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Abstract

This thesis is organized into four sections.
In the first section, a probabilistic representation of the tau func-

tions of KP (Kadomtsev-Petviashvili) solitons in terms of stochastic
areas will be presented.

The second section is composed of a remark that Quadratic Gaus-
sian term structures under suitable scale change are of multi-soliton
type, (a collection of) solitary waves that are related to KdV solitons.
In the real market, the term structure of forward rates exhibits some
humps. The quadratic Gaussian term structure models or affine term
structure models well explain this phenomena.

The third section presents a probabilistic “Bosonization” using
stochastic areas. With the Bosonization, the “Fermions”, which are
anti-symmetric stochastic integrals generated by a representation of
a Clifford algebra in Wiener space, are sent to the character poly-
nomials. This Bosonization enables us to construct a probabilistic
representation of tau functions of integrable systems.

In the last section, we present two equivalences in law among
stochastic areas. The first one states that the law of a stochastic
area at a fix time of a Gaussian process(stochastic integral of a deter-
ministic L2 function) is only dependent on its L2-norm. The second
one is on the pair of (generalized) stochastic areas. It says that the law
of a pair related to Walsh system is again independent of the choice
of the Walsh function.
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1 Tau functions of KP solitons realized in

Wiener space

1.1 Introduction

In the introduction, after giving a very short introduction to the theory
of solitons following [24], we recall some existing results from probabilistic
approaches.

1.1.1 Solitons, tau-functions, and Sato’s Grassmannian

By solitons, we usually mean solitary wave solutions (behaving like a particle)
to a class of non-linear wave equations including the KdV (Korteweg-de Vries)
equation

∂u

∂t
=

1

4

∂3u

∂x3
+

3

2
u
∂u

∂x
(1.1)

as the most notable example.
The first giant step in the study of solitons was made by Gardner, Greene,

Kruskal and Miura [7], where they observed that (i) the eigenvalues of the
Shorödinger operator

∂2

∂x2
+ u(t, x),

where u is a solution to (2.16), are constant in time parameter t, and (ii)
one can construct a soliton solution to (2.16) by applying the inverse scat-
tering method, by which we mean the (mathematical) method to construct
(unknown) potentials out of given scattering data, which had already been
fully developed. The relation is most clearly seen when the potential is re-
flectionless as

u(t, x) = 2
d2

dx2
log det(I +G(x, t)), (1.2)

where

G(x, t) :=

(√
mimje

(ηi+ηj)x+(η3i +η3j )t

ηi + ηj

)
1≤i,j≤n

.

The constants ηj,mj, j = 1, · · · , n are so-called scattering data.
The observation (i) together with the awareness of the existence of the

infinite invariants in [7] motivated another seminal paper by P. Lax [20],
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where the KdV equation (2.16) is understood as the compatibility between
the two equations:

(
∂2

∂x2 + u(t, x)
)
w(=: Pw) = κw, (κ is an eigenvalue)(

∂3

∂x3 +
3
2
u ∂
∂x

+ 3
4
∂u
∂x

)
w(=: Bw) = 0.

This compatibility is rephrased as the celebrated “Lax equation”:

∂P

∂t
+ [P,B] = 0, (1.3)

where the bracket is the commutator; [P,B] = PB −BP .
By considering pseudo differential operators such as ∂−n for n ∈ N and

their infinite series, we have in fact B = (P 3/2)+, where (D)+ is the differ-
ential operator part of the pseudo differential operator D. In this Lax form,
the existence of the infinite many invariants can be rephrased as

∂P

∂xk
+ [P, (P k/2)+] = 0, k = 1, 3, 5, · · · , 2n+ 1, · · · ,

where u ≡ u(x1, x3, · · · , x2n+1, · · · ), a function of infinitely many variables.
The KdV case (1.3) is retrieved by setting x1 = t, x3 = x. Each Lax equa-
tion generates a non-linear evolution equation with respect to x2k+1 since
[P, (P k/2)+]’s are all multiplication operators. The totality of the generated
equations is usually called KdV hierarchy.

If we instead start with the operator

L = ∂ +
∞∑
j=1

uj∂
−j,

then we still have that [L, (Lk)+] are all multiplication operators, and hence
we obtain infinitely many nonlinear differential equations with respect to uj’s
of infinitely many variables x1, x2, · · · , xn, · · · by the Lax equations:

∂L

∂xk
+ [L, (Lk)+] = 0, k = 1, 2, · · · .

The family is called KP hierarchy since the KP (Kadomtsev-Petviashvili)
equation,

3

4

∂2u1
∂x22

=
∂

∂x1

(
∂u1
∂x3

− 3

2
u1
∂u1
∂x1

− 1

4

∂3u1
∂x31

)
,
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which is easily seen to be a generalization of the KdV to a two dimensional
model, is deduced from the equations with k = 2 and k = 3. The KP
hierarchy as a whole is also a generalization of the KdV hierarchy since the
latter hierarchy is obtained by a reduction (L2)− = 0 from the former.

The equations in KP/KdV hierarchy are all “soliton equations” in the
sense that they all have exact solutions of soliton type 1. In fact, according to
Sato’s theory of infinite dimensional Grassmannian ([30], see also [24,29]), all
the uj’s of the hierarchy are simultaneously generated from a single function
called tau-function τ in the following way: determine w1, w2, etc, by

τ(x1 − 1
k
, x2 − 1

2k2
, · · · )

τ(x1, x2, · · · )
= 1 +

w1

k
+
w2

k2
+ · · · (1.4)

by comparing the coefficients of k−j, j = 1, 2, · · · , and then u1, u2, etc by

L =

(
1 +

∞∑
j=1

wj∂
−j

)
◦ ∂ ◦

(
1 +

∞∑
j=1

wj∂
−j

)−1

. (1.5)

For example, we have

u1 = 2
∂2

∂x21
log τ. (1.6)

In particular, we see that if τ is a polynomial of e
∑

cijxj ’s, then uj’s are all
“solitons” in that they are all rational functions of e

∑
cijxj ’s.

The tau functions are characterized as a solution to a family of quadratic
differential equations called Hirota equations, which are nothing but Plücker
relations that define Sato’s infinite dimensional Grassmannian. That is to
say, a tau function of the KP hierarchy is a point in the Sato’s Grassmannian.
It should be noted that in the Sato’s theory, the KP hierarchy is the most
universal one, out of which many well-known soliton equations are obtained
by a reduction.

The following functions are known to be among the tau functions of the
soliton solution of the KP equation:

τ(x1, x2, · · · )

=
∑
J⊂I

(∏
i∈J

mi

)( ∏
i,i′∈J,i<i′

(pi − pi′)(qi − qi′)

(pi − qi′)(qi − pi′)

)
exp

(∑
i∈J

∞∑
l=1

(pli − qli)xl

)
1The solitons are basically rational functions of the exponential functions of the form

e
∑

cijxj for some constants cij ’s.
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for I = {1, · · · , n}, n ∈ N, where m1, · · · ,mn, p1, · · · , pn, and q1, · · · , qn are
(indefinite) constants. This is alternatively written as

τ(x1, x2, · · · ) = det(I +G(x1, x2, · · · )), (1.7)

where

G(x1, x2, · · · ) =
(√

mimj

pi − qj
e

1
2

∑∞
l=1{(pli−qli)+(plj−qlj)}xl

)
1≤i,j≤n

.

The formula (1.7) is a generalization of (1.2) since we retrieve it by (21) and
the reductions of qj = −pj, xl = 0 for l ≥ 4.

Remark 1. It should be noted that, if f is a solution to a Hirota equation then
so is Ce

∑
j cjxjf , for arbitrary constants C, c1, c2, · · · . Therefore tau function

is stable under the multiplication of the factor Ce
∑

j cjxj . This property will
be used in the proof of Theorem 7.

1.1.2 Probabilistic approach to solitons

As far as we know, the first attempt to represent solitons in terms of the
expectation of Wiener functionals was made by S. Kotani [17] in 2000. Ac-
cording to [14], Kotani constructed the following correspondences. Let Σ be
the set of all pairs (σ+, σ−) ≡ σ of non-negative measures each on R− such
that

∫
R−

e
√
−1λσ±(dλ) < ∞ for any λ > 0. For σ ∈ Σ, associate a Gaussian

process Xσ with mean 0 whose covariance C(u, v) = E[X(u)X(v)] is given
by

C(u, v; σ) =
1

4

∫
R−

(−z)−1/2
(
e
√
−z(u+v) − e

√
−z|u−v|

)
σ+(dz)

+
1

4

∫
R−

(−z)−1/2
(
e−

√
−z|u−v| − e−

√
−z(u+v)

)
σ−(dz).

Let Q be the totality of the function qσ with σ ∈ Σ, where

qσ(x) = −4
∂2

∂x2
logE

[
exp

(
−1

2

∫ x

0

|Xσ(y)|2dy
)]

. (1.8)

Then Kotani showed that Q is the closure (with respect to the topology
of uniform convergence on compacts) of ∪Qn, where Qn be totality of the
reflectionless potentials of scattering data consisting of 2n constants.
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In a somewhat different line, K. Hara and N. Ikeda [11] derived from the
Fourier transform of a class of quadratic Wiener functionals a dynamics in
the Grassmannian as a finite dimensional analogue to the Sato’s framework
(1.4)-(1.5) etc.

Soon after that N. Ikeda and S. Taniguchi [14] obtained a specific and
more “stochastic analysis oriented” construction of the Gaussian process Xσ

in (1.8) than Kotani’s method. They set

Xσ
t =

√
a〈c, ξpt 〉, (1.9)

where a > 0, c ∈ Rn
+, p ∈ Rn and ξp is an Ornstein-Uhlenbeck process in Rn

starting at 0 defined as the solution to the following SDE:

dξt = dWt + diag{p1, · · · , pn}ξtdt. (1.10)

The measure σ in Kotani’s correspondence is given as

σ±(du) = 2a2
∑

i:pi∈R±

c2i δ−p2i
(du).

Related studies and surveys concerning the quadratic Wiener functionals can
be found in [32–35], and more recently in [15].

