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PREFACE. 3

Preface.

In probability theory, Brownian noises and Poisson noises play fundamental
roles when we consider classical noises (for example, Lévy noises or, more gen-
erally, noises generated by Markov-type stochastic differential equations which
admit strong solutions ). One of the reason is the fact that with such noises, sev-
eral important quantities can be computed explicitly. Moreover, any Brownian
noise and any Poisson noise (with non-random intensity) are automatically in-
dependent, and hence we may think that the underlying probability space splits
into the direct product of a probability space supporting Brownian noises and
a space supporting Poisson noises. On each of these spaces, Brownian motions
or stationary Poisson point processes can be regarded as a system of infinite
dimensional “coordinates”. In fact, such circumstance seems to affect the Ito-
Lévy decomposition theorem and (also/hence) the framework of the Malliavin
calculus for Lévy processes. Thus, for the study of classical noises, it is enough
to investigate its Brownian component and Poissonian component separately.

The utilities of the two noises are more than that. They satisfy the “consis-
tency”, by which we mean that a Brownian motion or a stationary Poisson point
process (more strictly, their laws) can be viewed as a sort of “inverse limits”
of a “projective systems” (with respect to a class of conditional expectations),
which also appears as an aspect of “infinite divisibility”, and is stronger than
Kolmogorov’s consistency condition for construction of Markov processes. If
we speak only on Brownian motion B = (B;)o«<r, it can be understood that
the “consistency” implies that any finite dimensional Euclidean space R" is
“embedded” into the probability space (Wiener space) by folding, i.e., we map
(xh ) e (e + xk),'gzl. Conversely, by “spreading” B = (B)o«<r out
tinitely, we obtain a system (AB,,---,AB,) of a part of orthogonally stacked
“coordinates”. As far as the case of continuous motion, a noise with these prop-
erties is essentially unique (except for trivial noise), and is the Brownian noise,
which has been stated as in the It6-Lévy decomposition theorem. In the case
of Poisson noises, the corresponding “coordinates” takes a bit different form:
They will take its values in a space of measures.

It is known that there are (essentially equivalent) representations of the
Heisenberg algebra on Brownian noises and Poisson noises. In particular, the
action of Heisenberg algebra is inherited, because of the “consistency”, even
when we are in the space charted by the system of orthogonally stacked “coor-
dinates”, and equivalently, even when we discretize (in time) the framework of
Malliavin calculus. We will employ this property in our framework. Although
it appears that our framework depends strongly on these nature and thus is
restrictive, but it covers several important objects such as the Euler-Maruyama
scheme for stochastic differential equations, and ultimately by taking the limit-
ing, everything described by Brownian noises and Poisson noises.
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In this thesis, we give applications of representations of the Heisenberg alge-
bra. The study is divided into two parts. In Part 1, we study the change of vari-
able formula on the classical Wiener space, which is called the Ramer-Kusuoka
formula. We will see that the Ramer-Kusuoka formula can be described as a
formula in the ring of formal power series with the coefficients in a (gener-
alized) Heisenberg algebra. Although the arguments are limited only on the
classical Wiener space, the formula would describe also the Girsanov formula
on the Poisson space. In that sense, our formula has to unify both the change of
variable formulae on the Wiener and Poisson spaces. Part 2 is devoted to study
a discrete version of Clark-Ocone formulae. The Clark-Ocone formula is a sto-
chastic version of the fundamental theorem of calculus, which is also an explicit
expression of the martingale representation theorem. It is an important problem
to ask whether or not a given noise has martingale representation property, that
is, whether it has a finite number of martingale basis. The Brownian noises and
Poissonian noises have the martingale representation property, however, when
we discretize the noises, this property fails. This is the starting point of our
study. Because we are always in separable Hilbert spaces, so we have countably
many martingale basis, and in fact, our discrete Clark-Ocone formula will use
these countable basis. After we establish the discrete Clark-Ocone formula, we
will see how the superfluous bases tend to vanish, when we take infinitesimally
small partitions of the time interval. Such studies will be designed as the error
analysis for martingale representation error.

Finally, I want to mention further research directions, in the case of continu-
ous models. The framework presented here, and even that of Malliavin calculus
does not cover analyses for stochastic differential equations which doesn’t admit
any strong solutions since a solution to such equation is not a function of only
the driving Brownian motion in general. Such solutions might be described
completely by the driving Brownian motion and some additional noises suit-
ably correlated with the driving noise, and thus it seems to be impossible to
apply, in principle, the Malliavin calculus via methods which are already estab-
lished. I believe, at least in the case where the stochastic differential equation
has symmetries, that there are frameworks, broader than that of Malliavin calcu-
lus, in which we can deal with stochastic differential equations with non-strong
solutions as mentioned above, and there are discretization techniques which
keep the structure of symmetries or “Galois group” of the stochastic differential
equation.
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Part 1

Change of Variable Formula on the Wiener
Space



For each bounded measurable function f : R” — R and smooth transforma-
tion z : R" — R", it is elementary to deduce the change of variable formula

o th
S0 Gy &
O = | flx=Atz@)[det(1 - ()]
<ol E00w) T8 o

where (-,-) and | - | are the canonical inner product on R" and the associated
norm respectively, Jx;, is the Jacobian matrix of Atz given by

0z 0z!

= 54
]Atz(x) = At;

d0z" 0z"

oxt  oxr

z =(z!,--+,2") and At is an arbitrary positive constant.
On the other hand, the Wiener process W = (W)o<<1 is defined by

W)(w)=w;, 0<t<1, we# =C(0,1] - R).

Any equidistant partition A : 0 = t; < t; < --- < t, = 1 of the interval [0, 1]
induces a mapping

(0.2) (AWy, -+, AW,) : # — R"

where AW, = W, - W, ..

The change of variable formula (0.1) with At = 1/n can be pulled-back onto
the Wiener space # by the mapping (0.2). Furthermore, one can take the limit
n — +oo in the pulled-back formula, and the resulting formula gives a change
of variable formula on the Wiener space.

Although formula (0.1) is a step before taking the limit, it indicates several
aspects of the change of variable formula on the Wiener space. From the def-
inition of the map (0.2), it seems natural to regard x = (x!,--- ,x") € R" as the
process X = (X))_, defined by Xy = 0and X; = x'4+--+xlforl=1,2,---,n. The
filtration generated by the process X coincides with the coordinate filtration
F = (1)}, defined by Fy = {0,R"} and F; = o(x',--- ,x) forl =1,2,---,n
Then the transformation zAt can be naturally identified with a random process
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Z = (Z))], given by

1

t[ n
Zl:f Zl{tk—1SS<tk} 2" dS:ZZkAt
0 k=1 e~

where Z; := z!. Under these notations, roughly speaking, the change of variable
formula on the Wiener space is called

— Cameron-Martin formula: when z is a constant map, i.e., non-random.

— Cameron-Martin-Maruyama-Girsanov formula: when Z is a ¥ -predictable,

or equivalently,

97! .

ﬁ = 0 lf l < k
If this is the case, the Jacobian matrix ], is nilpotent, so that det(1 —
Jaiz) = 1. Moreover, under the identification x = (AWy,--- ,AW,),

n 1
00 =) 28w = [ z.aw,
1=1 0

n 1
|z(x)|2At:ZZfAt:fZ§ds
=1 0

where, in the last equalities of each above line, we identify discrete-time
processes with continuous-time processes which are piecewise constant.
— Ramer-Kusuoka formula: when z is generic. This being the case, (z(x), x)
is understood using the notions of the Skorohod integral f Z5W or the
Ogawa integral [ Z *dW as
1

1
<z(x),x> = fzséws +t1'(]z) = fzs +d W,
0 0

where [, is the Jacobian matrix of (Z,--- ,Z,) : R" — R".

After the limiting procedure, one has that, for a differentiable random process
Z = (Zi)o<t<1 (Which need not to be adapted to the natural filtration of W) and
bounded measurable F : 7 — R,

E[F(W)]
(03) = E[F(W - Z)|det(1 - DZ)|e" D% exp{flzséws—%flzgds}],
0 0

where E means the expectation with respect to the Wiener measure P. This is
a general form of the change of variable formula on the Wiener space, and is
called the Ramer-Kusuoka formula.
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Originally, such a change of variable formula (0.3) is studied by Cameron
and Martin in [13] when Z = 0 € H is a non-random path, where H is the
subspace of #  consisting of all paths i with square integrable derivative and
hy = 0. The space H is now called the Cameron-Martin subspace. Their work was
extended by Gross [20] and Kuo [26] in the framework of more general abstract
Wiener spaces.

For another generalization, Girsanov [18], Maruyama [33], [34] and Motoo
[37] studied the case where Z is an adapted process and Z € H a.s. from a
viewpoint of stochastic differential equation and showed that the It integral
appeared in the density function. In this case, the formula (0.3) is simplified to
the Cameron-Martin-Maruyama-Girsanov formula

1 1
(0.4) E[F(W)] = E[F(W - Z) exp{stdWs —1fz'§ds}]
0 2 Jo
as explained before.
Ramer [47] studied the case where Z is a non-adapted random process
and deduced the formula (0.3). He introduced an abstract version of the It
integral which is called the It6-Ramer integral in [27] and he showed that the

density factorizes into two factors. One is the Carleman-Fredholm determinant

det(1-DZ)el" DZ of the operator 1 — DZ (1 denotes the identity map) and the
other is the Girsanov type density in which, because of non-adaptedness, the
It6 integral is replaced by the It6-Ramer integral or the Skorohod integral from
a point of view of the Malliavin calculus. For an extension of applicable class,
this result is generalized by Kusuoka [27].!

Zakai [61] characterized the class of Z for which the Carleman-Fredholm
determinant is equal to one by using quasi-nilpotency and explained how the
Ramer-Kusuoka formula (0.3) is reduced to the Maruyama-Girsanov formula
(0.4).

As aparticular case, Buckdahn and Follmer [6] studied the law of the solution
of anticipative stochastic differential equation of the form d&; = AW, + k,(&, W)dt
where the drift k;(&, w) depends on the past behavior of £ and the future behavior
of the Brownian motion W. Yano [60] studied the composition of functional on
an abstract Wiener space taking its value in a finite dimensional vector space
and the Ramer type translation on an extended abstract Wiener space.

In [47] and [27], the authors worked on abstract Wiener spaces. If we want to write the first
factor as just a Fredholm determinant rather than the Carleman-Fredholm determinant, one
will get an expression with using the Ogawa integral under some integrability condition.



CHAPTER 1

Cameron-Martin-Maruyama-Girsanov Formula via an Action
of Heisenberg Algebra

This part is based on the joint work [4].

1. Introduction

Let (#,B(#),P) be the Wiener space on the interval [0,1], that is, # is
the set of all continuous paths in R defined on [0, 1] which starts from zero,
B(#) is the o-field generated by the topology of uniform convergence. and P
is the Wiener measure on the measurable space (%, B(#')). Then the canonical
Wiener process (W(t)):»o is defined by W(t,w) = w(t) for 0 <t <land w € 7.

Let H denote the Cameron-Martin subspace of #/, i.e.,, h € # belongs to
H if and only if h(t) is absolutely continuous in t and the derivative h(t) is
square-integrable. Note that H is a Hilbert space under the inner product

1
(hy, ho)er = fhl(t)Hz(t) dt, hi,hy € H.
0

It is a fundamental fact in stochastic calculus that the Cameron-Martin (hence-
forth CM) formula (see, e.g. [32], pp 25) in the following form holds:

(1.1) f F(w + 0) P(dw) = f F(w) exp | f g(t)dw(t)—% f 19(t)2dt}P(dw)
Y Y, 0 0

4 4

where F is a bounded measurable function on # and 6 € H.

The motivation of the present study comes from the following observation(s).
In the above CM formula (1.1), the integrand of the left-hand-side can be seen as
an action of a translation operator, which is an exponentiation of a differentiation
DQI

(1.2) L Fw + 0)P(dw) “=" E[ePOF].

12
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On the other hand, the right-hand-side can be seen as a “coupling” of the
exponential martingale and F:

1 1 (L
fW F(w)exp | j; O(t)duw(t) - 5 fo O(t)2dt | P(dw)

1 1
= (Eexp| fo Q(t)dW(t)—% fo ORI

Since we can read the right-hand-side of (1.2) as
E[eP0F] “=" (1,eP0F),

the Cameron-Martin formula

1 1
(1,ePeF) “=" (Eexp| j; Q(t)dW(t)—% fo O(tydt})

leads to the following interpretation:

exp { fo g(t)dW(t)—% fo 19(t)2dt} “=n Do),

where Dy, is an “adjoint operator” of Dg.

The observation, conversely, suggests that the CM formula could be proved
directly by the duality relation between ePo and ePo, without resorting to the
stochastic calculus. The program is successfully carried out in section 2. We
may say this program runs by the calculus of functionals of Wiener integrals.

Along the line, we also give an algebraic proof of the Maruyama-Girsanov
(henceforth MG) formula (see e.g. [50, V.38, Theorem (38.5)]), an extension of
the CM formula. Note that MG formula cannot be written in the quasi-invariant
form as (1.1), but in the following way:

f F(w) P(dw)
(1.3) 7’

1 1

= f F(w - Z(w)) exp { f Z(t, w)dw(t) — E f Z(t, w)*dt | P(dw).
v 0 2 Jo

Here Z : /" — H is a “predictable” map such that

1 1
. 1 .
f exp { f Z(t, wydw(t) — = f Z(t,w)*dt | P(dw) = 1.
4 0 2 Jo

In this non-linear situation, infinite dimensional vector fields like X, = Z'D,, v
where {e;} isabasis of Hand Z' = (Z, ey, may play a role of Dy in the linear case,

Here we use Finstein’s convention.
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but its exponentiation eXZ does not make sense anymore. Instead, we need to
consider “tensor fields”

Ein

DS =7"---Z"D,, ---D
1

and its formal series

[S¢]

1 —
on _.~D
_n!DZn =e "7,

n=0
We will show in Proposition 3.1.2 that the operator € PZ is the translation by
Z; EDZ(f(W)) = f(W + Z). To understand MG formula (1.3) in terms of the

translation operator €Dz we additionally introduce another sequence {L,} of
tensor fields (see subsection 3.2 for the definition), which has the property
(Lemma 3.3.1) of

o 1 1

l,Ln = exp | f Z(t)dw(t) - E f Z2(Hdt}(eP7 - 1).

& n! 0 2 Jo
Then, as a corollary to the adjoint formula for L, (Theorem 3.2.1), MG formula
can be obtained (Corollary 3.3.2).

The proof of key theorem (Theorem 3.2.1), however, is not “algebraic” since
it involves the use of Itd’s formula. This means, we feel, a considerable part
of the “algebraic structure” of MG formula is still unrevealed. We then try to
give a purely algebraic proof (=without resorting the results from the stochastic
calculus) to MG formula in section 4 at the cost that we only consider the case
where Z is a simple predictable process such as

N
Z= Z Zil(t ) ()-
i=1
We will consider a family of vector fields like z;D;, where D; is the differentiation
in the direction of f 1¢,+.,1(t) dt. A key ingredient in our (second) algebraic proof
of MG formula is the following semi-commutativity:

(14) ZZ'D]' = D]'Zi lf] > i,

which may be understood as “causality”.

Actually, the relation (1.4) implies that the Jacobian matrix DZ = (D,,Z));;, if
it is defined, is upper triangular. In a coordinate-free language, it is nilpotent.
Equivalently, Tr(DZ)" = 0 for every n, or Tr A" DZ = 0 for every n. Since the
statements are coordinate-free(=independent of the choice of {e;}), they can be
a characterization of the causality (=predictability) in the infinite dimensional
setting as well. This observation retrieves the result in [61] that Ramer-Kusuoka
formula ([47],[27]) is reduced to MG formula when DZ is nilpotent in this
sense. The observation also implies that Ramer-Kusuoka formula itself can be
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approached in our algebraic way. This program has been successfully carried
out in [3].

Throughout this chapter, the domains of the operators are basically restricted
to “polynomials” (precise definition of which will be given soon) in order to
concentrate on algebraic structures. We leave in section 5 a lemma and its proof
to ensure the continuity of the operators and hence to have a standard version
of CM-MG formula.

To the best of our knowledge, an algebraic proof like ours for CMMG formula
have never been proposed. Although we only treat a simplest one-dimensional
Brownian case, our method can be applied to more general cases if only they
have a proper action of the infinite dimensional Heisenberg algebra. The present
study is largely motivated by P. Malliavin’s way to look at stochastic calculus,
which for example appears in [32] and [31], and also by some operator calculus
often found in the quantum fields theory (see e.g. [36]).

2. An Algebraic Proof of the Cameron-Martin Formula

2.1. Preliminaries. For any h € H, we set

1
[h](w) := j; W(t)dw(t), weW.

A function F : # — R is called a polynomial functional if there exist an n € N,
hi,hy,--- ,h, € H and a polynomial p(x;,xy,-- - , x,) of n-variables such that

F@) = p([]@), ha)@), -, []@)), we?.

The set of all polynomial functionals is denoted by #. This is an algebra over R
included densely in LF(%#) for any 1 < p < oo (see e.g. [24], pp 353, Remark 8.2).
Let {e;}2, be an orthonormal basis of H. If we set
1

i) 1= [eil(w) = fo s, i=1,2--

then &, &y, - - - are mutually independent standard Gaussian random variables.
Let H,[&], n = 1,2,--- be the n-th Hermite polynomial in & defined by the
generating function identity

[e¢]

A? A"
exp (A~ 7) = ZO‘ THIEL, AeR,
and put
A= N . a; € Z+,
=13 @z a; = 0 except for a finite number of i’s [~
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We write a! := [[; 4;! for a = (2,)°, € A. We define H,(w) € P, a € A by
Haw) = [ [Hol&i@), wew
i=1

and then {%Ha : a € A} forms an orthonormal basis of L?(%) (see e.g. [24]).

For a differentiable function f on R measured by N;(d&) = ﬁe_éz/ 24¢, if
we define ¢ and J"* as

If(&) = f(§)and I (&) = —9f (&) + £f(8), E€R

then 0" is adjoint to d on the differentiable class in L*(R, N;). We note that the
n-th Hermite polynomial H, can be given by H,[&] = (d7'1)(&).

2.2. Directional Differentiations and its Exponentials. For a function F on
# and O € H, the differentiation of F in the direction 0, DyF is defined by

DoF(w) := lim %{P(w +e0)-Fw)}, weW

if it exists(see e.g. [24]). Note that DgF(w) is linear in 0 and F and satisfies the
Leibniz’ formula Dg(FG)(w) = DgF(w) - G(w) + F(w)DgG(w) for functions F and G
on # such that DyF(w) and DyG(w) exist. If F(w) is of the form F(w) = f([h](w))
where f is a differentiable function on R and / € H, then we have

(1.5) DoF(w) =<0, iyu f'([h](w)).
For 0 € H, we define the exponential of Dy by
ePor(w) = Z %D’él—“(w), FePandwe #
n=0
which is actually a finite sum by (1.5).

Lemma 2.2.1. For F, G € P, we have

(1.6) ePo(FG) = ePo(F) - ePo(G).
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Proor. is a straightforward computation:

1213
51 DoF + 3, D5F ++- )

(G+ DyG +

(F + DyF +

1 2 1 3
Z'DG+3DG+ )

- FG + {D9F~G+FD9G}

1 2 1 2
{Z'DF G+ DgF - DyG +F - D G}
{1D3F G+ 1D2F DyG + DyF - 1D2G+F lD3G}
3! 2! 0 Y 3!
+...
1
= FG + Do(FG) + ;D5 (FG) + g(FG)+---:eD9(FG).

ProrosiTiON 2.2.2. For every F € P, we have
(1.7) ePoFw) = Fw+0), wew.

Proor. By Lemma 2.2.1, it suffices to show (1.7) for the functional F € P of
the form F(w) = f([h](w)) where f(x) is a polynomial in one-variable and / € H.
Then using (1.5), we obtain

o0

Do F(w) = Z DB(I@) = Y (0, O R w)

n=0
= Y A {([1@) + (6,1 ) - (@) |
n=0

= f([1)(w) + (6, hu) = F(w +0),
where f®(x) denotes the n-th derivative of f(x). O

2.3. Formal Adjoint Operator and its Exponential. In the analogy of d and
d" in the previous section, we define Dy, 0 € H by

1
D, F(w) := —DyF(w) + f O()dw(t) - Fw), FeP,weW.
0

Let {¢;};, be an orthonormal basis of H and put &;(w) := [e;]](w) fori =1,2,---.
Then we have
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Lemwma 2.3.1. It holds that
E| DoH,[&] - Hul&1] | = B[ HJ&ADHlE1]|
forany k,I,m,n=1,2,---.
Proor. Since t — H,[ fot ex(s)dw(s)] (n > 1) is a martingale with initial value
zero, if k # | the independence of & and &; and the formula (1.5) imply that both

sides become zero when n,m > 1. If n = m = 0, it is clear that the left-hand side
is zero. Then the right-hand side equals to

1 1
E[D;1] = E[-Dy1 + f O(Hdw(t)] = E[ f O(H)dw(t)] = 0.
0 0

Hence the case k = I suffices. Noting that & is a normal Gaussian random
variable, we have

E| DoHL[&] - Hul&] | = (6, eoonE| H, [EHal&] |

— (0,00 f SH,[E] - Ho€] y1(de)
— (0,00 f H, (€10 Hy[]91(dE)

= e [ HuLe]| - HyLe] + EHIE] i)

= (0, enE| Hl&]{ — Hy,[E] + EHulE )|
= E| Hul&{ = DoHul&] + <0, ednéHulEd |

Since O canbe writtenas 0 = Y~ (6, ex)yex, fol O(t)dw(t) admits the L*-expansion

1 (o]
f@(t)dw(t) = Z(Q, ex)H
0 k=1

Now the independence of {&;}2, shows that

1
E[ H,[&] f O(t)dew(t) Hul & | = B Hal&1(0, ednéiHnlEd |
0

ProrositioN 2.3.2. For every F, G € P, it holds that
(1.8) E[DoF - G] = E[FD,G].
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Proor. For fixed F,G € P, there exist a positive integer n € IN and an
orthonormal system f{ej, e, --,e,} in H and polynomials f(x1,x,---,x,) and
g(x1,x2,- -+, x,,) of n-variables such that

Fw) = f(le]@), [e]@), -+, [e,Jw))  and
G(w) = g([ex](w), [ea]@), -+, [ea)@))-

Extend {ey, e, -+ ,e,} to an orthonormal basis {er}?, of H. Since the degree
of the n-th Hermite polynomial is exactly n, f and g can be written as linear
combinations of finite products of Hermite polynomials. From this fact and by
the linearity of Dy and Dj, and the independence, F and G may be assumed
without loss of generality to be of the form

p p
Fw) = | [ Hulén@)] and  GGw) = | [ Hul&k @)l
i=0 i=0

where &(w) = [e](w) and ky, ks, - - - , k, are mutually distinct. Then, using the
Leibniz’ rule, Lemma 2.3.1 and the independence of &5, &5, - -+, we have

P
E[DoF -G = E[Dy | | Hul&w]- HHm,[sk]]
i=1 i=1

- Zp: E Danl[cEk] HHn,[Ek ﬁHm,
i=1 1

]9&1 i=

P
= Y E[DoH, 5] Hy &) [E[ [ | Ho L& 1Ha 141
=1

j#i

|4
= ) E[Hu[&]{ — DoHin 18] + e, O o[£

B[ [ ] Hon 61 H [ ]]

j#i

p
N ]"[Hn,[ek — DoHy [&] + (et O Ho (861} | | H1351]
i=1 J#i

p

Z E HH”J[CE" DQHmi[ék,'])]
i=1
E[ H H”J’[gkj]{ i@kw 9>H5k ﬁ Hyy [Ek, ]
j=1 i=1 j=1
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By the orthogonality of &;, &y, - - -, the last term is equal to

p 1 p
B [ tea]- [ owae [ tes1]
j=1 0 j=1

which completes the proof. O

RemARK 2.1. Note that {Dg : 0 € H} determines a linear operator D : ¥ —
P ® H such that (DF, 0)y = DyF for each F €  and 0 € H. The operator can be
extended to an operator D : P®H — P® H® H by D(F ® 0) = DF ® 6. This
operator is commonly used in Malliavin calculus (see e.g. [24]). Its “adjoint”
D' :P®H — P is defined by D'F(w) = —tr DF(w) + [F](w), F € £ ® H. Then the
“integration by parts formula”;

f (DF(w), G(w))sy(dw) = f F(w)D*G(aw)y(d)
/4 y/ 4

holds for all F € £ and G € P ® H (see e.g. [24], pp 361). Under these
notations, D,F = D*(F ® 0) for each F € ¥ and hence the above adjointness
follows immediately from our result and vice versa.

