ≤ C(1 + |x|). The exponential map is defined as
exp(V )x = z1(x) where z denotes the solution of the ordinary differential equation

dzt(x)

dt
= V (zt(x)), z0(x) = x. (2.25)

The solution of the coordinate sde is obtained in the following Proposition.

Proposition 2.6.1. For i = 0, 1, ..., d, the stochastic differential equation

Xi,t(x) = x+

∫ t

0

Vi(Xi,s(x)) ◦ dBi
s (2.26)

has a unique solution given by

Xi,t(x) = exp(Bi
tVi)x.

Proof. Apply Itô’s formula to gi(B
i
t) with gi(y) = exp(yVi)x, y ∈ R.
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Xi,t(x) is called the i-th coordinate process and its semigroup is denoted by Qi
t.

This is a trivial example of the approximation of etLi , i = 0, 1, . . . , d satisfying (M)
and R(m, tm). However, sometimes it is not easy to obtain the closed-form solution
to the ODE (2.25). In those cases, we shall approximate exp(tV )x. Here we will do
this with the Taylor expansion first and then the Runge-Kutta methods denoted by
bm and cm respectively.

b) Taylor expansion: We first prove the following lemmas which help us to find
the rate of convergence of the scheme to be defined later. The following Lemma
follows easily from Gronwall’s lemma.

Lemma 2.6.2. Let V be a smooth function which satisfies the linear growth condi-
tion. Then | exp(tV )x| ≤ C eK|t|(1 + |x|) for t ∈ R, x ∈ RN .

From now on we denote by ej : RN → R, the coordinate function ej(x) = xj

for j = 1, ..., N . Furthermore, we also denote by V the vector field operator defined
from V .

Lemma 2.6.3. Let f ∈ Cm+1
p . Then we have for i = 0, 1, . . . , d,

f (exp(tVi)x) =

m
∑

k=0

tk

k!
V k
i f(x) +

∫ t

0

(t− u)m

m!
V m+1
i f(exp(uVi)x)du

and
∣

∣

∣

∫ t

0

(t− u)m

m!
V m+1
i f(exp(uVi)x)du

∣

∣

∣
≤ Cm‖f‖Cm+1

p
eK|t|(1 + |x|p+m+1)|t|m+1.

for all t ∈ R.

Proof. Assertion (2.6.3) follows application of Taylor expansion to the function
f(exp(tV )x) around t = 0. Next, as |V m+1

i f(x)| ≤ C(1 + |x|p+m+1), we obtain
from Lemma 2.6.2,

∣

∣

∣

∫ t

0

(t− u)m

m!
V m+1
i f(exp(uV )x)du

∣

∣

∣

≤ Cm‖f‖Cm+1
p

∫ |t|

0

|t|mCeK|u|(1 + |x|p+m+1))du

≤ C ′
m‖f‖Cm+1

p
eK|t|(1 + |x|p+m+1)|t|m+1.

Based on this Lemma, we define the approximation to the solution of the coor-
dinate equation (2.26) as follows

bjm(t, V )x =

m
∑

k=0

tk

k!
(V kej)(x), j = 1, ..., N.

36



Define
X̄i,t(x) = b2m+1(B

i
t, Vi)x for i = 0, ..., d.

Then we have the following approximation result.

Proposition 2.6.4. (i) For every p ≥ 1,

‖Xi,t(x)− X̄i,t(x)‖Lp ≤ C(p,m, T )(1 + |x|2(m+1))tm+1.

(ii) Let f ∈ C1
p . Then we have

E[|f(Xi,t(x))− f(X̄i,t(x))|] ≤ C(m, T )‖f‖C1
p
(1 + |x|p+2(m+1))tm+1.

Proof. (i): Apply Proposition 2.6.1 and Lemma 2.6.3 with f = ei. Then we have

‖Xi,t(x)− X̄i,t(x)‖Lp ≤ E
[

|Cme
K|Bt|(1 + |x|2(m+1))|Bt|2(m+1)|p

]1/p

≤ C(1 + |x|2(m+1))tm+1

for some constant C = C(p,m, T ).
(ii): We first apply the mean value theorem to obtain

E[|f(Xi,t(x))− f(X̄i,t(x))|]
≤ ‖f‖C1

p
‖1 + |θXi,t(x) + (1− θ)X̄i,t(x)|p‖L2‖Xi,t(x)− X̄i,t(x)‖L2

≤ C‖f‖C1
p
‖1 + |Xi,t(x)|p + |X̄i,t(x)|p‖L2(1 + |x|2(m+1))tm+1.

We see by Lemma 2.6.2 that

sup
t∈[0,T ]

‖1 + |Xi,t(x)|p + |X̄i,t(x)|p‖L2 ≤ C ′(1 + |x|p)

from which the proof follows.

As a result of this proposition we can see that R(m, tm) holds for the operators
associated with bm(t, V0)x and b2m+1(B

i
t , Vi)x, 1 ≤ i ≤ d. Indeed, we have for

m′ ≤ m,

E[f(X̄i,t(x))] = E [f(Xi,t(x))] + E[f(X̄i,t(x))− f(Xi,t(x))]

=
m′
∑

k=0

tk

k!
Lk
i f(x) + (Em′

t f)(x)

where
(Em′

t f)(x) := (Err
(m′)
t f)(x) + E[f(X̄i,t(x))− f(Xi,t(x))]

and (Err
(m′)
t f)(x) is defined through the residue appearing in Proposition 2.3.6, using

Li and Qi instead of L and P . Furthermore, using Proposition 2.6.4 (ii), we have
that the error term Em′

t satisfies (B) in assumption R(m, tm).
It remains to prove that (M) holds for X̄i,t(x). For the proof, we need an

additional growth condition for the vector field Vi.
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Proposition 2.6.5. Assume that (V k
i ej) (2 ≤ k ≤ m, 0 ≤ i ≤ d, 1 ≤ j ≤ N)

satisfies the linear growth condition then (M) holds for X̄i,t(x), i = 0, . . . , d.

Proof. The assumption (M0) follows from the smoothness and the linear growth
property of V k

i ej . We only prove the moment condition (2.13) for X̄i,t(x) i = 1, . . . , d.
Consider the multiplication (p ∈ N)

∣

∣

∣

m
∑

k=0

(Bi
t)

k

k!
(V k

i ej)(x)
∣

∣

∣

2p

=
∣

∣

∣
x+Bi

tVi(x) +

m
∑

k=2

(Bi
t)

k

k!
(V k

i ej)(x)
∣

∣

∣

2p

.

Taking into account that E[(Bi
t)

2k+1
] = 0, k ∈ N . Then by the assumption, we

obtain the result.

Therefore we obtain the main result.

Theorem 2.6.6. Assume that (V k
i ej) (2 ≤ k ≤ m, 0 ≤ i ≤ d, 1 ≤ j ≤ N) satisfies

the linear growth condition. Let X̄i,t(x) be defined by

X̄i,t(x) = b2m+1(B
i
t, Vi)x =

2m+1
∑

k=0

1

k!
(V k

i I)(x)

∫

0<t1<···<tk<t

1 ◦ dBi
t1 · · · ◦ dBi

tk
.

Denote by QX̄i
t the semigroup associated with X̄i,t(x). Then QX̄i

t satisfies (M) and

R(m, tm). Furthermore J≤m(Q
X̄i
t ) = I +

∑m
j=1

tj

j!
Lj
i .

c) Runge-Kutta methods: We say here that cm is an s-stage explicit Runge-
Kutta method of order m for the ODE (2.25) if it can be written in the form

cm(t, V )x = x+ t
s
∑

i=1

βiki(t, V )x (2.27)

where ki(t, V )x defined inductively by

k1(t, V )x = V (x),

ki(t, V )x = V
(

x+ t

i−1
∑

j=1

αi,jkj(t, V )x
)

, 2 ≤ i ≤ s,

and satisfies

| exp(tV )x− cm(t, V )x| ≤ Cme
K|t|(1 + |x|m+1)|t|m+1

for some constants ((βi, αi,j)1≤j<i≤s). Runge-Kutta formulas of order less than or
equal to 7 are well known. For details, see e.g. Butcher [13].

The following proposition can be shown by the same argument as in the proof
of Proposition 2.6.4.
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Proposition 2.6.7 (stochastic Runge-Kutta). (i) For every p ≥ 1,

‖Xi,t(x)− c2m+1(B
i
t, Vi)x‖Lp ≤ C(p,m, T )(1 + |x|2(m+1))tm+1 (2.28)

(ii) Let f ∈ C1
p . Then we have

E[|f(Xi,t(x))− f(c2m+1(B
i
t, Vi)x)|] ≤ C(m, T )‖f‖C1

p
(1 + |x|2(m+1))tm+1 (2.29)

Next we show that (M) still holds for the Runge-Kutta schemes.

Proposition 2.6.8. (M) holds for cm(B
i
t , Vi)x, i = 0, . . . , d.

Proof. We first note that for every 1 ≤ j ≤ s, there exists a function of the form
pj =

∑j−1
k=0 ajk|t|k such that

|kj(t, V )x| ≤ pj(t)(1 + |x|).

The assumption (M0) follows from the smoothness and the linear growth property
of Vi. We now prove (2.13). In the case i = 0, this is obvious by definition and the
inequality (2.6.1). In the case 1 ≤ i ≤ d, observe that

cm(t, V )x = x+ t

s
∑

l=1

βlV (x) + t

s
∑

l=2

βl

∫ 1

0

d

dθ
V
(

x+ θt

l−1
∑

j=1

αl,jkj(t, V )x
)

dθ

=: x+ t
s
∑

l=1

βlV (x) +Dm(t, V )x.

Expanding multiplications and taking expectations, as in Proposition 2.6.5, we can
show that the terms containing odd powers of Bi

t have expectation 0. Finally, we
obtain from the boundedness of ∂Vi that

|Dm(B
i
t, Vi)x| ≤ p(Bi

t)(1 + |x|)

where p = p(t) is of the form
∑s

k=2 ak|t|k. Using this, we conclude the proof.

Consequently, as in the Taylor scheme, R(m, tm) and (M) hold for the operators
associated with cm(t, V0)x and c2m+1(B

i
t, Vi)x, 1 ≤ i ≤ d. For more on this method,

we refer the reader to [68].

d) Minor extension: In the previous approximation, the assumption that Bt ∼
N(0, Id) can be weakened. In fact, we can use

√
tZ instead of Bt where (Z i)di=1 are

independent and

P (Z i = ±
√
3) =

1

6
, P (Z i = 0) =

2

3

for each i = 1, . . . , d.
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Proposition 2.6.9. Let Bt be a 1-dimensional Brownian motion and Z be a R-
valued random variable such that for all 0 ≤ k ≤ m,

E[(Z)k] = E[(B1)
k]

and
E[exp(c|Z|)] < ∞

for any c > 0. Then, for every f ∈ Cm+1
p ,

|E[f(exp(BtV )x)]− E[f(cm(
√
tZ, V )x)]| ≤ C(m, T )(1 + |x|p+m+1)t(m+1)/2.

2.6.2 Compound Poisson case

Suppose that Yt is a compound Poisson process. That is,

Yt =

Nt
∑

i=1

Ji

where (Nt) is a Poisson process with intensity λ and (Ji) are i.i.d. R
d-valued random

variables independent of (Nt) with Ji ∈ ∩p≥1L
p.

In this case Yt is a Lévy process with generator of the form

∫

Rd
0

(f(x+ y)− f(x))ν(dy)

where τ ≡ 0, b = 0, ν(Rd
0) = λ < ∞ and ν(dy) = λP (J1 ∈ dy).

Then in this case

Xd+1
t (x) = x+

∫ t

0

h(Xd+1
s− (x))dYs, t ∈ [0, T ] (2.30)

which can be solved explicitly. Indeed, let (Gi(x)) be defined by recursively

G0 = x

Gi = Gi−1 + h(Gi−1)Ji.

Then the solution can be written as Xd+1
t (x) = GNt(x). Define for fixed M ∈ N,

the approximation process X̄d+1,t = GNt∧M(x). This approximation requires the
simulation of at most M jumps. In fact, the rate of convergence is fast as the
following result shows.

Theorem 2.6.10. Let M ∈ N. Then the process GNt∧M(x) satisfies (M) and

R(M, tM−κ) for arbitrary small κ > 0. Furthermore J≤M(Q
X̄d+1

t ) = I+
∑m

j=1
tj

j!
Lj
d+1.
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Proof. Note that for f ∈ Cp

Q
X̄d+1

t f(x)−Qd+1
t f(x) = E[f(GNt∧M(x))]− E[f(GNt(x))]

= E[(f(GNt∧M(x))− f(GNt(x))) 1{TM+1≤t}]

where TM := inf{t > 0 : Nt = M}. By the Hölder inequality,

|QX̄d+1

t f(x)−Qd+1
t f(x)| ≤ 2E[ sup

0≤t≤T
|f(GNt(x))|

γ
γ−1 ]

γ−1
γ P (TM+1 ≤ t)

1
γ

= 2E[ sup
0≤t≤T

|f(GNt(x))|
γ

γ−1 ]
γ−1
γ

(

∫ t

0

(λs)M

M !
λe−λsds

)
1
γ

≤ C(γ, T )‖f‖Cp(1 + |x|p)
(

tλ−1
)(M+1)/γ

Take sufficiently small γ > 1, then R(M, tM−κ) holds for Q
X̄d+1

t where κ := (1 −
1/γ)(M + 1) > 0. Finally, we show (M). Let fp(x) = |x|2p (p ∈ N) and γ < M .
Then using the above calculation and Corollary 2.3.7, we have

Q
X̄d+1

t fp(x) = Qd+1
t fp(x) + (Q

X̄d+1

t fp(x)−Qd+1
t fp(x))

≤ (1 +K1t)fp(x) +K2t+ |QX̄d+1

t fp(x)−Qd+1
t fp(x)|

≤ (1 +K3t)fp(x) +K4t.

2.6.3 Infinite activity case

In this subsection, we consider the SDE (2.4) under the conditions ν(Rd
0) = ∞.

Without loss of generality, we assume that c ≡ 0.

a) Ignoring small jumps: Define for ε > 0 the finite activity (i.e. drift +
compound Poisson) Lévy process (Y ε

t ) with Lévy triplet (b, 0, νε) where the Lévy
measure is defined by

νε(E) := ν(E ∩ {y : |y| > ε}), E ∈ B(Rd
0). (2.31)

Consider the approximate coordinate SDE

X̄d+1,t(x) = x+

∫ t

0

h(X̄d+1,s−(x))dY
ε
s ,

whose generator is

L1,ε
d+1f(x) = ∇f(x)h(x)b+

∫

(f(x+ h(x)y)− f(x)−∇f(x)h(x)τ(y))νε(dy).

Now we derive the error estimate for X̄d+1,t by the distance between two gener-
ators using a kind of parametrix method.
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Theorem 2.6.11. Assume that 0 < ε ≡ ε(t) ≤ 1 is chosen as to satisfy that

σ2(ε) :=
∫

|y|≤ε
|y|2ν(dy) = O(tM). Then we have that Q

X̄d+1

t satisfies (M) and

R(M, tM ). Furthermore J≤M(Q
X̄d+1

t ) = I +
∑M

j=1
tj

j!
Lj
d+1.

Proof. First, we remark that condition (M0) follows from Proposition 5.2 in [39].
We start by noting that from Proposition 2.3.5, we have (see e.g. Kohatsu-Higa and
Tankov[47])

Qd+1
t f(x)−Q

X̄d+1

t f(x) =

∫ t

0

d

ds
(Q

X̄d+1

t−s Qd+1
s f)(x)ds

=

∫ t

0

(Q
X̄d+1

t−s (Ld+1 − L1,ǫ
d+1)Q

d+1
s f)(x)ds

Therefore the proof is achieved if we prove that

|(Ld+1 − L1,ε
d+1)f(x)| ≤ C‖f‖C2

p
(1 + |x|p+2)tM .

For the proof, we change here the representation of the Lévy triplets of Yt and Y ε
t

as follows:

(b, 0, ν), τ ⇒ (bε, 0, ν), τε

(b, 0, νε), τ ⇒ (bε, 0, ν
ε), τε

where τε(y) = y1{|y|≤ε}. Then

|(Ld+1 − L1,ε
d+1)f(x)| ≤

∣

∣

∣

∫

∇f(x)h(x)(y − τε(y))(ν(dy)− νε(dy))
∣

∣

∣
(2.32)

+
∣

∣

∣

∫ ∫ 1

0

(1− θ)
d2

dθ2
f(x+ θh(x)y)dθ(ν(dy)− νε(dy))

∣

∣

∣
.

We first obtain that for ε > 0,
∫

(y − τε(y))(ν(dy)− νε(dy)) = 0

since the support of the measure (ν − νε) is {|y| ≤ ε}. Now we consider the sec-
ond term of (2.32). We can immediately show that due to the polynomial growth
property for f ,

∣

∣

∣

∫ ∫ 1

0

d2

dθ2
f(x+ θh(x)y)dθ(ν(dy)− νε(dy))

∣

∣

∣
≤ C‖f‖C2

p
(1 + |x|p+2)σ2(ε)

and hence as σ2(ε) = O(tM), one obtains that J≤M(Q
X̄d+1

t ) = I +
∑m

j=1
tj

j!
Lj
d+1

and that Q
X̄d+1

t satisfies (M) and R(M, tM ) follows as in the proof of Proposition
2.6.10.
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Using Theorem 2.5.1, we can incorporate the above approximating process X̄d+1,t

to the whole approximation method. This will require to first simulate the jump
times of the approximating Lévy process Y ε and then solving ode’s between these
times. If the task is time consuming one can also separate the jump component from
the drift component as indicated by Theorem 2.5.1. The right size of ε is determined
by the condition σ2(ε) ≤ CtM .

b) Approximation of small jumps: We apply here the Asmussen-Rosiński’s
approximation for small jumps of Lévy processes. The idea is that the small jumps
ignored in (2.31) are close to a Brownian motion with small variance σ2(ε) (see
details in [2]).

Consider the new approximate SDE

X̄d+1,t(x) = x+

∫ t

0

h(X̄d+1,s(x))Σ
1/2
ε dWs +

∫ t

0

h(X̄d+1,s−(x))dY
ε
s (2.33)

where Wt is a new d-dimensional Brownian motion independent of Bt and Y ε
t , and

Σε is the symmetric and semi-positive definite d× d matrix defined as

Σε =

∫

|y|≤ε

yy∗ν(dy). (2.34)

We remark that Σε is of the form AΛA∗, where A is an orthogonal matrix and Λ
is the diagonal matrix with entries λ1, . . . , λd ≥ 0 (eigenvalues). Thus we use the

notation Σ
1/2
ε = AΛ1/2. Since the above SDE is also driven by a jump-diffusion

process, we can also simulate it using the second order discretization schemes in
Theorem 2.5.1.

Now we prove that rate of convergence in this case is faster than in the case that
we ignore completely the small jumps (see Theorem 2.6.11).

Theorem 2.6.12. Assume that 0 < ε ≡ ε(t) ≤ 1 is chosen as to satisfy that
∫

|y|≤ε
|y|3ν(dy) = O(tM). Then we have that Q

X̄d+1

t satisfies (M) and R(M, tM ).

Furthermore J≤M(Q
X̄d+1

t ) = I +
∑M

j=1
tj

j!
Lj
d+1.

Proof. As before, condition (M0) follows from Proposition 5.2 in [39]. The SDE
X̄d+1,t corresponds to the generator

L2,ε
d+1f(x) :=∇f(x)h(x)b+

1

2

∑

k,l

∂k,lf(x)(h(x)Σεh
∗(x))k,l

+

∫

(f(x+ h(x)y)− f(x)−∇f(x)h(x)τ(y))νε(dy).
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Using this representation, we have for f ∈ C3
p ,

(Ld+1 − L2,ε
d+1)f(x) =

∫ ∫ 1

0

(1− θ)
d2

dθ2
f(x+ θh(x)y)dθ(ν(dy)− νε(dy))

− 1

2

∑

k,l

∂k,lf(x)(h(x)Σεh
∗(x))k,l

=

∫ ∫ 1

0

(1− θ)2

2

d3

dθ3
f(x+ θh(x)y)dθ(ν(dy)− νε(dy)).

Hence we finish the proof as in the proof of Theorems 2.6.10 and 2.6.11.

If we put all the pieces together, we have the following final result. Here Bij
t

denote i = 1, ..., d, j = 1, ..., 2n denote 2nd independent standard Brownian motions
and B0j

t ≡ t.

Theorem 2.6.13. Assume that V0, V and h are infinitely differentiable functions
with bounded derivatives with

∫

|y|>1
|y|pν(dy) < ∞ for all p ∈ N. Define ε ≡ ε(T, n)

so that
∫

|y|≤ε
|y|3ν(dy) = O((T

n
)2). Let X̄j

i,t(x) = c5(B
ij
t , Vi)x, i = 0, ..., d, j =

1, ..., 2n, 2n copies of the Runge-Kutta method of order 2 as defined in (2.27) and
X̄j

d+1,t(x) j = 1, ..., 2n independent copies of the approximation defined in (2.33).

Then the following schemes, X
(n)
T = Y n

n ◦ Y n−1
n ◦ ... ◦ Y 1

n (x), are second order dis-
cretization schemes:

N-V(a) Y j
n (x) = UjX̄

j
0,T/(2n)◦X̄

j
1,T/n◦ ...◦X̄

j
d+1,T/n◦X̄

j
0,T/(2n)(x)+(1−Uj)X̄

j
0,T/(2n)◦

X̄j
d+1,T/n ◦ ... ◦ X̄j

1,T/n ◦ X̄j
0,T/(2n)(x) where Uj is a Bernoulli r.v. with P (Uj =

1) = 1/2, independent of everything else.

N-V(b) Y j
n (x) = UjX̄

j
d+1,T/n ◦ ... ◦ X̄j

0,T/n(x) + (1 − Uj) X̄j
0,T/n ◦ ... ◦ X̄j

d+1,T/n(x)

where Uj is a Bernoulli r.v. with P (Uj = 1) = 1/2, independent of everything
else.

Splitting Y j
n (x) = X̄j

0,T/(2n) ◦ ... ◦ X̄
j
d,T/(2n) ◦ X̄

j
d+1,T/n ◦ X̄

n+j
d,T/(2n) ◦ ... ◦ X̄

n+j
0,T/(2n)(x).

One can also write a similar result for higher order schemes using Theorem 2.5.3.

2.6.4 Limiting the number of jumps per interval for approx-
imations of infinite activity Lévy driven SDE’s

In the previous two approximations although ε ∈ (0, 1) may be relatively large
compared with the interval size T/n, one still faces the possibility of having many
jumps in the interval [0, T ]. Therefore we introduce the idea used in Section 2.6.2.
That is, we propose another approximation that restricts the numbers of possible
jumps to at most n. Throughout this section we assume that

∫

|y|<1
|y|ν(dy) < ∞

and without loss of generality, we assume that τ(y) = y1|y|<1.
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Then we decompose the operator

Ld+1 = L1
d+1 + L2

d+1 + L3
d+1

L1
d+1f(x) := ∇f(x)h(x)

(

b−
∫

ε<|y|≤1

τ(y)ν(dy)

)

L2
d+1f(x) :=

∫

|y|≤ε

(f(x+ h(x)y)− f(x)−∇f(x)h(x)τ(y))ν(dy)

L3
d+1f(x) :=

∫

ε<|y|
f(x+ h(x)y)− f(x)ν(dy).

The operator L1
d+1 can be easily approximated using any Runge-Kutta method for

the ordinary differential equationX1
d+1,t = x+

(

b−
∫

ε<|y|≤1
τ(y)ν(dy)

)

∫ t

0
h
(

X1
d+1,s

)

ds.

We denote by X̄1
d+1,t, the Euler scheme associated with this ordinary differential

equation. Therefore we only need to approximate L2
d+1 and L3

d+1.
Let l : Rd → R+ be a localization function that may be used for impor-

tance sampling of the Lévy measure. Let F l
ε(dy) = λ−1

ε l(y)1|y|≤εν(dy) with λε =
∫

|y|≤ε
l(y)ν(dy). Let Yε ∼ Fε . Define X̄2,ε

t (x) = x + h(x)Wt

√
λε, where W is a

d-dimensional Wiener process with covariance matrix given by Σij = l(Y ε)−1Y ε
i Y

ε
j

which is independent of everything else.
First we prove that X̄2,ε

t (x) satisfies assumption (M).

Lemma 2.6.14. Assume that for p ≥ 2, supε∈(0,1]
∫

|y|≤ε
|y|pl(y)− p−2

2 ν(dy) < ∞, then

assumption (M) is satisfied with

E
[

∣

∣X̄2,ε
d+1(x)

∣

∣

p
]

≤ (1 +Kt)|x|p +K ′t.

Proof. Let f(x) = |x|p, p ≥ 2. Using Ito’s formula for p 6= 3 and an approximative
argument in the case p = 3 (as in the proof of the Meyer-Ito formula) one obtains
that

E
[

f
(

X̄2,ε
t (x)

)]

− f(x) (2.35)

=
p

2
λεE

[

l(Y ε)−1

∫ t

0

(p

2
− 1
)

∣

∣X̄2,ε
s (x)

∣

∣

p−4 〈
h(x)Y ε, X̄2,ε

s (x)
〉2

+
∣

∣X̄2,ε
s (x)

∣

∣

p−2 |h(x)Y ε|2 ds
]

We use the Lipschitz property of h to obtain that
∣

∣X̄2,ε
s (x)

∣

∣ =
∣

∣

∣
x+ h(x)Ws

√

λε

∣

∣

∣

≤
(

1 + C |Ws|
√

λε

)

(1 + |x|).
Then, we have

∣

∣E
[

f
(

X̄2,ε
t (x)

)]

− f(x)
∣

∣

≤ Cpt (1 + |x|p)
∫

|y|<ε

|y|2
(

1 +
(

|y|2 l(y)−1λεt
)

p−2
2

)

ν(dy).
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Lemma 2.6.15. Assume that for p ≥ 2,

Mp = sup
ε∈(0,1]

∫

|y|≤ε

|y|4l(y)−1

(

1 +
(

|y|2 l(y)−1λεt
)

p−2
2

)

ν(dy) < ∞

and
∫

|y|≤ε
|y|3ν(dy) ≤ Ct then

∣

∣E
[

f(X̄2,ε
t )
]

− f(x)− tL2
d+1f(x)

∣

∣ ≤ C(p) ‖f‖C4
p
(1 + |x|p+4)t2.

That is, X̄2,ε
t (x) satisfies assumption R(2, t2).

Proof. Let f ∈ C4
p then applying Ito’s formula, one gets

E
[

f(X̄2,ε
t )
]

= f(x) +
λε

2
E

[

∫ t

0

∑

i,j,k,l

∂ijf(X̄
2,ε
s )hikhil(x)l(Y

ε)−1Y ε
k Y

ε
l ds

]

= f(x) +
t

2

∫

|y|≤ε

∑

i,j,k,l

∂ijf(x)hikhil(x)ykylν(dy) +Rε(x)

where by Lemma 2.6.14, we have

|Rε(x)| ≤ C ‖f‖C4
p
(1 + |x|p+4)t2

∫

|y|≤ε

|y|4l(y)−1

(

1 +
(

|y|2 l(y)−1λεt
)

p−2
2

)

ν(dy).

Furthermore

L2,ε
d+1f(x)−

1

2

∫

|y|≤ε

∑

i,j,k,l

∂ijf(x)hikhil(x)ykylν(dy)

=
∑

i,j,k,l

∫

|y|≤ε

∫ 1

0

(∂ijf(x+ αh(x)y)− ∂ijf(x))αdαhikhil(x)ykylν(dy).

Therefore
∣

∣

∣

∣

∣

L2,ε
d+1f(x)−

1

2

∫

|y|≤ε

∑

i,j,k,l

∂ijf(x)hikhil(x)ykylν(dy)

∣

∣

∣

∣

∣

≤ C ‖f‖C4
p
(1 + |x|p+3)

∫

|y|≤ε

|y|3ν(dy).

This finishes the proof.

In the particular case that l(y) = yr, r = 2, the above scheme corresponds to a
Asmussen-Rosiński type approach.

