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PREFACE. 3

Preface.

In probability theory, Brownian noises and Poisson noises play fundamental
roles when we consider classical noises (for example, Lévy noises or, more gen-
erally, noises generated by Markov-type stochastic differential equations which
admit strong solutions ). One of the reason is the fact that with such noises, sev-
eral important quantities can be computed explicitly. Moreover, any Brownian
noise and any Poisson noise (with non-random intensity) are automatically in-
dependent, and hence we may think that the underlying probability space splits
into the direct product of a probability space supporting Brownian noises and
a space supporting Poisson noises. On each of these spaces, Brownian motions
or stationary Poisson point processes can be regarded as a system of infinite
dimensional “coordinates”. In fact, such circumstance seems to affect the Itô-
Lévy decomposition theorem and (also/hence) the framework of the Malliavin
calculus for Lévy processes. Thus, for the study of classical noises, it is enough
to investigate its Brownian component and Poissonian component separately.

The utilities of the two noises are more than that. They satisfy the “consis-
tency”, by which we mean that a Brownian motion or a stationary Poisson point
process (more strictly, their laws) can be viewed as a sort of “inverse limits”
of a “projective systems” (with respect to a class of conditional expectations),
which also appears as an aspect of “infinite divisibility”, and is stronger than
Kolmogorov’s consistency condition for construction of Markov processes. If
we speak only on Brownian motion B = (Bt)0≤t≤T, it can be understood that
the “consistency” implies that any finite dimensional Euclidean space Rn is
“embedded” into the probability space (Wiener space) by folding, i.e., we map
(x1, · · · , xn) 7→ (x1 + · · · + xk)n

k=1. Conversely, by “spreading” B = (Bt)0≤t≤T out
finitely, we obtain a system (∆B1, · · · ,∆Bn) of a part of orthogonally stacked
“coordinates”. As far as the case of continuous motion, a noise with these prop-
erties is essentially unique (except for trivial noise), and is the Brownian noise,
which has been stated as in the Itô-Lévy decomposition theorem. In the case
of Poisson noises, the corresponding “coordinates” takes a bit different form:
They will take its values in a space of measures.

It is known that there are (essentially equivalent) representations of the
Heisenberg algebra on Brownian noises and Poisson noises. In particular, the
action of Heisenberg algebra is inherited, because of the “consistency”, even
when we are in the space charted by the system of orthogonally stacked “coor-
dinates”, and equivalently, even when we discretize (in time) the framework of
Malliavin calculus. We will employ this property in our framework. Although
it appears that our framework depends strongly on these nature and thus is
restrictive, but it covers several important objects such as the Euler-Maruyama
scheme for stochastic differential equations, and ultimately by taking the limit-
ing, everything described by Brownian noises and Poisson noises.
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In this thesis, we give applications of representations of the Heisenberg alge-
bra. The study is divided into two parts. In Part 1, we study the change of vari-
able formula on the classical Wiener space, which is called the Ramer-Kusuoka
formula. We will see that the Ramer-Kusuoka formula can be described as a
formula in the ring of formal power series with the coefficients in a (gener-
alized) Heisenberg algebra. Although the arguments are limited only on the
classical Wiener space, the formula would describe also the Girsanov formula
on the Poisson space. In that sense, our formula has to unify both the change of
variable formulae on the Wiener and Poisson spaces. Part 2 is devoted to study
a discrete version of Clark-Ocone formulae. The Clark-Ocone formula is a sto-
chastic version of the fundamental theorem of calculus, which is also an explicit
expression of the martingale representation theorem. It is an important problem
to ask whether or not a given noise has martingale representation property, that
is, whether it has a finite number of martingale basis. The Brownian noises and
Poissonian noises have the martingale representation property, however, when
we discretize the noises, this property fails. This is the starting point of our
study. Because we are always in separable Hilbert spaces, so we have countably
many martingale basis, and in fact, our discrete Clark-Ocone formula will use
these countable basis. After we establish the discrete Clark-Ocone formula, we
will see how the superfluous bases tend to vanish, when we take infinitesimally
small partitions of the time interval. Such studies will be designed as the error
analysis for martingale representation error.

Finally, I want to mention further research directions, in the case of continu-
ous models. The framework presented here, and even that of Malliavin calculus
does not cover analyses for stochastic differential equations which doesn’t admit
any strong solutions since a solution to such equation is not a function of only
the driving Brownian motion in general. Such solutions might be described
completely by the driving Brownian motion and some additional noises suit-
ably correlated with the driving noise, and thus it seems to be impossible to
apply, in principle, the Malliavin calculus via methods which are already estab-
lished. I believe, at least in the case where the stochastic differential equation
has symmetries, that there are frameworks, broader than that of Malliavin calcu-
lus, in which we can deal with stochastic differential equations with non-strong
solutions as mentioned above, and there are discretization techniques which
keep the structure of symmetries or “Galois group” of the stochastic differential
equation.
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Part 1

Change of Variable Formula on the Wiener
Space



For each bounded measurable function f : Rn → R and smooth transforma-
tion z : Rn → Rn, it is elementary to deduce the change of variable formula

∫
Rn

f (x)
e−
|x|2
2∆t

(2π∆t)n/2 dx

=

∫
Rn

f (x − ∆t z(x) )
∣∣∣det (1 − J∆t z(x) )

∣∣∣
× exp

{
〈z(x), x〉 − |z(x) |2

2
∆t

} e−
|x|2
2∆t

(2π∆t)n/2 dx,

(0.1)

where 〈·, ·〉 and | · | are the canonical inner product on Rn and the associated
norm respectively, J∆t z is the Jacobian matrix of ∆t z given by

J∆t z(x) =


∂z1

∂x1 · · · ∂z1

∂xn
...

. . .
...

∂zn

∂x1 · · · ∂zn

∂xn

∆t,

z = (z1, · · · , zn) and ∆t is an arbitrary positive constant.
On the other hand, the Wiener process W = (Wt)0≤t≤1 is defined by

(Wt)(w) = wt, 0 ≤ t ≤ 1, w ∈ W = C([0, 1]→ R).

Any equidistant partition ∆ : 0 = t0 < t1 < · · · < tn = 1 of the interval [0, 1]
induces a mapping

(∆W1, · · · ,∆Wn) : W → Rn(0.2)

where ∆Wl =Wtl −Wtl−1 .
The change of variable formula (0.1) with ∆t = 1/n can be pulled-back onto

the Wiener space W by the mapping (0.2). Furthermore, one can take the limit
n → +∞ in the pulled-back formula, and the resulting formula gives a change
of variable formula on the Wiener space.

Although formula (0.1) is a step before taking the limit, it indicates several
aspects of the change of variable formula on the Wiener space. From the def-
inition of the map (0.2), it seems natural to regard x = (x1, · · · , xn) ∈ Rn as the
process X = (Xl)n

l=0 defined by X0 = 0 and Xl = x1 + · · ·+ xl for l = 1, 2, · · · ,n. The
filtration generated by the process X coincides with the coordinate filtration
F = (Fl)n

l=0 defined by F0 = {∅,Rn } and Fl = σ(x1, · · · , xl) for l = 1, 2, · · · ,n.
Then the transformation z∆t can be naturally identified with a random process
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Z = (Zl)n
l=0 given by

Zl =

∫ tl

0

n∑
k=1

1{tk−1 ≤ s < tk} zk ds =
l∑

k=1

Żk∆t

where Żl := zl. Under these notations, roughly speaking, the change of variable
formula on the Wiener space is called

– Cameron-Martin formula: when z is a constant map, i.e., non-random.

– Cameron-Martin-Maruyama-Girsanov formula: when Z is aF -predictable,
or equivalently,

∂zl

∂xk
= 0 if l ≤ k.

If this is the case, the Jacobian matrix J∆t z is nilpotent, so that det (1 −
J∆t z ) ≡ 1. Moreover, under the identification x = (∆W1, · · · ,∆Wn),

〈z(x), x〉 =
n∑

l=1

Żl∆Wl =

∫ 1

0
Żs dWs,

|z(x) |2∆t =
n∑

l=1

Ż2
l ∆t =

∫ 1

0
Ż2

s ds

where, in the last equalities of each above line, we identify discrete-time
processes with continuous-time processes which are piecewise constant.

– Ramer-Kusuoka formula: when z is generic. This being the case, 〈z(x), x〉
is understood using the notions of the Skorohod integral

∫
ŻδW or the

Ogawa integral
∫

Ż ∗dW as

〈z(x), x〉 =
∫ 1

0
Żs δWs + tr ( JZ ) =

∫ 1

0
Żs ∗dWs,

where JZ is the Jacobian matrix of (Z1, · · · ,Zn) : Rn → Rn.
After the limiting procedure, one has that, for a differentiable random process

Z = (Zt)0≤t≤1 (which need not to be adapted to the natural filtration of W) and
bounded measurable F : W → R,

E[F(W) ]

= E
[
F(W − Z ) |det (1 −DZ )|etr DZ exp

{ ∫ 1

0
Żs δWs −

1
2

∫ 1

0
Ż2

s ds
} ]
,

(0.3)

where E means the expectation with respect to the Wiener measure P. This is
a general form of the change of variable formula on the Wiener space, and is
called the Ramer-Kusuoka formula.
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Originally, such a change of variable formula (0.3) is studied by Cameron
and Martin in [13] when Z ≡ θ ∈ H is a non-random path, where H is the
subspace of W consisting of all paths h with square integrable derivative and
h0 = 0. The space H is now called the Cameron-Martin subspace. Their work was
extended by Gross [20] and Kuo [26] in the framework of more general abstract
Wiener spaces.

For another generalization, Girsanov [18], Maruyama [33], [34] and Motoo
[37] studied the case where Z is an adapted process and Z ∈ H a.s. from a
viewpoint of stochastic differential equation and showed that the Itô integral
appeared in the density function. In this case, the formula (0.3) is simplified to
the Cameron-Martin-Maruyama-Girsanov formula

E[F(W) ] = E
[
F(W − Z ) exp

{ ∫ 1

0
Żs dWs −

1
2

∫ 1

0
Ż2

s ds
} ]

(0.4)

as explained before.
Ramer [47] studied the case where Z is a non-adapted random process

and deduced the formula (0.3). He introduced an abstract version of the Itô
integral which is called the Itô-Ramer integral in [27] and he showed that the
density factorizes into two factors. One is the Carleman-Fredholm determinant
det (1 −DZ )etr DZ of the operator 1 −DZ (1 denotes the identity map) and the
other is the Girsanov type density in which, because of non-adaptedness, the
Itô integral is replaced by the Itô-Ramer integral or the Skorohod integral from
a point of view of the Malliavin calculus. For an extension of applicable class,
this result is generalized by Kusuoka [27].1

Zakai [61] characterized the class of Z for which the Carleman-Fredholm
determinant is equal to one by using quasi-nilpotency and explained how the
Ramer-Kusuoka formula (0.3) is reduced to the Maruyama-Girsanov formula
(0.4).

As a particular case, Buckdahn and Föllmer [6] studied the law of the solution
of anticipative stochastic differential equation of the form dξt = dWt + kt(ξ,W)dt
where the drift kt(ξ,ω) depends on the past behavior of ξ and the future behavior
of the Brownian motion W. Yano [60] studied the composition of functional on
an abstract Wiener space taking its value in a finite dimensional vector space
and the Ramer type translation on an extended abstract Wiener space.

1In [47] and [27], the authors worked on abstract Wiener spaces. If we want to write the first
factor as just a Fredholm determinant rather than the Carleman-Fredholm determinant, one
will get an expression with using the Ogawa integral under some integrability condition.



CHAPTER 1

Cameron-Martin-Maruyama-Girsanov Formula via an Action
of Heisenberg Algebra

This part is based on the joint work [4].

1. Introduction

Let (W ,B(W ),P) be the Wiener space on the interval [0, 1], that is, W is
the set of all continuous paths in R defined on [0, 1] which starts from zero,
B(W ) is the σ-field generated by the topology of uniform convergence. and P
is the Wiener measure on the measurable space (W ,B(W )). Then the canonical
Wiener process (W(t))t≥0 is defined by W(t,w) = w(t) for 0 ≤ t ≤ 1 and w ∈ W .

Let H denote the Cameron-Martin subspace of W , i.e., h ∈ W belongs to
H if and only if h(t) is absolutely continuous in t and the derivative ḣ(t) is
square-integrable. Note that H is a Hilbert space under the inner product

〈h1, h2〉H =
∫ 1

0
ḣ1(t)ḣ2(t)dt, h1, h2 ∈ H.

It is a fundamental fact in stochastic calculus that the Cameron-Martin (hence-
forth CM) formula (see, e.g. [32], pp 25) in the following form holds:∫

W

F(w + θ)P(dw) =
∫

W

F(w) exp
{ ∫ 1

0
θ̇(t)dw(t) − 1

2

∫ 1

0
θ̇(t)2dt

}
P(dw)(1.1)

where F is a bounded measurable function on W and θ ∈ H.
The motivation of the present study comes from the following observation(s).

In the above CM formula (1.1), the integrand of the left-hand-side can be seen as
an action of a translation operator, which is an exponentiation of a differentiation
Dθ:

(1.2)
∫

W

F(w + θ)P(dw) “=” E[ eDθF ].

12
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On the other hand, the right-hand-side can be seen as a “coupling” of the
exponential martingale and F:∫

W

F(w) exp
{ ∫ 1

0
θ̇(t)dw(t) − 1

2

∫ 1

0
θ̇(t)2dt

}
P(dw)

=
〈

F, exp
{ ∫ 1

0
θ̇(t)dW(t) − 1

2

∫ 1

0
θ̇(t)2dt

}〉
.

Since we can read the right-hand-side of (1.2) as

E[eDθF ] “=”
〈
1, eDθF

〉
,

the Cameron-Martin formula〈
1, eDθF

〉
“=”

〈
F, exp

{ ∫ 1

0
θ̇(t)dW(t) − 1

2

∫ 1

0
θ̇(t)2dt

}〉
leads to the following interpretation:

exp
{ ∫ 1

0
θ̇(t)dW(t) − 1

2

∫ 1

0
θ̇(t)2dt

}
“=” eD∗θ(1),

where D∗θ is an “adjoint operator” of Dθ.
The observation, conversely, suggests that the CM formula could be proved

directly by the duality relation between eDθ and eD∗θ , without resorting to the
stochastic calculus. The program is successfully carried out in section 2. We
may say this program runs by the calculus of functionals of Wiener integrals.

Along the line, we also give an algebraic proof of the Maruyama-Girsanov
(henceforth MG) formula (see e.g. [50, IV.38, Theorem (38.5)]), an extension of
the CM formula. Note that MG formula cannot be written in the quasi-invariant
form as (1.1), but in the following way:∫

W

F(w)P(dw)

=

∫
W

F(w − Z(w)) exp
{ ∫ 1

0
Ż(t,w)dw(t) − 1

2

∫ 1

0
Ż(t,w)2dt

}
P(dw).

(1.3)

Here Z : W → H is a “predictable” map such that∫
W

exp
{ ∫ 1

0
Ż(t,w)dw(t) − 1

2

∫ 1

0
Ż(t,w)2dt

}
P(dw) = 1.

In this non-linear situation, infinite dimensional vector fields like XZ ≡ ZiDei
1,

where {ei} is a basis of H and Zi = 〈Z, ei〉H, may play a role of Dθ in the linear case,

1Here we use Einstein’s convention.



1. INTRODUCTION 14

but its exponentiation eXZ does not make sense anymore. Instead, we need to
consider “tensor fields”

D⊗n
Z = Zi1 · · ·ZinDei1

· · ·Dein

and its formal series
∞∑

n=0

1
n!

D⊗n
Z =: ẽ DZ .

We will show in Proposition 3.1.2 that the operator ẽ DZ is the translation by
Z; ẽ DZ( f (W)) = f (W + Z). To understand MG formula (1.3) in terms of the
translation operator ẽ DZ , we additionally introduce another sequence {Ln} of
tensor fields (see subsection 3.2 for the definition), which has the property
(Lemma 3.3.1) of

∞∑
n=1

1
n!

Ln = exp
{ ∫ 1

0
Ż(t)dw(t) − 1

2

∫ 1

0
Ż2(t)dt

}
( ẽ DZ − 1).

Then, as a corollary to the adjoint formula for Ln (Theorem 3.2.1), MG formula
can be obtained (Corollary 3.3.2).

The proof of key theorem (Theorem 3.2.1), however, is not “algebraic” since
it involves the use of Itô’s formula. This means, we feel, a considerable part
of the “algebraic structure” of MG formula is still unrevealed. We then try to
give a purely algebraic proof (=without resorting the results from the stochastic
calculus) to MG formula in section 4 at the cost that we only consider the case
where Ż is a simple predictable process such as

Ż =
N∑

i=1

zi1(ti,ti+1](t).

We will consider a family of vector fields like ziDi, where Di is the differentiation
in the direction of

∫
1(ti,ti+1](t) dt. A key ingredient in our (second) algebraic proof

of MG formula is the following semi-commutativity:

(1.4) ziD j = D jzi if j ≥ i,

which may be understood as “causality”.
Actually, the relation (1.4) implies that the Jacobian matrix DZ = (DeiZ j)i j, if

it is defined, is upper triangular. In a coordinate-free language, it is nilpotent.
Equivalently, Tr(DZ)n = 0 for every n, or Tr ∧n DZ = 0 for every n. Since the
statements are coordinate-free(=independent of the choice of {ei}), they can be
a characterization of the causality (=predictability) in the infinite dimensional
setting as well. This observation retrieves the result in [61] that Ramer-Kusuoka
formula ([47],[27]) is reduced to MG formula when DZ is nilpotent in this
sense. The observation also implies that Ramer-Kusuoka formula itself can be
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approached in our algebraic way. This program has been successfully carried
out in [3].

Throughout this chapter, the domains of the operators are basically restricted
to “polynomials” (precise definition of which will be given soon) in order to
concentrate on algebraic structures. We leave in section 5 a lemma and its proof
to ensure the continuity of the operators and hence to have a standard version
of CM-MG formula.

To the best of our knowledge, an algebraic proof like ours for CMMG formula
have never been proposed. Although we only treat a simplest one-dimensional
Brownian case, our method can be applied to more general cases if only they
have a proper action of the infinite dimensional Heisenberg algebra. The present
study is largely motivated by P. Malliavin’s way to look at stochastic calculus,
which for example appears in [32] and [31], and also by some operator calculus
often found in the quantum fields theory (see e.g. [36]).

2. An Algebraic Proof of the Cameron-Martin Formula

2.1. Preliminaries. For any h ∈ H, we set

[h](w) :=
∫ 1

0
ḣ(t)dw(t), w ∈ W .

A function F : W → R is called a polynomial functional if there exist an n ∈ N,
h1, h2, · · · , hn ∈ H and a polynomial p(x1, x2, · · · , xn) of n-variables such that

F(w) = p
(
[h1](w), [h2](w), · · · , [hn](w)

)
, w ∈ W .

The set of all polynomial functionals is denoted by P. This is an algebra over R
included densely in Lp(W ) for any 1 ≤ p < ∞ (see e.g. [24], pp 353, Remark 8.2).

Let {ei}∞i=1 be an orthonormal basis of H. If we set

ξi(w) := [ei](w) =
∫ 1

0
ėi(t)dw(t), i = 1, 2, · · ·

then ξ1, ξ2, · · · are mutually independent standard Gaussian random variables.
Let Hn[ξ], n = 1, 2, · · · be the n-th Hermite polynomial in ξ defined by the
generating function identity

exp
(
λξ − λ

2

2

)
=

∞∑
n=0

λn

n!
Hn[ξ], λ ∈ R,

and put

Λ :=
{

a = (ai)∞i=1 :
ai ∈ Z+,
ai = 0 except for a finite number of i’s

}
.
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We write a! :=
∏∞

i=1 ai! for a = (ai)∞i=1 ∈ Λ. We define Ha(w) ∈ P, a ∈ Λ by

Ha(w) :=
∞∏

i=1

Hai[ξi(w)], w ∈ W

and then { 1√
a!

Ha : a ∈ Λ} forms an orthonormal basis of L2(W ) (see e.g. [24]).

For a differentiable function f on R measured by N1(dξ) = 1√
2π

e−ξ
2/2dξ, if

we define ∂ and ∂∗ as

∂ f (ξ) = f ′(ξ) and ∂∗ f (ξ) = −∂ f (ξ) + ξ f (ξ), ξ ∈ R

then ∂∗ is adjoint to ∂ on the differentiable class in L2(R,N1). We note that the
n-th Hermite polynomial Hn can be given by Hn[ξ] = (∂∗n1)(ξ).

2.2. Directional Differentiations and its Exponentials. For a function F on
W and θ ∈ H, the differentiation of F in the direction θ, DθF is defined by

DθF(w) := lim
ε→0

1
ε

{
F(w + εθ) − F(w)

}
, w ∈ W

if it exists(see e.g. [24]). Note that DθF(w) is linear in θ and F and satisfies the
Leibniz’ formula Dθ(FG)(w) = DθF(w) ·G(w)+F(w)DθG(w) for functions F and G
on W such that DθF(w) and DθG(w) exist. If F(w) is of the form F(w) = f ([h](w))
where f is a differentiable function on R and h ∈ H, then we have

DθF(w) = 〈θ, h〉H f ′([h](w)).(1.5)

For θ ∈ H, we define the exponential of Dθ by

eDθF(w) :=
∞∑

n=0

1
n!

Dn
θF(w), F ∈ P and w ∈ W

which is actually a finite sum by (1.5).

Lemma 2.2.1. For F,G ∈ P, we have

eDθ(FG) = eDθ(F) · eDθ(G).(1.6)
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Proof. is a straightforward computation:

eDθ(F) · eDθ(G) =
( ∞∑

n=0

1
n!

Dn
θF

)
·
( ∞∑

n=0

1
n!

Dn
θG

)
=

(
F +DθF +

1
2!

D2
θF +

1
3!

D3
θF + · · ·

)
·
(
G +DθG +

1
2!

D2
θG +

1
3!

D3
θG + · · ·

)
= FG +

{
DθF · G + FDθG

}
+

{ 1
2!

D2
θF · G +DθF ·DθG + F · 1

2!
D2
θG

}
+

{ 1
3!

D3
θF · G + 1

2!
D2
θF ·DθG +DθF · 1

2!
D2
θG + F · 1

3!
D3
θG

}
+ · · ·

= FG +Dθ(FG) +
1
2!

D2
θ(FG) +

1
3!

D3
θ(FG) + · · · = eDθ(FG).

�

Proposition 2.2.2. For every F ∈ P, we have

eDθF(w) = F(w + θ), w ∈ W .(1.7)

Proof. By Lemma 2.2.1, it suffices to show (1.7) for the functional F ∈ P of
the form F(w) = f ([h](w)) where f (x) is a polynomial in one-variable and h ∈ H.
Then using (1.5), we obtain

eDθF(w) =
∞∑

n=0

1
n!

Dn
θ f ( [h](w) ) =

∞∑
n=0

1
n!
〈θ, h〉nH f (n)( [h](w) )

=

∞∑
n=0

1
n!

f (n)( [h](w) )
{ (

[h](w) + 〈θ, h〉H
)
− [h](w)

}n

= f
(
[h](w) + 〈θ, h〉H

)
= F(w + θ),

where f (n)(x) denotes the n-th derivative of f (x). �

2.3. Formal Adjoint Operator and its Exponential. In the analogy of ∂ and
∂∗ in the previous section, we define D∗θ, θ ∈ H by

D∗θF(w) := −DθF(w) +
∫ 1

0
θ̇(t)dw(t) · F(w), F ∈ P, w ∈ W .

Let {ei}∞i=1 be an orthonormal basis of H and put ξi(w) := [ei](w) for i = 1, 2, · · · .
Then we have
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Lemma 2.3.1. It holds that

E
[
DθHn[ξk] ·Hm[ξl]

]
= E

[
Hn[ξk]D∗θHm[ξl]

]
for any k, l,m,n = 1, 2, · · · .

Proof. Since t 7→ Hn[
∫ t

0
ek(s)dw(s)] (n ≥ 1) is a martingale with initial value

zero, if k , l the independence of ξk and ξl and the formula (1.5) imply that both
sides become zero when n,m ≥ 1. If n = m = 0, it is clear that the left-hand side
is zero. Then the right-hand side equals to

E[D∗θ1] = E[−Dθ1 +
∫ 1

0
θ̇(t)dw(t) ] = E[

∫ 1

0
θ̇(t)dw(t) ] = 0.

Hence the case k = l suffices. Noting that ξk is a normal Gaussian random
variable, we have

E
[
DθHn[ξk] ·Hm[ξk]

]
= 〈θ, ek〉HE

[
H′n[ξk]Hm[ξk]

]
= 〈θ, ek〉H

∫ ∞

−∞
∂Hn[ξ] ·Hm[ξ]γ1(dξ)

= 〈θ, ek〉H
∫ ∞

−∞
Hn[ξ]∂∗Hm[ξ]γ1(dξ)

= 〈θ, ek〉H
∫ ∞

−∞
Hn[ξ]

{
−H′m[ξ] + ξHm[ξ]

}
γ1(dξ)

= 〈θ, ek〉HE
[
Hn[ξk]

{
−H′m[ξk] + ξkHm[ξk]

} ]
= E

[
Hn[ξk]

{
−DθHm[ξk] + 〈θ, ek〉HξkHm[ξk]

} ]
.

Sinceθ can be written asθ =
∑∞

k=1〈θ, ek〉Hek,
∫ 1

0
θ̇(t)dw(t) admits the L2-expansion∫ 1

0
θ̇(t)dw(t) =

∞∑
k=1

〈θ, ek〉Hξk.

Now the independence of {ξi}∞i=1 shows that

E
[
Hn[ξk]

∫ 1

0
θ̇(t)dw(t)Hm[ξk]

]
= E

[
Hn[ξk] 〈θ, ek〉HξkHm[ξk]

]
.

�

Proposition 2.3.2. For every F,G ∈ P, it holds that

E[DθF · G ] = E[FD∗θG ].(1.8)
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Proof. For fixed F,G ∈ P, there exist a positive integer n ∈ N and an
orthonormal system {e1, e2, · · · , en} in H and polynomials f (x1, x2, · · · , xn) and
g(x1, x2, · · · , xn) of n-variables such that

F(w) = f
(
[e1](w), [e2](w), · · · , [en](w)

)
and

G(w) = g
(
[e1](w), [e2](w), · · · , [en](w)

)
.

Extend {e1, e2, · · · , en} to an orthonormal basis {ek}∞k=1 of H. Since the degree
of the n-th Hermite polynomial is exactly n, f and g can be written as linear
combinations of finite products of Hermite polynomials. From this fact and by
the linearity of Dθ and D∗θ and the independence, F and G may be assumed
without loss of generality to be of the form

F(w) =
p∏

i=0

Hni[ξki(w)] and G(w) =
p∏

i=0

Hmi[ξki(w)].

where ξk(w) = [ek](w) and k1, k2, · · · , kp are mutually distinct. Then, using the
Leibniz’ rule, Lemma 2.3.1 and the independence of ξ1, ξ2, · · · , we have

E[DθF · G ] = E
[
Dθ

p∏
i=1

Hni[ξki] ·
p∏

i=1

Hmi[ξki]
]

=

p∑
i=1

E
[
DθHni[ξki] ·

∏
j,i

Hn j[ξk j] ·
p∏

i=1

Hmi[ξki]
]

=

p∑
i=1

E
[
DθHni[ξki] ·Hmi[ξki]

]
E
[ ∏

j,i

Hn j[ξk j]Hm j[ξk j]
]

=

p∑
i=1

E
[
Hni[ξki]

{
−DθHmi[ξki] + 〈eki , θ〉HξkiHmi[ξki]

} ]
× E

[ ∏
j,i

Hn j[ξk j]Hm j[ξk j]
]

=

p∑
i=1

E
[ p∏

j=1

Hn j[ξk j]
{
−DθHmi[ξki] + 〈eki , θ〉HξkiHmi[ξki]

} ∏
j,i

Hm j[ξk j]
]

=

p∑
i=1

E
[ p∏

j=1

Hn j[ξk j]
(
−DθHmi[ξki]

) ]
+ E

[ p∏
j=1

Hn j[ξk j]
{ p∑

i=1

〈eki , θ〉Hξki

} p∏
j=1

Hm j[ξk j]
]
.
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By the orthogonality of ξ1, ξ2, · · · , the last term is equal to

E
[ p∏

j=1

Hn j[ξk j] ·
∫ 1

0
θ̇(t)dw(t)

p∏
j=1

Hm j[ξk j]
]
,

which completes the proof. �

Remark 2.1. Note that {Dθ : θ ∈ H} determines a linear operator D : P →
P ⊗H such that 〈DF, θ〉H = DθF for each F ∈ P and θ ∈ H. The operator can be
extended to an operator D : P ⊗ H → P ⊗ H ⊗ H by D(F ⊗ θ) = DF ⊗ θ. This
operator is commonly used in Malliavin calculus (see e.g. [24]). Its “adjoint”
D∗ : P⊗H→ P is defined by D∗F(w) = −tr DF(w) + [F](w), F ∈ P ⊗H. Then the
“integration by parts formula”;∫

W

〈DF(w),G(w)〉Hγ(dw) =
∫

W

F(w)D∗G(w)γ(dw)

holds for all F ∈ P and G ∈ P ⊗ H (see e.g. [24], pp 361). Under these
notations, D∗θF = D∗(F ⊗ θ) for each F ∈ P and hence the above adjointness
follows immediately from our result and vice versa.