Next we define the exponential ePo of Dy, by the formal series

= 1
Do .= —D'.
n! 0
n=0

Let {ex};? , be an orthonormal basis of H as above.

Tueorem 2.3.3. For every O € H such that |0|y = 1, it holds that
1
(1.9) D' (w) = H,[ f ot dwt)]eP, n=0,1,2,---
0

and hence P01 can be defined. In fact, it is the exponential martingale (evaluated at
time 1)

1
(1.10) ePol1(w) = exp { f o(t)dw(t) — %} wew.
0
Furthermore, it holds that
(1.11) E[ePoF] = E[F-ePo1], Fe®.

Proor. We use the induction on n to prove (1.9). It is clear that

1 1
D1 (w) = fo o(t)dw(t) = H[ fo o(t)dw(®) .
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Suppose that (1.9) holds for n. We recall that the Hermite polynomials satisfy
the identity

(1.12) Hya[x] = xHy[x] — nHy- [x].
Put O(w) := folé(t)dw(t). Then, noting that (0, 0)y = 1 and using (1.5),

D"V = DyH,[®] = ~DoH,[0] + ©H,[O]
= ®Hn[®] —nH, 4 [®] = Hn+1[®]-
Hence (1.9) holds foreveryn =0, 1,2, --. Then (1.10) follows immediately from
(1.9).
Finally we shall prove (1.11). By using Proposition 2.3.2, for F €  we have

[o¢] [se]

E[ePoF] =)’ %E[DZP] =Y %E[F .D"1] = E[F-ePo1].

n=0 n=0

CoroLLARY 2.3.4. For every 0 € H, it holds that

1 1
(1.13) ePol1(w) = exp { f o(t)dw(t) — % f O(tydt], we.
0 0
Furthermore, it holds that
(1.14) E[ePoF] = E[F-ePo1], Fe®.

Proor. Let = 0/|0|y and then it follows that

1
Dy'1(w) = |0];D;'1(w) = 16lHa[ | n(t)dw(t)]
0

forn=0,1,2,--- and w € # by Theorem 2.3.3. Hence we have

) © 10 1 1 Gl
Pin) =Y DT (i) = exp (01w - 52

n.
n=0

The identity (1.14) can be shown by the same argument as Theorem 2.3.3. O
Now, we have the Cameron-Martin formula in this polynomial framework.

CoroLLARY 2.3.5. For every O € H and F € P, it holds that

fF(w + 0)y(dw) = E[eDQF] = E[F- eDgl]
»

(115) 1 1 1
— . : 2
= fW F(w)exp | fo O(t)duw(t) - 5 fo O(t)2dt fy(duw).
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3. An Algebraic Proof of MG Formula

In this section, we will give an algebraic proof of the MG formula using an
adjoint relation similar to (1.11). As we have announced in the introduction, for
the proof of the adjoint relation we will rely on the standard stochastic calculus.

Let Z : # — H be a predictable map; i.e. Z(t), 0 <t < 1 is a predictable
process such that

1
1ZI17 = fZ(s)st <400 as.
0

Suppose &E( f ZdW) is a true martingale where for a martingale M = (M(t))o<i<1
the process E(M) is defined by

1
EM); = exp { M(H) - S () L
3.1. Infinite Dimensional Tensor Fields. We fix a c.on.s. {¢; : i € N} of H

and will write simply D; for D,, for each i € N. We define a differentiation along
Z. For ¢ € P, we define Dy in the following way:

Dzp(W) = Y (Z,ei)(W) Dip(W),
i=1

where (-, -) is the inner product of H. Moreover, we define the n-th Dz, which
we write as D" by the following;:

DY':=D;®D;®---®Dy

n-times

= Z (Z,eiXZ,ej}Z,ex)---DiDDy---.
ik,

n-members n-members
Next we define the exponential of D by the formal series of

“'Dz._ l ®2 l ®3 ...
e ._1+DZ+2!DZ +3!DZ +

1
=1+ Z<z, e)D; + o Z<z, e:XZ,e,)DiD;
1 1,]

1
ta Z;‘<z, eXZ,e;Z,e)DiD;Dg+ -+ .
i,
We denote (Z, ¢;) by Z;, so we may write (Z,¢;{Z,¢;)D;D; as Z;Z;D;D; and fur-
thermore D$* = Y.i;ZiZ;DiDjas(Z®Z,N ®V),--- ,DJ" = (Z*',V®"), and so
on.
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Lemma 3.1.1. For any k € IN, we have

1 1
P7(H,( f endW) -+ Hy ([ € dW))
(1.16) 0 0

~D : ~D !
z 5 ... Z 5
=€ (Hnl(J;emldW)) e (an( Oemde)).

Proor. First note that the equation (1.16) is equivalent to

ny+-+ny 1

1
%<z®l, VY (Hoy (| émdW) -+ Hy ([ ey, dW))
=0 0 0

m 1

(1.17) n
1 ~ 1 ;
= Z E<Z®Il, V®ll >Hn1( emldw) T Z lk_'<Z®]k/ V®lk>H"k(fémde)'
h=0 0 =0 " 0

Fixingly,---lxsuchthatly < mny,---, [y < ny, itsuffices to prove that the coefficients
of

V®11H V@le e V®lkH ]
n n i

of the left-hand after applying Leibniz rule correspond to those of right-hand.
The coefficients of the left-hand are the following.

1 h+b+-+h\(b+-+ 1) [k
(ll+lz+"'+lk)! ll 12 lk ’

This is equal to j7-7, so we get (1.17). m

ProrositioN 3.1.2. For f € P, we have
(1.18) ePz(f(W)) = fW + 2).

Proor. Since €07 is linear and by Lemma 3.1.1, we only prove in the case of
f(W) = Hy( fol é;(s)dW;), that is, it suffices to show

1 1
ePz(H,( Oéi(s)dWs)):Hn( fo ei(s)AW: +(Z,e) ).

By the definition, we have

n 1

1
EDZ(Hn( éi(s)dws)) = (Z)(Z, e Hi( | éi(s)dWs).
0 0 0

k=

For this, apply H,(x + y) = Y- ({)Hu—r(x)y", then we get (1.18). |
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3.2. The Operator L%. To prove Maruyama-Girsanov formula, we addition-
ally introduce a sequence {LZ} of new operators associated with Z as follows.
For any n € N, LZ is defined by Ly = id and

(1.19) L% =— Z (k)Hn_k( LZ(s)dWs, ||Z||f{)D°f”§, neN
k=1
where the polynomials ﬁn(x, y),n=1,2,--- ,aredefined by means of the formula
_22 e At
e/\x 7Y = Z EHH(X, y)
n=0

With this notation, the Hermite polynomials we have used so far are can be
written as

H,[x] = ﬁn(x, 1).

Tueorem 3.2.1. For any F € P, we have

o0

(1.20) E| Z %LfF] = E[§( fo Z(s)dWs)lP].

n=0

Proor. It suffices to show
1
(1.21) E[L7F] = E[H,( f Z(s)dW,, | Z |} F]
0
for each n € N and F € P. If we can prove that

(1.22) E[LZ(& fde)1 E[H(f (5)dW,, 1 Z1%) & fde)1

for arbitrary f € H, then (1.21) is deduced. In fact, for a finite orthonormal
system {ey, -+ , ey}, take f := Ajey +--- Ay, for Ay, -+, A, € R. Then,

S(Ide)l ﬁa feldw
- n 1
Z N! Z ﬁ [1[ Al Hn,-( Léi(s)dws)/

ny+-+ny=N

and we notice that ) y_, 4y where

NI " ! 1 ifN=0,
aN = E[ Z ol HA H, (jo‘ei(s)dWS)] - { 0 Ltherwise

ny+-+1, =N i=1

is absolutely convergent. This means that (1.21) is valid for arbitrary monomials
and hence for all polynomials.
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So, let us prove (1.22). First we note that

E[L(&( f fdWy)]
n . 1‘ ‘
=E[ ;(—1)"+1(Z)Hn_k( fo Z(s)dws,nzng)pgka( f fdw)l],

where H,(s) denotes H, ( [ Z(u)dW,, [ Z(u)*du)and H, := H,(1). Since D,&( [ fdW), =
(f, €i>8(fde)1, we have

B[ L (&( f fdw))]

= E[&( ff'dw)l{ Zn"(—nk“(Z)ﬁn_k Y Zi Zidfre) - (fre) ]
k=1 i1, ik

= B[ &( f faw) | i(—nkﬂ(’;)ﬁn_k Z ]

We will use the following formulas to obtain (1.22) which will complete the
proof;

() = n fo H,1(5)2(s) dW,,

&( f fdw) =1+ fo é( f fAW) f(s)dW;,

and

(1.23) d(H,, &( f de)>s = nH,1(5)&( f FAW) £(5)Z(s)ds.

As a first step we have

1 1
E| H,( fo Z(s)dWs, 0Z(s)st)a( f de)l]

1
= E|n fo H,1(s)Z(s)dWs |

1 1
+E[n j; H,_1(s)Z(s)d W, fo & f f'dW)s fls)dw; |

1
= E[n ﬁ H,1(5)&( f fdw). f6)Z(s)ds| =: 1.
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By Ito’s formula, we have

1
H,1(1)&( f f'dw)1 fo £(s)Z(s)ds
1/\ . . . 1 S- . _ .
= fo H,1(5) & f de)s £(5)Z(s)ds + fo fo fa)Z(uydud(H, -, & f fclw)>s

+ a martingale.

Then by using (1.23), we have

1
I=E[nH, & f f'dw)l fo £(6)Z(s)ds|
1 S . .
—E[n(n-1) fo £(9)Z(s) fo F)Z(u)du H,(s) &( f de)sds]
= E[nH, & [faw), (1, 2)] -1

Again we apply Ito’s formula to get

H,2(1)&( f FdW) (f, 2)?
=2 fo lﬁn_z(s)a( f de)S j; Sf(u)Z(u)du £(5)Z(s)ds

+ f 1{ f Sf'(u)Z(u) du }2 d<ﬁn_2, 8( f f dW)>S + a martingale
0o Jo

and by using (1.23) again, we obtain

1=V H g f Fdw) (£, 2)?]

1 S
~ E[ n(n - 12)(11 —-2) f(;ﬁn—3(s) 8( ff'dw>s f(S)Z(S) { ﬁf(u)Z(u) du}zds]-

26



3. AN ALGEBRAIC PROOF OF MG FORMULA 27

Hence we have

W[ [zean, [zoras) e [faw) ]=1

= E[nﬁn_lé’( ffdw)1<f,z>]

D8 [ faw) (27

+E| nn = 1)(” 2) f £(5)2(s) f f(u)Z(u)du} Ha(6)&( f fdw) ds].

g

By repeating this procedure until H.(s) in the integrand vanishes, we obtain

1 1
E|H,( fo Z(s)dWL, OZ(s)st)a( f f'dW)ll

= s[g( [faw),| Z(—n(k)ﬁ )

3.3. Passage to the Cameron-Martin-Maruyama-Girsanov Formula. From
Proposition 3.1.2 and Theorem 3.2.1, we will give a new proof of Maruyama-
Girsanov formula in the case of f € P.

Lemma 3.3.1. As an operator acting on P,

(o]

Z = exp f 1Z(t)th - % fo 1Z(t)2dt}(1 —e Dz,

n=1



4. ANOTHER ALGEBRAIC PROOF FOR CMMG FORMULA 28

ProoOF

i%Z( ) f Z(s)dW., 1Z'(s)zols)D?é

n=1 k=1

. 1
Zk'(n k)' f Z(s)dWs, Z'(s)st)}ngé

n=

1
_IH
:N

Il
o

n

M8 uP’JS

[ee]

=1-) %{Zmi f Z(s)dW., f (s)ds) | D%
=1-§&( f ZdW), i%Dﬁ”;

k=1
=1-§( f ZdW), i%D?’;w( f ZdW) .

=~
Il
o

O

Cororrary 3.3.2 (Cameron-Martin-Maruyama-Girsanov formula). For f €
P, the following formula holds

(1.24) E[ &( f Zdw), f(w - j; Z(s)ds)] = E[f(W)].

Proor. By Lemma 3.3.1, we have

[e¢]

(125  E Z %L( fw)]

=E[fW)-& fzaw Zkl (W)+8(deW)1f(W)]
= E[ fW) - &( fzaw)’e' Zf(W) + &( fz'dw)1 fm]
= E[ f(W) - &( f Zdw)1 f(W - fo Z(s)ds) + &( f Zdw)1 fm].

Then by Theorem 3.2.1, we obtain (1.24). O

4. Another Algebraic Proof for CMMG Formula

As we have mentioned in the introduction, we give an alternative proof
which is “purely” algebraic in the sense that we do not use stochastic calcu-
lus essentially, though we restrict ourselves in the case of piecewise constant
(=finite-dimensional) case.
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Let F = {Fi}o<i<1 be the natural filtration of . Let us consider a simple
¥ -predictable process

25

(1.26) 2w, = Y 2P 2w) s 1 (1)
k=1

where z,, k =1,---,2° are ﬂz;sl- measurable random variables. Define o} € H,
k=1,---,2°by

t
os(t) := 2°/2 fl(u () du.
O 2!’ 125
We will suppress the superscript s whenever it is clear from the context. Clearly,
(1.27) D,F=0
for any 7 A -measurable random variable F. Put

D,, := zD,, and D}, := zD,

fork=1,---,2° k
LemmMa 4.0.3. Forany n € N and f € P, we have
(1.28) D; f = zDy, - zDg, f =2z Dy f
n-times
and
(1.29) (D2)"f = zDy, -~ zDy, f =z (Dg,)" f.
n-times

Proor. These are direct from the following “commutativity”:
ng(Z,‘f) = Zl‘ngf, and D;j(Z,‘f) = ZZ'D;],f, ifi < ]
for differentiable f. These follows since D, (z;) = 0. O

Define the exponentials as
Dz .— . l n — e
ek,;mgﬂkJ@ N
n=

and

D NV L e
ePa = Z — (D), k=1,2,N
n=0 "
formally. By Lemma 4.0.3 we have
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and thus we can include ® in the domain of ePx.

Let us introduce a subspace Praar of £, which consists of polynomials with
respect to {[e;](w)}, where {e;} is the Haar system. Note that P, is also
characterized as all the polynomials with respect to {[¢}](w) : k = 1,---,2°,s €
IN}.

The following is a main result in our program.

Tueorem 4.0.4.
(i) For any F € Puaar, we have

(1.30) ePas ... eDz Fw) = F(w + f é(w, w)du).
0

(ii) For any F (-1)/-measurable random variable F,
(1.31) ePuF = FePau(1).

In particular, the function F is in the domain of eP=. Furthermore, we have
1

1
(1.32) ePz e (1) = exp | fo Z(w,S)dw(s)—% fo 2(w, )% ds),

(iii) Fixk € N. Let F € P and let G be an arbitrary F—1ys-measurable integrable
function. Then

(1.33) E[eP=(F)G] = E[FePx(G)].

Proor. (i) First, notice that F € P,y is always expressed as a linear combi-
nation of Hf;l Fi, where each F is a polynomial in

I-1 1 k-1 k
t .
(1.34) {[al](w> (55l < (5 E]},
so that we can assume that F is of the form
N
F= Z H Fri,
i=1 k=1

where each Fy; is a polynomial in (1.34). By Proposition 2.2.2 and the definition
of D,,, we have

Fk,i(w +Zk(7k) ifl = k,

D
Z F ; =
e~ Fp; (w) {Fl,i (w) otherwise.

Then by Lemma 2.2.1,

25
el H Fii(w) = Fr; (w + zoy) H Fpi(w).
1=1

Ik
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Since zi is ¥ -measurable, we also have, if j > k,

25
ePseDx [ [ Fui)
I=1

= e Fii(w + zxoy) e= H Fi;(w)
Ik

= Fri(w + zxox ) Fji (w + zjoj) H Fpi(w).
I#jk

Then, inductively we have

2 2
eDzzs ce eDZI H Fl,i (ZU) = H Fl,i (w + 2107 )/
I=1 I=1

and by linearity we obtain (1.30) since

25 t

Zzl(w)al(t) = fz(w,u)du.

=1 0

(ii) Noting that D, F = 0 for F-1)/»» - measurable random variable F, we
have

DZkF = Zk{ — Dak + 25/2(wk/2s = W(k—1)/25 )}F
= Fzx 2% (wijps — eryj2e ) = FD; (1)
since z; is also Fx-1)/2s-measurable. Inductively, we then have
(DL,)'F = F(D,)"(1),

and hence we have (1.31), which in turn implies (1.32). In fact, we have by
induction
25
eDZZS “o eDzl (1) = H{ eDZk(l) }

k=1

since eDZk—l e eD§1 (1) is F(x-1)/2:--measurable for any k, and foreachi = 1,2, - - - , 2°,
we have

. = Z! = ! 1
eDu(1) = Z(; (D) (1) = 20 i il | ox(tdo]

1
=exp {Zi(w) 25/Z(Wk/zs — W(k-1)/25) — Ezi(w)z}.
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(iii) Since F is a polynomial,

M P
ePur =3 LDrF

n=0
for some M € IN U {0}. Therefore, the left-hand-side of (1.33) is rewritten as
1
—E[z;D; F-G].
n! k
n=0

Since z; and G are F(_1)2s-measurable, we have, for n < M
E[z; D, F-G] = E[F-(D;)"z,G]
= E[F -z (D;)"G] = E[F - (D.)"G].

The relation is valid for n > M since
1

(0,)'G = GO, = GH,[ [ oxt)ckor]
0
and the degree of F as a polynomial of f01 ox(t)dw; is less than M, we have

E[z/D!F-G] = E[F-D"G] = 0.

E| ZT %D;F G| =g Zé %F DG,
n= n=

which is the desired relation.

Thus we have

32

O

RemARk 4.1. (i) We do not assume smoothness for F in (1.31). (ii) In (1.30)
and (1.32), the order of application of the operators is important. If it is changed

anywhere, neither holds anymore.

By using the above algebraic results, we can prove the following

CoroLLARyY 4.0.5 (Cameron-Martin-Maruyama-Girsanov formula). For a sim-

ple predictable z in (1.26) and F € Praar, it holds

(135  E[F(w- ﬁ z(w, w)du ) exp | fo 1z(w, £)dw; — % fo 1z(w, H?dt}] = E[F].
Proor. As a formal series, we have
eDZk e_Dzk =1,
fork=1,---2° Then, for F € Paar, we have

F=ePne Dur
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and since e D= Fisa polynomial, by Theorem 4.0.4 (iii), we have
(1.36) E[F] = E[eP= e P=F] = E[e PaF- ePa(1)].

Inductively, since

e % e ()

still is a polynomial in

{[on(w) (gl e (5 25]}

and

eDZk—l . eDzl (1)

is Fx-1)/:-measurable, we have
E[F]

(1.37) = E[ePx e PaeDai...eDap.elui ... ePu(1)]
—E[e Dau...eDap.olu ... ePx (1)),

Combining this with (1.30) and (1.32) in Theorem 1.31, we have the formula
(1.35). O

5. Continuity of the Translation

The following lemma extends the translation on the dense subset of poly-
nomials to an operator on L, to L,, and hence ensure the MG formula (1.35) for
any bounded measurable F.

Lemma 5.0.6. Let z be a predictable process as (1.26). Suppose that

1
(1.38) E lexp {c fz(t)z dt}] < 400
0

for Zorze ¢ > 0. Then, for p € [1, ), there exists q € (p, o) and a positive constant C,
such that

”e_DZzS .. -e_DZIF”p < Cp”F”q
for any F € Piaar.

Proor. We will denote Z := fo z(t)dt and

1 1
E(z) := exp {I)z(t)dw(t) —~ % ﬁz(t)z dt}.
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Let n > 1 be an integer and p < 2n. By Holder’s inequality,
E[|F(w - Z(w))I'] = E[|F(w - Z(w)) " (&) 1% (&) |¥]

P ok =t
< E[IF(w Z(w)) |’7 b {E(2)) 2—'7] . [ E(z)} R Tir= p] "
= E[|F(w - Z(w))P" @) - g E[{&@) 77"

Since F is a polynomial, so is | F|*". Therefore, we can apply the MG formula for
polynomials (1.35) in Corollary 4.0.5, to obtain
r
E[|F(w - Z(w))" &@=)| ™ = E[IFP"] = || FIL,.
Now it suffices to show that
(1.39) E[{E()) 77] < +0o.