Here we remark that all the probabilistic results cited here are on KdV
solitons, and not extendable to KP. In this section, we will present a proba-
bilistic representation of KP solitons using generalized stochastic areas (see
Theorem 2 and Theorem 7).

1.1.3 Organization of the present paper

In section 1.2, we will introduce Lévy’s stochastic area formula and present
its generalization as Theorem 2 and its proof. Then in section 2.5, we will
show that the generalized stochastic area formula is parameterized as a tau
function of KP solitons. In section 2.6, we will give a probabilistic interpre-
tation of the reduction from KP- to KdV-solitons.

1.2 A generalization of Lévy’s stochastic area formula

Let (Ω,F , P ) be a probability space and B ≡ (B1, B2) be a two-dimensional
Brownian motion on it. The area enclosed by the curve s 7→ Bs and its chord
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up to time t, which is usually called stochastic area of B, is given by (1/2 of)

St :=

(∫ t

0

B2
s dB

1
s −

∫ t

0

B1
s dB

2
s

)
.

The characteristic function of St is explicitly given as

E[e
√
−1ξSt ] = (cosh ξt)−1 (ξ ∈ R), (1.11)

and conditioned one is also given explicitly as

E[e
√
−1ξSt |B1

t = x,B2
t = y] =

ξt

sinh ξt
e

1
2t
(x2+y2)(1−ξt coth ξt) (ξ ∈ R), (1.12)

which were found by Paul Lévy [21] using Fourier series expansion of W .
Either is often called Lévy’s (stochastic area) formula(s). There have been
plenty of studies related to the formulas. For example, the heat kernel of
the Heisenberg group can be obtained by a slight modification of the formula
([3], see also [16]). Many alternative proofs and generalizations have been
found ([36], [5], [9], [12], [13], etc).

In this section, we give the following generalization of (1.11). In its proof,
the second Lévy formula (1.12) plays a crucial role.

Theorem 2. Let W l ≡ (W l,1,W l,2), l = 1, · · · , n be mutually independent
two-dimensional Brownian motions starting at the origin, and stochastic ar-
eas of W l will be denoted by

Sl :=

∫ 1

0

(
W l,2

s dW l,1
s −W l,1

s dW l,2
s

)
.

Let Λ := diag{λ1, · · · , λn}, where λl, l = 1, 2, · · · , n are positive numbers.
Let A ≡ (ai,j)1≤i,j≤n be a real n × n matrix, and C± be its symmetric and
skew-symmetric part respectively, namely, C± = (A± A∗)/2. Denote Wi

t =
(W 1,i

t , · · · ,W n,i
t ) for i = 1, 2, and define for σ ∈ C

Ŝ(σ) ≡ ŜA,Λ(σ)

:= σ
n∑

l=1

λlS
l + σ〈Λ

1
2C−Λ

1
2W1

1,W
2
1〉Rn − σ2

2

∑
i=1,2

〈Λ
1
2C+Λ

1
2Wi

1,W
i
1〉Rn .

(1.13)
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Then, if both maxl |λl| and ‖C+‖ are sufficiently small, we have

E[eŜ(
√
−1)]

=

∣∣∣∣∣∣∣∣∣
coshλ1 + a1,1 sinhλ1 a1,2 sinhλ2 · · · a1,n sinhλn

a2,1 sinhλ1 coshλ2 + a2,2 sinhλ2 · · · a2,n sinhλn
...

...
. . .

...
an,1 sinhλ1 an,2 sinhλ2 · · · coshλn + an,n sinhλn

∣∣∣∣∣∣∣∣∣
−1

.

Proof. We first calculate the conditional expectation of eŜ(σ) conditioned
by W1 = (W1

1,W
2
1) . By the Lévy’s formula (1.12) with some analytic

continuation, we have for sufficiently small σ ∈ R (such that the random
variable eσ

∑
λlS

l
is integrable),

E[eσ
∑

l λlS
l|W1]

=
∏
l

σλl
sin σλl

exp
(
− (W l,1

1 )2 + (W l,2
1 )2

2
(σλl cotσλl − 1)

)
.

(1.14)

Therefore we have

E[eŜ(σ)|W1] =
∏
l

σλl
sinσλl

exp
(
− 1

2
〈(M(σ)− I+ C(σ))W1,W1〉

)
where

M(σ) =

(
σΛcot σΛ 0

0 σΛcot σΛ

)
,

with
cotσΛ := diag{cotσλ1, · · · , cotσλn}

as usual, and

C(σ) :=

(
σ2Λ

1
2C+Λ

1
2 σΛ

1
2C−Λ

1
2

−σΛ 1
2C−Λ

1
2 σ2Λ

1
2C+Λ

1
2

)
.

Since ‖M(σ) + C(σ) − I‖ → 0 as σ → 0, we can take σ small enough
to ensure that M(σ) + C(σ) is positive definite. Then, applying quadratic
Gaussian formula for such σ, we obtain

E[eŜ(σ)] =
n∏

l=1

σλl
sinσλl

det(M(σ) + C(σ))−
1
2 . (1.15)
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We may go further as

det(M(σ) + C(σ))

= det

(
σΛ

1
2 (Λ

1
2 cotσΛ + σC+Λ

1
2 ) σΛ

1
2C−Λ

1
2

−σΛ 1
2C−Λ

1
2 σΛ

1
2 (Λ

1
2 cotσΛ + σC+Λ

1
2 )

)
= det(σΛ

1
2 (cotσΛ + σC+ +

√
−1C−)Λ

1
2 ) det(σΛ

1
2 (cot σΛ + σC+ −

√
−1C−)Λ

1
2 )

(Since C− is skew symmetric)

=

{∏
l

(σλl) det(cotσΛ + σC+ +
√
−1C−)

}2

.

Hence (1.15) is turned into the following equality:

E[eŜ(σ)] = det
(
cosσΛ + (σC+ +

√
−1C−) sin σΛ

)−1

(1.16)

where sin σΛ := diag{sin σλ1, · · · , sin σλn}.
The right-hand-side of (1.16) is meromorphic in σ ∈ C. Now, we want to

see if an analytic continuation to a domain including σ =
√
−1 is possible or

not. To see this, it suffices to check the differentiability of the left-hand-side
of (1.16) with respect to σ. Namely, we need to check the integrability of

E[
d

dσ
eŜ(σ)]

= E

[
eŜ(σ)

(
n∑

l=1

λlS
l + 〈Λ

1
2C−Λ

1
2W1

1,W
2
1〉Rn − σ

∑
i=1,2

〈Λ
1
2C+Λ

1
2Wi

1,W
i
1〉Rn

)]
.

Since Ŝ is quadratic Gaussian, the integrability is inherited from that of eŜ(σ)

itself, which is guaranteed if either maxl |λl| or ‖C+‖ is sufficiently small.

1.3 Parameterization as a tau function of KP solitons

As we have stated, a tau function τ of the n-soliton solution of the Kadomtsev-
Petviashvili equation (KP equation) is expressed by

τ(x1, x2, · · · ) = det(I +G(x1, x2, · · · )), (1.17)

with

G(x1, x2, · · · ) =
(√

mimj

pi − qj
e

1
2
(ξi+ξj)

)
1≤i,j≤n

,

12



where

ξi = (pi − qi)x1 + (p2i − q2i )x2 + · · · , i = 1, · · · , n,

and mi > 0, pi and qi are parameters.

Theorem 3. Let P =
(

1
pi−qj

)
1≤i,j≤n

, and assume that mini,j |pi − qj| is

sufficiently large so that I+P is invertible. Then, if we put A = (I−P )(I+
P )−1 and Λ := diag{−1

2
(ξ1 + logm1), · · · ,−1

2
(ξn + logmn)}, we have that

(E[eŜA,Λ(
√
−1)])−1, where ŜA,Λ is defined by (1.13), defines a tau function of

KP solitons.

Proof. Since
G = e−ΛPe−Λ,

we have

τ = det(I + e−ΛPe−Λ)

= det e−Λ det(eΛ + Pe−Λ) = det(I + Pe−2Λ).

On the other hand,

det(coshΛ + A sinhΛ)

= det

(
eΛ + e−Λ

2
+ A

eΛ − e−Λ

2

)
= 2−n det

{
(I + A)eΛ + (I − A)e−Λ

}
= 2−n det{(I + A)eΛ} det

(
I + (I + A)−1(I − A)e−2Λ)

)
= 2−n det(I + A)e−

1
2

∑
(ξi+logmi) det

(
I + Pe−2Λ

)
.

The last equality follows since

A = (I − P )(I + P )−1 ⇐⇒ P = (I + A)−1(I − A).

As we have stated in Remark 1, 2−n det(I +A)e−
1
2
(ξi+logmi) is a trivial factor

and thus by Theorem 2 we have the assertion.
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1.4 Reduction to Ikeda-Taniguchi’s construction

As we have discussed in subsection 1.1.1, we have (1.2) by the reduction of
qj = −pj in (1.7). In this subsection, we review this from the perspective
of stochastic analysis. We will show that when C− = 0, the expectation
of the exponential of the generalized stochastic area is reduced to that of
the exponential of the time integral of an Ornstein-Uhlenbeck process, which
corresponds to the Taniguchi-Ikeda’s construction (1.8), (1.9) and (1.10) of
reflectionless potentials/tau functions of KdV solitons.

Precisely speaking, we have the following

Proposition 4. Suppose that A in Theorem 2 is symmetric. Then

E[eŜA,Λ(
√
−1)] =

(
E[e−

∫ 1
0 XA,Λ

s ds]
)2
etrΛA,

where XA,Λ = 〈(Λ − AΛA)ξ, ξ〉 and ξ is an Ornstein-Uhlenbeck process on
Rd starting at 0 and satisfying

dξt = Λ
1
2dBt + ΛAξt dt, (1.18)

with B being an n-dimensional standard Brownian motion.

Proof. We first note the following identity since its right-hand-side also equals
to that of (1.14) with σ replaced by

√
−1 (see e.g. [22]):

E[e
√
−1

∑
l λlS

l|W1] = E[e−
∑

l

λ2l
2

∫ 1
0 {(W l,1

s )2+(W l,2
s )2} ds|W1].