Next we define the exponential eD∗θ of D∗θ by the formal series

eD∗θ :=
∞∑

n=0

1
n!

D∗nθ .

Let {ek}∞k=1 be an orthonormal basis of H as above.

Theorem 2.3.3. For every θ ∈ H such that |θ|H = 1, it holds that

D∗nθ 1(w) = Hn[
∫ 1

0
θ̇(t)dw(t) ] ∈ P, n = 0, 1, 2, · · ·(1.9)

and hence eD∗θ1 can be defined. In fact, it is the exponential martingale (evaluated at
time 1)

eD∗θ1(w) = exp
{ ∫ 1

0
θ̇(t)dw(t) − 1

2

}
, w ∈ W .(1.10)

Furthermore, it holds that

E[eDθF ] = E[F · eD∗θ1], F ∈ P.(1.11)

Proof. We use the induction on n to prove (1.9). It is clear that

D∗θ1(w) =
∫ 1

0
θ̇(t)dw(t) = H1[

∫ 1

0
θ̇(t)dw(t) ].
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Suppose that (1.9) holds for n. We recall that the Hermite polynomials satisfy
the identity

Hn+1[x] = xHn[x] − nHn−1[x].(1.12)

Put Θ(w) :=
∫ 1

0
θ̇(t)dw(t). Then, noting that 〈θ, θ〉H = 1 and using (1.5),

D∗(n+1)
θ 1 = D∗θHn[Θ] = −DθHn[Θ] + ΘHn[Θ]
= ΘHn[Θ] − nHn−1[Θ] = Hn+1[Θ].

Hence (1.9) holds for every n = 0, 1, 2, · · · . Then (1.10) follows immediately from
(1.9).

Finally we shall prove (1.11). By using Proposition 2.3.2, for F ∈ P we have

E[eDθF ] =
∞∑

n=0

1
n!

E[Dn
θF ] =

∞∑
n=0

1
n!

E[F ·D∗nθ 1] = E[F · eD∗θ1].

�

Corollary 2.3.4. For every θ ∈ H, it holds that

(1.13) eD∗θ1(w) = exp
{ ∫ 1

0
θ̇(t)dw(t) − 1

2

∫ 1

0
θ̇(t)2dt

}
, w ∈ W .

Furthermore, it holds that

E[eDθF ] = E[F · eD∗θ1], F ∈ P.(1.14)

Proof. Let η = θ/|θ|H and then it follows that

D∗nθ 1(w) = |θ|nHD∗nη 1(w) = |θ|nHHn[
∫ 1

0
η̇(t)dw(t) ]

for n = 0, 1, 2, · · · and w ∈ W by Theorem 2.3.3. Hence we have

eD∗θ1(w) =
∞∑

n=0

|θ|nH
n!

Hn[
∫ 1

0
η̇(t)dw(t) ] = exp

{
|θ|H

∫ 1

0
η̇(t)dw(t) −

|θ|2H
2

}
.

The identity (1.14) can be shown by the same argument as Theorem 2.3.3. �

Now, we have the Cameron-Martin formula in this polynomial framework.

Corollary 2.3.5. For every θ ∈ H and F ∈ P, it holds that

(1.15)

∫
W

F(w + θ)γ(dw) = E[eDθF ] = E[F · eD∗θ1]

=

∫
W

F(w) exp
{ ∫ 1

0
θ̇(t)dw(t) − 1

2

∫ 1

0
θ̇(t)2dt

}
γ(dw).
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3. An Algebraic Proof of MG Formula

In this section, we will give an algebraic proof of the MG formula using an
adjoint relation similar to (1.11). As we have announced in the introduction, for
the proof of the adjoint relation we will rely on the standard stochastic calculus.

Let Z : W → H be a predictable map; i.e. Ż(t), 0 ≤ t ≤ 1 is a predictable
process such that

‖Z‖2H =
∫ 1

0
Ż(s)2ds < +∞ a.s.

Suppose E(
∫

ŻdW) is a true martingale where for a martingale M = (M(t))0≤t≤1

the process E(M) is defined by

E(M)t = exp
{
M(t) − 1

2
〈M〉(t)

}
.

3.1. Infinite Dimensional Tensor Fields. We fix a c.o.n.s. {ei : i ∈ N} of H
and will write simply Di for Dei for each i ∈ N. We define a differentiation along
Z. For φ ∈ P, we define DZ in the following way:

DZφ(W) :=
∞∑

i=1

〈Z, ei〉(W)Diφ(W),

where 〈·, ·〉 is the inner product of H. Moreover, we define the n-th DZ, which
we write as D⊗n

Z by the following:

D⊗n
Z := DZ ⊗DZ ⊗ · · · ⊗DZ︸                  ︷︷                  ︸

n-times

:=
∑
i, j,k,···
〈Z, ei〉〈Z, e j〉〈Z, ek〉 · · ·︸                    ︷︷                    ︸

n-members

DiD jDk · · ·︸      ︷︷      ︸
n-members

.

Next we define the exponential of DZ by the formal series of

ẽ DZ := 1 +DZ +
1
2!

D⊗2
Z +

1
3!

D⊗3
Z + · · ·

= 1 +
∑

i

〈Z, ei〉Di +
1
2!

∑
i, j

〈Z, ei〉〈Z, e j〉DiD j

+
1
3!

∑
i, j,k

〈Z, ei〉〈Z, e j〉〈Z, ek〉DiD jDk + · · · .

We denote 〈Z, ei〉 by Zi, so we may write 〈Z, ei〉〈Z, e j〉DiD j as ZiZ jDiD j and fur-
thermore D⊗2

Z =
∑

i, j ZiZ jDiD j as 〈Z ⊗ Z,∇ ⊗ ∇〉, · · · ,D⊗n
Z = 〈Z⊗n,∇⊗n 〉, and so

on.
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Lemma 3.1.1. For any k ∈N, we have

ẽ DZ
(
Hn1(

∫ 1

0
ėm1dW) · · ·Hnk(

∫ 1

0
ėmkdW)

)
= ẽ DZ

(
Hn1(

∫ 1

0
ėm1dW)

)
· · · ẽ DZ

(
Hnk(

∫ 1

0
ėmkdW)

)
.

(1.16)

Proof. First note that the equation (1.16) is equivalent to

n1+···+nk∑
l=0

1
l!
〈Z⊗l,∇⊗l〉

(
Hn1(

∫ 1

0
ėm1dW) · · ·Hnk(

∫ 1

0
ėmkdW)

)
=

n1∑
l1=0

1
l1!
〈Z⊗l1 ,∇⊗l1〉Hn1(

∫ 1

0
ėm1dW) · · ·

nk∑
lk=0

1
lk!
〈Z⊗lk ,∇⊗lk〉Hnk(

∫ 1

0
ėmkdW).

(1.17)

Fixing l1, · · · lk such that l1 ≤ n1, · · · , lk ≤ nk, it suffices to prove that the coefficients
of

∇⊗l1Hn1∇⊗l2Hn2 · · · ∇⊗lkHnk

of the left-hand after applying Leibniz rule correspond to those of right-hand.
The coefficients of the left-hand are the following.

1
(l1 + l2 + · · · + lk)!

(
l1 + l2 + · · · + lk

l1

) (
l2 + · · · + lk

l2

)
· · ·

(
lk
lk

)
.

This is equal to 1
l1!l2!···lk! , so we get (1.17). �

Proposition 3.1.2. For f ∈ P, we have

(1.18) ẽ DZ( f (W) ) = f (W + Z).

Proof. Since ẽDZ is linear and by Lemma 3.1.1, we only prove in the case of
f (W) = Hn(

∫ 1

0
ėi(s)dWs), that is, it suffices to show

ẽ DZ
(
Hn(

∫ 1

0
ėi(s)dWs)

)
= Hn

( ∫ 1

0
ėi(s)dWs + 〈Z, ei〉

)
.

By the definition, we have

ẽ DZ
(
Hn(

∫ 1

0
ėi(s)dWs)

)
=

n∑
k=0

(
n
k

)
〈Z, ei〉k Hn−k(

∫ 1

0
ėi(s)dWs).

For this, apply Hn(x + y) =
∑n

k=0
(n

k

)
Hn−k(x)yk, then we get (1.18). �
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3.2. The Operator LZ
n . To prove Maruyama-Girsanov formula, we addition-

ally introduce a sequence {LZ
n } of new operators associated with Z as follows.

For any n ∈N, LZ
n is defined by LZ

0 = id and

LZ
n = −

n∑
k=1

(
n
k

)
Ĥn−k

( ∫ 1

0
Ż(s)dWs, ‖Z‖2H

)
D⊗k
−Z, n ∈ N(1.19)

where the polynomials Ĥn(x, y), n = 1, 2, · · · , are defined by means of the formula

eλx − λ2

2 y2
=

∞∑
n=0

λn

n!
Ĥn(x, y).

With this notation, the Hermite polynomials we have used so far are can be
written as

Hn[x] = Ĥn(x, 1).

Theorem 3.2.1. For any F ∈ P, we have

E
[ ∞∑

n=0

1
n!

LZ
n F

]
= E[E

( ∫ ·

0
Ż(s)dWs

)
1
F ].(1.20)

Proof. It suffices to show

E[LZ
n F ] = E[ Ĥn

( ∫ 1

0
Ż(s)dWs, ‖Z‖2H

)
F ](1.21)

for each n ∈N and F ∈ P. If we can prove that

E[LZ
n

(
E(

∫
˙f dW)1

)
] = E

[
Ĥn

( ∫ 1

0
Ż(s)dWs, ‖Z‖2H

)
E(

∫
˙f dW)1

]
(1.22)

for arbitrary f ∈ H, then (1.21) is deduced. In fact, for a finite orthonormal
system {e1, · · · , em}, take f := λ1e1 + · · ·λmem for λ1, · · · , λm ∈ R. Then,

E
( ∫

˙f dW
)

1
=

m∏
i=1

E
(
λi

∫
ėi dW

)
1

=

∞∑
N=0

1
N!

∑
n1+···+nm=N

N!
n1! · · · nm!

m∏
i=1

λni
i Hni

( ∫ 1

0
ėi(s)dWs

)
,

and we notice that
∑∞

N=0 aN where

aN = E
[ ∑

n1+···+nm=N

N!
n1! · · · nm!

m∏
i=1

λni
i Hni

( ∫ 1

0
ėi(s)dWs

) ]
=

{
1 if N = 0,
0 otherwise

is absolutely convergent. This means that (1.21) is valid for arbitrary monomials
and hence for all polynomials.
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So, let us prove (1.22). First we note that

E[LZ
n

(
E(

∫
˙f dW)1

)
]

= E
[ n∑

k=1

(−1)k+1

(
n
k

)
Ĥn−k

( ∫ 1

0
Ż(s)dWs, ‖Z‖2H

)
D⊗k

Z E
( ∫

˙f dW
)

1

]
,

where Ĥn(s) denotes Ĥn(
∫ s

0
Ż(u)dWu,

∫ s

0
Ż(u)2du ) and Ĥn := Ĥn(1). Since DiE(

∫
˙f dW)1 =

〈 f , ei〉E(
∫

˙f dW)1, we have

E[LZ
n

(
E(

∫
˙f dW)1

)
]

= E
[
E
( ∫

˙f dW
)

1

{ n∑
k=1

(−1)k+1

(
n
k

)
Ĥn−k

∑
i1,··· ,ik

Zi1 · · ·Zik〈 f , ei1〉 · · · 〈 f , eik〉
} ]

= E
[
E
( ∫

˙f dW
)

1

{ n∑
k=1

(−1)k+1

(
n
k

)
Ĥn−k 〈Z, f 〉k

} ]
.

We will use the following formulas to obtain (1.22) which will complete the
proof;

Ĥn(t) = n
∫ t

0
Ĥn−1(s)Ż(s)dWs,

E
( ∫

˙f dW
)

t
= 1 +

∫ t

0
E
( ∫

˙f dW
)

s
˙f (s)dWs,

and

d
〈
Ĥn,E

( ∫
˙f dW

)〉
s
= nĤn−1(s)E

( ∫
˙f dW

)
s

˙f (s)Ż(s)ds.(1.23)

As a first step we have

E
[
Ĥn

( ∫ 1

0
Ż(s)dWs,

∫ 1

0
Ż(s)2ds

)
E
( ∫

˙f dW
)

1

]
= E

[
n
∫ 1

0
Ĥn−1(s)Ż(s)dWs

]
+ E

[
n
∫ 1

0
Ĥn−1(s)Ż(s)dWs

∫ 1

0
E
( ∫

˙f dW
)

s
˙f (s)dWs

]
= E

[
n
∫ 1

0
Ĥn−1(s)E

( ∫
˙f dW

)
s

˙f (s)Ż(s)ds
]
=: I.
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By Ito’s formula, we have

Ĥn−1(1)E
( ∫

˙f dW
)

1

∫ 1

0

˙f (s)Ż(s)ds

=

∫ 1

0
Ĥn−1(s)E

( ∫
˙f dW

)
s

˙f (s)Ż(s)ds +
∫ 1

0

∫ s

0

˙f (u)Ż(u)dud
〈
Ĥn−1,E

( ∫
˙f dW

)〉
s

+ a martingale.

Then by using (1.23), we have

I = E
[
nĤn−1E

( ∫
˙f dW

)
1

∫ 1

0

˙f (s)Ż(s)ds
]

− E
[
n(n − 1)

∫ 1

0

˙f (s)Ż(s)
∫ s

0

˙f (u)Ż(u)duĤn−2(s)E
( ∫

˙f dW
)

s
ds

]
=: E

[
nĤn−1E

( ∫
˙f dW

)
1
〈 f ,Z〉

]
− II.

Again we apply Ito’s formula to get

Ĥn−2(1)E
( ∫

˙f dW
)

1
〈 f ,Z〉2

= 2
∫ 1

0
Ĥn−2(s)E

( ∫
˙f dW

)
s

∫ s

0

˙f (u)Ż(u)du f (s)Z(s)ds

+

∫ 1

0

{ ∫ s

0

˙f (u)Ż(u)du
}2

d
〈
Ĥn−2,E

( ∫
˙f dW

)〉
s
+ a martingale

and by using (1.23) again, we obtain

II = E
[ n(n − 1)

2
Ĥn−2E

( ∫
˙f dW

)
1
〈 f ,Z〉2

]
− E

[ n(n − 1)(n − 2)
2

∫ 1

0
Ĥn−3(s)E

( ∫
˙f dW

)
s

˙f (s)Ż(s)
{ ∫ s

0

˙f (u)Ż(u)du
}2

ds
]
.
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Hence we have

E
[
Ĥn

( ∫ 1

0
Ż(s)dWs,

∫ 1

0
Ż(s)2ds

)
· E

( ∫
˙f dW

)
1

]
= I

= E
[
nĤn−1E

( ∫
˙f dW

)
1
〈 f ,Z〉

]
− E

[ n(n − 1)
2

Ĥn−2E
( ∫

˙f dW
)

1
〈 f ,Z〉2

]
+ E

[ n(n − 1)(n − 2)
2

∫ 1

0

˙f (s)Ż(s)
{ ∫ s

0

˙f (u)Ż(u)du
}2

Ĥn−3(s)E
( ∫

˙f dW
)

s
ds

]
.

By repeating this procedure until Ĥ∗(s) in the integrand vanishes, we obtain

E
[
Ĥn

( ∫ 1

0
Z(s)dWs,

∫ 1

0
Z(s)2ds

)
E
( ∫

˙f dW
)

1

]
= E

[
E
( ∫

˙f dW
)

1

{ n∑
k=1

(−1)k+1

(
n
k

)
Ĥn−k 〈Z, f 〉k

} ]
.

�

3.3. Passage to the Cameron-Martin-Maruyama-Girsanov Formula. From
Proposition 3.1.2 and Theorem 3.2.1, we will give a new proof of Maruyama-
Girsanov formula in the case of f ∈ P.

Lemma 3.3.1. As an operator acting on P,

∞∑
n=1

1
n!

LZ
n = exp

{ ∫ 1

0
Ż(t)dWt −

1
2

∫ 1

0
Ż(t)2dt

}
(1 − ẽ DZ ).
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Proof.
∞∑

n=0

1
n!

LZ
n = 1 −

∞∑
n=1

1
n!

n∑
k=1

(
n
k

)
Ĥn−k

( ∫ 1

0
Ż(s)dWs,

∫ 1

0
Ż(s)2ds

)
D⊗k
−Z

= 1 −
∞∑

k=1

{ ∞∑
n=k

1
k!(n − k)!

Ĥn−k

( ∫ 1

0
Ż(s)dWs,

∫ 1

0
Ż(s)2ds

) }
D⊗k
−Z

= 1 −
∞∑

k=1

1
k!

{ ∞∑
m=0

1
m!

Ĥm

( ∫ 1

0
Ż(s)dWs,

∫ 1

0
Ż(s)2ds

) }
D⊗k
−Z

= 1 − E
( ∫

ŻdW
)

1

∞∑
k=1

1
k!

D⊗k
−Z

= 1 − E
( ∫

ŻdW
)

1

∞∑
k=0

1
k!

D⊗k
−Z + E

( ∫
ŻdW

)
1
.

�

Corollary 3.3.2 (Cameron-Martin-Maruyama-Girsanov formula). For f ∈
P, the following formula holds

(1.24) E
[
E
( ∫

ŻdW
)

1
f
(
W −

∫ ·

0
Ż(s)ds

) ]
= E[ f (W) ].

Proof. By Lemma 3.3.1, we have

E
[ ∞∑

n=0

1
n!

Ln

(
f (W)

) ]
(1.25)

= E
[

f (W) − E
( ∫

ŻdW
)

1

∞∑
k=0

1
k!

D⊗k
−Z f (W) + E

( ∫
ŻdW

)
1

f (W)
]

= E
[

f (W) − E
( ∫

ŻdW
)

1
ẽ D−Z f (W) + E

( ∫
ŻdW

)
1

f (W)
]

= E
[

f (W) − E
( ∫

ŻdW
)

1
f
(
W −

∫ ·

0
Ż(s)ds

)
+ E

( ∫
ŻdW

)
1

f (W)
]
.

Then by Theorem 3.2.1, we obtain (1.24). �

4. Another Algebraic Proof for CMMG Formula

As we have mentioned in the introduction, we give an alternative proof
which is “purely” algebraic in the sense that we do not use stochastic calcu-
lus essentially, though we restrict ourselves in the case of piecewise constant
(=finite-dimensional) case.
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Let F ≡ {Ft}0≤t≤1 be the natural filtration of W . Let us consider a simple
F -predictable process

(1.26) z(w, t) =
2s∑

k=1

2s/2 zk(w)1( k−1
2s ,

k
2s ](t)

where zk, k = 1, · · · , 2s are F k−1
2s

- measurable random variables. Define σs
k ∈ H,

k = 1, · · · , 2s by

σs
k(t) := 2s/2

∫ t

0
1( k−1

2s ,
k

2s ](u)du.

We will suppress the superscript s whenever it is clear from the context. Clearly,

(1.27) DσkF = 0

for any F k−1
2s

-measurable random variable F. Put

Dzk := zkDσk and D∗zk
:= zkD∗σk

,

for k = 1, · · · , 2s.

Lemma 4.0.3. For any n ∈N and f ∈ P, we have

(1.28) Dn
zk

f = zkDσk · · · zkDσk︸           ︷︷           ︸
n-times

f = zn
k Dn

σk
f

and

(1.29) (D∗zk
)n f = zkD∗σk

· · · zkD∗σk︸           ︷︷           ︸
n-times

f = zn
k (D∗σk

)n f .

Proof. These are direct from the following “commutativity”:

Dσ j(zi f ) = ziDσ j f , and D∗σ j
(zi f ) = ziD∗σ j

f , if i ≤ j

for differentiable f . These follows since Dσ j(zi) = 0. �

Define the exponentials as

eDzk :=
∞∑

n=0

1
n!

Dn
zk
, k = 1, 2, · · · ,N

and

eD∗zk :=
∞∑

n=0

1
n!

(D∗zk
)n, k = 1, 2, · · ·N

formally. By Lemma 4.0.3 we have

eDzk =

∞∑
n=0

zn
k

n!
Dn
σk
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and thus we can include P in the domain of eDzk .
Let us introduce a subspace PHaar of P, which consists of polynomials with

respect to { [ei](w) }, where { ei } is the Haar system. Note that PHaar is also
characterized as all the polynomials with respect to { [σ̇s

k](w) : k = 1, · · · , 2s, s ∈
N }.

The following is a main result in our program.

Theorem 4.0.4.
(i) For any F ∈ PHaar, we have

(1.30) eDz2s · · · eDz1 F(w) = F(w +
∫ ·

0
z(w,u)du ).

(ii) For any F(k−1)/2s-measurable random variable F,

(1.31) eD∗zk F = FeD∗zk (1).

In particular, the function F is in the domain of eD∗zk . Furthermore, we have

(1.32) eD∗z2s · · · eD∗z1 (1) = exp
{ ∫ 1

0
z(w, s)dw(s) − 1

2

∫ 1

0
z(w, s)2 ds

}
,

(iii) Fix k ∈N. Let F ∈ P and let G be an arbitrary F(k−1)/2s-measurable integrable
function. Then

(1.33) E[eDzk (F)G ] = E[FeD∗zk (G) ].

Proof. (i) First, notice that F ∈ PHaar is always expressed as a linear combi-
nation of

∏2s

k=1 Fk, where each Fk is a polynomial in{
[σt

l](w) :
( l − 1

2t ,
l
2t

]
⊂

(k − 1
2s ,

k
2s

]}
,(1.34)

so that we can assume that F is of the form

F =
N∑

i=1

2s∏
k=1

Fk,i,

where each Fk,i is a polynomial in (1.34). By Proposition 2.2.2 and the definition
of Dσk , we have

eDzk Fl,i (w) =
{

Fk,i (w + zkσk ) if l = k,
Fl,i (w) otherwise.

Then by Lemma 2.2.1,

eDzk

2s∏
l=1

Fl,i (w) = Fk,i (w + zkσk )
∏
l,k

Fl,i (w).
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Since zk is Ftk-measurable, we also have, if j > k,

eDz j eDzk

2s∏
l=1

Fl,i (w)

= eDz j Fk,i (w + zkσk ) eDz j

∏
l,k

Fl,i (w)

= Fk,i (w + zkσk )F j,i (w + z jσ j )
∏
l, j,k

Fl,i (w).

Then, inductively we have

eDz2s · · · eDz1

2s∏
l=1

Fl,i (w) =
2s∏

l=1

Fl,i (w + zlσl ),

and by linearity we obtain (1.30) since

2s∑
l=1

zl(w)σl(t) =
∫ t

0
z(w,u)du.

(ii) Noting that DσkF = 0 for F(k−1)/2s - measurable random variable F, we
have

D∗zk
F = zk

{
−Dσk + 2s/2(wk/2s − w(k−1)/2s )

}
F

= Fzk 2s/2 (wk/2s − w(k−1)/2s ) = FD∗zk
(1)

since zk is also F(k−1)/2s-measurable. Inductively, we then have

(D∗zk
)nF = F (D∗zk

)n(1),

and hence we have (1.31), which in turn implies (1.32). In fact, we have by
induction

eD∗z2s · · · eD∗z1 (1) =
2s∏

k=1

{ eD∗zk (1) }

since eD∗zk−1 · · · eD∗z1 (1) isF(k−1)/2s-measurable for any k, and for each i = 1, 2, · · · , 2s,
we have

eD∗zi (1) =
∞∑

n=0

zn
i

n!
(D∗σi

)n(1) =
∞∑

n=0

zn
i

n!
Hn[

∫ 1

0
σk(t)dwt ]

= exp
{
zi(w)2s/2 (wk/2s − w(k−1)/2s ) − 1

2
zi(w)2

}
.
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(iii) Since F is a polynomial,

eDzk F =
M∑

n=0

zn
k

n!
Dn
σk

F

for some M ∈N ∪ {0}. Therefore, the left-hand-side of (1.33) is rewritten as
M∑

n=0

1
n!

E[zn
k Dn

σk
F · G ].

Since zk and G are F(k−1)/2s-measurable, we have, for n ≤M

E[zn
k Dn

σk
F · G ] = E[F · (D∗σk

)nzn
k G ]

= E[F · zn
k (D∗σk

)nG ] = E[F · (D∗zk
)nG ].

The relation is valid for n > M since

(D∗σk
)nG = G (D∗σk

)n(1) = GHn[
∫ 1

0
σk(t)dwt ],

and the degree of F as a polynomial of
∫ 1

0
σk(t)dwt is less than M, we have

E[zn
k Dn

σk
F · G ] = E[F ·D∗nzk

G ] = 0.

Thus we have

E
[ ∞∑

n=0

1
n!

Dn
zk

F · G
]
= E

[ ∞∑
n=0

1
n!

F ·D∗nzk
G

]
,

which is the desired relation. �

Remark 4.1. (i) We do not assume smoothness for F in (1.31). (ii) In (1.30)
and (1.32), the order of application of the operators is important. If it is changed
anywhere, neither holds anymore.

By using the above algebraic results, we can prove the following

Corollary 4.0.5 (Cameron-Martin-Maruyama-Girsanov formula). For a sim-
ple predictable z in (1.26) and F ∈ PHaar, it holds

E
[
F
(
w −

∫ ·

0
z(w,u)du

)
exp

{ ∫ 1

0
z(w, t)dwt −

1
2

∫ 1

0
z(w, t)2 dt

}]
= E[F ].(1.35)

Proof. As a formal series, we have

eDzk e−Dzk = 1,

for k = 1, · · · 2s. Then, for F ∈ PHaar, we have

F = eDz1 e−Dz1 F
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and since e−Dz1 F is a polynomial, by Theorem 4.0.4 (iii), we have

E[F ] = E[eDz1 e−Dz1 F ] = E[e−Dz1 F · eD∗z1 (1) ].(1.36)

Inductively, since

e−∂zk · · · e−∂z1 f (ξ)

still is a polynomial in{
[σt

l ](w) :
( l − 1

2t ,
l
2t

]
⊂

(k − 1
2s ,

k
2s

]}
,

and
eD∗zk−1 · · · eD∗z1 (1)

is F(k−1)/2s-measurable, we have

E[F ]

= E[eDzk e−Dzk e−Dzk−1 · · · e−Dz1 F · eD∗zk−1 · · · eD∗z1 (1) ]

= E[e−Dzk · · · e−Dz1 F · eD∗zk · · · eD∗z1 (1) ].

(1.37)

Combining this with (1.30) and (1.32) in Theorem 1.31, we have the formula
(1.35). �

5. Continuity of the Translation

The following lemma extends the translation on the dense subset of poly-
nomials to an operator on Lq to Lp, and hence ensure the MG formula (1.35) for
any bounded measurable F.

Lemma 5.0.6. Let z be a predictable process as (1.26). Suppose that

(1.38) E
[
exp

{
c
∫ 1

0
z(t)2 dt

}]
< +∞

for some c > 0. Then, for p ∈ [1,∞), there exists q ∈ (p,∞) and a positive constant Cp
such that

‖e−Dz2s · · · e−Dz1 F‖p ≤ Cp‖F‖q
for any F ∈ PHaar.

Proof. We will denote Z :=
∫ ·

0
z(t)dt and

E(z) := exp
{∫ 1

0
z(t)dw(t) − 1

2

∫ 1

0
z(t)2 dt

}
.
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Let n ≥ 1 be an integer and p < 2n. By Hölder’s inequality,

E[ |F(w − Z(w) )|p ] = E
[
|F(w − Z(w) ) |p {E(z) }

p
2n {E(z) }−

p
2n

]
≤ E

[
|F(w − Z(w) ) |p· 2n

p {E(z) }
p

2n · 2n
p
] p

2n · E
[
{E(z) }−

p
2n · 2n

2n−p
] 2n−p

2n

= E
[
|F(w − Z(w) )|2nE(z)

] p
2n · E

[
{E(z) }−

p
2n−p

] 2n−p
2n
.

Since F is a polynomial, so is |F |2n. Therefore, we can apply the MG formula for
polynomials (1.35) in Corollary 4.0.5, to obtain

E
[
|F(w − Z(w) )|2nE(z)

] p
2n
= E[ |F |2n ]

p
2n = ‖F‖p2n.

Now it suffices to show that

(1.39) E[ {E(z) }−
p

2n−p ] < +∞.
Let us denote Lt :=

∫ t

0
z(u)dw(u). Then 〈L〉t =

∫ t

0
z(u)2 du. Now, since we have

{E(z) }−
p

2n−p = exp
{
− p

2n − p
L − p2

(2n − p)2 〈L〉
}

× exp
{(

p
2(2n − p)

+
p2

(2n − p)2

)
〈L〉

}
,

by Schwartz inequality we have

E[ {E(z) }−
p

2n−p ]

≤ E
[

exp
{
− 2p

2n − p
L − 2p2

(2n − p)2 〈L〉
} ]1/2

× E
[

exp
{(

p
(2n − p)

+
2p2

(2n − p)2

)
〈L〉

} ]1/2
.