Let us denote L; := fOt z(u)dw(u). Then (L); = fot z(u)?> du. Now, since we have

2
1% = ep{ -2t - Ll

X exp P + P (L)
2@n=p)  @n-pp)7)’
by Schwartz inequality we have

E[{&()) 77 ]

2p Zp 1/2
SE[exp{—zn_pL - p)2< )}]

p 2p 1/2
XE[QXP{(QH—P) (2n - P)2)< >}]

Clearly, (2n o+ (256;2 — 0 as n — oo, and hence we can take large enough n to
have the estimate (1.39) by using the assumption (1.38). m|

RemMARK 5.1. By a similar but easier procedure we can also prove a continuity

lemma for eP¢ with 6 € 7, to extend (1.13) in Corollary 2.3.4 to obtain a full
version of CM formula.



CHAPTER 2

Ramer-Kusuoka Formula via an Action of Generalized
Heisenberg Algebra

This part is based on the joint work [3].

1. Introduction

In this chapter, we approach the Ramer-Kusuoka formula from a completely
algebraic viewpoint without using stochastic calculus and extract an algebraic
structure of the Ramer-Kusuoka formula. We will start with an algebra D" over
IR, a generalization of the Heisenberg algebra, of which the generators p;, p; and
ki’s satisfy the commutation relations (2.1), (2.2) and (2.3) from section 2. We
will see these calculations are generalizations of calculus with Brownian motion
in section 4. We set ¥;; = ([p}, K;]), W = (i))ij, pe = Lixipi and py. = Y. Kip;
and further definitions will be explained in section 2. Our main result is the
following formula given in Theorem 2.3.5:

t

det(1+tW) :expt(px + pi): cexpt(—py): = 1+fg’(s) :exp spy: ds.
0

where g(t) is defined by (2.8).

In the previous chapter, we approached the Maruyama-Girsanov formula
in an algebraic way. There, the predictable process z inducing our transform
is assumed to be simple and we used essentially the nilpotency of Dz. The
nilpotency of Dz implies that the traces of derived matrices, i.e., Dz, Dz A Dz etc
are zero. From this point of view, we will study another representation of the
formula given in Theorem 2.3.5 in the latter half of section 2.

In section 3, we represent our Dr-algebra on the classical Wiener space
toward on the Ramer-Kusuoka formula. Roughly speaking, p;, p: and «; are
representated by a directional differential operator, it’s L?>-adjoint with respect
to the Wiener measure and any functional on the Wiener space respectively
(Theorem 3.0.9).

In section 4, we explain that, on the classical Wiener space, the formula
obtained in Theorem 2.3.5 is the the Ramer-Kusuoka type formula. To do this,
we will introduce a vector field D; where Z is a measurable process (which
may be non-adapted) inducing our transform. Formally, differentiation along
the Cameron-Martin subspace can be viewed as a constant section of a bundle

35
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of which each fibre is the Cameron-Martin subspace. One may assume that D
randomize these constant sections by Z. For getting higher order sections, we
will introduce “normal order”-type product : * : (cf. [36]) and define a kind of
section :D%:, where the relation between : D7 : and the Malliavin derivative D,
is given in section 5, Lemma 5.1.1.

The Ramer-Kusuoka type formula obtained in this algebraic framework is
an equation in R[] (the ring of formal power series in t) rather than R. In
section 5, we shall realize our Ramer-Kusuoka type formula as an equation
in R for polynomial functionals on the Wiener space under some integrability
condition.

2. A Generalized Heisenberg Algebra

We say an algebra as 9-algebra if it has generators {p;, p},x; : i = 1,2,---}
with their defining relations

(21) [Pi/ P]] = 0/ [pjr P;] = 0/ [Ki/ K]] = O/
(22) [[p:/ Kj]/ Kk] = 0/ [[P:/ Kj]/ [P;:; Kl]] = O/
and

23)  lpi+pixi1=0, [pi+p;lpjxll=0, [pi+pjpj+p;1=0

for every i,j,k = 1,2,---, where [,-] denotes the commutator with respect to
original multiplication of . We fix a natural number N in the following and
denote by D, the subalgebra generated by {p;, p, x; : i =1,2,---}. Dy, is also an
Dr-algebra. The subalgebra generated by

{Kl-,pz- +pi,lpixil:i=1,2,--- ,N}

is the commutative by (2.3) and will be denoted by .%.

Let # be the abelian subalgebra of D" generated by {«;, [p}, x;] : i,j =
1,2,---N}. Let . and .#" be the subalgebra generated by {p; : i = 1,2,--- ,N}
and {p;:i=1,2,---,N} respectively.

ExampLE 2.1. Let p(x) be a positive smooth function on R. Let d be the
derivation: dg = ¢’ and let J* be the operator defined by

d'g=—-dg—(dlogp)-g

for compactly supported smooth function g. Take a compactly supported
smooth function f and then {d, 0", f} generates D since

[0,f1g=©f)-g [9,0'1g=—(*logp)-g and [, flg=—(9f)g.



2. A GENERALIZED HEISENBERG ALGEBRA 37

When p(x) = e‘%, the relation among d,d*, 1 is that of the Heisenberg algebra.
More generally for given positive smooth p(x) on R, {9;, d;, fi}Y, generates Dy,
where

di§ = —0ig — (dilogp) - &
and f; is an arbitrary compactly supported smooth function.

For an abelian subalgebra % in O and b;; € %4,i,j = 1,2,--- ,m the deter-
minant of m X m-matrix of B = (b;;) can be defined usually as an element of
B.

Here we use as a conventional notation “normal order”-type product:a: € O*
for a € O in the following way: (i):a: is linear in 4, (ii) within the colons all the
elements commute and (iii) for a monomial it holds

M . DY . * o o . * DY .

LKy K P, 0 Ph P
- . RS . * o o e * DRy
=K K, pj1 pjm Py Pk,

2.1. Formal Series with Coefficients in an Algebra. Let A be an algebra.
We denote by A[t]] the ring of formal series in t with coefficients in A. In this
ring, some operation can be defined in obvious way: For f(f) = Yo & £, € A[t],
differentiation and integration with respect to t are defined by '

') = i ;—;:fnﬂ and ftf(s) ds := i :;‘f"_l'
n=0 0 n=1 """

again each as an elements in A[[t]. In the case of f(t) = )., ;—", fu, 1€, fo =0 the
exponential can be also considered:

exp f() =1+ f0) + 5 FO + 53 F + 35 F 4+

because the right hand side is determined in order of lower degree of t and
defines an element in A[[¢].

2.2. The First Algebraic Theorem. We set

N N
Pr = Z KePkr P = ) Ki Py
k=1 k=1

Let D[t] = D[t denote the ring of formal series in ¢, a symbol, over
D = Dy, For any a € D, we may define
exp ta = Hak and :expta::ZH '
k=0

k=0
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aselementsin O'[[]. Then, forexample,: p3:= };  xik; pipj, : pi 1= L Kik; p; ),

. n'_ c e e e . : e e e .
‘pK'_ : 'Kll Klnpll pln’

i, in

ZKil'“Kinpil'“pin

i, i

o
and so on. The following consists of the first half of our algebraic approach.

TueoOREM 2.2.1. We have in D*[[t]]
(2.4) ( rexp t(px + pi): )( rexp t(—py): ) =:exptp,:.

Remark 2.1. Here we should understand : (p, + p%)*: as

k
Z pd ol
— (k ])|]|

Note that : (p, + p2)F: still commutes with .7
Pr Py

Proor. First, note that

00 00 N
cexp Hpx + pr): = Z % e+ P = Z kl { Z ki(pi + p;) }k3

k=0 k=0 i=1

= Z% Z Kiy - Ky (P + p;) - (pi, + 0;,)
k=0 7 iy
and
expt( pK) = Z ( 1)k . ﬁ:: Z (_kl|)k Z Kip =+ Kig Piy =" Py
k=0 i, ik

Then, the left-hand-side of (2.4) is rewritten as

=1 v n!
; n! kZ:;- K\(n — k)!A"B”"‘

where
A = Z Kiy oK (P + p7) - (i +p3)
il/"'/ik
and

Bui= Y, Ky (=pi) e (i),

i1, n—k
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Since (px + p;)’s and «;’s commute, we have by the definition of our normal
product
AiBk
= ) ik, (o ) (i P (i) (i)
= :(pe+ P (=ps

Therefore, the left-hand-side of (2.4) now becomes

“ !
Z‘ n! Z W e+ P (=)

)n—k .

= 1 = 1 .
:ZTI_ (pK+p1< pk :ZE PK) :
n=0 n=0
This completes the proof. |
2.3. The Second Algebraic Theorem.
LemMma 2.3.1.
Ki) Ki, [p; il -+ [pj . il
o, xi]l -+ pi, il o;, %] -+ [pi, %l
Z ad, det " . - = Z det Pz' . ,02. ‘
= & . & = ) : . ) :
[Pik; Ki1] e [Pik/ Kik] [Pik, Ki]] U [pik/ Kik]
Proor. It suffices to prove that
Kll oo Klk
[P, xi] - [P}, xi]
(2.5) 2, det Lo Lo ] = L 0o, w1 | =0
i
[ xi] - [p;, %]

foreachl = 2,--- ,k. Let ay,---,a, denote the row vectors of above matrix in
(2.5). Then by skew-symmetry of determinant yields that

det(ay, - ,ar) +det(ay,ar,-+-,a;, -+ ,a;) =0.

But the commutation relation (2.1) and the Jacobi identity imply that[ p; , [p; , %, 11 =
[le [pl i 1T and [p;, [pj, i1 = [p;,[p;,x;]] and hence by taking sum over
i1, ,ix we obtain the result. O
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ProrositioN 2.3.2.

Z(Z) Y detl i pr

k] e Lep ]

Kz-l DY Klk

" & n — 1 [p:zl Ki]] e [,0;2/ Kik] n—k
T B e e
— : :
[}, xi] -+ [pj, il

Proor. By Leibniz’ rule we find that

Ki, ce Kik
[P, kil -+ [pj,, xil
p:l{det Kl'ku”'KinpikH'”pin}
lp; kil -+ Ipj, il
Ki, e Kik
i, xi] - [pi, il
=[p;,det 2: . 2: k ]

* *
Kik+l'..Kinpi+]...pin
k

[p; kil - [P, il

Ki, N K,
nk [p;/ Kﬁ] e [p;’ Kik] * * *
+Zdet : .. : Kik+l...[pil’Kik+j]...Ki"pik+]‘..pin
j=1 . o
[pl‘k/ Kil] e [Pik’ Kik]
Ki, e K,
[p;’ Kll] T [p:zl sz] * % *
+det : . . Kik+]...Kinpl'1pl'k+].‘.pin'

[o; kil - [P, il

40

By previous lemma, the right hand side in this proposition is equal to the sum

of

o, xil - [pj . il

* *
Kjlk-*—l Kln pik+1 pi,ﬂ

i, xil -+ Ipj il
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ik

n—-1 o, kil -+ P, %l ) )
Hk:(n_k)(k_l)det 2; 1 2; k [pil’Kik+1]Kik+2”'Kinpikﬂ.“p;n
[p; kil - [pj. il
and
Kil .o sz
n— 1 [P;/ Kﬁ] T [p;/ Kik] . % "
Mk:(k_l)det . . . Kik”'“Ki"pilpikﬂ.”pin'

lp; kil -+ [P, il
We apply to Ily,; the cofactor expansion about to the first row to find the sum
of My, overiy,--- i, is equal to the sum of

(] e
( X )det : : KiyKipp " Kinp;p;m T p;n
[P;kﬂz Kil] T [p:kﬂl Kik+1]
Ki, e Ki,
o, kil - lpg, xil

n - 1 * * *
_k( k )[pll’Klk+1]det : . : Kik+2...Kinpik+1.-.pin'
lp; kil - Ipj. il
Hence with using formula

n-—1 n—1
(" onlina)

it turns out that the sum of Illy; + I over iy, - - , i, is equal to the sum of

n_ 1 [P;Z, Ki1] T [p;’ Kl’k-*—ljI
( ‘ )det : - : KiyKigo *** Kia 05, Py P,
[p;kﬂ ’ Kil] o [p;.kﬂ / Kik+1]

over iy, -+ ,i,. Furthermore we use formula

n-—1 N n-1\ ([n
k-1 k| \k
to see that sum of My, + I + I equals to the sum of
[ xil - Lpj .l
n . . * *
( r ) det Kigq " KinPi " Piy

[p; kil - [pj. il



2. A GENERALIZED HEISENBERG ALGEBRA 42

Now this proposition follows easily. m|

We denote by ® and W the matrices (qbij)z.:l and (gbi]')fj.:l respectively, where
¢ij = pix; and gy = [p; 3]

We note that

Kip; = Gij = Yij.
From the knowledge of linear algebra we find that

N Vi P,
(2.6) det(1+t\y):Za Z det| : ..

n=0 " iy iy i o i
as an element in O*[t] € D*[[£].
ProrositioN 2.3.3. As in D*[[t]] we have
det(1+tW) :exptp):

Kll .o Klk
-1 [p;, xil -+ [P}, xil
S T (3 e T )
" [p; kil -+ [pj. il
Proor. The left hand side of the proposition is equal to
p Iibilil U lpilik
(27) Z ‘ Z ( ) Z det . Kik+1 e Kinp;kﬂ e ‘O;
n=0 i ¢iki1 T Bbikik

with using (2.6). Hence our claim follows immediately by Proposition 2.3.2. O

We shall set

Kil N Kin
= 1 . Vi, 0 Wi, .
(2.8) sh=) = ) pidet| T e DI
m=0 | iy iy : o
1)l)inil e 1)biniﬁ

and then the previous Proposition 2.3.3 implies the next algebraic fact.

ProrosiTioN 2.3.4.
t
det(1+tW) exptp,: =1+ fg’(s) :exp spy : ds.
0

Now we combine the first algebraic theorem 2.2.1 and proposition 2.3.4 to
deduce
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THEOREM 2.3.5.
det(1+tW) :expt(px +py): rexpt(—p«):

(2.9) !
=1+ fg’(s) :exp spy : ds.
0

This formula seems to reveal the algebraic structure of the Ramer-Kusuoka
formula. The reason why will be turn out in Section 4 .

2.4. Trace Expression. Before entering the Section 3, where we represent
our algebra " on the Wiener space, we shall see and understand more about
the expression of (2.9). If we write the left hand side of (2.9) as the form
of exponential, how the expressions will appears on the exponential ? The
expression should be a series of t and then what and how polynomials will
appears as the coefficient of each "?

Wesety = (y1,y2,--+), 2= (21,22,---) and w = (wq,wy,---) as

y = (tr(@), tr(PP), tr(@W?), tr(DW?), - - ),

z = (te(W), tr(P2), tr(W2), tr(W?), - - )
and
w = (tr(®), tr(VO), tr(P2D), tr(P°D), - -- ).

Since % is abelian, we can define A"W forn = 0,1,2,---, N usually and the
knowledge from linear algebra yields

1 Yiyiy - Yi,
tr(A"W) = p Z det|] : ..
i iy Pii,

Lemma 2.4.1. Foreachn =1,2,---, we have

K K
Y 0} det ¢ ¢ = Y (-1 = Dt @P) tr( AW,
v Visip = Wi, -
COROLLARY 2.4.2.

Ko e K

= " . ¢i2i1 U ¢i2in +
gt = E " E pildet : . : € Dt
n=0 """ g, iy ’ ) )
I‘lbinil e I‘)binin
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satisfies
gt = (i t”tr(CD(—\P)”‘l)) -det(1 +tW).
n=0

CororLARry 2.4.3. Foreachn = 1,2,---, there exists a polynomial q,(x1, X,) such
that

Kil o o o Kin

Yiiy  Yii —
Z pudet] . : "=y 2)
i1, in . : .

lpinil T lrl}inin

and q,(y, z) is a linear combination of monomials which consist leading multiple of
the form tr(®WX), k = 0,1,2,--- ,n and other multiples of the form tr(W*), k =
0,12,---,n—1

Proof of Lemma 2.4.1. Let
Visiv Yiris = Wi,
Xpi= ) fipdet| 1o
i1,---,in Ilbinil llbini?» o lpinin
and
Yiiy Viien 0 WYii,
Xy 1= Z (Pilizl:bizis T Qbik_ﬂkdet
b i Viiiy Visiw Pii,

fork=3,4,--- ,n —1. Applying cofactor expansion to the first column we get

Kll .o Kln
Z ) Viiy = Pigi, o
p; det —_— : =tr(®)- n—D'tr(A"WV) — (n — 1)X,,
i1, in . . .
ybinil T 1)Dinin

In the same way we get
(2.10) Xi = tr(PWF) - (n = b)! tr( AR — (0 = k) Xjen

for k = 2,3,--- ,n — 2 by cofactor expansion about the first row in X;. Using
(2.10) and that

X1 = tr(PW"2) tr(WV) — tr(dP" )

we can obtain the result. m|
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Lemma 2.4.4. Foreachn =1,2,--- , we have

Z( )k1 k)|t(\I/k (D - W) :p ks

Proor. Since
Ki, " 'Kinpil . .pl_n
o . * . CECREY . * CEEEEY * . . TRy . * * LY *
= Ki, P, Ki -+ K, 0, =+ + 5, + Kiy [, - - %3, 03 103 -+ P,

= . * . DY . * . * .. . *
= Kiy P, Kip K3, P+ 0, F Z[KW pi, Jciyxci, - C K Pl P

we have

cpi s =tr(D) : p” Loy Z (n— 1)[7{1'2;,0;]7(1'17{1'3 K, 0 P

i1, 0
=Xi+(n—-1)Y; (say).
Since
* * *
[x<i,, 7, Jiciy i =~ 363,07, -+ P},
— . * . * . o o o . * . o e *
- [KIZ’ pil]KllpiZKl?y Kl?lpig; pi,l

*
+ Z[KIZI pzl Klk’ pzZ]KhKla o K Klnpz3 “Pi,s

k=3
Y, equals to

—tr(\I/CD) P*n 2 +(Tl 2) Z [K12/ pz1 [Kl3' plz]KllKZ4 Klnpz3 pz

i1,

Soweshall putfork=1,2,--- ,n —1,
Xk — ( 1)k 1tr(\yk 1CD) paen k. .
andifk=1,2,--- ,n-2,

* * *
Yii= Z [, 93, i 031+ [0 P10 Ky - K05,

i1,

n

and

Yy = Z [ici,, p Wiy, p3 -+~ [, T p = (1) (W1 D).

il/"'rin

Then by the same way as above we see that
Yi1=-Xg+(n—-k)Yy for k=2,3,---,n and
Yo =-Xp1+ Y.

Then by using this we obtain the result.

45
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CoroLLARY 2.4.5. Foreachn = 1,2,--- , there exists a polynomial r,(x1,xz) such
that : pi': = 1,(y, w).

COROLLARY 2.4.6.

X in

fm=Y % 07 € D
n=0
satisfies

£ =) e ((-W") (@ = W))- £().
n=0

COROLLARY 2.4.7.

Y o= f0 =expl Y () + Y Dy
= n=1 n=1

Finally we can give answer to our interests.

TueoreM 2.4.8. There exist polynomials q1(X1, X2, X3), §2(X1,X2,X3), - - - such that
det(1+tW¥) :exptp,.: = exp {tql(y,z,w) + gy, z, W) + -+ }

as an element in O [[t] and each qi(y, z, w) is a linear combination of monomials whose
leading factors are of the form tr(®W'),1=0,1,2,--- k- 1.

Proor. We set &(t,x) and {pi(x) : i € N} by

E(t,X) = txy + Pxp + Pxz + -+
and
X =1 4 p i)t + () 2+ pa) 4

inductively. Note that we don’t assume commutativity of x;’s. For example, we
have
2

X
pi(x) =x1, pax) = > + X,

x3 X1X7 + XoX
1 1X2 + X2X1
(211) p3(X):— — + X3,
6 2
X% X x0x] + XX XX + X2+ XX
) L, ARt ann t ey antn+an
1\X) = —~ 4
P 24 6 2

and so on. Now we have only to determine x;'s when we assume that

det(1+ W) :exptp.: = et(EX),
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By proposition 2.3.2, we see that

N
P9 == ) pi(—1) = tr(®)
k=1

and hence we obtain q;(y, z, w) = y;. Assume that g,(y, z, w), - -+ , g.(y, z, W) are
given so that the assumption are satisfied and then can find ¢,,+1(y, z, w) with
using proposition 2.3.2 and corollaries 2.4.3, 2.4.5. m|

In fact, with a little computation together with (2.11), we can give g:(y, z, w),
72(y,z, W), q3(y, z, w) and q4(y, z, w) explicitly:

nlyz,w) = (@), oy z,w) = o,
2
ity zw) = DO - r(ow), (@),
3
qs(y, z, W) = _tr(CIZL—‘I’) + 11—2[tr(CD\I/2),tr(CD)].

3. Representation of D"-algebra on Path Space

In this section, to understand Theorem 2.3.5 with using a standard setting of
stochastic analysis, we construct a representation of *-algebra on the Wiener
space.

Let (#, H, P) be the classical Wiener space on closed interval [0, 1]. For £ € H,
we denote by D; the differentiation in the direction of &: for a function F on 7/,

D:F(w) = lin(} % {F(w + &) - F(w)} if it exists.

We define an operator D; by

1
D:F(w) := —D:F(w) + fo E(t) dw(t) - F(w)

for a differentiable function F defined on 7.
We shall fix an orthonormal basis &;,&,,--+ of H and Dy, D; denotes the
corresponding differentiations: Dy = D¢, and D = D; fork =1,2,---. Recall

that we have fixed a natural number N. Let £ = Py = R[ fol EMdw(t) : k =
1,2,---,N] and then D; is a linear mapping from # to # and it extends to a
linear mapping from D, to D,, where D, stands for Meyer-Watanabe’s test
function space. Note that ID,, forms an algebra.

ExampLE 3.1. If wesetfork=1,2,--- ,N
k=0, pr:=Dy and p;:=D;
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then we obtain Dr-algebra generated by {py,p; : k = 1,2,---,N}, here we
take the multiplication as the composition of operators, which satisfies the
Heisenberg commutation relations

(2.12) lpirpi1 =0, [pi,pjl =0 and [p},pjl =0.