The approximation for L3
d+1 is defined as follows. LetGε,l(dy) = C−1

ε,l l(y)1|y|>εν(dy),

Cε,l =
∫

|y|>ε
l(y)ν(dy) and let Zε,l ∼ Gε,l and let Sε,l be a Bernoulli random vari-

able independent of Zε,l. Then consider the following two cases. If Sε,l = 0 define
X̄3,ε

t (x) = x, otherwise X̄3,ε
t (x) = x+ h(x)l(Zε,l)−1Zε,l. Then we have the following

results.

46



Lemma 2.6.16. Assume that for p ≥ 2, supε∈(0,1]
∫

|y|>ε
l(y)−p |y|p+1 ν(dy) < ∞ and

C−1
ε,l P [Sε = 1] ≤ Ct then assumption (M) is satisfied with

E
[

∣

∣X̄3,ε
d+1(x)

∣

∣

p
]

≤ (1 +Kt)|x|p +K ′t.

Proof. The result follows clearly from (f(x) = |x|p)

P [Sε = 1]
∣

∣E
[

f
(

x+ h(x)l(Zε,l)−1Zε,l
)

− f(x)
]∣

∣

= C−1
ε,l P [Sε = 1]

∫

|y|>ε

(

f(x+ h(x)l(y)−1y)− f(x)
)

l(y)ν(dy)

≤ Ct(1 + |x|p)
(

1 +

∫

|y|>ε

l(y)−p |y|p+1 ν(dy)

)

.

Lemma 2.6.17. Assume that for f ∈ C2
p , we have that

∫

|y|>ε
|y|2(l(y)−1 − 1) +

|y|p+2|l(y)−1 − 1|p+1ν(dy) ≤ C and
∣

∣C−1
ε,l P

[

Sε,l = 1
]

− t
∣

∣ ≤ Ct2 then

∣

∣E
[

f(X̄3,ε
t )
]

− f(x)− tL3
d+1f(x)

∣

∣ ≤ Ct2 ‖f‖C2
p
(1 + |x|p+2).

Proof. As before let f ∈ C2
p then

E
[

f(X̄3,ε
t )
]

= f(x) + E
[

f
(

x+ h(x)l(Zε,l)−1Zε,l
)

− f(x);Sε,l = 1
]

= f(x) +

∫

|y|>ε

(

f(x+ h(x)l(y)−1y)− f(x)
)

l(y)ν(dy)C−1
ε,l P

[

Sε,l = 1
]

.

Then we clearly have that

∣

∣E
[

f(X̄3,ε
t )
]

− f(x)− tL3
d+1f(x)

∣

∣

≤ t

∣

∣

∣

∣

∣

∫

|y|>ε

∫ 1

0

∑

i

(

∂if(x+ αh(x)l(y)−1y)− ∂if(x+ αh(x)y)
)

dαh(x)yν(dy)

∣

∣

∣

∣

∣

× C−1
ε,l P

[

Sε,l = 1
]

+

∣

∣

∣

∣

∫

|y|>ε

f(x+ h(x)y)− f(x)ν(dy)

∣

∣

∣

∣

∣

∣C−1
ε,l P

[

Sε,l = 1
]

− t
∣

∣

≤ C ‖f‖C2
p
(1 + |x|p+2)t2

This finishes the proof.

Using the previous results we can propose various schemes of approximation of
order 1 as in Theorem 2.6.13. We state the simplest type of approximation.
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Theorem 2.6.18. Assume that V0, V and h are infinitely differentiable functions
with bounded derivatives with

∫

|y|>1
|y|pν(dy) < ∞ for all p ∈ N. Define ε ≡ ε(T, n)

so that the conditions on Lemmas 2.6.14, 2.6.15, 2.6.16 and 2.6.17 are satisfied
for t = T/n and for appropriate localization functions. Let X̄j

i,t(x), i = 0, ..., d,
j = 1, ..., n, n copies of the Euler-Maruyama method for Xi,t(x).

Also, let X̄ i,ε,j
d+1,T/n, i = 1, 2, 3, j = 1, ..., n be n independent copies of the schemes

defined above. Then the following scheme, X
(n)
T = Y n

n ◦ Y n−1
n ◦ ... ◦ Y 1

n (x), Y
j
n (x) =

X̄j
0,T/n ◦ ... ◦ X̄

j
d,T/n ◦ X̄

1,ε,j
d+1,T/n ◦ X̄

2,ε,j
d+1,T/n ◦ X̄

3,ε,j
d+1,T/n(x).is a first order discretization

scheme.

Achieving higher order schemes for the approximation of L2
d+1 can be easily

obtained from the proof of Lemma 2.6.15. In fact, the required conditions are as
follows. Assume that for p ≥ 2,

∫

|y|≤ε

|y|4l(y)−1

(

1 +
(

|y|2 l(y)−1λεt
)

p−2
2

)

ν(dy) ≤ Ct (2.36)

∫

|y|≤ε

|y|3ν(dy) ≤ Ct2. (2.37)

For L3
d+1, the idea used in the previous scheme is that the probability of having

more than one jump in an interval of size T/n is of order (T/n)2 and therefore they
can be neglected if the goal is to achieve a scheme of order 1. Obviously, in order
to obtain a higher order scheme, one has to consider the possibility of more jumps
per interval. As an example, we consider the case of at most two jumps per interval
with localization l ≡ 1.

For L3
d+1 one can do the following: LetGε(dy) = C−1

ε 1|y|>εν(dy), Cε =
∫

|y|>ε
ν(dy)

and let Zε
1 , Z

ε
2 ∼ Gε independent between themselves and let Sε

1 and Sε
2 be two in-

dependent Bernoulli random variable independent of Zε
1 , Z

ε
2 . Then consider the fol-

lowing cases. If Sε
1 = 0 define X̄3,ε

t (x) = x, if Sε
1 = 1 and Sε

2 = 0 then X̄3,ε
t (x) = x+

h(x)Zε
1 and finally if Sε

1 = 1 and Sε
2 = 1 then X̂3,ε

t (x) = x+h(x)Zε
1+h(x+h(x)Zε

1)Z
ε
2.

Define

pε = P [Sε
1 = 1] (1 + P [Sε

2 = 1]) ,

qε = P [Sε
1 = 1]P [Sε

2 = 1] .

In this case we have

Lemma 2.6.19. If C−1
ε P [Sε

1 = 1, Sε
2 = 0] ≤ Ct and C−2

ε P [Sε
1 = 1, Sε

2 = 1] ≤ Ct
then assumption (M) is satisfied with

E
[∣

∣

∣
X̂3,ε

d+1(x)
∣

∣

∣

p]

≤ (1 +Kt)|x|p +K ′t

for all p ≥ 2.
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Proof. The result follows clearly from (f(x) = |x|p)

P [Sε
1 = 1, Sε

2 = 0] |E [f (x+ h(x)Zε)− f(x)]| ≤ Ct(1 + |x|p)
(

1 +

∫

|y|>ε

|y|p ν(dy)
)

P [Sε
1 = 1, Sε

2 = 1] |E [f (x+ h(x)Zε
1 + h(x+ h(x)Zε

1)Z
ε
2)− f(x)]|

≤ Ct(1 + |x|p)
(

1 +

(
∫

|y|>ε

|y|p ν(dy)
)2
)

.

Lemma 2.6.20. Assume that |C−1
ε pε − t| ≤ Ct3 and |2C−2

ε qε − t2| ≤ Ct3 then

∣

∣

∣

∣

E
[

f(X̂3,ε
t )
]

− f(x)− tL3
d+1f(x)−

t2

2

(

L3
d+1

)2
f(x)

∣

∣

∣

∣

≤ Ct3 ‖f‖C2
p
(1 + |x|p+2)

(

1 +

(
∫

|y|>ε

|y|ν(dy)
)2
)

.

Proof. As before let f ∈ C2
p then

E
[

f(X̂3,ε
t )
]

= f(x) +

∫

|y|>ε

(f(x+ h(x)y)− f(x)) ν(dy)C−1
ε P [Sε

1 = 1, Sε
2 = 0]

+ E

[
∫

|y|>ε

f(x+ h(x)y + h(x+ h(x)y)Zε
2)− f(x)ν(dy)

]

C−1
ε P [Sε

1 = 1, Sε
2 = 1]

= f(x) + L3
d+1f(x)C

−1
ε P [Sε

1 = 1, Sε
2 = 0]

+

∫

|y|>ε

∫

|y|>ε

f(x+ h(x)y + h(x+ h(x)y)y1)− f(x)ν(dy)ν(dy1)C
−2
ε P [Sε

1 = 1, Sε
2 = 1]

Hence,

E
[

f(X̂3,ε
t )
]

= f(x) + L3
d+1f(x)C

−1
ε (P [Sε

1 = 1] + P [Sε
1 = 1, Sε

2 = 1])

+
(

L3
d+1

)2
f(x)C−2

ε P [Sε
1 = 1, Sε

2 = 1] .

Therefore

∣

∣

∣

∣

E
[

f(X̂3,ε
t )
]

− f(x)− tL3
d+1f(x)−

t2

2

(

L3
d+1

)2
f(x)

∣

∣

∣

∣

≤
∣

∣L3
d+1f(x)

∣

∣

∣

∣C−1
ε pε − t

∣

∣ +
∣

∣

∣

(

L3
d+1

)2
f(x)

∣

∣

∣

∣

∣

∣

∣

C−2
ε qε −

t2

2

∣

∣

∣

∣

.
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Finally note that

(

L3
d+1

)2
f(x)

=

∫

ε<|y|

∫

ε<|y1|
(f(x+ h(x)y + h(x+ h(x)y)y1)− 2f(x+ h(x)y) + f(x)) ν(dy1)ν(dy)

=

∫

ε<|y|

∫

ε<|y1|

∫ 1

0

∇f(x+ h(x)y + αh(x+ h(x)y)y1)h(x+ h(x)y)y1

−∇f(x+ αh(x)y)h(x)ydαν(dy1)ν(dy)

Thus (L3
d+1)

2f(x) is equal to

∫

ε<|y|

∫

ε<|y1|

∫ 1

0

∇f(x+ h(x)y1 + αh(x+ h(x)y1)y)

×
∫ 1

0

∇h(x+ βh(x)y1)h(x)y1dβydαν(dy1)ν(dy)

+

∫

ε<|y|

∫

ε<|y1|

∫ 1

0

∫ 1

0

D2f(x+ αh(x)y + β(h(x)y1 + α (h(x+ h(x)y1)− h(x)) y))

×
[

h(x)y1 + α

(
∫ 1

0

∇h(x+ γh(x)y1)dγh(x)y1

)

y, h(x)y

]

dβdαν(dy1)ν(dy).

This finishes the proof.

A similar statement can be achieved if we limit the number of jumps in any
interval. The parallel of Theorem 2.6.18 can also be stated in this case.

2.6.5 Example: Tempered stable Lévy measure

Now we consider the previous approximation in the case that the Lévy measure ν
defined on R0 is given by

ν(dy) =
1

|y|1+α

(

c+e
−λ+|y|1y>0 + c−e

−λ−|y|1y<0

)

dy

The Lévy process associated with no Brownian term and the above Lévy measure
ν is called by

• Gamma: λ+, c+ > 0, c− = 0, α = 0.

• Variance gamma: λ+, λ−, c+, c− > 0, α = 0.

• Tempered stable: λ+, λ−, c+, c− > 0, 0 < α < 2.
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Then, we have that for α ∈ [0, 1)
∫

|y|≤ε

|y|kν(dy) ∼ εk−α, k ≥ 1.

Then supε∈(0,1]
∫

|y|≤ε
|y|ν(dy) < ∞. For L2

d+1, we consider as localization function

l(y) = |y|r, then the conditions of Lemma 2.6.15 are satisfied if α < r ≤ 2 and

ε = t
1

3−α .
For L3

d+1, we consider as localization l(y) ≡ 1, then Lemma 2.6.17 is satisfied
for example in the following case. Let P [Sε = 1] = e−Cεa(ε,t) where Cε ∼ ε−α,

a(ε, t) = −εα log ((t2 + t) ε−α) as ε = t
1

3−α then we have that

a = −t
α

3−α log
(

(t + 1)t
3−2α
3−α

)

.

In the case of Lemma 2.6.20, one choice of parameters is

P [Sε
1 = 1] = t

6−3α
3−α (t+ 1)(1 + t

α
3−α )

P [Sε
2 = 1] =

1

2(1 + t
α

3−α )
.

The choice of r in the above scheme is related with variance/importance sampling
issues.

Remark 2.6.21. In this chapter we have presented a general set-up to handle
what maybe called operator splitting methods. In particular, the method is useful
when considering approximations of expectations of functionals of diffusions. The
approximation problem is divided in components, each one driven by a single process.
This single process, called the coordinate process can be approximated to a high
order using an appropriate (stochastic) Runge-Kutta scheme if the driving process
is the Brownian motion. In the case that the driving process is a Lévy process one
can decompose the Lévy measure in various pieces to facilitate the analysis. Note
that sometimes is not needed to know how to simulate Y but only the functional form
of the Lévy measure. In comparison with the proposal presented in [45], where high
order multiple integrals driven by different Wiener processes have to be simulated
at each step, we believe that the present methodology is a better scheme.

The issue that local approximations of high order are interesting to study in com-
parison with Romberg extrapolations as introduced in [90] is similar to the discussion
of using Runge-Kutta approximations in comparison with Romberg extrapolations
to approximate solutions of ordinary differential equations. We believe that this
article helps to open the path in this direction. In fact, it is somewhat clear from
Theorem 2.4.4 that the leading constants in a Euler+Romberg method and a Runge
Kutta method do not coincide.

Finally, we used the structure of this construction to easily introduce and an-
alyze the asymptotic error of an approximating scheme for solutions of stochastic
differential equations driven by Lévy processes with possibly infinite activity.
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Chapter 3

A review of Cubature on Wiener
space

This chapter is based on the article by Tanaka [93] published in RIMS Kôkyûroku.

3.1 Introduction

In this chapter, we consider the discretization of stochastic differential equations
driven by Brownian motions using cubature formulas on Wiener space and study
their connection to operator splitting methods discussed in Chapter 2.

A cubature formula for a finite measure ν on Rd is defined as follows: If there
exist positive weights λi and points xi ∈ Rd (1 ≤ i ≤ k) such that for any polynomial
P with degree less than or equal to m

∫

Rd

P(x)ν(dx) =

k
∑

i=1

λiP(xi),

then we say that the pair (λi, xi)1≤i≤k defines a cubature formula with degreem. The
existence and construction of the above finite d-dimensional cubature formulas has
been well-studied (see e.g. Stroud [84]). One important application of the formula
(λi, xi)1≤i≤k is the numerical integration formula

∫

Rd

f(x)ν(dx) ≈
k
∑

i=1

λif(xi)

for smooth functions f . The reason why this method works is based on the Taylor
expansion or polynomial approximation of f . Therefore the regularity of f is a
sufficient condition for the method to work well.

The main objective of this chapter is to review how to construct cubature for-
mulas on Wiener space using splitting methods which have been applied to many
research fields such as numerical partial differential equations (e.g. [30]). Cubature
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formulas on Wiener space play a similar role to that in finite dimensional space in
the calculation of infinite dimensional integrals.

Wiener space is defined as the space of continuous functions C([0, 1];Rd) equipped
with the so-called Wiener measure, under which the mapping Bt := ω(t) for ω ∈
C([0, 1];Rd) is a standard Brownian motion. On this space, multiple integrals with
respect to the time variable t 7→ Bt have a similar importance to polynomials in fi-
nite dimension. For example, the Itô-Wiener chaos expansion theorem ([37]) shows
that L2-random variables on Wiener space can be expanded by series of the multiple
integrals. As seen later, cubature formulas on Wiener space can be applied to nu-
merical approximations of stochastic differential equations, which appear in finance,
physics, filtering etc. In this case, the stochastic Taylor expansion gives the error
estimation.

This chapter is organized as follows. In Section 3.2, we formulate the cubature
formula and prepare some basic tools to discuss algebraic properties of the formula.
In Section 3.3, we review the idea of splitting methods for exponential maps and
also give some results applicable to the construction of cubature formulas.

3.2 Cubature on Wiener space

3.2.1 Definitions

Let (B1
t , . . . , B

d
t )t∈[0,1] be a d-dimensional standard Brownian motion on a complete

probability space (Ω,F , P ), and set the (d+1)-dimensional pathB = (B0
t , B

1
t , . . . , B

d
t )t∈[0,1]

with B0
t = t. We use the following notation.

• Let α ∈ I := {∅∪ (∪k∈N{0, 1, . . . , d}k)} be an multi-index and then define the
degree of α by

‖α‖ :=

{

k +#{αj = 0}, α = (α1, . . . , αk) ∈ {0, 1, . . . , d}k, k ≥ 1
0, α = ∅.

• C0,BV ([0, t];R
d+1) : the set of allRd+1-valued continuous functions g = (g0s , . . . , g

d
s )s∈[0,t]

of bounded variation in [0, t] and which start at zero.

• For α = (α1, . . . , αk) ∈ {0, 1, . . . , d}k, k ≥ 1, we define the multiple Fisk-
Stratonovich integral as follows.

I(t, α, ◦dB) :=

∫

0<tk<···<t1<t

◦dBαk
tk

· · · ◦ dBα1
t1 .

• Similarly, for g = (g0t , . . . , g
d
t )t∈[0,1] ∈ C0,BV ([0, 1];R

d+1), we define

I(t, α, dg) :=

∫

0<tk<···<t1<t

dgαk
tk

· · · dgα1
t1 .
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• Throughout the present chapter, we say that a measurable application

ω = (ωt)t∈[0,1] : Ω → C0,BV ([0, 1];R
d+1)

is a “random path” if it satisfies the moment condition

I(1, α, d|ω|) ∈ L1(Ω,F , P )

for any α ∈ I and almost all ω ∈ Ω. Here | · | denotes the total variation path,
i.e., |ω|it := sup0=t0<t1<···<tk=t

∑k
j=1 |ωi

tj
− ωi

tj−1
|.

• A random path ω has finite mass if there exist finite functions (gi)1≤i≤L ⊂
C0,BV ([0, 1];R

d+1) and positive weights (pi)1≤i≤L such that P (ω = gi) = pi
and

∑L
i=1 pi = 1.

Definition 3.2.1. A random path ω defines a cubature formula with degree m if ω
has finite mass and satisfies for every ‖α‖ ≤ m

E[I(1, α, ◦dB)] = E[I(1, α, dω)]
(

=
L
∑

i=1

piI(1, α, dgi)
)

. (3.1)

We denote the space of all random paths which define cubature formulas with degree
m by (Cub)m.

Remark 3.2.2. The original paper by Lyons and Victoir [63] assumes ω0(t) = t.
However the above generalization is straightforward.

We extend (Cub)m to a more general class which includes Ninomiya-Victoir and
Ninomiya-Ninomiya schemes (degree 5 formulas). The random path ω for these two
schemes already appeared in Kusuoka’s papers [54, 55].

Definition 3.2.3. A random path ω defines a moment matching formula with degree
m if for every ‖α‖ ≤ m

E[I(1, α, ◦dB)] = E[I(1, α, dω)]. (3.2)

We denote the space of all random paths satisfying (3.2) by (M)m. Clearly, (Cub)m ⊆
(M)m.

Example 3.2.4. Here, we give two examples of random paths with moment match-
ing of degrees 3 and 5. That is, elements of (M)m with m = 3, 5.

(Degree 3) For each 0 ≤ i ≤ d, define

dωi
t := Bi

1dt.

Then this ω defines a degree 3 formula. Indeed, due to the symmetry of the Gaussian
law of B1, if ‖α‖ = 1 or 3, E[I(1, α, ◦dB)] = E[I(1, α, dω)] = 0. Thus it is enough
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to check the case ‖α‖ = 2. If α1 6= α2, clearly E[I(1, α, ◦dB)] = E[I(1, α, dω)] = 0.
If α1 = α2 = i ≥ 1, we have by Itô’s formula, I(1, α, ◦dB) = (Bi

1)
2/2 = I(1, α, dω).

(Degree 5) (Ninomiya-Victoir scheme) Let Λ be a random variable with prob-
ability

P (Λ = 1) = P (Λ = −1) = 1/2

and which is independent of (Bt). Then we define a piecewise smooth path ω by

dωi
t :=















(d+ 2)dt, if i = 0, t ∈ [0, 1
d+2

) ∪ [d+1
d+2

, 1)

(d+ 2)Bi
1dt, if 1 ≤ i ≤ d,Λ = 1, t ∈ [ i

d+2
, i+1
d+2

)

(d+ 2)Bi
1dt, if 1 ≤ i ≤ d,Λ = −1, t ∈ [d+1−i

d+2
, d+2−i

d+2
)

0, otherwise.

We remark ω0
t 6= t.

Let ω be a random path and then define the time-scaled path (ωs[t])s∈[0,t] by

ωi
s[t] :=

{

tω0
s/t, i = 0√
tωi

s/t, 1 ≤ i ≤ d.

Under (Cub)m or (M)m, the scaling property for the Brownian motion (i.e. Bt
d
=√

tB1 where
d
= denotes equality in law, also called equality in distribution) implies

E[I(t, α, ◦dB)] = t‖α‖E[I(1, α, ◦dB)] = t‖α‖E[I(1, α, dω)] = E[I(t, α, dω[t])]

for every t > 0. Therefore, it is enough to reduce our attention to the case t = 1 for
the construction of cubature formulas.

3.2.2 Application: random ODE and stochastic Taylor ex-

pansion

Let Xt = Xx
t be the unique solution to the stochastic differential equation (SDE)

Xx
t = x+

d
∑

i=0

∫ t

0

Vi(X
x
s ) ◦ dBi

s (3.3)

where Vi ∈ C∞
b (RN ;RN). We also define a random ordinary differential equation

(ODE)

X̄x
t = x+

d
∑

i=0

∫ t

0

Vi(X̄
x
s )dω

i
s.

We denote by X̄x
t (dω) the solution.
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The well-known Itô’s formula in stochastic calculus is a fundamental theorem of
calculus (or change of variable formula) as follows:

f(Xx
t ) = f(x) +

d
∑

i=0

∫ t

0

(Vif)(X
x
s ) ◦ dBi

s

for a smooth function f , where Vi acts on f as a vector field
∑N

j=1 V
j
i

∂
∂xj

on RN .

We can apply this formula to the integrands of the (stochastic) integrals. Then we
get the so-called stochastic Taylor expansion

f(Xx
t ) =

∑

‖α‖≤m

I(t, α, ◦dB)
(

Vαk
· · ·Vα1f

)

(x) + (remainder) .

Of course, we can also apply the fundamental of calculus to the bounded variation
function ω, and then we have a similar formula

f(X̄x
t (dω[t])) =

∑

‖α‖≤m

I(t, α, dω[t])
(

Vαk
· · ·Vα1f

)

(x) + (remainder) .

We can show the following error estimates by using stochastic Taylor expansions.

Theorem 3.2.5. Let a random path ω satisfy the condition (M)m. Then for any
f ∈ C∞

b (RN ;R), there exists a constant C = C(m, f) such that

|E[f(Xx
t )]−E[f(X̄x

t (dω[t]))]| ≤ Ct(m+1)/2.

Sketch of proof. The fundamental theorem of stochastic calculus (i.e. Itô’s formula)
can be applied to ω and B;

f(Xx
t )−

∑

‖α‖≤m

I(t, α, ◦dB)
(

Vαk
· · ·Vα1f

)

(x) =: RX
m(t, x),

f(X̄x
t (dω[t]))−

∑

‖α‖≤m

I(t, α, dω[t])
(

Vαk
· · ·Vα1f

)

(x) =: RX̄
m(t, x).

We obtain from the assumption (M)m

E
[

∑

‖α‖≤m

I(t, α, ◦dB)
(

Vαk
· · ·Vα1f

)

(x)
]

= E
[

∑

‖α‖≤m

I(t, α, dω[t])
(

Vαk
· · ·Vα1f

)

(x)
]

.

One can easily check that the remainders RX
m and RX̄

m consist of the multiple integrals
of B and ω with degree m + 1 and m + 2. Therefore the result follows from the
time-scaling property for Bt and ω[t].

If t is not small, we can use a Markov chain type approximation as follows. The
precise proof can be obtained by the semigroup approach in Chapter 2.
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Theorem 3.2.6. Let ω(i) (1 ≤ i ≤ n) be i.i.d. random paths satisfying the condition
defining (M)m. Let us define a new random path ω̄ in [0, 1] by

ω̄t := (ω(i))t−(i−1)/n[n
−1]

for t ∈ [ i−1
n
, i
n
). Then for any f ∈ C∞

b (RN ;R), there exists a constant C = C(m, f)
such that

|E[f(Xx
1 )]− E[f(X̄x

1 (dω̄))]| ≤
C

n(m−1)/2
.

3.2.3 Formal series and expansion of SDEs

When we investigate the short time asymptotics of the map t 7→ E[f(X̄x
t (dω[t]))],

the vector fields V0, . . . , Vd are considered just as the coefficients of the series. On the
other hand, we notice that the coefficient of tk is spanned by {Vαk

· · ·Vα1f ; ‖α‖ = k}.
Hence it is natural to regard it as formal power series with respect to the variables
V0, . . . , Vd, and to forget the time parameter t with t = 1.

To discuss formal power series with variables V0, . . . , Vd, we use the following
notation.

• A = {v0, v1, · · · , vd}: Alphabets.

• Powers (words) of v = (v0, . . . , vd):

vα :=

{

vαk
· · · vα1 , α = (α1, . . . , αk) ∈ {0, 1, . . . , d}k, k ≥ 1

1, α = ∅.

• R〈A〉 : R-algebra of noncommutative polynomials on A.

• R〈〈A〉〉 : R-algebra of noncommutative formal power series on A with product
topology. We regard R〈〈A〉〉 as the space of R-valued functions defined on all
powers of A.

• Jm : The projection from R〈〈A〉〉 to polynomials of degree less than or equal
to m, i.e.

Jm(x) :=
∑

‖α‖≤m

aαv
α for x =

∑

α

aαv
α ∈ R〈〈A〉〉, (aα) ⊂ R.

• exp(x) := 1 +
∑∞

k=1
xk

k!
for x =

∑

‖α‖>0 aαv
α and (aα) ⊂ R. We note that this

mapping is well-defined since a∅ = 0 and so Jk−1(x
k) = 0 for every k.

• Γ〈·〉 : The linear map from R〈A〉 to differential operators defined by Γ〈vα〉 :=
Vαk

· · ·Vα1 .
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• Γ〈t, ·〉 : The linear map fromR〈A〉 to differential operators defined by Γ〈t, vα〉 :=
t‖α‖Vαk

· · ·Vα1 .

Remark 3.2.7. In Lyons-Victoir [63], instead of polynomials on A, they consider
the expansion with respect to Lie polynomials generated by

[vi1 , [vi2 , [· · · [vik−1
, vik ] · · · ]]]

([vi, vj] := vivj−vjvi). It is shown that the existence of the function in C0,BV ([0, t];R
d+1)

corresponding to the exponential map exp(L) with arbitrary Lie polynomial L
(Chen’s theorem on Wiener space). Their approach for constructing cubature for-
mulas consists of two parts: The first is to find a pair of weights (pi) and Lie poly-
nomials (Li) such that

∑k
i=1 piJm(exp(Li)) = Jm(exp(v0 +

1
2

∑d
i=1 v

2
i )). The second

is to construct bounded variation functions that come from exp(Li).

Let us define the R〈〈A〉〉-valued SDE:

Xt = 1 +
d
∑

i=0

∫ t

0

Xsvi ◦ dBi
s

which has the unique solution given by

Xt = 1 +
∑

‖α‖>0

I(t, α, ◦dB)vα.

The following result is well-known (e.g. [63]).

Proposition 3.2.8.

E[X1] = exp
(

v0 +
1

2

d
∑

i=1

v2i

)

.

Remark 3.2.9. The above result corresponds to the expansion (for f ∈ C∞
b )

E[f(Xx
t )] = f(x) +

k
∑

j=1

tj

j!

(

V0 +
1

2

d
∑

i=1

V 2
i

)j

f(x) +O(tk+1)

= Γ
〈

t, Jk

(

exp
(

vi +
1

2

d
∑

i=1

v2i

))〉

f(x) +O(tk+1).

That is to say, the operation f(·) 7→ E[f(X ·
t)] has the structure of the form exp(tL)

where L is the generator of the Markov process Xt and is given by L = V0 +
1
2

∑d
i=1 V

2
i .