Clearly, p
(2n−p) +

2p2

(2n−p)2 → 0 as n → ∞, and hence we can take large enough n to
have the estimate (1.39) by using the assumption (1.38). �

Remark 5.1. By a similar but easier procedure we can also prove a continuity
lemma for eDθ with θ ∈ H , to extend (1.13) in Corollary 2.3.4 to obtain a full
version of CM formula.



CHAPTER 2

Ramer-Kusuoka Formula via an Action of Generalized
Heisenberg Algebra

This part is based on the joint work [3].

1. Introduction

In this chapter, we approach the Ramer-Kusuoka formula from a completely
algebraic viewpoint without using stochastic calculus and extract an algebraic
structure of the Ramer-Kusuoka formula. We will start with an algebraD∗ over
R, a generalization of the Heisenberg algebra, of which the generators ρi, ρ∗i and
κi’s satisfy the commutation relations (2.1), (2.2) and (2.3) from section 2. We
will see these calculations are generalizations of calculus with Brownian motion
in section 4. We set ψi j = ( [ρ∗i , κ

∗
j] ), Ψ = (ψi j)i j, ρκ =

∑
i κiρi and ρ∗κ =

∑
i κiρ∗i

and further definitions will be explained in section 2. Our main result is the
following formula given in Theorem 2.3.5:

det (1 + tΨ ) : exp t (ρκ + ρ∗κ ): : exp t (−ρκ ): = 1 +
∫ t

0
g′(s) :exp sρκ: ds.

where g(t) is defined by (2.8).
In the previous chapter, we approached the Maruyama-Girsanov formula

in an algebraic way. There, the predictable process z inducing our transform
is assumed to be simple and we used essentially the nilpotency of Dz. The
nilpotency of Dz implies that the traces of derived matrices, i.e., Dz, Dz∧Dz etc
are zero. From this point of view, we will study another representation of the
formula given in Theorem 2.3.5 in the latter half of section 2.

In section 3, we represent our D∗-algebra on the classical Wiener space
toward on the Ramer-Kusuoka formula. Roughly speaking, ρi, ρ∗i and κi are
representated by a directional differential operator, it’s L2-adjoint with respect
to the Wiener measure and any functional on the Wiener space respectively
(Theorem 3.0.9).

In section 4, we explain that, on the classical Wiener space, the formula
obtained in Theorem 2.3.5 is the the Ramer-Kusuoka type formula. To do this,
we will introduce a vector field DZ where Z is a measurable process (which
may be non-adapted) inducing our transform. Formally, differentiation along
the Cameron-Martin subspace can be viewed as a constant section of a bundle

35
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of which each fibre is the Cameron-Martin subspace. One may assume that DZ
randomize these constant sections by Z. For getting higher order sections, we
will introduce “normal order”-type product : ∗ : (cf. [36]) and define a kind of
section :Dn

Z : , where the relation between : Dn
Z : and the Malliavin derivative Dt

is given in section 5, Lemma 5.1.1.
The Ramer-Kusuoka type formula obtained in this algebraic framework is

an equation in R[[t]] (the ring of formal power series in t) rather than R. In
section 5, we shall realize our Ramer-Kusuoka type formula as an equation
in R for polynomial functionals on the Wiener space under some integrability
condition.

2. A Generalized Heisenberg Algebra

We say an algebra as D∗-algebra if it has generators {ρi, ρ∗i , κi : i = 1, 2, · · · }
with their defining relations

(2.1) [ρi, ρ j] = 0, [ρ∗i , ρ
∗
j] = 0, [κi, κ j] = 0,

(2.2) [ [ρ∗i , κ j], κk ] = 0, [ [ρ∗i , κ j], [ρ∗k, κl] ] = 0,

and

(2.3) [ρi + ρ
∗
i , κ
∗
i ] = 0, [ρi + ρ

∗
i , [ρ

∗
j, κk] ] = 0, [ρi + ρ

∗
i , ρ j + ρ

∗
j ] = 0

for every i, j, k = 1, 2, · · · , where [·, ·] denotes the commutator with respect to
original multiplication of D∗. We fix a natural number N in the following and
denote byD∗N the subalgebra generated by {ρi, ρ∗i , κi : i = 1, 2, · · · }. D∗N is also an
D∗-algebra. The subalgebra generated by{

κi, ρi + ρ
∗
i , [ρ

∗
i , κi] : i = 1, 2, · · · ,N

}
is the commutative by (2.3) and will be denoted by F .

Let K be the abelian subalgebra of D∗ generated by {κi, [ρ∗i , κ j] : i, j =
1, 2, · · ·N }. Let S and S ∗ be the subalgebra generated by {ρi : i = 1, 2, · · · ,N }
and {ρ∗i : i = 1, 2, · · · ,N } respectively.

Example 2.1. Let p(x) be a positive smooth function on R. Let ∂ be the
derivation: ∂g = g′ and let ∂∗ be the operator defined by

∂∗g = −∂g − (∂ log p) · g
for compactly supported smooth function g. Take a compactly supported
smooth function f and then {∂, ∂∗, f } generatesD∗1 since

[∂, f ] g = (∂ f ) · g, [∂, ∂∗ ] g = −(∂2 log p) · g and [∂∗, f ] g = −(∂ f ) · g.
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When p(x) = e−
x2
2 , the relation among ∂, ∂∗, 1 is that of the Heisenberg algebra.

More generally for given positive smooth p(x) onRN, {∂i, ∂∗i , fi }Ni=1 generatesD∗N
where

∂∗i g = −∂ig − (∂i log p) · g
and fi is an arbitrary compactly supported smooth function.

For an abelian subalgebra B in D∗ and bi j ∈ B, i, j = 1, 2, · · · ,m the deter-
minant of m × m-matrix of B = (bi j) can be defined usually as an element of
B.

Here we use as a conventional notation ”normal order”-type product :a :∈ D∗
for a ∈ D∗ in the following way: (i):a : is linear in a, (ii) within the colons all the
elements commute and (iii) for a monomial it holds

: κi1 · · ·κil ρ
∗
j1 · · ·ρ

∗
jm ρk1 · · ·ρkn :

= κi1 · · ·κil ρ
∗
j1 · · ·ρ

∗
jm ρk1 · · ·ρkn .

2.1. Formal Series with Coefficients in an Algebra. Let A be an algebra.
We denote by A[[t]] the ring of formal series in t with coefficients in A. In this
ring, some operation can be defined in obvious way: For f (t) =

∑∞
n=0

tn

n! fn ∈ A[[t]],
differentiation and integration with respect to t are defined by

f ′(t) :=
∞∑

n=0

tn

n!
fn+1 and

∫ t

0
f (s)ds :=

∞∑
n=1

tn

n!
fn−1,

again each as an elements in A[[t]]. In the case of f (t) =
∑∞

n=1
tn

n! fn, i.e., f0 = 0 the
exponential can be also considered:

exp f (t) = 1 + f (t) +
1
2

f (t)2 +
1
3!

f (t)3 +
1
4!

f (t)4 + · · ·

because the right hand side is determined in order of lower degree of t and
defines an element in A[[t]].

2.2. The First Algebraic Theorem. We set

ρκ =
N∑

k=1

κkρk, ρ∗κ =
N∑

k=1

κkρ
∗
k.

Let D∗[[t]] = D∗N[[t]] denote the ring of formal series in t, a symbol, over
D∗ = D∗N. For any a ∈ D∗, we may define

exp ta =
∞∑

k=0

tk

k!
ak and : exp ta : =

∞∑
k=0

tk

k!
: ak :
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as elements inD∗[[t]]. Then, for example, :ρ2
κ :=

∑
i, j κiκ jρiρ j, :ρ∗2κ :=

∑
i, j κiκ jρ∗iρ

∗
j,

:ρn
κ : =

∑
i1,··· ,in

κi1 · · ·κin ρi1 · · ·ρin ,

:ρ∗nκ : =
∑

i1,··· ,in

κi1 · · ·κin ρ
∗
i1 · · ·ρ

∗
in

and so on. The following consists of the first half of our algebraic approach.

Theorem 2.2.1. We have inD∗[[t]]

(2.4)
(

: exp t(ρκ + ρ∗κ) :
)(

: exp t(−ρκ) :
)
= : exp tρ∗κ : .

Remark 2.1. Here we should understand : (ρκ + ρ∗κ)k : as

k∑
j=0

k!
(k − j)! j!

:ρ∗ jκ ρ
k− j
κ : .

Note that : (ρκ + ρ∗κ)k : still commutes with F .

Proof. First, note that

: exp t(ρκ + ρ∗κ) : =
∞∑

k=0

1
k!

: (ρκ + ρ∗κ)
k :=

∞∑
k=0

1
k!

:
{ N∑

i=1

κi(ρi + ρ
∗
i )
}k

:

=

∞∑
k=0

1
n!

∑
i1,··· ,ik

κi1 · · ·κik : (ρi1 + ρ
∗
i1) · · · (ρin + ρ

∗
in) :

and

: exp t(−ρκ) :=
∞∑

k=0

(−1)k

k!
:ρk

κ :=
∞∑

k=0

(−1)k

k!

∑
i1,··· ,ik

κi1 · · ·κik ρi1 · · ·ρik .

Then, the left-hand-side of (2.4) is rewritten as
∞∑

n=0

1
n!

n∑
k=0

n!
k!(n − k)!

AkBn−k

where
Ak =

∑
i1,··· ,ik

κi1 · · ·κik : (ρik + ρ
∗
ik
) · · · (ρik + ρ

∗
ik
) :

and
Bn−k =

∑
i1,··· ,in−k

κi1 · · ·κin−k(−ρii) · · · (−ρin−k).
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Since (ρk + ρ∗k)’s and κ j’s commute, we have by the definition of our normal
product

AkBn−k

=
∑

i1,··· ,in

κi1 · · ·κin : (ρi1 + ρ
∗
i1) · · · (ρin + ρ

∗
ik
) (−ρik+1) · · · (−ρin) :

= : (ρκ + ρ∗κ)
k (−ρκ)n−k :

Therefore, the left-hand-side of (2.4) now becomes
∞∑

n=0

1
n!

n∑
k=0

n!
k!(n − k)!

: (ρκ + ρ∗κ)
k (−ρκ)n−k :

=

∞∑
n=0

1
n!

: (ρκ + ρ∗κ − ρκ)n : =
∞∑

n=0

1
n!

: (ρ∗κ)
n : .

This completes the proof. �

2.3. The Second Algebraic Theorem.

Lemma 2.3.1.

∑
i1,··· ,ik

adρ∗i1 det


κi1 · · · κik

[ρ∗i2 , κi1] · · · [ρ∗i2 , κik]
...

. . .
...

[ρ∗ik , κi1] · · · [ρ∗ik , κik]

 =
∑

i1,··· ,ik

det


[ρ∗i1 , κi1] · · · [ρ∗i1 , κik]
[ρ∗i2 , κi1] · · · [ρ∗i2 , κik]

...
. . .

...
[ρ∗ik , κi1] · · · [ρ∗ik , κik]

 .
Proof. It suffices to prove that

(2.5)
∑

i1,··· ,ik

det



κi1 · · · κik
[ρ∗i2 , κi1] · · · [ρ∗i2 , κik]

...
. . .

...
[ρ∗i1 , [ρ

∗
il
, κi1] ] · · · [ρ∗i1 , [ρ

∗
il
, κik] ]

...
. . .

...
[ρ∗ik , κi1] · · · [ρ∗ik , κik]


= 0

for each l = 2, · · · , k. Let a1, · · · ,ak denote the row vectors of above matrix in
(2.5). Then by skew-symmetry of determinant yields that

det (a1, · · · ,ak ) + det (al,a1, · · · , âl, · · · , ak ) = 0.

But the commutation relation (2.1) and the Jacobi identity imply that [ρ∗i1 , [ρ
∗
il
, κi1] ] =

[ρ∗il , [ρ
∗
i1
, κi1] ] and [ρ∗i1 , [ρ

∗
il
, κil] ] = [ρ∗il , [ρ

∗
i1
, κil] ] and hence by taking sum over

i1, · · · , ik we obtain the result. �
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Proposition 2.3.2.

n∑
k=0

(
n
k

) ∑
i1,··· ,ik

det


[ρ∗

i1
, κi1] · · · [ρ∗

i1
, κik]

...
. . .

...
[ρ∗

ik
, κi1] · · · [ρ∗

ik
, κik]

 :ρn−k
κ :

=
∑

i1,··· ,ik

ρ∗i1

{ n∑
k=1

(
n − 1
k − 1

)
det


κi1 · · · κik

[ρ∗i2 , κi1] · · · [ρ∗i2 , κik]
...

. . .
...

[ρ∗ik , κi1] · · · [ρ∗ik , κik]

 :ρn−k
κ :

}
.

Proof. By Leibniz’ rule we find that

ρ∗i1

{
det


κi1 · · · κik

[ρ∗i2 , κi1] · · · [ρ∗i2 , κik]
...

. . .
...

[ρ∗ik , κi1] · · · [ρ∗ik , κik]

κik+1 · · ·κinρ
∗
ik+1
· · ·ρ∗in

}

=
[
ρ∗i1 ,det


κi1 · · · κik

[ρ∗i2 , κi1] · · · [ρ∗i2 , κik]
...

. . .
...

[ρ∗ik , κi1] · · · [ρ∗ik , κik]


]
κik+1 · · ·κinρ

∗
ik+1
· · ·ρ∗in

+

n−k∑
j=1

det


κi1 · · · κik

[ρ∗i2 , κi1] · · · [ρ∗i2 , κik]
...

. . .
...

[ρ∗ik , κi1] · · · [ρ∗ik , κik]

κik+1 · · · [ρ∗i1 , κik+ j] · · ·κin ρ
∗
ik+1
· · ·ρ∗in

+ det


κi1 · · · κik

[ρ∗i2 , κi1] · · · [ρ∗i2 , κik]
...

. . .
...

[ρ∗ik , κi1] · · · [ρ∗ik , κik]

κik+1 · · ·κin ρ
∗
i1ρ
∗
ik+1
· · ·ρ∗in .

By previous lemma, the right hand side in this proposition is equal to the sum
of

Ik =

(
n − 1
k − 1

)
det


[ρ∗i1 , κi1] · · · [ρ∗i1 , κik]

...
. . .

...
[ρ∗ik , κi1] · · · [ρ∗ik , κik]

κik+1 · · ·κin ρ
∗
ik+1
· · ·ρ∗in ,
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IIk = (n − k)
(

n − 1
k − 1

)
det


κi1 · · · κik

[ρ∗i2 , κi1] · · · [ρ∗i2 , κik]
...

. . .
...

[ρ∗ik , κi1] · · · [ρ∗ik , κik]

 [ρ∗i1 , κik+1]κik+2 · · ·κinρ
∗
ik+1
· · ·ρ∗in

and

IIIk =

(
n − 1
k − 1

)
det


κi1 · · · κik

[ρ∗i2 , κi1] · · · [ρ∗i2 , κik]
...

. . .
...

[ρ∗ik , κi1] · · · [ρ∗ik , κik]

κik+1 · · ·κinρ
∗
i1ρ
∗
ik+1
· · ·ρ∗in .

We apply to IIIk+1 the cofactor expansion about to the first row to find the sum
of IIIk+1 over i1, · · · , in is equal to the sum of(

n − 1
k

)
det


[ρ∗i2 , κi1] · · · [ρ∗i2 , κik+1]

...
. . .

...
[ρ∗ik+1

, κi1] · · · [ρ∗ik+1
, κik+1]

κi1κik+2 · · ·κinρ
∗
i1ρ
∗
ik+2
· · ·ρ∗in

− k
(

n − 1
k

)
[ρ∗i1 , κik+1]det


κi1 · · · κik

[ρ∗i2 , κi1] · · · [ρ∗i2 , κik]
...

. . .
...

[ρ∗ik , κi1] · · · [ρ∗ik , κik]

κik+2 · · ·κinρ
∗
ik+1
· · ·ρ∗in .

Hence with using formula

k
(

n − 1
k

)
= (n − k)

(
n − 1
k − 1

)
,

it turns out that the sum of IIIk+1 + IIk over i1, · · · , in is equal to the sum of(
n − 1

k

)
det


[ρ∗i2 , κi1] · · · [ρ∗i2 , κik+1]

...
. . .

...
[ρ∗ik+1

, κi1] · · · [ρ∗ik+1
, κik+1]

κi1κik+2 · · ·κinρ
∗
i1ρ
∗
ik+2
· · ·ρ∗in

over i1, · · · , in. Furthermore we use formula(
n − 1
k − 1

)
+

(
n − 1

k

)
=

(
n
k

)
to see that sum of IIIk+1 + Ik + IIk equals to the sum of(

n
k

)
det


[ρ∗i1 , κi1] · · · [ρ∗i1 , κik]

...
. . .

...
[ρ∗ik , κi1] · · · [ρ∗ik , κik]

κik+1 · · ·κinρ
∗
ik+1
· · ·ρ∗in .
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Now this proposition follows easily. �

We denote by Φ andΨ the matrices (φi j)N
i, j=1 and (ψi j)N

i, j=1 respectively, where

φi j := ρ∗i κ j and ψi j := [ρ∗i , κ j ].

We note that
κ jρ

∗
i = φi j − ψi j.

From the knowledge of linear algebra we find that

(2.6) det (1 + tΨ ) =
N∑

n=0

tn

n!

∑
i1,··· ,in

det


ψi1i1 · · · ψi1in
...

. . .
...

ψini1 · · · ψinin


as an element inD∗[t] ⊂ D∗[[t]].

Proposition 2.3.3. As inD∗[[t]] we have

det (1 + tΨ ) : exp tρ∗κ :

=

∞∑
n=0

tn

n!

∑
i1,··· ,ik

ρ∗i1

{ n∑
k=1

(
n − 1
k − 1

)
det


κi1 · · · κik

[ρ∗i2 , κi1] · · · [ρ∗i2 , κik]
...

. . .
...

[ρ∗ik , κi1] · · · [ρ∗ik , κik]

 :ρn−k
κ :

}
.

Proof. The left hand side of the proposition is equal to

(2.7)
∞∑

n=0

tn

n!

n∑
k=0

(
n
k

) ∑
i1,··· ,in

det


ψi1i1 · · · ψi1ik
...

. . .
...

ψiki1 · · · ψikik

κik+1 · · ·κinρ
∗
ik+1
· · ·ρ∗in .

with using (2.6). Hence our claim follows immediately by Proposition 2.3.2. �

We shall set

g(t) =
∞∑

n=0

tn

n!

∑
i1,··· ,in

ρ∗i1det


κi1 · · · κin
ψi2i1 · · · ψi2in
...

. . .
...

ψini1 · · · ψinin

 ∈ D∗[[t]](2.8)

and then the previous Proposition 2.3.3 implies the next algebraic fact.

Proposition 2.3.4.

det (1 + tΨ ) : exp tρ∗κ : = 1 +
∫ t

0
g′(s) : exp sρκ : ds.

Now we combine the first algebraic theorem 2.2.1 and proposition 2.3.4 to
deduce
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Theorem 2.3.5.
det (1 + tΨ ) : exp t (ρκ + ρ∗κ ) : : exp t (−ρκ ) :

= 1 +
∫ t

0
g′(s) : exp sρκ : ds.

(2.9)

This formula seems to reveal the algebraic structure of the Ramer-Kusuoka
formula. The reason why will be turn out in Section 4 .

2.4. Trace Expression. Before entering the Section 3, where we represent
our algebra D∗ on the Wiener space, we shall see and understand more about
the expression of (2.9). If we write the left hand side of (2.9) as the form
of exponential, how the expressions will appears on the exponential ? The
expression should be a series of t and then what and how polynomials will
appears as the coefficient of each tn?

We set y = (y1, y2, · · · ), z = (z1, z2, · · · ) and w = (w1,w2, · · · ) as

y =
(
tr(Φ), tr(ΦΨ), tr(ΦΨ2), tr(ΦΨ3), · · ·

)
,

z =
(
tr(Ψ), tr(Ψ2), tr(Ψ3), tr(Ψ4), · · ·

)
and

w =
(
tr(Φ), tr(ΨΦ), tr(Ψ2Φ), tr(Ψ3Φ), · · ·

)
.

Since K is abelian, we can define ∧nΨ for n = 0, 1, 2, · · · ,N usually and the
knowledge from linear algebra yields

tr(∧nΨ ) =
1
n!

∑
i1,··· ,in

det


ψi1i1 · · · ψi1in
...

. . .
...

ψini1 · · · ψinin

 .
Lemma 2.4.1. For each n = 1, 2, · · · , we have

∑
i1,··· ,in

ρ∗i1det


κi1 · · · κin
ψi2i1 · · · ψi2in
...

. . .
...

ψini1 · · · ψinin

 =
n∑

k=1

(−1)k−1(n − 1) tr(ΦΨk−1 ) tr(∧n−kΨ ).

Corollary 2.4.2.

g(t) =
∞∑

n=0

tn

n!

∑
i1,··· ,in

ρ∗i1det


κi1 · · · κin
ψi2i1 · · · ψi2in
...

. . .
...

ψini1 · · · ψinin

 ∈ D∗[[t]]
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satisfies

g′(t) =
( ∞∑

n=0

tn tr(Φ (−Ψ )n−1 )
)
· det(1 + tΨ ).

Corollary 2.4.3. For each n = 1, 2, · · · , there exists a polynomial q̃n(x1, x2) such
that

∑
i1,··· ,in

ρ∗i1det


κi1 · · · κin
ψi2i1 · · · ψi2in
...

. . .
...

ψini1 · · · ψinin

 = q̃n(y, z)

and q̃n(y, z) is a linear combination of monomials which consist leading multiple of
the form tr(ΦΨk ), k = 0, 1, 2, · · · ,n and other multiples of the form tr(Ψk ), k =
0, 1, 2, · · · ,n − 1.

Proof of Lemma 2.4.1. Let

X2 :=
∑

i1,··· ,in

φi1i2det


ψi2i1 ψi2i3 · · · ψi2in
...

...
. . .

...
ψini1 ψini3 · · · ψinin


and

Xk :=
∑

i1,··· ,in

φi1i2ψi2i3 · · ·ψik−1ikdet


ψiki1 ψikik+1 · · · ψikin
...

...
. . .

...
ψini1 ψinik+1 · · · ψinin


for k = 3, 4, · · · ,n − 1. Applying cofactor expansion to the first column we get

∑
i1,··· ,in

ρ∗i1det


κi1 · · · κin
ψi2i1 · · · ψi2in
...

. . .
...

ψini1 · · · ψinin

 = tr(Φ ) · (n − 1)! tr(∧n−1Ψ ) − (n − 1)X2,

In the same way we get

(2.10) Xk = tr(ΦΨk−1 ) · (n − k)! tr(∧n−kΨ ) − (n − k)Xk+1

for k = 2, 3, · · · ,n − 2 by cofactor expansion about the first row in Xk. Using
(2.10) and that

Xn−1 = tr(ΦΨn−2 ) tr(Ψ ) − tr(ΦΨn−1 )

we can obtain the result. �
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Lemma 2.4.4. For each n = 1, 2, · · · , we have

:ρ∗nκ : =
n∑

k=1

(−1)k−1 (n − 1)!
(n − k)!

tr(Ψk−1(Φ −Ψ) ) :ρ∗n−k
κ : .

Proof. Since

κi1 · · ·κinρ
∗
i1 · · ·ρ

∗
in

= κi1ρ
∗
i1κi2 · · ·κinρ

∗
i2 · · ·ρ

∗
in + κi1[κi2 · · ·κin , ρ

∗
i1]ρ

∗
i1 · · ·ρ

∗
in

= κi1ρ
∗
i1κi2 · · ·κinρ

∗
i2 · · ·ρ

∗
in +

n∑
k=2

[κik , ρ
∗
i1]κi1κi2 · · · κ̂ik · · ·κinρ

∗
i2 · · ·ρ

∗
in ,

we have

: ρ∗nκ : = tr(Φ) : ρ∗n−1
κ : +

∑
i1,··· ,in

(n − 1)[κi2 , ρ
∗
i1]κi1κi3 · · ·κinρ

∗
i2 · · ·ρ

∗
in

= X1 + (n − 1)Y1 (say).

Since

[κi2 , ρ
∗
i1]κi1κi3 · · ·κinρ

∗
i2 · · ·ρ

∗
in

= [κi2 , ρ
∗
i1]κi1ρ

∗
i2κi3 · · ·κinρ

∗
i3 · · ·ρ

∗
in

+

n∑
k=3

[κi2 , ρ
∗
i1][κik , ρ

∗
i2]κi1κi3 · · · κ̂ik · · ·κinρ

∗
i3 · · ·ρ

∗
in ,

Y1 equals to

−tr(ΨΦ) : ρ∗n−2
κ : +(n − 2)

∑
i1,··· ,in

[κi2 , ρ
∗
i1][κi3 , ρ

∗
i2]κi1κi4 · · ·κinρ

∗
i3 · · ·ρ

∗
in .

So we shall put for k = 1, 2, · · · ,n − 1,

Xk := (−1)k−1tr(Ψk−1Φ) : ρ∗n−k
κ :

and if k = 1, 2, · · · , n − 2,

Yk :=
∑

i1,··· ,in

[κi2 , ρ
∗
i1][κi3 , ρ

∗
i2] · · · [κik+1 , ρ

∗
ik
]κi1κik+2 · · ·κinρ

∗
ik+1
· · ·ρ∗in

and

Yn−1 :=
∑

i1,··· ,in

[κi2 , ρ
∗
i1][κi3 , ρ

∗
i2] · · · [κin , ρ

∗
in−1

]κi1ρ
∗
in = (−1)n−1tr(Ψn−1Φ).

Then by the same way as above we see that

Yk−1 = −Xk + (n − k)Yk for k = 2, 3, · · · ,n and
Yn−2 = −Xn−1 + Yn−1.

Then by using this we obtain the result. �
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Corollary 2.4.5. For each n = 1, 2, · · · , there exists a polynomial rn(x1, x2) such
that :ρ∗nκ : = rn(y,w).

Corollary 2.4.6.

f (t) =
∞∑

n=0

tn

n!
:ρ∗nκ : ∈ D∗[[t]]

satisfies

f ′(t) =
∞∑

n=0

tn tr( (−Ψn ) (Φ −Ψ ) ) · f (t).

Corollary 2.4.7.
∞∑

n=0

tn

n!
:ρ∗nκ : = f (t) = exp

{ ∞∑
n=1

tn

n
tr( (−Ψ )n ) +

∞∑
n=1

tn

n
tr( (−Ψ )n−1Φ )

}
.

Finally we can give answer to our interests.

Theorem 2.4.8. There exist polynomials q1(x1, x2, x3), q2(x1, x2, x3), · · · such that

det (1 + tΨ ) : exp tρ∗κ : = exp
{
tq1(y, z,w) + t2 q2(y, z,w) + · · ·

}
.

as an element inD∗[[t]] and each qk(y, z,w) is a linear combination of monomials whose
leading factors are of the form tr(ΦΨl ), l = 0, 1, 2, · · · , k − 1.

Proof. We set ξ(t, x) and {pi(x) : i ∈N } by

ξ(t, x) = tx1 + t2x2 + t3x3 + · · ·
and

eξ(t, x) = 1 + p1(x) t + p2(x) t2 + p3(x) t3 + · · ·
inductively. Note that we don’t assume commutativity of xi’s. For example, we
have

p1(x) = x1, p2(x) =
x2

1

2
+ x2,

p3(x) =
x3

1

6
+

x1x2 + x2x1

2
+ x3,(2.11)

p4(x) =
x4

1

24
+

x2
1x2 + x1x2x1 + x2x2

1

6
+

x1x3 + x2
2 + x3x1

2
+ x4

and so on. Now we have only to determine xi’s when we assume that

det (1 + tΨ ) : exp tρ∗κ : = eξ(t, x).
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By proposition 2.3.2, we see that

p1(x) = −
N∑

k=1

ρ∗k(−κk) = tr(Φ)

and hence we obtain q1(y, z,w) = y1. Assume that q2(y, z,w), · · · , qm(y, z,w) are
given so that the assumption are satisfied and then can find qm+1(y, z,w) with
using proposition 2.3.2 and corollaries 2.4.3, 2.4.5. �

In fact, with a little computation together with (2.11), we can give q1(y, z,w),
q2(y, z,w), q3(y, z,w) and q4(y, z,w) explicitly:

q1(y, z,w) = tr(Φ ), q2(y, z,w) = − tr(ΦΨ )
2

,

q3(y, z,w) =
tr(ΦΨ2 )

3
− 1

12
[ tr(ΦΨ ), tr(Φ ) ],

q4(y, z,w) = − tr(ΦΨ3 )
4

+
1

12
[ tr(ΦΨ2 ), tr(Φ )].