Now we fix Z;,Z,,--- € Dy which act on D, as multiplication operators.
Let 7 = I be the algebra generated by { Dy, D;, Z } | The “normal order”-type
product:x: € Z for x € & canbe considered in the following way: (i) :a: is linear

in a, (ii) within the colons all the elements commute and (iii) for a monomial it
holds

:Zi - ZyDy - D) Dy, -+~ Dy,
= Z, -+ ZyD}, ---D; Dy, -+ Dy,

Let ¢ : D}, — Zy C gl(ID. ) be the homomorphism of D3, determined by
(2.13) ¢(pe) =D, @(pi) =Dy and  @(xi) = Z
foreachk=1,2,--- ,N.

TueoreM 3.0.9. ¢ gives a representation of the algebra D"

Proor. It is enough to prove that

[Di/Dj]:O/ [D:/D;]

0, [Zi,Z;]1=0,

[[D;, Z;], Z]1 = 0, [ID;, Z;],[D,, Z1]] =0,
and
[Di+D;,Zi1=0, [Di+D;,[D;Z]1=0, [Di+D;,Dj+D;]=0.
But since for every f € Dy, [D;, f] and [ f, D;] act on D, as the multiplication

by —Di;f, the first seven identities are clear. The last identity follows by the
Heisenberg commutation relations. |

4. Reduction to the Ramer-Kusuoka Formula

In this section, we will understand that, on the Wiener space, Theorem 2.3.5
means the Ramer-Kusuoka formula with using the representation of *-algebra
we have constructed in previous section.

For this, we first summarize some fundamental facts below.

ProrositioN 4.0.10. Let £ € Hand F, G € D.,. Then
(1) we have

1
(2.14) D1 (w) = Hn[fé(t) dw(t)] if & is of length one
0



4. REDUCTION TO THE RAMER-KUSUOKA FORMULA 49

where H,[x] is the n-th Hermite polynomial defined by

Ax -2 =\
(2.15) M7 = ZO‘ - H,lx]
so that
(2.16) E[D:F] = 0.

(i) We have
(2.17) Di(FG) =(D:;F)G - FD:G
and hence with taking the expectations of both sides we have
(2.18) E[(D:F)G] = E[FD:G].

Proor. (i) First we prove (2.14) by induction. It is clear if n = 1. We shall
assume (2.14) is true in the case of n and then with using the assumption of
length of &, we have

1
D*1(w) = Dif [ £ttt
0
1 1 1
_ fo £(da(t) H,| fo £(Hda(t)] - DeH,l fo £(du(n)]
1 1 1
_ fo £(da(t) H, | fo E(Bdw(®)] - nHy[ fo E(du(®)]

whichis H,,11[ j(;l E()dw(t)] itself by the property of Hermite polynomials. Every
F € P can be written as a linear combination of product of Hermite polynomials

in fol O.(Hdw(t),-- -, fol Ox(t)dw(t) for some orthonormal system Oy,--- , 0y € H.

Since [ 61 (Hdw(b), -+, [ 6(H)dw(t)areindependentand E[H,[ [, 6x(t)dw()]] =
0 for every k and n we have (2.16) for every F € . Since P is dense in D, (2.16)
holds for every F € D,

(ii) The formula (2.17) is clear from Leibnitz’ formula for D; and then with

taking expectation of both sides in (2.17) and using (2.16) we have the adjointness
(2.18). 0

We define formal series in t by

X

i : o
(2.19) exp tDg := Z " D; and exptD; := o Dy
n=0

n=0
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Both of them act on D, in the weak sense of

(2.20) (exp tD:)F = Z D”F e D[]
n=0
and
. wA.
(2.21) (exp tD; )F = Z:o‘ —DY'F e D[]

for F € D. The above quantities need not necessary converge in general. But
if F lies in P then the former is actually a finite sum and hence (exp tD;)F € P.

Prorosition 4.0.11.
(exptD:)F(w) = F(w+t&) for Fe®P.

Proor. Since

[o¢]

(exp tD;)F - (exp tD;)G = ( Z ;—H'DgF)( e D”G)

n=0 n= 0
=FG +{D:F -G+ FD;G |t
1 2 2
5 D: G+
= FG + tD¢(FG) + EDE(FG) + .-+ = (exp tD¢ )(FG)

{21'D2F G+D:F-D:G+F=

for every F and G € P, to prove this proposition, it is enough to prove in the case

where F is of the form f][ fol Ex(t)dw(t)] for some polynomial function f defined
on R. In this case we have

(exp tD: )F(w) = Z 'D” f E(s)dw(s)]

_ Z (n>[f€(s )dw(s) | fcfk(s)dw(s) + (&, §k> fgk S)dw(s)

:f[foék<s>dw<s> (5] = F(w+ &),

So we shall define 7 : Do, = Doo[[t]l by

(o] tn
T F = (exptDs)F = ) —DiF
n=0
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for each F € D, and we extend this to the mapping 7 : Do [[{]] = D [[t] by

Ttg( i tnFn) = i " T Fn.
n=0 n=0

Then one can see easily that for every F € D, and &, 1 € H it follows that
(222) Tre T”]F = Tt(é+r])F = T T F.
On the other hand, by (2.14) in proposition 4.0.10 we have

Prorosition 4.0.12.

1 2 1
(2.23) (exptD;)1(w) = exp{t‘focf(s)dw(s) - % Lg(s)st}.

More generally, we have for F € D,

1 2 1
(2.24) (exp tD} )F(w) = (1_F) exp 1 fo S(s)dw(s)—% fo £(s)ds).

as an element in Dy [[t].

Proor. (2.23) is obvious from proposition 4.0.10. To prove (2.24), it needs
only to prove that

1 2 1
tig_tng) exp (t fo E(s)dw(s) — % fo £(s)%ds} = DY'F(w).

By proposition 4.0.11 and (2.23), we already know that the left hand side of
above is equal to

L
"

n

Y (Z)(_l)k DEF(w) - D" P1(w).

k=0
On the other hand, with using the rule (2.17), the right hand side is
DyF = Djy1-F — DgF,
DZF = D21+ F — Dyl - DgF — Dj;1 - DgF + D3F
= D71 F - 2Dj1- DgF + D3F,
DJF = D21+ F - D1 - DgF
—2D71 - DgF +2Dj1 - D3F
+Dy1-D3F — DJF
= Dy1-F—3D31-DoF + 3D,1 - D3F — DF

and our claim is shown inductively. |
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CoroLrary 4.0.13. :exp (D + Dy ) : acts as a mapping from De, to D[] as the

multiplication by
L 2L
exp{t Ex(s)dw(s) — 5 Ex(s) ds}
0 0

foreachk=1,2,---,N.

Proor. Let @i be the representation which can be obtained from ¢ when we
setzy = 1,z; = 0for! # kin the way of (2.13). Then by Theorem 3.0.9, Proposition
4.0.11 and the first algebraic theorem 2.2.1 we have for F € D,

cexp {( Dy + D) : F(w)
= ([:exp {(Dy + D}, exp H(~Dy) ] 71F ()
= (@rlexp tpe + p}): rexp H(—pi) :1TcF (@)
= (pel:exptp; sl J(w)
= ((exp tD}) TieF ) (w)

1 2 1

= F(w)exp {t | &(s)dw(s) - % £(s)ds .
0 0
O

For F(t) = Y., t"F, € Do [[t] we define its expectation as an element in R[[#]
by the formula

[ee]

E[F(#)] = Z t"E[F, ] € R[]

n=0
CoroLrLARy 4.0.14. We can obtain the Cameron-Martin formula in this framework.

Proor. For each k and F € P we have
1 2 1
E[F(w — t&) exp {tfcfk(s)dw(s) - % fgk(s)st}]
0 0
= E[( cexpt(Dy+Dy): exp t(—Dk))P(w)]

= E[(exp tD;)P(w)] = E[F] + Z %E[D;”F] = E[F).
n=1 "

We set a measurable process Z(t, w) by

N
Z(t, w) = Z Zi(w)&x(t)
k=0
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forO0 <t <landw € #'. Asa function of w, z determines a mapping Z : #' — H
which defines a trace class operator DZ(w) : H — H for almost all w € # by

(DZ(w)(), &) = D Z(w), 1)

In the coordinates &;, &y, - - -, DZ can be viewed as a N X N-matrix whose (i, j)-th
component is given by D;Z; = —[ D, Z;].
We also set D7 and D;, by

N N
Dy := ; Z:D; and Dj:= ; ZD;

which lie in Z = %y. Note that ¢(p.) = Dz and ¢(p;) = D7,. Each of D; and D,
behaves like a vector field on 7/, a section of the bundle whose fibres are the
Cameron-Martin space H in what follows.

Prorosition 4.0.15. For each F € D, we have
(2.25) rexp tDz: F(w) = (Tzww)F )(w)
and

exp tD7: F(w)

1 1
= (T_iz@)F )(w) et - trDZ(w) exp{th(s)éw(s) - g fVZ'(s)2 ds}.
0 0

(2.26)

Proor. We first prove (2.25). With using (2.22),

N
rexptDz: F(w) = ( :exptZ ZiDy: )F(w)
k=1

N
( expt Z Zi(w) Dy )F (w)
k=1
exp(1Zx(w)Dy) -+ exp(tZ1(w)Dy )F)(w)
= (TtZ(w)F)(w)'
Next we shall prove (2.26). Likewise we have
rexp tD,: F(w)

= (exp(tZy(w)Dy,) - - exp(tZ1(w)D; )F )(w)

N L 2 L
= (o)) e 1) 210) [ -5 o)
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We use the integration by parts formula(e.g. see [15], pp 36)

1 1 1
Zi(a) fo £4(s) dw(s) = fo Ze@)Exls) Sw(s) + fo £45)D.Zu(w)ds

to get the relation between Ogawa integral and Skorohod integral:

1

N 1
z w(s)dw(s) = [ 2(s)6 DZ
kZ:; k(w) fo Ek(s)dw(s) j; (s) dw(s) + trDZ(w)

since [ E(s)DsZi(w)ds = (DyZ, &) = DyZy. Hence (2.26) follows. O

In the same way as corollary 4.0.13, we can prove

Cororrary 4.0.16. :exp t(Dz + D7) : acts as a mapping from De, to Do [[t]] as
the multiplication by

1 2 1
ef 1 DZ{W) exp {1 fo Z(s)éw(s)—% fo Z(syds}.

CoroLLARY 4.0.17. Let F € Dy,. Then as an element of R[], we have the Ramer-
Kusuoka formula

E[F] = E[(7_iz(F)(w)det (1 - tDZ(w))
(2.27) 1

x ef - trDZ(w) exp{t‘fOlZ(s)(Sw(s) - g fOZ(s)zds}].

Proor. By Corollary 4.0.17, Theorem 3.0.9 and Theorem 2.3.5, for each F €
D., we have

E[ (7_1zF)(w)det (1 - tDZ(w))

2

x ef " trDZ(w) exp{tf(fZ(s) dw(s) — % fo‘lz'(s)z ds}]

= E| det(1 - tDZ(w))( :expt(Dz + Dy): texpt(~Dz): ) F(w) |

= E:(p(det(l —tW) texpt(pe + pr)iiexpt(—py): )F(w)]

:E:(p(1+j;g’(s):expspK:ds)F(w)]

= E[F] + fo E[(¢(g'(s)) :expsDz: ) F(w) |ds.
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Since ¢(g’(t)) is of the form

q)(Kil) T @(Kin)
= . W) - PWii,)
(2.28) ZO‘ - Z Didet| " T e a1,
o PWii) - Wi,
by using Proposition 4.0.10-(2.16) the second term of above is zero. m|

5. Analytic Observations

In our framework, Z is actually a finite sum if we expand it in H with
respect to the orthonormal basis &;, &, - -+ which we have chosen. To justify
our Corollary 4.0.17 as an identity in R rather than R[[{]] even in the case of Z
expands as an infinite sum in H, we shall need some analytic observations.

5.1. Relation Between :DY: and the Malliavin Derivative. The notion of
vector field Dy is also proposed in [31]. In [31], pp.10, the following identity is
given:

1
(2.29) DzF = f Z(t)D,Fdt
0

with using the Malliavin derivative D;. We shall see that our : D% : generalize
(2.29) in the sense of the next lemma.

1
Lemma 5.1.1. Ifsz(t)2 dt < +oo then for every F € D, we have
0

1 1
:D7: F = f---fZ'(tl)--‘Z'(tn)Dtl‘--Dtantl---dtn.
0 0
Proor. Since

Dt1 see DtnF = Z Dékl. © DéknF : gkn(tn) e 51(1 (tl)
k1, k

and

Z(t) - Z(t,) = Z Ziy -+ Zi iy (Bn) -+ & (1),
Ky, kn
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it follows that

ffzal) Z(t,) Dy, --- Dy, Fdt ---dt,
Z f f Ziy Zi, De D Fép (8% &, ()P by -+~ by

:Z 6+ Zi,De - Dgy F = :D}: F
klr“'rkn
O

5.2. Some Estimates. In thissubsection, we assume that Z has the expansion

Z= szék

in H where Z; € D, for every k = 1,2,---. We denote by ZWN) the measurable

process
N
Z® = 7&
k=1

which we have treated so far. Note that for any Z®), we have already defined

Dz, D7, and so forth. We assume that DZ(w) belongs to the trace class for a.a.
w.

1
ProposiTION 5.2.1. ijE[fZ(t)z””dt] < +oo for some p > 1 then for each F € D,

0
we can define : D% F as an element in L>(%) so that it holds that

. f fZ(t]) t )Dt1 Dtantl ce dtn

Proor. Set:D7%: F = limsup,, : D7 :F. Since

Z(N )"

D f f (tr)--- Z8(t) Dy, - Dy, Fdty - d,
3 n/2 1 1/2
s{fZ(N)(t)zdt} {f---f(Dt]---DtnF)Zdtl---dtn} )
0 0 0

and [ Z™(02dt T [ Z(H?dt as N — oo it follows that

Dl F)? < f Z(t)*>"dt f f (Dy, - +- Dy, F)*dt; - - dt,
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for any N. Let Gr be the second factor of the right hand side in the last line.
Since F € D, Gr is g-th integrable where g is the conjugate of p, i.e., they satisfy
1/p +1/q = 1. By Holder’s inequality we have

1 1 1 1
E[ f Z(H)>dt f f (D, -+ Dy, FY2dt ---dt,] < B[ f Z(HPdt P E[GL]VA.
0 0 0 0

Since E[G!.]'/7 is finite, by Lebesgue’s dominated convergence theorem we can
obtain the result. O

RemaRk 5.1. From the proof of Proposition 5.2.1, if F is bounded and has
bounded derivatives, : D’ : F can be defined even in the case of p = 1.

We define
rexptDyz: F = limsup :exp tDym: F
N

and

rexptD}: F = lim Nsup rexptD,: F

1 1
:(:exptD*_Z:P)exp{thZ(s)(Sw(s)—;fOZ(syds}

1
LEmMMA 5.2.2. IfE[fZ(t)Z"dt] < +ooforeveryn =1,2,--- then forevery F € De,
0

we have
E[|:exptD7: F|]

< st;pE[L'l"f:(Dtl"'Dt,f)zdh"'dtn]1/2<E[ exp{ﬁlz'(t)zdt}] +e).

Proor. We have

|:exp tDym: F|

x ol 1 .
< sup E — - |Z(N)(t1) . --Z(N)(tn)Dt] -+ Dy, Fldt ---dty,
N =ntdy Uy

for every N and by using Schwartz’ inequality,

s%p; f fIZ () -+ Z™(t,) Dy, - DtnP|dt1'--dtn]
i%E fZ(t)2dt}”] E[L...L(Dtl...Dtnl:)zdtl.”dtn]l/z.

n=
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This is dominated by

sup ] [ [0, --Dopran-—an] (e [z07ar)] +o)

from which we can obtain immediately the result by using the Lebesgue domi-
nated convergence theorem. O

Prorosition 5.2.3. If

1
E| ex th(s)zds < 400
[expf [ Z6Pas)
then for every F € P, :exptDz: Fisin LP(W') forany p > 1.

Proor. Since (:exptDyw: F)P = (:exptDzm:)(FF) and F is polynomial, our
assertion follows by Lemma 3.17. m]

ProrosiTion 5.2.4. Letp > 1. If

E[exp{tf:Z'(s)ds} +exp{ptufolz(s)6w(s)}] < 400

for some u > 1 then for every F € P, :exp tD: F is in LF(¥').
Proor. With noting that |:exp tD_z: F |V is integrable from Proposition 5.2.3,

E[|:exptD;: FI']
1‘ ptZ 1‘
:E[l:exptD_Z:Fl”exp{pth(s)(Sw(s)—TIZ(S)zds}]
0

0

< E[ |:exp tD_Z:FlpU]l/vE[ exp {ptuflz(s) 6w(s)}]1/u.
0

ProrosrtioN 5.2.5. If

1 1
E[ exp{th(s)st} + exp{Zpt supr(N)(s)(Sw(s)}] < +00
0 N Jo
for some p > 1 then for F € P we have

cexptDy,: F =0 exptDy: F in L\(¥).
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Proor. Since
|:exp tDy,: F|

1
<|exptD_zmF| exp {t f ZMN)(s) 5w(5)}
0
x ol 1 ‘
< sgpz m f(;. . J;'Z(N)(tl) .. 'Z(N)(tn)Dtl . .-DtnP|dt1 - dty,
n=0

Xexp{tsg{p fOlZ(N)(s) 6w(s)}

we have by Holder’s inequality
E[| :exptDy: F]
1
2 ()2
S(E[exp{tj;Z(s) ds}]+e)
1 pl
XSupE[f---f(Dtl~-DtnF)2dt1---dtn
n 0 0
1 1/2
><exp{Ztsupr(N)(s)éw(s)}]
N Jo
1
S(E[exp{th(s)zds}]+e>
0
1 pl
ngpE[{L"'L(Dtl"'DtnF)Zdtl"'dtn}q]l/q
1
xE[exp{Zptsupf
N Jo

Z(s) 5(s) ]w

where g is conjugate to p. O

THEOREM 5.2.6. If

E[ exp{t‘flz(s)2 ds} +exp {2pt -tr|DZ| + 2pt supflz(N)(s) (Sw(s)}] < 400
0 N Jo

for some p > 1, then for every F € P we have the Ramer-Kusuoka formula (2.27) as a
equation in R.
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Proor. Since

|det(1 —tDZM) rexp tD,: F|

& m 1 1 ) )
<sup) o fo | fo |Z0(t) -+ Z8(8) Dy, -+ Dy Fldty - db,
n=0

1
X exp { ttr|DZ| +t SL;.]p LZ(N)(S) 5w(s)}

and

0 n 1 1 ) )
E[sup Z; nl fo | fo |Z8(t)- - ZN(t,) Dy, - D, Fldty -+,

X exp {t tr| DZ| + t sup flz(N)(s) (Sw(s)}]
N Jo
1
< (E[exp{th(sfds}] + e)
0
XSupE[f-l--sztl---DtnF)zdtl---dtn
n 0 0
X exp {2t tr| DZ| + 2t sup flz(N)(s) 6w(s)}]1/2
N Jo
which is dominated by
(E[exp{tflz(s)zds}] + e)
0
X sup E[{ fl .sztl .. 'Dt,,F)Zdtl .. dtn }q]l/q
n 0 0

1 172
X E[exp {Zpt tr| DZ| + 2pt sup fZ(N)(s) 6w(s)}] ¥ < 400,
N Jo

where ¢ is conjugate to p. Hence by Lebesgue’s dominated theorem we have
E[det(1 -tDZ) :exptD: F]
= AIE’EL E[det(1—tDZ™) :exp tD},: F1.

Again by Lebesgue’s dominated theorem we have

o0 tn
E[det(1—tDZMN) :exptD},,: F]1 = E[F]+ 2 EE[GS,N)]
n=1

60
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where G is defined by
(o] tn
det(1—tDZM) :exp tDyy: F=F+ ) | G,
n=1""

From the proof of Corollary 4.0.17 one can find that E[G{"] = 0 for every n and
N. Hence we have

E[det(1 -tDZ) :exptD,: F] = E[F].
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Discrete-Time Clark-Ocone Formulae



CHAPTER 3

Discrete-Time Clark-Ocone Formula for Wiener Functionals

This part is based on the joint work [2].

1. Introduction

Let T > 0, (Wi)o<i<r be a Brownian motion starting from 0, and (G;)o<i<r be
its natural filtration. Let X € L2(Gr) be differentiable in the sense of Malliavin,
for which we may write X € ID,; (see e.g.[24]). Then, it holds that

T
(3.1) X = E[X] + fE[Dlegs]dWS,
0

where D; means the Malliavin derivative (evaluated at s).

The formula (3.1) is originally obtained by Clark in [12] for “well-behaved”
Fréchet differentiable functions F, in which D;F meant essentially the Fréchet
derivative of F. Haussmann [22] extended the formula (3.1) to functionals of
solutions for stochastic differential equations in the framework of Clark, and
Ocone [41] obtained (3.1) for F in Dy, (see [24] for its definition) by using
Malliavin calculus. Once the formula (3.1) was established in the framework
of Malliavin calculus, subsequent researches around the Clark-Ocone formula
have been done mainly with using Malliavin calculus or its generalization: for
example, Ustiinel [56] extended (3.1) for F in D_, and Aase-Oksendal-Privault-
Ubge [1] gave a white noise generalization which is also a generalization of the
result by Ustiinel [56]. There are many variants for (3.1) (see e.g., [42]) which
we omit here.

In the context of mathematical finance, the formula gives an alternative
description of the hedging portfolio in terms of Malliavin derivatives. However,
explicit expressions of the Malliavin derivatives of a Wiener functional are not
available in general (except for some special cases: see [49]). In this chapter, we
will introduce a finite dimensional approximation of (3.1) and discuss the “order
of the convergence” in a finance-oriented mode. Actually, this kind of finite-
dimensional approximation or something similar is commonly used in financial
practice. Hence the results presented in this chapter might be more insightful
and useful for the practitioners in the field.