59



We next consider the R〈〈A〉〉-valued random ODE defined as

X̄t = 1 +
d
∑

i=0

∫ t

0

X̄svidω
i
s. (3.4)

The solution is denoted by by X̄t(dω). As in the case of Xt, we can solve X̄t(dω) as

X̄t(dω) = 1 +
∑

‖α‖>0

I(t, α, dω)vα.

To be more precise, we define the solution of (3.4) rigorously. Let g ∈ C0,BV ([0, 1];R
d+1)

and a ∈ R〈〈A〉〉 be fixed and consider the R〈〈A〉〉-valued linear ODE

Ȳt = a+

d
∑

i=0

∫ t

0

Ȳsvidg
i
s. (3.5)

We say that (Ȳt)t≥0 is a solution of (3.5) if the coefficients of Ȳt (as a formal series)
are continuous function with respect to t and Ȳt satisfies the equation (3.5).

Lemma 3.2.10. The equation (3.5) has the unique solution given by

Ȳt = a



1 +
∑

‖α‖>0

I(t, α, dg)vα



 .

Proof. We can check that the function t 7→ a(1 +
∑

‖α‖>0 I(t, α, dg)v
α) is a solution

of (3.5). If (3.5) has another solution Ỹt, then using the Taylor expansion we can
derive that Jm(Ȳt − Ỹt) = 0 for every m. Therefore the uniqueness of solutions
holds.

We can define the solution of (3.4) pathwisely by means of the above lemma. By
Proposition 3.2.8, we obtain the equivalent condition for cubature formulas.

Theorem 3.2.11. Let ω be a random path. Then we have the followings.
(i) For each m ∈ N, ω satisfies (M)m if and only if

E[Jm(X̄1(dω))] = Jm

(

exp
(

v0 +
1

2

d
∑

i=1

v2i

))

.

(ii) Assume that ω has finite mass. Then for each m ∈ N, ω satisfies (Cub)m if
and only if the above equality holds.

Proof. Notice that (M)m holds if and only if

E[Jm(X̄1(dω))]− E[Jm(X1)] =
∑

‖α‖≤m

(

E[I(t, α, dω)]− E[I(t, α, ◦dB)]
)

vα = 0.
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By using Proposition 3.2.8, this condition holds if and only if

E[Jm(X̄1(dω))]− Jm

(

exp
(

v0 +
1

2

d
∑

i=1

v2i

))

= 0.

3.3 Splitting methods and construction of cuba-

ture formulas

In Chapter 2, we study the idea of splitting methods (or exponential product for-
mulas) that have been applied to approximations of ODEs, PDEs and more general
exponential maps (e.g. [81], [82], [85], [86], [30], [94]). For simplicity, we consider
two matrices A,B ∈ Rk×k such that AB 6= BA. We can easily show by the Taylor
expansion

exp(tA) exp(tB) = exp(t(A +B)) +O(t2),

exp(
t

2
A) exp(tB) exp(

t

2
A) = exp(t(A +B)) +O(t3),

1

2
exp(tA) exp(tB) +

1

2
exp(tB) exp(tA) = exp(t(A +B)) +O(t3).

The above computation and basic ideas are applicable to more general (unbounded)
operator A,B. As mentioned in Remark 3.2.9, our interest is the case where
A,B(, C,D . . . ) are generators of some Markov processes.

3.3.1 Splitting method for R〈〈A〉〉-valued SDEs

Let us define (d + 1) SDEs considered as the splitting of Xt in each direction of
(B0

t , B
1
t , . . . , B

d
t ). For i = 0, 1, . . . , d, define the R〈〈A〉〉-valued SDE

X
(i)
t = 1 +

∫ t

0

X(i)
s vi ◦ dBi

s.

We can immediately solve the above equations.

Lemma 3.3.1. (a)

X
(0)
1 = exp(v0).

(b) For i ≥ 1,

X
(i)
1 = exp(Bi

1vi),

E[X
(i)
1 ] = exp

(v2i
2

)

.
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Remark 3.3.2. The lemma is an algebraic version of the following probabilistic
consideration: Let Bt be a one dimensional Brownian motion, W be a C∞

b (RN ;RN)-
vector field, and exp(sW )x be the solution to the ODE

Y x
s = x+

∫ s

0

W (Y x
r )dr.

Then using Itô’s formula, we can show that exp(BtW )x is the solution to the SDE

Xx
t = x+

∫ t

0

W (Xx
r ) ◦ dBr.

This equation has much better analytical tractability than the original SDE (3.3)
which is driven by a multidimensional Brownian motion. In other words, the split-
ting methods help us to avoid simulations of “Lévy areas” defined as

I ij(t) :=

∫ t

0

∫ s

0

◦dBi
r ◦ dBj

s −
∫ t

0

∫ s

0

◦dBj
r ◦ dBi

s

for i 6= j. It is important to point out that (i) Levy areas naturally appear in the
stochastic Taylor expansion via

∫ t

0

∫ s

0
◦dBi

r ◦ dBj
s =

1
2
(Bi

tB
j
t + I ij(t)). (ii) The exact

distribution of Lévy areas is not known and it is even difficult to know its moments.

We introduce some formulas of splitting methods with degree 5.

Theorem 3.3.3. [Ninomiya-Victoir scheme]: For Z = (Z1, . . . , Zd) ∼ N(0, Id),

E
[

J5

(1

2

(

exp(v0/2) exp(Z
1v1) · · · exp(Zdvd) exp(v0/2)

+ exp(v0/2) exp(Z
dvd) · · · exp(Z1v1) exp(v0/2)

)

)]

= E
[

J5

(1

2

(

exp(v0) exp(Z
1v1) · · · exp(Zdvd) + exp(Zdvd) · · · exp(Z1v1) exp(v0)

)

)]

= J5

(

exp
(

v0 +
1

2

d
∑

i=1

v2i

))

.

[Strang’s splitting type scheme]: For Z = (Z1, . . . , Z2d−1) ∼ N(0, I2d−1),

E
[

J5

(

exp(v0/2) exp(Z
1v1/

√
2) · · · exp(Zd−1vd−1/

√
2) exp(Zdvd)

exp(Zd+(d−1)vd−1/
√
2) · · · exp(Zd+1v1/

√
2) exp(v0/2)

)]

= J5

(

exp
(

v0 +
1

2

d
∑

i=1

v2i

))

.
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Proof. Using the independence of (Z i), we can derive

E[exp(Z ivi) exp(Z
jvj)] = E[exp(Z ivi)]E[exp(Zjvj)] = exp

(v2i
2

)

exp
(v2j
2

)

for i, j ≥ 1, i 6= j. Therefore we can obtain the desired results from formal compu-
tation of the Taylor series for exponential maps such as we have seen in previous for
the matrices A,B.

Remark 3.3.4. The weight “1
2
” corresponds to the probability weight of a Bernoulli

random variable independent of Z (recall Example 3.2.4).

Another formula is given by Ninomiya and Ninomiya ([68]). They focus on the
number of solving or approximating ODEs. The proof differs from Theorem 3.3.3
due to the lack of independence.

Theorem 3.3.5. [Ninomiya-Ninomiya scheme]: For Z = (Z1, . . . , Z2d) ∼ N(0, I2d),

E
[

J5

(

exp
(v0
2
+

d
∑

i=1

(1

2
Z i +

1√
2
Zd+i

)

vi

)

exp
(v0
2

+
d
∑

i=1

(1

2
Z i − 1√

2
Zd+i

)

vi

))]

= J5

(

exp
(

v0 +
1

2

d
∑

i=1

v2i

))

.

Proof. As in the proof of Theorem 3.3.3, it follows from the computation of the
moments of correlated Gaussian random variables with degree 2 and 4.

3.3.2 Construction of paths of bounded variation

We give here a hint for construction of moment matching or cubature formulas of
degree 5.

Lemma 3.3.6. Let Z = (Z0, . . . , Zd) be a random variable and for 0 ≤ i ≤ d,

dωi
t := Z idt.

Then

X̄1(dω) = exp
(

d
∑

i=0

Z ivi

)

.

Proof. The result follows from

X̄1(dω) = 1 +

∞
∑

j=1

(

d
∑

i=0

Z ivi

)j
∫

0<tj<···<t1<1

dtj · · ·dt1 = 1 +

∞
∑

j=1

(

d
∑

i=0

Z ivi

)j 1

j!
.
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The above lemma shows the relationship between the exponential exp(
∑d

i=0 Z
ivi)

and the random ODE X̄1(dω). We now extend this lemma to discuss more general
compositions of the exponential maps including Ninomiya-Ninomiya type schemes.

Theorem 3.3.7. (1) Let ℓ ∈ N be fixed and Z = (Z ij)0≤i≤d,1≤j≤ℓ be a R(d+1)ℓ-valued
random variable. Let us define for each 1 ≤ j ≤ ℓ

dωi
t := ℓZ ijdt, t ∈

[j − 1

ℓ
,
j

ℓ

)

. (3.6)

Then we have

X̄1(dω) = exp
(

d
∑

i=0

Z i1vi

)

· · · exp
(

d
∑

i=0

Z iℓvi

)

.

(2) Let (Z0j)1≤j≤ℓ be non-negative constants such that
∑ℓ

j=1Z
0j = 1, and (Z ij)1≤i≤d,1≤j≤ℓ

be Gaussian random variables (which need not to be independent). Assume that ω
defined in (3.6) satisfies (M)m, and Z̄ = (Z̄ ij)1≤i≤d,1≤j≤ℓ is a discrete Rdℓ-valued
random variable with probabilities (pl)1≤l≤L so that

E[P((Z ij)1≤i≤d,1≤j≤ℓ)] =
L
∑

l=1

plP((Z̄ ij(l))1≤i≤d,1≤j≤ℓ)

for any polynomial P on Rdℓ with degree less than or equal to m. Then a random
path ω̄ given by

dω̄0
t := ℓZ0jdt, t ∈

[j − 1

ℓ
,
j

ℓ

)

,

dω̄i
t := ℓZ̄ ijdt, t ∈

[j − 1

ℓ
,
j

ℓ

)

, i ≥ 1

defines a cubature formula with degree m.

Proof. The result (1) is obtained from Lemma 3.3.6 and the uniqueness of solutions
of X̄t(dω) (Lemma 3.2.10). Indeed, for t ∈ [1/ℓ, 2/ℓ),

exp
(

d
∑

i=0

Z i1vi

)

exp
(

(t− 1/ℓ)

d
∑

i=0

Z i2vi

)

= X̄1/ℓ

(

1 +

d
∑

i=0

∫ t

1/ℓ

exp
(

(s− 1/ℓ)

d
∑

i=0

Z i2vi

)

vidω
i
s

)

= 1 +
d
∑

i=0

(

∫ 1/ℓ

0

exp
(

s
d
∑

i=0

Z i1vi

)

vidω
i
s

+

∫ t

1/ℓ

exp
(

d
∑

i=0

Z i1vi

)

exp
(

(s− 1/ℓ)
d
∑

i=0

Z i2vi

)

vidω
i
s

)

.
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This implies X̄2/ℓ(dω) = exp
(

∑d
i=0 Z

i1vi

)

exp
(

∑d
i=0 Z

i2vi

)

. We obtain the result

for X̄1(dω) by induction.
Through the representation via exponential maps, we notice that the conditions

(M)m and (Cub)m depend only on the polynomials of Z with degree less than or
equal to m. Therefore the assertion (2) immediately follows.

Remark 3.3.8. Theorem 3.3.7 lifts the original problem of cubature formula essen-
tially in infinite dimension down the finite dimensional problem of Gaussian measure.

Remark 3.3.9. Let a path of ω in Theorem 3.3.7 be fixed. Then the random ODE
X̄t(dω) becomes an ODE which has piecewise random coefficients. We can apply
the Runge-Kutta method for the ODE in each interval (See [68], [94]).
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Chapter 4

Implementation using
interpolated-lattice

This chapter is based on the paper by Tanaka [92] published in Journal of Compu-
tational and Applied Mathematics.

4.1 Introduction

The aim of this chapter is to construct higher-order discretization schemes based
on Markov chain weak approximations and multidimensional interpolation methods.
The target problem is to speed up the computation of option prices under commonly
used N -dimensional stochastic processes with N ≤ 5. We will emphasize through
computational experiments that the scheme is more effective than the Monte Carlo-
based approach in terms of CPU times in the three dimensional case.

Let us consider a Stratonovich stochastic differential equation defined as

Xt(x) = x+
d
∑

i=0

∫ t

0

Vi(Xs(x)) ◦ dW i
s (4.1)

with smooth coefficients Vi : R
N → RN whose derivatives of any order (≥ 0) are

bounded. Here Wt = (W 1
t , . . . ,W

d
t ) is a d-dimensional standard Brownian motion

on a probability space (Ω,F , P ) and W 0
t = t for convention. We assume that an

underlying asset dynamics (stock, interest rate, etc) follows the above SDE, and
attempt to evaluate the following values.

• European option price PTf :

Ptf(x) = E[f(Xt(x))] (at time t = T : maturity) (4.2)

• Bermudan option price HT : For expiry dates 0 < T1 < · · · < Tl = T ,

HT−Tk
(x) = max(gk(x), PTk+1−Tk

HT−Tk+1
(x)) for k ≥ 1 (4.3)

HT (x) = PT1HT−T1(x)
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where f and (gk)1≤k≤l are Lipschitz continuous functions and set H0 = max(0, gl(x)).
The functions (gk) are sometimes represented as an expectation of SDEs such as
(4.2). Several approaches in numerical discretizations have been known. However,
as the dimension of the underlying asset process increases, we face the problem of
exponentially increasing computational cost, called the curse of dimensionality.

In derivative pricing problems, the dimensions N and d become higher (≥ 2)
when we evaluate some complex instruments or models such as basket options
(N, d ≥ 2), cross currency derivatives (N, d ≥ 3), equity/credit hybrid products
(N, d ≥ 2), Asian or other path-dependent options (N + 1), multi-factor Markov-
functional interest rate models (N, d ≥ 2), LIBOR market models (N :large, d ≥ 2),
stochastic volatility models (N + 1, d + 1) and so on. In the following, we review
basic methods to evaluate them.

The well-known tree/lattice methods for some Markovian models (e.g. Brown-
ian motion, geometric Brownian motion) are very simple, and work well when the
dimension of the state space N is low. Similarly, the PDE approach such as finite dif-
ference methods, finite element methods and the method of lines (FDM,FEM,MOL
for short, see details in e.g. [78, 96, 34]) has advantages in low dimensional settings
(N = 1, 2). However if N ≥ 3, it turns out to be too hard to solve numerically
PDEs or Bellman equations that stem from (4.2), (4.3) since we need to solve un-
realistically large dimensional linear equations for them. For a similar reason, fast
Fourier transforms (FFTs, see e.g. [14]) that are very efficient approach for models
whose distributions are known cannot be used for higher dimensions.

Over the past two decade, the sparse grid method has been applied to FDMs,
FEMs, MOL and FFTs (e.g. [12], [76]) to overcome the curse of dimensionality.
The method decreases the computational cost with respect to “space” discretization
from exponential order mN to m(logm)N−1 where m denotes here the number of
nodes for each direction. The essence of this reduction is the representation through
an orthogonal hierarchical basis on full grids, and the restriction of its support from
{l1, . . . , lN ≤ l} ⊂ NN to {∑N

j=1 lj ≤ l +N − 1} where lj stands for the level of the
associated hierarchical basis of j-th direction. We will use the sparse grid techniques
in a part of our scheme explained later.

On the other hand, higher-order “time” discretization problems in the PDE
approach have not been used except special situations (Crank-Nicolson for N = 1,
the alternating direction implicit (ADI) method for N = 2 etc, [96]), because of
difficulty in performing stability analysis. Though it depends on the situation, time
discretization error often accounts for a majority in total error, and thus the second
order accuracy is desired.

Some higher-order time discretization algorithms arising from weak approxima-
tion problems have been introduced by several authors (cf. [63], [69], [68]; Section
4.2 for details). The weak approximation approach is based on (quasi-)Monte Carlo
simulations, therefore, it does not seem easy to use in order to evaluate Bermudan
or American options (see related works in [5], [10], [15], [62]). Besides, when we
use Monte Carlo simulations, we cannot avoid instability of sensitivity calculation.
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Hence, nontrivial variance reduction techniques will be required.
This chapter provides higher-order backward numerical schemes for pricing Eu-

ropean and Bermudan-style derivatives without Monte Carlo simulations. The goal
of this chapter is to find higher-order tree/lattice methods which rely on a semigroup
type discretization in order to generate trees. The semigroups can be approximated
using small size grids together with the interpolation methods. The sparse grid
method plays an important role in avoiding the curse of dimensionality to some
extent.

Roughly speaking, the implementation consists of the following steps:

1. Generate grid points G for each time step tk (0 = t0 < · · · < tn = T ), and
begin recursion step 2 → 3 from k = n− 1 to 0.

2. If k = n − 1, then set u0 := f on RN . If k < n− 1, then extend (interpolate
or extrapolate) the values un−(k+1) from the grid points G to whole space RN

(or sufficiently large domain which contains G).

3. On each grid point x ∈ G, calculate un−k(x) by

un−k(x) := E[un−(k+1)(Mk(x))]

≈ E[un−(k+1)(Xtk+1
)|Xtk = x] = Ptk+1−tkun−(k+1)(x)

for some discrete-valued random variable Mk(x).

Then we expect that un ≈ PTf . We refer to this two-step backward scheme as the
interpolated lattice (I-L) scheme. A pioneering work is Chevance [16] who introduces
a one-dimensional case of the above type scheme with the projection (choice of
the closest grid point) instead of interpolations. More recently, a projection type
technique called quantization has been developed in Bally et.al. [5]. Similar ideas
via interpolation methods (but, based on Monte Carlo grid sketching) can be found
in Berridge [7, chapter 5] and Kargin [43]. We will define an operator uj 7→ uj+1 (see
the definition (4.14)) which corresponds to the recursion step 2 → 3, and will show
that the operator can be represented by just multiplications of sparse matrices (see
the equation (4.21)). In other words, there exists the sparse matrix M such that

uj+1 = M× uj on G. (4.4)

This explicit form of the linear equation is similar to that of explicit FDMs. However,
they quite differ in the rate of convergence and the stability (Theorem 4.2.8 for
smooth payoffs and Theorem 4.2.10 for Lipschitz payoffs).

This chapter is organized as follows. In Section 4.2, we first explain the details
of the I-L scheme with some examples and formulate the convergence results. In
Section 4.3, we introduce a space interpolation technique known as the sparse grid
method to overcome the curse of dimensionality, and also explain how to implement
(4.4) effectively. Section 4.4 gives the precise error estimates for convergence of the
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schemes. In Section 4.7 we also discuss the stability property for the approximations
in more general cases. Finally, computational tests are provided for some interest
rate and cross currency derivatives in Section 4.6. The discussion includes the
comparison of sparse grids and Monte Carlo simulations.

4.2 The algorithm

This section establishes numerical schemes for pricing European and Bermudan
options. First, we describe the idea of the I-L scheme and discuss one-dimensional
examples in computational finance. After that, we state the I-L scheme for general
multidimensional diffusions and give our main result about the rate of convergence.
Finally, we will apply the scheme to pricing Bermudan-style derivatives.

4.2.1 The methodology and one-dimensional examples

Let u(t, x) := Ptf(x) = E[f(Xt(x))] for the stochastic differential equation (Xt)
defined in (4.1). Then under appropriate conditions for f(∈ C2), it is well-known
that u(t, x) is a solution of a second order parabolic PDE

{

d
dt
u(t, x) = Lu(t, x)

u(0, x) = f(x).
(4.5)

where L is a second order differential operator which is given by

L = V0 +
1

2

d
∑

i=1

V 2
i .

Here we identify a smooth function V : RN → RN with a smooth vector field
∑N

i=1 V
(i) ∂

∂xi
on RN . Considering the Taylor expansion of t 7→ u(t, x) around t = 0,

we can prove u(t, x) =
∑m

j=0
tj

j!
(Ljf)(x)+O(tm+1) if f is regular (See Lemma 4.4.2).

Therefore u(t, x) = Ptf(x) can be considered as a formal exponential map etL, and
as we will see in the following, this fact is useful for constructing higher-order time
discretization schemes.

We briefly review how to construct a numerical scheme satisfying that Ptf(x) ≈
∑

i pif(yi) where yi = yi(t, x) are nodes in which the approximation process takes
values, and pi = pi(t, x) are their corresponding probabilities. Let Mt(x) be a
random variable which is measurable on Ω × [0, T ] × RN and define the operator
Qt by Qtf(x) = E[f(Mt(x))]. Then we have the following representation (Markov
chain representation):

(QT/n)
nf(x) = E[f(M1

T/n ◦ · · · ◦Mn
T/n(x))]
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where M i
T/n are independent copies of MT/n and ◦ is defined as (M i

t ◦ M j
t )(x) :=

M i
t (M

j
t (x)). Using the semigroup property of Pt, we notice that

PTf(x)− (QT/n)
nf(x) =

n−1
∑

k=0

(QT/n)
k(PT/n −QT/n)PT− k+1

n
Tf(x).

From this expression, if the process Mt approximates Xt in the sense that it satisfies
the local error estimate (Pt − Qt)f(x) = O(tm+1), then we can expect that the
Markov chain M1

T/n ◦ · · · ◦ Mn
T/n converges with m-th order, i.e. E[f(XT (x))] −

E[f(M1
T/n ◦ · · · ◦ Mn

T/n(x))] = O(n−m). Therefore, once we find an algorithm with

high acurracy on small time interval [0, t], we can extend it to whole time interval
[0, T ].

Let us define the notation of ODEs, which are closely related to approximations
of Stratonovich SDEs. We denote by V a smooth vector field on RN .

Definition 4.2.1. exp(V )x denotes z1(x) which is a solution at time 1 of the ordi-
nary differential equation

dzt(x)

dt
= V (zt(x)), z0(x) = x. (4.6)

Remark 4.2.2. exp(W i
tV )x is a solution of the SDE dXt = V (Xt) ◦ dW i

t . More
general relations are studied in Kunita [48].

Our interest in approximating Pt byQt is to find a stochastic process X̂t satisfying
that

E[f(X̂t(x))] =

m
∑

j=0

tj

j!
(Ljf)(x) +O(tm+1).

We define L0 := V0 and Li := 1
2
V 2
i (1 ≤ i ≤ d), and consider approximations

of etL by combining the semigroup operations etL0 , . . . , etLd . For example, when
d = 1, Strang’s splitting method [81] is defined as the operation e

t
2
L0etL1e

t
2
L0 =

et(L0+L1)+O(t3). Notice that etLi corresponds to the stochastic process exp(W i
tVi)x

by Remark 4.2.2, and moreover compositions of operators of the type (etLi)0≤i≤d

correspond to combinations of Markov chains determined by (exp(W i
tVi)x)0≤i≤d.

This is the key idea of construction of algorithms with respect to time discretization
(cf. [53], [63], [69], [68], [94]).

We now consider the case N = d = 1. Under the one-dimensional setting, we
can define a splitting tree algorithm with 3 successor nodes:

X̂t(x) = exp(t/2V0) exp(
√
tZV1) exp(t/2V0)x (4.7)

where Z takes values in ±
√
3, 0 with probability 1/6, 1/6 and 2/3 respectively. This

scheme corresponds to an approximation of Strang’s splitting e
t
2
L0etL1e

t
2
L0 and is

known to be a second order method (see e.g. [94]).
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p

p(1− w)

pw

time

Figure 4.1: Interpolated lattice (N = 1): The dots represent grid points on G in
each time. p stands for the probability of a node of the lattice and w stands for the
weight induced by interpolations. 0 ≤ p, w ≤ 1.

Let us demonstrate an example of approximating Xt, given by Hull-White short
rate model. The Hull-White model is the solution of the one-dimensional SDE
defined by

rt = θt +Xt, dXt = −αXtdt+ σdWt, X0 = 0

where θt is a deterministic function which depends on the initial yield curve and
the parameters α, σ, and also depends on the choice of numeraire (i.e. the choice
of forward measure). Then the tree for Xt corresponding to (4.7) is X̂t(x) =
xe−αt+σe−αt/2

√
tZ. This is a non-recombining tree, whose computational cost grows

exponentially as the number n increases (compare with Hull-White [35]). To avoid
this difficulty, we shall develop in this chapter numerical tree/lattice schemes which
decrease grid points in which the conditional expectations are calculated even in the
multidimensional case.

We now consider approximating values of conditional expectations on given finite
grid points xi ∈ G. For each time step tk, let us calculate the following values
at x ∈ G, (g represents the conditional expectation which has been calculated in
backward recursion)

E[g(Xtk+1
)|Xtk = x] ≈ E[g(X̂tk+1−tk)|X̂0 = x] =: Qtk+1−tkg(x). (4.8)

However, we do not know the corresponding values of g(·) since the random variable
X̂t does not always take its values in G. Therefore in order to obtain approximate
values of g(x) (x 6∈ G), we should interpolate its value by using the values g(xi) on
grids G = {xi}. The idea is viewed in Figure 4.1.

Let G = {−K = x0 < · · · < xm = K}, δ := max1≤i≤m |xi − xi−1|, and assume
that the values g(xi) are known. Then we shall obtain the approximate values of
g(x), x ∈ [−K,K] by interpolations. Here for g ∈ Ck([−K,K]), g(k) denotes its
k-th derivative.

Example 4.2.3 (Linear). Define g̃(x) = xi+1−x
xi+1−xi

g(xi) +
x−xi

xi+1−xi
g(xi+1) for x ∈

[xi, xi+1]. Then for g ∈ C2([−K,K]),

‖g − g̃‖∞ ≤ C‖g(2)‖∞δ2.
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The piecewise linear interpolation has a lower rate of convergence than piecewise
polynomial interpolations, and in contrast, has the advantage of the monotonicity
of the L∞-norm ‖g̃‖∞ ≤ ‖g‖∞. This property allows us to avoid the numerical
oscillation from multiple iterations.

Example 4.2.4 (Natural cubic spline). Let g̃ be a piecewise polynomial of degree 3
such that g̃ ∈ C1([−K,K]) and g̃(2)(x0) = g(2)(xm) = 0. Then for g ∈ C4([−K,K]),

‖g − g̃‖∞ ≤ C‖g(4)‖∞δ4.

This approximate function can be obtained by solving a tridiagonal linear equation.

These procedures provide to approximate the values of E[f(XT (x))] by backward
recursion with respect to the time (tk) of the underlying processes as follows.

{Qtk+1−tk · · ·Qtn−tn−1f(x)}x∈RN

tree/lattice−→ {Qtk−tk−1
Qtk+1−tk · · ·Qtn−tn−1f(xi)}xi∈G

interpolation−→ {Qtk−tk−1
Qtk+1−tk · · ·Qtn−tn−1f(x)}x∈RN .

Note that the lattice can take the values out of [−K,K] near the boundary. There-
fore, in that case, we need an appropriate extrapolation technique.

In summary, the total error of the above scheme is represented by the following
three terms:

1. time discretization error

2. space discretization (interpolation) error

3. localization (extrapolation) error with respect to boundary parameter K

In the next subsection we shall formulate the problems in general multidimensional
settings.

4.2.2 The general algorithm and main result

We now turn to generalize the discussion in Section 4.2.1 to multidimensional
stochastic differential equation of the form (4.1). The generalization consists of two
parts; (i) multidimensional version of the formula (4.7) and (ii) general interpolation
method in dimension N .

We first consider a generalization of the numerical schemes with respect to the
formula (4.7), which is interpreted as cubature formulas for multidimensional Gaus-
sian measures and some computation of noncommutative exponential maps. The
following formula is a multidimensional generalization for Z that we used in the
formula (4.7).
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Assumption 4.1 (Gaussian cubature formula with degree 5). Let Z = (Z1, . . . , Zd)
be a finite discrete-valued random variable on Rd satisfying that

E[Zα] = E[Wα
1 ]

for |α| ≤ 5. Here we denote Xα = (X1)α1 · · · (Xd)αd for a Rd-vector X .

For details of cubature formulas with degree 5, we refer the reader to Stroud [84]
and Victoir [98], in which the cubature formulas with O(d2) or O(d3) points can be
found. We now introduce a three dimensional formula (14 points, [98]):

P
(

Z =
(

η1

√

5

2
, 0, 0

))

= P
(

Z =
(

0, η2

√

5

2
, 0
))

= P
(

Z =
(

0, 0, η3

√

5

2

))

=
4

25
,

P
(

Z =
(

η4
√
5, η5

√
5, η6

√
5
))

=
1

200

where ηj = ±1, j = 1, . . . , 6.
Before proceeding to the construction of general lattice schemes, we addition-

ally introduce the explicit Runge-Kutta methods for approximating the ODEs since
sometimes it is not easy to obtain the closed-form solution.