3. Representation ofD∗-algebra on Path Space

In this section, to understand Theorem 2.3.5 with using a standard setting of
stochastic analysis, we construct a representation of D∗-algebra on the Wiener
space.

Let (W ,H,P) be the classical Wiener space on closed interval [0, 1]. For ξ ∈ H,
we denote by Dξ the differentiation in the direction of ξ: for a function F on W ,

DξF(w) = lim
ε→0

1
ε

{
F(w + εξ ) − F(w)

}
if it exists.

We define an operator D∗ξ by

D∗ξF(w) := −DξF(w) +
∫ 1

0
ξ̇(t)dw(t) · F(w)

for a differentiable function F defined on W .
We shall fix an orthonormal basis ξ1, ξ2, · · · of H and Dk, D∗k denotes the

corresponding differentiations: Dk = Dξk and D∗k = D∗ξk
for k = 1, 2, · · · . Recall

that we have fixed a natural number N. Let P = PN = R[
∫ 1

0
ξ̇k(t)dw(t) : k =

1, 2, · · · ,N] and then Dξ is a linear mapping from P to P and it extends to a
linear mapping from D∞ to D∞ where D∞ stands for Meyer-Watanabe’s test
function space. Note thatD∞ forms an algebra.

Example 3.1. If we set for k = 1, 2, · · · ,N
κk := 0, ρk := Dk and ρ∗k := D∗k
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then we obtain D∗-algebra generated by {ρk, ρ∗k : k = 1, 2, · · · ,N }, here we
take the multiplication as the composition of operators, which satisfies the
Heisenberg commutation relations

(2.12) [ρi, ρ j] = 0, [ρi, ρ
∗
j] = δi j and [ρ∗i , ρ

∗
j] = 0.

Now we fix Z1,Z2, · · · ∈ D∞ which act on D∞ as multiplication operators.
Let D = DN be the algebra generated by {Dk,D∗k,Zk }Nk=1 The “normal order”-type
product :x : ∈ D for x ∈ D can be considered in the following way: (i) : a : is linear
in a, (ii) within the colons all the elements commute and (iii) for a monomial it
holds

: Zi1 · · ·ZilD
∗
j1 · · ·D

∗
jmDk1 · · ·Dkn :

= Zi1 · · ·ZilD
∗
j1 · · ·D

∗
jmDk1 · · ·Dkn .

Let ϕ : D∗N → DN ⊂ gl(D∞ ) be the homomorphism ofD∗N determined by

(2.13) ϕ(ρk ) = Dk, ϕ(ρ∗k ) = D∗k and ϕ(κk ) = Zk

for each k = 1, 2, · · · ,N.

Theorem 3.0.9. ϕ gives a representation of the algebraD∗.
Proof. It is enough to prove that

[Di,D j] = 0, [D∗i ,D
∗
j] = 0, [Zi,Z j] = 0,

[ [D∗i ,Z j],Zk ] = 0, [ [D∗i ,Z j], [D∗k,Zl] ] = 0,

and

[Di +D∗i ,Zi ] = 0, [Di +D∗i , [D
∗
j,Zk] ] = 0, [Di +D∗i ,D j +D∗j ] = 0.

But since for every f ∈ D∞, [D∗i , f ] and [ f ,Di ] act on D∞ as the multiplication
by −Di f , the first seven identities are clear. The last identity follows by the
Heisenberg commutation relations. �

4. Reduction to the Ramer-Kusuoka Formula

In this section, we will understand that, on the Wiener space, Theorem 2.3.5
means the Ramer-Kusuoka formula with using the representation ofD∗-algebra
we have constructed in previous section.

For this, we first summarize some fundamental facts below.

Proposition 4.0.10. Let ξ ∈ H and F,G ∈ D∞. Then
(1) we have

(2.14) D∗nξ 1(w) = Hn[
∫ 1

0
ξ̇(t)dw(t) ] if ξ is of length one
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where Hn[x] is the n-th Hermite polynomial defined by

(2.15) eλx − λ2

2 =

∞∑
n=0

λn

n!
Hn[x],

so that

(2.16) E[D∗ξF ] = 0.

(ii) We have

(2.17) D∗ξ(FG ) = (D∗ξF )G − FDξG

and hence with taking the expectations of both sides we have

(2.18) E[ (D∗ξF)G ] = E[FDξG ].

Proof. (i) First we prove (2.14) by induction. It is clear if n = 1. We shall
assume (2.14) is true in the case of n and then with using the assumption of
length of ξ, we have

D∗(n+1)
ξ 1(w) = D∗ξHn[

∫ 1

0
ξ̇(t)dw(t) ]

=

∫ 1

0
ξ̇(t)dw(t)Hn[

∫ 1

0
ξ̇(t)dw(t) ] −DξHn[

∫ 1

0
ξ̇(t)dw(t) ]

=

∫ 1

0
ξ̇(t)dw(t)Hn[

∫ 1

0
ξ̇(t)dw(t) ] − nHn−1[

∫ 1

0
ξ̇(t)dw(t) ]

which is Hn+1[
∫ 1

0
ξ̇(t)dw(t)] itself by the property of Hermite polynomials. Every

F ∈ P can be written as a linear combination of product of Hermite polynomials
in

∫ 1

0
θ̇1(t)dw(t), · · · ,

∫ 1

0
θ̇k(t)dw(t) for some orthonormal system θ1, · · · , θk ∈ H.

Since
∫ 1

0
θ̇1(t)dw(t), · · · ,

∫ 1

0
θ̇k(t)dw(t) are independent and E[Hn[

∫ 1

0
θ̇k(t)dw(t)] ] =

0 for every k and n we have (2.16) for every F ∈ P. SinceP is dense inD∞, (2.16)
holds for every F ∈ D∞

(ii) The formula (2.17) is clear from Leibnitz’ formula for Dξ and then with
taking expectation of both sides in (2.17) and using (2.16) we have the adjointness
(2.18). �

We define formal series in t by

(2.19) exp tDξ :=
∞∑

n=0

tn

n!
Dn
ξ and exp tD∗ξ :=

∞∑
n=0

tn

n!
D∗nξ .
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Both of them act onD∞ in the weak sense of

(2.20) (exp tDξ )F =
∞∑

n=0

tn

n!
Dn
ξF ∈ D∞[[t]]

and

(2.21) (exp tD∗ξ )F =
∞∑

n=0

tn

n!
D∗nξ F ∈ D∞[[t]]

for F ∈ D∞. The above quantities need not necessary converge in general. But
if F lies in P then the former is actually a finite sum and hence (exp tDξ )F ∈ P.

Proposition 4.0.11.

(exp tDξ )F(w) = F(w + tξ ) for F ∈ P.
Proof. Since

(exp tDξ )F · (exp tDξ )G =
( ∞∑

n=0

tn

n!
Dn
ξF

) ( ∞∑
n=0

tn

n!
Dn
ξG

)
= FG +

{
DξF · G + FDξG

}
t

+
{ 1

2!
D2
ξF · G +DξF ·DξG + F

1
2!

D2
ξG

}
t2 + · · ·

= FG + tDξ(FG) +
t2

2!
D2
ξ(FG) + · · · = (exp tDξ )(FG)

for every F and G ∈ P, to prove this proposition, it is enough to prove in the case
where F is of the form f [

∫ 1

0
ξ̇k(t)dw(t)] for some polynomial function f defined

on R. In this case we have

(exp tDξ )F(w) =
∞∑

n=0

tn

n!
Dn
ξ f [

∫ 1

0
ξ̇k(s)dw(s) ]

=

∞∑
n=0

tn

n!
f (n)[

∫ 1

0
ξ̇(s)dw(s) ]

{ ( ∫ 1

0
ξ̇k(s)dw(s) + 〈ξ, ξk〉

)
−

∫ 1

0
ξ̇k(s)dw(s)

}n

= f [
∫ 1

0
ξ̇k(s)dw(s) + 〈ξ, ξk〉 ] = F(w + ξ ).

�

So we shall define τtξ : D∞ → D∞[[t]] by

τtξF := (exp tDξ )F =
∞∑

n=0

tn

n!
Dn
ξF
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for each F ∈ D∞ and we extend this to the mapping τtξ : D∞[[t]]→ D∞[[t]] by

τtξ

( ∞∑
n=0

tnFn

)
=

∞∑
n=0

tn τtξFn.

Then one can see easily that for every F ∈ D∞ and ξ, η ∈ H it follows that

τtξ τtηF = τt(ξ+η) F = τtη τtξF.(2.22)

On the other hand, by (2.14) in proposition 4.0.10 we have

Proposition 4.0.12.

(2.23) (exp tD∗ξ )1(w) = exp
{
t
∫ 1

0
ξ̇(s)dw(s) − t2

2

∫ 1

0
ξ̇(s)2ds

}
.

More generally, we have for F ∈ D∞

(2.24) (exp tD∗ξ )F(w) = (τ−tξF ) exp
{
t
∫ 1

0
ξ̇(s)dw(s) − t2

2

∫ 1

0
ξ̇(s)2ds

}
.

as an element inD∞[[t]].

Proof. (2.23) is obvious from proposition 4.0.10. To prove (2.24), it needs
only to prove that

dn

dtn

∣∣∣∣∣
t=0
(τ−tξF ) exp

{
t
∫ 1

0
ξ̇(s)dw(s) − t2

2

∫ 1

0
ξ̇(s)2ds

}
= D∗nξ F(w).

By proposition 4.0.11 and (2.23), we already know that the left hand side of
above is equal to

n∑
k=0

(
n
k

)
(−1)k Dk

ξF(w) ·D∗(n−k)
ξ 1(w).

On the other hand, with using the rule (2.17), the right hand side is

D∗θF = D∗θ1 · F −DθF,

D∗2θ F = D∗2θ 1 · F −D∗θ1 ·DθF −D∗θ1 ·DθF +D2
θF

= D∗2θ 1 · F − 2D∗θ1 ·DθF +D2
θF,

D∗3θ F = D∗3θ 1 · F −D∗2θ 1 ·DθF

− 2D∗2θ 1 ·DθF + 2D∗θ1 ·D2
θF

+D∗θ1 ·D2
θF −D3

θF

= D∗3θ 1 · F − 3D∗2θ 1 ·DθF + 3D∗θ1 ·D2
θF −D3

θF

and our claim is shown inductively. �
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Corollary 4.0.13. : exp t(Dk +D∗k ) : acts as a mapping fromD∞ toD∞[[t]] as the
multiplication by

exp
{
t
∫ 1

0
ξ̇k(s)dw(s) − t2

2

∫ 1

0
ξ̇k(s)2ds

}
for each k = 1, 2, · · · ,N.

Proof. Let ϕk be the representation which can be obtained from ϕ when we
set zk = 1, zl = 0 for l , k in the way of (2.13). Then by Theorem 3.0.9, Proposition
4.0.11 and the first algebraic theorem 2.2.1 we have for F ∈ D∞,

: exp t(Dk +D∗k ) : F(w)

=
(
[ : exp t(Dk +D∗k ) : exp t(−Dk ) ]τtξF

)
(w)

=
(
ϕk [ : exp t(ρk + ρ

∗
k ) : : exp t(−ρk ) : ]τtξF

)
(w)

=
(
ϕk [ : exp tρ∗k : ]τtξF

)
(w)

=
(
(exp tD∗k )τtξF

)
(w)

= F(w) exp
{
t
∫ 1

0
ξ̇(s)dw(s) − t2

2

∫ 1

0
ξ̇(s)2ds

}
.

�

For F(t) =
∑∞

n=0 tnFn ∈ D∞[[t]] we define its expectation as an element inR[[t]]
by the formula

E[F(t) ] :=
∞∑

n=0

tnE[Fn ] ∈ R[[t]].

Corollary 4.0.14. We can obtain the Cameron-Martin formula in this framework.

Proof. For each k and F ∈ P we have

E
[
F(w − tξk ) exp

{
t
∫ 1

0
ξ̇k(s)dw(s) − t2

2

∫ 1

0
ξ̇k(s)2ds

} ]
= E

[ (
: exp t(Dk +D∗k ) : exp t(−Dk )

)
F(w)

]
= E

[
(exp tD∗k )F(w)

]
= E[F ] +

∞∑
n=1

tn

n!
E[D∗nk F ] = E[F ].

�

We set a measurable process Z(t,w) by

Z(t,w) =
N∑

k=0

Zk(w)ξk(t)
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for 0 ≤ t ≤ 1 and w ∈ W . As a function of w, z determines a mapping Z : W → H
which defines a trace class operator DZ(w) : H→ H for almost all w ∈ W by〈

DZ(w)(h), ξ
〉
= Dξ

〈
Z(w), h

〉
In the coordinates ξ1, ξ2, · · · , DZ can be viewed as a N×N-matrix whose (i, j)-th
component is given by DiZ j = −[D∗i ,Z j ].

We also set DZ and D∗Z by

DZ :=
N∑

k=1

ZkDk and D∗Z :=
N∑

k=1

ZkD∗k

which lie in D = DN. Note that ϕ(ρκ) = DZ and ϕ(ρ∗κ) = D∗Z. Each of DZ and D∗Z
behaves like a vector field on W , a section of the bundle whose fibres are the
Cameron-Martin space H in what follows.

Proposition 4.0.15. For each F ∈ D∞ we have

(2.25) : exp tDZ : F(w) = (τtZ(w)F )(w)

and
: exp tD∗Z : F(w)

= (τ−tZ(w)F )(w) et · trDZ(w) exp
{
t
∫ 1

0
Ż(s)δw(s) − t2

2

∫ 1

0
Ż(s)2 ds

}
.

(2.26)

Proof. We first prove (2.25). With using (2.22),

: exp tDZ : F(w) =
(

: exp t
N∑

k=1

ZkDk :
)
F(w)

=
(

exp t
N∑

k=1

Zk(w)Dk

)
F(w)

=
(

exp( tZN(w)DN ) · · · exp( tZ1(w)D1 )F
)
(w)

= (τtZ(w)F )(w).

Next we shall prove (2.26). Likewise we have

: exp tD∗Z : F(w)

=
(

exp( tZN(w)D∗N ) · · · exp( tZ1(w)D∗1 )F
)
(w)

= (τ−tZ(w)F )(w) exp
{
t

N∑
k=1

Zk(w)
∫ 1

0
ξ̇k(s)dw(s) − t2

2

∫ 1

0
ξ̇k(s)2ds

}
.
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We use the integration by parts formula(e.g. see [15], pp 36)

Zk(w)
∫ 1

0
ξ̇k(s)dw(s) =

∫ 1

0
Zk(w)ξ̇k(s)δw(s) +

∫ 1

0
ξ̇k(s)DsZk(w)ds

to get the relation between Ogawa integral and Skorohod integral:

N∑
k=1

Zk(w)
∫ 1

0
ξ̇k(s)dw(s) =

∫ 1

0
Ż(s)δw(s) + trDZ(w)

since
∫ 1

0
ξ̇k(s)DsZk(w)ds = 〈DkZ, ξk〉 = DkZk. Hence (2.26) follows. �

In the same way as corollary 4.0.13, we can prove

Corollary 4.0.16. : exp t (DZ + D∗Z ) : acts as a mapping from D∞ to D∞[[t]] as
the multiplication by

et · trDZ(w) exp
{
t
∫ 1

0
Ż(s)δw(s) − t2

2

∫ 1

0
Ż(s)2 ds

}
.

Corollary 4.0.17. Let F ∈ D∞. Then as an element of R[[t]], we have the Ramer-
Kusuoka formula

E[F ] = E
[
(τ−tZ(w)F )(w)det (1 − tDZ(w) )

× et · trDZ(w) exp
{
t
∫ 1

0
Ż(s)δw(s) − t2

2

∫ 1

0
Ż(s)2 ds

} ]
.

(2.27)

Proof. By Corollary 4.0.17, Theorem 3.0.9 and Theorem 2.3.5, for each F ∈
D∞ we have

E
[
(τ−tZ(w)F )(w)det (1 − tDZ(w) )

× et · trDZ(w) exp
{
t
∫ 1

0
Ż(s)δw(s) − t2

2

∫ 1

0
Ż(s)2 ds

} ]
= E

[
det (1 − tDZ(w) )

(
: exp t (DZ +D∗Z ) : : exp t (−DZ ) :

)
F(w)

]
= E

[
ϕ
(
det (1 − tΨ ) : exp t (ρκ + ρ∗κ ) : : exp t (−ρκ ) :

)
F(w)

]
= E

[
ϕ
(
1 +

∫ t

0
g′(s) : exp sρκ : ds

)
F(w)

]
= E[F ] +

∫ t

0
E
[ (
ϕ( g′(s) ) : exp sDZ :

)
F(w)

]
ds.
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Since ϕ( g′(t) ) is of the form

∞∑
n=0

tn

n!

∑
i1,··· ,in

D∗i1det


ϕ(κi1) · · · ϕ(κin)
ϕ(ψi2i1) · · · ϕ(ψi2in)

...
. . .

...
ϕ(ψini1) · · · ϕ(ψinin)

 ∈ D[[t]],(2.28)

by using Proposition 4.0.10-(2.16) the second term of above is zero. �

5. Analytic Observations

In our framework, Z is actually a finite sum if we expand it in H with
respect to the orthonormal basis ξ1, ξ2, · · · which we have chosen. To justify
our Corollary 4.0.17 as an identity in R rather than R[[t]] even in the case of Z
expands as an infinite sum in H, we shall need some analytic observations.

5.1. Relation Between : Dn
Z : and the Malliavin Derivative. The notion of

vector field DZ is also proposed in [31]. In [31], pp.10, the following identity is
given:

DZF =
∫ 1

0
Ż(t)DtFdt(2.29)

with using the Malliavin derivative Dt. We shall see that our : Dn
Z : generalize

(2.29) in the sense of the next lemma.

Lemma 5.1.1. If
∫ 1

0
Ż(t)2 dt < +∞ then for every F ∈ D∞ we have

: Dn
Z : F =

∫ 1

0
· · ·

∫ 1

0
Ż(t1) · · · Ż(tn)Dt1 · · ·DtnFdt1 · · ·dtn.

Proof. Since

Dt1 · · ·DtnF =
∑

k1,··· ,kn

Dξk1
· · ·Dξkn

F · ξ̇kn(tn) · · · ξ̇k1(t1)

and

Ż(t1) · · · Ż(tn) =
∑

k1,··· ,kn

Zk1 · · ·Zkn ξ̇kn(tn) · · · ξ̇k1(t1),
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it follows that∫ 1

0
· · ·

∫ 1

0
Ż(t1) · · · Ż(tn)Dt1 · · ·DtnFdt1 · · ·dtn

=
∑

k1,··· ,kn

∫ 1

0
· · ·

∫ 1

0
Zk1 · · ·Zkn Dξk1

· · ·Dξkn
F ξ̇kn(tn)2 · · · ξ̇k1(t1)2 dt1 · · ·dtn

=
∑

k1,··· ,kn

Zk1 · · ·Zkn Dξk1
· · ·Dξkn

F = :Dn
Z : F.

�

5.2. Some Estimates. In this subsection, we assume that Z has the expansion

Z =
∞∑

k=1

Zkξk

in H where Zk ∈ D∞ for every k = 1, 2, · · · . We denote by Z(N) the measurable
process

Z(N) =

N∑
k=1

Zkξk

which we have treated so far. Note that for any Z(N), we have already defined
DZ(N) , D∗

Z(N) and so forth. We assume that DZ(w) belongs to the trace class for a.a.
w.

Proposition 5.2.1. If E[
∫ 1

0
Ż(t)2npdt ] < +∞ for some p > 1 then for each F ∈ D∞

we can define :Dn
Z : F as an element in L2(W ) so that it holds that

: Dn
Z : F =

∫ 1

0
· · ·

∫ 1

0
Ż(t1) · · · Ż(tn)Dt1 · · ·DtnFdt1 · · ·dtn.

Proof. Set :Dn
Z : F = lim supN :Dn

Z(N) :F. Since

: Dn
Z(N) : F =

∫ 1

0
· · ·

∫ 1

0
Ż(N)(t1) · · · Ż(N)(tn)Dt1 · · ·DtnFdt1 · · ·dtn

≤
{ ∫ 1

0
Ż(N)(t)2 dt

}n/2{ ∫ 1

0
· · ·

∫ 1

0
(Dt1 · · ·DtnF )2 dt1 · · ·dtn

}1/2
,

and
∫ 1

0
Ż(N)(t)2dt ↑

∫ 1

0
Ż(t)2dt as N→∞ it follows that

( :Dn
Z(N) : F )2 ≤

∫ 1

0
Ż(t)2ndt

∫ 1

0
· · ·

∫ 1

0
(Dt1 · · ·DtnF )2 dt1 · · ·dtn
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for any N. Let GF be the second factor of the right hand side in the last line.
Since F ∈ D∞, GF is q-th integrable where q is the conjugate of p, i.e., they satisfy
1/p + 1/q = 1. By Hölder’s inequality we have

E[
∫ 1

0
Ż(t)2ndt

∫ 1

0
· · ·

∫ 1

0
(Dt1 · · ·DtnF )2 dt1 · · ·dtn ] ≤ E[

∫ 1

0
Ż(t)2npdt ]1/p E[Gq

F ]1/q.

Since E[Gq
F ]1/q is finite, by Lebesgue’s dominated convergence theorem we can

obtain the result. �

Remark 5.1. From the proof of Proposition 5.2.1, if F is bounded and has
bounded derivatives, :Dn

Z : F can be defined even in the case of p = 1.

We define

: exp tDZ : F = lim sup
N

: exp tDZ(N) : F

and

: exp tD∗Z : F = lim sup
N

: exp tD∗Z(N) : F

= ( : exp tD∗−Z : F ) exp
{
t
∫ 1

0
Ż(s)δw(s) − t2

2

∫ 1

0
Ż(s)2 ds

}
Lemma 5.2.2. If E[

∫ 1

0
Ż(t)2ndt ] < +∞ for every n = 1, 2, · · · then for every F ∈ D∞

we have

E[ | : exp tDn
Z : F | ]

≤ sup
n

E
[ ∫ 1

0
· · ·

∫ 1

0
(Dt1 · · ·DtnF )2 dt1 · · ·dtn

]1/2(
E
[

exp
{ ∫ 1

0
Ż(t)2dt

} ]
+ e

)
.

Proof. We have

| : exp tDZ(N): F |

≤ sup
N

∞∑
n=0

tn

n!

∫ 1

0
· · ·

∫ 1

0
| Ż(N)(t1) · · · Ż(N)(tn)Dt1 · · ·DtnF |dt1 · · ·dtn

for every N and by using Schwartz’ inequality,

E
[

sup
N

∞∑
n=0

tn

n!

∫ 1

0
· · ·

∫ 1

0
| Ż(N)(t1) · · · Ż(N)(tn)Dt1 · · ·DtnF |dt1 · · ·dtn

]
≤

∞∑
n=0

tn

n!
E
[ { ∫ 1

0
Ż(t)2dt

}n ]1/2
E
[ ∫ 1

0
· · ·

∫ 1

0
(Dt1 · · ·DtnF )2 dt1 · · ·dtn

]1/2
.
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This is dominated by

sup
n

E
[ ∫ 1

0
· · ·

∫ 1

0
(Dt1 · · ·DtnF )2 dt1 · · ·dtn

]1/2(
E
[

exp
{ ∫ 1

0
Ż(t)2dt

} ]
+ e

)
from which we can obtain immediately the result by using the Lebesgue domi-
nated convergence theorem. �

Proposition 5.2.3. If

E
[

exp
{
t
∫ 1

0
Ż(s)2ds

} ]
< +∞

then for every F ∈ P, : exp tDZ : F is in Lp(W ) for any p ≥ 1.

Proof. Since ( : exp tDZ(N) : F )p = ( : exp tDZ(N) : )(Fp ) and F is polynomial, our
assertion follows by Lemma 3.17. �

Proposition 5.2.4. Let p ≥ 1. If

E
[

exp
{
t
∫ 1

0
Ż(s)ds

}
+ exp

{
ptu

∫ 1

0
Ż(s)δw(s)

} ]
< +∞

for some u > 1 then for every F ∈ P, : exp tD∗Z : F is in Lp(W ).

Proof. With noting that | : exp tD−Z:F |p is integrable from Proposition 5.2.3,

E[ | : exp tD∗Z: F |p ]

= E
[
| : exp tD−Z:F |p exp

{
pt

∫ 1

0
Ż(s)δw(s) − pt2

2

∫ 1

0
Ż(s)2 ds

} ]
≤ E

[
| : exp tD−Z:F |pv

]1/v
E
[

exp
{
ptu

∫ 1

0
Ż(s)δw(s)

} ]1/u
.

�

Proposition 5.2.5. If

E
[

exp
{
t
∫ 1

0
Ż(s)2ds

}
+ exp

{
2pt sup

N

∫ 1

0
Ż(N)(s)δw(s)

} ]
< +∞

for some p > 1 then for F ∈ P we have

: exp tD∗Z(N) : F n→∞→ : exp tD∗Z : F in L1(W ).
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Proof. Since

| : exp tD∗Z(N) : F |

≤ | exp tD−Z(N)F | exp
{
t
∫ 1

0
Ż(N)(s)δw(s)

}
≤ sup

N

∞∑
n=0

tn

n!

∫ 1

0
· · ·

∫ 1

0
| Ż(N)(t1) · · · Ż(N)(tn)Dt1 · · ·DtnF |dt1 · · ·dtn

× exp
{
t sup

N

∫ 1

0
Ż(N)(s)δw(s)

}
we have by Hölder’s inequality

E[ | : exp tD∗Z(N) : F | ]

≤
(
E
[

exp
{
t
∫ 1

0
Ż(s)2ds

} ]
+ e

)
× sup

n
E
[ ∫ 1

0
· · ·

∫ 1

0
(Dt1 · · ·DtnF )2 dt1 · · ·dtn

× exp
{
2t sup

N

∫ 1

0
Ż(N)(s)δw(s)

} ]1/2

≤
(
E
[

exp
{
t
∫ 1

0
Ż(s)2 ds

} ]
+ e

)
× sup

n
E
[ { ∫ 1

0
· · ·

∫ 1

0
(Dt1 · · ·DtnF )2 dt1 · · ·dtn

}q ]1/q

× E
[

exp
{
2pt sup

N

∫ 1

0
Ż(s)δw(s)

} ]1/2p

where q is conjugate to p. �

Theorem 5.2.6. If

E
[

exp
{
t
∫ 1

0
Ż(s)2 ds

}
+ exp

{
2pt · tr|DZ| + 2pt sup

N

∫ 1

0
Ż(N)(s)δw(s)

} ]
< +∞

for some p > 1, then for every F ∈ P we have the Ramer-Kusuoka formula (2.27) as a
equation in R.
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Proof. Since

|det (1 − tDZ(N) ) : exp tD∗Z(N) : F |

≤ sup
N

∞∑
n=0

tn

n!

∫ 1

0
· · ·

∫ 1

0
| Ż(N)(t1) · · · Ż(N)(tn)Dt1 · · ·DtnF |dt1 · · ·dtn

× exp
{
t tr|DZ | + t sup

N

∫ 1

0
Ż(N)(s)δw(s)

}
and

E
[

sup
N

∞∑
n=0

tn

n!

∫ 1

0
· · ·

∫ 1

0
| Ż(N)(t1) · · · Ż(N)(tn)Dt1 · · ·DtnF |dt1 · · ·dtn

× exp
{
t tr|DZ | + t sup

N

∫ 1

0
Ż(N)(s)δw(s)

} ]
≤

(
E
[

exp
{
t
∫ 1

0
Ż(s)2 ds

} ]
+ e

)
× sup

n
E
[ ∫ 1

0
· · ·

∫ 1

0
(Dt1 · · ·DtnF )2 dt1 · · ·dtn

× exp
{
2t tr|DZ | + 2t sup

N

∫ 1

0
Ż(N)(s)δw(s)

} ]1/2

which is dominated by(
E
[

exp
{
t
∫ 1

0
Ż(s)2 ds

} ]
+ e

)
× sup

n
E
[ { ∫ 1

0
· · ·

∫ 1

0
(Dt1 · · ·DtnF )2 dt1 · · ·dtn

}q ]1/q

× E
[

exp
{
2pt tr|DZ | + 2pt sup

N

∫ 1

0
Ż(N)(s)δw(s)

} ]1/2p
< +∞,

where q is conjugate to p. Hence by Lebesgue’s dominated theorem we have

E[det (1 − tDZ ) : exp tD∗Z : F ]

= lim
N→∞

E[det (1 − tDZ(N) ) : exp tD∗Z(N) : F ].

Again by Lebesgue’s dominated theorem we have

E[det (1 − tDZ(N) ) : exp tD∗Z(N) : F ] = E[F ] +
∞∑

n=1

tn

n!
E[G(N)

n ]
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where G(N)
n is defined by

det (1 − tDZ(N) ) : exp tD∗Z(N) : F = F +
∞∑

n=1

tn

n!
G(N)

n .

From the proof of Corollary 4.0.17 one can find that E[G(N)
n ] = 0 for every n and

N. Hence we have

E[det (1 − tDZ ) : exp tD∗Z : F ] = E[F ].