Let us be more precise. Put AW, = Wiar — Wig—1jar for k € IN, where At =
T/N and N € IN. Then the random variable (AWy,--- , AWy) is distributed as

63
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N(O, Atl). Let gkN, k =1,---N, be the o-algebra generated by (AW, ---, AWj).
Note that GV := (G})}, is a filtration, and

LGN, P) =~ L*(RY, uV),
where

uN(dx) = —e~midx.
(2mAt)2

With the filtration GV, we can discuss “stochastic integral” (which is in fact
a Riemannian sum) with respect to the process (random walk) WA = Y AW.
On the other hand, we can naturally define (a precise formulation will be given
in section 2.1) a finite dimensional version of the Malliavin derivative D; by the
weak partial derivatives such as

X1, XN)ye=aWy k=1, N-

Then one might well guess that a discrete version of the Clark-Ocone formula
could be

N
X ZE[X]+ ) E[OXIGY, 1AW,
=1

but this is not true since the random walk W2 does not have the martingale
representation property. In fact, if the martingale representation property holds
for a random walk, then we can establish a precise discrete-time Clark-Ocone
formula if we define “differentiation” properly. For the binary case, N. Privault
[45] has made a detailed study on the discrete Clark-Ocone formula and related
discrete Malliavin calculus.

We should instead ask how much the (martingale representation) error,

N
Mart.Err := X — E[X] — Z E[0,X|GY, 1AW,
=1

(which we will also denote by Erry) measured by a norm, (actually we concen-
trate on the estimation with respect to L?(RM)-one), is. Further, its asymptotic
behaviour as N — oo with NAt = time horizon T. This is closely related to the
problem of so-called tracking error of the delta hedge. If one has a nice finite dimen-
sional approximation XN of a Wiener functional X, both defined on the same
probability space, then the tracking error can be controlled by the (supremum
in N of) Mart.Err plus the error caused by the discretization (finite-dimensional
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approximation) as we see from :

N
Tra.Err := X — E[X] - Z E[Dan X | Giat 1AW,
=1
=X-XN+E[X-XV]

N
- Z (E[D(lAt)Xlg(lAt)] - E[o XN |GV, ]) AW, + Mart.Err
=1

=: Disc.Err + Mart.Err.

There are considerably many studies on the subject of the tracking error
as well. It at least dates back to the paper by Rootzen [51], where the weak
convergence of the scaled error was studied. The problem is reformulated as
“tracking error of the delta hedge” in Bertsimas, Kogan, and Lo [7], where
the error was also measured by L?>-norm. Hayashi and Mykland [23] further
developed the argument from financial perspectives.

Notable results in this topic are summarized as follows. Although the un-
derlying continuous process X and the definition of the error may differ, one
has roughly the following results:

e Convergence in law of the normalized error:
w1 (7
(3.2) VN - Tra.Err 'A'—>°7 f E[D%F|G;1dB; inlaw
2 Jo '

where F = f(Xr) where X = (X;)o<<r is a diffusion defined via a sto-
chastic differential equation driven by a Wiener process W = (W)o<t<r
in [7] and general It0 processes in [23] and B = (B;)o<<r is a Brown-
ian motion independent of W (Here actually the differentiability is not
required. The expression E[ D;X|G;] should be understood as simply
the integrand of the martingale representation of X and the meaning of
E[ D2X |G, ] will be clarified later).

e [2-convergence of the error: When treating only equidistant partitions
AI

(3.3) || Tra.Err||; > 0 as|A|=1/N —0

with the order
— O(N7'2) when F = max{Xr — K,0} (the pay-off for call option),
max{K — Xr,0} (the pay-off for put option) or F = f(X7) where f
is absolutely continuous with a polynomial growth and where X =
(Xt)ot<r is a diffusion process defined by a stochastic differential
equation in [62]
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— O(N7Y%) when F = 1[g +0)(X71) (the pay-off for digital option) which
is more irregular than the above is shown in [19] and [55],

— O(N9 2y when F = f(Xr) with f belonging to a fractional Sobolev-
type space indexed by 0 € [0, 1/2) in [17], where they revealed the
reason why the absolute continuity assumption on f was needed
to get the O(N~/?)-convergence (which is the best possible) with
equidistant time partitions.

— O(N~/?) when F € ID,4(R) with a finite dimensionality in [2] for
0<s<1
Notably, it is shown in [17] O(N~!)-convergence rather than O(N~'/2) by
taking suitable deterministic and non-equidistant time partitions.

In this chapter, we shall establish the corresponding results for the Mart.Err,
which almost parallel with the above.

After introducing the Discrete Clark-Ocone formula (Theorem 2.2.1, section
2.2), we will show, by using the formula, a multi-level central limit theorem
for the error (Theorem 3.2.1). This corresponds to the result (3.2) above. Since
we will be working on a sequence of discrete Wiener functionals unlike the

situations concerning tracking error, we need to some discussions on the finite-
dimensionality. An answer is given in section 3.3, and under the condition it is
proven that the convergence order is related to a fractional smoothness (Theorem
3.3.1). This corresponds to the result (3.3) above. Section 3.5 is devoted to a
study of the asymptotics of the error of the additive functionals. As a case
study, we give a detailed estimate of the martingale representation error of the
Riemann-sum approximation of Brownian occupation time (Theorem 3.6.2).
The proofs given in this chapter are largely based on elementary calculus
with a bit of classical Fourier analysis and distribution theory, but nonethe-
less our methods can be, in spirit, a finite-dimensional reduction of Malliavin-
Watanabe’s distribution theory. Some detailed discussions on this point of view
will be given in sections 2.1, 2.3, and 3.1. We have restricted ourselves to one-
dimensional Wiener space case, but this is only for simplicity for the notations.

2. A Discrete Version of Clark-Ocone Formula

2.1. Generalized Wiener Functional in Discrete Time. Throughout this
sectionwe fix N € IN and work on the canonical probability space (RY, B(RN), uN)
though we will abuse the notations like AW as the coordinate map.

Let Sy = S(RY) be the Schwartz space; the space of all rapidly decreasing
functions and Sy, be its dual; the space of all tempered distributions (see, e.g.
[52]). We (may) call X € S}, a “discrete generalized Wiener functional” and its
generalized expectation is defined to be the coupling s, (X, p")s,, where p" is
the density of u", which is of course in Sy.
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The conditional expectation E[ X| g;j | for X € Sy, is then defined as follows.
We first note that the inclusion G} C GY induces those of S(R*) c S(R") and
S'(RF) ¢ 8'(RY). In this sense we write Sy and S, for the Schwartz space and
the space of generalized Wiener functionals with respect to QII:’ ,k=1,---,N.
Then Y = E[X|G}' ] in S, is defined in terms of the relation

E[XZ]=E[YZ], VZeS;,
which should be understood as
s (X, ZpNys, = sy, Zr"s, YZ e S;.

In particular, we see that the conditional expectation is well-defined by du
Bois-Reymond lemma (see e.g. [52]). Note that this generalized conditional ex-
pectation reduces to the standard one on L'(u"), which is included in S}, unlike
the L! space with respect to the Lebesgue measure. Furthermore, differentiations
of X € §}, are defined as usual, namely,

hX=Y & (Y, Z)sy = -5 X hZ)sy YZ€Sy,
which imply
E[&kX] = E[X&k logpN],
and so on.

2.2. Clark-Ocone Formula in Discrete Time. We have the following series
expansion in At:

Tueorem 2.2.1 (A Discrete Version of Clark-Ocone Formula). For X € L*(Gy) =
L*(uN), we have the following L*-convergent series expansion:

o N
(Ay™2_ (Avw)
3.4 X - E[X] = E[0"X H,|—
(34) [1Z;M[l|gl_11 7

where H,, is the m-th Hermite polynomial for m € Z.,;

C)" g d” ¢ mezy)

m=1 |=

(3.5) H,,(x) =

Here the differentiations are understood in the distribution sense, as explained in the
previous section.

,,,,,

Proor. Since { Y, Hkl.(%)}k1 C oz is an orthonormal basis of LA(RY, uV),

we have the following orthogonal expansion of X € LA(RN, uM):

N
AW;
(36) X(AW Joeeey AW, ) = Clky,... kn Hk]. (—l) .
1 V=2 anen [ [\ 5

ky,...kn
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where we denote
N N
AWi AWZ
Clky, . hn) = X, Hki(—) =El X Hk,-(—) .
Let us “sort” the series according as the “highest” non-zero k;;
X(AW;y, ..., AWY)
N I
(37) =EXI+ ), Y. Y cw ko OHHk,( )
1=1 ky,...ki_q k=1 i=1
Here we claim that
N -1
AW;
(3.8) Cley, 0,00 | | Hr, (—Z) = E[ XHj, ( ) 1GY, 1.
; kan/kl—l ]1;1[ \/A_t \/_
In fact, from the expansion (3.6) we have

AW,

\/_

:E[ Z Ck .. ) kz(AWl)ﬂ ( ) 11]

E[XHkI( )IQ ]

K ekl
Z = AW, AW\ &
j 1
- o (52 2
K, K o [1[ VAt H

and we confirm the claim since E[Hk,(AWZ) IT- 1 He /( \/_) = 0 unless k = k; and
ki =0fori> I
We further claim that

(At)k /2
VAt Vi

which, together with (3.7) and (3.8), will prove the expansion (3.4) in the L? case.
Here, the conditional expectation should be understood in the generalized sense.
Following the definition we have made, it suffices to show that

(3.9) E[XHk,( )IQ Ll= E[9/X|G), ],

AW,
Var

(At)k/z (BkX)f

E [XH,Q ( ) F(AW, - AWl—l)]
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for any f € §;_; but this is easy to see if we write down the generalized expec-
tation as the coupling of S and S

A k/2
S'<X,Hk(X/ \/E)pr>S = S'<X,f(—1)k( \2{_' aécpN>S
k/2
= (A\Z—, (X, fr)s.

O

2.3. Comment on Discrete Generalized Wiener Functionals. In this sub-
section, we remark that our discrete generalized Wiener functionals is slightly
broader than that of the direct finite dimensional reduction; there is a gap. For
simplicity, we let At = 1 in this subsection.

We know that (see e.g. [48, Appendix to V.3]) the orthogonal expansion in
L*(RY, Leb) with respect to the Hermite functions:

On(x) = V%Hw(xxw)”z

gives so-called N-representation of S and &’; the series for f € S (resp. € &)
Z s{f, ONYsPN

convergesto f in S (resp. in&’). In our context, it then follows thatif X(pN)!/? € S
(resp. € &), then the convergence of the expansion (3.4) is in S (resp. in §’) as
well. It should be further noted that we have the following equivalences:

Prorosition 2.3.1. It holds that

(3.10) XPV)? €S & XeD]) =NgoD))
and
3.11) XM eS = xeD{ =uD,

where ]D(z? is the completion of L*(uN) by the norm ||fll2,s = I(1 + L) fl 2y Here L
is the Ornstein-Uhlenbeck operator on RN;
N N
0> 0
L=- —+ —
AR S
i=1 1 i=1

Proor. Let {¢, : n € Z} be norms defined by
Ou(f) =11+ 5)" fllr2(eb),



3. ASYMPTOTIC ANALYSIS OF MARTINGALE REPRESENTATION ERRORS 70

where S is the following Schrodinger operator of the harmonic oscillator:

N
0? 1 1

==Y T 42
;‘8@ 4|x| 2

We know that S is a Fréchet space by the seminorms {¢,}. In fact, both L and S
are the number operators respectively in that;

N N N
L 1_[ Hk,.(xi) = (Z kz) 1_[ Hki(xi)
i=1 =1 =1

and

N N N
[Tt =Q k[ [ ontx.
i=1 i=1 i=1

LOHEYNY? = S(fp™)'?),

We also have

which implies
Lfll2,n = @u(f)-

This proves (3.10).
The equivalence (3.11) follows from the following equivalence of the duality:

o, (X Vpg = 54X YR ).
O

CoroLrLaRry 2.3.2. For X € ]D(zl\i ) s € R, the convergence of (3.4) is also attained in
DW
2, °

Proor. It follows from the fact that, by the assumption, the partial sums

N
Xn = Z Cky, kn) ]:1[ Hki(xi), nelN

k1 +-+ky<n

(N)

form a Cauchy sequence in D, .

3. Asymptotic Analysis of Martingale Representation Errors

In this section, we will consider the asymptotic behavior of the error term
when N — oo with NAt = T. Let t; :=: t]((N) = ’% foreachk =0,1,--- ,N. We
recall that AW, = WtiN) - th for each k and N, and gkN =o(AW;l=1,--- k).
Further, to facilitate the discussion in the limit, we implement our discrete
Malliavin-Watanabe calculus into the classical one in the first subsection.
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3.1. Consistency with the Classical Malliavin Calculus. First, we review
briefly the Malliavin calculus over the one-dimensional classical Wiener space
to introduce notations which we will use in the following sections devoted to
asymptotic analyses, and then will show how our framework, established in the
previous sections, is “embedded” to the classical Malliavin calculus (Proposition
3.2.1).

Let (#,P) be the one-dimensional Wiener space on [0, T]. We consider the
canonical process w = (w(t))o<i<r starting from zero a.s. In this context, the
Hilbert space

h(0) = 0 and h is absolutely continuous }

H= {h v with square-integrable derivative

equipped with the inner product defined by

T
(hy, hyyp = fhl(t)hz(t)dt, hy,h, e H
0

is called the Cameron-Martin subspace of # . For each complete orthonormal

0 T

system (CONS, in short) {i;}°; of H, it is known that {H Ha,.( f hi(t)dw(t)) :
i=1 0

ace A} forms a CONS in L*(#) (see e.g., [24] Proposition 8.1), where A is the

set of all sequence a = (a;);°, of nonnegative integers except for a finite number

of i’s and H, is the n-th Hermite polynomial defined in (2.2.1). We also denote

by J. : L*(#) — C, the orthogonal projection, where C, is the L*(#')-closure of

T
the subspace spanned by { H Hui( f hi(t)dw(t)) : Z a; = n} over R. Each C,, is
i=1 0 i=1

called the subspace of n-th Wiener’s homogeneous chaos.

For each s € R, a Sobolev-type Hilbert space D, = ID,,(RR) is defined as the
completion of {F € L*(#') : ||Fllp,, < +co} under the seminorm || - ||p,, on L*(%#)
defined by

IR, = Y (1 +ny Il uFIR,  FeLl2(#)
n=0

which may be infinite in general.

In the following, for any two separable Hilbert space H; and H,, we denote
by H; ® H, the completion of the algebraic tensor product of H; and H, under
the Hilbert-Schmidt norm.

It is known that one can define a (continuous) linear operator D : D,; —
L2(#) ® H such that

(DE, h)y = DyF € L2(¥)
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for every h € H and F € D, ;, where D,F is defined by
(DyF)(w) = lim %{P(w + ch) - Fw)} forae we ¥,

which is well-defined due to the Cameron-Martin theorem (see e.g., [24] Theo-
rem 8.5). For each t € [0,T], lete; : # — R denote the evaluation map defined
by e;(w) = w(t). Then a linear operator D; : D,; — L*(#) is defined by

d,.
(3.12) D,F = E(ldg(% ®e)(DF), FeDy
fora.a. t € [0, T].
Under these notations, we can state the relationship between our framework
established in section 2 and that of Malliavin calculus. We omit the proof because
it is immediate from the definition.

ProrositionN 3.1.1. Foreach X € ID(ZZ\?, we have

N
(D X)(w) = Z Lty <<t (A1 X) (w)
=1

foraa. (t,w) € [0, T]x¥.

Foreach F € ID,;, one can prove that E[ F| Q%] € ]D(ZI,\? and limy_,, E[F]| Q%] =
F in ID,; (consult e.g., [31] Theorem 1.10). By using also the fact that e;(h) =

(1105, hyn for each h € H, one can obtain

N
(3.13) (DtF)(ZU) = 1\1]1_1')1; Z 1{tl,1st<t,}8lE[F|g%](w)
=1

for a.a. (t,w) € [0, T] X #'. Note that in [31], the derivative D on the path space
W is defined directly by (3.13) with N = 2". Following this approach in [31], we
define D¥X € L?[0, T] ® L*(P) as the L?-limit of the sequence (D*E[X|GN1)%_; if
it exists (see [31], Theorem 1.10 to consult what condition is enough to get this
limit).

By the above discussions, we may write

DEX =X ifti <t<t
for Xe D, te[0,T],andk=1,2,-- ,n.
3.2. A Central Limit Theorem for the Errors. Suppose that we are given a

sequence (XV)¥_, of finite dimensional Wiener functionals XN € L*(GY) for each
N.
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We put, forn > 0,

n N N
(A" e e AW
EITN( = XN - lT/NX |g ] |
m=0 ;‘ V! VAt

Tueorem 3.2.1. Let n € IN. Suppose that XN € D(zl\gu foreach N =1,2,--- and
for some Wiener functional X € 1D, ,+1(IR), we have

o XN — Xin L2(P),
f IDV XN - DX 12,dE — 0

as N — oo foreachp =0,1,--- ,nand
T
. supfllD}“zXNllizdt < +00.
N Jo

Then we have

T
E[D:X|G:]1dW;

Errn(0) 1 T ) :
(At)‘l/z.ErrN(l) ﬁﬁE[DtXlgt]dBt

—

(AB)"/2Erry(n)

K
ﬁ fo E[D"'X|G:]dB!

in probability on an extended probability space as N — co, where (B',--- ,B") =
(B}, -+, B )o<t<r 1s an n-dimensional Brownian motion independent of W = (Wy)o<<r.

Remark 3.1. Although the Brownian motion B = (B!,---,B") above is not
adapted to the filtration (Gi)o<i<r, the above stochastic integrals make sense

because it is an (Qt Vo(Bs:0<s< t))0<t<T-Brownian motion.

Proor. By Theorem 2.2.1, we have,

o0 N _ N

_ (At)m=p)/2 N AW
(AH)P2Erry(p) = Z ———E[D", XN|GN.H .

Y m=p+1 I=1 V! o e VAt
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For m > p + 2, by using the integration by parts formula (3.9), we see that

2
(At)(’" P)/2 N (AWZN)
X _
;2; Dlin X167 11 VAL,
) AWN 2
= (Ab)? H D72 XN\ ( ) |Q |
(3.14) kzz;‘ ;‘ k+p+ 2)! Dirn ) k VAL Y )

—_

p+2 N2
<)Y o Z 1D XN 2,
k=1 =

= (At) Z o2 f||DP+2XN”2 dr
k=

which goes to zero as N — oo for eachp = 0,1, --- , n by the assumption.
Let us consider the case m = p + 1. For eachp = 0,1,---,n, we define a

right-continuous process LPN = (L} NYo<ter with left-hand side limits by

k N
AW
N ::2 H 1(—’) ifte, <t<k
t pt+ ’_At

fork=1,2,--- ,N, and Lp’N =[P

N
Since H,y ( \/_) I=1,2,---,N areiid. random variables and H,, (A\/‘% ),

p =0,1,---,n are orthogonal to each other for each/ = 1,2,--- ,N, the central
limit theorem of finite dimensional distributions of (A#)Y2LPN, N = 1,2,---
follows as for each 0 < s < t, with taking t; | <s <tjand i <t <ty,

IZ & {2 — (a2

N—oo
- AWN
ko) (&) G-y 1/ZHH( Z)
= lim E[e p=0 ’ "\ VAt ]
N—>o<>l:j+1
k
_ 1 15 . €7\ (s
_%%Hp z(k_].)(tk t])+o(k_j)}_e ,
I=j+1

for each & = (&, &1, , &) € R™!, where (F%)o<t<r denotes the filtration gen-
erated by a stochastic process Z = (Z;)o<<r and the little-o-notation is with
respect to the asymptotics when N — +oo (so that k — j — +o0). This im-
plies that every finite dimensional distribution of (n + 1)-dimensional process
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((At)Y2LPN ),-, converges to that of an (1 + 1)-dimensional Brownian motion
(BO/ Bl/ gy Bn) = (B?I B}/ Tty B?)OStST'
Besides, using Kolmogorov’s inequality, we have for each p =0,1,---,n,
ALY

hm lim sup P( sup |(At)1/2LPN| > K) < lim —2 =0
N—oo 0<t<T K—eo K

and for each € > 0,
limlimsupP( inf max sup (At)l/ZILpN LPNI E)

6—0 {sj}jclO,T]: tselsi1,5)
|5] 5]+1|>6

< limsup P( ‘max_ sup (A)V2 LN 1PN > e)
]:1’2’""N t,SE[Sj,LS]')

N—>oo

N—oo
=limsupP(0>¢)=0
N—oo
They imply the tightness of {(Af)/2LPN}S_ (see Billingsley [9], Theorem 13.2).
Therefore,
{((At)”z LON (At)l/z LN .. (At)”z LnN)}
also forms a tight family. Hence we have

(\/ELO,N’ \/ELLN’. .., VA_th’N) — (BO, Bl/” . /Bn)

inlaw as N — oco. By the Skorohod representation theorem (see Ikeda-Watanabe
[24], Theorem 2.7 and we remark that on the space of all right-continuous func-
tions with left-hand side limits, one can endow so-called the Skorohod topology
which is metrizable and makes the space a complete separable metric space.
For details, see Billingsley [9], Chapter 5. ), we may assume that the above con-
vergence is realized as an almost sure convergence on an extended probability
space. Note that on the probability space we still have B’ = W a.s.
Hence we have

(An)+0-p2 (p+1)-p)/2 AWN
(P +1)! VAt

(D" XN |Gy, a0 PLy™ = (an' Ly

N=1

«/WZ
- W f E[D/"'X|G,]dB! in probability as N — co
. JO

simultaneously forp =0,1,--- ,n. O

Substituting p = 0 into the inequality (3.14) in the proof of Theorem 3.2.1,
we also obtain the following
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T
CoroLrary 3.2.2. If sup f | D2XN ||i2dt < +oo then we have
N Jo

N
XY - {ELXN] + Z E[DirnXN|GY, 1AW ], = O(N172)
=1
as N — oo,

3.3. The Cases with “Finite Dimensional” Functionals. We have seen that
the martingale representation error is of an order 1/2 for a smooth functional.
In this section, we will observe that for a non-smooth functional, the order
is related to its fractional differentiability if it behaves eventually like a finite
dimensional functional. This parallels with the corresponding results in the
cases of the tracking error as we have pointed out in Introduction.

Let us start with one-dimensional cases. Let F € L(R, ur), where ur is the
Gaussian measure with variance T > 0. Then, since

TPy 4o+ xw) = FOxy + - 4 x0),
]
we have, fork; +--- + ky = n,

E[D, --- D" F(Wr)* = E[F" (W) ]?

th) t;N)
n! Wr n!
= ﬁE[F(WT)Hn (ﬁ)]z = ﬁ”]ﬂF(WT)”%z/

irrespective of | and N. Here |, is the projection to the n-th chaos. With
this observation in mind, we understand the following property as a finite-
dimensionality of a sequence; let {FV} be such that each FN being GN-measurable
and that

2 ! FN 2
sup (E[Dk(},)---Dk(’XDF]) = O(—n N F )
(315) k1+...+kN:n tl tN Tn

uniformly inn =2,3,--- as N — co.