Then since C+ = A and C− = 0, we have

E[eŜA,Λ(
√
−1)] =

∏
i=1,2

E[e−
∑

l

λ2l
2

∫ 1
0 (W l,i

s )2 ds+ 1
2
〈Λ

1
2AΛ

1
2Wi

1,W
i
1〉]

=

(
E[e−

∑
l

λ2l
2

∫ 1
0 (W l,1

s )2 ds+ 1
2
〈Λ

1
2AΛ

1
2W1

1,W
1
1〉]

)2

.

By applying Itô’s formula,

e−
∑

l

λ2l
2

∫ 1
0 (W l,1

s )2 ds+ 1
2
〈Λ

1
2AΛ

1
2W1

1,W
1
1〉

= e
1
2
trΛAe

∫ 1
0 〈Λ

1
2AΛ

1
2W1

s ,dW
1
s〉− 1

2

∫ 1
0 |Λ

1
2AΛ

1
2W1

s |2 dse−
1
2

∫ 1
0 〈(Λ−AΛA)Λ

1
2W1

s ,Λ
1
2W1

s〉 ds.
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Define Q by

dQ

dP

∣∣∣∣
F1

= e
∫ 1
0 〈Λ

1
2AΛ

1
2W1

s ,dW
1
s〉− 1

2

∫ 1
0 |Λ

1
2AΛ

1
2W1

s |2 ds.

Then by the Maruyama-Girsanov theorem, we see that W under Q has the
same law as ξ of (2.18). This completes the proof.

Remark 1. Note that the variable x appearing in (1.8) is suppressed in the
integral over [0, 1] thanks to the scaling property of Brownian motion.

Remark 2. We note that the 2n-dimensional Brownian motion used to rep-
resent n-solitons in Theorem 2 can be replaced by a 2-dimensional one ir-
respective of n. Let W ≡ (W 1,W 2) be a 2-dimensional Brownian motion
starting at the origin, and set

fi(t) :=
√
n

n∑
l=1

δil1[ l−1
n

, l
n
)(t), i = 1, 2, · · · , n,

where

δij =

{
1 i = j,

0 otherwise
.

Define

S+
i,j :=

∑
a=1,2

(∫ 1

0

fi(t) dW
a
t

)(∫ 1

0

fj(t) dW
a
t

)
,

and

S−
i,j :=

∫ 1

0

(∫ t

0

fj(s) dW
2
s

)
fi(t) dW

1
t −

∫ 1

0

(∫ t

0

fi(s) dW
1
s

)
fj(t) dW

2
t .

We assume that λi > 0 for all i. We shall denote the (i, j) entry of the

matrices Λ
1
2C+Λ

1
2 and Λ

1
2 (I + C−)Λ

1
2 by λ+i,j, and λ−i,j, respectively. Note

that λ−ii = λi. We also assume that either maxl |λl| or ‖C+‖ is sufficiently
small to ensure the integrability. Then we have that

E[e
∑

i,j(
√
−1λ−

i,jS
−
i,j+

1
2
λ+
i,jS

+
i,j)](= E[eŜA,Λ(

√
−1)])

= det(coshΛ + A sinhΛ)−1.

With this identification, it would be possible to obtain another class of τ -
function to KP hierarchy by letting n→ ∞ as in [22].
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2 Affine term structure as multi-soliton

2.1 Introduction

The spot interest rate r(t, T ) is the rate per unit of time (normally it is
one year) at which one can (in practice, the rate can vary depending on
who they are and how it is agreed but we ignore such credit risks/counter
party risks here) borrow (lend) cash at time t and repay (be repaid) at time
T . Theoretically it is related to the price P (t, T ) of the zero-coupon bond
maturing at T as

r(t, T ) = − 1

T − t
logP (t, T ).

In practice, the rate so defined is called zero rate. The function

T 7→ r(t, T )

is what we call term structure of spot rates, or in practice it is rather function
in x = T − t;

x 7→ r(t, t+ x),

which is often referred to as yield curve.
In theoretical finance, one rather work on the term structure of (the

instantaneous) forward rates, which is given by

T 7→ f(t, T ) = −∂T logP (t, T ),

or

x 7→ f(t, t+ x) = −∂T logP (t, T )

∣∣∣∣
T=t+x

.

This is because the forward rate is easier to handle mathematically. In par-
ticular to impose arbitrage-free property to the term structure.

In real market, however, the term structure of spot rates behaves nicer.
According to the series of studies by N.L.Liu and her collaborators [25–27],
from the term structure of spot rates only two or three factors up to almost
99% are detected when applied a principal component analysis (or its vari-
ants), while that of forward rates exhibits more than 10, sometimes 15, or
even more factors. Much more straightforward peculiarity is that the sam-
ples of the term structure of forward rates often have more humps than those
of spot rates.

16



Figure 1: Typical forward rate movement: EU zero rate

Figure 2: Spot rate movement of the same data as Fig. 1
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The main aim of the present paper is to propose a new point of view
where the humps are understood as a kind of solitons.

The rest of the paper is organized as follows. In section 2.2, we illustrate
our idea by a primitive one dimensional example. In section 2.2.1, we present
a brief introduction to solitons. In section 2.3, we give a multi-dimensional
version of the observation made in section 2.2. We emphasize that a class of
affine (quadratic Gaussian) models exhibits multi-soliton shape term struc-
tures. Finally in section 2.4, we remark that the solitons appearing in the
term structure models are related to a non-linear partial differential equation
called KdV equations.

2.2 A primitive example

To explain the idea, we start with a primitive example. Let

P (t, T ) = Ex[exp{−1

2

∫ T

t

c2|Ws|2 ds}|Wt], 0 ≤ t ≤ T, (2.1)

where W is a 1-dimensional Brownian motion. This formula defines an
arbitrage-free bond market, which is a simplest example of the quadratic
Gaussian model, and at the same time, an affine term structure model (see
e.g.[8]) where we consider |W |2 to be a state variable. In fact, we have an
explicit expression as

P (t, T ) = {cosh(c(T − t))}−1/2

× exp{− c
2
tanh(c(T − t))|Wt|2},

and the (instantaneous) forward rate f(t, T ) = −∂T logP (t, T ) is then ex-
pressed as

f(t, T ) =
c

2
tanh(c(T − t))

+
c2|Wt|2

2
sech2 (c(T − t)) ,

(2.2)

which is an affine function in the state variable.
By (2.1), we know that

T 7→ − logP (t, T )
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Figure 3: A sample path of the forward rate given by (2.2) with W0 = 8,
c = 0.1.

is increasing, and therefore the term structure of spot rates under this model
behaves nicely, while one notices that

T 7→ f(t, T )

is a rational function of ec(T−t) and e−c(T−t), which is, what we will call in
local terminology, a soliton.

Fig. 4 exemplifies a sample path of the affine forward rate.

2.2.1 Solitons

In general, a traveling wave solution to a non-linear (evolution-type) differen-
tial equation is not stable; it collapses from the top. The soliton solutions are
exceptions. They have (sometimes more than two) solitary waves=humps,
and the humps are quite stable even after the “collisions”. Somehow they
behave like particles, and that is why they are called “solitons”.
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Mathematically, solitons can be defined as some rational functions of expo-
nentials (see [10]). More precisely, it is something like

u(t, x) =
f

g
=

∑
iKie

Ait−Bix∑
i LieCit−Dix

, (2.3)

where Ai, Bi, Ci, Di, Ki and Li are constants, and the summations are finite
ones. Here we assume maxiCi ≥ maxiAi and miniCi ≤ miniAi to ensure
the existence of the limits at x → ±∞. If we require the inequality to be
strict, then the graph x 7→ u(t, x) is hump-shaped. Note that solitons of this
definition are stable under summation, multiplication, and differentiations.
Note that the forward rate (2.2) in the previous section is a soliton in T or
x = T − t in this sense.

2.3 Affine Term Structure as Multi-Soliton

We generalize the observation made in section 2.2. Let W = (W 1, · · · ,W n)
be an n-dimensional Brownian motion starting at x = (x1, · · · xn) ∈ Rn, de-
fined on a filtered probability space (Ω,F , P, {Ft}), Λ = diag(λ1, λ2, · · · , λn)
with for each λi ∈ R (i = 1, 2, · · · , n), and C ∈ M(n) be a positive definite
matrix.

Let

P (t, T ) := e〈CWt,Wt〉

× Ex

[
exp

{
−1

2

∫ T

t

|ΛWs|2 ds− 〈CWT ,WT 〉
}
|Wt

]
.

(2.4)

Then {P (·, T )} defines an arbitrage-free bond market with

πt = exp

{
−1

2

∫ t

0

|ΛWs|2 ds− 〈CWt,Wt〉
}
.

being a state price density.
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Proposition 5. Under the model (2.4), the forward rate is an n-soliton; a
rational function in e±(T−t)λi, i = 1, · · · , n, of degree at most 2n for any state
Wt.

Proof. Let

K(t) = − cosh(tΛ)C − 1

2
Λ sinh(tΛ),

L(t) = 2 sinh(tΛ)Λ−1C + cosh(tΛ),
(2.5)

and
H(t) = K(t) · L(t)−1. (2.6)

Note that

K ′(t) = −1

2
Λ2L(t) (2.7)

and
L′(t) = −2K(t). (2.8)

We will show that

P (t, T )

= {det(L(T − t))}−1/2 exp〈(H(T − t) + C)Wt,Wt〉}.
(2.9)

By the Feynman-Kac formula,

u(t, x) :=

E

[
exp

{
−1

2

∫ t

0

|ΛWs|2 ds− 〈CWt,Wt〉
}
|W0 = x

]
,

where x = (x1, · · · xn), satisfies the following differential equation:
∂u

∂t
=

1

2
∆u− 1

2
〈Λ2x, x〉u,

u(0, x) = e−〈Cx,x〉,

(2.10)

where ∆ is the Laplacian. Note that

P (t, T ) = e〈CWt,Wt〉u(T − t,Wt). (2.11)

It is well-recognized that the solution u to (2.10) is expressed by

exp
(
H0(t) + 〈H(t)x, x〉

)
, (2.12)
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where H is a symmetric-matrix valued differentiable function satisfying

dH

dt
(t) = 2H(t)2 − 1

2
Λ2, H(0) = −C, (2.13)

and H0 is given by

dH0

dt
(t) = trH(t), H0(0) = 0. (2.14)

Now we see that H given by (2.5) and (2.6) is the unique solution to
(2.13). In fact, by (2.7) and (2.8), we have

H ′ = (KL−1)′ = −KL−1L′L−1 +K ′L−1

= 2(KL−1)2 − 1

2
Λ2

= 2H2 − 1

2
Λ2,

and also L(0) = I and K(0) = −C, which imply H(0) = −C.
Further, by (2.14),

eH0(t) = etr{−
1
2

∫ t
0 L′(s)L(s)−1 ds}

= det{e−
1
2

∫ t
0 L′(s)L(s)−1 ds}

= (det{e
∫ t
0 L′(s)L(s)−1 ds})−1/2.