Definition 4.2.5. We say here that exp
(m)
RK(tV ) is an s-stage explicit Runge-Kutta

method of order m for the ODE (4.6) if it can be written in the form

exp
(m)
RK(tV )x = x+ t

s
∑

i=1

βiki(t, V )x (4.9)

where ki(t, V )x defined inductively by

k1(t, V )x = V (x), ki(t, V )x = V
(

x+ t
i−1
∑

j=1

αi,jkj(t, V )x
)

, 2 ≤ i ≤ s,

and satisfies

| exp(tV )x− exp
(m)
RK(tV )x| ≤ Cm|t|m+1. (4.10)

The Runge-Kutta formulas ((βi, αi,j)1≤j<i≤s) of order less than or equal to 7 are well
known (cf. Butcher [13] for more details).

We are now ready to state a general lattice scheme, inspired by Strang [81] and
Ninomiya-Victoir [69], as a multidimensional generalization of the formula (4.7) in
Section 4.2.1.

Define a time approximation operator Qt on L∞(RN) by

Qtf(x) = E[f(X̂t(x))] (4.11)
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where

X̂t(x) :=
{

exp
(2)
RK(t/2V0) exp

(5)
RK(

√
tZ1V1) · · · exp(5)

RK(
√
tZdVd) exp

(2)
RK(t/2V0)x if Λ = 1

exp
(2)
RK(t/2V0) exp

(5)
RK(

√
tZdVd) · · · exp(5)

RK(
√
tZ1V1) exp

(2)
RK(t/2V0)x if Λ = −1

with a Bernoulli random variable independent of Z and P (Λ = 1) = P (Λ = −1) =
1/2. This approximation comes from (an approximation of) the operation of expo-
nential maps

1

2
e

t
2
L0etLd · · · etL1e

t
2
L0 +

1

2
e

t
2
L0etL1 · · · etLde

t
2
L0 ,

which is formally equal to etL +O(t3).
We next begin with the extension of interpolations from one to N dimension.

We denote by Ck
b (R

N) the set of all Ck functions with bounded derivatives of any
order (less than or equal to k). Define a seminorm on Ck

b (R
N) by ‖f‖∞,k :=

∑

1≤|α|≤k ‖∂αf‖∞ =
∑

1≤|α|≤k supx∈RN |∂αf(x)|. In particular, we often write Cb(R
N)

as C0
b (R

N). Let Cb,Lip(R
N) be the set of all bounded Lipschitz functions. The Lip-

schitz constant for f ∈ Cb,Lip(R
N) is denoted by ‖f‖Lip.

We denote D := [L1, R1]× · · ·× [LN , RN ] a domain for interpolations, and Dδ =
{xj}Mj=1 its space discretization (i.e. finite subset in D) with meshwidth parameter
δ. Let C(D) be the set of all continuous functions on D, and a norm ‖ · ‖D is
defined by ‖f‖D := supx∈D |f(x)|. Similarly let Ck(D) be the set of all Ck functions
with a seminorm ‖f‖D,k :=

∑

1≤|α|≤k ‖∂αf‖D. In general, D should be included

by supp(PXT (x)) which defines the support of the law of XT (x) for a fixed x. For
example if (Xt) moves only on [0,∞)N , D should be a subset of [0,∞)N . We note

that, if an approximation X̃
(n)
T (x) converges XT (x) in law, then P (X̃

(n)
T (x) 6∈ O) ≈

P (XT (x) 6∈ O) = 0 for any open set that includes supp(PXT (x)).
Let IDδ be an interpolation and extrapolation operator defined for any measurable

fuction f on RN by

IDδ f(x) :=
M
∑

j=1

bj(x)f(xj) (4.12)

for x ∈ RN with coefficients (bj)1≤j≤M determined independently of f . We consider
the following technical assumption:

Assumption 4.2. (1) If f ∈ Cb(R
N), then IDδ f ∈ Cb,Lip(R

N).
(2) Order of accuracy: There exist some β > 0, β∗ ∈ N and C > 0 (independent of
D) such that for any f ∈ C(RN) with f |D ∈ Cβ∗

(D),

‖IDδ f − f‖D ≤ Cδβ‖f‖D,β∗.

(3) Probabilistic representation: bj(x) ≥ 0 for every j and x ∈ RN , and

M
∑

j=1

bj(x) ≡ 1.
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We note that the assumption 4.2-(3) implies ‖IDδ f‖∞ ≤ ‖f‖∞, and IDδ f ≤ IDδ g if
f ≤ g.

Remark 4.2.6. The index β∗ might depend on the dimension N .

For mathematical simplicity, we also assume

Assumption 4.3 (extrapolation by boundary values). We define for x ∈ Dc

IDδ f(x) = IDδ f(x∗)

where x∗ is defined by

xj
∗ =







xj xj ∈ [Lj , Rj]
Rj xj > Rj

Lj xj < Lj .

On the whole space RN , we also define IDf := f on D, and IDf(x) := f(x∗)
on Dc. Clearly, we have ‖IDg‖∞ ≤ ‖g‖∞. It is important to point out that under
Assumption 4.2 (3) and 4.3, there exist transition probability measures PD

x (dy),
PD,δ
x (dy) such that

(IDf)(x) =

∫

RN

f(y)PD
x (dy) and (IDδ f)(x) =

∫

RN

f(y)PD,δ
x (dy) (4.13)

for f ∈ Cb(R
N). In fact, using the Dirac measure δx(dy) concentrated at x ∈ RN , we

can derive that PD
x (dy) = δx∗(dy) and PD,δ

x (dy) =
∫

RN

∑

1≤j≤M bj(z)δxj
(dy)PD

x (dz).
The concrete algorithms can be seen in Example 4.2.3-4.2.4, and in Section 4.3.

The calculation process IDδ usually consists of two procedures. The first procedure
is called only once to determine its coefficients, and the approximate values of f(x)
are obtained by calls to fast separate routine (the second procedure).

Remark 4.2.7. The assumption 4.2-(3) is not satisfied in the case of general spline
functions. That is, there exist constants M,m(δ) > 1 such that

m(δ) ≤ sup
f∈C(D),f 6=0

(‖IDδ f‖D/‖f‖D) ≤ M.

The detailed explanation can be found in de Boor [21, chapter XIII].

We now define a space-time approximation operator Qδ,D
t by

Qδ,D
t = Qt ◦ IDδ . (4.14)

Let 0 = t0 < t1 < · · · < tn = T be a partition of [0, T ]. We will use the backward
algorithm Qδ,D

t1−t0 · · ·Q
δ,D
tn−1−tn−2

Qtn−tn−1f(x) for the approximation of the final value
PTf(x).

Through the probabilistic representations (4.11) and (4.13), we can define three
RN -valued Markov chains as follows:
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• Under Assumption 4.1, let X̄
(n)
tk

(x) be a Markov chain determined by X̄
(n)
0 (x) =

x and Qt1−t0 · · ·Qtk−tk−1
f(x) = E[f(X̄

(n)
tk

(x))] for every 1 ≤ k ≤ n, f ∈
Cb(R

N).

• Under Assumption 4.1 and 4.3, let X̄
(n,D)
tk

(x) be a Markov chain determined

by X̄
(n,D)
0 (x) = x, X̄

(n,D)
t1 (x) = X̄

(n)
t1 (x) and Qt1−t0 · · · (IDQtk−tk−1

)f(x) =

E[f(X̄
(n,D)
tk

(x))] for every 2 ≤ k ≤ n, f ∈ Cb(R
N).

• Under Assumption 4.1, 4.2 and 4.3, let X̄
(n,δ,D)
tk

(x) be a Markov chain deter-

mined by X̄
(n,δ,D)
0 (x) = x, X̄

(n,δ,D)
t1 (x) = X̄

(n)
t1 (x) andQt1−t0 · · · (IDδ Qtk−tk−1

)f(x) =

E[f(X̄
(n,δ,D)
tk

(x))] for every 2 ≤ k ≤ n, f ∈ Cb(R
N).

These will be used to analyze the extrapolation error.
Our main result of the present chapter in terms of error estimates is the following.

Theorem 4.2.8. Let ti :=
iT
n
, (0 ≤ i ≤ n). Suppose Assumption 4.1, 4.2 and 4.3

hold. Then for f ∈ C6∨β∗

b (RN), we have

∣

∣

∣
PTf(x)−

(

Qδ,D
T/n

)n−1
QT/nf(x)

∣

∣

∣
≤ C1‖f‖∞,6 n−2 + C2‖f‖∞,β∗ nδβ (4.15)

+ C3‖∇f‖∞
√
n max

0≤k≤n−2
P (X̄

(n,δ,D)
kT/n (x) 6∈ D).

Here the constants (Cj)1≤j≤3 depend only on T .

In particular, if D = [−K1, K1]×· · ·×[−KN , KN ], the tail probability P (X̄
(n,δ,D)
kT/n (x) 6∈

D) is evaluated as follows: For any p ∈ N, there exist constants C1,j, C2,j (1 ≤ j ≤
N) depending on p, T, x such that

P (X̄
(n,δ,D)
kT/n (x) 6∈ D) ≤

∑

1≤j≤N

C1,j + C2,jkδ
β

K2p
j

.

Remark 4.2.9. We remark some theoretical and practical points.

(i) The convergence rate of the form n−α + nδβ (α, β > 0) has been investigated
in earlier works by Chevance [16] and Bally et al. [5].

(ii) For a general domain D = [L1, R1] × · · · × [LN , RN ], we should consider the

estimate for the tail probabilities P (cj(X̄
(n,δ,D),j
ti (x)) 6∈ [cj(Lj), cj(Rj)]) with

some monotone increasing functions (cj)1≤j≤N .

(iii) Note that, in explicit FDMs, the choice of n (i.e. ∆t) strongly depends on δ due
to the stability condition in order to avoid numerical oscillation. In contrast,
the scheme introduced above does not cause high numerical oscillation in terms
of the choice of large ∆t. In addition, considering the fact that the time
discretization error converges to zero with second order accuracy, we expect
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that the error is sufficiently small even if the mesh size ∆t = T/n is not
so small (for example, n = 10 with T = 1). Conversely, as the number of
partition n increases, the space discretization error grows linearly. However,
since the number n need not be so large, the error is acceptable to some extent
in practice (see numerical tests given later). Incidentally, compared with the
time and space discretization error, the error of localization (the third term
on the right hand side of (4.15)) is practically negligible.

(iv) Let us consider general SDEs with time-dependent coefficients Vi(t, x). In
general we can add an extra process X0

t = t to the original process (X i
t)1≤i≤N ,

and consider the (N + 1)-dimensional SDE (X0
t , (X

i
t)1≤i≤N ), which is of the

form (4.1). Therefore the space-time approximation Qδ,D
T/n has to be defined

on the extended state space [0,∞) × RN . In the particular case of interest
rate products we can proceed as follows: Let (Tj)

k
j=1 be maturity dates at

which plain options (swaptions) are tradable in a financial market. Then we
often use financial models with Vi(t, x) = Vi(Tj , x), t ∈ [Tj , Tj+1), so that the

approximation Qδ,D
(Tj+1−Tj)/nj

with the state space RN can be applied for each

partition [Tj , Tj+1).

4.2.3 Alternative methods for time discretization

The other efficient numerical schemes which give second order accuracy with re-
spect to time discretization can be seen in Ninomiya and Ninomiya [68] and Lyons
and Victoir [63]. Ninomiya-Ninomiya scheme uses 2d (correlated) Gaussian random
variables, so that the number of nodes become more than the above one. On the
other hand, Lyons-Victoir scheme uses cubature formulas for multiple Wiener inte-
grals with degree 5, which the number of nodes also tends to increase more than
that for Gaussian measures. However, in spite of such limitations, we should not
conclude that the scheme described above is best since the total computational cost
is also composed of the other aspects such as approximating ODEs, the size of the
constants Ci, and so on. At any rate, we shall use the above scheme based on
Ninomiya-Victoir throughout this chapter.

When d = 1, using the negative time solution of the ODE for V0, we can find a
scheme with more than third order convergence. An example of such consideration
is found in Alfonsi [1]. Another very high order scheme with d = 1 or 2 (based on a
cubature formula for multiple Wiener integrals) is given by Gyurkó and Lyons [32].

4.2.4 Bermudan-style derivatives

The approximation result in previous section can be applied to pricing Bermudan-
style derivatives. Let 0 < T0 < · · · < TM be expiry dates and define

HT−Tk
(x) = max(gk(x), PTk+1−Tk

HT−Tk+1
(x))
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where

gk(x) =







f(x) (option)
g̃k(x) (plain vanilla swaption)
ḡk(x) + PTk+1−Tk

gk+1(x) (exotic swaption)

as its price at t = Tk.
g̃k is, for example, of the form g̃k(x) =

∑

j>k cjD(Tk, Tj , x) with closed-form
bond price (discount function) formulas D(Tk, Tj, x).

The reason why we call the third case “exotic” swaption is that the swap value
may not be obtained by closed-form depending on the pricing model or products. In
this case, the parallel backward calculation for PTk+1−Tk

HT−Tk+1
and PTk+1−Tk

gk+1

will be required.
If the partition Tk+1 − Tk is not so small (e.g. half year), we can identify the

numerical procedure on [Tk, Tk+1] as the one explained in European option case
on [0, Tk+1 − Tk]. Since the function max(·, ·) is not smooth, we cannot apply di-
rectly the result in Theorem 4.2.8 to pricing Bermudan-style derivatives even if f is
smooth. For this, we shall discuss later some estimates derived from Malliavin calcu-
lus. Specifically we review a property of the derivatives of Ptf under the uniformly
elliptic condition in the next subsection.

4.2.5 The case of irregular functionals

This subsection describes the results of the rate of convergence when f is not smooth
but Lipschitz continuous.

Theorem 4.2.10. Suppose Assumption 4.1, 4.2, 4.3 and the uniformly elliptic
condition, i.e. there exists ǫ > 0 such that infx∈RN

∑d
i=1〈Vi(x), ξ〉2 ≥ ǫ|ξ|2 for all

ξ ∈ RN . Let sk = tk − tk−1 > 0 and δk > 0 for each time step. Then we have for
any Lipschitz continuous function f ,

∣

∣

∣PTf(x)−Qδ1,D
s1 · · ·Qδn−1,D

sn−1
Qsnf(x)

∣

∣

∣

≤ ‖f‖Lip
(

C1

(

n−1
∑

k=1

s3k
(T − tk)5/2

+
√
sn

)

+ C2

n−1
∑

k=1

δβk
(T − tk)(β

∗−1)/2

+ C3

n−2
∑

k=0

√
sk+1P (X̄

(n,δ,D)
tk

(x) 6∈ D)
)

.

Here the constants (Cj)1≤j≤3 depend only on T .

Remark 4.2.11. This theorem asserts that if f has no smooth property, the mesh-
width sk and δk should be refined smaller near the final time (maturity date) T .

The algorithm given in this section for Bermudan options is justified by The-
orem 4.2.10. Indeed, let us consider time interval [Tj, Tj+1] as [0, T ] in the case
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of pricing European options. By the inequality ‖max(gk, PTk+1−Tk
HT−Tk+1

)‖Lip ≤
max(‖gk‖Lip, ‖PTk+1−Tk

HT−Tk+1
‖Lip), we can use the convergence result in Theorem

4.2.10 as f = max(gk, PTk+1−Tk
HT−Tk+1

) for each expiry date.
More generally, let us consider a bounded measurable function f and compute

E[f(XT +
√
cW̃ )]

where W̃ is a standard normal random variable independent of Xt. Then the discus-
sion given in previous can be applied to this expectation since its k-th derivatives
grow like c−k/2 as c ↓ 0 near the maturity date T . For example, this formulation
can be applied to pricing discretely monitored barrier options, if the convolution
y 7→ E[f(y +

√
cW̃ )] is obtained by closed-form (or easy to be approximated).

4.3 Grid sketching and implementation issues

As stated in previous section, we have a motivation to approximate functions by
space discretizations. In this section we introduce interpolation techniques on full
(rectangular) grids, and on so-called sparse grids.

For notational convenience we use the bijective map b : D → [0, 1]N by b(x) =
( x1−L1

R1−L1
, · · · , xN−LN

RN−LN
), x = (x1, . . . , xN) ∈ RN and consider [0, 1] as the region [Li, Ri]

for each j = 1, . . . , N . Of course, considering the importance of accuracy in each
node, we may use the other (nonlinear) coordinate transforms instead of b defined
above.

4.3.1 Uniform full grids

This subsection summarizes basic results on the interpolation theory. We denote

by Dδ =
{

(x
(1)
i1
, . . . , x

(N)
iN

)
}1≤j≤N

0≤ij≤m
rectangular grids in D = [0, 1]N with equidistant

meshwidth δ = 1/m (i.e. x
(j)
i = i/m).

Piecewise linear interpolation

One simple algorithm is the linear interpolation, which is defined by

IDδ f(x) =
∑

k=(k1,...,kN )∈{0,1}N
bi,k(x)f(x

(1)
i1+k1

, . . . , x
(N)
iN+kN

) (4.16)

if xj ∈ [x
(j)
ij
, x

(j)
ij+1], where bi,k(x) = δ−N

∏

1≤j≤N((1− kj)(x
(j)
ij+1 −xj) + kj(x

j −x
(j)
ij
)),

i = (i1, . . . , iN). Note that IDδ is well-defined when xj = x
(j)
i for some i and j.

This method satisfies Assumption 4.2 with β = β∗ = 2. The computational cost
at one point x is very small (N times binary searches and some arithmetric oper-
ations). However, the number of nodes needed for the total calculation procedure
(

Qδ,D
T/n

)n−1
QT/nf is O(mN)× (n− 1), so that it does not work well for large N .
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Spline interpolation

More generally, we can use piecewise polynomials (Φi)1≤i≤m as follows.

IDδ f(x) =
m
∑

i=1

aiΦi(x) (4.17)

with f(xj) = IDδ f(xj) for every xj ∈ Dδ. This approximation is also written in
the form (4.12). As seen in Example 4.2.4, we expect that the rate of convergence
is supx∈D |f(x) − IDδ f(x)| ≤ Cδβ with β ≥ 3. Therefore, higher-order convergence
may decrease the number m needed for required accuracy. However even so, the
order O(mN) still seems to be too large for N ≥ 4. We remark that polynomial
interpolations generally do not satisfy the condition (3) in Assumption 4.2.

Remark 4.3.1 (Least-Square Monte Carlo). We are interested in constructing
approximations of f(x) := E[g(Xti+1

)|Xti = x] for the SDE (Xt), such as the
form of (4.17) with some basis functions (Φi). Let (xj , yj)1≤j≤M be i.i.d. copies
of (Xti, g(Xti+1

)). Then the Least-Square Monte Carlo method ([15], [62]) is formu-
lated as

min
{ai}

M
∑

j=1

(

yj −
m
∑

i=1

aiΦi(xj)
)2

in order to get an approximation
∑m

i=1 aiΦi ≈ f . In this method, what basis func-
tions we should use for general diffusions has not been clarified.

4.3.2 Sparse grids for higher dimensions

In this subsection we explain the sparse grid interpolation techniques to break the
curse of dimensionality. It is expected that the method is more effective for the
dimension 3 ≤ N ≤ 10, although it may not work like Monte Carlo simulations for
several hundred dimensions. For detailed information, see e.g. Bungartz and Griebel
[12], Reisinger and Wittum [76], Leentvaar and Oosterlee [59] and the references
therein.

A sparse grid interpolation for a function f(x) in dimension N (x ∈ RN) is an
operator IDδ of the type (4.12) such that

sup
x∈D

|f(x)− IDδ f(x)| ≤ Cδ2 log2(δ
−1)N−1‖f‖∞,2 (4.18)

and its computational time is O(log2(δ
−1)N−1), and the number of grid points is

O(δ−1 log2(δ
−1)N−1) as δ ↓ 0. This means that the scheme breaks the curse of

dimensionality to some extent. Unfortunately, the assumption 4.2-(3) is not satisfied
in the case of sparse grid interpolations explained below. Therefore, we need to
derive some fine properties of Qδ,D

t with respect to the stability. We will discuss it
in Section 4.5.
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We now introduce the details of the methodology. Let φl,i : [0, 1] → [0, 1] be a
shape function

φl,i(x) =

{

1− |x/hl − i|, x ∈ [(i− 1)hl, (i+ 1)hl] ∩ [0, 1]
0, otherwise

with hl = 2−l and i = 0, 1, . . . , 2l. We also define a product of N piecewise linear
functions by

φl,i(x) =

N
∏

j=1

φlj ,ij(x
j)

with l = (l1, . . . , lN) ∈ (N ∪ {0})N and i = (i1, . . . , iN). Let Vl be an associated
space spanned by φl,i, ij = 0, 1, . . . , 2lj , 1 ≤ j ≤ N. Namely, Vl corresponds to the
space which is spanned by piecewise linear functions on full grids with meshwidth
2−lj for each direction.

Starting from the above basis functions, we reformulate the linear interpolation
(4.16) on full grids. First we consider the case N = 1. Let αl,i be given by

αl,i = f(xl,i)−
f(xl,i−1) + f(xl,i+1)

2

where xl,j = j2−l and f : [0, 1] → R. In particular, let αl,0 = f(xl,0) and
αl,2l = f(xl,2l). Let us denote this operation αl,i by

[

−1
2
, 1,−1

2

]

l,i
f . For general

N -dimensional spaces, define the coefficients αl,i by tensor products, that is, for
each function f : [0, 1]N → R,

αl,i :=
(

N
∏

j=1

[

−1

2
, 1,−1

2

]

lj ,ij

f
)

:= g0 ∈ R,

where gN := f , gj : [0, 1]
j → R is defined as

gj(x
1, . . . , xj) :=

[

−1

2
, 1,−1

2

]

lj+1,ij+1

gj+1(x
1, . . . , xj , ·)

for 1 ≤ j ≤ N −1 inductively, and g0 := [−1
2
, 1,−1

2
]l1,i1g1. Then the piecewise linear

interpolation denoted by fl has another representation

fl =
l1
∑

i1=0

· · ·
lN
∑

iN=0

αl,iφl,i.

From now on, we explain how to decrease the number of summations without serious
deterioration of the rate of convergence.
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Figure 4.2: Two dimensional sparse grids with level ms = 2 (left) and ms = 3
(right).

Hierarchical subspace: For l ∈ (N∪ {0})N , define the hierarchical subspace of Vl

by

Wl = span{φl,i | i ∈ Bl}

where the index set Bl is given by

Bl =

{

i ∈ (N ∪ {0})N ;
ij = 1, 3, . . . , 2lj − 1, if lj > 0,
ij = 0, 1, if lj = 0,

1 ≤ j ≤ N.

}

We define the sparse grids of level ms (≥ 1) by

V s
ms

:=
⊕

‖l‖1≤ms+N−1

Wl

where ‖l‖1 =
∑N

j=1max(lj , 1). Figure 4.2 represents the sparse grids in the case
N = 2.

We now describe the dimension of the sparse grids (see e.g. [12, Lemma 3.6]).

Lemma 4.3.2. The number of inner grid points in the subspace V s
ms

is given by

|V s
ms

| = O(2msmN−1
s ).

The comparison of the full grids and the sparse grids can be viewed in Table 4.1.
While the number of grid points of the full grids grows exponentially, the one of the
sparse grids grows asymptotically linearly.

Sparse grid interpolation: The linear interpolation on the sparse grids is given
by

f s
ms

=
∑

‖l‖1≤ms+N−1

∑

i∈Bl

αl,iφl,i. (4.19)

It is known that the above approximation for sufficiently smooth functions fulfills
the convergence property (4.18) with δ = 2−ms, that is, supx∈D |f(x) − IDδ f(x)| ≤
C2−2msmN−1

s ‖f‖∞,2 (cf. Bungartz and Griebel [12, Theorem 3.8]).
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level 2ms full grid sparse grid V s

ms

5 32 35,937 1,505
6 64 274,625 3,713
7 128 2,146,689 8,961
8 256 16,974,593 21,249
9 512 135,005,697 49,665
10 1024 1,076,890,625 114,689

Table 4.1: Number of grid points (N = 3)

Combination techniques (Smolyak’s algorithm): An alternative approach to for-
mulate sparse grid interpolations is the so-called combination techniques. Using the
relationship between hierarchical basis and nodal basis on full grids, one obtains

f s
ms

=
N−1
∑

p=0

(−1)p
(

N − 1
p

)

∑

‖l‖1=ms+N−1−p

lj>0

fl,

that is, a weighted sum of full grid interpolations on few hierarchical subspaces.
The procedure of interpolations on full grids is clear as we have seen in (4.16), and
requires some arithmetric operations (whose cost depends only on N) and binary
searches. One notices that binary searches are needed only N -times for computing
(fℓ)‖ℓ‖≤ms+N−1, and therefore the computational time of the binary searches is of
O(Nms) and ignorable compared with the other costs. Hence, we conclude that the
total computational time to obtain a value of f s

ms
is proportional to the number of

summation, O(mN−1
s ).

An extension of sparse grid interpolation is non-equidistant sparse grids. Let γ
be a non-negative vector (usually, only one element is positive) and define a γ-non-
equidistant sparse grid interpolation as

f s
ms,γ :=

N−1
∑

p=0

(−1)p
(

N − 1
p

)

∑

‖l‖1=ms+N−1−p

lj>0

fl+γ. (4.20)

Denote the corresponding grid points by V s
ms,γ. Since currency (or stock) options

with stochastic interest rates are mainly dominated by the currency dynamics due
to its high volatility compared with interest rate dynamics, it is more effective to
refine the mesh of the currency dynamics (see also Leentvaar and Oosterlee [59]).
The same argument is also valid for stochastic volatility models.

Data structure: From the above mentioned schemes, the exact computation is
due to the correspondence between the pairs of levels l and coordinate vectors i, and
the addresses of data (grid points, function values) which queues up irregularly as
follows.

key (l, i)
hash−→ index (address) p −→ grid points xp, values f ◦ b−1(xp).
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The so-called hash table allows us to run the mapping with the cost of O(1). Sev-
eral libraries, such as Boost C++ libraries(unordered map), provide hash tables for
arbitrary data type. For more efficient implementations, see Feuersänger [23].

4.3.3 Sparse matrix formulation: sparse grid interpolated
lattice

It may be natural to compute (4.20) for each node of lattice, and each time step.
However it could be very expensive in total computational time, since tensor product
operations become too many even if we use sparse grids. Let us denote the inner
grid points in V s

ms,γ by {xi}1≤i≤np. To reduce the computational time, we would like
to investigate properties of a matrix M = M(T/n, δ,D) ∈ Rnp ⊗Rnp such that

Qδ,D
T/nf(xk) =

(

M× f
)(k)

where f := (f(x1), . . . , f(xnp))
T ∈ Rnp and (v)(k) denotes k-th elemnt of the vector

v ∈ Rnp. We can see that the rows of the matrix M are sparse vectors through the
representation

Qδ,D
T/nf(xk) =

l
∑

i=1

pif
s
ms,γ(X̂T/n(xk, i)) =

l
∑

i=1

pi

〈

v(X̂T/n(xk, i), δ,D), f
〉

R
np

=
〈

l
∑

i=1

piv(X̂T/n(xk, i), δ,D), f
〉

R
np

(4.21)

where (X̂T/n(xk, i))
l
i=1 are the finite lattice points of X̂T/n(xk) defined in (4.11).

Here v(y, δ,D) are the sparse vectors determined by tensor calculation for f s
ms,γ(y)

on hierarchical subspaces.
Without loss of generality, we may assume γ = (0, . . . , 0). From the definition of

tensor calculation on full grids and hierarchical structure of sparse grids, one obtains
the following estimates.

Proposition 4.3.3. The number of nonzero elements in M is bounded by

Ncub ×Nsp × |V s
ms
|

where Ncub is the number of lattice points depending only on the dimension d, and
Nsp is the number of nodes used in hierarchical tensor products with O(mN−1

s ).

Remark 4.3.4.

(i) Clearly, the above upper bound is not optimal because the nodes called by the
interpolations are full of redundancies for each lattice point.
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(ii) A similar formulation of the matrix form can be used in full grid interpolations
(4.16) with the number of nonzero elements ≈ Ncub × 2N × (2ms + 1)N .