Note that a sequence composed of a one dimensional functional F(Wr) satisfies
the above property trivially.

TueoreM 3.3.1. Suppose that we are given a sequence of FN e DY [N =1,2,---

2,—0c0’
satisfying
sup || FN [, < +o0
N :
for some 0 < s < 1and the “finite-dimensional property” (3.15). Then
||1-Ma\1r’c.Err(FI\])II%2 =ON?) asN — .
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Proor. By observing (3.7), we notice that
|| 1-Mart.Err(F) |7,

_Z Z k1 At)"E[a"l- NP

I=1 ky+- +k1
k=2

for eachn = 2,3, ---. By the assumption, there is a constant C > 0 such that

n!ll J.FN 1P

sup E[&li1 . -8;"FN]2 <C T

ki+-+kj=n

foreachn=2,3,--- and N =1, 2,--- and the multinomial theorem yields that

n!

. _(IT (-1nT\" T(I-DT\""
PR (N) ( N )_”N( N )

Putting them together, we have
| 1-Mart.Err(FY) IIi2

y 1 Y ! " N (12
(3.16) SCZ{l-”NZ(N) }IllnF 17

ki +ky+--+kj=n
k=2

for each s € R.
On the other hand, since we have

. ._l_lN—lin—l
"N NN

_ N-1  ~(+1)/N o NG s,
N

= JIN

e SIS () 1w

1=0

I,y <1/n,and

IA

we notice that

617 = o)== (5] (2)

forevery 0 <s < 1.
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By (3.16) and (3.17), we finally have

|| 1-Mart.Err(FY) IIi2
<CN™Y Il FV IR < ON sup I P -

n=2

3.4. The Case with One Dimensional Functionals in Multi-Dimensional
Brownian Motion. Let W = (th, e ,Wf)ogg be a d-dimensional Brownian
motion starting from zero. Although the framework discussed so far is for
one-dimensional Brownian motion, it obviously extends to multi-dimensional
case.

Let f : R? > R be an arbitrary Borel function. We denote

d N
Brry := f(Wr) - {ELF(Wn)1+ ) ) EL@A(Wn)IGY, 1AW] ],

i=1l I=1

where G} := the trivial o-field, and G\ := o(AW!,--- , AW, : i = 1,---,d) for
I=1,--- N

Tueorem 3.4.1. If f(Wy) € DDy for some 0 < s < 1, then we have ||Erry||2 =
O(N~*?)as N — oo.

Proor. A straightforward extension of the discrete Clark-Ocone formula
(3.4) to the multi-dimensional case yields that

> X (ABR2 - (AF)r2
Erry = Z Z Z t\/lr-k,:!

n=2 I=1 ky+-+kz=n

AW1 AW?
EL(@} - 3% (W) |GY, 1Hy, @)~--Hkl(ﬁ;).

Then Parseval’s identity can be applied to obtain

619 IEmE=YY Y - oL BB NG, P

n211k1++kdn
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Since E[ 8’“ akd HWr)|GY 1is a function of W, _,, it can be expanded by the
chaos in Wt,_1 as

E[(9} -+~ 3% f)(Wp)IGY, ]
_ Z Z (tl 1)]1/2 (tl 1)]d/2
NDnT

m=0 ji+-+jz=m

. . Wl Wd
X E[@;ﬁkl o 'a;ﬁkdf)(WT)]Hh(%) o 'de( ttH )/
-1 -1

so that
E[E akl "'8kdf) WT)|§5\]1]2]

(3.19) Y ¥ (“ 1) F e EL@ g W) P

m=0 ji+-+j;=m
Combining (3.18) and (3.19), we have

| Errn |17,

N o o " ‘
XYY Y Y pmr e oy

I=1 n=2 m=0 ky+-+kg=n j1+-+jzj=m

To compute this, first we note that this series is absolutely convergent, therefore
we can change freely the order of the summation. We first change the variable
as j — i:=k + j for each k, where k = (k, - -+ , k;) and similarly for i and j, and
after that, we again change the variable as m +— p := n + m for each n. As the
result, the above equals to

[o0]

N o
(Ap)* ()™ i

I=1 n=2 p=n ky+-+kz=n ij+-+iz=p
i, > k, for all r

Next, we change the order of the summation with respect to (p, n) as

N o
(Ap)" (b)) ™" i i
ZZ Z Z Kol kgl (i — k) - (ig — k). E[@; - 9} YWD T

I=1 p=2 n=2 ky+-+ky=n ij+-+ig=p
ir > k, forall r

and then, since Zk1+~~-+kd222 i tetig=p = Zzl+ Hig=p Z ky+-+kgz2 , WE See that the
i, > k, for all r ky <i, forallr
above is

N o
APtk £ Y leattka) i i
ZZ Z Z (k l)...kl (i Elkl))v...(i _k)'E[@f...&;f)(WT)]z.
I=1 p=2 i1+-+ig=p kq+-+kz>2 1 d> \1 1) d d)-
ky <i, forall r
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By integration by parts, we see that

N o d .
1 1 .
2 _ _ r k, ir—ky
| Exryl7, = E E T E . E | | (kr)(At) (ti-1)
=1 p=2 i+tig=p ki+-+ky=2  r=1

k, <i,forallr
Wi w?
< E[fWnH;(—=) - Hi(—=)T
()
in which, the summation with respect to k can be computed, with uses of the
binomial theorem, as

d

Z H (lir)(At)k’ (b1)"™ = ()P = (b)) — N(AB(F )P,

ki+-+ky =2 r=1
ky <i,forall r

where p =iy + -- - + i;. With noticing that
1 d
W W2

1T, FWn) I = Zp E[f(WT)Hz-l(\/—%) = -Hz-d(ﬁ) P,

we have

NErrn 12 = ) Pl fOND) I,

p=2

where I,y = 1/p = (1/N) 5 (I/N)P-1. Since I,y < N=p*' for 0 < s < 1 as in
(3.17), we finally conclude that

IErry 12 < N7 Y Il fWn) 2 < N ILEOND) IR,
p=2
O

3.5. A Studyon Additive Functionals. Let W = (W,)o<<r be a one-dimensional
Brownian motion starting from zero. In this subsection, we study sequences of
“additive functionals”,

N
FN = N(tl W (N))At

(3.20) Z:‘ Il Wy

where fy(t,-),i=1,--- N is a sequence in ID(;)_OO.

We are interested in the conditions for the sequence to be “finite-dimensional”
in the sense of (3.15).
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We define an index to control the finite-dimensionality. Let

N
A= (YL fult, W) H(W,/ VE))

i=l

and
0 if YN, AT - (1-1)"} =0,
aN,n(FN) = N" sup Al

N otherwise.
Yoo Ar{lm = (I -1)"}

Then, we have the following criterion.

ProrosiTioN 3.5.1. The sequence {Fn} of (3.20) satisfies (3.15) if and only if

sup sup a, N(Fn) < +00.
n N

Proor. For arbitrary non-negative integers ky,--- ,ky with ky +--- + ky = n,
we have

E[D}---D"FN] = ¥ 1 memiy=0 ELAY (5, Wi ) A

M-

I
—_

1

= ()"2AHE2 N Ly =m0 2B (i, Wi ) Ha(Wi,/ VE) 1.

M-

—_

i=

If further k; > 1 and k.1 = - - - ky = 0 for some [, then

E[D]---D;'FV]
N

= ()" 2(AD2 Y E fult, W) Hy (W / VE) ]
i=l

_ 1/2 @-n)/2 A1/2
= (n!)""<(At) A
Therefore,

(3.21) sup (E[DY---DIVFN])' = nt (A sup A,

ey -+ =n I=1, N
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On the other hand, we have
N 112
T E I

N
:Z Z (E[FVH, (AW1/ VAR -+ Hi (AW,/ \/E)])2

=1 k1+'"+k1:ﬂ

ki>1
N
62 -y Y k(A’* (ELD} - DY)
I=1 ky+tk=n
ki>1
= <At>2
_ 2 _ 1\
=AY, i =@ ZAZ (-1,
=1 ky+-+kj=n
k=1

Putting (3.21) and (3.22) together, we have

2
sup (E[D}; - DjYFV]) _n_ N'supd
ki+-+kny=n ”]nFN ”%2 T™ Zf\il Al{ln - (l - 1)n}
n!
= ﬁaNn(FN)

Note that || J,F" [I?, = 0 implies both a,,(FV) = 0 and
2
sup (E[D}---DyYFV]) =0.

ki+-+ky=n

CoroLrary 3.5.2. If
sup, A

113] infz Al
then {FN} is finite-dimensional.

Proor. Since
N

N
;Al{l” —(1-1)"}> ir}fA,Z{l” ~(1-1)") = N"infA,

I=1

we see that
sup, A

infl Al .

an,N(FN) <

82
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3.6. Asymptotic Analysis of the Martingale Representation Error of a Dis-
cretization of Brownian Occupation Time. The sequence of Riemann sum ap-
proximations

N
(3.23) FN .= Z Lioe(Wi)AL, NeN

i=1

of the Brownian occupation time fOT 110,00)(Ws) ds is an interesting example where
an explicit calculation is possible. We first prove that the sequence is not finite-
dimensional in the sense of (3.15). However, it is rather difficult to check if
the condition for Corollary 3.2.2 is satisfied. Instead, by a direct calculation the
martingale representation error of the sequence is proven to be of order 1/2.

ProrosiTioN 3.6.1. The index a, (™) of the sequence (3.23) is not bounded.
Proor. First, we observe that

2
A= | Y PR gy (Wi Ho( W/ «/E)]]

—

N 2
= Z i_"/zt}/zn_l/zE[50(Wt,-)Hn—1(Wt,-/ \/t_z)]]

1=

N 2
_ (271n)‘1<Hn_1(0))2 [Z i‘”/ZJ :

i=l

Then, we now see that

N" (Zf\il Z'—n/Z)2

S (ZY ) (1 - - 1)

(3.24) a, N(EN) =

First, we estimate the numerator of (3.24). We let n > 5. Then

-n/2 1 2

SR )

i=1

1 2 ) 2
> NZ (f x—n/de) — NZ {_2(N(n—2)/2 _ 1)} .
1

/N n-

(3.25)
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Next, the denominator is estimated as follows:

(26 {5 -(7)

S0
Rl

=N+ I+ 1Y
where
N BN Y- SRR B IR B I
n=e-22) (7)) - THE) - )
2n—2) " (It D2y D D= 1yn
=S ;{(N) -(5) N§) -
and

N

1 —ne, [ \n ] —1\n
I = 1@ IZ:. (%) (%) -() F
It is easy to see that sup,, JI < oo and limy_.. J} = 0. Since ]}’ behaves like

1
2
(n—- 2)_2f {x(z_”)/2 — 1} nx"ldx < +o0
0

as N — oo, it is also seen that sup,, ]f] < o0o. Therefore, there is a constant C,,
independent of N but possibly dependent on 1 such that

N (N 2
(3.26) Z(Z i—"/Z] {I" = (1 - 1)"} < N°C,.

I=1 \ i=l
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From (3.25) and (3.26), we see that sup,, a,ny = o
Our main result in this subsection is the following.
THEOREM 3.6.2. It holds that

| 1-Mart.Err(FN) || = O(N"'/?).

Proor. By Theorem 2.2.1, we have

||Erryl[2
N 00
- :;;E E[Zuw)wt)AtHk( )IQ J]
N o (A N ® N 2
<YL Lo T
I=1 k=2 i=

For | > 2, by the Hermite expansion in L3(R, y;,_,),

N
E| Z Low (WAL GY, |

t )2 N W
Z e Z Lo (Wi)AHH, (—; )
I-1

n=0
and by Parseval’s identity we have

N
E| Z 1 wat|gY, |

(3.28)

(tl 1) E[Zl(n+k) W, )At

[0)

85

Note that (3.28) is also Vahd for I = 1 with the conventions ¢, = 0 and tg = 1.

Plugging (3.28) into (3.27), we have

[Erryll?,
(At)k (t- 1) (n+k)
_ZZZ - 21[0 DAt
I=1 k=2 n=0
By the renumbering (n + k, n) — (k, n), we have
[Erryli,
N

00 k-2
Z EE Z 1[0,00)(Wti)At] ;5 (k——n)!n!(At) (t-1)",

=1 k=2 i=l
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by keeping the conventions on ¢;. With a use of the binomial theorem,

|[Erryll?,

_y i%E DIRIENA )At
k=2 i=l

x { () = () = k(AB(E) ).

Then, on one hand, for/ > 1 and k > 2,

Z 19 (W, 1)At

=1

W,
15 T s ()
Z mHkq(O)

(t;)k-D/2

. Hi 1(0
a 27tk Z (t )”/2

By a similar argument, we find

Ly }2
VZTCti

E[1[0/°<>)(WT)Hk ( Wr ) ] _ Hy_1(0)

\T 21tk

and therefore

Wr
|ErenI>, = ) ZnxE 1[0 o) (Wr)Hy ( ) ]
X Vi

where

(3.29) Zng = Z Z

I=1 i=I

On the other hand, by Lemma 3.6.3 below, we know that there exists a
constant K > 0 such that

Pl - e = Kan )=},

K
ZNk<N

foreachk =2,3,--- and N = 3,4, ---. Hence we have

2K
| Erry I, < W”l[o,oo)(WT)”%z-
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Lemwma 3.6.3. For k > 2, it holds that

(3.30) ZnNg < —.
where Zy is given as above in (3.29).

Proor. We may write

and therefore,

1=2 =l i=1-1
N N tl . k/2
2y Y (—) (AFY — N(A?
=2 i=l-1
Using this,
N N tl . n/2
- 2
Zp= (A2 +2) Z (t—) (Af)
=2 i=I-1
N N
(t) D22
(3.31) — N(AH? — k Z { Z l(lt-TAt} At

<2 ZN" ZN" (t’tfl )k/2 (AD? - kZ Z 1 )k —At] A,

87
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We observe that
N N k/2
tl—l 2
2Y. Y (F) @
1=2 i=I-1
behaves like
T ~T tk/z
2 f f (—) dsdt
oJr \S
and

N N
(1) &0/ 2
kZ Z Lz Fat

=1 i=I

k- 1)/2 2
1S

as N — oo respectively. We note that

behaves like

TZ

T T \Ki2 ple= 1>/2 2 — ifk=2,
[ (8 e [1 [l B
0Jt \S S if k> 2.

k+2

Based on the observations, we estimate Zy« by separating it into two terms;
Znk < Zygi + Zags

where

T T ((k=1)/2 (k-1)/2
2, =k f ( f |-k ) ()
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We estimate each of them. Firstly, we have

-1 v k/2 k/2
—|- dsdt
al }

L ), ;
NSl i /2 k)2
<2 3 J S ACR) () e
(3.32) +zg(tl_;)k”
=2y, 3 (5 - (52
=

N
+2(At)? ; | { (Z_Tz)m - (i;—i)m}

By a bit of algebra, the last term in (3.32) is seen to be

N

(3.33) 2002 Y {1+ (I_Tl)k/ o,

1=2

which is bounded above by 4T?/N.
Next, we estimate Zi,k. We set

89
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and

N
I= thtkl ;(t)m Idt
N
_Z f () Z:l" (tﬁ’f/z }zdt

Note that 23, = k(I +1I). Fort;y <t <t,1=1,--

- N, we have

(3.34) '

Nt 1 ' ds At
= Z W - (t:)k/2 ds + k2 (12 20,
i=1+1 § t t S I

and

N

t,

1 1

e d

i;ﬂ‘ft:—l(sk/z (fz')k/z) i
N t
i 1 1

< - d
<X | o)

1 1
- At((tz)k/z - <tN)k/2)‘

Combining these two, we have
2
Tds)? S At
xoN Z (t-)k/Z
i ds <9 " ds
t gk/2 Sk/2 t)k/z , k_ Sk/z

4 1-k 1-k " ds 4 f ds )
_(t —T72) t Sk/z_k— ifk >3,

tz
f ﬁlogf if k=2.
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Then for k > 3,

(3.36) N : 272
0 MERT TR

Now we turn to the estimate of II. By (3.34), for k > 3,

) 2
1[<Zf {1 — (1 1)"1}(f k/z) dt
< ﬁ ;‘ ‘ftl_:{ £ () } P2k gy
dk-1) = ([ (s\2
=(k—2)2;f f (?) dsdt
CAk-1) 2(k — 1) T?
(k Z)ZZf f;ddt (k- 2)2N

Si t(lt—fl—l)(j; cis) dt

=1 Yt-1

(3.37)

For k = 2, we have

(3.38) .

b T\2 T2
At;‘ﬁl(logt) dt = N
By (3.35), (3.36), (3.37) and (3.38), we have

5T?

N~
Combining (3.33) and (3.39), we obtained (3.30).

IA

(3.39) Z3 S

91



3. ASYMPTOTIC ANALYSIS OF MARTINGALE REPRESENTATION ERRORS 92

RemARK 3.2. A result by Ngo-Ogawa ([38], Theorem 2.2.) tells us that the
sequence of processes

Nit]

[ t
{n3/ 4(% ;‘ 110,000 (Xi/N) — fo Toeo(Xds ) }tzo

is tight for a diffusion X = (X;)»o although their results are more general.
Moreover they say that this is optimal in L?>-sense in the case where X is the
standard Brownian motion (see [38], Proposition 2.3).

3.7. Error with Euler-Maruyama Approximation. We shall consider the fol-
lowing stochastic differential equation

dXt = O(Xt)th + b(Xt)dt,
Xo = xo

(3.40) {

where W = (W})o«<r is a one-dimensional Brownian motion starting from zero.
In the following, we assume that the stochastic differential equation (3.40) has a
unique strong solution which we denote by X = (X;)o<<r.

For each partition A = AM : 0=ty <t; <--- <ty = T where t; = & fork =
0,1,---,N, we introduce the Euler-Maruyama approximation XN = (Xf] )o<t<n Of
the stochastic differential equation (3.40), which is defined by

N _— N N
dXN = o(XY AW, + b, )dt,
ng = X

where ¢y : [0, T] — [0, T] is defined by
On(t) =ty il SE<f

fork=1,2,---,N. We will also write X{\] = X{\’ (xo) when we want to emphasize
the initial state x.

Suppose we are given a function f : R — R. Let us assume that ( f(XY))3_,
is a finite dimensional approximation of f(Xr) (though in general we would
have to impose certain conditions on f, o and b).

This motivates our investigation of

Erry := f(XY)
N

~{BLACX) T+ ) EL@gn)AW:, -+, AWN)|GY, TAW ]

k=1

where gy : RY — R is such that f(X}) = gn(AW;, -+, AWy) and can be com-
puted explicitly.



3. ASYMPTOTIC ANALYSIS OF MARTINGALE REPRESENTATION ERRORS 93

Let us further prepare some notations. We denote by g4(x, y) the n-step
transition density of the Markov chain (X))’ :

qﬁ(x,y) 3=fChA(X,Zl)leffﬁ(zl,ib)dzz'“f%A(Zn—z,Zn—l)dzn—lqlA(Zn—l,]/)

where for each x, y € IR,

(y - (x +b@AY))
exp | - 20(x)2AL |

V2mo(x)?At

Additionally, forv > 0,¢ > 0 and x, y € R we set

72 (x, y) =

_ (yx?
e 202t

f(y) =
Py V2mo?t

which is the transition density function of (vW;)o<<r.

AssumrtionN 3.7.1. There are constants ¢ > 0 and C > 1 such that
(3.41) Clp5 (%, ) < 45 (x, y) < Cp5 (%, 1)

forevery x, y € R, n =1,2,--- ,N and every partition A : 0 = t; < --- < t,
<ty=T.

nT
v <

This assumption is assured if, for example, ¢ is uniformly elliptic and uni-
formly n-Holder continuous for some 1 > 0 and b is bounded (see Lemaire-
Menozzi [28], Theorem 2.1.).

We shall keep the symbols ¢ > 0 and C > 1 given in the above assumption.
In the following, we can, without loss of generality, assume that ¢ > 1 as one
can always modify the constant C if necessary.

Tueorem 3.7.2. Define W,* := xg + W, for 0 < t < T. Under Assumption 3.7.1,
suppose that there exists a constant K > 0 such that

1 (" o8 , e
(f-1)" IWE[f(XT tl(CW ¥ Cy)>Hn( \/tl_)] 21tAt dy

K - X0 WT 2 e_Zy_Az' d
<@y | FUAW; +Cy)H(\/T)] TN

foreachl=1,2,--- ,N,n=2,3,---and N=1,2,---. If

(3.42)

+00 _ yz

limsup | | FW? +cy) |, ———dy < +o0
N—)oop f y D“m y
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for some 0 <'s <1 then
|Erry |z = O(N™/?)  as N — oo.
Proor. Set

u(x) := fqlA(x, ydyf(y), forl=1,2,--- ,Nandx € R

which enables us to write E[ f(X})|G) ]| = un_i(X,) for each 1 =1,2,--- ,N.
By Theorem 2.2.1 and (3.9), we have

oo N k
ey 2= Y Y S ElEat 00 67, P

k=2 I=1

Since the operators E[-|G)' | and d; commutes on L*(GY), we have

E[Jf f(XY)IGY, 1 =E[ul) (X)IGY, ] = venaa(XDY)

foreachk=2,3,--- ,Nand [l =1,2,--- ,N where

—+00

o) = [ gy dyuy (y), xeR

By Assumption 3.7.1 and Schwartz’ inequality, we have

E[0in-1(XY )] < CE[0pn(cW2 )]

+00 +00 5
- cel [ pi eonar| [ s ndyud )]

+00 +00 2
< CE[ | p5,(xo,0)dx qf<x,y>dy{u§?_l(y>}1

+00

< C?E[ Pt,(xofy)dy{ (y)}

< C%c dyE[u ()Z(CWXO +cy)2]

[ s

where in the last inequality, we have used the assumption ¢ > 1. Moreover we
have

X c t +n X0
Ll (W, + eyl = Y SOV B e+

n=0
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Putting it all together, we have

o0 2 N o o
||Err ||2 _ C2 * e zyAr d ZZZ (At (tl 1) (k+71)(cwx0 +c )]
N o V2rat | & Kin! /
1 k=2 n=0
_ T e ZyAzt = l
\/2nA ~ !

x Z {(n)“ — (t0)" = n(AD()" e BLul) (W2, +ey) 1.
I=1

By our assumption in (3.42), we obtain

ﬁ
2At

f? [ (chO +cy)]2 dy

) VZTIA
2
n' oo ( Wt, ) e_%
E[un 1(cW}° +c =ik d
(B f a NH Vi YAt Y

i
n! e 24t

_ e N X0 2
=y L ELAXE @, +Cy))H"(«/T)] oY

< cW +c¢ ] d
T” f( Y)Y T 2nAt

Hence we have

| Erry |,
Ooe 2Ar 0 1 N n— 1 W
<KC - - = ( ) E[f(cW +¢ )Hn(—T)]Z
T 0) Jetr e\
+00 e_2y_
<KCN™ | I f(cW™ +cy) I dy.
e e,
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CHAPTER 4

Discrete-Time Clark-Ocone Formula for Poisson Functionals

This part is based on the paper [5].