Since
(e

∫ t
0 L′(s)L(s)−1 ds)′ = L′(t)L(t)−1e

∫ t
0 L′(s)L(s)−1 ds,

we see, by the uniqueness of the matrix-valued first order linear differential
equation, that

L(t) = e
∫ t
0 L′(s)L(s)−1 ds.

Thus we have confirmed (2.9), at the same time (2.11) with (2.12), by
which we have

f(t, T ) = − ∂

∂T
H0(T − t)

+
∂

∂T
〈H(T − t)Wt,Wt〉.
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Then, by substituting (2.13) and (2.14), we get

f(t, T ) = −trH(T − t)

− 1

2
〈(4H(T − t)2 − Λ2)Wt,Wt〉.

(2.15)

We note that the (i, j)-th entries kij and lij of K(t) and L(t) are given by

kij = − cosh(tλi)cij −
1

2
δij sinh(tλi),

and
lij = 2 sinh(tλi)λ

−1
i cij + δij cosh(tλi),

and thus they are polynomials in e±tλi . Since

H(t) = K(t)L(t)−1 = K(t)L̃(t)(det(L(t)))−1,

where L̃(t) is the cofactor matrix of L(t), we see that each entry of H(t)
is a rational function in e±tλi , i = 1, · · · , n, with degree n. Hence, by the
expression (2.15), we have the assertion.

Remark 6. It is known that the forward rates stay positive if π is a strict
supermartingale. In fact, for T1 > T2 we have

Ex[πT1 |Ft] < Ex[πT2 |Ft]

by the supermartingale property of π, and the formula reads

P (t, T1) =
Ex[πT1 |Ft]

πt
≤ Ex[πT2 |Ft]

πt
= P (t, T2),

meaning that P (t, ·) and hence logP (t, ·) is decreasing. This in turn implies
that f(t, T ) = −∂T logP (t, T ) is positive.

We give a sufficient condition that ensures the positivity. Since

dπt

= πt(−d〈CWt,Wt〉 −
1

2
|ΛWt|2 dt+

1

2
d[〈CWt,Wt〉]t)

= −2〈CWt, dWt〉

− trCdt− 1

2
|ΛWt|2 dt+

22

2
|CWt|2 dt,

we see that π is a supermartingale, and hence the forward rates stay positive,
if

Λ2 − 4C2 > 0

since C > 0 is already assumed.
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2.4 Remarks on a relation with KdV equation

Let f̃(t, T ) := f( c
2

24
t, 1

22
T ). Then, we have

f̃(t, T ) =
c

23
tanh

(1
2
(
c

2
T − c3

23
t)
)

+
c2|Wt|2

23
sech2

(1
2
(
c

2
T − c3

23
t)
)

=: v(t, T ) + |Wt|2u(t, T ).

By this scale change, the functions u and v satisfy 4 ∂v
∂T

= u and

∂u

∂t
= −6u

∂u

∂T
− ∂3u

∂T 3
. (2.16)

The equation (2.16) is known as the Korteweg-de Vries equation (KdV equa-
tion for short), which describes waves on shallow water surfaces. The KdV
equation is mathematically as well as physically quite important in that there
are many infinite dimensional symmetries which allow it to have great many
explicit solutions including elliptic ones, rational ones, and most importantly
in our context, soliton ones.

The relation has been extensively studied, especially by N. Ikeda and S.
Taniguchi [14,15,33–35]. An extended relation to KP solitons using stochas-
tic areas is given in [1].

2.5 Parameterization as a tau function of KP solitons

As we have stated, a tau function τ of the n-soliton solution of the Kadomtsev-
Petviashvili equation (KP equation) is expressed by

τ(x1, x2, · · · ) = det(I +G(x1, x2, · · · )), (2.17)

with

G(x1, x2, · · · ) =
(√

mimj

pi − qj
e

1
2
(ξi+ξj)

)
1≤i,j≤n

,

where

ξi = (pi − qi)x1 + (p2i − q2i )x2 + · · · , i = 1, · · · , n,

and mi > 0, pi and qi are parameters.
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Theorem 7. Let P =
(

1
pi−qj

)
1≤i,j≤n

, and assume that mini,j |pi − qj| is

sufficiently large so that I+P is invertible. Then, if we put A = (I−P )(I+
P )−1 and Λ := diag{−1

2
(ξ1 + logm1), · · · ,−1

2
(ξn + logmn)}, we have that

(E[eŜA,Λ(
√
−1)])−1, where ŜA,Λ is defined by (1.13), defines a tau function of

KP solitons.

Proof. Since
G = e−ΛPe−Λ,

we have

τ = det(I + e−ΛPe−Λ)

= det e−Λ det(eΛ + Pe−Λ) = det(I + Pe−2Λ).

On the other hand,

det(coshΛ + A sinhΛ)

= det

(
eΛ + e−Λ

2
+ A

eΛ − e−Λ

2

)
= 2−n det

{
(I + A)eΛ + (I − A)e−Λ

}
= 2−n det{(I + A)eΛ} det

(
I + (I + A)−1(I − A)e−2Λ)

)
= 2−n det(I + A)e−

1
2

∑
(ξi+logmi) det

(
I + Pe−2Λ

)
.

The last equality follows since

A = (I − P )(I + P )−1 ⇐⇒ P = (I + A)−1(I − A).

As we have stated in Remark 1, 2−n det(I +A)e−
1
2
(ξi+logmi) is a trivial factor

and thus by Theorem 2 we have the assertion.

2.6 Reduction to Ikeda-Taniguchi’s construction

As we have discussed in section 1.1.1, we have (1.2) by the reduction of
qj = −pj in (1.7). In this section, we review this from the perspective of
stochastic analysis. We will show that when C− = 0, the expectation of
the exponential of the generalized stochastic area is reduced to that of the
exponential of the time integral of an Ornstein-Uhlenbeck process, which
corresponds to the Taniguchi-Ikeda’s construction (1.8), (1.9) and (1.10) of
reflectionless potentials/tau functions of KdV solitons.

Precisely speaking, we have the following
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Proposition 8. Suppose that A in Theorem 2 is symmetric. Then

E[eŜA,Λ(
√
−1)] =

(
E[e−

∫ 1
0 XA,Λ

s ds]
)2
etrΛA,

where XA,Λ = 〈(Λ − AΛA)ξ, ξ〉 and ξ is an Ornstein-Uhlenbeck process on
Rd starting at 0 and satisfying

dξt = Λ
1
2dBt + ΛAξt dt, (2.18)

with B being an n-dimensional standard Brownian motion.

Proof. We first note the following identity since its right-hand-side also equals
to that of (1.14) with σ replaced by

√
−1 (see e.g. [22]):

E[e
√
−1

∑
l λlS

l|W1] = E[e−
∑

l

λ2l
2

∫ 1
0 {(W l,1

s )2+(W l,2
s )2} ds|W1].

Then since C+ = A and C− = 0, we have

E[eŜA,Λ(
√
−1)] =

∏
i=1,2

E[e−
∑

l

λ2l
2

∫ 1
0 (W l,i

s )2 ds+ 1
2
〈Λ

1
2AΛ

1
2Wi

1,W
i
1〉]

=

(
E[e−

∑
l

λ2l
2

∫ 1
0 (W l,1

s )2 ds+ 1
2
〈Λ

1
2AΛ

1
2W1

1,W
1
1〉]

)2

.

By applying Itô’s formula,

e−
∑

l

λ2l
2

∫ 1
0 (W l,1

s )2 ds+ 1
2
〈Λ

1
2AΛ

1
2W1

1,W
1
1〉

= e
1
2
trΛAe

∫ 1
0 〈Λ

1
2AΛ

1
2W1

s ,dW
1
s〉− 1

2

∫ 1
0 |Λ

1
2AΛ

1
2W1

s |2 dse−
1
2

∫ 1
0 〈(Λ−AΛA)Λ

1
2W1

s ,Λ
1
2W1

s〉 ds.

Define Q by

dQ

dP

∣∣∣∣
F1

= e
∫ 1
0 〈Λ

1
2AΛ

1
2W1

s ,dW
1
s〉− 1

2

∫ 1
0 |Λ

1
2AΛ

1
2W1

s |2 ds.

Then by the Maruyama-Girsanov theorem, we see that W under Q has the
same law as ξ of (2.18). This completes the proof.

Remark 3. Note that the variable x appearing in (1.8) is suppressed in the
integral over [0, 1] thanks to the scaling property of Brownian motion.
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Remark 4. We note that the 2n-dimensional Brownian motion used to rep-
resent n-solitons in Theorem 2 can be replaced by a 2-dimensional one ir-
respective of n. Let W ≡ (W 1,W 2) be a 2-dimensional Brownian motion
starting at the origin, and set

fi(t) :=
√
n

n∑
l=1

δil1[ l−1
n

, l
n
)(t), i = 1, 2, · · · , n,

where

δij =

{
1 i = j,

0 otherwise
.