�



Part 2

Discrete-Time Clark-Ocone Formulae



CHAPTER 3

Discrete-Time Clark-Ocone Formula for Wiener Functionals

This part is based on the joint work [2].

1. Introduction

Let T > 0, (Wt)0≤t≤T be a Brownian motion starting from 0, and (Gt)0≤t≤T be
its natural filtration. Let X ∈ L2(GT) be differentiable in the sense of Malliavin,
for which we may write X ∈ D2,1 (see e.g.[24]). Then, it holds that

(3.1) X = E[X] +
∫ T

0
E[DsX |Gs ]dWs,

where Ds means the Malliavin derivative (evaluated at s).
The formula (3.1) is originally obtained by Clark in [12] for “well-behaved”

Fréchet differentiable functions F, in which DtF meant essentially the Fréchet
derivative of F. Haussmann [22] extended the formula (3.1) to functionals of
solutions for stochastic differential equations in the framework of Clark, and
Ocone [41] obtained (3.1) for F in D1,2 (see [24] for its definition) by using
Malliavin calculus. Once the formula (3.1) was established in the framework
of Malliavin calculus, subsequent researches around the Clark-Ocone formula
have been done mainly with using Malliavin calculus or its generalization: for
example, Üstünel [56] extended (3.1) for F inD−∞ and Aase-Øksendal-Privault-
Ubøe [1] gave a white noise generalization which is also a generalization of the
result by Üstünel [56]. There are many variants for (3.1) (see e.g., [42]) which
we omit here.

In the context of mathematical finance, the formula gives an alternative
description of the hedging portfolio in terms of Malliavin derivatives. However,
explicit expressions of the Malliavin derivatives of a Wiener functional are not
available in general (except for some special cases: see [49]). In this chapter, we
will introduce a finite dimensional approximation of (3.1) and discuss the “order
of the convergence” in a finance-oriented mode. Actually, this kind of finite-
dimensional approximation or something similar is commonly used in financial
practice. Hence the results presented in this chapter might be more insightful
and useful for the practitioners in the field.

Let us be more precise. Put ∆Wk = Wk∆t −W(k−1)∆t for k ∈ N, where ∆t =
T/N and N ∈ N. Then the random variable (∆W1, · · · ,∆WN) is distributed as

63
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N(0,∆tI). Let GN
k , k = 1, · · ·N, be the σ-algebra generated by (∆W1, · · · ,∆Wk).

Note that GN := (GN
k )N

k=0 is a filtration, and

L2(GN
N,P) ' L2(RN, µN),

where

µN(dx) =
1

(2π∆t)
N
2

e−
|x|2
2∆t dx.

With the filtration GN, we can discuss “stochastic integral” (which is in fact
a Riemannian sum) with respect to the process (random walk) W∆t =

∑
∆W.

On the other hand, we can naturally define (a precise formulation will be given
in section 2.1) a finite dimensional version of the Malliavin derivative Ds by the
weak partial derivatives such as

∂lX(x1, · · · , xN)|xk=∆Wk,k=1,··· ,N.

Then one might well guess that a discrete version of the Clark-Ocone formula
could be

X ?
= E[X] +

N∑
l=1

E[∂lX |GN
l−1 ]∆Wl

but this is not true since the random walk W∆t does not have the martingale
representation property. In fact, if the martingale representation property holds
for a random walk, then we can establish a precise discrete-time Clark-Ocone
formula if we define “differentiation” properly. For the binary case, N. Privault
[45] has made a detailed study on the discrete Clark-Ocone formula and related
discrete Malliavin calculus.

We should instead ask how much the (martingale representation) error,

Mart.Err := X − E[X] −
N∑

l=1

E[∂lX |GN
l−1 ]∆Wl,

(which we will also denote by ErrN) measured by a norm, (actually we concen-
trate on the estimation with respect to L2(RN)-one), is. Further, its asymptotic
behaviour as N → ∞ with N∆t = time horizon T. This is closely related to the
problem of so-called tracking error of the delta hedge. If one has a nice finite dimen-
sional approximation XN of a Wiener functional X, both defined on the same
probability space, then the tracking error can be controlled by the (supremum
in N of) Mart.Err plus the error caused by the discretization (finite-dimensional
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approximation) as we see from :

Tra.Err := X − E[X] −
N∑

l=1

E[D(l∆t)X |Gl∆t ]∆Wl

= X − XN + E[X − XN ]

−
N∑

l=1

(
E[D(l∆t)X |G(l∆t) ] − E[∂lXN |GN

l−1 ]
)
∆Wl +Mart.Err

=: Disc.Err +Mart.Err.

There are considerably many studies on the subject of the tracking error
as well. It at least dates back to the paper by Rootzen [51], where the weak
convergence of the scaled error was studied. The problem is reformulated as
“tracking error of the delta hedge” in Bertsimas, Kogan, and Lo [7], where
the error was also measured by L2-norm. Hayashi and Mykland [23] further
developed the argument from financial perspectives.

Notable results in this topic are summarized as follows. Although the un-
derlying continuous process X and the definition of the error may differ, one
has roughly the following results:

• Convergence in law of the normalized error:

√
N · Tra.Err

|∆|→0→ 1√
2

∫ T

0
E[D2

t,tF |Gt ]dBt in law(3.2)

where F = f (XT) where X = (Xt)0≤t≤T is a diffusion defined via a sto-
chastic differential equation driven by a Wiener process W = (Wt)0≤t≤T
in [7] and general Itô processes in [23] and B = (Bt)0≤t≤T is a Brown-
ian motion independent of W (Here actually the differentiability is not
required. The expression E[DsX |Gs ] should be understood as simply
the integrand of the martingale representation of X and the meaning of
E[D2

s X |Gs ] will be clarified later).
• L2-convergence of the error: When treating only equidistant partitions
∆,

‖Tra.Err‖L2 → 0 as |∆| = 1/N→ 0(3.3)

with the order
— O(N−1/2) when F = max{XT − K, 0} (the pay-off for call option),

max{K − XT, 0} (the pay-off for put option) or F = f (XT) where f
is absolutely continuous with a polynomial growth and where X =
(Xt)0≤t≤T is a diffusion process defined by a stochastic differential
equation in [62]
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— O(N−1/4) when F = 1[K,+∞)(XT) (the pay-off for digital option) which
is more irregular than the above is shown in [19] and [55],

— O(Nθ−1/2) when F = f (XT) with f belonging to a fractional Sobolev-
type space indexed by θ ∈ [0, 1/2) in [17], where they revealed the
reason why the absolute continuity assumption on f was needed
to get the O(N−1/2)-convergence (which is the best possible) with
equidistant time partitions.

— O(N−s/2) when F ∈ D2,s(R) with a finite dimensionality in [2] for
0 ≤ s ≤ 1.

Notably, it is shown in [17] O(N−1)-convergence rather than O(N−1/2) by
taking suitable deterministic and non-equidistant time partitions.

In this chapter, we shall establish the corresponding results for the Mart.Err,
which almost parallel with the above.

After introducing the Discrete Clark-Ocone formula (Theorem 2.2.1, section
2.2), we will show, by using the formula, a multi-level central limit theorem
for the error (Theorem 3.2.1). This corresponds to the result (3.2) above. Since
we will be working on a sequence of discrete Wiener functionals unlike the
situations concerning tracking error, we need to some discussions on the finite-
dimensionality. An answer is given in section 3.3, and under the condition it is
proven that the convergence order is related to a fractional smoothness (Theorem
3.3.1). This corresponds to the result (3.3) above. Section 3.5 is devoted to a
study of the asymptotics of the error of the additive functionals. As a case
study, we give a detailed estimate of the martingale representation error of the
Riemann-sum approximation of Brownian occupation time (Theorem 3.6.2).

The proofs given in this chapter are largely based on elementary calculus
with a bit of classical Fourier analysis and distribution theory, but nonethe-
less our methods can be, in spirit, a finite-dimensional reduction of Malliavin-
Watanabe’s distribution theory. Some detailed discussions on this point of view
will be given in sections 2.1, 2.3, and 3.1. We have restricted ourselves to one-
dimensional Wiener space case, but this is only for simplicity for the notations.

2. A Discrete Version of Clark-Ocone Formula

2.1. Generalized Wiener Functional in Discrete Time. Throughout this
section we fix N ∈N and work on the canonical probability space (RN,B(RN), µN)
though we will abuse the notations like ∆W as the coordinate map.

Let SN ≡ S(RN) be the Schwartz space; the space of all rapidly decreasing
functions and S′N be its dual; the space of all tempered distributions (see, e.g.
[52]). We (may) call X ∈ S′N a “discrete generalized Wiener functional” and its
generalized expectation is defined to be the coupling S′N〈X, p

N〉SN , where pN is
the density of µN, which is of course in SN.



2. A DISCRETE VERSION OF CLARK-OCONE FORMULA 67

The conditional expectation E[X |GN
k ] for X ∈ S′N is then defined as follows.

We first note that the inclusion GN
k ⊂ GN

N induces those of S(Rk) ⊂ S(RN) and
S′(Rk) ⊂ S′(RN). In this sense we write Sk and S′k for the Schwartz space and
the space of generalized Wiener functionals with respect to GN

k , k = 1, · · · ,N.
Then Y = E[X |GN

k ] in S′k is defined in terms of the relation

E[XZ ] = E[YZ ], ∀Z ∈ Sk,

which should be understood as

S′N〈X,ZpN〉SN = S′k〈Y,Zpk〉Sk , ∀Z ∈ Sk.

In particular, we see that the conditional expectation is well-defined by du
Bois-Reymond lemma (see e.g. [52]). Note that this generalized conditional ex-
pectation reduces to the standard one on L1(µN), which is included in S′N unlike
the L1 space with respect to the Lebesgue measure. Furthermore, differentiations
of X ∈ S′N are defined as usual, namely,

∂kX = Y ⇐⇒ S′N〈Y,Z〉SN = −S′N〈X, ∂kZ〉SN ∀Z ∈ SN,

which imply
E[∂kX ] = E[X∂k log pN ],

and so on.

2.2. Clark-Ocone Formula in Discrete Time. We have the following series
expansion in ∆t:

Theorem2.2.1 (A Discrete Version of Clark-Ocone Formula). For X ∈ L2(GN
N) '

L2(µN), we have the following L2-convergent series expansion:

(3.4) X − E[X] =
∞∑

m=1

N∑
l=1

(∆t)m/2

√
m!

E[∂m
l X |GN

l−1 ]Hm

(
∆Wl√
∆t

)
where Hm is the m-th Hermite polynomial for m ∈ Z+;

(3.5) Hm(x) =
(−1)m

√
m!

e
x2
2

dm

dxm e−
x2
2 (m ∈ Z+).

Here the differentiations are understood in the distribution sense, as explained in the
previous section.

Proof. Since
{∏N

i=1 Hki(
∆Wi√
∆t

)
}

k1,...,kn∈Z+
is an orthonormal basis of L2(RN, µN),

we have the following orthogonal expansion of X ∈ L2(RN, µN):

(3.6) X(∆W1, . . . ,∆WN) =
∑

k1,...,kN

c(k1,...,kN)

N∏
i=1

Hki

(
∆Wi√
∆t

)
.
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where we denote

c(k1,...,kN) :=
〈
X,

N∏
i=1

Hki

(
∆Wi√
∆t

) 〉
= E

[
X

N∏
i=1

Hki

(
∆Wi√
∆t

) ]
.

Let us “sort” the series according as the “highest” non-zero ki;

X(∆W1, . . . ,∆WN)

= E[X] +
N∑

l=1

∑
k1,...,kl−1

∑
kl≥1

c(k1,...,kl,0,...,0)

l∏
i=1

Hki

(
∆Wi√
∆t

)
.(3.7)

Here we claim that

(3.8)
N∑

l=1

∑
k1,...,kl−1

c(k1,...,kl,0,...,0)

l−1∏
i=1

Hki

(
∆Wi√
∆t

)
= E[XHkl

(
∆Wi√
∆t

)
|GN

l−1 ].

In fact, from the expansion (3.6) we have

E[XHkl

(
∆Wl√
∆t

)
|GN

l−1 ]

= E
[ ∑

k′1,...,k
′
N

c(k′1,...,k
′
N)Hkl

(
∆Wl√
∆t

) N∏
i=1

Hk′i

(
∆Wi√
∆t

) ∣∣∣GN
l−1

]
=

∑
k′1,··· ,k

′
N ;

c(k′1,...,k
′
N)

l−1∏
i=1

Hk′i

(
∆Wi√
∆t

)
E
[
Hkl

(
∆Wl√
∆t

) N∏
i=l

Hk′i

(
∆Wi√
∆t

) ]
,

and we confirm the claim since E[Hkl(
∆Wl√
∆t

)
∏n

i=l Hk′i
(∆Wi√
∆t

)] = 0 unless k′l = kl and
k′i = 0 for i > l.

We further claim that

(3.9) E[XHkl

(
∆Wi√
∆t

)
|GN

l−1 ] =
(∆t)k/2

√
k!

E[∂k
l X |GN

l−1 ],

which, together with (3.7) and (3.8), will prove the expansion (3.4) in the L2 case.
Here, the conditional expectation should be understood in the generalized sense.
Following the definition we have made, it suffices to show that

E
[
XHkl

(
∆Wl√
∆t

)
f (∆W1, · · · ,∆Wl−1)

]
=

(∆t)k/2

√
k!

E[ (∂k
l X) f ]
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for any f ∈ Sl−1 but this is easy to see if we write down the generalized expec-
tation as the coupling of S and S′:

S′
〈
X,Hk(x/

√
∆t) f pN

〉
S
= S′

〈
X, f (−1)k (∆t)k/2

√
k!
∂k

l p
N
〉
S

=
(∆t)k/2

√
k!

S′〈∂k
l X, f pN 〉S.

�

2.3. Comment on Discrete Generalized Wiener Functionals. In this sub-
section, we remark that our discrete generalized Wiener functionals is slightly
broader than that of the direct finite dimensional reduction; there is a gap. For
simplicity, we let ∆t = 1 in this subsection.

We know that (see e.g. [48, Appendix to V.3]) the orthogonal expansion in
L2(RN,Leb) with respect to the Hermite functions:

φN(x) :=
1√
N!

HN(x)(pN)1/2

gives so-calledN-representation of S and S′; the series for f ∈ S (resp. ∈ S′)∑
S′〈 f , φN〉SφN

converges to f inS (resp. inS′). In our context, it then follows that if X(pN)1/2 ∈ S
(resp. ∈ S′), then the convergence of the expansion (3.4) is in S (resp. in S′) as
well. It should be further noted that we have the following equivalences:

Proposition 2.3.1. It holds that

(3.10) X(pN)1/2 ∈ S ⇐⇒ X ∈ D(N)
2,∞ = ∩s>0D

(N)
2,s

and

(3.11) X(pN)1/2 ∈ S′ ⇐⇒ X ∈ D(N)
2,−∞ = ∪s<0D

(N)
2,s ,

whereD(N)
2,s is the completion of L2(µN) by the norm ‖ f ‖2,s = ‖(1 + L)s/2 f ‖L2(µN). Here L

is the Ornstein-Uhlenbeck operator on RN;

L = −
N∑

i=1

∂2

∂x2
i

+

N∑
i=1

xi
∂
∂xi
.

Proof. Let {φn : n ∈ Z} be norms defined by

φn( f ) = ‖(1 + S)n f ‖L2(Leb),
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where S is the following Schrödinger operator of the harmonic oscillator:

S := −
N∑

i=1

∂2

∂x2
i

+
1
4
|x|2 − 1

2
.

We know that S is a Fréchet space by the seminorms {φn}. In fact, both L and S
are the number operators respectively in that;

L
N∏

i=1

Hki(xi) = (
N∑

i=1

ki)
N∏

i=1

Hki(xi)

and

S
N∏

i=1

φki(xi) = (
N∑

i=1

ki)
N∏

i=1

φki(xi).

We also have
L( f )(pN)1/2 = S( f (pN)1/2),

which implies
‖ f ‖2,n = φn( f ).

This proves (3.10).
The equivalence (3.11) follows from the following equivalence of the duality:

D(N)
2,−∞
〈X,Y〉

D(N)
2,∞
= S′〈X(pN)1/2,Y(pN)1/2〉S.

�

Corollary 2.3.2. For X ∈ D(N)
2,s , s ∈ R, the convergence of (3.4) is also attained in

D(N)
2,s .

Proof. It follows from the fact that, by the assumption, the partial sums

Xn :=
∑

k1+···+kN≤n

c(k1,··· ,kN)

N∏
i=1

Hki(xi), n ∈N

form a Cauchy sequence inD(N)
2,s . �

3. Asymptotic Analysis of Martingale Representation Errors

In this section, we will consider the asymptotic behavior of the error term
when N → ∞ with N∆t = T. Let tk :=: t(N)

k := kT
N for each k = 0, 1, · · · ,N. We

recall that ∆Wk = Wt(N)
k
−Wt(N)

k−1
for each k and N, and GN

k := σ(∆Wl; l = 1, · · · , k).
Further, to facilitate the discussion in the limit, we implement our discrete
Malliavin-Watanabe calculus into the classical one in the first subsection.
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3.1. Consistency with the Classical Malliavin Calculus. First, we review
briefly the Malliavin calculus over the one-dimensional classical Wiener space
to introduce notations which we will use in the following sections devoted to
asymptotic analyses, and then will show how our framework, established in the
previous sections, is “embedded” to the classical Malliavin calculus (Proposition
3.2.1).

Let (W ,P) be the one-dimensional Wiener space on [0,T]. We consider the
canonical process w = (w(t))0≤t≤T starting from zero a.s. In this context, the
Hilbert space

H =
{
h ∈ W :

h(0) = 0 and h is absolutely continuous
with square-integrable derivative

}
equipped with the inner product defined by

〈h1, h2〉H =
∫ T

0
ḣ1(t)ḣ2(t)dt, h1, h2 ∈ H

is called the Cameron-Martin subspace of W . For each complete orthonormal

system (CONS, in short) {hi}∞i=1 of H, it is known that
{ ∞∏

i=1

Hai

( ∫ T

0
ḣi(t)dw(t)

)
:

a ∈ Λ
}

forms a CONS in L2(W ) (see e.g., [24] Proposition 8.1), where Λ is the
set of all sequence a = (ai)∞i=1 of nonnegative integers except for a finite number
of i’s and Hn is the n-th Hermite polynomial defined in (2.2.1). We also denote
by Jn : L2(W )→ Cn the orthogonal projection, where Cn is the L2(W )-closure of

the subspace spanned by
{ ∞∏

i=1

Hai

( ∫ T

0
ḣi(t)dw(t)

)
:
∞∑

i=1

ai = n
}

over R. Each Cn is

called the subspace of n-th Wiener’s homogeneous chaos.
For each s ∈ R, a Sobolev-type Hilbert spaceD2,s = D2,s(R) is defined as the

completion of {F ∈ L2(W ) : ‖F‖D2,s < +∞} under the seminorm ‖ · ‖D2,s on L2(W )
defined by

‖F‖2D2,s
=

∞∑
n=0

(1 + n)s ‖ JnF‖2L2 , F ∈ L2(W )

which may be infinite in general.
In the following, for any two separable Hilbert space H1 and H2, we denote

by H1 ⊗ H2 the completion of the algebraic tensor product of H1 and H2 under
the Hilbert-Schmidt norm.

It is known that one can define a (continuous) linear operator D : D2,1 →
L2(W ) ⊗H such that

〈DF, h〉H = DhF ∈ L2(W )
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for every h ∈ H and F ∈ D2,1, where DhF is defined by

(DhF)(w) = lim
ε→0

1
ε

{
F(w + εh) − F(w)

}
for a.e. w ∈ W ,

which is well-defined due to the Cameron-Martin theorem (see e.g., [24] Theo-
rem 8.5). For each t ∈ [0,T], let et : W → R denote the evaluation map defined
by et(w) = w(t). Then a linear operator Dt : D2,1 → L2(W ) is defined by

(3.12) DtF =
d
dt

(
idL2(W ) ⊗ et

)
(DF), F ∈ D2,1

for a.a. t ∈ [0,T].
Under these notations, we can state the relationship between our framework

established in section 2 and that of Malliavin calculus. We omit the proof because
it is immediate from the definition.

Proposition 3.1.1. For each X ∈ D(N)
2,1 , we have

(DtX)(w) =
N∑

l=1

1{tl−1≤t<tl}(∂lX)(w)

for a.a. (t,w) ∈ [0,T] ×W .

For each F ∈ D2,1, one can prove that E[F |GN
N ] ∈ D(N)

2,1 and limN→∞ E[F |GN
N ] =

F in D2,1 (consult e.g., [31] Theorem 1.10). By using also the fact that et(h) =
〈1[0,t), h〉H for each h ∈ H, one can obtain

(3.13) (DtF)(w) = lim
N→∞

N∑
l=1

1{tl−1≤t<tl}∂lE[F |GN
N ](w)

for a.a. (t,w) ∈ [0,T] ×W . Note that in [31], the derivative D on the path space
W is defined directly by (3.13) with N = 2n. Following this approach in [31], we
define Dk

·X ∈ L2[0,T] ⊗ L2(P) as the L2-limit of the sequence (Dk
·E[X |GN

N ] )∞N=1 if
it exists (see [31], Theorem 1.10 to consult what condition is enough to get this
limit).

By the above discussions, we may write

Dk
t X := ∂k

l X if tl−1 ≤ t < tl

for X ∈ D(N)
2,n , t ∈ [0,T], and k = 1, 2, · · · ,n.

3.2. A Central Limit Theorem for the Errors. Suppose that we are given a
sequence (XN)∞N=1 of finite dimensional Wiener functionals XN ∈ L2(GN

N) for each
N.
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We put, for n ≥ 0,

ErrN(n) := XN −
n∑

m=0

N∑
l=1

(∆t)m/2

√
m!

E[Dm
lT/NXN |GN

l−1 ]Hm

(
∆WN

l√
∆t

)
.

Theorem 3.2.1. Let n ∈ N. Suppose that XN ∈ D(N)
2,n+2 for each N = 1, 2, · · · and

for some Wiener functional X ∈ D2,n+1(R), we have

• XN → X in L2(P),

•
∫ T

0
‖Dp+1

t XN −Dp+1
t X ‖2L2dt→ 0

as N →∞ for each p = 0, 1, · · · ,n and

• sup
N

∫ T

0
‖Dn+2

t XN ‖2L2dt < +∞.

Then we have


ErrN(0)

(∆t)−1/2ErrN(1)
...

(∆t)−n/2ErrN(n)

→



∫ T

0
E[DtX |Gt ]dWt

1√
2

∫ T

0
E[D2

t X |Gt ]dB1
t

...
1√

(n + 1)!

∫ T

0
E[Dn+1

t X |Gt ]dBn
t


in probability on an extended probability space as N → ∞, where (B1, · · · ,Bn) =
(B1

t , · · · ,Bn
t )0≤t≤T is an n-dimensional Brownian motion independent of W = (Wt)0≤t≤T.

Remark 3.1. Although the Brownian motion B = (B1, · · · ,Bn) above is not
adapted to the filtration (Gt)0≤t≤T, the above stochastic integrals make sense
because it is an

(
Gt ∨ σ(Bs : 0 ≤ s ≤ t)

)
0≤t≤T

-Brownian motion.

Proof. By Theorem 2.2.1, we have,

(∆t)−p/2ErrN(p) =
∞∑

m=p+1

N∑
l=1

(∆t)(m−p)/2

√
m!

E[Dm
lT/NXN |GN

l−1 ]Hm

(
∆WN

l√
∆t

)
.
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For m ≥ p + 2, by using the integration by parts formula (3.9), we see that∥∥∥∥∥∥∥
∞∑

m=p+2

N∑
l=1

(∆t)(m−p)/2

√
m!

E[Dm
lT/NXN |GN

l−1 ]Hm

(
∆WN

l√
∆t

)∥∥∥∥∥∥∥
2

L2

= (∆t)2
∞∑

k=0

N∑
l=1

k!
(k + p + 2)!

∥∥∥∥∥∥E[
(
Dp+2

lT/NXN
)
Hk

(
∆WN

l√
∆t

)
|GN

l−1 ]

∥∥∥∥∥∥
2

L2

≤ (∆t)
∞∑

k=1

1
kp+2 ×

N∑
l=1

‖Dp+2
lT/NXN ‖2L2∆t

= (∆t)
∞∑

k=1

1
kp+2 ×

∫ T

0
‖Dp+2

t XN ‖2L2dt

(3.14)

which goes to zero as N→∞ for each p = 0, 1, · · · ,n by the assumption.
Let us consider the case m = p + 1. For each p = 0, 1, · · · ,n, we define a

right-continuous process Lp,N = (Lp,N
t )0≤t≤T with left-hand side limits by

Lp,N
t :=

k∑
l=1

Hp+1

(
∆WN

l√
∆t

)
if tk−1 ≤ t < tk

for k = 1, 2, · · · ,N, and Lp,N
T := Lp,N

tN−1
.

Since Hp+1

(
∆WN

l√
∆t

)
, l = 1, 2, · · · ,N are i.i.d. random variables and Hp+1

(
∆WN

l√
∆t

)
,

p = 0, 1, · · · ,n are orthogonal to each other for each l = 1, 2, · · · ,N, the central
limit theorem of finite dimensional distributions of (∆t)1/2Lp,N, N = 1, 2, · · ·
follows as for each 0 ≤ s < t, with taking t j−1 ≤ s < t j and tk−1 ≤ t < tk,

lim
N→∞

E
[
e

i
n∑

p=0

ξp

{
(∆t)1/2Lp,N

t − (∆t)1/2Lp,N
s

}∣∣∣F L0,N

s ∨ F L1,N

s ∨ · · · F Ln,N

s

]
= lim

N→∞

k∏
l= j+1

E
[
e

i
n∑

p=0

(
ξp

√
tk − t j

)
· (k − j)−1/2Hp+1

(
∆WN

l√
∆t

)]
= lim

N→∞

k∏
l= j+1

{
1 − |ξ|2

2(k − j)
(tk − t j) + o

(
|ξ|2

k − j

) }
= e−

ξ2
2 (t−s).

for each ξ = (ξ0, ξ1, · · · , ξn) ∈ Rn+1, where (F Z
t )0≤t≤T denotes the filtration gen-

erated by a stochastic process Z = (Zt)0≤t≤T and the little-o-notation is with
respect to the asymptotics when N → +∞ (so that k − j → +∞). This im-
plies that every finite dimensional distribution of (n + 1)-dimensional process
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((∆t)1/2Lp,N)n
p=0 converges to that of an (n + 1)-dimensional Brownian motion

(B0,B1, · · · ,Bn) = (B0
t ,B

1
t , · · · ,Bn

t )0≤t≤T.
Besides, using Kolmogorov’s inequality, we have for each p = 0, 1, · · · ,n,

lim
K→∞

lim sup
N→∞

P
(

sup
0≤t≤T

∣∣∣(∆t)1/2Lp,N
t

∣∣∣ ≥ K
)
≤ lim

K→∞

(∆t)‖Lp,N
T ‖2L2

K2 = 0

and for each ε > 0,

lim
δ→0

lim sup
N→∞

P
(

inf
{s j} j⊂[0,T]:
|s j−s j+1|>δ

max
j

sup
t,s∈[s j−1,s j)

(∆t)1/2 |Lp,N
t − Lp,N

s | ≥ ε
)

≤ lim sup
N→∞

P
(

max
j=1,2,··· ,N

sup
t,s∈[s j−1,s j)

(∆t)1/2 |Lp,N
t − Lp,N

s | ≥ ε
)

= lim sup
N→∞

P(0 ≥ ε ) = 0.

They imply the tightness of {(∆t)1/2Lp,N}∞N=1(see Billingsley [9], Theorem 13.2).
Therefore, { (

(∆t)1/2 L0,N, (∆t)1/2 L1,N, · · · , (∆t)1/2 Ln,N
) }∞

N=1

also forms a tight family. Hence we have

(
√
∆tL0,N,

√
∆tL1,N, · · · ,

√
∆tLn,N)→ (B0,B1, · · · ,Bn)

in law as N →∞. By the Skorohod representation theorem (see Ikeda-Watanabe
[24], Theorem 2.7 and we remark that on the space of all right-continuous func-
tions with left-hand side limits, one can endow so-called the Skorohod topology
which is metrizable and makes the space a complete separable metric space.
For details, see Billingsley [9], Chapter 5. ), we may assume that the above con-
vergence is realized as an almost sure convergence on an extended probability
space. Note that on the probability space we still have B0 =W a.s.

Hence we have

(∆t)((p+1)−p)/2√
(p + 1)!

N∑
l=1

E[Dp+1
lT/NXN |GN

l−1 ]Hp+1

(
∆WN

l√
∆t

)

=
1√

(p + 1)!

N∑
l=1

E[Dp+1
tl

XN |Gtl−1 ]
{
(∆t)1/2Lp,N

tl
− (∆t)1/2Lp,N

tl−1

}
→ 1√

(p + 1)!