(iii) The computational time mainly consists of generating the matrix M. Fur-
thermore, the bottleneck could be the hash function lookup. We note that
the matrix can be used without recalculation to tackle a class of instruments
with the same underlying asset dynamics. This property is very convenient
for pricing and risk managing large derivative portfolios.

Coarse-grained parallelization: One notices that the operation (4.21) can be run
in parallel for each row. Indeed, through the careful consideration to avoid storage
confilict, we can use parallel computing techniques for sparse grid interpolated lattice
schemes. The detailed procedure is the following.

1. Construct a hash table (on the global memory).

2. For each processor, set (small) local memories used in lattice construction,
binary search, tensor calculation, etc.

3. For each processor, execute the operation (4.21) in parallel by using the cor-
responding local memory.

4.4 Local and global error analysis

The goal of this section is to give the precise error estimates of the rates of conver-
gence, which have been partially indicated in Theorem 4.2.8. The crucial task is to
investigate the short time asymptotics of the operators Pt and Qt.

4.4.1 Basic lemmas for SDEs with smooth coefficients

Lemma 4.4.1 (e.g. [74]). There exists a version of Xt(x) such that a map x 7→ Xt(x)
is infinite times continuous differentiable almost surely and in Lp-convergence sense.
Moreover, we have

E[ sup
0≤t≤T

|Xt(x)|p] ≤ C(T, p)(1 + |x|p) < ∞,

sup
x∈RN

E[ sup
0≤t≤T

|∂α
xXt(x)|p] ≤ C(T, p, α) < ∞

for any p ≥ 2 and multi-index α with |α| ≥ 1.

Lemma 4.4.2. If f ∈ C
2(m+1)
b (RN), then Ptf ∈ C

2(m+1)
b (RN) and ‖∂αPtf‖∞ ≤

C1(T,m)‖f‖∞,|α| for |α| ≤ 2(m+ 1). Moreover, we have

Ptf(x) =
m
∑

j=0

tj

j!
Ljf(x) +

∫ t

0

(t− s)m

m!
Ps(Lm+1f)(x)ds

and ‖Ptf −∑m
j=0

tj

j!
Ljf‖∞ ≤ C2(T,m) tm+1‖f‖∞,2(m+1).
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4.4.2 Proof of Theorem 4.2.8

The following theorem proves the second order convergence (thus locally third order)
with respect to the time discretization. The proof is similar to that of [1], [68], and
[94].

Theorem 4.4.3. Let f ∈ C6
b(R

N). Then we have

‖Ptf −Qtf‖∞ ≤ Ct3‖f‖∞,6.

Proof. We first define an approximate operator without Runge-Kutta scheme:

Q∗
t f(x) =

1

2
E[f(exp(t/2V0) exp(

√
tZ1V1) · · · exp(

√
tZdVd) exp(t/2V0)x)]

+
1

2
E[f(exp(t/2V0) exp(

√
tZdVd) · · · exp(

√
tZ1V1) exp(t/2V0)x)].

In the following we prove that both Pt−Q∗
t and Q∗

t −Qt converge to zero with third
order accuracy.

Step 1: To show the third order convergence of Pt − Q∗
t , let us prepare the

Taylor formula for ODEs. Expanding t 7→ f(exp(tVi)x) around t = 0, we have for
any 0 ≤ m ≤ 6,

f (exp(tVi)x) =
m
∑

j=0

tj

j!
V j
i f(x) +

∫ t

0

(t− u)m

m!
V m+1
i f(exp(uVi)x)du.

We apply this expansion to the functions inside the expectation (4.11). Then the
representation

f(exp(s0V0) exp(s1V1) · · · exp(sdVd) exp(sd+1V0)x) =
∑

‖α‖≤5

p(α, s, V, f)(x)

+ remainder,

is obtained where ‖α‖ := 2(α0 + αd+1) +
∑d

i=1 αi and the functions p(α, s, V, f) ∈
Cb(R

N) (s = (s0, . . . , sd+1), α = (α0, . . . , αd+1) ∈ (N ∪ {0})d+2) have the form

p(α, s, V, f) = aαs
α0
0 · · · sαd+1

d+1 (Vα0 · · ·Vαd+1
f)

for some aα ∈ R. For obtaining the constants aα of p(α, s, V, f), we refer the reader
to e.g. [68], [94]. We can observe here that

∑

‖α‖=0 p(α, s, V, f) = f,

∑

‖α‖=2

p(α, s, V, f) = (s0 + sd+1)V0f +

d
∑

i=1

s2i
2
V 2
i f +

∑

1≤i<j≤d

sisjVjVif,
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∑

‖α‖=4

p(α, s, V, f) = (
s20 + s2d+1

2
+ s0sd+1)V

2
0 f +

d
∑

i=1

(sd+1s
2
iV0V

2
i + s0s

2
iV

2
i V0)f

+

d
∑

i=1

s4i
24

V 4
i f +

∑

1≤i<j≤d

s2i s
2
j

4
V 2
j V

2
i f

+
∑

‖α‖=4,1≤∃i≤d s.t. αi=1

p(α, s, V, f),

and the remainder term is bounded by

C ′(s30 + s61 + · · ·+ s6d + s3d+1)‖f‖∞,6.

On the other hand, we obtain by 4.4.1

‖Ptf − (f + tLf +
t2

2
L2f)‖∞ ≤ C1t

3‖f‖∞,6.

Accordingly, the moment condition for Z up to the order 5 shows that

‖Ptf −Q∗
t f‖∞ ≤ C2t

3‖f‖∞,6.

Step 2: Let now derive the error estimate of Q∗
t −Qt. It holds that

∣

∣

∣

d+1
∏

i=0

exp(siVi)x−
d+1
∏

i=0

exp
(ki)
RK(siVi)x

∣

∣

∣

≤
d+1
∑

i=0

∣

∣

∣

(

i−1
∏

j=0

exp(sjVj)
)

exp(siVi)
(

d+1
∏

j=i+1

exp
(kj)
RK (sjVj)

)

x

−
(

i−1
∏

j=0

exp(sjVj)
)

exp
(ki)
RK(siVi)

(

d+1
∏

j=i+1

exp
(kj)
RK (sjVj)

)

x
∣

∣

∣

where we denote Vd+1 := V0, k0 = kd+1 = 2 and ki = 5 (1 ≤ i ≤ d). Using the
Lipschitz continuity | exp(sVi)x − exp(sVi)y| ≤ C ′eC

′′|s||x − y| (that follows from
Gronwall’s inequality), we can show that

RHS ≤
d+1
∑

i=0

(C ′)ieC
′′
∑i−1

j=0 |sj |
∣

∣

∣

(

exp(siVi)− exp
(ki)
RK(siVi)

)(

d+1
∏

j=i+1

exp
(kj)
RK (sjVj)

)

x
∣

∣

∣

≤
d+1
∑

i=0

C̃ ′eC
′′
∑i−1

j=0 |sj ||si|ki+1.

Consequently, since f is Lipschitz continuous, we have

‖Q∗
t f −Qtf‖∞ ≤ C3t

3‖∇f‖∞.

This is the end of the proof.
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Now we prove the result in global order of convergence when f is smooth.

Proof of Theorem 4.2.8. First of all, we consider the decomposition

Ptf −Qδ,D
t f = (Ptf −Qtf) +Qt(f − IDδ f) (4.22)

for f ∈ C6∨β∗

b (RN). By Theorem 4.4.3, the first term is bounded by C1t
3‖f‖∞,6.

Assumption 4.2 (2) for the space discretization gives that

|Qt(f − IDδ f)(y)| ≤ C2δ
β‖f‖∞,β∗ + |Qt

(

(f − IDδ f)1Dc

)

(y)|.

Note that if y ∈ D, we have

|Qt

(

(f − IDδ f)1Dc

)

(y)| ≤ C‖∇f‖∞
(

sup
y∈D

‖X̂t(y)− y‖L∞(Ω;RN )

)

P (X̂t(y) 6∈ D)

≤ C ′‖∇f‖∞
√
tP (X̂t(y) 6∈ D). (4.23)

Here we used Assumption 4.3 for the first inequality and Assumption 4.1 for the
second inequality.

By the semigroup property, we have

PTf −
(

Qδ,D
T/n

)n−1
QT/nf = (Qδ,D

T/n)
n−1(PT/n −QT/n)f

+

n−2
∑

k=0

(Qδ,D
T/n)

k(PT/n −Qδ,D
T/n)PT− k+1

n
Tf.

We also have by the assumptions ‖Qδ,D
t f‖∞ ≤ ‖IDδ f‖∞ ≤ ‖f‖∞. (This property

implies the stability of the scheme for multiple iterations.) We now recall that
Psf ∈ C6∨β∗

b (see 4.4.1). Accordingly, we have
∣

∣

∣
PTf(x)−

(

Qδ,D
T/n

)n−1
QT/nf(x)

∣

∣

∣

≤ C1‖f‖∞,6n
−2 + C2‖f‖∞,β∗nδβ

+

n−2
∑

k=0

|(Qδ,D
T/n)

kQT/n

(

(PT− k+1
n

Tf − IDδ PT− k+1
n

Tf)1Dc

)

(x)|.

Since (Qδ,D
T/n)

k acts on the values in Dδ, we obtain from (4.23)

|(Qδ,D
T/n)

kQT/n

(

(PT− k+1
n

Tf − IDδ PT− k+1
n

Tf)1Dc

)

(x)|
≤ CT‖∇f‖∞n−1/2P (X̄

(n,δ,D)
kT/n (x) 6∈ D).

This finishes the proof of the first claim (4.15).

Finally, we turn to prove the second claim. We notice that P (X̄
(n,δ,D)
kT/n (x) 6∈ D) ≤

∑

1≤j≤N P (X̄
(n,δ,D),j
kT/n (x) 6∈ [−Kj , Kj]), and for any p ∈ N, K2p

j P (X̄
(n,δ,D),j
kT/n (x) 6∈

[−Kj , Kj ]) ≤ E[|X̄(n,δ,D),j
kT/n (x)|2p].
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We can give the following estimate for X̂t: Let fp(x) := |x|p, x ∈ RN . Then

Qtf2p(x) = E[f2p(X̂t(x))] ≤ (1 + Cp,T t)f2p(x) + C ′
p,T t.

(See also the above estimate in [94, Lemma 4.1, Proposition 6.7] under more general
settings.) Combining the above estimate and Assumption 4.2, we have

IDδ Qtf2p(x) ≤ (1 + Cp,T t)(I
D
δ f2p)(x) + C ′

p,T t ≤ (1 + Cp,T t)f2p(x) + C ′
p,T t + C ′′

p,T δ
β.

The second inequality is obtained from f2p ∈ C∞. This implies E[|X̄(n,δ,D),j
kT/n (x)|2p] ≤

C1,j + C2,jkδ
β for some C1,j, C2,j, and therefore K2p

j P (X̄
(n,δ,D),j
kT/n 6∈ D) ≤ C1,j +

C2,jkδ
β < ∞.

4.4.3 Proof of Theorem 4.2.10

As already seen in the previous proof, the smoothness of Ptf plays an important
role for the error estimates, and thus some regularity results for ∂αPtf are required.
The following theorem can be found in [57, 83].

Theorem 4.4.4. Under the uniformly elliptic condition, we have

‖∂αPtf‖∞ ≤ Ct−
|α|−1

2 ‖∇f‖∞ (4.24)

for multi-index α and f ∈ C
|α|
b (RN).

Remark 4.4.5. Similar extended results in [57], [52] show that Ptf has same esti-
mates (at least) to the direction of the vector fields instead of ∂α.

The above result in Malliavin calculus allows us to prove

Proof. By simple calculation, we can show that the inequality

‖Ptf −Qtf‖∞ ≤ ‖Ptf − f‖∞ + ‖f −Qtf‖∞ ≤ C1

√
t‖∇f‖∞

holds. As in the proof of Theorem 4.4.3, we have for f ∈ C6∨β∗

b and s > 0,

|PtPsf(y)−Qδ,D
t Psf(y)| ≤ C1t

3‖Psf‖∞,6 + C2δ
β‖Psf‖∞,β∗

+ |Qt

(

(Psf − IDδ Psf)1Dc

)

(y)|.

Therefore Theorem 4.4.4 implies

RHS ≤ C1
t3

s5/2
‖∇f‖∞ + C2

δβ

s(β∗−1)/2
‖∇f‖∞ + |Qt

(

(Psf − IDδ Psf)1Dc

)

(y)|.

Consequently, we obtain by approximations of f the above result with bounds ‖f‖Lip
instead of ‖∇f‖∞.
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4.5 Discussion: stability analysis

As a further research, it is quite important to provide the error estimates for in-
terpolated lattice schemes inducing general interpolations; for example, cubic spline
interpolations (N = 1), sparse grid interpolations (N ≥ 2). Because of lack of
stability by means of Assumption 4.2-(3), we have only obtained the local error es-
timates (i.e. consistency) in Theorem 4.4.3 and (4.22) for such general interpolation
algorithms.

In the present chapter, we cannot indicate a precise answer (i.e. the exact rate
of convergence) to this problem. But we shall give some hints in order to deal with
them.

Throughout this section, we use the notation of a norm ‖ · ‖, which is defined on
a subspace of Cb(R

N), and is not only ‖ · ‖∞. The norm ‖ · ‖ satisfies at least that
‖Qt‖ ≤ q(t) = 1 +O(t).

4.5.1 Von Neumann stability analysis

First, through the matrix representation of the scheme, we can analyze the stability
of matrix multiplications.

Consider Fourier series on D = [L1, R1]× · · · × [LN , RN ] for f :

f(xj) =
∑

k∈ZN

Ck exp(
√
−1〈k, xj〉)

and also for Mf = Qδ,D
T/nf (on Dδ):

(Mf)(xj) =
∑

k∈ZN

Ck(M exp(
√
−1〈k, ·〉))(xj)

where Ck is the Fourier coefficients of f . Then define an amplification factor ρ(k) by

ρ(k) := max
xj∈Dδ

∣

∣

∣

∣

(M exp(
√
−1〈k, ·〉))(xj)

exp(
√
−1〈k, xj〉)

∣

∣

∣

∣

for each N -component k.
By the discussion of Lax-Richtmyer theorem in [58], the upper bound estimates

for ‖M‖ = ‖Qδ,D
T/n‖ is given by the estimates for sup

k
ρ(k) = sup

k
ρ(k)(T/n, δ,D). We

are concerned with when it holds that

sup
k

ρ(k) ≈ 1.

Sometimes supk ρ
(k) is analyzed theoretically, for instance, in case of some FDMs.

In the case where explicit calculation of ρ(k) is difficult, computational experiments
will help us to understand (empirically) whether the scheme is stable or not.
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4.5.2 An analysis of operator norm

Second we give a direct approach using an operator norm defined on Cb(R
N). We

consider an inequality

‖IDδ g‖ ≤ c(δ)‖g‖

instead of Assumption 4.2-(3). The analysis of the asymptotics of c(δ) is equivalent
to that of

δ 7→ sup
g∈C,g 6=0

‖IDδ g‖
‖g‖

where a certain subspace C ⊂ Cb(R
N) includes the error functions PkT/nf−(Qδ,D

T/n)
kf ,

1 ≤ k ≤ n− 1 for a fixed initial function f .
A key problem is to ascertain whether it holds that

c(δ) → 1 as δ ↓ 0.

This is known as a very complex problem in the field of interpolation theory (see e.g.
[21]). If the above type estimate holds, then we rewrite Theorem 4.2.8 as follow:

‖PkT/n − (Qδ,D
T/n)

kf‖ ≤ ‖(PT/n −Qδ,D
T/n)P(k−1)T/nf‖

+ ‖Qδ,D
T/n(P(k−1)T/n − (Qδ,D

T/n)
k−1)f‖

≤ (local error) + q(T/n)c(δ)‖(P(k−1)T/n − (Qδ,D
T/n)

k−1)f‖

and hence

(global error) ≤ n (q(T/n)c(δ))n × (local error)

with c(δ) → 1. In practice, only several tens of the number of partition n is needed.
Thus the c(δ)n term may have a small effect on total error.

Under such general conditions, we show a partial result of the behaviour of the
error PkT/n − (Qδ,D

T/n)
kf with the supremum norm.

Modify the assumptions introduced in Section 4.2 as follows.

Assumption 4.4. Assumption 4.2-(3) is not satisfied, and alternatively suppose
that
(1) Convergence for Lipschitz continuous functions:

lim
δ↓0

‖IDδ g − g‖D = 0

for any Lipschitz continuous function g.
(2) Uniformly boundedness: For a fixed δ∗ > 0,

sup
0<δ≤δ∗

sup
g∈C(D),g 6=0

‖IDδ g‖D
‖g‖D

< ∞.
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Now we can prove the next lemma.

Lemma 4.5.1. Suppose that (gδ), g are Lipschitz continuous and limδ↓0 ‖gδ−g‖∞ =
0. Then

lim
δ↓0

‖IDδ gδ − IDg‖∞ = 0.

Proof. It immediately follows from ‖IDδ gδ − IDg‖∞ ≤ ‖IDδ gδ − IDδ g‖∞ + ‖IDδ g −
IDg‖∞ ≤ ‖IDδ ‖∞‖gδ − g‖∞ + ‖IDδ g − IDg‖∞ and Assumption 4.4.

Additionally, one can easily obtain

Lemma 4.5.2. For any Lipschitz continuous function g, Ptg and Qtg are also Lip-
schitz continuous.

We can eventually obtain the following convergence result.

Theorem 4.5.3. Under Assumption 4.1, 4.3 and 4.4, we have for f ∈ C6∨β∗

b (RN)

lim
δ→0

∣

∣

∣
PTf(x)−

(

Qδ,D
T/n

)n−1
QT/nf(x)

∣

∣

∣
≤ C1‖f‖∞,6n

−2

+ C3‖∇f‖∞
√
n max

0≤k≤n−2
P (X̄

(n,D)
kT/n (x) 6∈ D).

Proof. From Lemma 4.5.1, we obtain
(

Qδ,D
T/n

)n−1
QT/nf →

(

QT/nI
D)n−1

QT/nf as
δ → 0.

4.6 Numerical experiments

4.6.1 1-dimensional example

In this section, we provide computational tests for a widely used interest rate model
of Hull and White, which has been introduced in Section 4.2.1.

Under the Hull-White model, the zero-coupon bond price of maturity S follows

D(t, S) = D(t, S, r(t))

= exp(−
∫ S

t

f(0, s)ds+B(t, S)(f(0, t)− r(t))− σ2

4α
(1− e−2αt)B(t, S)2)

where B(t, S) = (1− e−α(S−t))/α and t 7→ f(0, t) is the initial forward rate curve.
Let now consider European options on zero-coupon bonds with maturity S, ex-

piry date T and strike price L. For the computaion, let us change the numeraire
from the bank account to the bond of maturity T . Under the so-called T -forward
measure, we can obtain the expression

dXt = −αXtdt + σdW T
t , (W T

t : Brownian motion)

θt = f(0, t) +
σ2

2α2
(1− e−αt)2 −

∫ t

0

σ2

α
(1− e−α(T−s))e−α(t−s)ds
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(see e.g. [9]). Then the price of European put bond options follows

D(0, T )ET [max(0, L−D(T, S, θT +XT ))|X0 = 0]

where ET stands for the expectation under T -forward measure. We now provide
computational tests for the expectation by using an I-L scheme.

Let us take the parameters as T = 1.0, S = 5.0, f(0, t) ≡ 0.02, σ = 0.005,
α = 1.0, L = e−0.02×4.0, and in the following, the boundary [−K,K] = [−0.02, 0.02].
We will describe the absolute error, that is, |approximate price − true price|, where
the true price (= 0.1165 with notional amount = 100) is obtained by the analytical
bond price formula. In the tests, we do not use here coordinate transform techniques
(i.e. non-uniform grid sketching) which could give higher accuracy.

Figure 4.3 demonstrates the convergence results of the I-L scheme with linear
interpolations. On the left, the absolute error is plotted for fixed n as the number
of grid points m increases. On the right, the absolute error is plotted for fixed m
in contrast to the left. For insufficient number of grid points m, we can see that
the space discretization error grows like O(n). (Note that linear interpolations for
convex functions have positive bias.) The practical acceptable error, such as 10−4,
is achieved for about (n,m) = (15, 400).

Figure 4.4 shows the results in the case of spline interpolations. As far as we can
see the results, spline interpolations work within the interpolated lattice framework,
better than linear interpolations.

In Table 4.2, we illustrate the approximate prices for various strike prices. The
error seems to be larger around at-the-money since the non-differentiability of the
payoff function affects the rate of convergence (Theorem 4.2.10). Even if, in the case
of a deep out-of-the-money, the absolute error looks quite small.

4.6.2 3-dimensional example

We next consider pricing cross currency options as a 3-dimensional example. Cross
currency options with two stochastic interest rates on some standard models fortu-
nately have analytical formulas, so that we can evaluate an accuracy of sparse grid
interpolated lattice (SGIL for short) schemes. We can apply the methods explained
below to exotic cross currency derivatives such as cancelable PRDC swaps.

Let now consider a spot FX rate S and two stochastic interest rate dynamics (i.e.
domestic and foreign) which are given by rd(t) = θd(t)+Xd(t), rf(t) = θf (t)+Xf (t),

dS(t)/S(t) = (rd(t)− rf (t))dt+ σdW 1
t ,

dXd(t) = −αdXd(t)dt+ σddW
2
t ,

dXf(t) = −αfXf(t)dt + σfdW
3
t

under the risk-neutral measure (the spot-martingale measure). The correlation of
the Brownian motion (W 1

t ,W
2
t ,W

3
t ) is given by d〈W i,W j〉t = ρijdt.
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Figure 4.3: Convergence of I-L scheme (linear interpolation).
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Figure 4.4: Convergence of I-L scheme (cubic spline interpolation).

price
linear cubic spline

n 10 20 10 20 analytical
m 200 400 200 400 200 400 200 400

L = 0.915 0.00027 0.00026 0.00028 0.00027 0.00026 0.00026 0.00027 0.00027 0.00027
L = 0.920 0.02219 0.02216 0.02229 0.02218 0.02214 0.02214 0.02214 0.02215 0.02216
L = 0.925 0.23145 0.23139 0.23165 0.23149 0.23138 0.23137 0.23142 0.23143 0.23146
L = 0.930 0.67580 0.67580 0.67582 0.67581 0.67579 0.67579 0.67580 0.67580 0.67580
L = 0.935 1.16484 1.16484 1.16484 1.16484 1.16484 1.16484 1.16484 1.16484 1.16484

Table 4.2: Bond option price (notional amount = 100): convergence results for
various strike prices. 95



We start approximating the values of European put option with maturity T and
strike price L. The price is determined by the expression D(0, T )ET [max(0, L−ST )]
under domestic T -forward measure. Through the change of measure, one obtains

ET [max(0, L− ST )] = ET [max(0, L− S(0) exp(VT +X1
T ))] (4.25)

where we have used VT =
∫ T

0
(θTd (t)− θTf (t)− θTS (t))dt− σ2

2
T ,

θTd (t) = fd(0, t) +
σ2
d

2α2
d

(1− e−αdt)2 −
∫ t

0

σ2
d

αd
(1− e−αd(T−s))e−αd(t−s)ds,

θTf (t) = ff (0, t) +
σ2
f

2α2
f

(1− e−αf t)2 −
∫ t

0

(σσfρ13 +
ρ23σdσf

αd
(1− e−αd(T−s)))e−αf (t−s)ds,

θTS (t) = ρ12
σσd

αd

(1− e−αd(T−t)),

and Xt follows

dX1(t) = (X2(t)−X3(t))dt+ σdW T,1
t ,

dX2(t) = −αdX
2(t)dt+ σddW

T,2
t ,

dX3(t) = −αfX
3(t)dt+ σfdW

T,3
t

where (W T,j
t ) stands for a 3-dimensional Brownian motion with the same correla-

tion structure as (W j
t ). Noticing that the corresponding vector fields V1, V2, V3 are

commutative, we obtain a second order scheme by the simple expression

exp(t/2V0) exp(
√
t(Z1V1 + Z2V2 + Z3V3)) exp(t/2V0)x (4.26)

with 14 successor nodes.
We take the parameters as follows: T = 1.0, S0 = 100, fd(0, t) ≡ 0.02, ff (0, t) ≡

0.06, σ = 0.15, σd = 0.005, σf = 0.015, αd = αf = 1.0, ρ21 = ρ31 = ρ32 = 0.1. We
now evaluate an at-the-money(ATM) forward put option, that is, L = S0e

(0.02−0.06)T

in (4.25).
We set the boundary [−K1, K1]×[−K2, K2]×[−K3, K3] = [−0.6, 0.6]×[−0.02, 0.02]×

[−0.06, 0.06], and use a coordinate transform for each direction by

bj(x) =























(x+Kj)/8Kj x ∈ [−Kj ,−Kj/2)
1/16 + (x+Kj/2)/2Kj x ∈ [−Kj/2,−Kj/8)
1/4 + 2(x+Kj/8)/Kj x ∈ [−Kj/8, Kj/8)
3/4 + (x−Kj/8)/2Kj x ∈ [Kj/8, Kj/2)
15/16 + (x−Kj/2)/8Kj x ∈ [Kj/2, Kj].

This transform has an effect of reducing the constant C2 in Theorem 4.2.8 and 4.2.10.
In Table 4.3 we show the results when non-equidistant sparse grid interpolation

techniques are used. Here we take the number n = 20, that is, ∆t = T/n = 0.05.
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ms price absolute error relative error time [sec, 1 thread] time [sec, 2 thread]
γ = (0, 0, 0)

5 5.65937 0.03786 0.674% <0.1 <0.1
6 5.63067 0.00916 0.163% 0.2 0.1
7 5.62320 0.00169 0.030% 0.8 0.5
8 5.62130 0.00021 0.004% 2.7 1.7
9 5.62126 0.00025 0.004% 9.7 5.8

γ = (1, 0, 0)
4 5.65954 0.03803 0.677% <0.1 <0.1
5 5.63072 0.00921 0.164% 0.1 <0.1
6 5.62318 0.00167 0.030% 0.5 0.3
7 5.62130 0.00021 0.004% 1.7 1.2
8 5.62126 0.00025 0.004% 6.1 3.7

γ = (2, 0, 0)
4 5.63154 0.01003 0.178% 0.1 <0.1
5 5.62333 0.00186 0.032% 0.3 0.2
6 5.62132 0.00019 0.003% 1.1 0.7
7 5.62126 0.00025 0.004% 4.0 2.4

γ = (3, 0, 0)
4 5.62405 0.00254 0.045% 0.2 0.1
5 5.62146 0.00005 0.001% 0.7 0.4
6 5.62129 0.00022 0.004% 2.5 1.5

Table 4.3: Results of SGIL for ATM forward currency put options, when we fix
n = 20 (∆t = 0.05). The analytical price is 5.62151. Test on Intel(R) Core(TM)
i5-661 @3.33GHz, 4GB RAM with C++ and OpenMP programming (Visual C++
compiler).

Comparing with the results which can be obtained for different γ, we confirm that
the space discretization error is mainly dominated by currency dynamics. If 10−2

absolute error is admissible in practical views, the computation takes less than 1
second.

Comparison of sparse grids and plain Monte Carlo: The Monte Carlo method
is a simple and very powerful tool for computing expectations. Using the equation
(4.26) with standard normal random variables Z, we test the accuracy of Monte
Carlo simulations from a viewpoint of statistical error.

num. of simulation price 1 StDev ±1 StDev 2 StDev / Price time [sec, 1 thread]
100,000 5.60012 0.024 [5.576, 5.624] 0.850% 0.4
500,000 5.63425 0.011 [5.624, 5.645] 0.379% 1.8
1,000,000 5.63602 0.008 [5.628, 5.644] 0.268% 3.6
10,000,000 5.62296 0.002 [5.621, 5.625] 0.085% 35.0

Table 4.4: Results of Monte Carlo simulations with n = 20 in the equation (4.26).
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Table 4.4 shows the results of plain Monte Carlo simulations. If the target
error (in the sense of confidence interval) is about 0.01-0.05, there is no significant
difference of sparse grids and plain Monte Carlo. When we require more precision,
for e.g. calibration and computing sensitivities, the sparse grid method has the
superiority, which will be more remarkable in computing Bermudan or American
options.