Define

S+
i,j :=

∑
a=1,2

(∫ 1

0

fi(t) dW
a
t

)(∫ 1

0

fj(t) dW
a
t

)
,

and

S−
i,j :=

∫ 1

0

(∫ t

0

fj(s) dW
2
s

)
fi(t) dW

1
t −

∫ 1

0

(∫ t

0

fi(s) dW
1
s

)
fj(t) dW

2
t .

We assume that λi > 0 for all i. We shall denote the (i, j) entry of the

matrices Λ
1
2C+Λ

1
2 and Λ

1
2 (I + C−)Λ

1
2 by λ+i,j, and λ−i,j, respectively. Note

that λ−ii = λi. We also assume that either maxl |λl| or ‖C+‖ is sufficiently
small to ensure the integrability. Then we have that

Ex[e
∑

i,j(
√
−1λ−

i,jS
−
i,j+

1
2
λ+
i,jS

+
i,j)](= Ex[e

ŜA,Λ(
√
−1)])

= det(coshΛ + A sinhΛ)−1.

With this identification, it would be possible to obtain another class of τ -
function to KP hierarchy by letting n→ ∞ as in [22].

3 Wiener Functionals as Fermions and their

Bosonization via Stochastic Areas

3.1 Introduction

3.1.1 What is done in this section?

As is well-known, the Wiener chaos expansion induces a representation of the
Heisenberg algebra, which fact is a keynote of the Malliavin calculus. The
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fact that the expansion also induces a representation of Clifford algebra is,
as P. A. Mayer pointed out in his book [23], a fact whose significance is not
generally appreciated by probabilists.

In [2], some of the properties of the representation are studied. This
section is a continuation of [2], concentrating on Bosonization(s) of the rep-
resentation. As a main result, Theorem 17 presents a Bosonization that is
probabilistic in that the map is given by an “integral operator” whose kernel
is given in terms of stochastic areas: roughly, the result is illustrated as∫

e
∑

xi×stochastic areas(a Fermion in Wiener space)dµ

= (the corresponding Boson; a character polynomial in (x1, · · · )),

where µ is the two-dimensional Wiener measure and the “stochastic areas”
are namely the areas drawn by transformed paths.

The following three observations are the keys to Theorem 17.

1. The representation is unitary (Theorem 12 and Theorem 15) and there-
fore the “vacuum expectation value” becomes the standard expectation
in Wiener space (Theorem 14).

2. A Fermionic stochastic integral (multi-order stochastic area) decom-
poses into “Pfaffian” of (second order) stochastic areas (Lemma 18, a
result in [2]), and among the Pfaffian expression, the charge-zero part
reduces to “determinant” (Lemma 19).

3. In the representation, the products of second order fermions again be-
come orthogonal to each other (Lemma 20).

3.1.2 Why a probabilistic Bosonization is important?

A motivation of the series of studies [1], [2] (and this paper) lies in a prob-
abilistic representation of “tau-functions”2. There has been a strong belief
among (a part of) probabilists that there are (hidden) beautiful probabilistic
interpretations to special functions such as zeta-, theta-, and tau- functions,
and our motivation is in line with these.

2For a detailed introduction to tau-functions, see [1].
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According to the results by Sato’s school (see [24] and the references
therein), we have roughly

{tau functions} = Bosonization of exp { quadratic forms of Fermions

that form an ∞-dimensional Lie algebra}.

Since we have already at hand fermioninc Wiener functionals, our Bosoniza-
tion gives a totally probabilistic representation of tau functions.

3.1.3 The Organization of the Present Section

Section 3.2 is devoted to a survey on an abstract theory of Fermions and
Bosons, or (the) Clifford algebra and (the) Heisenberg algebra, following
mainly [24]. Section 3.3 is the main part. After introducing a represen-
tation of Clifford algebra in Wiener space in section 3.3.1, we will show that
it is unitary, and then the vacuum expectation value is realized as the stan-
dard expectation with respect to the Wiener measure in section 3.3.2. Then
in section 3.3.3 we give a first Bosonization, which is rather algebraic than
probabilistic. Finally in section 3.3.4 we shall present our main result and
its proof, based on several lemmas.

3.2 Fermions and Bosons

3.2.1 Heisenberg Algebra

Let C ≡ C[x1, x2, · · · ] be the space of all polynomials of infinite variables
x1, x2, · · · , xn, · · · . Define an, a∗n ∈ End(C), n ∈ N by

anf =
∂f

∂xn
, a∗nf = xnf. (3.1)

Then, they satisfy the canonical commutation relations: for n,m ∈ N,

[an, am] = anam − aman = 0, [a∗n, a
∗
m] = 0, and [an, a

∗
m] = δnm, (3.2)

where δnm is Kronecker’s delta. Clearly,

C = span{a∗i1 · · · a
∗
in1 : i1, · · · , in ∈ N, n ∈ Z+}.

In general, abstract symbols endowed with a multiplication satisfying the
relations (3.2) are called Bosons, and the algebra generated by the symbols
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with (3.2) defining relations is called the Heisenberg algebra. The above (3.1)
can be understood to be constructing a representation of the Heisenberg
algebra, where C is the representation space. Namely the algebra is realized
as a subalgebra of End(C). We may alternatively call the algebra an H-
module if we denote the Heisenberg algebra by H.

If there is an element v in a representation space V such that

V = (a closure of) span{a∗i1 · · · a
∗
inv : i1, · · · , in ∈ N, n ∈ Z+},

then the space is called a Bosonic Fock space, and in this representation
a∗n’s are called creations and an’s are annihilations. It is obvious that C is a
Bosonic Fock space. A symmetric Fock space, which is usually constructed
from a separable infinite dimensional Hilbert space H by

⊕∞
n=0H

n⊗sym

is also a Bosonic Fock space in the above sense.

3.2.2 Clifford Algebra

The Clifford algebra Cl is the algebra generated by the symbols ϕn, ϕ
∗
n,

indexed by half integers n ∈ Z+ 1/2, with defining relations

[ϕm, ϕn]+ = ϕmϕn + ϕnϕm = 0, [ϕ∗
m, ϕ

∗
n]+ = 0, and [ϕ∗

m, ϕn]+ = δm+n,0.

The generators are called fermions, and those with negative index are called
creations and the others are called annihilations. It can be easily checked
that

Cl = span{ϕ−i1 · · ·ϕ−irϕ
∗
−j1

· · ·ϕ∗
−jm

: 0 < ir < · · · < i1, 0 < jm < · · · < j1are half integers, and r,m ∈ Z+}

as a vector space, and so an irreducible left Cl -module, which is called a
Fermionic Fock space, always takes the form of (a closure of)

span{ϕ−i1 · · ·ϕ−irϕ
∗
−j1

· · ·ϕ∗
−jmv

: 0 < ir < · · · < i1, 0 < jm < · · · < j1are half integers, and r, n ∈ Z+}
(3.3)
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for an element v in the representation space, which is called a vacuum state.
Similarly, an irreducible right Cl -module, which is referred to as a dual
Fermionic Fock space, always takes the form of (a closure of)

span{vϕjm · · ·ϕj1ϕ
∗
ir · · ·ϕ

∗
i1
:

0 < ir < · · · < i1, 0 < jm < · · · < j1are half integers, and r,m ∈ Z+}.

An anti-symmetric Fock space, which is usually constructed from a sepa-
rable infinite dimensional Hilbert space H by

⊕∞
n=0H

n∧

is also a Fermionic Fock space in the above sense.

3.2.3 Vacuum Expectation Value

Let F be a Fermionic Fock space and F∗ be a dual Fermionic Fock space.
For a fixed pair of vacuum states v∗ ∈ F∗ and v ∈ F , define a bilinear form
〈·|·〉 : F∗ ×F → C by 〈v∗|v〉 = 1 and

〈v∗ϕj′
m′ · · ·ϕj′1

ϕ∗
i′
r′
· · ·ϕ∗

i′1
|ϕ−i1 · · ·ϕ−irϕ

∗
−j1

· · ·ϕ∗
−jmv〉

=

{
δi′1−i1,0 · · · δi′r−ir,0δj′1−j1,0 · · · δj′m−jm,0 r′ = r and m′ = m

0 otherwise.

The map is called a vacuum expectation value. We note that

〈v∗a|bv〉 = 〈v∗|abv〉 = 〈v∗ab|v〉. (3.4)

The vacuum states are often denoted by vac and an element of F is by u|vac〉
or simply by |u〉 for u ∈ Cl . We also note that by (3.4), the expectation can
be denoted by (and understood as) 〈vac|a|vac〉 or simply 〈a〉 for a ∈ Cl .

3.2.4 Bosonization

A representation of the Heisenberg algebra in a Fermionic Fock space can be
constructed as follows. Let

Hn :=
∑

j∈Z++1/2

: ϕ−jϕ
∗
j+n :, n ∈ Z,

where : · : is the operation called normally ordered product: the axioms are:
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1. : a : is linear in a, and all the Fermions within the colons anticommute,

2. : 1 := 1 ∈ C, and{
: aϕ :=: a : ϕ for ϕ an annihilation,

: ϕa := ϕ : a : for ϕ a creation.

Note that for each of the basis in the expression (3.3) of the Fermionic Fock
space only finite terms are acting.

One can prove (see e.g. [24] for details) that

[Hm, Hn] = mδm+n,0, m, n ∈ Z

so that

an := Hn, a∗n :=
1

n
H−n, n ∈ N

satisfies the canonical commutation relations (3.2). With these Bosons, we
can construct an isomorphism between the Fermionic Fock space and the
Bosonic Fock space C introduced in section 3.2.1. Let

H(x) ≡ H(x1, · · · , xn, · · · ) :=
∞∑
n=1

xnHn,

and
C[z, z−1] := ⊕l∈Zz

lC.

For an integer l, define 〈l| ∈ F∗ by

〈l| =


〈vac|ϕ1/2 · · ·ϕ−l−1/2 l < 0

〈vac| l = 0

〈vac|ϕ∗
1/2 · · ·ϕ∗

l−1/2 l > 0.