1. Introduction

Differently to the previous chapter, we use the symbol 7 (rather than N) in
this chapter to denote the number of division points in the equidistant partition
A:

IT
A:A(”):O:t0<t1<---<tl:g<---<tn:T

because we deal with Poisson processes N = (N¢)o<i<r in the following.
When compared to the Brownian case, a Clark-Ocone formula for Poisson
noises takes a bit different form (see e.g. [15]): for a Poisson functional F,

T+
(4.1) F = E[F] + f f E[ Do F | H, IN(dtdx)
0 JX

where N (dtdx) is a compensated Poisson random measure on [0, T] X X, X is a

measurable space, and H = (H;)o<i<r is the natural filtration of N (dtdx). The
expression (4.1), however, does not directly describes a martingale representa-

tion with respect to a process (martingale basis) unless the Lévy measure of N
consists only of point masses.

To the best of the author’s knowledge, the earliest work on the Poisson
version of Clark-Ocone formula was due to éevljakov [53], using a difference
operator for D, (for its definition, see section 3.1, subsection 1.1 in [59] or Def-
inition 6.4.1 and Proposition 6.4.7 in [45]). The Poisson version of Clark-Ocone
formula has been established together with the development of the Malliavin
calculus. It is known that the Malliavin calculus for Poisson processes has two
different formulations: one is based on chaotic expansions which leads to the
“difference calculus” on Poisson spaces (see e.g., Bichteler-Gravereaux-Jacod
[8], Wu [58], Dermoune-Krée-Wu [14] or Nualart-Vives [40]), and the other is
a differential calculus initiated by Carlen-Pardoux [11]. Independently to the
results in Carlen-Pardoux [11], Elliott-Tsoi (Theorem 3.7 in [16]) obtained the
formula (4.1) in a framework which is closely related to the one developed in
Carlen-Pardoux [11] and which is in the case that N(dtdx) is coming from a Pois-
son process and F is a functional of jump times of the Poisson process. Privault
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(Theorem 1 in [44]) has also obtained the formula (4.1) for a Poisson functional
F in L? within both of the two frameworks above See also Picard (Corollaire 6
in [43]) and Wu (Lemma 1.3 in [59]). The latter states (4.1) for stationary Pois-
son point processes within the former framework. In this article, we adopt the
former framework, that is, the “difference calculus”.

In this chapter, we are interested in a discretization of (4.1). In many appli-
cations the observations of the system are discrete; let say, to, t1,--- , ty, which
is the case in the financial practice. In the financial context, a martingale rep-
resentation of a functional F suggests a hedging strategy of the risk of F, but
with a discrete observation the martingale representation fails, and instead one
should work on a Riemann sum approximation of the integral with an error.
We call this error “martingale representation error”, which may correspond to
a hedging error in the financial context.

In [2], the martingale representation error in the Brownian case is studied by
introducing a discrete-time version of the Clark-Ocone formula. In this chapter,
studied is that of Poissonian functionals when the Lévy measure is of finite
point masses, the case where the Clark-Ocone formula (4.1) gives a martingale
representation with respect to an explicit martingale basis.

The first main result is a discrete version of the Poissonian Clark-Ocone
formula (see Theorem 2.4.1):

F=E[F]+ ) E[(S]f)(ANy, -+, AN,) |}, 1AN
(4.2) =

n

; . m-th order
E[(9, f)(ANl,--- , AN, [H, ] X( chaos of AN, )

m=2 I=1

where N is a (vector) Poisson process,ﬁ is the compensated one, 711” =0(ANy,--- ,AN)),
and 9", m = 1,2,---, are some difference operators. We remark that the first
order term can be also written as

Z”: f E[(91f)(ALy, -+, AL)IH, IN((5a, 1], dx),
=1

where AL = Y, x; AN(-, {x;}), and

(91:f)(ALy, -+, ALy)
= f(ALy,---AL +x,--- ,AL,) = f(ALy,--- ,ALj,--- ,AL,).

By this expression we may insist that (4.2) is a variant of Clark-Ocone formula.
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Using the formula (4.2), we then investigate the asymptotic behavior(s) of
the martingale representation error:

Erry = F, — E[F] = ) L EL(91,)(ANy, -, AN, [H', AN,
1=0

for a sequence (F,).", such that F,, = f,(ANy, -, AN,) (for details, see section 4).

The study of such errors is a variant of the topic of discretization error of
a stochastic integral, which has been intensively studied, especially for these
tifteen years. Here is a brief review of the literature. For X = (X;)o<<r being
discontinuous processes, we have the following results in the current literature.

e Convergence in law of the normalized error:

vn - Err, 300 in probability (hence in law)

when X is a Lévy-It6 process without diffusion component in [54].
e [2-convergence of the error: In contrast to the previous result, it is
claimed in [10] that

|Err, |2 = On™Y?) as|Al=1/n — 0

for a pure-jump Lévy process X.

Along the same line of the previous chapter, we study the context with the
following results:

(1) A central limit theorem for multi-level errors (Theorem 4.1.1), which
generalizes (3.2) to Poisson functionals.

(2) Astrongestimate under a smoothness condition (Theorem 4.2.1), which,
though seemingly contradicts with the exisiting results, gives a view
unifying Brownian and Poissonian functionals.

(3) A result corresponding to the irregular pay-off cases (Theorem 4.3.1).
This result exhibits an advantage of the approach using discrete Clark-
Ocone formula.

These results are obtained by an application of the discrete Clark-Ocone formula
(Theorem 2.4.1), which is based on an action of a Heisenberg algebra on the
discrete Poisson space (see Proposition 2.2.1). The calculus derived from the
action might be called discrete Poisson Malliavin calculus (see section 2.3). In
section 3.1, we describe how related is the discrete to the classical one.

2. A Discrete-Time Version of Poisson Clark-Ocone Formula

2.1. Notations. Let n be a natural number. We fix an interval [0, T] and its
division A =A™ : 0=ty <t; <--- <t, = Twhere t; = & and for X : [0, T] - R,
we write

AXi = (AX) = Xy, — Xi,
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fork=1,2,---,n. We also write Af =ty — t;_; = L.

Let (N z/)()stST,yer be a family of independent Poisson processes indexed by a
finite set I. Denote by A, the parameter of the Poisson process N = (Nz/)ogg.
The R' X --- X R'-valued random variable (AN, -+, AN}),cr is distributed as:

———
n-times
v( [Ty [ J1}) == P(ANy = ki 5 AN, = k)
yer yer

Y e
= H e_A)/T (/\VAtl)kl T (/\VAt”)kn

Y Y
KK Kk

yeT
where k; = (k])yer. We set a filtration (H") by H] := the trivial o-algebra and
H)' :== o(AN},--- ,AN] : yeT) forl=1,2,---,n.
2.2. A Heisenberg Algebra Acting on the Discrete Poisson Space. We de-
note by 9, the difference operator acting on functions
f:R'x---xR' > R

—_———
n-times

by
(Sunf)er, -, k)
= f(kl/ /kl +e)//"' /kn) _f(kll"' /kn)/
where e, € R" = {map I' — R} is defined by

o, _J 1 ify=n,
e} = ey(n) '_{0 ify #1.

We also define another family of difference operators by

. 1
Sipf = me(l,y)f -f
where
(Q(l,'}/)f)(kll tee /kn) = k;/f(kll et /kl - e)// et /kn)-

We denote by % the space of all polynomials (over R)in {k : [ =1,2,--- ,n,y €
I'}. It is easy to see that the difference operators ¥ ,), 9, are linear transforma-
tions on P. We set a family of polynomials { ey by

W) = (8 1) (Ko )
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where k; = (kly)yer eRl forl=1,2,--- ,n. Asan example, we see that
(4.3) 8,1 = (LADTHANY = AAH) =: (A, A AN

Here (and henceforth) we identify the action of 9], , on P[k]] c L*(v) and that
on P[AN!] c L*(P) induced by Q 3 w — {AN7}.

We shall list up some algebraic properties which will play essential roles in
the rest of this paper.

ProrosiTiON 2.2.1.

(i) [Heisenberg commutation relation] Denoting by (84,p)ap the Kronecker delta,
we have

* 6lk6)/1]

(4.4) [, 4] = At

foreachl,k=1,2,--- ,nand y,n €T.

(ii) [Duality]
(4.5) <‘9 unfs 8>LZ(V) = <f ’ Szl,y)g>L2(v)

forl=1,2,--- ,n,yeland f, g € P.
(iii) [Orthogonality] Forp,q=0,1,2,---,1<L,r<nandy,n €T,

(D) 7y A _ P
<Q (k )/ Qq (kr)>L2(v) - (AyAt)p 6pq61r6yr]-

(iv) [Completeness]

(A Ap)men At) @) o
(TTTT 220860 X, <o)
yel I=1 (@) 1<i<n
yer
forms a complete orthonormal system (CONS, in short) of L*(v).

Proor. We prove only (iv). The others are straightforward or obvious. We
fix a numbering and write I = {y;}. To prove (iv), it suffices to prove that # is
dense in L?(v). Assume that X € L?(v) is orthogonal to . Then since X is also

orthogonal to its L?(v)-closure P, we have

EV[EV[X|a(k k1< j<m) exp ZZ \/_él]ky’

=1 j=1

:EV[Xexp i\/_&]ky =

=1 j=1
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foreachm =1,2,--- and ¢ ; € R, where E” denotes the expectation with respect

to v. The injectivity of the Fourier transform implies EV[Xla(k{, e ,k,i 1 <
j <m)] =0v-as. foreachm =1,2,--- . Therefore the martingale convergence
theorem ensures that X = 0 v-a.s. and hence P is dense in L2(v). O

RemaRrk 2.1. Each of Qg{y)(k) is related to the so-called Charlier polynomial
Cu(k, A, At) of order m and parameter A, At (See [45], p207, Chapter 6, Definition
6.2.7) which is defined by

i %Cm(k, A) = exp {k log(1 +s) — S/\}

m=0

for -1 < s < 1. The relation between them is given by
Culk, Ay At) = (A, A" Q57 (k).

2.3. Generalized Poisson Functionals in Discrete Time and its General-
ized Conditional Expectations. With the action of {§,,), 97, |}, we can define a

. LIRS (l,y) },
chaotic decomposition:
*v)=ReC"eCle- -,
with

Il'”LZ(y)

A, A"
( (A4 A" Q) (&7
C.” = span HH M) Qi K1) Z My =

yel I=1 1<i<n
yer

fork=1,--- and C(()”) =R. Let ],5”) denote the orthogonal projection onto C,((n) for
eachk=0,1,2,---. Define || - ||, for s € R by

[o¢]

IFIB g = Y+ R B,
k=1
We denote by ]D(”) the completion of P with respect to || - || ().

The spaces ID(") := UseoD]) ") and ]D(") = NssolD,) ") are what one might call
the spaces of genemlzzed Poisson functzonals in dzscrete time and smooth Poisson
functionals in discrete time. By a standard argument, one can see that ]D(Z"ZOO is the

continuous dual of ]D(zngo (with respect to the projective topology on ]Dg”io).

The operators 9, can be extended to ]D(Z”ZOO by the pairing

by _(SnE G>nggo =y (E ‘91wG>
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for each F € ]D(anoo, G e ]Dg”go, I=1,2,--- ,nand y € I'. Furthermore, for each

Xe ]D(Z’ﬂoo, its conditional expectation E[X|A] given a sub o-algebra A of H' is
defined as the unique element

”'”2/5/(;1)

Ye| JIFe2w,@) : IFlhsw <) =D (A)
5<0
such that
pp Ko Lo = X Lpy
for each |
Ze ﬂ {P € L2(v, A) : | Fllasm < °°}I| o =: D} (A).
s>0

Since E[|A] is a contraction operator on L*(H"), the existence of such a Y is
ensured. The uniqueness follows from the non-singularity of the above pairing

on DY’ _(A) x D (A).
The framework can be called discrete Poisson-Malliavin calculus.

2.4. Discrete-Time Clark-Ocone Formula. Now we present a discrete-time
version of the Clark-Ocone formula for Poisson functionals.

Tueorem 2.4.1 (A Discrete Version of Clark-Ocone Formula). For each F €
L*(H}), we have the following L*-convergent series expansion:

F — E[F]

g (A, Atk / i "
(4.6) - Z Z Z H ka! E[( l_l ‘91517,w>F | Hy ]( H S(iy))l'
ye

m=1 1=1 Y, crky=m, yel yer
ky >0 forall y

ReMARK 2.2. In the above expression, the product of operators stands for the
composition of operators, which is independent of the order how it composes
because of (4.4) and is well-defined since they consists of actually a finite number
of compositions. The conditional expectations are understood in the generalized
sense.

Proor. We begin with the equation

n

F-E[F]= Y [E[FIH1-E[FIH,1}

=1

We see that for P-a.a. w and under P(-|H}" )(w), Ale is distributed in the Poisson
law of the parameter A, At and E[F|H"] can be thought as a functional of AN,
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y € I'. Moreover, from Proposition 2.2.1 we know that

(= A”At) QL (AN]) : ) ky < oo}

yer yer

forms a CONS in L%(c(AN)), P(~|7-(IA)(a))).
From these observations and using the duality (4.5), we have

E[F|H]']
= (A, At)b ,
:Z Z H HSMFV{H H‘gw
m=0 ¥, er ky=m yel yel
P-a.s., and hence we obtain the result. O

Remark 2.3. For the one-dimensional case, we see that this discrete-version
of Clark-Ocone formula takes a simpler form:

@7) P =Y Y PN ey, 1(5m),

m=1 [=1

with an obvious reduction of the difference operators.

3. Consistency of the Discrete Poisson Malliavin Calculus with the Classical
One

3.1. A Review of the Classical Poisson Malliavin Calculus. First, we re-
view briefly the classical Malliavin calculus over the Poisson space to introduce
notations which we will use in the following sections devoted to asymptotic
analyses, and then will show how our framework, established in the previous
sections is “embedded” to the classical Malliavin calculus (Proposition 3.2.1).

Let (X, #x, n(dx)) be a o-finite Borel measure space. We denote by Ilx the
space of all point functions (see [24], Chapter I, subsection 9) p = (p, D,) on X.
For each p € Ilx, a counting measure N, on [0, T] X X is defined by

N, (dtdx) := |i{s eD,Ndt:p(s) € dx}.
The mapping p — N, induces a measurable structure on Ilx. We denote by
(Hi)o<t<r the filtration defined by
H, = o( N,((0,s] x U) : 0 < s < t, U € Bx)

for 0 <t < T. One can endow a probability measure P on (Ilx, Hr) such that
p is a stationary Poisson point process with the characteristic measure n (see
[24], Chapter I, subsection 9). Under the probability measure P, N, admits the
Doob-Meyer decomposition

N, (dtdx) = N, (dtdx) + N,,(dtdx)
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where N},(dtdx) = E[N,(dtdx)] = dtn(dx) and N,(dtdx) = N,(dtdx) — ﬁp(dtdx)
is the martingale part of the decomposition.

Writing K := L2([0, T]xX, dt®n(dx)), it is known that L*(I1x) has the following
orthogonal decomposition, which is called the Wiener-Ito chaos expansion:

LZ(HX) =ReCioC,®---

where Cy is a closed linear subspace of L*(Ilx) which consists of all multiple
Poisson integrals

T fr— — —_
| A (S AR E AT R R AT
0 JX 0 X

of k-th degree (see Theorem 10.2 in [15] or Theorem 2 in [25]), g € K®---® K.
~————

k-times
Each Cy is called the subspace of k-th order chaos. We denote by J; the orthogonal
projection onto Cy.
For each s € IR, a Sobolev-type Hilbert space ID,; = D, 4(IR) is defined as the
completion of {F € L*(Tlx) : ||F|ls < +o0} under the seminorm || - ||,s on L(I1x)
defined by

(48) IFIB, = Y (1 + b7 IJFIE,  F e LX)
k=0

which may be infinite in general.
Itis also known that one can define a (continuous) linear operator D : ID,; —
L2(Tlx) ® K such that

T
DE gl = [ [ 8,9D0F din(e) € (10
0 JX

for every g € Kand F € ID,; ( see e.g., Definition 12.2 in [15], Definition 6.4.1
and Proposition 6.4.7 in [45] ), where D, F is defined by

(4.9) (DenE)p) = E(pj;,) — F(p)
fora.a (p,t,x) € Ilx X [0, T] x X and p(t,x) is a point function defined by

) (s) ifs #t, _
Pe(8) i= { Z ot fors e D,. =D,U {t}.

The difference operator D; ) in (4.9) is well-defined for a.a. (p,t, x) because the
image measure of P(dp) ® dt ® n(dx) under the map

IIx x [0, T]x X 3 (p, t,x) (pzrt,x),t,x) ellxy x [0, T] x X
is absolutely continuous with respect to P(dp) ® dt ® n(dx) (see e.g., Corollary

6.4.6 in [45] or subsection 1.1 in [59] ). When we consider the case where X is a
singleton {x}, we denote D; := D;, fora.e. 0 <t <T.
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3.2. Consistency of the Discrete Poisson Malliavin Calculus with the Clas-
sical Continuous One. Under these notations, we can state some relationships
between our framework established in section 2 and that of the classical Poisson
Malliavin calculus stated above, and prepare some additional framework to
state our result.

We choose freely distinct points x,, € X indexed by y € I, and construct a
stationary Poisson point process p with characteristic measure ). .- A,0,) such
that N} = N,((0, {] x {x,}).

The correspondences are summarized as follows. We omit the proof because
it is immediate from the definition and the above known results.

yel

ProrosiTion 3.2.1.

i) For each F € D™, we have
21

Dy PP = Y i p® (S F) )
I=1

foranyy € Tand a.a. (p,t) € Ilx X [0, T].
(ii) Forany nands, ID(;S) C D,,.
(iii) Foreach F € Dysandn=1,2,---, we have E[F|H!"] € ID(zns) and

E[F|H;] = F inDyg
asn — oo,

For each F € D, ;, Proposition 3.2.1 implies that

(4.10) (D) P)(p) = 1im )" Ty4, <ves S0 ELE I, 1(p)
=1

for a.a. (p,t,x) € Ilx X [0, T] X X. Note that in the Brownian motion case, the
derivative D on the Wiener space is defined via such a relation (4.10) with N = 2"
in [31]. Following this approach in [31], we define, for F € ID,,

Dy, - ) F € L2[0,T]

as the L?-limit of the sequence

n
Z 1{1‘1—1St<f1 }‘9(117’k) T \9(1,),1)E[F|?{1?]
1=1

if it exists (see [31], Theorem 1.10 for a sufficient condition for the existence
of the limit). In the case where I', and hence {x,}, is a singleton, we denote
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Df .= D’(‘tx ... x,foraa. 0<t<Tand therefore DIF is of the form
Ayr 7 Ay

[

k-times

DiF(p) = lim Z Ligysten) (‘9]((1,)/)1: )(P)
1=1
fora.a. (p,t) € IIx x [0, T].

4. Asymptotic Analysis of the Martingale Representation Errors

We start with the settings and notations in section 2. Instead of working on a
fixed 1, we deal with a sequence. To make this point clear, we write (H]"),_, and
Ba,y,m), SZL%H)}, etc. Note that {N” : y € I'}, and in particular I', are independent
of n.

Throughout the section, we consider a sequence (Fu);,, each F, being H;-
measurable, and form =0,1,2,---, we put

Err,(m) :=: Err(F,)(m)
B moon (A),At)k,v K : *,
= Fu = Z Z H P E[( H S(l,w)P |(Hl—1 ] ( H ‘9<l,y>)1'

p=1 I=1 Y rk=p, yel I yel yel
ky > 0 forall y

where we recall that the filtration (H]")_, is given by H(' = the trivial o-field
and H' = o(AN},--- ,AN] : yeT)forl=1,2,--- ,n.

4.1. A Central Limit Theorem for the Errors. In this subsection, we treat
only the case I = 1 for notational convenience, where we have

Err,m) = o - 3 3 SO0 Lot 7 (971).

k=0 I=1

Here are apparent notational reductions on the difference operators.

Tueorem 4.1.1. Let m € IN. Suppose that F,, € ]D(Z';)HZ foreachn =1,2,--- and
for some F € ID; 41, we have

> F, — F in [2(P),
T
> DNIF exists for a.a t € [0,T] and fIID't‘”Pn - D{*'FI,dt —» 0as n — oo
0
foreachk =0,1,--- ,mand
T
> supfllD;””FnHizdt < 400,
n Jo
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Then we have
T
[D F|H;_1dN;
Errn(o) /\1/2
(At)"Y2Err,(1) E[ D2F | H,— ]dB1
. - V2

_ /2.
(At)"™<Err, (m) Am2

V(m + 1)!

in probability on an extended probability space as n — oo, where (B',---,B™) is an
m-dimensional Brownian motion.