4.7 Some remarks

Higher-order convergence of space-time discretization allows us to reduce dramati-
cally computational time through few time steps and efficient grid sketching. Sparse
grid interpolated lattice schemes are well-suited for several dimensional models, and
are simple to be implemented as long as cubature formulas and sparse grid inter-
polations are provided. We do not have to be bothered by solving linear equations
arising from discretized PDEs.

The notable features of (sparse grid) interpolated lattice schemes are summarized
below.

• Second order accuracy: From the practical viewpoint, one may argue that
there are advantages to converge with second order accuracy with respect to
time discretization.

• Breaking the curse of dimensionality: By virtue of celebrated works on
cubature formulas and sparse grid methods, we can compute the approximate
values of expectations within the interpolated lattice framework for higher
dimensions (2 ≤ N ≤ 4 or 5, probably depending on PC performance).

• Stability: There is no need to choose smaller and smaller ∆t depending on
our choice of δ. Probabilistic constructions of time discretization schemes au-
tomatically allow us to avoid instability due to the positiveness of probabilities.
Conversely, a weak point is the fact that the space discretization error may
grow linearly in proportion to the number of partition n. However, it does def-
initely not cause high oscillation, and the method has practically acceptable
accuracy in the field of option pricing.

• Flexibility: Since the method is based on the weak approximations of SDEs,
a broad class of models with unknown distributions is covered.

• Parallelization: The operations of sparse grid interpolated lattice schemes
are compatible with coarse-grained parallel computing. In addition, once we
obtain the sparse matrix M, it can be used in computing a derivative portfolio
with the same pricing model and parameters.

The reader might hope to find and use a scheme which has a higher accuracy
to deal with, for example, long-term swaptions. A way to obtain such a scheme is
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to develop higher order (more than third order) space-time discretization schemes.
However, recall that higher order methods take in general more time per unit opera-
tion, therefore, this does not always speed up the computation in practice. Another
way is to find a case-by-case methodology which reduces the constants appeared in
the error estimates (cf. Theorem 4.2.8); see Chapter 5 in this thesis. Of course from
a viewpoint of implementations, some developments in computer science, such as
parallel computing, more effective algorithms for sparse grid tensor products, faster
hash table storage, and sparse BLAS for multiplications of the matrix M, help us
to improve the computational efficiency.
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Chapter 5

Strong approximation with
asymptotic method

This chapter is based on the paper by Tanaka and Yamada [95] accepted for publi-
cation in International Journal of Theoretical and Applied Finance.

5.1 Introduction

In the present chapter, we study an asymptotic method that accelerates numerical
schemes for perturbed random variables. The general concept is as follows. Suppose
that F ǫ is a random variable depending on a small parameter ǫ. Let us consider an
approximation F̄ ǫ for F ǫ independently with respect to ǫ. Then the bias F ǫ − F̄ ǫ

may be close to the bias F 0 − F̄ 0, since ǫ has a small effect on the value of F ǫ − F̄ ǫ.
Therefore, we expect that

F̄ ǫ − F̄ 0 + F 0 is a better approximation than F̄ ǫ. (5.1)

In particular, our interest is to study the above property when F ǫ is a functional of
a stochastic process and F̄ ǫ comes from time discretization for it. In many cases, F 0

is a simpler model than F ǫ and its exact distribution is well-known (e.g. Gaussian
random variables or functionals of Gaussian processes). Even if the exact distribu-
tion of F 0 is unknown, it seems to be possible to provide a new scheme F̄ ǫ− F̄ 0+ F̃ 0

with another more efficient scheme F̃ 0 for F 0.
A further development of the above acceleration can be considered through the

Taylor expansion of ǫ 7→ F ǫ − F̄ ǫ, that is,

F ǫ − F̄ ǫ ≈ F 0 − F̄ ǫ +
d

dǫ
(F ǫ − F̄ ǫ)|ǫ=0 + · · · . (5.2)

The idea (5.1) comes from the 0-th order term in (5.2). Therefore if it is possible to
compute d

dǫ
(F ǫ − F̄ ǫ)|ǫ=0 easily, we can expect to construct a higher-order scheme

with respect to ǫ. This new idea has not been taken into account in this thesis, and
should be studied with concrete examples in future work.
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We now turn to consider the error estimates for the type of acceleration (5.1).
Here, we are interested in the following three error structures:

• Strong error:

E[|F ǫ − (F̄ ǫ − F̄ 0 + F 0)|p]1/p. (5.3)

• Weak error:

|E[F ǫ]− (E[F̄ ǫ]− E[F̄ 0] + E[F 0])|. (5.4)

• Monte Carlo bias estimator for 1
M

∑M
j=1(F

ǫ,j − F 0,j) +E[F 0] where (F ǫ,j)j be
an i.i.d. sampling of F ǫ:

Var
( 1

M

M
∑

j=1

(F ǫ,j − F 0,j)
)

. (5.5)

Notice that in the case of Monte Carlo bias (5.5), the term 1
M

∑M
j=1(F

0,j) − E[F 0]
works as a control variates method. For applications in strong error (5.3), we need
an exact or accurate numerical simulation method for F 0. On the other hand, in
the cases of weak error (5.4) and Monte Carlo bias (5.5), we have to know the value
of E[F 0], and therefore we need a closed formula or an accurate numerical scheme
for E[F 0] such as the fast Fourier transform in one dimension.

When F ǫ denotes a functional of a stochastic differential equation Xǫ
t , F̄

ǫ cor-

responds to a certain time discretization scheme X̄
ǫ,(n)
t (n: number of partition).

Takahashi-Yoshida [88] derived the following results in weak error sense (5.4) and

Monte Carlo bias sense (5.5) for the Euler-Maruyama scheme X̄
ǫ,(n)
t :

E[f(Xǫ
T )]− (E[f(X̄

ǫ,(n)
T )]−E[f(X̄

0,(n)
T )] + E[f(X0

T )]) = O
( ǫ

n

)

,

Var1/2
( 1

M

M
∑

j=1

(f(X̄
ǫ,(n),j
T )− f(X̄

0,(n),j
T ))

)

= O
( ǫ

M1/2

)

,

and hence the total error (the root-mean-squared error; RMSE) is equal to

Var1/2
(

E[f(Xǫ
T )]−

1

M

M
∑

j=1

(f(X̄
ǫ,(n),j
T )− f(X̄

0,(n),j
T ))−E[f(X0

T )]
)

= O
( ǫ

n
+

ǫ

M1/2

)

.

Here they assumed some appropriate conditions for f and the coefficients of Xǫ
t .

This is the case where F ǫ = f(Xǫ
T ) and F̄ ǫ = f(X̄

ǫ,(n)
T ) in (5.4), and F ǫ = f(X̄

ǫ,(n)
T )

in (5.5). In order to make the total error O(γ) with weak and Monte Carlo bias, the
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standard Euler-Maruyama scheme with i.i.d. sampling requires the computational
cost n ·M = O(γ−3), and in contrast, the accelerated Euler-Maruyama scheme with
i.i.d. sampling requires the cost O(ǫ3γ−3). That is, the asymptotic method (5.1)
for the Euler-Maruyama scheme is O(ǫ3)-times faster than the standard method.
Moreover, we can construct a sampling scheme whose computational cost turns out
to be O(ǫ1−δγ−2(log γ/ǫ)2) for any δ > 0 and Lipschitz continuous function f via
the multi-level Monte Carlo method. See Theorem 5.4.5.

In this chapter, we develop the error analysis for the Euler-Maruyama and Mil-
stein schemes with the asymptotic method in strong sense (5.3). Under suitable
conditions, we will show that for any p ≥ 2,

E
[

sup
0≤t≤T

|Xǫ
t − (X̄

ǫ,(n)
t − X̄

0,(n)
t +X0

t )|p
]1/p

= O
( ǫ

nα

)

(5.6)

with α = 1/2 (= 1) for the Euler-Maruyama (Milstein, resp.) scheme X̄
ǫ,(n)
t . Al-

though strong convergence is usually very slow, the asymptotic method (5.1) helps
to improve the speed of convergence.

A simplest example of (5.6) is for the case where the SDE becomes the ODE
when ǫ = 0, namely,

dXǫ
t = b(Xǫ

t )dt+ ǫσ(Xǫ
t )dBt.

However, from the viewpoint of applications, we can also consider the (0th-order)
ǫ-expansion around linear models like Black-Scholes (See an analytical expansion
in Kunitomo-Takahashi [51] and Takahashi-Yamada [87]). Indeed, we can treat a
perturbed stochastic differential equations such as

dXǫ
t = bǫtX

ǫ
t dt+

√

σǫ
tX

ǫ
t dBt,

dbǫt = hb(b
ǫ
t)dt+ ǫVb(b

ǫ
t)dBt,

dσǫ
t = hσ(σ

ǫ
t )dt+ ǫVσ(σ

ǫ
t )dBt.

Notice that X0
t becomes the Black-Scholes model with time-dependent coefficients.

Therefore there are many applications in the models of dynamic assets with stochas-
tic volatility and/or stochastic interest rate. In particular, we will discuss more gen-
eral stochastic differential equations so-called local-stochastic volatility type models.

This chapter is organized as follows: Section 5.2 is devoted to state theoretical
results for strong convergence (5.6). In Section 5.3 we discuss pathwise simulation
of stochastic volatility models. In Section 5.4, we introduce the multi-level Monte
Carlo method and its acceleration by the asymptotic method. In Section 5.5 some
numerical experiments for the SABR stochastic volatility model are given.

5.2 Strong convergence results

As seen in the previous intruduction, the asymptotic method (5.1) for discretizing
stochastic processes is very natural to speed up the discretization procedure. We
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state here the basic setting to discuss the approximation schemes. Let us consider
a stochastic differential equation (SDE) of the form

dXǫ
t = b(Xǫ

t , ǫ)dt+ σ(Xǫ
t , ǫ)dBt, Xǫ

0 = x0, (5.7)

where b ∈ C(RN×[0, 1];RN), σ ∈ C(RN×[0, 1];RN×Rd), and Bt is a d-dimensional
standard Brownian motion on a probability space (Ω,F , P ) with a filtration (Ft)t≥0

satisfying usual conditions. Throughout the present chapter, we use the equidistant
partition ti =

i
n
T , 0 ≤ i ≤ n. The Euler-Maruyama and Milstein schemes will be

considered with some smoothness conditions for the coefficients of the SDE.

5.2.1 The Euler-Maruyama scheme with asymptotic method

Let X̄
ǫ,(n)
t be the Euler-Maruyama scheme for the SDE Xǫ

t (Maruyama [64]): For
t ∈ [ti, ti+1],

X̄
ǫ,(n)
t := X̄

ǫ,(n)
ti + b(X̄

ǫ,(n)
ti , ǫ)(t− ti) + σ(X̄

ǫ,(n)
ti , ǫ)(Bt − Bti). (5.8)

The implementation of (5.8) is very simple. Indeed, practitioners only need to
know how to simulate normal random variables. The error of the scheme has been
analyzed deeply by many researchers (see e.g. [90], [45], [6]). Roughly speaking, the
strong order of convergence is equal to 1/2, and the weak order is equal to 1.

We now prepare the assumptions for X̄ .

(H1): |b(x, ǫ)| + |σ(x, ǫ)| ≤ C(1 + |x|).

(H2): |b(x, ǫ)− b(y, ǫ)|+ |σ(x, ǫ)− σ(y, ǫ)| ≤ C|x− y|.

(H3): |b(x, ǫ)− b(x, 0)|+ |σ(x, ǫ)− σ(x, 0)| ≤ Cǫ(1 + |x|).

(H4): For every ǫ, b(·, ǫ), σ(·, ǫ) ∈ C1 and |∂b(x, ǫ)−∂b(y, 0)|+|∂σ(x, ǫ)−∂σ(y, 0)| ≤
C(ǫ+ |x− y|).

The above constant C is independent of (x, y, ǫ) ∈ RN ×RN × [0, 1].
Let us define the accelerated Euler-Maruyama scheme as

Ȳ
ǫ,(n)
t := X̄

ǫ,(n)
t − X̄

0,(n)
t +X0

t .

The property (5.1) for strong convergence is formulated rigorously as follows.

Theorem 5.2.1. Suppose that (H1)-(H4) hold. Then for any p ≥ 2, there exists a
constant C = C(T, x0, p) such that

E
[

sup
0≤t≤T

|Xǫ
t − Ȳ

ǫ,(n)
t |p

]1/p

≤ C
ǫ

n1/2
.
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In particular, if we consider the small volatility model dXǫ
t = b(Xǫ

t )dt+ ǫdBt and
the ODE dX0

t = b(X0
t )dt, then intuitively speaking, (Xǫ

t − X̄ǫ
t )− (X̄0

t − X̄0
t ) cancels

out the error from the drift term (except the effect of ǫ), and the error from small
volatility ǫ only remains. Hence the total error is proportional to ǫ.

Of course, more general situations can be considered, for example, if b and σ
depends on time t, then some smoothness assumptions with respect to (t, ǫ) are
needed in addition to (H1)-(H4). We will not attempt to prove this, but basically
the asymptotic method works as well.

Remark 5.2.2. The rate of convergence of the Euler-Maruyama scheme basically
relies on the smoothness (or the Lipschitz continuity) of coefficients of SDEs. If the
coefficients are not smooth but Hölder continuous, the speed of convergence may be
slow, as seen in the paper by Yan [97]. For obtaining the strong rate of convergence
O(n−1/2) with σ(x) = xα (1/2 ≤ α < 1), a modified Euler-type scheme (called
a symmetrized Euler scheme) was developed by Berkaoui et al. ([8]). We should
mention that the Euler-Maruyama scheme may not converge strongly when the
coefficients are non-globally Lipschitz continuous. For example, in [36] a sufficient
condition that the scheme explodes is given.

5.2.2 The Milstein scheme with asymptotic method

We next discuss the Milstein scheme which has a higher order rate of convergence
than the Euler-Maruyama scheme in strong sense. Just for notational convenience,
we only consider the case d = 1. Of course, in general dimensional setting with
commutative vector fields (σj)1≤j≤d, we can use the (accelerated) Milstein scheme
as well.

Throughout this section, we assume the following smoothness.

• For every ǫ, σ(·, ǫ) ∈ C2.

The Milstein scheme X̂
ǫ,(n)
t for the SDE Xǫ

t is defined by

X̂
ǫ,(n)
t := X̂

ǫ,(n)
ti + b(X̂

ǫ,(n)
ti , ǫ)(t− ti) + σ(X̂

ǫ,(n)
ti , ǫ)(Bt − Bti)

+ σσ′(X̂ǫ,(n)
ti , ǫ)

∫ t

ti

∫ s

ti

dBrdBs

= X̂
ǫ,(n)
ti + b(X̂

ǫ,(n)
ti , ǫ)(t− ti) + σ(X̂

ǫ,(n)
ti , ǫ)(Bt − Bti)

+
1

2
σσ′(X̂ǫ,(n)

ti , ǫ)((Bt − Bti)
2 − (t− ti))

for t ∈ [ti, ti+1].
We use the (stronger) assumptions for X̂ .

(H ′
1): (H1) & |σσ′(x, ǫ)|+ |bσ′(x, ǫ)|+ |σ2σ′′(x, ǫ)| ≤ C(1 + |x|).
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(H ′
2): (H2) & |σσ′(x, ǫ)−σσ′(y, ǫ)|+|bσ′(x, ǫ)−bσ′(y, ǫ)|+|σ2σ′′(x, ǫ)−σ2σ′′(y, ǫ)| ≤

C|x− y|.
(H ′

3): (H3) & |σσ′(x, ǫ)−σσ′(x, 0)|+|bσ′(x, ǫ)−bσ′(x, 0)|+|σ2σ′′(x, ǫ)−σ2σ′′(x, 0)| ≤
Cǫ(1 + |x|).

(H ′
4): (H4) & |(σσ′)′(x, ǫ)− (σσ′)′(y, 0)| ≤ C(ǫ+ |x− y|).
Let us define the accelerated Milstein scheme as

Ŷ
ǫ,(n)
t := X̂

ǫ,(n)
t − X̂

0,(n)
t +X0

t .

Then we can get the higher order convergence rate.

Theorem 5.2.3. Suppose that (H ′
1)-(H

′
4) hold. Then for any p ≥ 2, there exists a

constant C = C(T, x0, p) such that

E
[

sup
0≤t≤T

|Xǫ
t − Ŷ

ǫ,(n)
t |p

]1/p

≤ C
ǫ

n
.

5.2.3 Proof of Theorem 5.2.1 and 5.2.3

We use the following notations.

• η(s) := ti if s ∈ [ti, ti+1).

• X̄ǫ
t ≡ X̄

ǫ,(n)
t , X̂ǫ

t ≡ X̂
ǫ,(n)
t .

We will apply the Burkholder-Davis-Gundy (BDG) inequality

cpE[〈M〉p/2T ] ≤ E[ sup
0≤t≤T

|Mt|p] ≤ CpE[〈M〉p/2T ]

to the proofs below: Here p > 0 and Mt is a continuous local martingale.
Using the BDG inequality and Gronwall inequality, we can show the following

moment estimates. (See [45] for the proof in the case of L2-norm.)

Lemma 5.2.4. (i) Suppose that the assumptions (H1)-(H2) hold. Then for any
p ≥ 2, we have

sup
ǫ∈[0,1]

E[ sup
0≤t≤T

|Xǫ
t |p] + sup

ǫ∈[0,1]
E[ sup

0≤t≤T
|X̄ǫ

t |p] < ∞,

sup
ǫ∈[0,1]

max
0≤i≤n−1

E[ sup
ti≤t≤ti+1

|Xǫ
t −Xǫ

ti
|p] ≤ C(T, x0, p)/n

1/2.

sup
ǫ∈[0,1]

E[ sup
0≤t≤T

|Xǫ
t − X̄ǫ

t |p] ≤ C(T, x0, p)/n
1/2.

(ii) Suppose that the assumptions (H ′
1)-(H

′
2) hold. Then for any p ≥ 2, we have

sup
ǫ∈[0,1]

E[ sup
0≤t≤T

|X̂ǫ
t |p] < ∞,

sup
ǫ∈[0,1]

E[ sup
0≤t≤T

|Xǫ
t − X̂ǫ

t |p] ≤ C(T, x0, p)/n.
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We now give an important lemma for the proof of the main theorems.

Lemma 5.2.5. (i) Under (H1)-(H3), we have for any p ≥ 2,

E
[

sup
0≤t≤T

|Xǫ
t −X0

t |p
]1/p

≤ C(T, x0, p)ǫ, (5.9)

and

max
0≤i≤n−1

E
[

sup
ti≤t≤ti+1

|Xǫ
t − (Xǫ

ti
−X0

ti
+X0

t )|p
]1/p

≤ C(T, x0, p)
ǫ

n1/2
. (5.10)

(ii) Under (H1)-(H3), for any p ≥ 2,

E
[

sup
0≤t≤T

|X̄ǫ
t − X̄0

t |p
]1/p

≤ C(T, x0, p)ǫ.

(iii) Under (H ′
1)-(H

′
3), for any p ≥ 2,

E
[

sup
0≤t≤T

|X̂ǫ
t − X̂0

t |p
]1/p

≤ C(T, x0, p)ǫ.

Proof. (i): We first note that

Xǫ
t −X0

t =

∫ t

0

(b(Xǫ
s , ǫ)− b(X0

s , 0))ds+

∫ t

0

(σ(Xǫ
s, ǫ)− σ(X0

s , 0))dBs,

and by the BDG inequality for the stochastic integral term,

E[ sup
0≤s≤t

|Xǫ
s −X0

s |p] ≤ Cp

(

E
[

(

∫ t

0

|b(Xǫ
s , ǫ)− b(X0

s , 0)|ds
)p
]

+ E
[

(

∫ t

0

(σ(Xǫ
s, ǫ)− σ(X0

s , 0))
2ds
)p/2
])

.

Using the conditions (H1)-(H3) for the above, we have immediately

G(t) := E[ sup
0≤s≤t

|Xǫ
s −X0

s |p] ≤ C1ǫ
p + C2

∫ t

0

G(s)ds.

Here the constants C1 and C2 do not depend on ǫ. Thus from the Gronwall inequality
we obtain (5.9).

We next consider the second result (5.10). Since

Xǫ
t −(Xǫ

η(t)−X0
η(t)+X0

t ) =

∫ t

η(t)

(b(Xǫ
s, ǫ)−b(X0

s , 0))ds+

∫ t

η(t)

(σ(Xǫ
s, ǫ)−σ(X0

s , 0))dBs,

the inequality (5.10) follows from (H2)-(H3) and (5.9).
The proofs for (ii) and (iii) are straightforward as in (5.9).
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The following lemma will be used such as the Lipschitz continuous property.

Lemma 5.2.6. (i) Assume that (H1)-(H4) hold. Then

|b(x1, ǫ)− b(y1, ǫ) + b(y2, 0)− b(x2, 0)|
≤ C((ǫ+ |x1 − x2|+ |y1 − y2|)(x1 − y1) + |x1 − y1 + y2 − x2|).
|σ(x1, ǫ)− σ(y1, ǫ) + σ(y2, 0)− σ(x2, 0)|
≤ C((ǫ+ |x1 − x2|+ |y1 − y2|)(x1 − y1) + |x1 − y1 + y2 − x2|).

(ii) Assume that (H ′
1)-(H

′
4) hold. Then

|σσ′(x1, ǫ)− σσ′(y1, ǫ) + σσ′(y2, 0)− σσ′(x2, 0)|
≤ C((ǫ+ |x1 − x2|+ |y1 − y2|)(x1 − y1) + |x1 − y1 + y2 − x2|).

Proof. We only prove for b. By the mean value theorem,

b(x1, ǫ)− b(y1, ǫ) + b(y2, 0)− b(x2, 0) = ξǫx1,y1
(x1 − y1) + ξ0y2,x2

(y2 − x2)

where ξǫx,y :=
∫ 1

0
∂b(ρx + (1 − ρ)y, ǫ)dρ = ξǫy,x. Taking the difference again in the

right hand side, we have

ξǫx1,y1(x1 − y1) = (ξǫx1,y1 − ξ0x2,y2)(x1 − y1) + ξ0y2,x2
(x1 − y1).

Finally, using the assumption (H4) for (ξ
ǫ
x1,y1 − ξ0x2,y2), we obtain the result.

Now we shall prove the theorems.

Proof of Theorem 5.2.1. Let us define

G1(t) := E[ sup
0≤s≤t

|Xǫ
s − Ȳ ǫ,(n)

s |p].

By using the Gronwall inequality, our goal becomes to show the following:

G1(t) ≤ C1
ǫp

np/2
+ C2

∫ t

0

G1(s)ds

where C1 and C2 depend only on T, x0, p.
We now compute

Xǫ
t − Ȳ

ǫ,(n)
t = eǫ(t) + ēǫ(t)

where

eǫ(t) =

∫ t

0

(b(Xǫ
η(s), ǫ)− b(X̄ǫ

η(s), ǫ) + b(X̄0
η(s), 0)− b(X0

η(s), 0))ds

+

∫ t

0

(σ(Xǫ
η(s), ǫ)− σ(X̄ǫ

η(s), ǫ) + σ(X̄0
η(s), 0)− σ(X0

η(s), 0))dBs
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and

ēǫ(t) =

∫ t

0

(b(Xǫ
s, ǫ)− b(Xǫ

η(s), ǫ) + b(X0
η(s), 0)− b(X0

s , 0))ds

+

∫ t

0

(σ(Xǫ
s, ǫ)− σ(Xǫ

η(s), ǫ) + σ(X0
η(s), 0)− σ(X0

s , 0))dBs.

For ēǫ(t), we obtain from Lemma 5.2.6,

|b(Xǫ
s , ǫ)− b(Xǫ

η(s), ǫ) + b(X0
η(s), 0)− b(X0

s , 0)|
≤ C((ǫ+ |Xǫ

s −X0
s |+ |Xǫ

η(s) −X0
η(s)|)|Xǫ

s −Xǫ
η(s)|

+ |Xǫ
s − (Xǫ

η(s) −X0
η(s) +X0

s )|),

and

|σ(Xǫ
s, ǫ)− σ(Xǫ

η(s), ǫ) + σ(X0
η(s), 0)− σ(X0

s , 0)|
≤ C((ǫ+ |Xǫ

s −X0
s |+ |Xǫ

η(s) −X0
η(s)|)|Xǫ

s −Xǫ
η(s)|

+ |Xǫ
s − (Xǫ

η(s) −X0
η(s) +X0

s )|).

Hence the integral term in ēǫ(t) is evaluated by

E[ sup
0≤r≤t

|
∫ r

0

(b(Xǫ
s , ǫ)− b(Xǫ

η(s), ǫ) + b(X0
η(s), 0)− b(X0

s , 0))ds|p]

≤ C3

(

(ǫp + 2 sup
0≤s≤t

‖Xǫ
s −X0

s ‖p2p) sup
0≤s≤t

‖Xǫ
s −Xǫ

η(s)‖p2p

+ sup
0≤s≤t

‖Xǫ
s − (Xǫ

η(s) −X0
η(s) +X0

s )‖pp
)

By using the BDG inequality, the stochastic integral term in ēǫ(t) also has the same
bound (except the size of constant C3). Consequently, we have by Lemma 5.2.4,
5.2.5,

E[ sup
0≤s≤t

|ēǫ(s)|p] ≤ C4
ǫp

np/2
.

Applying a similar calculus to eǫ(t), we also get

E[ sup
0≤s≤t

|eǫ(s)|p] ≤ C5
ǫp

np/2
+ C6

∫ t

0

E[|Xǫ
η(s) − (X̄ǫ

η(s) − X̄0
η(s) +X0

η(s))|p]ds

≤ C5
ǫp

np/2
+ C6

∫ t

0

G1(s)ds.

This finishes the proof of Theorem 5.2.1.
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Proof of Theorem 5.2.3. Similarly to the proof of Theorem 5.2.1, we shall show that
for G2(t) := E[sup0≤s≤t |Xǫ

s − Ŷ
ǫ,(n)
t |p],

G2(t) ≤ C1
ǫp

np
+ C2

∫ t

0

G2(s)ds.

Now we consider the decomposition

Xǫ
t − Ŷ

ǫ,(n)
t = ẽǫ(t) +

3
∑

i=1

êǫi(t),

where

ẽǫ(t) =

∫ t

0

(b(Xǫ
η(s), ǫ)− b(X̂ǫ

η(s), ǫ) + b(X̂0
η(s), 0)− b(X0

η(s), 0))ds

+

∫ t

0

(σ(Xǫ
η(s), ǫ)− σ(X̂ǫ

η(s), ǫ) + σ(X̂0
η(s), 0)− σ(X0

η(s), 0))dBs

+

∫ t

0

∫ s

η(s)

(σσ′(Xǫ
η(r), ǫ)− σσ′(X̂ǫ

η(r), ǫ)

+ σσ′(X̂0
η(r), 0)− σσ′(X0

η(r), 0))dBrdBs,

and

êǫ1(t) =

∫ t

0

∫ s

η(s)

(bσ′(Xǫ
r , ǫ)− bσ′(X0

r , 0))drdBs,

êǫ2(t) =

∫ t

0

∫ s

η(s)

(
1

2
σ2σ′′(Xǫ

r , ǫ)−
1

2
σ2σ′′(X0

r , 0))drdBs,

êǫ3(t) =

∫ t

0

∫ s

η(s)

(σσ′(Xǫ
r , ǫ)− σσ′(Xǫ

η(r), ǫ) + σσ′(X0
η(r), 0)− σσ′(X0

r , 0))dBrdBs.

By a similar manner as in the proof of Theorem 5.2.1, we can also obtain

E[ sup
0≤s≤t

(|ẽǫ(s)|p +
3
∑

i=1

|êǫi(s)|p)] ≤ C1
ǫp

np
+ C2

∫ t

0

G2(s)ds.

Indeed, compared with Theorem 5.2.1, the reason why we can get the rate n−p above
is due to the additional integrals

∫ s

η(s)
· dr or

∫ s

η(s)
· dBr inside the error terms.

5.3 Application to pathwise simulation of stochas-

tic volatility models

Our goal in this section is to construct a faster pathwise approximation for perturbed
stochastic differential equations which appear in financial modeling of volatility.
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5.3.1 An accelerated scheme for SABR model

In financial modeling, the SABR model plays a role to fit the implied volatility
especially in short time. The model is given by the SDE (Hagan et al. [33])

dSt =
√
αtS

β
t dB

1
t

dαt = ναt(ρdB
1
t +

√

1− ρ2dB2
t ).