Then,

Fact 9 (Bosonization, see Theorem 5.1 in [24]). The map Φ : F → C[z, z−1]
defined by

Φ(|u〉) =
∑
l∈Z

zl〈l|eH(x)|u〉, u ∈ Cl ,

is an isomorphism of vector spaces. Moreover, we have

Φ(Hn|u〉) =

{
∂

∂xn
Φ(|u〉) n > 0

−nx−nΦ(|u〉) n < 0.
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3.2.5 Young Diagrams

A Young diagram is a non-increasing sequence of positive integers (f1, f2, · · · )
all but finite members of which is zero. In a pictorial form, a Young diagram
is viewed as a figure in the fourth quadrant of the plane, made up of a number
of rows of congruent square tiles, with the rows aligned along their left sides,
the first row having f1 tiles, the second row f2 tiles, and so on. The only
requirement is that the number of tiles in a row does not increase when we
move down from one row to the next.

Young diagrams have an alternative description. Suppose that Y =
(f1, f2, · · · , fr) for r in N is a Young diagram, and let s be the diagonal
width of Y when viewed from the top left-hand corner. We write m1 >
m2 > · · · > ms for the number of tiles lying above the NW-SE diago-
nal line (excluding those straddling the line) in each horizontal row, and
n1n2, · · · , ns for the number of tiles lying below the diagonal line (exclud-
ing those straddling the line) in each vertical column. Then we write Y =
(m1,m2, · · · ,ms|n1, n2, · · · , ns) for the Young diagram.

Using this notation, we define the character polynomial of Y to be

FY (x) = det(hmi,nj
(x)).

Here x = x1, x2, · · · , and

hm,n(x) = (−1)n
∑
l≥0

pl+m+1(x)pn−l(−x),

where the pi(x) are defined in e
∑∞

j=1 k
jxj =

∑∞
j=0 pj(x)k

j with pj(x) = 0 if
j < 0. Here hm,n(x) = Fm+1,1n(x) is the character polynomial corresponding
to the hook shaped Young diagram (m+1, 1n), where 1n stands for the series
of n terms (1, 1, · · · , 1).

The following fact plays an important role in our results.

Fact 10 (A characterization of bozonization, see Theorem 9.4 in [24]). The
bosonization Φ is characterized by the following property: the basis vector

ϕm1 · · ·ϕmrϕ
∗
n1
· · ·ϕ∗

nr
|vac〉,

for m1 < m2 < · · · < mr < 0 and n1 < n2 < · · · < nr < 0 of the Fock space
of charge 0 goes over into the character polynomial of the Young diagram of
the form

Y =
(
−m1 −

1

2
, · · · ,−mr −

1

2
| − n1 −

1

2
, · · · ,−nr −

1

2

)
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multiplied by the sign (−1)
∑r

i=1(ni+1/2)+r(r−1)/2.

Here, the meaning of charge will be clarified in section 3.3.1.

3.3 A Probabilistic Bosonization

3.3.1 A Realization of Fermions in Wiener Space

Let (Ω,F , P ) be a probability space, W ≡ (W 1,W 2) be a two-dimensional
real Brownian motion on it starting at the origin, and we set a one-dimensional
complex Brownian motion Z = W 1 + iW 2, and FZ

1 = σ({Zt; t ≤ 1}).
We decompose L2[0, 1] = L+ ⊕ L−, where L+ and L− are mutually iso-

morphic and orthogonal. Let {fi}i≥1 and {gi}i≥1 be orthonormal bases of
L+ and L−, respectively. Let Hl be the closure of the subspace of L2(FZ

1 )
spanned by∫ 1

0

∫
· · ·
∫
fm1dZ f · · ·f fmk1

dZ f gn1dZ f · · ·f gnk2
dZ;

m1, · · · ,mk1 are distinct natural numbers

and so are n1, · · · , nk2 ,

with the constraint that k1 − k2 = l,

where the operation f is defined as follows; for complex semi-martingales
X1, · · · , Xn, ∫ 1

0

∫
· · ·
∫
dX1 f · · ·f dXn

=
∑
σ∈S n

sgnσ

∫ 1

0

∫ t1

0

· · ·
∫ tn−1

0

dX
σ(n)
tn · · · dXσ(1)

t1 ,

where S n is the n-th symmetric group of permutations. An element of Hl

is said to be of charge l. We set H = ⊕l≥0Hl.
We define bounded operators ψi and ψ∗

i acting on H, indexed by half-
integers, as follows; for i > 0,

ψi

(∫ 1

0

∫
· · ·
∫
fm1dZ f · · ·f fmk1

dZ f gn1dZ f · · ·f gnk2
dZ

)

=


(−1)k1+j−1

∫ 1

0

∫
· · ·
∫
· · ·f gnj−1

dZ f gnj+1
dZ f · · ·

∃j such that i = nj + 1/2,

0 otherwise,
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ψ−i

(∫ 1

0

∫
· · ·
∫
fm1dZ f · · ·f fmk1

dZ f gn1dZ f · · ·f gnk2
dZ

)
=

{
0 ∃j such that i = mj,∫ 1

0

∫
· · ·
∫
fidZ f fm1dZ f · · · otherwise,

ψ∗
i

(∫ 1

0

∫
· · ·
∫
fm1dZ f · · ·f fmk1

dZ f gn1dZ f · · ·f gnk2
dZ

)

=


(−1)j−1

∫ 1

0

∫
· · ·
∫
· · ·f fmj−1−1/2dZ f fmj+1−1/2dZ f · · ·

∃j such that i = mj + 1/2,

0 otherwise,

and

ψ∗
−i

(∫ 1

0

∫
· · ·
∫
fm1dZ f · · ·f fmk1

dZ f gn1dZ f · · ·f gnk2
dZ

)

=


0 ∃j such that i = nj + 1/2,

(−1)k1
∫ 1

0

∫
· · ·
∫
· · ·f fmk1

dZ f gidZ f gn1dZ f · · ·
otherwise.

The following is obtained as a special case of the result in [2].

Proposition 11 ([2]). Let C be the algebra generated by {ψm, ψ
∗
n;m,n ∈

Z+ 1
2
}. (i) Then C is a Clifford algebra ; i.e.

[ψm, ψn]+ = 0, [ψ∗
m, ψ

∗
n]+ = 0, and [ψm, ψ

∗
n]+ = δm+n,0.

(ii) The set ψ−m1
· · ·ψ−mk

ψ∗
−n1

· · ·ψ∗
−nl

(1) is an orthogonal basis of H.

Proposition 11 above states that H is an irreducible Cl-module. We may
identify

ψ−m1 · · ·ψ−mk
ψ∗
−n1

· · ·ψ∗
−nl

|vac〉 = ψ−m1 · · ·ψ−mk
ψ∗
−n1

· · ·ψ∗
−nl

(1),

for 0 < mi, nj ∈ Z+ 1
2
, i, j ∈ N, and so on.

3.3.2 The Vacuum Expectation in Wiener Space

We begin with the following
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Lemma 12. For k, l ∈ N with l = k+ 1, if a half-integer i satisfies any one
of the following conditions (a),(b); a) ms+1 < i < ms with 1 ≤ s < s+1 ≤ k;
in this case we rename the subscripts, ns′ = m′

s′ if 1 ≤ s′ ≤ s, ms′ = m′
s′+1

if s+ 1 ≤ s′ ≤ k and i = m′
s+1 otherwise; b) i = ms, then(

ψ−i, ψ−m1 · · ·ψ−mk
ψ∗
−n1

· · ·ψ∗
−nl

(1),

ψ−m′
1
· · ·ψ−m′

k+1
ψ∗
−n1

· · ·ψ∗
−nl

(1)
)
H

=
(
ψ−m1 , · · ·ψ−mk

ψ∗
−n1

· · ·ψ∗
−nl

(1),

ψ∗
iψ−m′

1
· · ·ψ∗

−m′
k+1
ψ∗
−n1

· · ·ψ∗
−nl

(1)
)
H, (3.5)

where 0 < m1, · · · ,mk,m
′
1, · · · ,m′

k+1, n1, · · · , nl runs the half-integers Z+ 1
2
.

Proof. case a). Suppose i = m′
u with 1 ≤ u ≤ k + 1.

Left hand side of the equation (3.5)

=
(
ψ−iψ−m1 · · ·ψ−mk

ψ∗
−n1

· · ·ψ∗
−nl

(1),

ψ−m′
1
· · ·ψ−m′

u−1
ψ−iψ−m′

u+1
· · · , ψ−m′

k+1
ψ∗
−n1

· · ·ψ∗
−nl

(1)
)
H

= (−1)u−1
(
ψ−iψ−m1 · · ·ψ−mk

ψ∗
−n1

· · ·ψ∗
−nl

(1)

ψ−iψ−m′
1
· · ·ψ−m′

u−1
ψ−m′

u+1
· · ·ψ−m′

k+1
ψ∗
−n1

· · ·ψ∗
−nl

(1)
)
H

= 1× (−1)u−1,

and

Right hand side of the equation (3.5)

=
(
ψ−m1 · · ·ψ−mk

ψ∗
−n1

· · ·ψ∗
−nl

(1),

ψ∗
iψ−m′

1
· · · , ψ−m′

u−1
ψ−m′

u
ψ−m′

u+1
· · ·ψ−m′

k+1
ψ∗
−n1

· · ·ψ∗
−nl

(1),
)
H

= (−1)u−1
(
ψ−m1 · · ·ψ−mk

ψ∗
−n1

· · ·ψ−nl
(1),

ψ−m′
1
· · ·ψ−m′

u−1
ψ∗
iψ−m′

u
ψ−m′

u+1
· · ·ψ−m′

k+1
ψ∗
−n1

· · ·ψ∗
−nl

(1)〉
)
H

= (−1)u−1 × 1.

Thus (3.5) holds.
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case b). Suppose i = ns with 1 ≤ s ≤ l + 1.