∫ T

0
E[Dp+1

t X |Gt ]dBp
t in probability as N→∞

simultaneously for p = 0, 1, · · · ,n. �

Substituting p = 0 into the inequality (3.14) in the proof of Theorem 3.2.1,
we also obtain the following
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Corollary 3.2.2. If sup
N

∫ T

0
‖D2

t XN ‖2L2dt < +∞ then we have

∥∥∥XN −
{
E[XN] +

N∑
l=1

E[DlT/NXN |GN
l−1 ]∆WN

l

}∥∥∥
L2 = O(N−1/2)

as N →∞.

3.3. The Cases with “Finite Dimensional” Functionals. We have seen that
the martingale representation error is of an order 1/2 for a smooth functional.
In this section, we will observe that for a non-smooth functional, the order
is related to its fractional differentiability if it behaves eventually like a finite
dimensional functional. This parallels with the corresponding results in the
cases of the tracking error as we have pointed out in Introduction.

Let us start with one-dimensional cases. Let F ∈ L2(R, µT), where µT is the
Gaussian measure with variance T > 0. Then, since

∂k

∂xk
l

F(x1 + · · · + xN) = F(k)(x1 + · · · + xN),

we have, for k1 + · · · + kN = n,

E[Dk1

t(N)
1

· · ·Dkl

t(N)
l

F(WT) ]2 = E[F(n)(WT) ]2

=
n!
Tn E[F(WT)Hn

(
WT√

T

)
]2 =

n!
Tn ‖ JnF(WT)‖2L2 ,

irrespective of l and N. Here Jn is the projection to the n-th chaos. With
this observation in mind, we understand the following property as a finite-
dimensionality of a sequence; let {FN} be such that each FN beingGN

N-measurable
and that

sup
k1+···+kN=n

(
E[Dk1

t(N)
1

· · ·DkN

t(N)
N

F ]
)2
= O

(
n!‖ JnFN ‖2

Tn

)
uniformly in n = 2, 3, · · · as N→∞.

(3.15)

Note that a sequence composed of a one dimensional functional F(WT) satisfies
the above property trivially.

Theorem 3.3.1. Suppose that we are given a sequence of FN ∈ D(N)
2,−∞, N = 1, 2, · · ·

satisfying
sup

N
‖FN ‖2D2,s

< +∞

for some 0 ≤ s ≤ 1 and the “finite-dimensional property” (3.15). Then

‖1-Mart.Err(FN)‖2L2 = O(N−s/2) as N→∞.
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Proof. By observing (3.7), we notice that

‖1-Mart.Err(FN)‖2L2

=

N∑
l=1

∑
k1+···+kl=n

kl≥2

n!
k1! · · · kl!

(∆t)nE[∂k1
1 · · · ∂

kl
l FN ]2

for each n = 2, 3, · · · . By the assumption, there is a constant C > 0 such that

sup
k1+···+kl=n

E[∂k1
1 · · · ∂

kl
l FN ]2 ≤ C

n!‖ JnFN ‖2
Tn

for each n = 2, 3, · · · and N = 1, 2, · · · and the multinomial theorem yields that∑
k1+k2+···+kl=n

kl≥2

n!
k1! · · · kl!

(∆t)n =

(
lT
N

)n

−
(

(l − 1)T
N

)n

− n
T
N

(
(l − 1)T

N

)n−1

.

Putting them together, we have

‖1-Mart.Err(FN)‖2L2

≤ C
∞∑

n=2

{
1 − n

1
N

N−1∑
l=0

(
l

N

)n−1 }
‖ JnFN ‖2L2

= CN−s
∞∑

n=2

Ns

ns−1

{ 1
n
− 1

N

N−1∑
l=0

(
l

N

)n−1 }
ns ‖ JnFN ‖2L2

(3.16)

for each s ∈ R.
On the other hand, since we have

In,N :=
1
n
− 1

N

N−1∑
l=0

(
l

N

)n−1

=

N−1∑
l=0

∫ (l+1)/N

l/N

{
xn−1 −

( l
N

)n−1 }
dx > 0,

In,N ≤ 1/n, and

In,N ≤
1
N

N−1∑
l=0

{ ( l + 1
N

)n−1

−
(

l
N

)n−1 }
=

1
N
,

we notice that

(3.17) In,N = ( In,N )s( In,N )1−s ≤
( 1
N

)s (1
n

)1−s

for every 0 ≤ s ≤ 1.
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By (3.16) and (3.17), we finally have

‖1-Mart.Err(FN)‖2L2

≤ CN−s
∞∑

n=2

ns ‖ JnFN ‖2L2 ≤ CN−s sup
N
‖FN ‖2

D(N)
2,s

.

�

3.4. The Case with One Dimensional Functionals in Multi-Dimensional
Brownian Motion. Let W = (W1

t , · · · ,Wd
t )0≤t≤T be a d-dimensional Brownian

motion starting from zero. Although the framework discussed so far is for
one-dimensional Brownian motion, it obviously extends to multi-dimensional
case.

Let f : Rd → R be an arbitrary Borel function. We denote

ErrN := f (WT) −
{
E[ f (WT) ] +

d∑
i=1

N∑
l=1

E[ (∂i f )(WT) |GN
l−1 ]∆Wi

l

}
,

where GN
0 := the trivial σ-field, and GN

l := σ(∆Wi
1, · · · ,∆Wi

l : i = 1, · · · , d ) for
l = 1, · · · ,N.

Theorem 3.4.1. If f (WT) ∈ D2,s for some 0 ≤ s ≤ 1, then we have ‖ErrN ‖L2 =
O(N−s/2) as N→∞.

Proof. A straightforward extension of the discrete Clark-Ocone formula
(3.4) to the multi-dimensional case yields that

ErrN =

∞∑
n=2

N∑
l=1

∑
k1+···+kd=n

(∆t)k1/2 · · · (∆t)kd/2

√
k1! · · · kd!

× E[ (∂k1
1 · · · ∂

kd
d f )(WT) |GN

l−1 ]Hk1

(∆W1
l√
∆t

)
· · ·Hk1

(∆Wd
l√
∆t

)
.

Then Parseval’s identity can be applied to obtain

(3.18) ‖ErrN ‖2L2 =

∞∑
n=2

N∑
l=1

∑
k1+···+kd=n

(∆t)n

k1! · · · kd!
E
[
E[ (∂k1

1 · · · ∂
kd
d f )(WT) |GN

l−1 ]2
]
.
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Since E[ (∂k1
1 · · · ∂

kd
d f )(WT) |GN

l−1 ] is a function of Wtl−1 , it can be expanded by the
chaos in Wtl−1 as

E[ (∂k1
1 · · · ∂

kd
d f )(WT) |GN

l−1 ]

=

∞∑
m=0

∑
j1+···+ jd=m

(tl−1) j1/2 · · · (tl−1) jd/2√
j1! · · · jd!

× E[ (∂ j1+k1

1 · · · ∂ jd+kd
d f )(WT) ]H j1

( W1
tl−1√
tl−1

)
· · ·H jd

( Wd
tl−1√
tl−1

)
,

so that

E
[
E[ (∂k1

1 · · · ∂
kd
d f )(WT) |GN

l−1 ]2
]

=

∞∑
m=0

∑
j1+···+ jd=m

(tl−1)m

j1! · · · jd!
E[ (∂ j1+k1

1 · · · ∂ jd+kd
d f )(WT) ]2.

(3.19)

Combining (3.18) and (3.19), we have

‖ErrN ‖2L2

=

N∑
l=1

∞∑
n=2

∞∑
m=0

∑
k1+···+kd=n

∑
j1+···+ jd=m

(∆t)n

k1! · · · kd!
(tl−1)m

j1! · · · jd!
E[ (∂ j1+k1

1 · · · ∂ jd+kd
d f )(WT) ]2.

To compute this, first we note that this series is absolutely convergent, therefore
we can change freely the order of the summation. We first change the variable
as j 7→ i := k + j for each k, where k = (k1, · · · , kd) and similarly for i and j, and
after that, we again change the variable as m 7→ p := n + m for each n. As the
result, the above equals to

N∑
l=1

∞∑
n=2

∞∑
p=n

∑
k1+···+kd=n

∑
i1+···+id=p

ir ≥ kr for all r

(∆t)n

k1! · · · kd!
(tl−1)p−n

(i1 − k1)! · · · (id − kd)!
E[ (∂i1

1 · · · ∂
id
d f )(WT) ]2.

Next, we change the order of the summation with respect to (p,n) as
N∑

l=1

∞∑
p=2

p∑
n=2

∑
k1+···+kd=n

∑
i1+···+id=p

ir ≥ kr for all r

(∆t)n

k1! · · · kd!
(tl−1)p−n

(i1 − k1)! · · · (id − kd)!
E[ (∂i1

1 · · · ∂
id
d f )(WT) ]2

and then, since
∑

k1+···+kd≥2
∑

i1+···+id=p
ir ≥ kr for all r

=
∑

i1+···+id=p
∑

k1+···+kd≥2
kr ≤ ir for all r

, we see that the

above is
N∑

l=1

∞∑
p=2

∑
i1+···+id=p

∑
k1+···+kd≥2

kr ≤ ir for all r

(∆t)k1+···+kd

k1! · · · kd!
(tl−1)p−(k1+···+kd)

(i1 − k1)! · · · (id − kd)!
E[ (∂i1

1 · · · ∂
id
d f )(WT) ]2.
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By integration by parts, we see that

‖ErrN ‖2L2 =

N∑
l=1

∞∑
p=2

1
Tp

∑
i1+···+id=p

∑
k1+···+kd≥2

kr ≤ ir for all r

d∏
r=1

(
ir

kr

)
(∆t)kr (tl−1)ir−kr

× E[ f (WT)Hi1

( W1
T√
T

)
· · ·Hid

( Wd
T√
T

)
]2,

in which, the summation with respect to k can be computed, with uses of the
binomial theorem, as∑

k1+···+kd≥2
kr ≤ ir for all r

d∏
r=1

(
ir

kr

)
(∆t)kr (tl−1)ir−kr = (tl)p − (tl−1)p −N(∆t)(tl−1)p−1,

where p = i1 + · · · + id. With noticing that

‖ Jp f (WT)‖2L2 =
∑

i1+···+id=p

E[ f (WT)Hi1

( W1
T√
T

)
· · ·Hid

( Wd
T√
T

)
]2,

we have

‖ErrN ‖2L2 =

∞∑
p=2

pIp,N ‖ Jp f (WT)‖2L2 ,

where Ip,N = 1/p − (1/N)
∑N−1

l=0 ( l/N )p−1. Since Ip,N ≤ N−s ps−1 for 0 ≤ s ≤ 1 as in
(3.17), we finally conclude that

‖ErrN ‖2L2 ≤ N−s
∞∑

p=2

ps ‖ Jp f (WT)‖2L2 ≤ N−s ‖ f (WT)‖2D2,s
.

�

3.5. A Study on Additive Functionals. Let W = (Wt)0≤t≤T be a one-dimensional
Brownian motion starting from zero. In this subsection, we study sequences of
“additive functionals”,

FN :=
N∑

i=1

fN(ti,Wt(N)
i

)∆t

where fN(ti, ·), i = 1, · · ·N is a sequence inD(1)
2,−∞.

(3.20)

We are interested in the conditions for the sequence to be “finite-dimensional”
in the sense of (3.15).
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We define an index to control the finite-dimensionality. Let

Al :=
( N∑

i=l

i−n/2E[ fN(ti,Wti)Hn(Wti/
√

ti) ]
)2

and

αN,n(FN) :=


0 if

∑N
l=1 Al { ln − (l − 1)n } = 0,

Nn sup Al∑N
l=1 Al { ln − (l − 1)n }

otherwise.

Then, we have the following criterion.

Proposition 3.5.1. The sequence {FN} of (3.20) satisfies (3.15) if and only if

sup
n

sup
N
αn,N(FN) < +∞.

Proof. For arbitrary non-negative integers k1, · · · , kN with k1 + · · · + kN = n,
we have

E[Dk1
t1
· · ·DkN

tN
FN ] =

N∑
i=1

1{ki+1=···=kN=0}E[ f (n)
N (ti,Wti) ]∆t

= (n!)1/2(∆t)(2−n)/2
N∑

i=1

1{ki+1=···=kN=0}i−n/2E[ fN(ti,Wti)Hn(Wti/
√

ti) ].

If further kl ≥ 1 and kl+1 = · · · kN = 0 for some l, then

E[Dk1
t1
· · ·Dkl

tl
FN ]

= (n!)1/2(∆t)(2−n)/2
N∑
i=l

i−n/2E[ fN(ti,Wti)Hn(Wti/
√

ti) ]

= (n!)1/2(∆t)(2−n)/2A1/2
l .

Therefore,

(3.21) sup
k1+···+kN=n

(
E[Dk1

t1
· · ·DkN

tN
FN ]

)2
= n! (∆t)(2−n) sup

l=1,··· ,N
Al
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On the other hand, we have

‖ JnFN ‖2L2

=

N∑
l=1

∑
k1+···+kl=n

kl≥1

(
E[FNHk1(∆W1/

√
∆t) · · ·Hkl(∆Wl/

√
∆t) ]

)2

=

N∑
l=1

∑
k1+···+kl=n

kl≥1

(∆t)n

k1! · · · kl!

(
E[Dk1

t1
· · ·Dkl

tl
FN ]

)2

=

N∑
l=1

Al

∑
k1+···+kl=n

kl≥1

(∆t)2n!
k1! · · · kl!

= (∆t)2
N∑

l=1

Al { ln − (l − 1)n }.

(3.22)

Putting (3.21) and (3.22) together, we have

sup
k1+···+kN=n

(E[Dk1
t1
· · ·DkN

tN
FN ]

)2

‖ JnFN ‖2
L2

=
n!
Tn

Nn sup Al∑N
l=1 Al { ln − (l − 1)n }

=
n!
TnαN,n(FN).

Note that ‖ JnFN ‖2L2 = 0 implies both αN,n(FN) = 0 and

sup
k1+···+kN=n

(
E[Dk1

t1
· · ·DkN

tN
FN ]

)2
= 0.

�

Corollary 3.5.2. If

sup
N

supl Al

infl Al
< ∞,

then {FN} is finite-dimensional.

Proof. Since
N∑

l=1

Al { ln − (l − 1)n } ≥ inf
l

Al

N∑
l=1

{ ln − (l − 1)n } = Nn inf
l

Al,

we see that

αn,N(FN) ≤
supl Al

infl Al
.

�
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3.6. Asymptotic Analysis of the Martingale Representation Error of a Dis-
cretization of Brownian Occupation Time. The sequence of Riemann sum ap-
proximations

(3.23) FN :=
N∑

i=1

1[0,∞)(Wti)∆t, N ∈N

of the Brownian occupation time
∫ T

0
1[0,∞)(Ws) ds is an interesting example where

an explicit calculation is possible. We first prove that the sequence is not finite-
dimensional in the sense of (3.15). However, it is rather difficult to check if
the condition for Corollary 3.2.2 is satisfied. Instead, by a direct calculation the
martingale representation error of the sequence is proven to be of order 1/2.

Proposition 3.6.1. The index αn,N(FN) of the sequence (3.23) is not bounded.

Proof. First, we observe that

Al =

 N∑
i=l

i−n/2E[1[0,∞)(Wti)Hn(Wti/
√

ti) ]


2

=

 N∑
i=l

i−n/2t1/2
i n−1/2E[δ0(Wti)Hn−1(Wti/

√
ti) ]


2

= (2πn)−1
(
Hn−1(0)

)2
 N∑

i=l

i−n/2


2

.

Then, we now see that

(3.24) αn,N(FN) =
Nn

(∑N
i=1 i−n/2

)2

∑N
l=1

(∑N
i=l i−n/2

)2
{ ln − (l − 1)n }

.

First, we estimate the numerator of (3.24). We let n ≥ 5. Then

Nn

 N∑
i=1

i−n/2


2

= N2

 N∑
i=1

( i
N

)−n/2 1
N


2

≥ N2

(∫ 1

1/N
x−n/2dx

)2

= N2
{ 2

n − 2
(N(n−2)/2 − 1)

}2

.

(3.25)
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Next, the denominator is estimated as follows:

N∑
l=1

 N∑
i=l

i−n/2


2

{ ln − (l − 1)n }

= N2
N∑

l=1

 N∑
i=l

( i
N

)−n/2 1
N


2 {(

l
N

)n

−
(

l − 1
N

)n}

≤ N2
N∑

l=1

∫ 1

l/N
x−n/2dx +

(
l

N

)−n/2 1
N

2

×
{(

l
N

)n

−
(

l − 1
N

)n}

≤ N2
N∑

l=1

 2
n − 2


(

l
N

)(2−n)/2

− 1

 +
(

l
N

)−n/2 1
N


2

×
{(

l
N

)n

−
(

l − 1
N

)n}
= N2

{
JN
1 + JN

2 + JN
3

}
where

JN
1 := (n − 2)−2

N∑
l=1

{ ( l
N

)(2−n)/2
− 1

}2{ ( l
N

)n
−

( l − 1
N

)n }
,

JN
2 :=

2(n − 2)−1

N

N∑
l=1

{ ( l
N

)1−n
−

( l
N

)−n/2 }{ ( l
N

)n
−

( l − 1
N

)n }
and

JN
3 :=

1
N2

N∑
l=1

( l
N

)−n{ ( l
N

)n
−

( l − 1
N

)n }
.

It is easy to see that supN JN
2 < ∞ and limN→∞ JN

3 = 0. Since JN
1 behaves like

(n − 2)−2
∫ 1

0

{
x(2−n)/2 − 1

}2
nxn−1dx < +∞

as N → ∞, it is also seen that supN JN
1 < ∞. Therefore, there is a constant Cn

independent of N but possibly dependent on n such that

(3.26)
N∑

l=1

 N∑
i=l

i−n/2


2

{ ln − (l − 1)n } ≤ N2Cn.
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From (3.25) and (3.26), we see that supN αn,N = ∞. �

Our main result in this subsection is the following.

Theorem 3.6.2. It holds that

‖1-Mart.Err(FN)‖L2 = O(N−1/2).

Proof. By Theorem 2.2.1, we have

‖ErrN‖2L2

=

N∑
l=1

∞∑
k=2

E
[
E
[ N∑

i=1

1[0,∞)(Wti)∆tHk

(
∆WN

l√
∆t

) ∣∣∣GN
l−1

]2]
=

N∑
l=1

∞∑
k=2

(∆t)k

k!
E
[
E
[ N∑

i=l

1(k)
[0,∞)(Wti)∆t

∣∣∣GN
l−1

]2]
.

(3.27)

For l ≥ 2, by the Hermite expansion in L2(R, µtl−1),

E
[ N∑

i=l

1(k)
[0,∞)(Wti)∆t

∣∣∣GN
l−1

]
=

∞∑
n=0

(tl−1)n/2

√
n!

E
[ N∑

i=l

1(n+k)
[0,∞)(Wti)∆t

]
Hn

(
Wtl−1√

tl−1

)
,

and by Parseval’s identity we have

E

E[ N∑
i=l

1(k)
[0,∞)(Wti)∆t

∣∣∣GN
l−1

]2


=

∞∑
n=0

(tl−1)n

n!
E
[ N∑

i=l

1(n+k)
[0,∞)(Wti)∆t

]2
.

(3.28)

Note that (3.28) is also valid for l = 1 with the conventions t0 = 0 and t0
0 = 1.

Plugging (3.28) into (3.27), we have

‖ErrN‖2L2

=

N∑
l=1

∞∑
k=2

∞∑
n=0

(∆t)k

k!
(tl−1)n

n!
E
[ N∑

i=l

1(n+k)
[0,∞)(Wti)∆t

]2
.

By the renumbering (n + k,n) 7→ (k, n), we have

‖ErrN‖2L2

=

N∑
l=1

∞∑
k=2

1
k!

E
[ N∑

i=l

1(k)
[0,∞)(Wti)∆t

]2
k−2∑
n=0

k!
(k − n)!n!

(∆t)k(tl−1)n,
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by keeping the conventions on t0. With a use of the binomial theorem,

‖ErrN‖2L2

=

N∑
l=1

∞∑
k=2

1
k!

E
[ N∑

i=l

1(k)
[0,∞)(Wti)∆t

]2

×
{
(tl)k − (tl−1)k − k(∆t)(tl−1)k−1

}
.

Then, on one hand, for l ≥ 1 and k ≥ 2,

E
[ N∑

i=l

1(k)
[0,∞)(Wti−1)∆t

]2

=
{ N∑

i=l

√
(k − 1)!

(ti)(k−1)/2
E
[
δ0(Wti)Hk−1

(
Wti√

ti

) ]
∆t

}2

=
{ N∑

i=l

√
(k − 1)!

(ti)(k−1)/2
Hk−1(0)

1√
2πti
∆t

}2

= k! · Hk−1(0)2

2πk

{ N∑
i=l

∆t
(ti)n/2

}2
.

By a similar argument, we find

E
[
1[0,∞)(WT)Hk

(
WT√

T

) ]
=

Hk−1(0)√
2πk

and therefore

‖ErrN‖2L2 =

∞∑
k=2

ZN,kE
[
1[0,∞)(WT)Hk

(
WT√

T

) ]2

where

ZN,k :=
N∑

l=1

{ N∑
i=l

∆t
(ti)k/2

}2{
(tl)k − (tl−1)k − k(∆t)(tl−1)k−1

}
.(3.29)

On the other hand, by Lemma 3.6.3 below, we know that there exists a
constant K > 0 such that

ZN,k ≤
K
N

for each k = 2, 3, · · · and N = 3, 4, · · · . Hence we have

‖ErrN ‖2L2 ≤
2K
N
‖1[0,∞)(WT)‖2L2 .

�



3. ASYMPTOTIC ANALYSIS OF MARTINGALE REPRESENTATION ERRORS 87

Lemma 3.6.3. For k ≥ 2, it holds that

(3.30) ZN,k ≤
9T2

N
.

where ZN,k is given as above in (3.29).

Proof. We may write

ZN,k =

N∑
l=1

[ { N∑
i=l

( tl

ti

)k/2

∆t
}2
−

{ N∑
i=l

(tl−1

ti

)k/2

∆t
}2 ]

− k
N∑

l=1

{ N∑
i=l

(tl−1)(k−1)/2

(ti)k/2
∆t

}2
∆t.

For l ≥ 2, we have{ N∑
i=l

( tl−1

ti

)k/2

∆t
}2

=
{ N∑

i=l−1

(tl−1

ti

)k/2

∆t
}2
− 2

N∑
i=l−1

( tl−1

ti

)k/2

(∆t)2 + (∆t)2,

and therefore,
N∑

l=2

[ { N∑
i=l

(tl

ti

)k/2

∆t
}2
−

{ N∑
i=l

( tl−1

ti

)k/2

∆t
}2 ]

=

N∑
l=2

[ { N∑
i=l

( tl

ti

)k/2

∆t
}2
−

{ N∑
i=l−1

(tl−1

ti

)k/2

∆t
}2 ]

+ 2
N∑

l=2

N∑
i=l−1

(tl−1

ti

)k/2

(∆t)2 −N(∆t)2.

Using this,

ZN,k = (∆t)2 + 2
N∑

l=2

N∑
i=l−1

(tl−1

ti

)n/2

(∆t)2

−N(∆t)2 − k
N∑

l=2

{ N∑
i=l

(tl−1)(k−1)/2

(ti)k/2
∆t

}2
∆t

≤ 2
N∑

l=2

N∑
i=l−1

( tl−1

ti

)k/2

(∆t)2 − k
N∑

l=1

{ N∑
i=l

(tl−1)(k−1)/2

(ti)k/2
∆t

}2
∆t.

(3.31)
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We observe that

2
N∑

l=2

N∑
i=l−1

(tl−1

ti

)k/2

(∆t)2

behaves like

2
∫ T

0

∫ T

t

( t
s

)k/2

dsdt

and

k
N∑

l=1

{ N∑
i=l

(tl−1)(k−1)/2

(ti)k/2
∆t

}2
∆t

behaves like

k
∫ T

0

{ ∫ T

t

t(k−1)/2

sk/2
ds

}2
dt

as N→∞ respectively. We note that

2
∫ T

0

∫ T

t

( t
s

)k/2

dsdt = n
∫ T

0

{ ∫ T

t

t(k−1)/2

sk/2
ds

}2
dt =


T2

2
if k = 2,

2T2

k + 2
if k ≥ 2.

Based on the observations, we estimate ZN,k by separating it into two terms;

ZN,k ≤ Z1
N,k + Z2

N,k

where

Z1
N,k := 2

N∑
l=2

N∑
i=l−1

(tl−1

ti

)k/2

(∆t)2 − 2
∫ T

0

∫ T

t

( t
s

)k/2

dsdt,

Z2
N,k := k

∫ T

0

{ ∫ T

t

t(k−1)/2

sk/2
ds

}2
dt − k

N∑
l=1

{ N∑
i=l

(tl−1)(k−1)/2

(ti)k/2
∆t

}2
∆t.
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We estimate each of them. Firstly, we have

Z1
N,n ≤ 2

N∑
l=2

N−1∑
i=l−1

∫ tl−1

tl−2

∫ ti+1

ti

{ (tl−1

ti

)k/2

−
( t
s

)k/2 }
dsdt

+ 2
N∑

l=2

(tl−1

tN

)k/2

(∆t)2

≤ 2
N∑

l=2

N−1∑
i=l−1

∫ tl−1

tl−2

∫ ti+1

ti

{ (tl−1

ti

)k/2

−
(tl−2

ti+1

)k/2 }
dsdt

+ 2
N∑

l=2

(tl−1

tN

)k/2

= 2(∆t)2
N∑

l=2

N−1∑
i=l−1

{ ( l − 1
i

)k/2
−

( l − 2
i

)k/2 }
+ 2(∆t)2

N∑
l=2

N−1∑
i=l−1

{ ( l − 2
i

)k/2
−

( l − 2
i + 1

)k/2 }
+ 2

N∑
l=2

(tl−1

tN

)k/2

(∆t)2.

(3.32)

By a bit of algebra, the last term in (3.32) is seen to be

(3.33) 2(∆t)2
N∑

l=2

{
1 +

( l − 1
l

)k/2 }
,

which is bounded above by 4T2/N.
Next, we estimate Z2

N,k. We set

I =
N∑

l=1

∫ tl

tl−1

tk−1
{ ∫ T

t

ds
sk/2

}2
dt

−
N∑

l=1

∫ tl

tl−1

tk−1
{ N∑

i=l

∆t
(ti)k/2

}2
dt
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and

II =
N∑

l=1

∫ tl

tl−1

tk−1
{ N∑

i=l

∆t
(ti)k/2

}2
dt

−
N∑

l=1

∫ tl

tl−1

(tl−1)k−1
{ N∑

i=l

∆t
(ti)k/2

}2
dt.

Note that Z2
N,k = k(I + II). For tl−1 ≤ t ≤ tl, l = 1, · · · ,N, we have

∫ T

t

ds
sk/2
−

N∑
i=l

∆t
(ti)k/2

=

N∑
i=l+1

∫ ti

ti−1

(
1

sk/2
− 1

(ti)k/2

)
ds +

∫ tl

t

ds
sk/2
− ∆t

(tl)k/2
≥ 0,

(3.34)

and

N∑
i=l+1

∫ ti

ti−1

(
1

sk/2
− 1

(ti)k/2

)
ds

≤
N∑

i=l+1

∫ ti

ti−1

(
1

(ti−1)k/2
− 1

(ti)k/2

)
ds

= ∆t
(

1
(tl)k/2

− 1
(tN)k/2

)
.

Combining these two, we have

{∫ T

t

ds
sk/2

}2

−
 N∑

i=l

∆t
(ti)k/2


2

≤
∫ tl

t

ds
sk/2

∫ T

t

ds
sk/2
+

N∑
i=l

∆t
(ti)k/2

 ≤ 2
∫ tl

t

ds
sk/2

(∫ T

t

ds
sk/2

)

=


4

k − 2
( t1− k

2 − T1− k
2 )

∫ tl

t

ds
sk/2
≤ 4

k − 2
t1− k

2

∫ tl

t

ds
sk/2

if k ≥ 3,

2
∫ tl

t

ds
s

log
T
t

if k = 2.
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Then for k ≥ 3,

I ≤ 4
k − 2

N∑
l=1

∫ tl

tl−1

∫ tl

t

( t
s

)k/2

dsdt

≤ 4
k − 2

N∑
l=1

∫ tl

tl−1

∫ tl

t
dsdt =

2
k − 2

N∑
l=1

( tl − tl−1 )2 =
2

k − 2
T2

N

(3.35)

and for k = 2, we have

I ≤ 2
N∑

l=1

∫ tl

tl−1

∫ tl

t

t
s

log
T
t

dsdt ≤ 2
N∑

l=1

∫ tl

tl−1

∫ tl

t
ds log

T
t

dt

≤ 2∆t
N∑

l=1

{
∆t log T −

[
t log t − t

]t=tl

t=tl−1+0

}
=

2T2

N
.