The volatility is not a mean-reversion process, hence this model does not suit for
pricing long-dated options. If β < 1, as far as the authors know, there is no exact
pathwise simulation method for the above SDE. In weak sense, several accurate
simulation methods via Bessel processes are known.

To avoid that the volatility process αt becomes negative in approximation pro-
cedures, we use a logarithmic transform for αt.

dSt =
√

α0 exp(α̃t)S
β
t dB

1
t

dα̃t = −ν2

2
dt+ ν(ρdB1

t +
√

1− ρ2dB2
t ).

Consider ǫ = ν. Since we do not know exact pathwise simulation methods for S0
t ,

we substitute the Milstein scheme Ŝ0
t for S0

t . Therefore, we can use an O( ǫ√
n
+ 1

n
)-

scheme defined by

Ỹ ǫ
t := S̄ǫ

t − S̄0
t + Ŝ0

t .

When ν is small enough, a typical sample path is like Figure 5.1. Here we use
n = 16 for the standard Euler-Maruyama scheme (Standard E-M) and the above
accelerated scheme (Accelerated).

We next turn to consider another formal approximation scheme. Formally, xβ ≈
x when β ≈ 1 and especially x ≈ 1. Thus consider the scaling Lt := St/S0, β = β(ǫ).

dLǫ
t =

√

α0 exp(α̃t)S
β−1
0 (Lǫ

t)
βdB1

t ,

dL0
t =

√
α0S

β−1
0 L0

tdB
1
t .

Here Sβ−1
0 is just a constant coming from the scaling, thus we do not change the

constant Sβ−1
0 even when ǫ = 0. The accelerated scheme that we want to use is

Y̌ ǫ
t := S̄ǫ

t − S0(L̄
0
t − L0

t ).

Since L0
t is a log-normal process, it is useful to compute the path t 7→ X0

t and
E[f(X0

T )]. We will check the efficiency of Y̌ through a numerical test later.
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Figure 5.1: A sample path of discretized SABR model when ν is small.

5.3.2 General stochastic volatility models

The following model is an extension of local-stochastic volatility models applicable
to both short and long term contingent claims in financial markets.

dSt = µStdt+
√
αtS

β
t dB

1
t + St−dJt

dαt = λ(θ − αt)dt+ ναγ
t (ρdB

1
t +

√

1− ρ2dB2
t )

where Jt is a compound Poisson process, which is often used to adapt especially
short-dated large volatility smile/skew.

We remark that it is difficult to fit short-dated volatility smile/skew under the
Heston model (β = 1, γ = 1/2, Jt ≡ 0), and then ν can take very large value. On
the other hand, under general models with β and Jt, the parameter ν need not to
be so large.

Let {τj} be the random jump times associated to Jt and consider a new time
partition {t̃k} := {ti} ∪ {τj}. On the time interval [t̃k, t̃k+1) we can regard the ap-
proximation problem for St as the one for a continuous SDE. In particular by taking
ǫ = ν = 0, the model becomes the CEV model with time-dependent coefficients.
For a technical reason, we should consider some carefull treatments around zero of
the function (·)γ (See [11, 8, 61]).

5.4 Application to multi-level Monte Carlo method

The theoretical results we obtained in previous can be applied to the multi-level
Monte Carlo method (MLMC in short). We propose an accelerated Monte Carlo
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sampling for Takahashi-Yoshida’s weak convergence method.

5.4.1 A brief review of MLMCwith Euler-Maruyama scheme

We forget the parameter ǫ for the time being, and denote by Xt the continuous SDE
Xǫ

t defined by (5.7). Let us define P := f(XT ) and P̄l := f(X̄
(nl)
T ), and consider

the time-step size T/nl = T/kl for a fixed k ∈ N. Let L ∈ N and the sampling of
multi-level Monte Carlo is defined by

Y =
L
∑

l=0

Yl

where each Yl is independently distributed and is given by

Yl =
1

Nl

Nl
∑

j=1

{

P̄
(j)
0 , if l = 0,

(P̄l − P̄l−1)
(j), if l ≥ 1,

with i.i.d. sampling P̄
(j)
0 or (P̄l − P̄l−1)

(j), j = 1, . . . , Nl. The most important point
is to use the same Brownian motion path (Bt)t≥0 for simulating P̄l and P̄l−1, and so
the concept of the multi-level Monte Carlo method concerns the strong (pathwise)
convergence rate.

Clearly we show that

E[P ]− E[Y ] = E[P ]− E[P̄L],

therefore the weak rate of convergence depends only on the last number L. Moreover,
we obtain from the independence of (Yl),

Var(Y ) =
L
∑

l=0

1

Nl

Var(Yl).

and by definition Var(Yl) = Var(P̄l − P̄l−1). Suppose some suitable conditions for f
and Xt. Then one can obtain

E[P̄l − P ] = O(1/nl),

Var1/2(P̄l − P̄l−1) ≤ ‖P̄l − P‖2 + ‖P̄l−1 − P‖2
= O(1/n

1/2
l ).

The last estimate is the strong convergence result in L2.
The total computational cost C is determined by the level L, the number of

sampling (Nl)
L
l=0, and the number of partition nl(= kl) so that

C =

L
∑

l=0

Nlnl.
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Suppose that the required RMSE is O(γ). Then by choosing Nl = O(γ−2Ln−1
l ), the

total variance Var(Y ) is ofO(γ2). Now if we set L = log(γ−1)/ log(k)+O(1), then the
total time discretization error E[P̄L−P ] = O(γ). Consequently C = O(γ−2(log γ)2)
for the required accuracy O(γ).

5.4.2 Accelerated MLMC sampling (with smooth payoffs)

From now on, we reconsider the sampling of the accelerated Euler-Maruyama scheme
introduced by Takahashi and Yoshida from the standard Monte Carlo method

1

M

M
∑

j=1

(f(X̄
ǫ,(n),j
T )− f(X̄

0,(n),j
T )) + E[f(X0

T )]

to the multi-level Monte Carlo method via

P̄ new
l := f(X̄

ǫ,(nl)
T )− f(X̄

0,(nl)
T ) + E[f(X0

T )].

Remark 5.4.1. We can also consider another MLMC sampling method via

P̄ another
l := f(X̄

ǫ,(nl)
T − X̄

0,(nl)
T +X0

T ),

whose computational cost is O(ǫ2γ−2(log γ/ǫ)2) for Lipschitz functions f . However,
in this case we cannot take advantage of the explicit formula for the term E[f(X0

T )].

Giles [27] assumed that f is Lipschitz continuous to analyze the variance of esti-
mator. On the other hand, we need f ∈ C2

b := {g ∈ C2(RN ;R) | ∂ig and ∂ijg are bounded, 1 ≤
i, j ≤ N} in order to use the asymptotics with respect to ǫ (Notice that |f(x1) −
f(y1) + f(y2)− f(x2)| 6≤ C|x1 − y1 + y2 − x2| in general). Our analysis follows from
the lemma below.

Lemma 5.4.2. For f ∈ C2
b ,

|f(x1)− f(y1) + f(y2)− f(x2)| ≤
‖∇2f‖∞

2
(|x1 − x2|+ |y1 − y2|)|x1 − y1|

+ ‖∇f‖∞|x1 − y1 + y2 − x2|.

Proof. This can be proved immediately by using the mean value theorem twice (See
also Lemma 5.2.6).

Then we have the following variance estimate.

Proposition 5.4.3. Assume that (H1)-(H4) hold. For f ∈ C2
b , we have

Var1/2(P̄ new
l − P̄ new

l−1 ) ≤ Cǫn
−1/2
l .
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Proof. The variance of the difference P̄ new
l − P̄ new

l−1 is estimated as

Var1/2(P̄ new
l − P̄ new

l−1 ) ≤ ‖f(X̄ǫ,(nl)
T )− f(X̄

0,(nl)
T )− (f(X̄

ǫ,(nl−1)
T )− f(X̄

0,(nl−1)
T ))‖2

≤ ‖f(Xǫ
T )− f(X̄

ǫ,(nl)
T ) + f(X̄

0,(nl)
T )− f(X0

T )‖2
+ ‖f(Xǫ

T )− f(X̄
ǫ,(nl−1)
T ) + f(X̄

0,(nl−1)
T )− f(X0

T )‖2.

Thus by Lemma 5.4.2,

‖f(Xǫ
T )− f(X̄

ǫ,(nl)
T ) + f(X̄

0,(nl)
T )− f(X0

T )‖2
≤ C((‖Xǫ

T −X0
T‖4 + ‖X̄ǫ,(nl)

T − X̄
0,(nl)
T ‖4)‖Xǫ

T − X̄
ǫ,(nl)
T ‖4

+ ‖Xǫ
T − X̄

ǫ,(nl)
T + X̄

0,(nl)
T −X0

T‖2).

Hence using Lemma 5.2.4-5.2.5 and Theorem 5.2.1, we get the rate of convergence.

For the use of the multi-level Monte Carlo method, we have obtained the results
as follows.

E[P̄ new
l − P ] = O(ǫ/nl),

Var1/2(P̄ new
l − P̄ new

l−1 ) = O(ǫ/n
1/2
l ).

So the estimator for (P̄ new
l )l≥0 has an equivalent effect to the one for (P̄l)l≥0 with

the required error O(γ/ǫ). Consequently we get the order of computational cost
O(ǫ2γ−2(log(γ/ǫ))−2). Both the asymptotic method and multi-level Monte Carlo
method are very easily computable, so that practitioners will get large benefit only
with small additional implementation cost.

Remark 5.4.4. Clearly, we can also check the variance estimate for the accelerated
Milstein scheme. Let P̂ new

l := f(X̂
ǫ,(nl)
T ) − f(X̂

0,(nl)
T ) + E[f(X0

T )]. By a similar
argument, we derive that under (H ′

1)-(H
′
4) and f ∈ C2

b ,

Var1/2(P̂ new
l − P̂ new

l−1 ) ≤ Cǫn−1
l . (5.11)

We have not obtained weak convergence results for the accelerated Milstein scheme
yet. However, we guess that from the basic proof of Takahashi-Yoshida [88], it holds
that

E[f(Xǫ
T )]− (E[f(X̂

ǫ,(n)
T )]− E[f(X̂

0,(n)
T )] + E[f(X0

T )]) = O
( ǫ

n

)

(5.12)

under some smoothness conditions for f and the coefficients of Xǫ
t . Thus combining

the results (5.11), (5.12) and the discussion in Giles [27, 26], we finally conclude
that the total computational cost is O(ǫ2γ−2).
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5.4.3 Lipschitz payoffs

Let us consider the first component (Xǫ
T )

(1) as an asset dynamics. Our interest
is pricing an option f((Xǫ

T )
(1)) with Lipschitz payoffs f : R → R. Set P̄ new

l =

f((X̄
ǫ,(nl)
T )(1))− f((X̄

0,(nl)
T )(1)) +E[f((X0

T )
(1))]. Then we can obtain an upper bound

estimate as follows.

Theorem 5.4.5. Assume (H1)-(H4) and f : R → R is a Lipschitz continuous
function whose weak derivative has bounded variation in R. In addition, suppose
(X0

T )
(1) has a bounded density, and (X̄0

T )
(1) also has a bounded density uniformly

with respect to n. Then we have for any small δ > 0,

Var1/2(P̄ new
l − P̄ new

l−1 ) ≤ Cǫ(1−δ)/2n
−1/2
l .

Proof. See 5.4.5.

This theorem implies that the required computational cost turns out to be
O(ǫ1−δγ−2(log γ/ǫ)2), with L = log(ǫγ−1)/ log(k) +O(1) and Nl = O(ǫ1−δγ−2Ln−1

l ).
We now summarize strong rate of convergence for P̄l − P̄l−1 and P̄ new

l − P̄ new
l−1 in

Table 5.1.

Payoff Standard E-M Accelerated E-M

C2
b O(n

−1/2
l ) O(ǫn

−1/2
l )

Lipschitz O(n
−1/2
l ) O(ǫ(1−δ)/2n

−1/2
l )

Digital O(n
−(1−δ)/4
l ), ([3], [28]) -

Table 5.1: Strong rate of convergence of P̄l − P̄l−1 and P̄ new
l − P̄ new

l−1 .

5.4.4 Localization for irregular payoffs

The regularity of f seems to be essential for the accelerated MLMC method intro-
duced in previous. For example, we will see through computational experiments
that the acceleration with discontinuous functions f does not work so well.

We now propose a localization technique for this problem. Let us define a de-
composition

f = fs + fir

where fs is a smooth (at least Lipschitz continuous) function with f ≈ fs. Then we
apply the accelerated MLMC to the smooth part fs and the standard MLMC to the
irregular part fir. In other words, we consider the MLMC method for

P̄ new
l (fs) := f(X̄ǫ

T )− fs(X̄
0
T ) + E[fs(X

0
T )].

The standard MLMC for discontinuous functions was studied in Avikainen [3] and
Giles et al. [28].
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5.4.5 Proof of Theorem 5.4.5

Throughout this section, we use the following notations without confusion:

• f(Xǫ
T ) ≡ f((Xǫ

T )
(1)), f(X̄ǫ

T ) ≡ f((X̄ǫ
T )

(1)).

• ‖f‖Lip := inf{K ≥ 0 : |f(x)− f(y)| ≤ K|x− y|, for all x, y ∈ R}.
• ‖f‖TV := sup−∞<x0<···<xm<∞

∑m
j=1 |f(xj)− f(xj−1)|.

We say f has bounded variation in R if ‖f‖TV < ∞.
The following lemma plays a crucial role in the proof of the theorem.

Lemma 5.4.6 (Avikainen [3], Theorem 2.4). Let X and X̂ be real valued random
variables with X, X̂ ∈ Lp (p ≥ 1). In addition, suppose X has a bounded density.
Then for any function f of bounded variation in R and q ≥ 1, there exists a constant
C > 0 depending on p, q, and the essential supremum for a density of X such that

‖f(X)− f(X̂)‖q ≤ C‖f‖TV‖X − X̂‖
p

q(p+1)
p .

By the next lemma, we can obtain an approximation sequence of the payoff f .

Lemma 5.4.7. Let f be a bounded Lipschitz continuous function whose weak deriva-
tive has bounded variation in R. Then there exists a sequence (fj)j≥1 ⊂ C1(R) such
that

‖f − fj‖∞ → 0, as j → ∞,

‖f ′
j‖∞ ≤ ‖f‖Lip for all j ≥ 1,

‖f ′
j‖TV ≤ ‖f ′‖TV for all j ≥ 1.

Proof. The approximate sequence can be constructed by mollifier convolutions fh :=
(f ∗ φh), that is, φh := 1

h
φ(x

h
) with the conditions (i) φ ∈ C∞, (ii) supp(φ) ⊂ {|x| ≤

1}, (iii) φ ≥ 0, and (iv)
∫

R
φ(x)dx = 1.

Proof of Theorem 5.4.5. Assume that f is a bounded C1 function whose derivative
has bounded variation. As seen in Proposition 5.4.3, note that

‖f(Xǫ
T )− f(X̄ǫ

T ) + f(X̄0
T )− f(X0

T )‖2

≤ ‖
∫ 1

0

(f ′(ρXǫ
T + (1− ρ)X̄ǫ

T )− f ′(ρX0
T + (1− ρ)X̄0

T ))dρ · ((Xǫ
T )

(1) − (X̄ǫ
T )

(1))‖2
+ ‖f‖Lip‖Xǫ

T − X̄ǫ
T + X̄0

T −X0
T‖2.

The final line is bounded by ‖f‖Lip × O(ǫ/n1/2), and thus we turn to focus on the
estimate for the second line. The second line is bounded by

‖
∫ 1

0

(f ′(ρXǫ
T + (1− ρ)X̄ǫ

T )− f ′(ρX0
T + (1− ρ)X̄0

T ))dρ‖2p‖Xǫ
T − X̄ǫ

T‖2q

≤ Cp,T,x0

n1/2

∫ 1

0

‖(f ′(ρXǫ
T + (1− ρ)X̄ǫ

T )− f ′(ρX0
T + (1− ρ)X̄0

T ))‖2pdρ
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for any p, q > 1 such that 1/p+ 1/q = 1. Now using Lemma 5.4.6, we have

∫ 1

0

‖(f ′(ρXǫ
T + (1− ρ)X̄ǫ

T )− f ′(ρX0
T + (1− ρ)X̄0

T ))‖2pdρ

≤ Cp,r‖f ′‖TV

∫ 1

0

‖(ρXǫ
T + (1− ρ)X̄ǫ

T )− (ρX0
T + (1− ρ)X̄0

T )‖
r

2p(r+1)

2p dρ

≤ Cp,r,T,x0‖f ′‖TV ǫ
r

2p(r+1) .

To obtain the result, we choose small p > 1 and large r ≥ 1 such that r
2p(r+1)

> 1
2
−δ.

Finally, for general f , consider fK := (f ∧ K) ∨ (−K) for K > 0 as a first
approximation, and apply Lemma 5.4.7 to fK . Then we obtain the desired result
by taking the limit.

5.5 Simulations

5.5.1 Numerical experiments for SABR model

In this section, we want to study an estimator of L2-norm ( 1
M

∑M
j=1(X

ǫ,j
T −Ỹ

ǫ,(n),j
T )2)1/2

for the SABR model. As a reference path, we use X̄
ǫ,(nref)
T instead of Xǫ

T .

We set the parameters as follows.

• S0 = 100, β = 0.9, α0 = 0.16× S
2(1−β)
0 , ν = 0.1, ρ = −0.6, T = 1

• nref = 214, n = 8, 16, 32, 64, 128, 256.

Here we considered a scaling for α0 (via St ≈ S1−β
0 Sβ

t ). The number of simulation
M for the test is 105. The results are given in Figure 5.2. The accelerated scheme
is faster than the standard method in both cases of L2-error.

We next study the case with several ν. Let us compute the L2-error ratio for a
random variable Z which is defined as

E[|S̄(nref)
T − Z|2]1/2

E[|S̄(nref )
T − S̄

(n)
T |2]1/2

× 100 (%).

We fix the other parameters in the previous. In Figure 5.3, we can check the efficiency
of the asymptotic method (only) when ν is small enough.

Finally we compare Ỹ and Y̌ with different β. Figure 5.4 shows that the efficiency
of Y̌ is very close to that of Ỹ as β ≈ 1. Therefore if β ≈ 1, we can apply the
analytical tractability of Y̌ to pathwise simulation, computing expectations, or so
on.
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Figure 5.2: L2-error : E[|S̄(nref)
T − Ỹ

(n)
T |2]1/2 for the left and E[max0≤i≤nref

|S̄(nref)
ti −

Ỹ
(n)
ti |2]1/2 for the right.

5.5.2 Numerical tests for MLMC

To show that the accelerated method is more efficient than the standard method
with MLMC, we take a numerical test for E[P̄ new

l −P ] = O(ǫ/nl), and Var1/2(P̄ new
l −

P̄ new
l−1 ) = O(ǫ/n

1/2
l ) under the SABR model with small parameter ν. Let us consider

payoff functions (European and digital options)

f(x) = max(0, x− 100) or f(x) = 1{x−100≥0}

and the parameters

• S0 = 100, β = 1, α0 = 0.16, ν = 0.1, ρ = −0.6, T = 1

The level structure of MLMC is given by k = 4, i.e., nl = 4l. As a localization for
digital option, we use

fs(x) = (max(x− 100 + h, 0)−max(x− 100− h, 0))/2h.

Here we set h = 1.0.
Figure 5.5 and 5.6 show the numerical results. We used the number of simulation

M = 107 for the left, and M = 105 for the right. The results basically imply
that the accelerated method works better than the standard one as in preceding
numerical experiments. Remarkably the accelerated method performs worse in the
case of variance estimates for digital option, likely due to discontinuity of the payoff
function. In contrast, the localized scheme (Accelerated loc) performs better than
the others to some extent. We note that for general 1/2 ≤ β < 1, the (semi-
)analytical formula for CEV option pricing model can be used in order to compute
E[f(S0

T )] (See [79]).
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Figure 5.3: L2-error ratio for Ỹ with different ν.
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Chapter 6

Discrete approximation for
nonlinear filtering

This chapter is based on the unpublished paper by Tanaka [93] (arXiv preprint:
1311.6090).

6.1 Introduction

The aim of this chapter is to determine the convergence rate of Picard’s filter for
nonlinear filtering in a more general condition than that of Picard ([73]), and to
understand deeply why the scheme can perform with the rate. Although Picard’s
filter is based on an Euler-type approximation of stochastic differential equations,
the error estimate does not rely on the standard argument of strong and weak
convergence of the Euler-type scheme. As seen in the following, the properties of
stochastic integrals under a conditional probability make the proof of convergence
much more complicated.

Let us first formulate the nonlinear filtering problem with continuous time ob-
servations. Consider a stochastic process (Xt)t≥0 (often called the signal process)
defined as the solution of an N -dimensional stochastic differential equation

Xt = x+

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs (6.1)

with x ∈ RN and an N -dimensional standard Brownian motion B = (Bt)t≥0 on a
probability space (Ω,F , P ) with a filtration (Ft)t≥0 satisfying the usual conditions.
We observe another d-dimensional process (Yt)t≥0 (called the observation process)
defined by

Yt =

∫ t

0

h(Xs)ds+Wt

where W = (Wt)t≥0 is a d-dimensional standard Brownian motion independent of
B. We denote the filtrations associated to B and Y by (FB

t ) and (FY
t ) respectively.
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The primary goal of nonlinear filtering problem is to investigate the evolution of the
conditional distribution of XT under the observation (Yt)0≤t≤T . In other words, we
are interested in computing the value

EP [g(XT )|FY
T ]. (6.2)

For this purpose, we consider the new probability measure Q on F∞ = σ(∪t≥0Ft)
under which (Yt) is a standard Brownian motion independent of (Xt), and (Xt) has
the same law under P and Q. Throughout this chapter, we denote the expectation
under Q by E[ · ]. Then the conditional expectation (6.2) has the expression

EP [g(XT )|FY
T ] =

E[g(XT )ΦT |FY
T ]

E[ΦT |FY
T ]

with the Radon-Nikodym derivative

Φt = exp
(

d
∑

j=1

(

∫ t

0

hj(Xs)dY
j
s − 1

2

∫ t

0

(hj)2(Xs)ds
))

.

This is called the Kallianpur-Striebel formula (cf. [42], [4]). We need time discretiza-
tion methods in order to compute E[g(XT )ΦT |FY

T ] since the stochastic integral term
cannot be computed exactly.

Fix T > 0 and η(t) = ti := iT/n if t ∈ [iT/n, (i + 1)T/n). Let us use the
notations: ‖ · ‖p ≡ ‖ · ‖p,Q := E[| · |p]1/p and ‖ · ‖p,P := EP [| · |p]1/p. We now consider
an approximation by a Riemann sum for ΦT . Jean Picard showed the following
surprizing result of L2-convergence.

Theorem 6.1.1 ([73]). Assume that g, b and σ are Lipshitz continuous and h ∈
C2

b (R
N ;Rd). Then

∥

∥

∥
E[g(XT )ΦT |FY

T ]− E[g(XT )Φ̃T |FY
T ]
∥

∥

∥

2
≤ CT

n
(6.3)

where

Φ̃t ≡ Φ̃t(X) := exp
(

d
∑

j=1

(

∫ t

0

hj(Xη(s))dY
j
s − 1

2

∫ t

0

(hj)2(Xη(s))ds
))

.

Remark 6.1.2. The assumption ‖h‖∞ < ∞ can be weakened (see [73], [18]). For
example, Picard ([73]) discusses the condition

E
[

exp
(

(1 + ε)TH
(

sup
0≤t≤T

|Xt|
))]

< ∞, for some ε > 0

where

H(y) := sup
{

d
∑

j=1

(hj)2(x); |x| ≤ y
}

.
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The convergence error (6.3) is related to both of weak convergence of FB
T - mea-

surable random variables and strong convergence of FY
T -measurable random vari-

ables. Very roughly speaking, the order of convergence of the error is mainly from
∫ T

0
(h(Xs) − h(Xη(s)))dYs. We notice that the difference h(Xs) − h(Xη(s)) has the

weak error of O(1/n), but this is averaged over the trajectory of (Ys). That is why
the rate of convergence is not so obvious. The proof given by Picard is quite compli-
cated since we have to deal carefully with

∫ T

0
· dYs under the conditional expectation

E[ · |FY
T ]. In this work, we generalize the result (6.3) in terms of the regularity of g

and Lp-estimates with p > 2 using several techniques in Malliavin calculus, and how-
ever, h is basically assumed to be bounded because of the difficulty in Lp-moment
estimates for ΦT and Φ̃T . See Theorem 6.2.1 and its proof.

In general situation, the distribution of Xt is unknown, and therefore some ap-
proximation schemes need to be applied to Xt. Let X̃ be a time discretization
scheme of X , such as the Euler-Maruyama approximation or the stochastic ODE
approximations via cubature formulas on Wiener space ([63], [69]). Then we have
to analyze the error

∥

∥

∥
E[g(XT )Φ̃T (X)|FY

T ]− E[g(X̃T )Φ̃T (X̃)|FY
T ]
∥

∥

∥

p
(6.4)

and this type of problem is discussed in e.g. [19], [20]. In the case where X̃ is
Euler-Maruyama scheme, several researchers give error estimates for (6.3) and (6.4)
simultaneously (e.g. [89], [65]).

It remains to discuss simulations of E[g(X̃T )Φ̃T (X̃)|FY
T ] by Monte Carlo. In

practice, the procedure of estimation for this is performed step-by-step for each
observation time T = t1, · · · , tn, · · · . Hence it is important to construct special
simulation methods, recursively in time T , to avoid the recalculation of the condi-
tional expectation and explosion of time series data. For the reason, particle filters
(or sequencial Monte Carlo methods) were originally developed by [31] and [44] for
discrete time filtering. Recent developments of particle filters can be found in [22]
and references therein.

Another approach to the computational problem for (6.2) is known as the stochas-
tic partial differential equation (SPDE) approach. We can derive the equation of
the dynamics of t 7→ E[g(Xt)Φt|FY

t ] (g ∈ C2) which is called the Zakai equation (cf.
[4], [50]). The Zakai equation follows a SPDE with the finite dimensional noise Y .
In that case, we have to consider time discretizations for the SPDE and give some
error estimates for strong convergence (see e.g. [29]). We point out the relationship
between the Zakai equation and Picard’s filter E[g(Xt)Φ̃t|FY

t ] in Remark 6.2.4.

The present chapter is organized as follows. In Section 6.2, we state the main
result which is an extension of Picard’s theorem, and shall give only the outline
of the proof. In Section 6.3, we show the main part of the proof using infinite
dimensional analysis on Wiener space.
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6.2 Lp-convergence result

6.2.1 An extension of Picard’s theorem

Let us fix T > 0. Throughout this chapter, the condition

EP [Φ−1
T ] = 1 (6.5)

is always assumed to define the probability measureQ on FT , i.e. Q(A) := EP [1AΦ
−1
T ]

for A ∈ FT . The assumptions (A2)-(A3) introduced below imply the condition (6.5).
See Kallianpur [41], Section 11.3.

We shall extend Picard’s theorem as follows.

Theorem 6.2.1. Assume that the following conditions hold:

(A1) The function g : RN → R is a measurable function such that g(XT ) ∈
∩p≥1L

p(Ω,FT , Q).

(A2) The coefficients b and σ are Lipshitz continuous.

(A3) The function h : RN → Rd is a C2-function of polynomial growth with all
derivatives.

(A4) For every p ≥ 1,

‖ΦT‖p + sup
n

‖Φ̃T ‖p ≤ K(p, T ) < ∞.

Then for every p ≥ 1, there exists a constant C = C(p, T ) > 0 such that

∥

∥

∥
E[g(XT )ΦT |FY

T ]−E[g(XT )Φ̃T |FY
T ]
∥

∥

∥

p
≤ C

n
. (6.6)

A typical example of (A4) is that h is bounded. The following corollary is an
immediate consequence of Theorem 6.2.1.

Corollary 6.2.2. Suppose the assumptions (A1)-(A3) hold, and moreover h is as-
sumed to be bounded. Then for every p ≥ 1, there exists a constant C = C(p, T ) > 0
such that

∥

∥

∥

∥

EP [g(XT )|FY
T ]−

E[g(XT )Φ̃T |FY
T ]

E[Φ̃T |FY
T ]

∥

∥

∥

∥

p,P

≤ C

n
.