Left hand side of the equation (3.5)

=
(
ψ−iψ−m1 · · ·ψ−mk

ψ∗
−n1

· · ·ψ∗
−nl

(1),

ψ−m′
1
· · ·ψ−m′

k+1
ψ∗
−n1

· · ·ψ∗
−nl

(1),
)
H

= (−1)s−1
(
ψ−m1 · · ·ψ−ms−1ψ−iψ−msψ−ms+1 · · ·ψ−mk

ψ∗
−n1

· · ·ψ∗
−nl

(1),

ψ−m′
1
· · ·ψ−m′

k+1
ψ∗
−n1

· · ·ψ∗
−nl

(1)
)
H

= (−1)s−1 × 0 = 0.

The above lemma describes adjoint operators of Fermions (ψi)
adj. and

(ψ∗
i )

adj. ;

Theorem 13. We have that

(ψi)
adj. = ψ∗

−i, and (ψ∗
i )

adj. = ψ−i (3.6)

for i ∈ Z+ 1
2
.

As a corollary, we show that the vacuum expectation introduced in section
3.2.3 is expressed by the usual expectation in Wiener space:

Theorem 14. We have

〈u|v〉 = E[uadj.(1)v(1)], (3.7)

for u, v ∈ Cl.

Proof. We put

u = ψm1 · · ·ψmrψ
∗
n1
· · ·ψ∗

ns
, v = ψm′

1
· · ·ψm′

r′
ψ∗
n′
1
· · ·ψ∗

n′
s′
,

where m1 > · · · > mr > 0, n1 > · · · > ns > 0, 0 < m′
1 < · · · < m′

r′ , and
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0 < n′
1 < · · · < n′

s′ , then

E[uadj.(1)v(1)]

= E[uv(1)]

= E
[
ψm1 · · ·ψmrψ

∗
n1
· · ·ψ∗

ns∫ 1

0

∫
· · ·
∫
fm′

1−1/2dZ f · · ·f fm′
r′−1/2dZ f gn′

1−1/2dZ f · · ·f gn′
s′−1/2dZ

]

=


(−1)js−1E

[
ψm1 · · ·ψmrψ

∗
n1
· · ·ψ∗

ns−1∫ 1

0

∫
· · ·
∫
· · ·f fm′

js−1−1/2dZ f fm′
js+1−1/2dZ f · · ·

]
∃js ∈ {1, · · · , r′} such that m′

js = ns

0 otherwise
= · · ·

=


(−1)

∑s
k=1 k−s−

∑s
l3=2

∑s−1
l2

∑l2
l1=1 δ{jl1<jl3

}

×
∏s

α=1,jα∈{1,··· ,r′} δ−m′
jα

+nα

∏r
β=1,jβ∈{1,··· ,s′} δmjβ

−n′
β

r = s′, r′ = s
0 otherwise

=

{ ∏s
α=1,jα∈{1,··· ,r′} δ−m′

jα
+nα

∏r
β=1,jβ∈{1,··· ,s′} δmjβ

−n′
β

r = s′, r′ = s

0 otherwise

= 〈u|v〉.

3.3.3 A Bosonization

Let
Hn :=

∑
j∈Z++1/2

: ψ−jψ
∗
j+n :, n ∈ Z.

We also have the following as a corollary to Theorem 14;

Theorem 15. We have
Hadj.

k = H−k. (3.8)
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Proof. We proof only when k > 0.

Hadj.
k =

( ∑
j∈Z++1/2

: ψ−jψ
∗
j+k :

)adj.

=

( ∑
j∈Z++1/2

(
ψ−jψ

∗
j+k − δk,0θ(j < −k)

))adj.

=
∑

j∈Z++1/2

(
ψ−jψ

∗
j+k

)adj.
−

∑
j∈Z++1/2,j<0

δk,0θ(j < −k)

=
∑

j∈Z++1/2

ψ−j−kψ
∗
j −

∑
j∈Z++1/2,j<0

δk,0θ(j < −k)

= H−k.

The following is a direct consequence of Fact 9, Fact 10, Lemma 12, and
Theorem 15.

Corollary 16. The map

Ψ : H → C[x1, x2, · · · ],

given by

Ψ(X) =
∑
l∈Z

zlE[eHadj.(x)ladj.(1)X], X ∈ H,

or equivalently Ψ(X) =
∑

l∈Z z
lE[leHX] or Ψ(X) =

∑
l∈Z z

lE[ladj.(1)eHX],
where

l(1) =


ψ∗
l+1/2 · · ·ψ∗

−1/2(1) for l < 0,

1 l = 0,
ψ−l+1/2 · · ·ψ−1/2(1) for l > 0,

is a Bosonization;

Ψ
(
Hnu(1)

)
=


∂

∂xn
Ψ
(
u(1)

)
n > 0

−nx−nΨ
(
u(1)

)
n < 0,
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and a basis vector
ψm1 · · ·ψmrψ

∗
n1
· · ·ψ∗

nr
(1),

for m1 < m2 < · · · < mr < 0 and n1 < n2 < · · · < nr < 0 of charge 0 goes
over into the character polynomial of the Young diagram of the form

Y =
(
−m1 −

1

2
, · · · ,−mr −

1

2
| − n1 −

1

2
, · · · ,−nr −

1

2

)
multiplied by the sign (−1)

∑r
i=1(ni+1/2)+r(r−1)/2.

3.3.4 A Probabilistic Bosonization in terms of Stochastic Areas

Theorem 17. We have that

Φ(X) = E[e
∑

i,j≥1 Fi,jA
i,j
t X], X ∈ H0 (3.9)

where Fi,j is the character polynomial of (i|j) for i, j ≥ 1, and Ai,j is stochas-
tic area of fidZ and gjdZ;

Ai,j
t :=

∫ t

0

∫
fidZ f gjdZ(

=

∫ t

0

∫ s

0

fi(s)gj(u)dZudZs −
∫ t

0

∫ s

0

gj(s)fi(u)dZudZs

)
.

For the proof, we prepare the following lemmas.

Lemma 18 ([2]). An order 2n curlywedge stochastic integral is expressed as
the Pfaffian of the ones of order 2:∫ 1

0

∫
· · ·
∫
hi1dZ

i1 f · · ·f hi2ndZ
i2n

=
(2n− 1)!!

(2n)!

∑
σ∈S2n

(∫ 1

0

∫
hiσ(1)

dZiσ(1) f hiσ(2)
dZiσ(2)

)

· · ·

(∫ 1

0

∫
hiσ(2n−1)

dZiσ(2n−1) f hiσ(2n)
dZiσ(2n)

)
.

If the curlywedge stochastic integral is a charge-zero fermion, then the
Pfaffian is decomposed into ”determinant” part and others.
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Lemma 19. We have∫ 1

0

∫
· · ·
∫
fi1dZ

i1 f · · ·f findZ f gj1dZ f · · ·f gjndZ

= det

(∫ 1

0

∫
fikdZ f gjldZ

)
k,l=1,2,··· ,n

+

{∑(∫ ∫
fdZ f fdZ

)
· · ·
(∫ ∫

gdZ f gdZ

)
, etc . . .

}
Proof. It is a direct consequence of Lemma 18.

Lemma 20. The products of stochastic areas of fidZ and gjdZ; A
i,j
t are

mutually orthogonal;

E[Ai1,j1
t · · ·Air,jr

t A
i′1,j

′
1

t · · ·Ai′r,j
′
r

t ] =
∑
σ∈Sr

δi1,i′σ(1)
δj1,j′σ(1)

· · · δir,i′σ(r)
δir,i′σ(r)

,(3.10)

where δ is Kronecker delta and i1, · · · , ir, i′1, · · · , i′r, j1, · · · , jr, j′1, · · · , j′r∈ N.

Proof. By Itô’s formula, we have for n ∈ N,

Ai1,j1
t · · ·Ai2n,j2n

t

=
∑

l=1,2,··· ,2n

∫ t

0

∏
k 6=l

Aik,jk
s dAil,jl

s

+
∑

l1, l2 = 1, 2, · · · , 2n,
l1 < l2

∑
l 6=l1,l2

∫ t

0

∫ s

0

∏
k 6=l,l1,l2

Aik,jk
u dAil,jl

u d〈Ail1 ,jl1
• , A

il2 ,jl2
• 〉s

+ · · ·

+
∑

lα < lα+1,
α = 1, 3, · · · , 2n− 3,
l1 < l3 < · · · < l2n−3

∑
l 6=l1,··· ,l2n−2

∫ t

0

∫ t1

0

· · ·
∫ tn−2

0

∏
k 6=l1,··· ,l2n−2

Aik,jk
tn−1

dAil,jl
tn−1

d〈Ail2n−3
,jl2n−3

• , A
il2n−2

,jl2n−2
• 〉tn−2 · · · d〈A

il1 ,jl1
• , Ai2,j2

• 〉t1
+

∑
lα < lα+1,
α = 1, 3, · · · , 2n− 2,
l1 < l3 < · · · < l2n−1

〈Ail1 ,jl1
• , A

il2 ,jl2
• 〉t · · · 〈A

il2n−1
,jl2n−1

• , A
il2n ,jl2n
• 〉t

.
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Therefore,

E[Ai1,j1
t · · ·Air,jr

t A
i′1,j

′
1

t · · ·Ai′r,j
′
r

t ]

= E[
∑
σ∈Sr

〈Ai1,j1
• , A

i′
σ(1)

,j′
σ(1)

• 〉t · · · 〈Air,jr
• , A

i′
σ(r)

,j′
σ(r)

• 〉t].

Thus (3.10) holds.

Now we are ready to give a proof of Theorem 17.

Proof of Theorem 17. We put Ψ̃(X) = E
[
e
∑

i,j≥1 Fi,jA
i,j
t X

]
. It suffices to

show Ψ(X) = Ψ̃(X) when X = ψm1 · · ·ψmrψ
∗
n1
· · ·ψ∗

nr
(1). We first notice

that

Ψ̃(X) = E

[∑
n≥0

1

n!

( ∑
i,j∈Z+1/2

Fi,jA
i,j
t

)n

ψm1 · · ·ψmrψ
∗
n1
· · ·ψ∗

nr
(1)

]

= E
[ 1
r!

∑
i1,··· ,ir,j1,··· ,jr

Fi1,j1 · · ·Fir,jrA
i1,j1
t · · ·Air,jr

t∑
σ∈Sr

sgnσA
m1,nσ(1)

t · · ·Amr,nσ(r)

t

]
.