(3.36)

Now we turn to the estimate of II. By (3.34), for k ≥ 3,

II ≤
N∑

l=1

∫ tl

tl−1

{
tk−1 − (tl−1)k−1

} (∫ T

t

ds
sk/2

)2

dt

≤ 4
(k − 2)2

N∑
l=1

∫ tl

tl−1

{
tk−1 − (tl−1)k−1

}
t2−kdt

=
4(k − 1)
(k − 2)2

N∑
l=1

∫ tl

tl−1

∫ t

tl−1

( s
t

)k−2

dsdt

≤ 4(k − 1)
(k − 2)2

N∑
l=1

∫ tl

tl−1

∫ t

tl−1

dsdt =
2(k − 1)
(k − 2)2

T2

N
.

(3.37)

For k = 2, we have

II ≤
N∑

l=1

∫ tl

tl−1

( t − tl−1 )
(∫ T

t

ds
s

)2

dt

≤ ∆t
N∑

l=1

∫ tl

tl−1

(
log

T
t

)2

dt =
2T2

N
.

(3.38)

By (3.35), (3.36), (3.37) and (3.38), we have

(3.39) Z2
N,k ≤

5T2

N
.

Combining (3.33) and (3.39), we obtained (3.30).
�
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Remark 3.2. A result by Ngo-Ogawa ([38], Theorem 2.2.) tells us that the
sequence of processes

{
n3/4

( 1
N

[Nt]∑
i=0

1[0,∞)(Xi/N) −
∫ t

0
1[0,∞)(Xs)ds

) }
t≥0

is tight for a diffusion X = (Xt)t≥0 although their results are more general.
Moreover they say that this is optimal in L2-sense in the case where X is the
standard Brownian motion (see [38], Proposition 2.3).

3.7. Error with Euler-Maruyama Approximation. We shall consider the fol-
lowing stochastic differential equation

(3.40)
{

dXt = σ(Xt)dWt + b(Xt)dt,
X0 = x0

where W = (Wt)0≤t≤T is a one-dimensional Brownian motion starting from zero.
In the following, we assume that the stochastic differential equation (3.40) has a
unique strong solution which we denote by X = (Xt)0≤t≤T.

For each partition ∆ = ∆(N) : 0 = t0 < t1 < · · · < tN = T where tk =
kT
N for k =

0, 1, · · · ,N, we introduce the Euler-Maruyama approximation XN = (XN
t )0≤t≤N of

the stochastic differential equation (3.40), which is defined by{
dXN

t = σ(XN
φN(t))dWt + b(XN

φN(t))dt,
XN

0 = x0

where φN : [0,T]→ [0,T] is defined by

φN(t) = tk−1 if tk−1 ≤ t < tk

for k = 1, 2, · · · ,N. We will also write XN
t = XN

t (x0) when we want to emphasize
the initial state x.

Suppose we are given a function f : R→ R. Let us assume that ( f (XN
T ) )∞N=1

is a finite dimensional approximation of f (XT) (though in general we would
have to impose certain conditions on f , σ and b).

This motivates our investigation of

ErrN := f (XN
T )

−
{
E[ f (XN

T ) ] +
N∑

k=1

E[ (∂kgN)(∆W1, · · · ,∆WN) |GN
k−1 ]∆Wk

}
where gN : RN → R is such that f (XN

T ) = gN(∆W1, · · · ,∆WN) and can be com-
puted explicitly.
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Let us further prepare some notations. We denote by q∆n (x, y) the n-step
transition density of the Markov chain (XN

tn
)N
n=0:

q∆n (x, y) :=
∫ +∞

−∞
q∆1 (x, z1)dz1

∫ +∞

−∞
q∆1 (z1, z2)dz2 · · ·

∫ +∞

−∞
q∆1 (zn−2, zn−1)dzn−1q∆1 (zn−1, y)

where for each x, y ∈ R,

q∆1 (x, y) :=
exp

{
−

(
y − (x + b(x)∆t )

)2

2σ(x)2∆t

}
√

2πσ(x)2∆t
.

Additionally, for v > 0, t > 0 and x, y ∈ R we set

pv
t (x, y) :=

e−
(y−x)2

2v2t

√
2πv2t

which is the transition density function of (vWt)0≤t≤T.

Assumption 3.7.1. There are constants c > 0 and C ≥ 1 such that

(3.41) C−1pc−1

tn
(x, y) ≤ q∆n (x, y) ≤ Cpc

tn
(x, y)

for every x, y ∈ R, n = 1, 2, · · · ,N and every partition ∆ : 0 = t0 < · · · < tn ≡ nT
N <

· · · < tN = T.

This assumption is assured if, for example, σ is uniformly elliptic and uni-
formly η-Holder continuous for some η > 0 and b is bounded (see Lemaire-
Menozzi [28], Theorem 2.1.).

We shall keep the symbols c > 0 and C ≥ 1 given in the above assumption.
In the following, we can, without loss of generality, assume that c ≥ 1 as one
can always modify the constant C if necessary.

Theorem 3.7.2. Define Wx0
t := x0 +Wt for 0 ≤ t ≤ T. Under Assumption 3.7.1,

suppose that there exists a constant K > 0 such that

1
(tl−1)n

∫ +∞

−∞
E[ f

(
XN

T−tl
(cWx0

tl−1
+ cy )

)
Hn

(
Wtl−1√

tl−1

)
]2 e−

y2

2∆t

√
2π∆t

dy

≤ K
(T)n

∫ +∞

−∞
E[ f (cWx0

T + cy )Hn

(
WT√

T

)
]2 e−

y2

2∆t

√
2π∆t

dy

(3.42)

for each l = 1, 2, · · · ,N, n = 2, 3, · · · and N = 1, 2, · · · . If

lim sup
N→∞

∫ +∞

−∞
‖ f (cWx0

T + cy)‖2D2,s

e−
y2

2∆t

√
2π∆t

dy < +∞
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for some 0 ≤ s ≤ 1 then

‖ErrN ‖L2 = O(N−s/2) as N→∞.

Proof. Set

ul(x) :=
∫ +∞

−∞
q∆l (x, y)dy f (y), for l = 1, 2, · · · ,N and x ∈ R

which enables us to write E[ f (XN
T ) |GN

l ] = uN−l(Xtl) for each l = 1, 2, · · · ,N.
By Theorem 2.2.1 and (3.9), we have

‖ErrN ‖2L2 =

∞∑
k=2

N∑
l=1

(∆t)k

k!
E
[
E[∂k

l f (XN
T ) |GN

l−1 ]2
]
.

Since the operators E[·|GN
l ] and ∂l commutes on L2(GN

N), we have

E[∂k
l f (XN

T ) |GN
l−1 ] = E[u(k)

N−l(X
N
tl

) |GN
l−1 ] = vk,N−l(XN

tl−1
)

for each k = 2, 3, · · · ,N and l = 1, 2, · · · ,N where

vk,N−l(x) :=
∫ +∞

−∞
q∆1 (x, y)dyu(k)

N−l(y), x ∈ R.

By Assumption 3.7.1 and Schwartz’ inequality, we have

E[vk,N−l(XN
tl−1

)2 ] ≤ CE[vk,N−l(cWx0
tl−1

)2 ]

= CE[
∫ +∞

−∞
pc

tl−1
(x0, x)dx

{ ∫ +∞

−∞
q∆1 (x, y)dyu(k)

N−l(y)
}2

]

≤ CE[
∫ +∞

−∞
pc

tl−1
(x0, x)dx

∫ +∞

−∞
q∆1 (x, y)dy

{
u(k)

N−l(y)
}2

]

≤ C2 E[
∫ +∞

−∞
pc

tl
(x0, y)dy

{
u(k)

N−l(y)
}2

]

≤ C2ck
∫ +∞

−∞

e−
y2

2∆t

√
2π∆t

dyE[u(k)
N−l(cWx0

tl−1
+ cy )2 ]

where in the last inequality, we have used the assumption c ≥ 1. Moreover we
have

E[u(k)
N−l(cWx0

tl−1
+ cy )2 ] =

∞∑
n=0

cn(tl−1)n

n!
E[u(k+n)

N−l (cWx0
tl−1
+ cy ) ]2.
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Putting it all together, we have

‖ErrN ‖2L2 = C2
∫ +∞

−∞

e−
y2

2∆t

√
2π∆t

dy
N∑

l=1

∞∑
k=2

∞∑
n=0

(∆t)k(tl−1)n

k!n!
E[u(k+n)

N−l (cWx0
tl−1
+ cy ) ]2

= C2
∫ +∞

−∞

e−
y2

2∆t

√
2π∆t

dy
∞∑

n=2

1
n!

×
N∑

l=1

{
(tl)n − (tl−1)n − n(∆t)(tl−1)n−1

}
cn E[u(n)

N−l(cWx0
tl−1
+ cy ) ]2.

By our assumption in (3.42), we obtain∫ +∞

−∞
cn E[u(n)

N−l(cWx0
tl−1
+ cy ) ]2 e−

y2

2∆t

√
2π∆t

dy

=
n!

(tl−1)n

∫ +∞

−∞
E[uN−l(cWx0

tl−1
+ cy)Hn

(
Wtl−1√

tl−1

)
]2 e−

y2

2∆t

√
2π∆t

dy

=
n!

(tl−1)n

∫ +∞

−∞
E[ f

(
XN

T−tl
(cWx0

tl−1
+ cy)

)
Hn

(
Wtl−1√

tl−1

)
]2 e−

y2

2∆t

√
2π∆t

dy

≤ Kn!
Tn

∫ +∞

−∞
E[ f (cWx0

T + cy)Hn

(
WT√

T

)
]2 e−

y2

2∆t

√
2π∆t

dy.

Hence we have
‖ErrN ‖2L2

≤ KC2
∫ +∞

−∞

e−
y2

2∆t

√
2π∆t

dy
∞∑

n=2

n
{ 1

n
− 1

N

N∑
l=0

(
l

N

)n−1 }
E[ f (cWx0

T + cy)Hn

(
WT√

T

)
]2

≤ KC2N−s
∫ +∞

−∞
‖ f (cWx0

T + cy)‖2D2,s

e−
y2

2∆t

√
2π∆t

dy.

�



CHAPTER 4

Discrete-Time Clark-Ocone Formula for Poisson Functionals

This part is based on the paper [5].

1. Introduction

Differently to the previous chapter, we use the symbol n (rather than N) in
this chapter to denote the number of division points in the equidistant partition
∆:

∆ = ∆(n) : 0 = t0 < t1 < · · · < tl =
lT
n
< · · · < tn = T

because we deal with Poisson processes N = (Nt)0≤t≤T in the following.
When compared to the Brownian case, a Clark-Ocone formula for Poisson

noises takes a bit different form (see e.g. [15]): for a Poisson functional F,

F = E[F] +
∫ T+

0

∫
X
E[D(t,x)F |Ht ]Ñ(dtdx)(4.1)

where Ñ(dtdx) is a compensated Poisson random measure on [0,T] × X, X is a
measurable space, and H = (Ht)0≤t≤T is the natural filtration of Ñ(dtdx). The
expression (4.1), however, does not directly describes a martingale representa-
tion with respect to a process (martingale basis) unless the Lévy measure of Ñ
consists only of point masses.

To the best of the author’s knowledge, the earliest work on the Poisson
version of Clark-Ocone formula was due to Ševljakov [53], using a difference
operator for D(t,x) (for its definition, see section 3.1, subsection 1.1 in [59] or Def-
inition 6.4.1 and Proposition 6.4.7 in [45]). The Poisson version of Clark-Ocone
formula has been established together with the development of the Malliavin
calculus. It is known that the Malliavin calculus for Poisson processes has two
different formulations: one is based on chaotic expansions which leads to the
“difference calculus” on Poisson spaces (see e.g., Bichteler-Gravereaux-Jacod
[8], Wu [58], Dermoune-Krée-Wu [14] or Nualart-Vives [40]), and the other is
a differential calculus initiated by Carlen-Pardoux [11]. Independently to the
results in Carlen-Pardoux [11], Elliott-Tsoi (Theorem 3.7 in [16]) obtained the
formula (4.1) in a framework which is closely related to the one developed in
Carlen-Pardoux [11] and which is in the case that N(dtdx) is coming from a Pois-
son process and F is a functional of jump times of the Poisson process. Privault
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(Theorem 1 in [44]) has also obtained the formula (4.1) for a Poisson functional
F in L2 within both of the two frameworks above See also Picard (Corollaire 6
in [43]) and Wu (Lemma 1.3 in [59]). The latter states (4.1) for stationary Pois-
son point processes within the former framework. In this article, we adopt the
former framework, that is, the “difference calculus”.

In this chapter, we are interested in a discretization of (4.1). In many appli-
cations the observations of the system are discrete; let say, t0, t1, · · · , tN, which
is the case in the financial practice. In the financial context, a martingale rep-
resentation of a functional F suggests a hedging strategy of the risk of F, but
with a discrete observation the martingale representation fails, and instead one
should work on a Riemann sum approximation of the integral with an error.
We call this error “martingale representation error”, which may correspond to
a hedging error in the financial context.

In [2], the martingale representation error in the Brownian case is studied by
introducing a discrete-time version of the Clark-Ocone formula. In this chapter,
studied is that of Poissonian functionals when the Lévy measure is of finite
point masses, the case where the Clark-Ocone formula (4.1) gives a martingale
representation with respect to an explicit martingale basis.

The first main result is a discrete version of the Poissonian Clark-Ocone
formula (see Theorem 2.4.1):

F = E[F] +
n∑

l=1

E[
(
ϑ1

l f
)
(∆N1, · · · ,∆Nn) |Hn

l−1 ]∆Ñl

+

∞∑
m=2

n∑
l=1

E[
(
ϑm

l f
)
(∆N1, · · · ,∆Nn) |Hn

l−1 ] ×
(

m-th order
chaos of ∆Nl

)
,

(4.2)

where N is a (vector) Poisson process, Ñ is the compensated one,Hn
l = σ(∆N1, · · · ,∆Nl),

and ϑm
l , m = 1, 2, · · · , are some difference operators. We remark that the first

order term can be also written as

n∑
l=1

∫
E[

(
ϑl,x f

)
(∆L1, · · · ,∆Ln) |Hn

l−1 ] Ñ
(
(tl−1, tl],dx

)
,

where ∆L =
∑

i xi∆N(·, {xi}), and(
ϑl,x f

)
(∆L1, · · · ,∆Ln)

= f (∆L1, · · ·∆Ll + x, · · · ,∆Ln) − f (∆L1, · · · ,∆Ll, · · · ,∆Ln).

By this expression we may insist that (4.2) is a variant of Clark-Ocone formula.
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Using the formula (4.2), we then investigate the asymptotic behavior(s) of
the martingale representation error:

Errn := Fn − E[Fn] −
n∑

l=0

E[
(
ϑl fn

)
(∆N1, · · · ,∆Nn) |Hn

l−1 ]∆Ñl

for a sequence (Fn)∞n=1 such that Fn = fn(∆N1, · · · ,∆Nn) (for details, see section 4).
The study of such errors is a variant of the topic of discretization error of

a stochastic integral, which has been intensively studied, especially for these
fifteen years. Here is a brief review of the literature. For X = (Xt)0≤t≤T being
discontinuous processes, we have the following results in the current literature.

• Convergence in law of the normalized error:
√

n · Errn
|∆|→0→ 0 in probability (hence in law)

when X is a Lévy-Itô process without diffusion component in [54].
• L2-convergence of the error: In contrast to the previous result, it is

claimed in [10] that

‖Errn ‖L2 = O(n−1/2) as |∆| = 1/n→ 0

for a pure-jump Lévy process X.
Along the same line of the previous chapter, we study the context with the

following results:
(1) A central limit theorem for multi-level errors (Theorem 4.1.1), which

generalizes (3.2) to Poisson functionals.
(2) A strong estimate under a smoothness condition (Theorem 4.2.1), which,

though seemingly contradicts with the exisiting results, gives a view
unifying Brownian and Poissonian functionals.

(3) A result corresponding to the irregular pay-off cases (Theorem 4.3.1).
This result exhibits an advantage of the approach using discrete Clark-
Ocone formula.

These results are obtained by an application of the discrete Clark-Ocone formula
(Theorem 2.4.1), which is based on an action of a Heisenberg algebra on the
discrete Poisson space (see Proposition 2.2.1). The calculus derived from the
action might be called discrete Poisson Malliavin calculus (see section 2.3). In
section 3.1, we describe how related is the discrete to the classical one.

2. A Discrete-Time Version of Poisson Clark-Ocone Formula

2.1. Notations. Let n be a natural number. We fix an interval [0,T] and its
division ∆ = ∆(n) : 0 = t0 < t1 < · · · < tn = T where tk =

kT
n and for X : [0,T]→ R,

we write
∆Xk := (∆X)k := Xtk − Xtk−1
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for k = 1, 2, · · · ,n. We also write ∆t ≡ tk − tk−1 =
T
n .

Let (Nγ
t )0≤t≤T,γ∈Γ be a family of independent Poisson processes indexed by a

finite set Γ. Denote by λγ the parameter of the Poisson process Nγ = (Nγ
t )0≤t≤T.

The RΓ × · · · ×RΓ︸          ︷︷          ︸
n-times

-valued random variable (∆Nγ
1 , · · · ,∆Nγ

n)γ∈Γ is distributed as:

ν
( ∏
γ∈Γ
{kγ1 } × · · · ×

∏
γ∈Γ
{kγn}

)
:= P

(
∆N1 = k1; · · · ;∆Nn = kn

)
=

∏
γ∈Γ

e−λγT (λγ∆t1)kγ1 · · · (λγ∆tn)kγn

kγ1 ! · · · kγn!
kγ1 · · · k

γ
n

where kl = (kγl )γ∈Γ. We set a filtration (Hn
l )n

l=0 byHn
0 := the trivial σ-algebra and

Hn
l := σ(∆Nγ

1 , · · · ,∆Nγ
l : γ ∈ Γ ) for l = 1, 2, · · · ,n.

2.2. A Heisenberg Algebra Acting on the Discrete Poisson Space. We de-
note by ϑ(l,γ) the difference operator acting on functions

f : RΓ × · · · ×RΓ︸          ︷︷          ︸
n-times

→ R

by (
ϑ(l,γ) f

)
(k1, · · · ,kn)

:= f (k1, · · · ,kl + eγ, · · · ,kn) − f (k1, · · · ,kn),

where eγ ∈ RΓ = {map Γ→ R} is defined by

eηγ := eγ(η) :=
{

1 if γ = η,
0 if γ , η.

We also define another family of difference operators by

ϑ∗(l,γ) f :=
1

λγ∆t
θ(l,γ) f − f

where (
θ(l,γ) f

)
(k1, · · · ,kn) := kγl f (k1, · · · ,kl − eγ, · · · ,kn).

We denote byP the space of all polynomials (overR) in {kγl : l = 1, 2, · · · ,n, γ ∈
Γ}. It is easy to see that the difference operators ϑ(l,γ), ϑ∗(l,γ) are linear transforma-

tions on P. We set a family of polynomials {Q(l,γ)
m } by

Q(l,γ)
m (kγl ) =

(
ϑ∗m(l,γ)1

)
(k1, · · · ,kn )
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where kl = (kγl )γ∈Γ ∈ RΓ for l = 1, 2, · · · ,n. As an example, we see that

ϑ∗(l,γ)1 = (λγ∆t)−1(∆Nγ
l − λ∆t) =: (λγ∆t)−1∆Ñγ

l .(4.3)

Here (and henceforth) we identify the action of ϑ∗(l,γ) on P[kγl ] ⊂ L2(ν) and that
on P[∆Nγ

l ] ⊂ L2(P) induced by Ω 3 ω 7→ {∆Nγ
l }.

We shall list up some algebraic properties which will play essential roles in
the rest of this paper.

Proposition 2.2.1.
(i) [Heisenberg commutation relation] Denoting by (δα,β)α,β the Kronecker delta,

we have

[ϑ(l,γ), ϑ
∗
(k,η)] =

δlkδγη
λγ∆t

(4.4)

for each l, k = 1, 2, · · · , n and γ, η ∈ Γ.
(ii) [Duality] 〈

ϑ(l,γ) f , g
〉

L2(ν)
=

〈
f , ϑ∗(l,γ)g

〉
L2(ν)

(4.5)

for l = 1, 2, · · · , n, γ ∈ Γ and f , g ∈ P.

(iii) [Orthogonality] For p, q = 0, 1, 2, · · · , 1 ≤ l, r ≤ n and γ, η ∈ Γ,〈
Q(l,γ)

p (kγl ),Q(r,η)
q (kηr )

〉
L2(ν)
=

p!
(λγ∆t)pδpqδlrδγη.

(iv) [Completeness]{∏
γ∈Γ

n∏
l=1

√
(λγ∆t)m(l,γ)

m(l,γ)!
Q(l,γ)

m(l,γ)
(kγl ) :

∑
1≤l≤n
γ∈Γ

m(l,γ) < ∞
}

forms a complete orthonormal system (CONS, in short) of L2(ν).

Proof. We prove only (iv). The others are straightforward or obvious. We
fix a numbering and write Γ = {γ j}. To prove (iv), it suffices to prove that P is
dense in L2(ν). Assume that X ∈ L2(ν) is orthogonal to P. Then since X is also
orthogonal to its L2(ν)-closure P, we have

Eν
[
Eν

[
X
∣∣∣σ(k j

1, · · · , k
j
n : 1 ≤ j ≤ m)

]
exp

{ n∑
l=1

m∑
j=1

√
−1ξl, jk

γ j

l

}]
= Eν

[
X exp

{ n∑
l=1

m∑
j=1

√
−1ξl, jk

γ j

l

}]
= 0
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for each m = 1, 2, · · · and ξl, j ∈ R, where Eν denotes the expectation with respect
to ν. The injectivity of the Fourier transform implies Eν[X|σ(k j

1, · · · , k
j
n : 1 ≤

j ≤ m)] = 0 ν-a.s. for each m = 1, 2, · · · . Therefore the martingale convergence
theorem ensures that X = 0 ν-a.s. and hence P is dense in L2(ν). �

Remark 2.1. Each of Q(l,γ)
m (k) is related to the so-called Charlier polynomial

Cm(k, λγ∆t) of order m and parameter λγ∆t (See [45], p207, Chapter 6, Definition
6.2.7) which is defined by

∞∑
m=0

sm

m!
Cm(k, λ) = exp

{
k log(1 + s) − sλ

}
for −1 < s < 1. The relation between them is given by

Cm(k, λγ∆t) = (λγ∆t)mQ(l,γ)
m (k).

2.3. Generalized Poisson Functionals in Discrete Time and its General-
ized Conditional Expectations. With the action of {ϑ(l,γ), ϑ∗(l,γ)}, we can define a
chaotic decomposition:

L2(ν) = R ⊕ C(n)
1 ⊕ C

(n)
2 ⊕ · · · ,

with

C(n)
k = span

{∏
γ∈Γ

n∏
l=1

√
(λγ∆t)m(l,γ)

m(l,γ)!
Q(l,γ)

m(l,γ)
(kγl ) :

∑
1≤l≤n
γ∈Γ

m(l,γ) = k
}‖·‖L2(ν)

for k = 1, · · · and C(n)
0 = R. Let J(n)

k denote the orthogonal projection onto C(n)
k for

each k = 0, 1, 2, · · · . Define ‖ · ‖2,s,(n) for s ∈ R by

‖F‖22,s,(n) =

∞∑
k=1

(1 + k)s‖ J(n)
k (F)‖2L2(ν).

We denote byD(n)
2,s the completion of Pwith respect to ‖ · ‖2,s,(n).

The spaces D(n)
2,−∞ := ∪s<0D

(n)
2,s and D(n)

2,∞ := ∩s>0D
(n)
2,s are what one might call

the spaces of generalized Poisson functionals in discrete time and smooth Poisson
functionals in discrete time. By a standard argument, one can see thatD(n)

2,−∞ is the
continuous dual ofD(n)

2,∞ (with respect to the projective topology onD(n)
2,∞).

The operators ϑ(l,γ) can be extended toD(n)
2,−∞ by the pairing

D(n)
2,−∞

〈
ϑ(l,γ)F,G

〉
D(n)

2,∞
=
D(n)

2,−∞

〈
F, ϑ∗(l,γ)G

〉
D(n)

2,∞
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for each F ∈ D(n)
2,−∞, G ∈ D(n)

2,∞, l = 1, 2, · · · , n and γ ∈ Γ. Furthermore, for each
X ∈ D(n)

2,−∞, its conditional expectation E[X|A] given a sub σ-algebraA ofHn
n is

defined as the unique element

Y ∈
∪
s<0

{
F ∈ L2(ν,A) : ‖F‖2,s,(n) < ∞

}‖·‖2,s,(n)

=: D(n)
2,−∞(A)

such that

D(n)
2,−∞
〈X,Z〉

D(n)
2,∞
=
D(n)

2,−∞
〈Y,Z〉

D(n)
2,∞

for each

Z ∈
∩
s>0

{
F ∈ L2(ν,A) : ‖F‖2,s,(n) < ∞

}‖·‖2,s,(n)

=: D(n)
2,∞(A).

Since E[·|A] is a contraction operator on L2(Hn
n ), the existence of such a Y is

ensured. The uniqueness follows from the non-singularity of the above pairing
onD(n)

2,−∞(A) ×D(n)
2,∞(A).

The framework can be called discrete Poisson-Malliavin calculus.

2.4. Discrete-Time Clark-Ocone Formula. Now we present a discrete-time
version of the Clark-Ocone formula for Poisson functionals.

Theorem 2.4.1 (A Discrete Version of Clark-Ocone Formula). For each F ∈
L2(Hn

n ), we have the following L2-convergent series expansion:

F − E[F]

=

∞∑
m=1

n∑
l=1

∑
∑
γ∈Γ kγ=m,

kγ ≥ 0 for all γ

∏
γ∈Γ

(λγ∆t)kγ

kγ!
E
[ (∏

γ∈Γ
ϑ

kγ
(l,γ)

)
F
∣∣∣Hn

l−1

](∏
γ∈Γ

ϑ
∗kγ
(l,γ)

)
1.(4.6)

Remark 2.2. In the above expression, the product of operators stands for the
composition of operators, which is independent of the order how it composes
because of (4.4) and is well-defined since they consists of actually a finite number
of compositions. The conditional expectations are understood in the generalized
sense.

Proof. We begin with the equation

F − E[F] =
n∑

l=1

{
E[F |Hn

l ] − E[F |Hn
l−1 ]

}
.

We see that for P-a.a. ω and under P(·|Hn
l−1)(ω), ∆Nγ

l is distributed in the Poisson
law of the parameter λγ∆t and E[F|Hn

l ] can be thought as a functional of ∆Nγ
l ,
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γ ∈ Γ. Moreover, from Proposition 2.2.1 we know that{ ∏
γ∈Γ

(λγ∆t)kγ/2√
kγ!

Q(l,γ)
kγ

(∆Nγ
l ) :

∑
γ∈Γ

kγ < ∞
}

forms a CONS in L2(σ(∆Nl),P(·|H∆l )(ω)).
From these observations and using the duality (4.5), we have

E[F |Hn
l ]

=

∞∑
m=0

∑
∑
γ∈Γ kγ=m

∏
γ∈Γ

(λγ∆t)kγ

kγ!
E
[(∏

γ∈Γ
ϑ

kγ
(l,γ)

)
F
∣∣∣Hn

l−1

](∏
γ∈Γ

ϑ
∗kγ
(l,γ)

)
1

P-a.s., and hence we obtain the result. �

Remark 2.3. For the one-dimensional case, we see that this discrete-version
of Clark-Ocone formula takes a simpler form:

F − E[F] =
∞∑

m=1

n∑
l=1

(λ∆t)m

m!
E[ϑm

l F |Hn
l−1 ]

(
ϑ∗ml 1

)
,(4.7)

with an obvious reduction of the difference operators.

3. Consistency of the Discrete Poisson Malliavin Calculus with the Classical
One

3.1. A Review of the Classical Poisson Malliavin Calculus. First, we re-
view briefly the classical Malliavin calculus over the Poisson space to introduce
notations which we will use in the following sections devoted to asymptotic
analyses, and then will show how our framework, established in the previous
sections is “embedded” to the classical Malliavin calculus (Proposition 3.2.1).

Let (X,BX,n(dx)) be a σ-finite Borel measure space. We denote by ΠX the
space of all point functions (see [24], Chapter I, subsection 9) p = (p,Dp) on X.
For each p ∈ ΠX, a counting measure Np on [0,T] × X is defined by

Np(dtdx) := ]
{
s ∈ Dp ∩ dt : p(s) ∈ dx

}
.

The mapping p 7→ Np induces a measurable structure on ΠX. We denote by
(Ht)0≤t≤T the filtration defined by

Ht := σ
(
Np((0, s] ×U) : 0 ≤ s ≤ t, U ∈ BX

)
for 0 ≤ t ≤ T. One can endow a probability measure P on (ΠX,HT) such that
p is a stationary Poisson point process with the characteristic measure n (see
[24], Chapter I, subsection 9). Under the probability measure P, Np admits the
Doob-Meyer decomposition

Np(dtdx) = Ñp(dtdx) + N̂p(dtdx)
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where N̂p(dtdx) = E[Np(dtdx)] = dt n(dx) and Ñp(dtdx) = Np(dtdx) − N̂p(dtdx)
is the martingale part of the decomposition.