Proof. Let ρT (g) := E[g(XT )ΦT |FY
T ] and ρ̃T (g) := E[g(XT )Φ̃T |FY

T ]. The error is
expressed as

ρT (g)

ρT (1)
− ρ̃T (g)

ρ̃T (1)
=

ρT (g)− ρ̃T (g)

ρT (1)
+

ρ̃T (g)

ρT (1)ρ̃T (1)
(ρ̃T (1)− ρT (1)).
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It is possible to show from the boundedness of h that the Lp(Ω,FT , Q)-norms of
ΦT , Φ̃T , ρT (1)

−1 and ρ̃T (1)
−1 are bounded for every p ≥ 1. Hence we obtain from

Cauchy-Schwartz’s inequality

∥

∥

∥

ρT (g)

ρT (1)
− ρ̃T (g)

ρ̃T (1)

∥

∥

∥

p,P
= E

[∣

∣

∣

ρT (g)

ρT (1)
− ρ̃T (g)

ρ̃T (1)

∣

∣

∣

p

ΦT

]1/p

≤ C1(p, T )‖ρT (g)− ρ̃T (g)‖2p − C2(p, T )‖ρT (1)− ρ̃T (1)‖2p,
which proves the desired result.

Remark 6.2.3. For the proof of Theorem 6.2.1, the probability space (Ω,FT , Q)
can be replaced by any other probability space on which (Xt, Yt)0≤t≤T has the same
law. In the following, we fix the probability space so that (Bt)0≤t≤T and (Y )0≤t≤T

are independent Brownian motions, and (Xt)0≤t≤T is the solution of (6.1). The
probability space will be assumed to be the Wiener space in Section 6.3.

Remark 6.2.4. As mentioned in the introduction, the time evolution

ρt(g) : t 7→ E[g(Xt)Φt|FY
t ], (g ∈ C2

b )

solves the Zakai equation

ρt(g) = ρ0(g) +

∫ t

0

ρs(Lg)ds+
∫ t

0

ρs(gh
T)dYs

where ρ0(g) = E[g(X0)] = g(x) and L is the generator of X , i.e.

(Lg)(x) =
N
∑

i=1

bi(x)
∂g

∂xi
(x) +

1

2

N
∑

i,j=1

(σiσj)(x)
∂2g

∂xi∂xj
(x).

Picard’s filter ρ̃t(g) : t 7→ E[g(Xt)Φ̃T |FY
t ] can be understood as a semigroup-type

approximation (or Markov chain approximation) in the following sense. Let Xx
t be a

stochastic flow of the SDE (6.1) and (Ptg)(x) := E[g(Xx
t )]. Define a parameterized

operator P̃ y
t , y ∈ Rd by

(P̃ y
t g)(x) := (Ptg)(x) exp

(

d
∑

j=1

(

hj(x)yj − 1

2
(hj)2(x)t

))

.

Then we can deduce that for ti ≤ t < ti+1,

ρ̃t(g) = P̃
Yt1−Yt0
t1−t0 ◦ · · · ◦ P̃ Yti

−Yti−1

ti−ti−1
◦ P̃ Yt−Yti

t−ti (g),

and P̃
Yt−Yti
t−ti (g)(x) is a solution of the evolution equation

P̃
Yt−Yti
t−ti (g) = g(x) +

∫ t

ti

P̃
Ys−Yti
s−ti (Lg)ds+

∫ t

ti

P̃
Ys−Yti
s−ti (g)hT(x)dYs,

which can be considered as the Zakai equation with the freezing coefficient h(x).
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6.2.2 Outline of proof

The proof of Theorem 6.2.1 is entirely different from the original one in [73]. Let us
compute

g(XT )ΦT − g(XT )Φ̃T

= g(XT )ΓT

d
∑

j=1

(

∫ T

0

(hj(Xs)− hj(Xη(s)))dY
j
s − 1

2

∫ T

0

((hj)2(Xs)− (hj)2(Xη(s)))ds
)

where ΓT =
∫ 1

0
ΓT (ρ)dρ, ΓT (ρ) = exp(ρ log(ΦT ) + (1 − ρ) log(Φ̃T )). Applying Itô’s

formula to ζ(Xs) with ζ = hj or (hj)2 ∈ C2, we have

ζ(Xs)− ζ(Xη(s)) =

∫ s

η(s)

∇ζ(Xr)σ(Xr)dBr +

∫ s

η(s)

(Lζ)(Xr)dr.

So the error E[g(XT )ΦT |FY
T ]−E[g(XT )Φ̃T |FY

T ] can be decomposed into four parts
(Ei)1≤i≤4:

E1 = E
[

g(XT )ΓT

d
∑

j=1

∫ T

0

(

∫ s

η(s)

∇(hj)(Xr)σ(Xr)dBr

)

dY j
s

∣

∣

∣
FY

T

]

E2 = E
[

g(XT )ΓT

d
∑

j=1

∫ T

0

(

∫ s

η(s)

Lhj(Xr)dr
)

dY j
s

∣

∣

∣
FY

T

]

E3 = −1

2
E
[

g(XT )ΓT

d
∑

j=1

∫ T

0

(

∫ s

η(s)

∇((hj)2)(Xr)σ(Xr)dBr

)

ds
∣

∣

∣
FY

T

]

E4 = −1

2
E
[

g(XT )ΓT

d
∑

j=1

∫ T

0

(

∫ s

η(s)

L(hj)2(Xr)dr
)

ds
∣

∣

∣
FY

T

]

.

We are going to prove that

‖Ei‖p ≤
C(i, p, T )

n

for p ≥ 2 and 1 ≤ i ≤ 4. The estimation for E1 is the most difficult task since E1

includes both dB and dY parts. First, we give the estimates for E2 and E4.

Proposition 6.2.5. Under the assumption (A1)-(A4), for every p ≥ 1, there exists
a constant C = C(p, T ) > 0 such that

‖E2‖p + ‖E4‖p ≤
C

n
.

Proof. We only prove ‖E2‖p ≤ C/n. By the assumption (A4), it holds that

‖ΓT‖q ≤ ‖ΦT‖q + ‖Φ̃T ‖q ≤ K(q, T ) < ∞
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for every q ≥ 1. Using the Cauchy-Schwartz inequality and Burkholder-Davis-
Gundy inequality, we have

‖E2‖p ≤ ‖g(XT )ΓT‖2pE
[(

d
∑

j=1

∫ T

0

(

∫ s

η(s)

Lhj(Xr)dr
)

dY j
s

)2p]1/2p

≤ C1(p, T )

d
∑

j=1

E
[(

∫ T

0

(

∫ s

η(s)

Lhj(Xr)dr
)2

ds
)p]1/2p

.

We can finally get the estimate

E
[(

∫ T

0

(

∫ s

η(s)

Lhj(Xr)dr
)2

ds
)p]1/2p

≤ E
[

sup
0≤r≤T

|(Lhj)(Xr)|2p
(

∫ T

0

(s− η(s))2ds
)p]1/2p

≤ C2(p, T )

n
.

6.3 The estimation via infinite dimensional anal-

ysis

6.3.1 A brief review of Malliavin calculus and Hilbert space
valued martingales

Let (Ω,F , Q) be a d-dimensional Wiener space and (Bt)0≤t≤T be the d-dimensional
canonical Brownian motion on (Ω,F , Q). More precisely, Ω = C([0, T ];Rd), F is
the Borel σ-field on Ω, and Q is the Wiener measure under which the coodinate map
t 7→ Bt, B ∈ Ω becomes a standard Brownian motion.

The Malliavin derivative D : L2(Ω) ⊃ Dom(D) → L2(Ω;L2([0, T ];Rd)) is defined
as the extension of the following closable operator for smooth Wiener functional F :

F = f
(

∫ T

0

h1(s)dBs, . . . ,

∫ T

0

hm(s)dBs

)

where f : Rm → R is a polynomial function and (hi) ⊂ L2([0, T ];Rd). Then

DF :=

m
∑

i=1

(∂if)
(

∫ T

0

h1(s)dBs, . . . ,

∫ T

0

hm(s)dBs

)

hi.

The Skorohod integral δ : L2(Ω;L2([0, T ];Rd)) ⊃ Dom(δ) → L2(Ω) is the adjoint
operator of D. Let K be a real separable Hilbert space. We can similarly define D
and δ for K-valued Wiener functionals. The spaces D1,p(K) ⊂ Lp(Ω;K) are defined
as the Sobolev spaces induced by the derivative operator D for K-valued Wiener
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functionals. For the details of the precise formulation of Malliavin calculus, we refer
to [80] and [70].

We prepare some results for the Skorohod integral δ (cf. [70]).

Lemma 6.3.1. For u(·) =
∑n

i=1 Fi1[ti,ti+1)(·) ∈ L2([0, T ];Rd) with Fi ∈ D
1,2(Rd),

we have

δ(u) =

n
∑

i=1

Fi · (Bti+1
− Bti)−

n
∑

i=1

∫ ti+1

ti

d
∑

j=1

D(j)
r F

(j)
i dr.

Lemma 6.3.2 (Continuity of δ). Let p > 1. There exists C > 0 such that

‖δ(u)‖p ≤ C‖u‖D1,p(L2([0,T ];Rd))

for every u ∈ D
1,p(L2([0, T ];Rd))

We will use a kind of Fubini’s theorem below.

Lemma 6.3.3. Let (us)0≤s≤T ∈ L2([0, T ];D1,2(L2([0, T ];Rd))), then

∫ T

0

δ(us(·))ds = δ
(

∫ T

0

us(·)ds
)

a.s. (6.7)

Proof. Let uk
s =

∑mk

j=1 a
k
j1Bk

j
(s) with akj ∈ D

1,2(L2([0, T ];Rd)) and Bk
j ∈ B([0, T ])

such that uk → u in the norm of L2([0, T ];D1,2(L2([0, T ];Rd))) as k → ∞. Clearly
we have

∫ T

0

δ(uk
s(·))ds = δ

(

∫ T

0

uk
s(·)ds

)

.

It suffices to check the limit of both sides. By taking L2-norm,

∥

∥

∥

∫ T

0

δ(uk
s(·))ds−

∫ T

0

δ(us(·))ds
∥

∥

∥

2

2
≤ C1

∫ T

0

‖δ(uk
s(·)− us(·))‖22ds

≤ C2

∫ T

0

‖uk
s(·)− us(·)‖2D1,2(L2([0,T ];Rd))ds

and

∥

∥

∥
δ
(

∫ T

0

uk
s(·)ds

)

− δ
(

∫ T

0

us(·)ds
)∥

∥

∥

2

2
≤ C3

∥

∥

∥

∫ T

0

(uk
s(·)− us(·))ds

∥

∥

∥

2

D1,2(L2([0,T ];Rd))

≤ C4

∫ T

0

‖uk
s(·)− us(·)‖2D1,2(L2([0,T ];Rd))ds.

Thus we obtain the result (6.7) as k → ∞.

We can derive the following fundamental inequalities for Hilbert space valued
martingales.
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Lemma 6.3.4. Let Mt be a continuous K-valued martingale with respect to a fil-
tration (Ft) which satisfies the usual conditions. Then for every p > 0, there exists
positive constants Kp, cp < Cp such that

Doob’s inequality:

E
[

sup
0≤t≤T

|Mt|pK
]

≤ KpE
[

|MT |pK
]

.

Burkholder-Davis-Gundy’s inequality:

cpE
[

〈M〉p/2T

]

≤ E
[

sup
0≤t≤T

|Mt|pK
]

≤ CpE
[

〈M〉p/2T

]

.

Proof. See e.g. [80, Theorem 3.1].

Lemma 6.3.5. If F ∈ Lp(FB
T ;K) for some p ≥ 2, then there exists an unique pro-

cess fs = (f 1
s , . . . , f

d
s ) such that f i

s are K-valued progressively measurable processes
satisfying

F = E[F ] +

∫ T

0

fsdBs,

and

E
[(

∫ T

0

d
∑

i=1

|f i
s|2Kds

)p/2]

≤ CpE[|F |pK]. (6.8)

In particular, if F ∈ D
1,2(FB

T ;K), then we have the so-called Clark-Ocone formula

fs(ω) = E[DsF |FB
s ](ω) a.e. (s, ω) ∈ [0, T ]× Ω.

Proof. We check only (6.8) using the inequalities in Lemma 6.3.4:

E
[(

∫ T

0

d
∑

i=1

|f i
s|2Kds

)p/2]

≤ C1(p)E
[∣

∣

∣

∫ T

0

fsdBs

∣

∣

∣

p/2

K

]

= C1(p)E[|F − E[F ]|pK ]
≤ C2(p)E[|F |pK ].

6.3.2 Infinite dimensional Itô calculus for E3

Let us define two Wiener spaces (WB,B(WB), P
WB) and (WY ,B(WY ), P

WY ) on
which (Bt)0≤t≤T and (Yt)0≤t≤T are canonical Brownian motions respectively. From
now on we specify

(Ω,F , Q) = (WB,B(WB), P
WB)× (WY ,B(WY ), P

WY ).
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We denote by EWB and EWY the expectations under PWB and PWY respectively.
Since B and Y are independent, we notice that E[ · |FY

T ] = EWB [ · ].
We now return to prove ‖E3‖p = O(1/n). The fundamental idea to get the order

of convergence is as follows (see also [17]): Let F ∈ L2(WB ×WY ;R) and θs be a
FB

s -adapted process with finite moments. We are going to give the error estimates
for the type of EWB [F

∫ ti+1

ti
θsdBs]. Let us consider

L2(WB ×WY ;R) ∼= L2(WB;L
2(WY ;R)).

By Lemma 6.3.5, we obtain the representation F = EWB [F ] +
∫ T

0
fsdBs, which has

already appeared in Picard’s paper [73, Proposition 1]. Applying this representation
to EWB [F

∫ ti+1

ti
θsdBs], we obtain a conditional duality formula

EWB

[

F

∫ ti+1

ti

θsdBs

]

= EWB

[

∫ ti+1

ti

fsθsds
]

∈ L2(WY ;R).

This means that it is possible to prove the convergence of O(1/n) from the term
∫ ti+1

ti
· ds if (fs) has good moment estimates.

Lemma 6.3.6. Let p ≥ 2 and suppose F ∈ Lp(WB ×WY ;R) has the representation

F = EWB [F ]+
∫ T

0
fsdBs (in Lemma 6.3.5), then there exists a constant C = C(p) >

0 such that

E
[(

∫ T

0

|fs|2ds
)p/2]

≤ CE[|F |p]. (6.9)

Proof. Recall that | · | is the norm on Rd. Let us consider the L2(WY ;R)-valued
martingale

∫ t

0
fsdBs as the R-valued stochastic integral for the Rd-valued FB

s ∨FY
T -

progressively measurable process fs on (Ω,F , Q) (see e.g. [18, Lemma 21.2]). We
can apply Lemma 6.3.4 with K = R to it.

Proposition 6.3.7. Under the assumption (A1)-(A4), for every p ≥ 1, there exists
a constant C = C(p, T ) > 0 such that

‖E3‖p ≤
C

n
.

Proof. We prove only the one dimensional case. Let θr = 1
2
(h2)′(Xr)σ(Xr). Using

Itô’s formula for stochastic integrals with respect to Bt, we can deduce that

EWB

[

EWB [g(XT )ΓT ]

∫ T

0

∫ s

η(s)

θrdBrds
]

= 0

and

EWB

[

∫ T

0

fsdBs

∫ T

0

∫ s

η(s)

θrdBrds
]

=

∫ T

0

EWB

[

∫ T

0

frdBr

∫ s

η(s)

θrdBr

]

ds

=

∫ T

0

EWB

[

∫ s

η(s)

frθrdr
]

ds

=

∫ T

0

∫ s

η(s)

EWB [frθr]drds.
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We notice that

|EWB [frθr]| ≤ EWB [|fr|2]1/2 sup
0≤r≤T

EWB [|θr|2]1/2.

Therefore the estimate (6.9) in Lemma 6.3.6 implies

∥

∥

∥
EWB

[

∫ T

0

∫ s

η(s)

frθrdrds
]∥

∥

∥

p

p
≤ sup

0≤r≤T
EWB [|θr|2]p/2

EWY

[(

∫ T

0

∫ η(s)+T/n

η(s)

EWB [|fr|2]1/2drds
)p]

≤ C1

(T

n

)p

E
[(

∫ T

0

|fr|2dr
)p/2]

≤ C2

np
‖g(XT )ΓT‖pp

for some constant C2 = C2(p, T ).

6.3.3 Partial Malliavin calculus for E1

For analyzing E1, we study partial Malliavin calculus introduced in [71]. Consider
Malliavin calculus for each space of (WB,B(WB), P

WB) and (WY ,B(WY ), P
WY ).

Let us denote the Sobolev spaces, the Malliavin derivative, and the Skorohod in-
tegral on (WB,B(WB), P

WB) by D
k,p
B , DB

t , δB, and on (WY ,B(WY ), P
WY ) by D

k,p
Y ,

DY
t , δY . We note that DB and DY are naturally extended to (N + d)-dimensional

Wiener space (Ω,F , Q), and the pair (DB, DY ) coincides with the standard Malli-
avin derivative D : Ω → L2([0, T ];RN+d) in the following sense: Let us consider an
orthogonal decomposition

L2([0, T ];RN+d) = L2
B ⊕ L2

Y

with

L2
B = {f ∈ L2([0, T ];RN+d) : f (j) ≡ 0 for N < j ≤ N + d} ∼= L2([0, T ];RN),

L2
Y = {f ∈ L2([0, T ];RN+d) : f (j) ≡ 0 for 1 ≤ j ≤ N} ∼= L2([0, T ];Rd).

Let ΠB and ΠY be the projections from L2([0, T ];RN+d) to L2
B and L2

Y respectively.
Then we can define DB := ΠB ◦D and DY := ΠY ◦D on the (N + d)-dimensional
Wiener space (Ω,F , Q). This formulation is called the “partial” Malliavin calculus
([56], [71]).

Let K be a real separable Hilbert space and G ∈ L2(WB;K). We define by

JB
t the projection so that G = EWB [G] +

∫ T

0
JB
s (G)dBs. In particular, if G ∈

D
1,2
B (D1,2

Y (R)) ⊂ L2(WB;D
1,2
Y (R)), we have by the Clark-Ocone formlua

JB
s (G) = EWB [DB

s G|FB
s ] ∈ D

1,2
Y (R). (6.10)

We note that D1,2
B (D1,2

Y (R)) 6= D
2,2
(B,Y )(R).

Let us first present auxiliary lemma which will be used in later computations.
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Lemma 6.3.8. (i): For G ∈ L2(WB;D
1,2
Y (K)),

DYEWB [G] = EWB [DYG] a.s.

(ii): If ξ ∈ D
1,p
B (L2([0, T ];Rd)) with some p ≥ 2, then

∫ T

0
ξsdYs ∈ D

1,p
B (D1,2

Y (R)) and

DB
(

∫ T

0

ξsdYs

)

=

∫ T

0

(DBξs)dYs,

DY
(

∫ T

0

ξsdYs

)

= ξ,

DYDB
(

∫ T

0

ξsdYs

)

= DBDY
(

∫ T

0

ξsdYs

)

= DBξ.

Proof. (i): We choose an approximation sequence (Gk) of the form Gk =
∑m

i=1 Si1Ai
,

Si ∈ D
1,2
Y (K) and Ai ∈ B(WB). For each k, Gk clearly satisfies the desired equality.

Thus we obtain the result using the continuity of D. (ii): This is a version of the
proof of [70, Proposition 1.3.8], recall that DB(Yt) = 0.

We will take an approximation sequence (Zℓ)ℓ ⊂ D
1,2p
B (R) such that Zℓ → g(XT )

in L2p(WB) as ℓ → ∞. The following lemma plays a key role for the estimate of E1.

Lemma 6.3.9. Let p ≥ 2 and Z ∈ D
1,2p
B (R). Then under the assumptions (A2)-

(A4), ZΓT (ρ) ∈ D
1,p
B (D1,2

Y (R)). Moreover, let (θs) be a Rd-valued continuous FB
s -

progressively measurable process with E[sup0≤s≤T |θs|4]1/4 ≤ M , then there exists a
constant C = C(p, T ) such that

EWY

[(

∫ T

0

ess sup
0≤r≤T

|EWB [DY
r J

B
s (ZΓT (ρ)) · θs]|2ds

)p/2]

≤ MpC‖ZΓT (ρ)‖pp.

Proof. We can check that Xt ∈ ∩p≥1D
1,p
B under Assumption (A2). Using the chain

rule of Malliavin derivative, we obtain from Lemma 6.3.8 and Assumption (A4)

ΓT (ρ, k) :=
k
∑

l=0

(log(ΓT (ρ)))
l

l!
∈
⋂

p≥1

D
1,p
B (D1,2

Y (R)).

Thus taking the limit k → ∞, we can show that

ΓT (ρ) ∈
⋂

p≥1

D
1,p
B (D1,2

Y (R)),

which implies ZΓT (ρ) ∈ D
1,p
B (D1,2

Y (R)).
Applying the Clark-Ocone formula (6.10) to ZΓT (ρ), we deduce that

DY
r J

B
s (ZΓT (ρ)) = DY

r E
WB [DB

s (ZΓT (ρ))|FB
s ] = EWB [DB

s (ZD
Y
r ΓT (ρ))|FB

s ].
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We notice that

DY
r ΓT (ρ) = exp(ρ log(ΦT ) + (1− ρ) log(Φ̃T ))(ρh(Xr) + (1− ρ)h(Xη(r)))

and then

DB
s (ZD

Y
r ΓT (ρ)) =DB

s (ZΓT (ρ))(ρh(Xr) + (1− ρ)h(Xη(r)))

+ ZΓT (ρ)D
B
s (ρh(Xr) + (1− ρ)h(Xη(r))).

This formula and the Cauchy-Schwartz inequality for the conditional expectation
E[·|FB

s ] imply

|EWB [DY
r J

B
s (ZΓT (ρ)) · θs]|2

≤ 2EWB [|JB
s (ZΓT (ρ))|2]EWB [|(ρh(Xr) + (1− ρ)h(Xη(r))) · θs|2]

+ 2EWB [|ZΓT (ρ)|2]EWB [|DB
s (ρh(Xr) + (1− ρ)h(Xη(r))) · θs|2].

We refer for the reader to the basic estimate ([70]): for any q ≥ 1,

EWB

[

sup
0≤t≤T

|Xt|q
]

+ sup
0≤s≤T

EWB

[

sup
0≤t≤T

|DB
s Xt|q

]

≤ C1(q, T ) < ∞. (6.11)

The above inequality allows us to show that

|EWB [DY
r J

B
s (ZΓT (ρ)) · θs]|2 ≤ C2(p, T )(E

WB [|JB
s (ZΓT (ρ))|2] + EWB [|ZΓT (ρ)|2]).

We can show by Jensen’s inequality and Lemma 6.3.6 that

EWY

[(

∫ T

0

EWB [|JB
s (ZΓT (ρ))|2]ds

)p/2]

≤ E
[(

∫ T

0

|JB
s (ZΓT (ρ))|2ds

)p/2]

≤ C3(p)E[|ZΓT (ρ)|p].

Using these inequalities, we obtain the constant C in the assertion.

We now finish the proof of the main theorem.

Proposition 6.3.10. Let the assumptions (A1)-(A4) hold. Then for every p ≥ 2,
there exists a constant C = C(p, T ) > 0 such that

‖E1‖p ≤
C

n
.

Proof. We first define

E1(ρ) := E
[

g(XT )ΓT (ρ)
d
∑

j=1

∫ T

0

(

∫ s

η(s)

∇(hj)(Xr)σ(Xr)dBr

)

dY j
s

∣

∣

∣
FY

T

]
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and then

‖E1‖p ≤
∫ 1

0

‖E1(ρ)‖pdρ ≤ sup
0≤ρ≤1

‖E1(ρ)‖p.

So it suffices to give an estimate for ‖E1(ρ)‖p.
Let us define for Z ∈ D

1,2p
B (R)

E1(ρ, Z) := E
[

ZΓT (ρ)
d
∑

j=1

∫ T

0

(

∫ s

η(s)

∇(hj)(Xr)σ(Xr)dBr

)

dY j
s

∣

∣

∣
FY

T

]

.

We shall show that

‖E1(ρ, Z)‖p ≤
C

n
‖ZΓT (ρ)‖p, (6.12)

and then taking an approximation sequence (Zℓ)ℓ ⊂ D
1,2p
B (R) such that Zℓ → g(XT )

in L2p, we have

‖E1(ρ)‖p ≤
C

n
‖g(XT )ΓT (ρ)‖p ≤

C̃(p, T )

n
,

which is what we want to prove.

For notational simplicity, we prove (6.12) only the case where B and Y are one
dimensional Brownian motions. Let θr = (h)′(Xr)σ(Xr). By Itô’s formula,

∫ T

0

∫ s

η(s)

θrdBrdYs =
n−1
∑

i=0

((

∫ ti+1

ti

θsdBs

)

(Yti+1
− Yti)−

∫ ti+1

ti

(Ys − Yti)θsdBs

)

.

Let us define fs = fs(ρ, Z) := JB
s (ZΓT (ρ)). We can deduce that

EWB

[

EWB [ZΓT (ρ)]

∫ T

0

∫ s

η(s)

θrdBrdYs

]

= 0

and

EWB

[

∫ T

0

fsdBs

∫ T

0

∫ s

η(s)

θrdBrdYs

]

= EWB

[

∫ T

0

fsdBs

n−1
∑

i=0

((

∫ ti+1

ti

θsdBs

)

(Yti+1
− Yti)−

∫ ti+1

ti

(Ys − Yti)θsdBs

)]

= EWB

[

n−1
∑

i=0

((

∫ ti+1

ti

fsθsds
)

(Yti+1
− Yti)−

∫ ti+1

ti

(Ys − Yti)fsθsds
)]

=
n−1
∑

i=0

((

∫ ti+1

ti

EWB [fsθs]ds
)

(Yti+1
− Yti)−

∫ ti+1

ti

(Ys − Yti)E
WB [fsθs]ds

)

.
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By using Lemma 6.3.1 and the fact that DYEWB [·] = EWB [DY ·] in Lemma 6.3.8, it
holds that

n−1
∑

i=0

(

∫ ti+1

ti

EWB [fsθs]ds
)

(Yti+1
− Yti)

= δY

(

n−1
∑

i=0

(

∫ ti+1

ti

EWB [fsθs]ds
)

1[ti,ti+1)(·)
)

+

n−1
∑

i=0

∫ ti+1

ti

∫ ti+1

ti

EWB [(DY
r fs)θs]dsdr,

and

n−1
∑

i=0

∫ ti+1

ti

(Ys − Yti)E
WB [fsθs]ds

=

∫ T

0

(

δY (E
WB [fsθs]1[η(s),s)(·)) +

∫ s

η(s)

EWB [(DY
r fs)θs]dr

)

ds

= δY

(

n−1
∑

i=0

(

∫ ti+1

·
EWB [fsθs]ds

)

1[ti,ti+1)(·)
)

+

∫ T

0

∫ s

η(s)

EWB [(DY
r fs)θs]drds.

Here we used Lemma 6.3.3 in the second equality. Consequently we derive the
formula

EWB

[

∫ T

0

fsdBs

∫ T

0

∫ s

η(s)

θrdBrdYs

]

= δY

(

n−1
∑

i=0

(

∫ ·

ti

EWB [fsθs]ds
)

1[ti,ti+1)(·)
)

+

∫ T

0

∫ r

η(r)

EWB [(DY
r fs)θs]dsdr.

Using the above formula and Lemma 6.3.2, we finally get the estimate

‖E1(ρ, Z)‖pp ≤
C1

np
E
[(

∫ T

0

|fs|2ds
)p/2]

+
C2

np/2
EWY

[(

n−1
∑

i=0

∫ ti+1

ti

∫ ti+1

ti

|EWB [(DY
r fs)θs]|2dsdr

)p/2]

≤ C3

np
‖ZΓT (ρ)‖pp +

C4

np
EWY

[(

∫ T

0

ess sup
0≤r≤T

|EWB [(DY
r fs)θs]|2ds

)p/2]

Applying Lemma 6.3.9 to the last term, we obtain the result (6.12). This finishes
the proof.
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