T
E[D/"*'F|H,_1dB"

RemARK 4.1. Although the Brownian motion B = (B!, ,B™) above is not
adapted to the filtration (H;)o<i<r, the above stochastic integrals make sense

because B is automatically independent of Hr, so that it is an (ﬂt VoBs:0<

§ < t)) -Brownian motion.
0<t<T

Proor. By Corollary 4.7, we have

. S (AALTR2 , "
qar e m = Y Y P e ke, 1(535,1)

m'=k+1 [=1

(o)
= A+ Z A
m’ =k+2

By using the integration by parts formula (4.5), change of variable, Schwartz’
inequality and the consistency (Proposition 3.2.1), we see that

| Y A,

m’=k+2
-0an ) Y fﬁA,fL L2 (57 0) |74,
m'=0 I=1
<Ay, Z( ek S
m'=0 [=1

< (Ab) Z s Z 19542, |2,A2At

= (A¥) Z p— f I DFF2F,, |P,A%dt
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which goes to zero as n — oo for each k =0,1,--- ,m by the assumption.
Let us have a closer look at Ay,;. For each k = 1,2,--- ,m, we define a
right-continuous process L*" = (L];’n)osth with left-hand side limits by

.
AAHEED2
gNzif—l——@%%)ﬁmgg<g

Je+1

forr=1,2,--- ,n,and L’}’” = L];fl. Since

(AAQW”“(yQHH>=(AAﬂ*“”“

Jk+1)! Jk+1)!

are i.i.d. random variables as a family of = 1,2, --- ,n and they are orthogonal
to each other as a family of k = 1,2, --- ,m (Proposition 2.2.1), the central limit
theorem of finite dimensional distributions of (At)"2L*", n = 1,2,--- follows, as
foreach 0 <s <t, with takingt, | <s<t,andt_; <t <t,

Ck+1 (ANII /\At)/

ILn

m

Ek {(At)l/ZLl;,n _ (At)l/zLL(,n}

i
hm E[e k=1 'TSLLH VEURY. 7:SLm,n]
‘ m ~ (/\At)(k+1)/2 ol
r i & Vh—t) - (r— 1200 ‘9( )1
= llm E[e kZ:;( ’ ’1) (r q) \/m ( In )]
n—o0 e}
. r 5 ( &P ) g
= Jim 1- (ty —ty) +o0 R (t-s).
e I=g+1 { 2(7 - q) I r—q }

for each & = (&1,&,, -+ ,&,) € R™, where (th)ogg denotes the filtration gen-
erated by a stochastic process Z = (Z;)o«<r and the little-o-notation is with
respect to the asymptotics when n — oo (so that  — g — +00). This implies that
every finite dimensional distribution of m-dimensional process ((A#)"/ ZL"'”)I’(”:1
converges to that of an m-dimensional Brownian motion (B},B%,--- ,B™) =
(B1 Bz v /BT)OstsT-

Be51des, using Kolmogorov’s inequality, we have foreach k =1,2,--- ,m,

lim 11m 1 sup P( sup |(At)1/ 2L

K—oo 0<t<T

(AB)[|ILE" |2,
< i _— =
- Kl—r}‘}o K2

>K)
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and for each € > 0,

lim lim sup P( inf max sup (At)Y 2|Lk L e)
-0 4 e lsj;clO T j t,s€lsj-1,5))
|Sj S]+1|>b

< lim sup P( max sup ( ADY2 thc,n _ Llsc,nl > g)
n—co j=1,2,n tselsi1,s))
= limsup P(0 > g) =0

n—oo

They imply the tightness of {(Af)!/2L¥"}* (see Billingsley [9], Theorem 13.2).
Therefore,

{((At)l/le'n, (At)l/ZLz’”, cee (At)l/ZLm,n ) }00

n=

also forms a tight family. Hence we have

(\/ELL”, \/ELZ’”, . \/BL’”'”) — (Bl,BZ, -+, B™)

in law as n — oco. By the Skorohod representation theorem (see Ikeda-Watanabe
[24], Theorem 2.7%), we may assume that the above convergence is realized as
an almost sure convergence on an extended probability space.

Hence fork=1,2,--- ,m, we have

/\At)(kﬂ )—k/2

s ZEWF (- (3551)

EZESﬁTJHHHmﬂWﬁ” (An2LE )

J@?BT
ﬁlﬂk+D!

Finally, for k = 0, by using (4.3), we have

f E[DI*'F|H;]dBf  in probability as n — oo.
0

n T
(A80) Y ELSLEIH 13,0 — [ EIDFIH-1AN,
1=1 0
in probability as n — oco. m|

1On the space of all right-continuous functions with left-hand side limits, one can endow so-
called the Skorohod topology which is metrizable and makes the space a complete separable metric
space. For details, see Billingsley [9], Chapter 5.
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4.2. Strong Convergence of the Error. The second error estimation result,
where I' is any finite set, is the following

Tueorewm 4.2.1. It holds that

(411) ”Errn”%z < Atz Z ”‘9(1,)/,71)‘9(1,)/’,71)F” “iZA?’/\V'At’
I=1 y,y’el
so that if one has
supz Y 18y SuymFalldy Ay At < oo,
=1 y,y’el

then ||Err,|l;2 = O(n™Y?) as n — oo,

Proor. By the equation (4.6), we have

Err, = En,l + En,Z

where

:;ZH(A LAb

kek,i yel

XE[(HSZW Wlnl H‘%yn

yer yel

for i = 1,2. Here we set K1 to be the set of all vector non-negative integers
k = (k,)yecr such thatk, <1forally €eI'and 2 < Z},er k,, and K, > denotes the set

of all k = (k,),er such that k, > 2 for some y € T. Note that K,; = @ when ' = 1.
By Parseval’s identity, we have

MWFZZHW%

I=1 ke¥K,y yel

, 2 +k,
[E[CLT 86, ) I T 9501

yer yer

For each k € K, there exists a pair (1,17') such that n # " and k, = k,, =
Then
i

412 E[(] ] %6,.0)F
(4.13) =E[(9(z,n,n)9(l,n',n)P n)( H (lyn) )7{;41]

yer
yel\inn'}




4. ASYMPTOTIC ANALYSIS OF THE MARTINGALE REPRESENTATION ERRORS

By considering the Fourier expansion in LZ(Plﬂl’il) of

A= E[S(l,n,n)s(l,n’,n)l:n -1 (AN;W vy €\, 77’})]/
we have
A2,
= Z {” H (lvn)1”
keZ! yel\inn'}
ky=ky =1
(A, Aty
H TR ——|E [(Sann St myFn )( H (lyn )'7{1”1]” }
yel\inn'} yel\{nn'}

(by (4.13), and by the mutual independence among AN"",)

= 2, {||9

keZ!
kn=k, =1

X A2 2(At)-‘*H (k i }'

2

(l)/n)1||L2
2
1S, 1IE.

yer d

(Inn)

o

E[( [ T 86, FulH
yer

Since
197,11 = A;1(AD,
we have
”En,l”iz
<Y Y A
I=1 n#n'el
ky=ky =1
(4.14)

X |[E[S 90w mFr (AN7" e T\ )

n
-1

<AEY Y 1900 mFallaAgdy AL,

I=1 nnel
n#n

On the other hand, for each k € K,,,, we have min, k, > 2. We set

Koo(m) == {k € K, : mink, = m}.
7/

Koz = ) Koa(m).

m>2

Then,
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For each k = (k,) € K, 2(m) with k, = min, k,,

E[( H ‘9]({;:7/,11))1:"'7-{1”—1]2

yer
- E[E (/77”) H S(IWI) |%ﬂ1 Vo ANUn)](‘g(l(:rIZHZ)l) 7_{77 ]
y€l\{n}
2)! nn n
= (E\TAt)m)—Z (lnn) H S(I;H)l 7{” v ‘7 AN ! )] 7{1—1]

yel'\{n}

and

”H l)n ”LZZ(/\ At)m” H (lvn)

yer yel\{n)
Therefore we have
IEn2lI2,
Ay (AyaAt)?
<
;‘ €7<Z(m) E m(m —1)
X B[E[(5F 0P [T 81 fHE v U(AN”(k)”)] ]
)GT\{U(k)}
(4.15) H S(l)/n)
yel\{n(k)}
= (AAL?
< Z m(n; _ 1)||E (Inn) P |7—{In—l v G(ANITW)]”;
I=1 nel m=
<o) o Z 3192,y FulB A2,
m=2 I=1 nel

Combining the inequalities (4.14) and (4.15), we obtain

[Err,lIf, = Enall7, + 11Enall?,

< AtZ Y 190ym Sy mEallady Ay At.
I=1 y,y’ell

Thus we have completed our proof.
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4.3. The Cases with One Dimensional Functionals. In this subsection, we
alternatively use notions related to point processes. We suppose that x,, y € T’
are real numbers. Let p be as above, and N,, is the associated Poisson random
measure. We define a real valued Lévy process

L= Z x,N((0, 11 {x,})

yer

for 0 <t < T. We redefine difference operators
(84,£)w) = fly+x,) - FW)
(which is actually independent of t) and
. 1
(9, f)w) = T =% - f)

where f : R — R be a measurable map. We note that we still have the Heisen-
berg commutation relation:

N

. 1. 9
[Sx},,s(t,x”)] = /\_yt
and the duality in L*(o(L; — Ls)) =: H;:

(30,8)y, = (F a8y,
for polynomials f and gin L; — L;. We set F,, = f(Lr).

Tueorem 4.3.1. We have that foreach 0 <s <1,
1Err, 12 < 17 Y @ o fLDIR <L FLIR, .
q=2

Thus, if | f(L1)llp,, < +oo for some 0 < s < 1, then we have ||Err, |2 = O(n=*"?) as
n— oo,

Proor. By the discrete Clark-Ocone formula (4.6) and Parseval’s identity, we
have

|| Err, |17,

g (A, Aty
:ZZ Z H 7ky!

m=2 1=1 kezZl with yel
Zyef k}’:m

< E[E[(TT 5. )fen] =] ]

yel
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The last factor E[( H \9]({;,'%”)) f(Lt) | H, ] has its L2-expansion as
yer

E[([ 9,0 F@nlH,]

yel

SN

m'=0 k’'eZt with '€l

Xer K, =
XE[(HS Hs(lw) fLn) |( H tux»)
y'el yer y'el

Moreover, we notice that

Saymf(Lr) = fLr+x,) = f(L1) = (9, f)(Lr).

From these observations, we have

B[ ([T ¢5, ) ranlr,]]

yer
o0
(A, tz 1) v K, +1<
=Y, Y 1= )ran]
m'=0 k’'eZt with '€l yer
yerk,=m'
Therefore we have
|| Err, |17,

Y Y Y Y

I=1 m=2 kezt withm'=0 k'eZl with

myel"ky =m Z)/'EF k:,r =m’
(/\y)k”’Jrk;’(At)ky(tl—l) v ky +1<
H PR 1_[ 9y LT)
yer reye yer

Here we apply the change of variables m’ — g := m+m’ foreachm = 2,3, - - -
and then we again apply the change of variables k +— j := k + k’ for each
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k = (k,),er. These procedures lead to

|| Err, ”iz

SHNDNDMD)

I=1 m=2 kezl with 95" jeZL +k with

Z]/er k}':m Z)/EF f)/:q
(A (ABDY (g ) j 2

We further change the order of the summation with respect to (m, q), after
that, with respect to (k, j), and then the above takes the form of

|| Err, |17,

n [o¢]
I=1 =2 jez! with keZl with
Zyel" =1 Zyel‘ ky>2,
ky<jy forall y

H{({j)mt)k O i R[] %) fan]
yel 4 yel

By iterative uses of the binomial theorem, we see that

Z H (I]Cy ) (ADY (b)) ™ = (0)" = (8-)" = q(AB)(E-1)T,

keZL with yel "7
Zyel" k)f 22/
ky<jy forall y

where g = ). j,. Thus we have
|[Exr, 7,

—Zfﬂnq Y ([Tl T o)t

jezk w1th yer yer
Z)el" ]}

where we meant

1 v/ d=1y11
b= 2= (=)
= Y fl/n {xq—l — (1—71)‘7 ! }dx > 0.

=7 Ja-1)/n
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We also notice that
2 (A, )" *ky 112
font = Y, {[] = Jeran [T o1
keZlwith yel 7 Y
Z)/Er k)/:r

Finally, since I, ; < % and

ST e N B
s LAG) -G h=w
we have
Ly = (Tng) " (Lg )’ < ¢,
Hence we have

1Err, 12 <17 Y @ o LD < ILFL)IR, .
q=2

116



Bibliography

[1] Aasg, K.; OxsEnpaL, B.; Privaurt, N.; Usgtg, J. (2000). White noise generalizations of the Clark-
Haussmann-Ocone theorem with application to mathematical finance. Finance Stoch. 4 , no. 4,
465-496.

[2] Axanori, J.; Amasa, T.; Oxuma, K. (2013). A Discrete-Time Clark-Ocone Formula and its
Application to an Error Analysis. submitted.

[3] Akawnory, J.; AmaBa, T. An Algebraic Approach to the Ramer-Kusuoka Formula, preprint.

[4] Akawnory, J.; AMmaBa, T.; UracucHi, S. (2013). An Algebraic Approach to the Cameron-Martin-
Maruyama-Girsanov Formula. Math. J. Okayama Univ. 55, 167-190.

[5] Amasa, T. (2013). A Discrete-Time Clark-Ocone Formula for Poisson Functionals. Asia-Pacific
Financial Markets, to appear.

[6] Buckpann, R.; FoLLMER, H. A conditional approach to the anticipating Girsanov transformation.
(1993). Probab. Theory Related Fields 95, no. 3, 311-330.

[7] Bertsimas, D., KocaNn, L. and Lo, A.W. (2000). When Is Time Continuous?. Journal of Financial
Economics, Vol 55, 173-204. MR 1886691

[8] BicureLEr, K.; GrRAVEREAUX, ].B.; Jacop, J. (1987). Malliavin calculus for processes with jumps.
Stochastics Monographs, 2. Gordon and Breach Science Publishers, New York. x+161 pp.

[9] Birringsiey, P. (1999). Convergence of probability measures. Second edition. Wiley Series in
Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. John
Wiley & Sons, Inc., New York. MR 1700749

[10] Brobin, M.; Tankov, P. (2011). Tracking errors from discrete hedging in exponential Lévy models.
Int. J. Theor. Appl. Finance 14, no. 6, 803-837.

[11] Careen, E.A.; Parooux, E. (1990). Differential calculus and integration by parts on Poisson
space. Stochastics, algebra and analysis in classical and quantum dynamics (Marseille,
1988), 63-73. Math. Appl., 59, Kluwer Acad. Publ., Dordrecht.

[12] Crark, J.M.C. (1970). The representation of functionals of Brownian motion by stochastic integral.
Ann. Math. Statist. 41, 1282-1295. MR 0270448

[13] CamEeroN, R. H.; MartiN, W. T. (1949). The transformation of Wiener integrals by nonlinear
transformations. Trans. Amer. Math. Soc. 66, 253-283.

[14] Dermoung, A.; KrEg, P; Wu, L. (1988). Calcul stochastique non adapté par rapport a la mesure
aléatoire de Poisson. Séminaire de Probabilités, XXII, 477-484. Lecture Notes in Math., 1321,
Springer, Berlin.

[15] D1 Nunno, G.; OksenpaL, B.; Proskg, F. (2009). Malliavin calculus for Lévy processes with
applications to finance. Universitext. Springer-Verlag, Berlin. xiv+413 pp.

[16] Erriort, RJ.; Tso1, A.H. (1993). Integration by parts for Poisson processes. ]. Multivariate Anal.
44, no. 2, 179-190.

[17] Gersss, S.; Geiss C. (2004). On approximation of a class of stochastic integrals and interpolation.
Stochastics and Stochastics Reports, 76, 339-362. MR 2075477

[18] Girsanov, L. V. (1960). On Transforming a Certain Class of Stochastic Processes by Absolutely
Continuous Substitution of Measures. Theory of Probability and its Applications, 5, 285-301.

117



BIBLIOGRAPHY 118

[19] GosEt, E.; Temam, E. (2001). Discrete time hedging errors for options with irregular pay-offs.
Finance and Stochastics, 5 (3), 357-367.

[20] Gross, L. (1960). Integration and nonlinear transformations in Hilbert space., Trans. Amer. Math.
Soc. 94, 404-440.

[21] Gzyr, H. (2006). An exposé on discrete Wiener chaos expansions. Bol. Asoc. Mat. Venez. 13, no.
1, 3-26.

[22] Haussmann, U. G. (1978) Functionals of Ité processes as stochastic integrals. STAM J. Control
Optimization 16, no. 2, 252-269.

[23] Havasui, T.; Myxranp, P. A. (2005). Evaluating hedging errors: an asymptotic approach, Math.
Finance 15, no. 2, 309-343. MR 2132193

[24] Ixepa, N.; WATANABE, S. (1981). Stochastic Differential Equations and Diffusion Processes. 2nd
eds. North-Holland. MR 1011252

[25] I1o, K. (1956). Spectral type of the shift transformation of differential processes with stationary
increments. Trans. Amer. Math. Soc. 81, 253-263.

[26] Kuo, H.H. (1971). Integration theory on infinite-dimensional manifolds., Trans. Amer. Math.
Soc. 159, 57-78.

[27] Kusuoka, S. (1982). The nonlinear transformation of Gaussian measure on Banach space and
absolute continuity. ., ]. Fac. Sci. Univ. Tokyo Sect. IA Math. 29, no. 3, 567-597.

[28] LeMAIRE, V.; MENOZzI, S. (2010). On some non asymptotic bounds for the Euler scheme. Electron.
J. Probab. 15, no. 53, 1645-1681.

[29] Lerrz-Martini, M. (2000). A discrete Clark-Ocone formula. Maphysto Research Report No 29.

[30] LinpstroMm, T. (2004). Hyperfinite Lévy processes. Stoch. Stoch. Rep. 76, no. 6, 517-548.

[31] Marriavin, P; THALMAIER, A. (2006). Stochastic calculus of variations in mathematical finance.
Springer Finance. Springer-Verlag, Berlin. MR 2189710

[32] Marriavin, P. (1997). Stochastic Analysis. Springer-Verlag, Berlin. xii+343 pp.

[33] Maruyama, G. (1955). Continuous Markov processes and stochastic equations. Rend. Circ. Mat.
Palermo (2) 4, 48-90.

[34] Maruyama, G. (1954). On the transition probability functions of the Markov process., Nat. Sci.
Rep. Ochanomizu Univ. 5, 10-20.

[35] MicHAEL R.; BaRRrY S. (1978). Methods of modern mathematical physics. IV. Analysis of operators.
Academic Press, New York-London. xv+396 pp.

[36] Miwa, T.; JimBo, M.; Dartk, E., (2000). Solitons. Cambridge University Press, Cambridge.
x+108 pp.

[37] Motoo, M. (1960). Diffusion process corresponding to 1Y, 9*/dx + ¥, b'(x)d/dx"., Ann. Inst.
Statist. Math. Tokyo 12, 37-61.

[38] Nco, H. L.; Ocawa, S. (2011). On the discrete approximation of occupation time of diffusion
processes. Electron. J. Stat. 5, 1374-1393. MR 2842909

[39] Nuavrarr, D. (1995). The Malliavin calculus and related topics. Probability and its Applications.
Springer-Verlag, New York. xii+266 pp.

[40] Nuavrart, D.; Vives, J. (1990). Anticipative calculus for the Poisson process based on the Fock
space. Séminaire de Probabilités, XXIV, 1988/89, 154-165, Lecture Notes in Math., 1426,
Springer, Berlin.

[41] Ocone, D. (1984). Malliavin's calculus and stochastic integral representations of functionals of
diffusion processes. Stochastics 12, no. 3—4, 161-185. MR 0749372

[42] Ocong, D.L.; Karatzas, 1. (1991). A generalized Clark representation formula, with application
to optimal portfolios. Stochastics Stochastics Rep. 34, no. 3-4, 187-220.

[43] Picarp, J. (1996). Formules de dualité sur I'espace de Poisson. Ann. Inst. H. Poincaré Probab.
Statist. 32, no. 4, 509-548.



BIBLIOGRAPHY 119

[44] Privaurt, N. (1994). Chaotic and variational calculus in discrete and continuous time for the
Poisson process. Stochastics Stochastics Rep. 51, no. 1-2, 83-109.

[45] Privaucr, N. (1982). Stochastic analysis in discrete and continuous settings with normal martin-
gales. Lecture Notes in Mathematics. Springer-Verlag, Berlin. MR 2531026

[46] Privaurt, N.; ScHouTeNs, W. (2002). Discrete chaotic calculus and covariance identities. Stoch.
Stoch. Rep. 72, no. 3-4, 289-315.

[47] RaMERr, R. (1974). On nonlinear transformations of Gaussian measures., . Functional Analysis
15, 166-187.

[48] Reep, M.; SimoN, B. (1972). Methods of Modern Mathematical Physics 1. Functional Analysis.
Academic Press, New York-London. MR 0493419

[49] Renaup, J.E; RémILLARD, B. (2007). Explicit martingale representations for Brownian function-
als and applications to option hedging. Stochastic Analysis and Applications, 25, 810-820.
MR 2335067

[50] Rogers, L.C.G.; WirLLiams, D. (2000). Diffusions, Markov Processes and Martingales, Volume 2
It6 Calculus. Cambridge University Press, Cambridge. xiv+480 pp.

[51] Roorzen, H. (1980). Limit Distributions for the Error in Approximations of Stochastic Integrals.
Ann. Probab. Volume 8, Number 2, 241-251. MR 0566591

[52] Rubpin, W. (1991). Functional Analysis. 2nd ed., McGraw-Hill. MR 1157815

[53] Sevijakov, AJ. (1976). Clark’s formula for discontinuous processes. Behavior of systems in
random media, pp. 55-59. Akad. Nauk Ukrain. SSR Inst. Kibernet., Kiev.

[54] Tankov, P; Vorrcukova, E. (2009). Asymptotic analysis of hedging errors in models with jumps.
Stochastic Process. Appl. 119, no. 6, 2004-2027.

[55] Temawm, E. (2003). Analysis of error with Malliavin calculus: application to hedging. Math.
Finance 13, no.1, 201-214. MR 1968105

[56] UstiingL, A.S. (1987). Representation of the distributions on Wiener space and stochastic calculus
of variations. J. Funct. Anal. 70, no. 1, 126-139.

[57] WiLLiams, D. (1991). Probability with Martingales. Cambridge University Press, Cambridge.
xvi+251 pp.

[58] Wu, L.M. (1987). Construction de I'opérateur de Malliavin sur I’espace de Poisson. Séminaire de
Probabilités, XXI, 100-113, Lecture Notes in Math., 1247, Springer, Berlin.

[59] Wu, L.M. (2000). A new modified logarithmic Sobolev inequality for Poisson point processes and
several applications. Probab. Theory Related Fields 118, no. 3, 427-438.

[60] Yano, K. (2002). A generalization of the Buckdahn-Follmer formula for composite transformations
defined by finite dimensional substitution. J. Math. Kyoto Univ. 42, no. 4, 671-702.

[61] Zakar, M.; Zertount, O. (1992). When does the Ramer formula look like the Girsanov formula?
Ann. Probab. 20, no. 3, 1436-1440.

[62] Znrang, R. (1999). Couverture approchée des option Européennes. PhD thesis, Ecole Nationale
des Ponts et Chaussées.