By Lemma 20,

=
∑

i1,··· ,ir,j1,··· ,jr

Fi1,j1 · · ·Fir,jr

∑
σ∈Sr

sgnσ
∏

k,l=1,2,··· ,r

δik−ml,0δjk−nσ(l),0

=
∑
σ∈Sr

sgnσFm1,nσ(1)
· · ·Fmr,nσ(r)

= det
(
Fmi,nj

)
i,j=1,2,··· ,r.

By the definition of character expectation,

= F(m1,··· ,mr|n1,··· ,nr).

Thus we have completed the proof.
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4 Some Universal Properties of Stochastic Ar-

eas

4.1 Introduction

Let W = (W 1,W 2) be a two dimensional Wiener process starting at 0. The
classical stochastic area is defined by∫ 1

0

∫ t

0

dW 2
s dW

1
t −

∫ 1

0

∫ t

0

dW 1
s dW

2
t =: A0,

which is actually twice the area drawn by the two dimensional Wiener pro-
cess. The quantity is often called Lévy’s stochastic area or simply Lévy area
since it was Paul Lévy who first proved the celebrated formula

E[e
√
−1λA0 ] = (coshλ)−1 (4.1)

in [21].
In the present section, we are interested in the (joint) law of

A(f, g) :=

∫ 1

0

f(t)

∫ t

0

g(s)dW 2
s dW

1
t

−
∫ 1

0

g(t)

∫ t

0

f(s)dW 1
s dW

2
t ,

for f, g ∈ L2([0, 1] → R). The results are twofold. The first one is

Theorem 21. For any f ∈ L2[0, 1] with ‖f‖L2 = 1, A(f, f) is identically
distributed as A0.

The second one is concerned with the so-called Walsh system {τk}∞k=0,
which is given as follows: τ0 ≡ 1,

τ2k(x) =

{
1 x ∈

∪2k

j=1[2(j − 1)/2k+1, (2j − 1)/2k+1)

−1 otherwise,

for k = 0, 1, · · · , and for n = 2k1 + · · ·+ 2kl ,

τn = τ2k1 · · · τ2kl .

The second result is
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Theorem 22. For n 6= m, A(τn, τm) +A(τm, τn) is identically distributed as
A0 + A′

0, where A
′
0 is an independent copy of A0.

Both of the theorem are abtained almost as a corollary to Proposition 23,
which is actually obtained by a restriction of a result in [1].

This paper is organized as folliws, In section 4.2, we recall (a spccial
case of) the generlalized Lévy-Area Formula of [1]. We state the result as
Proposition 23 and give a bried proof. In sections 4.3 and 4.4, we give a
proof of Theorem 21 and Theorem 22, respectively.

4.2 A Generalization of the Lévy-Area Formula

In this section we give a generalization of the Lévy-area Formula (4.1). It is
actually a corollaty to Theorem 2 in [1], where the formula is used to obatain
a probabistic representation of tau functions.

Proposition 23. Let

fi(x) =
n∑

j=1

aij1[(j−1)/n,j/n)(x), x ∈ [0, 1] (4.2)

where aij, j = 1, · · · , n, i = 1, 2, · · · ,m are real numbers. For real numbers
ci,i′, 1 ≤ i, i′ ≤ m, we put

ϕ(λ) := E[e
√
−1λ

∑
ci,i′A(fi,fi′ )], λ ∈ R.

If ci,i′ = ci′,i, then

ϕ(λ) = (detD){det(D coshλD −B sinhλD)}−1, (4.3)

where
B = (bj,k), D := diag [dj]

with

bj,k =


n
∑

i,i′ ci,i′a
i
ja

i′

k j > k

−n
∑

i,i′ ci,i′a
i
ja

i′

k j < k

0 j = k,

and
dj = n

∑
i,i′

ci,i′a
i
ja

i′

j .
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Proof. By a direct calculation, we have

A(fi, fi′)

=
∑
j>k

(aija
i′

k∆W
n,1
j ∆W n,2

k − ai
′

j a
i
k∆W

n,2
j ∆W n,1

k )

+
∑
j

aija
i′

j

(∫ j/n

(j−1)/n

∫ t

(j−1)/n

dW 2
s dW

1
t

−
∫ j/n

(j−1)/n

∫ t

(j−1)/n

dW 1
s dW

2
t

)
,

where
∆W n,·

k = W ·
k/n −W ·

(k−1)/n.

Then we notice that, by the scaling property of theWiener process,
∑
ci,i′A(fi, fi′)

is identically distributed as∑
j,k

bj,kW
1,j
1 W 2,k

1

+
∑
j

dj

(∫ 1

0

∫ t

0

dW 1,j
t dW 2,j

t −
∫ 1

0

∫ t

0

dW 2,j
s dW 1,j

t

)
,

where
(W 1,1, · · · ,W 1,n,W 2,1, · · · ,W 2,n)

is a 2n-dimensional Wiener process starting at 0. Now we can apply Theorem
2 in [1] to obtain (4.3), since B is skew-symmetric by the assumption that
ci,i′ = ci′,i.

4.3 Proof of Theorem 21

We first show the property for a step function f as (4.2);

f(x) =
n∑

j=1

aj1[(j−1)/n,j/n)(x), x ∈ [0, 1].

We first note that, for A(f, f), we have

D = ndiag[a21, · · · , a2n]
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and
B = D1/2PD1/2

with

P =


0 1 · · · 1

−1 0
. . .

...
...

. . . . . . 1
−1 · · · −1 0

 .

Then, we notice that

ϕ(λ)

= detD{det(D coshλD −D1/2PD1/2 sinhλD)}−1

= {det(coshλD − P sinhλD)}−1.

We put

φ(λ) = det(coshλD − P sinhλD)

=

∣∣∣∣∣∣∣∣∣
coshλd1 sinhλd2 · · · sinhλdn

− sinhλd1 coshλd2
. . .

...
...

...
. . .

...
− sinhλd1 − sinhλd2 · · · coshλdn

∣∣∣∣∣∣∣∣∣ ,
which is a polynomial in

xj = sinhλdj, yj = coshλdj,

j = 1, · · · , n. One further sees that each monomial is of the form,

cνxν(1) · · · xν(l)yν(l+1) · · · yν(l),

indexed by a permutation ν ∈ Sn with the property that

ν(1) < · · · < ν(l), ν(l + 1) < · · · < ν(n),

where cν is an integer. We claim that

cν =

{
1 l is even

0 l is odd.
(4.4)
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If it is the case, we will have that

φ(λ) = cosh(λ‖f‖2)

since we can prove by induction that

cosh(λ(d1 + · · ·+ dn)) =
∑

l is even

xj1 · · · xjlyj′1 · · · yj′n−l

and
sinh(λ(d1 + · · ·+ dn)) =

∑
l is odd

xj1 · · · xjlyj′1 · · · yj′n−l
.

To prove (4.4), we first define, as a function of matrices,

Cν((aij)) =
∑

σ∈Sn(ν)

sgn(σ)a1σ(1) · · · anσ(n)

where

Sn(ν) := {σ ∈ Sn : σν(1) 6= ν(1), · · · , σν(l) 6= ν(l),

σν(l + 1) = ν(1 + 1), · · · , σν(n) = ν(n)}

Then,
cν = Cν(I + P ).

Since

(I + P )ij =

{
−1 i > j

+1 i ≤ j
,

and since sgn restricted to Sn(ν) coincides with the signature on Sl, we have

cν =
∑
σ∈Sl

sgn(σ)(−1)]{i:σ(i)<j},

which is known to satisfy (4.4).
Finally, let {fn} be a sequence in L2 defined by

fn =
2n−1∑
k=0

〈f, τk〉τk,

which, as a matter of course, converge in L2 to f . Since we have established

E[e
√
−1λA(fn,fn)] = (coshλ‖f‖2)−1,
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we the desired result since

|E[e
√
−1λA(fn,fn)]− E[e

√
−1λA(f,f)]|

≤ E[|A(fn, fn)− A(f, f)|2] ≤ 4‖fn − f‖L2 .

4.4 Proof of Theorem 22

Our proof is based on the following two lemmas.

Lemma 24. For any l, m, n ∈ Z0, A(τlτm, τlτn)+A(τlτn, τlτm) is identically
distributed as A(τm, τn) + A(τn, τm).

This lemma suggests that our target is reduced to showing that

A(τ0, τm) + A(τm, τ0)
d
= A(τ0, τ1) + A(τ1, τ0). (4.5)

The right-hand-side of (4.5) is easily seen to be equal to

2

∫ 1/2

0

(W 2
s dW

1
s −W 1

s dW
2
s )

+ 2

∫ 1

1/2

{(W 2
s −W 2

1/2)dW
1
s − (W 1

s −W 1
1/2)dW

2
s },

hence identically distributed as A0 + A′
0, as desired.

The equivalence in law (4.5) is obtained by the following

Lemma 25. Let θk,N : [0, 1] → [0, 1], 1 ≤ j < k ≤ 2N , be defined by

θj,k,N(x) =


x+ (k − j)/2N x ∈ [(j − 1)/2N , j/2N)

x− (k − j)/2N x ∈ [(k − 1)/2N , k/2N)

x otherwise.

Then, for any pair (f1, f2) of the form (4.2) with n = 2N , and for any (j, k),

A(f1, f2) + A(f2, f1)

d
= A(f1 ◦ θj,k,N , f2 ◦ θj,k,N) + A(f2 ◦ θj,k,N , f1 ◦ θj,k,N).

In fact, since we have τ0 ◦ θj,k,N = τ0 and τ1 = τm ◦ θj1,k1,N ◦ · · · ◦ θjm′ ,km′ ,N

for some j1, k1, · · · , jm′ , km′ , we have the equivalence in law (4.5).
Both of the lemmas are proven by looking at the generalized Lévy-area

formula (4.3). Actually, the determinants in (4.3) is invariant under both of
the operations (taum, τn) 7→ (τlτm, τlτn) and f 7→ f ◦ θj,k.
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