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On the Solutions of Quadratic Diophantine Equations
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English

Let F' be a global or local field. We let g denote the ring of all integers in F. We
denote by p the maximal ideal of g in the local case. We denote by V an n-dimensional
vector space over I”. Let ¢ be a nondegenerate symmetric F-bilinear form. We denote by
p[z] the quadratic form ¢(z,z) on V. By a maximal lattice L in V (with respect to ¢),
we understand a g-lattice L in V, which is maximal among g-lattices on which the values
@[z] are contained in g. Let SO be the special orthgonal group of . In this paper we
consider the set of the solutions of the quadratic Diophantine equation ¢[z] = ¢ in L, that is
Ligl={z € L | ¢[z] = q}, and L[g, b] = {z € V | p[z] = ¢, p(z, L) = b}, where g € g N F*
and a fractional ideal b of F.

Assume now that F' is local, put C(L) = {y € SO¥ | Ly = L}, and take k € L such
that ¢[h] # 0. It was shown by Goro Shimura (Princeton University, Professor Emer-
itus) that there exists a finite subset A of SO¥ such that L[p[k]] = | |yey hoC(L) and
#{L[g,b]/C(L)} £ 1if n > 2. Our study is based on these facts.

The first aim of this study is to construct a complete set {ha}tqea of representatives for
Lg[h]]/C(L). At the same time, we can show that -

Holh]] = Lip[h), 2~ 1p7(elhd)] if ¢ is anisotropic,
LT Llolh], 2-1pi]  if  is isotropic

with the value 7(¢[h]) in Theorem 3.5.
The next aim of the paper is to show Theorem 5.3: When n > 2,

LN (Fh)* is maximal in (Fh)* if and only if h € L{p[h], 2~ p7(@lAD]

for h € L such that @[h] # 0. Here (Fh)- = {z € V | p(z,h) = 0}. Hereafter we simply
put W = (Fh)L. We also obtain the global version of the maximality of the lattice LN W
in W, which answers the question raised in (11.6¢) in Shimura’s book “Arithmetic and -
Analytic Theories of Quadratic Forms and Clifford Groups”.

As a global application of the first result, we give the criterion of the existence of solutions
contained in L[g, Z] and L[g,2~1Z] in both cases when ¢ is a squarefree positive integer, by
taking V = QJ, (4 < n < 10, n even), the sums of squares as .
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