Writing K := L2([0,T]×X,dt⊗n(dx)), it is known that L2(ΠX) has the following
orthogonal decomposition, which is called the Wiener-Itô chaos expansion:

L2(ΠX) = R ⊕ C1 ⊕ C2 ⊕ · · ·
where Ck is a closed linear subspace of L2(ΠX) which consists of all multiple
Poisson integrals∫ T

0

∫
X
· · ·

∫ t2−

0

∫
X
g
(
(t1, x1), · · · , (tk, xk)

)
Ñp(dt1dx1) · · · Ñp(dtkdxk)

of k-th degree (see Theorem 10.2 in [15] or Theorem 2 in [25]), g ∈ K ⊗ · · · ⊗ K︸       ︷︷       ︸
k-times

.

Each Ck is called the subspace of k-th order chaos. We denote by Jk the orthogonal
projection onto Ck.

For each s ∈ R, a Sobolev-type Hilbert spaceD2,s = D2,s(R) is defined as the
completion of {F ∈ L2(ΠX) : ‖F‖2,s < +∞} under the seminorm ‖ · ‖2,s on L2(ΠX)
defined by

‖F‖22,s =
∞∑

k=0

(1 + k)s ‖ JkF‖2L2 , F ∈ L2(ΠX)(4.8)

which may be infinite in general.
It is also known that one can define a (continuous) linear operator D : D2,1 →

L2(ΠX) ⊗ K such that

〈DF, g〉K =
∫ T

0

∫
X

g(t, x)D(t,x)F dt n(dx) ∈ L2(ΠX)

for every g ∈ K and F ∈ D2,1 ( see e.g., Definition 12.2 in [15], Definition 6.4.1
and Proposition 6.4.7 in [45] ), where D(t,x)F is defined by

(D(t,x)F )(p) = F(p+(t,x) ) − F(p)(4.9)

for a.a (p, t, x) ∈ ΠX × [0,T] × X and p+(t,x) is a point function defined by

p+(t,x)(s) :=
{

p(s) if s , t,
x if s = t for s ∈ Dp+(t,x)

:= Dp ∪ {t}.

The difference operator D(t,x) in (4.9) is well-defined for a.a. (p, t, x) because the
image measure of P(dp) ⊗ dt ⊗ n(dx) under the map

ΠX × [0,T] × X 3 (p, t, x ) 7→ (p+(t,x), t, x ) ∈ ΠX × [0,T] × X

is absolutely continuous with respect to P(dp) ⊗ dt ⊗ n(dx) (see e.g., Corollary
6.4.6 in [45] or subsection 1.1 in [59] ). When we consider the case where X is a
singleton {x}, we denote Dt := D(t,x) for a.e. 0 ≤ t ≤ T.
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3.2. Consistency of the Discrete Poisson Malliavin Calculus with the Clas-
sical Continuous One. Under these notations, we can state some relationships
between our framework established in section 2 and that of the classical Poisson
Malliavin calculus stated above, and prepare some additional framework to
state our result.

We choose freely distinct points xγ ∈ X indexed by γ ∈ Γ, and construct a
stationary Poisson point process p with characteristic measure

∑
γ∈Γ λγδ{γ} such

that Nγ
t = Np((0, t] × {xγ}).

The correspondences are summarized as follows. We omit the proof because
it is immediate from the definition and the above known results.

Proposition 3.2.1.
(i) For each F ∈ D(n)

2,1, we have

(D(t,xγ)F)(p) =
n∑

l=1

1[tl−1,tl)(t)
(
ϑ(l,γ)F

)
(p)

for any γ ∈ Γ and a.a. (p, t) ∈ ΠX × [0,T].
(ii) For any n and s,D(n)

2,s ⊂ D2,s.
(iii) For each F ∈ D2,s and n = 1, 2, · · · , we have E[F |Hn

n ] ∈ D(n)
2,s and

E[F |Hn
n ]→ F inD2,s

as n→∞.

For each F ∈ D2,1, Proposition 3.2.1 implies that

(4.10) (D(t,xγ)F)(p) = lim
n→∞

n∑
l=1

1{ tl−1≤t<tl }ϑ(l,γ)E[F |Hn
n ](p)

for a.a. (p, t, x) ∈ ΠX × [0,T] × X. Note that in the Brownian motion case, the
derivative D on the Wiener space is defined via such a relation (4.10) with N = 2n

in [31]. Following this approach in [31], we define, for F ∈ D2,k,

D(·,xγ1 ,··· ,xγk )F ∈ L2[0,T]

as the L2-limit of the sequence

n∑
l=1

1{ tl−1≤t<tl }ϑ(l,γk) · · ·ϑ(l,γ1)E[F |Hn
n ]

if it exists (see [31], Theorem 1.10 for a sufficient condition for the existence
of the limit). In the case where Γ, and hence {xγ}, is a singleton, we denote
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Dk
t := Dk

(t,xγ, · · · , xγ︸     ︷︷     ︸
k-times

) for a.a. 0 ≤ t ≤ T and therefore Dk
t F is of the form

Dk
t F(p) = lim

n→∞

n∑
l=1

1{ tl−1≤t<tl }
(
ϑk

(l,γ)F
)
(p)

for a.a. (p, t) ∈ ΠX × [0,T].

4. Asymptotic Analysis of the Martingale Representation Errors

We start with the settings and notations in section 2. Instead of working on a
fixed n, we deal with a sequence. To make this point clear, we write (Hn

l )n
l=0 and

{ϑ(l,γ,n), ϑ∗(l,γ,n)}, etc. Note that {Nγ : γ ∈ Γ}, and in particular Γ, are independent
of n.

Throughout the section, we consider a sequence (Fn)∞n=1, each Fn being Hn
n -

measurable, and for m = 0, 1, 2, · · · , we put

Errn(m) :=: Err(Fn)(m)

:= Fn −
m∑

p=1

n∑
l=1

∑
∑
γ∈Γ kγ=p,

kγ ≥ 0 for all γ

∏
γ∈Γ

(λγ∆t)kγ

kγ!
E
[ (∏

γ∈Γ
ϑ

kγ
(l,γ)

)
F
∣∣∣Hn

l−1

] (∏
γ∈Γ

ϑ
∗kγ
(l,γ)

)
1,

where we recall that the filtration (Hn
l )n

l=0 is given by Hn
0 = the trivial σ-field

andHn
l = σ(∆Nγ

1 , · · · ,∆Nγ
l : γ ∈ Γ) for l = 1, 2, · · · ,n.

4.1. A Central Limit Theorem for the Errors. In this subsection, we treat
only the case ]Γ = 1 for notational convenience, where we have

Errn(m) = Fn −
m∑

k=0

n∑
l=1

(λ∆t)m

m!
E[ϑk

l Fn |Hn
l−1 ]

(
ϑ∗kl 1

)
.

Here are apparent notational reductions on the difference operators.

Theorem 4.1.1. Let m ∈ N. Suppose that Fn ∈ D(n)
2,m+2 for each n = 1, 2, · · · and

for some F ∈ D2,m+1, we have
B Fn → F in L2(P),

B Dk+1
t F exists for a.a t ∈ [0,T] and

∫ T

0
‖Dk+1

t Fn − Dk+1
t F‖2L2dt → 0 as n → ∞

for each k = 0, 1, · · · ,m and

B sup
n

∫ T

0
‖Dm+2

t Fn‖2L2dt < +∞.
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Then we have


Errn(0)

(∆t)−1/2Errn(1)
...

(∆t)−m/2Errn(m)

→



∫ T

0
E[DtF |Ht− ]dÑt

λ1/2

√
2

∫ T

0
E[D2

t F |Ht− ]dB1
t

...
λm/2√

(m + 1)!

∫ T

0
E[Dm+1

t F |Ht− ]dBm
t


in probability on an extended probability space as n → ∞, where (B1, · · · ,Bm) is an
m-dimensional Brownian motion.

Remark 4.1. Although the Brownian motion B = (B1, · · · ,Bm) above is not
adapted to the filtration (Ht)0≤t≤T, the above stochastic integrals make sense
because B is automatically independent of HT, so that it is an

(
Ht ∨ σ(Bs : 0 ≤

s ≤ t)
)

0≤t≤T
-Brownian motion.

Proof. By Corollary 4.7, we have

(λ∆t)−k/2Errn(k) =
∞∑

m′=k+1

n∑
l=1

(λ∆t)m′−k/2

m′!
E[ϑm′

∆Nl
Fn |Hn

l−1 ]
(
ϑ∗m

′

∆Nl
1
)

=: Ak+1 +

∞∑
m′=k+2

Am′ .

By using the integration by parts formula (4.5), change of variable, Schwartz’
inequality and the consistency (Proposition 3.2.1), we see that∥∥∥∥ ∞∑

m′=k+2

Am′

∥∥∥∥2

L2

= (λ∆t)2
∞∑

m′=0

n∑
l=1

(λ∆t)m′

(m′ + k + 2)!

∥∥∥E[
(
ϑk+2

l,n Fn

) (
ϑ∗m

′

l,n 1
) ∣∣∣Hn

l−1 ]
∥∥∥2

L2

≤ (λ∆t)2
∞∑

m′=0

n∑
l=1

m′!
(m′ + k + 2)!

‖ϑk+2
l,n Fn ‖2L2

≤ (∆t)
∞∑

m′=1

1
(m′)k+2

×
N∑

l=1

‖ϑk+2
l,n Fn ‖2L2λ

2∆t

= (∆t)
∞∑

m′=1

1
(m′)k+2

×
∫ T

0
‖Dk+2

t Fn ‖2L2λ
2dt
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which goes to zero as n→∞ for each k = 0, 1, · · · ,m by the assumption.
Let us have a closer look at Ak+1. For each k = 1, 2, · · · ,m, we define a

right-continuous process Lk,n = (Lk,n
t )0≤t≤T with left-hand side limits by

Lk,N
t :=

r∑
l=1

(λ∆t)(k+1)/2√
(k + 1)!

(
ϑ∗(k+1)

l,n 1
)

if tr−1 ≤ t < tr

for r = 1, 2, · · · ,n, and Lk,n
T := Lk,n

tn−1
. Since

(λ∆t)(k+1)/2√
(k + 1)!

(
ϑ∗(k+1)

l,n 1
)
=

(λ∆t)−(k+1)/2√
(k + 1)!

Ck+1(∆Nl, λ∆t),

are i.i.d. random variables as a family of l = 1, 2, · · · ,n and they are orthogonal
to each other as a family of k = 1, 2, · · · ,m (Proposition 2.2.1), the central limit
theorem of finite dimensional distributions of (∆t)1/2Lk,n, n = 1, 2, · · · follows, as
for each 0 ≤ s < t, with taking tq−1 ≤ s < tq and tr−1 ≤ t < tr,

lim
n→∞

E
[
e

i
m∑

k=1

ξk

{
(∆t)1/2Lk,n

t − (∆t)1/2Lk,n
s

} ∣∣∣F L1,n

s ∨ · · · ∨ F Lm,n

s

]
= lim

n→∞

r∏
l=q+1

E
[
e

i
m∑

k=1

(
ξk

√
tr − tq

)
· (r − q)−1/2 (λ∆t)(k+1)/2√

(k + 1)!

(
ϑ∗(k+1)

l,n 1
) ]

= lim
n→∞

r∏
l=q+1

{
1 − |ξ|2

2(r − q)
(tr − tq) + o

(
|ξ|2

r − q

) }
= e−

|ξ|2
2 (t−s).

for each ξ = (ξ1, ξ2, · · · , ξm) ∈ Rm, where (F Z
t )0≤t≤T denotes the filtration gen-

erated by a stochastic process Z = (Zt)0≤t≤T and the little-o-notation is with
respect to the asymptotics when n→∞ (so that r − q→ +∞). This implies that
every finite dimensional distribution of m-dimensional process ((∆t)1/2Lk,n)m

k=1
converges to that of an m-dimensional Brownian motion (B1,B2, · · · ,Bm) =
(B1

t ,B
2
t , · · · ,Bm

t )0≤t≤T.
Besides, using Kolmogorov’s inequality, we have for each k = 1, 2, · · · ,m,

lim
K→∞

lim sup
n→∞

P
(

sup
0≤t≤T

∣∣∣(∆t)1/2Lk,n
t

∣∣∣ ≥ K
)

≤ lim
K→∞

(∆t)‖Lk,n
T ‖2L2

K2 = 0
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and for each ε > 0,

lim
δ→0

lim sup
n→∞

P
(

inf
{s j} j⊂[0,T]:
|s j−s j+1|>δ

max
j

sup
t,s∈[s j−1,s j)

(∆t)1/2|Lk,n
t − Lk,n

s | ≥ ε
)

≤ lim sup
n→∞

P
(

max
j=1,2,··· ,n

sup
t,s∈[s j−1,s j)

(∆t)1/2|Lk,n
t − Lk,n

s | ≥ ε
)

= lim sup
n→∞

P(0 ≥ ε ) = 0.

They imply the tightness of {(∆t)1/2Lk,n}∞n=1(see Billingsley [9], Theorem 13.2).
Therefore, { (

(∆t)1/2L1,n, (∆t)1/2L2,n, · · · , (∆t)1/2Lm,n
) }∞

n=1

also forms a tight family. Hence we have

(
√
∆tL1,n,

√
∆tL2,n, · · · ,

√
∆tLm,n)→ (B1,B2, · · · ,Bm)

in law as n→∞. By the Skorohod representation theorem (see Ikeda-Watanabe
[24], Theorem 2.71), we may assume that the above convergence is realized as
an almost sure convergence on an extended probability space.

Hence for k = 1, 2, · · · ,m, we have

(λ∆t)(k+1)−k/2

(k + 1)!

n∑
l=1

E[ϑk+1
l,n Fn|Hn

l−1] ·
(
ϑ∗(k+1)

l,n 1
)

=
1√

(k + 1)!

n∑
l=1

E[ϑk+1
l,n Fn|Htl−1]

{
(∆t)1/2Lk,n

tl
− (∆t)1/2Lk,n

tl−1

}
→ 1√

(k + 1)!

∫ T

0
E[Dk+1

t F|Ht]dBk
t in probability as n→∞.

Finally, for k = 0, by using (4.3), we have

(λ∆t)
n∑

l=1

E[ϑl,nFn |Hn
l−1 ] (ϑ∗l,n1)→

∫ T

0
E[DtF |Ht− ]dÑt

in probability as n→∞. �

1On the space of all right-continuous functions with left-hand side limits, one can endow so-
called the Skorohod topology which is metrizable and makes the space a complete separable metric
space. For details, see Billingsley [9], Chapter 5.
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4.2. Strong Convergence of the Error. The second error estimation result,
where Γ is any finite set, is the following

Theorem 4.2.1. It holds that

‖Errn‖2L2 ≤ ∆t
n∑

l=1

∑
γ,γ′∈Γ

‖ϑ(l,γ,n)ϑ(l,γ′,n)Fn ‖2L2λγλγ′∆t,(4.11)

so that if one has

sup
n

n∑
l=1

∑
γ,γ′∈Γ

‖ϑ(l,γ,n)ϑ(l,γ′,n)Fn ‖2L2λγλγ′∆t < ∞,

then ‖Errn‖L2 = O(n−1/2) as n→∞.

Proof. By the equation (4.6), we have

Errn = En,1 + En,2

where

En,i :=
n∑

l=1

∑
k∈Kn,i

∏
γ∈Γ

(λγ∆t)kγ

kγ!

× E
[(∏

γ∈Γ
ϑ

kγ
(l,γ,n)

)
Fn

∣∣∣Hn
l−1

]
·
(∏
γ∈Γ

ϑ
∗kγ
(l,γ,n)

)
1

for i = 1, 2. Here we set Kn,1 to be the set of all vector non-negative integers
k = (kγ)γ∈Γ such that kγ ≤ 1 for all γ ∈ Γ and 2 ≤ ∑

γ∈Γ kγ, andKn,2 denotes the set
of all k = (kγ)γ∈Γ such that kγ ≥ 2 for some γ ∈ Γ. Note thatKn,1 = ∅when ]Γ = 1.

By Parseval’s identity, we have

‖En,1‖2L2 =

n∑
l=1

∑
k∈Kn,1

∏
γ∈Γ

(λγ∆t)2kγ

(kγ!)2

× E
[
E
[(∏

γ∈Γ
ϑ

kγ
(l,γ,n)

)
Fn

∣∣∣Hn
l−1

]2]∥∥∥∏
γ∈Γ

ϑ
∗kγ
(l,γ,n)1

∥∥∥2

L2 .

For each k ∈ Kn,1, there exists a pair (η, η′) such that η , η′ and kη = kη′ = 1.
Then

E
[(∏

γ∈Γ
ϑ

kγ
(l,γ,n)

)
Fn

∣∣∣Hn
l−1

]
(4.12)

= E
[(
ϑ(l,η,n)ϑ(l,η′,n)Fn

)( ∏
γ∈Γ\{η,η′}

ϑ
∗kγ
(l,γ,n)1

)∣∣∣Hn
l−1

]
.(4.13)
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By considering the Fourier expansion in L2(P|Hn
l−1

) of

A := E
[
ϑ(l,η,n)ϑ(l,η′,n)Fn

∣∣∣∣Hn
l−1 ∨ σ

(
∆Nγ,n

l : γ ∈ Γ\{η, η′}
)]
,

we have
‖A‖2L2

=
∑
k∈ZΓ+

kη=kη′=1

{∥∥∥ ∏
γ∈Γ\{η,η′}

ϑ
∗kγ
(l,γ,n)1

∥∥∥2

L2×

∏
γ∈Γ\{η,η′}

(λγ∆t)2kγ

(kγ!)2

∥∥∥E
[(
ϑ(l,η,n)ϑ(l,η′,n)Fn

)( ∏
γ∈Γ\{η,η′}

ϑ
∗kγ
(l,γ,n)1

)∣∣∣Hn
l−1

]∥∥∥2

L2

}
(by (4.13), and by the mutual independence among ∆Nγ,n,)

=
∑
k∈ZΓ+

kη=kη′=1

{ ∥∥∥∏
γ∈Γ ϑ

∗kγ
(l,γ,n)1

∥∥∥2

L2

‖ϑ∗(l,η,n)1‖2L2‖ϑ∗(l,η′,n)1‖2L2

× λ−2
η λ

−2
η′ (∆t)−4

∏
γ∈Γ

(λγ∆t)2kγ

(kγ!)2

∥∥∥∥E
[(∏

γ∈Γ
ϑ

kγ
(l,γ,n)

)
Fn

∣∣∣Hn
l−1

]∥∥∥∥
L2

}
.

Since
‖ϑ∗(l,η,n)1‖2 = λ−1

η (∆t)−1,

we have
‖En,1‖2L2

≤
n∑

l=1

∑
η,η′∈Γ

kη=kη′=1

ληλη′(∆t)2

×
∥∥∥E

[
ϑ(l,η,n)ϑ(l,η′,n)Fn

∣∣∣∣Hn
l−1 ∨ σ

(
∆Nγ,n

l : γ ∈ Γ\{η, η′}
)]∥∥∥2

L2

≤ ∆t
n∑

l=1

∑
η,η′∈Γ
η,η′

‖ϑ(l,η,n)ϑ(l,η′,n)Fn‖2L2ληλη′∆t.

(4.14)

On the other hand, for each k ∈ Kn,2, we have minγ kγ ≥ 2. We set

Kn,2(m) := {k ∈ Kn,2 : min
γ

kγ = m}.

Then,
Kn,2 =

∑
m≥2

Kn,2(m).
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For each k = (kγ) ∈ Kn,2(m) with kη = minγ kγ,

E
[(∏

γ∈Γ
ϑ

kγ
(l,γ,n)

)
Fn

∣∣∣Hn
l−1

]2

= E
[
E
[(
ϑ2

(l,η,n)Fn

)( ∏
γ∈Γ\{η}

ϑ
∗kγ
(l,γ,n)1

)∣∣∣Hn
l−1 ∨ σ

(
∆Nη,n

l

)](
ϑ∗(m−2)

(l,η,n) 1
)∣∣∣∣Hn

l−1

]2

≤ (m − 2)!
(λη∆t)m−2 E

[
E
[(
ϑ2

(l,η,n)Fn

)( ∏
γ∈Γ\{η}

ϑ
∗kγ
(l,γ,n)1

)∣∣∣Hn
l−1 ∨ σ

(
∆Nη,n

l

)]2∣∣∣∣Hn
l−1

]
and ∥∥∥∏

γ∈Γ
ϑ
∗kγ
(l,γ,n)1

∥∥∥2

L2 =
m!

(λη∆t)m

∥∥∥ ∏
γ∈Γ\{η}

ϑ
∗kγ
(l,γ,n)1

∥∥∥2

L2 .

Therefore we have

‖En,2‖2L2

≤
n∑

l=1

∞∑
m=2

∑
k∈Kn,2(m)

∏
γ∈Γ

(λη(k)∆t)2

m(m − 1)

× E
[
E
[
(ϑ2

(l,η(k),n)Fn)
∏

γ∈Γ\{η(k)}
ϑ
∗kγ
(l,γ,n)1

∣∣∣∣Hn
l−1 ∨ σ

(
∆Nη(k),n

l

)]2]
×

∥∥∥ ∏
γ∈Γ\{η(k)}

ϑ
∗kγ
(l,γ,n)1

∥∥∥2

L2

≤
n∑

l=1

∑
η∈Γ

∞∑
m=2

(λη∆t)2

m(m − 1)

∥∥∥E
[
ϑ2

(l,η,n)Fn

∣∣∣Hn
l−1 ∨ σ

(
∆Nη,n

l

)]∥∥∥2

L2

≤ ∆t
{ ∞∑

m=2

1
m(m − 1)

} n∑
l=1

∑
η∈Γ
‖ϑ2

(l,η,n)Fn‖2L2λ
2
η∆t.

(4.15)

Combining the inequalities (4.14) and (4.15), we obtain

‖Errn‖2L2 = ‖En,1‖2L2 + ‖En,2‖2L2

≤ ∆t
n∑

l=1

∑
γ,γ′∈Γ

‖ϑ(l,γ,n)ϑ(l,γ′,n)Fn‖2L2λγλγ′∆t.

Thus we have completed our proof. �
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4.3. The Cases with One Dimensional Functionals. In this subsection, we
alternatively use notions related to point processes. We suppose that xγ, γ ∈ Γ
are real numbers. Let p be as above, and Np is the associated Poisson random
measure. We define a real valued Lévy process

Lt :=
∑
γ∈Γ

xγNp

(
(0, t] × {xγ}

)
for 0 ≤ t ≤ T. We redefine difference operators(

ϑxγ f
)
(y) = f (y + xγ) − f (y)

(which is actually independent of t) and(
ϑ∗(t,xγ) f

)
(y) =

1
λγt

f (y − xγ) − f (y)

where f : R→ R be a measurable map. We note that we still have the Heisen-
berg commutation relation:

[ϑxγ , ϑ
∗
(t,xη)] =

δγη
λγt

and the duality in L2(σ(Lt − Ls)) =: Ht,s:〈
ϑxγ f , g

〉
Ht,s
=

〈
f , ϑ∗(t−s,xγ)g

〉
Ht,s

for polynomials f and g in Lt − Ls. We set Fn ≡ f (LT).

Theorem 4.3.1. We have that for each 0 ≤ s ≤ 1,

‖Errn ‖2L2 ≤ n−s
∞∑

q=2

qs ‖ Jq f (LT)‖2L2 ≤ n−s ‖ f (LT)‖2D2,s
.

Thus, if ‖ f (LT)‖D2,s < +∞ for some 0 ≤ s ≤ 1, then we have ‖Errn ‖L2 = O(n−s/2) as
n→∞.

Proof. By the discrete Clark-Ocone formula (4.6) and Parseval’s identity, we
have

‖Errn ‖2L2

=

∞∑
m=2

n∑
l=1

∑
k∈ZΓ+ with∑
γ∈Γ kγ=m

∏
γ∈Γ

(λγ∆t)kγ

kγ!

× E
[
E
[ (∏

γ∈Γ
ϑ

kγ
(l,γ,n)

)
f (Ln

T)
∣∣∣Hn

l−1

]2 ]
.
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The last factor E
[ (∏

γ∈Γ
ϑ

kγ
(l,γ,n)

)
f (LT)

∣∣∣Hn
l−1

]
has its L2-expansion as

E
[ (∏

γ∈Γ
ϑ

kγ
(l,γ,n)

)
f (LT)

∣∣∣Hn
l−1

]
=

∞∑
m′=0

∑
k′∈ZΓ+ with∑
γ′∈Γ k′

γ′=m′

∏
γ′∈Γ

(λγ′tl−1)k′
γ′

k′γ′!

× E
[ (∏

γ′∈Γ
ϑ

k′
γ′

xγ′

∏
γ∈Γ

ϑ
kγ
(l,γ,n)

)
f (LT)

] (∏
γ′∈Γ

ϑ
∗k′
γ′

(tl−1,xγ′ )

)
1.

Moreover, we notice that

ϑ(l,γ,n) f (LT) = f (LT + xγ) − f (LT) =
(
ϑxγ f

)
(LT).

From these observations, we have

E
[
E
[ (∏

γ∈Γ
ϑ

kγ
(l,γ,n)

)
f (LT)

∣∣∣Hn
l−1

]2 ]
=

∞∑
m′=0

∑
k′∈ZΓ+ with∑
γ′∈Γ k′

γ′=m′

∏
γ′∈Γ

(λγ′tl−1)k′
γ′

k′γ′!
E
[ (∏

γ∈Γ
ϑ

k′γ+kγ
xγ

)
f (LT)

]2
.

Therefore we have

‖Errn ‖2L2

=

n∑
l=1

∞∑
m=2

∑
k∈ZΓ+ with
mγ∈Γkγ=m

∞∑
m′=0

∑
k′∈ZΓ+ with∑
γ′∈Γ k′

γ′=m′∏
γ∈Γ

(λγ)kγ+k′γ(∆t)kγ(tl−1)k′γ

kγ!k′γ!
E
[ (∏

γ∈Γ
ϑ

kγ+k′γ
xγ

)
f (LT)

]2
.

Here we apply the change of variables m′ 7→ q := m+m′ for each m = 2, 3, · · ·
and then we again apply the change of variables k 7→ j := k + k′ for each
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k = (kγ)γ∈Γ. These procedures lead to

‖Errn ‖2L2

=

n∑
l=1

∞∑
m=2

∑
k∈ZΓ+ with∑
γ∈Γ kγ=m

∞∑
q=m

∑
j∈ZΓ++k with∑

γ∈Γ jγ=q∏
γ∈Γ

(λγ) jγ(∆t)kγ(tl−1) jγ−kγ

kγ!( jγ − kγ)!
E
[ (∏

γ∈Γ
ϑ

jγ
xγ

)
f (LT)

]2
.

We further change the order of the summation with respect to (m, q), after
that, with respect to (k, j), and then the above takes the form of

‖Errn ‖2L2

=

n∑
l=1

∞∑
q=2

∑
j∈ZΓ+ with∑
γ∈Γ jγ=q

∑
k∈ZΓ+ with∑
γ∈Γ kγ≥2,

kγ≤ jγ for all γ∏
γ∈Γ

{ ( jγ
kγ

)
(∆t)kγ (tl−1) jγ−kγ

(λγ) jγ

jγ!

}
E
[ (∏

γ∈Γ
ϑ

jγ
xγ

)
f (LT)

]2
.

By iterative uses of the binomial theorem, we see that∑
k∈ZΓ+ with∑
γ∈Γ kγ≥2,

kγ≤ jγ for all γ

∏
γ∈Γ

(
jγ
kγ

)
(∆t)kγ (tl−1) jγ−kγ = (tl)q − (tl−1)q − q(∆t)(tl−1)q−1,

where q =
∑
γ∈Γ jγ. Thus we have

‖Errn‖2L2

=

∞∑
q=2

qIn,q

∑
j∈ZΓ+ with∑
γ∈Γ jγ=q

{∏
γ∈Γ

(λγT) jγ

jγ!

}
E
[(∏

γ∈Γ
ϑ

jγ
xγ

)
f (LT)

]2
,

where we meant

In,q :=
1
q
−

n∑
l=1

( l − 1
n

)q−1 1
n

=

n∑
l=1

∫ l/n

(l−1)/n

{
xq−1 −

( l − 1
n

)q−1 }
dx > 0.
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We also notice that

‖ Jr f (LT)‖2L2 =
∑

k∈ZΓ+with∑
γ∈Γ kγ=r

{ ∏
γ∈Γ

(λγT)kγ

kγ!

}
E[ f (LT)

∏
γ

ϑ
∗kγ
T,xγ

1]2.

Finally, since In,q ≤
1
q

and

In,q ≤
n∑

l=1

{ ( l
n

)q−1
−

( l − 1
n

)q−1 }1
n
=

1
n
,

we have
In,q = ( In,q )1−s( In,q )s ≤ qs−1 n−s.

Hence we have

‖Errn ‖2L2 ≤ n−s
∞∑

q=2

qs ‖ Jq f (LT)‖2L2 ≤ n−s ‖ f (LT)‖2D2,s
.

�
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