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ABSTRACT 

The thesis presents and investigates an approach for face image enhancement 

based on a machine learning technique utilizing facial image examples. 

 Faces are one of the main concerns in the image applications, especially in the 

security system such as a surveillance camera. There are cases that a face image of 

interest has unsatisfactory quality by some factors as the distance to the camera, the 

luminance environment, the motion speed of the target, noises, data compression, 

and so on. Thus, the enhancement of the image quality from a low-resolution 

degraded image is one of the key issues in the field of image processing. 

 A conventional approach in common to generate a higher-resolution image is 

interpolation using Lanczos (sinc). However, these analytic approaches suffer from a 

blurred appearance. Super-resolution (SR) techniques have emerged to resolve 

these problems by inferring detailed information on the missing texture. One of the 

major approaches in super-resolution is example-based method, which utilizes 

example images as a database to estimate the missing texture. Freeman et al. have 

proposed a novel example-based super-resolution method where example images 

are used to generate pairs of high-frequency (HF) and low-frequency (LF) 

components of the images and they are divided into patches of the image to 

compose a database of the relationship between low-resolution (LR) appearances 

and high-resolution (HR) textures. Given an LR image, a Markov Random Field 

(MRF) network is applied to find the best-fit HF patches for the LF component of the 

given image. Then the given image and the HF patches are combined to reconstruct 

an HR image. 

 The thesis introduces an idea specific for human faces to the Freeman's method, 

restoring each part of the image with patches corresponding to each facial part. The 

database composed patches with information of their original positions, and the 

distance between the targeted input patch and training patch original positions is 

incorporated to the compatibility function for patches matching process. An 

experiment on a set of facial images demonstrated that the proposed method 

achieved the best quality of 30.39 [dB] in terms of the peak signal-to-noise ratio 

(PSNR) compared to the previous' quality of 29.65 [dB]. Further analysis is 

conducted to determine appropriate parameters. An experiment on patch-databases 
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with different image scaling factors and different patch sizes revealed that the best 

patch size is interestingly adaptable to scaling factor, n and determined by (2n+1)2. 

 The presented approach is also applied to noise reduction, especially for the 

block noise in highly compressed image data. The database is reconstructed by 

replacing LR-HR patch pairs with pairs of degraded (compressed) face images and 

the corresponding original images, and two variations of the image enhancement 

methods are presented. One method results in a 3.2 [dB] improvement in terms of 

PSNR on average for a very low quality rate of 1% (around 120:1 compression rate), 

while the conventional Gaussian-filtering method results in a 2.5 [dB] improvement. 

Another method yields more natural images and better PSNRs for images when the 

quality rate is around 5%. 

 An improved patch-searching algorithm is also presented which restricts the 

searching area nearby the targeted facial parts but searches patches in more 

detailed to select the patch candidates. An experimental result shows the improved 

version achieves better or comparable results while reducing by 90% computational 

time compared to the previous. 
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  CHAPTER 1 

INTRODUCTION 

1.1 Background 

Installations of surveillance cameras’ or CCTVs (closed-circuit television) have 

been widely used to fight crimes. Such installations are often used for policing in 

areas that may require monitoring like commercial areas, such as banks, airports, 

and convenience stores. Even nowadays it is common to notice that surveillance 

cameras installed in some residential areas, as a way of providing an additional 

protection and deterrent to potential criminals from entering. It appears that 

surveillance cameras act as a powerful investigative tool for many types of crime 

(Ashby, 2017). Information from the recordings of crime footage, especially those of 

criminals' faces and figures, can be of help to the police to identify suspected 

criminals or obtain clues for investigations, which may increase chances of crimes 

being solved.  

Nevertheless, unfortunately most surveillance cameras involve long-term 

recording, resulting in low-resolution and highly compressed images with low frame 

decimation. Even though advance types of surveillance cameras that able to record 

footage in high definition are available recently, i.e. IP security camera, most places 

still adopting the standard ones, i.e. analog security camera systems, since they are 

less expensive and easier to maintain.   

The quality of a standard security camera’s footage is often too poor to be used 

in investigations since less information could be obtained. It is worthless if the 

obtained images of criminal suspect’s face are unidentifiable due to poor quality. In 

fact, according to a publication of the National CCTV Strategy by The Joint Home 

Office ACPO in UK, “anecdotal evidence suggests that over 80% of the CCTV 

footage supplied to the police is far from ideal, especially if it is being used for 

primary identification or identities are unknown and identification is being sought, for 

instance, by media release” (Gerrard et al., 2007, p 12). 

Thus, demands for image enhancement from surveillance fields are remarkably 

high. In crime investigation especially, police officers or detectives are often facing 

difficulty to identify a face image of a person of interest. The recording degraded 
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footages are usually sent to technicians or specialists for enhancement process, 

hoping that a desired quality of image could be restored. Until now, researchers 

especially in digital image processing majors have been motivated to explore various 

techniques of image enhancements and been developing numerous approaches to 

satisfy such demands.  

 

Figure 1.1   Demands from surveillance fields 

As digital image enhancement technology has rapidly advanced, recent years 

have witnessed remarkable progress of image super-resolution techniques. In the old 

days, since super-resolution involves complex algorithms, in-depth analysis of data, 

and utilization of huge number of images, for instance, multi-frame super-resolution 

and dictionary learning strategy, researchers had been struggling with the lack 

performance of computer available. But nowadays, along with rapid progress on the 

development of computer performance especially in terms of speed and memory, 

super-resolution has become the most common task that widely used in many fields, 

including medical imaging (Greenspan, 2009), face identification (Gunturk et al., 

2003), remote sensing (Shen et al., 2009), license plate recognition (Seibel et al., 

2017) and microscopy (Quan et al., 2010). 

There have been extensive researches on vary approaches in super-resolution, 

which lead to an increase of number of proposed methods. Each method has 

different perspective and objective, with different framework of algorithms and 

adopted means. Therefore in general, methods of super-resolution have been 

classified into two types of processes: single-image and multi-frame. For the single-
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image super-resolution, available techniques are basically categorized into: 1) 

learning-based and 2) reconstruction-based approaches, which will be elaborated 

later in Section 1.3.  

Our study will be specifically focusing on face image enhancement for better 

identification, which is the most crucial theme in surveillance fields besides vehicle 

license number plate recognition. Although there are several researches concerning 

facial image, yet there is little research on face image enhancement that utilizes 

information of facial parts. In this thesis, a study on how a facial image is enhanced 

by taking facial parts into account is presented, and performance of our proposed 

methodologies is discussed.  

1.2 Research Problems 

Some of the main causes that lead to a degradation of footage start from the 

cameras themselves. Camera’s quality, distance to the subject, angle and position 

are important factors that affect the quality of footage. Those footages are recorded 

in digital video recorder (DVR) for future reference, however due to storage 

constraint the footages have to be compressed. Because of those limitations 

involved in the surveillance systems, stored face images are usually small in size, 

worsened by block artifacts due to image compression, blurry, low illumination and 

so on. Even if we manually zoom in for a closer look, the face image is only going to 

get blurrier and grainier, which make it difficult to be identified. 

 

Figure 1.2   Typical surveillance systems 
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It is essential to process a degraded image from surveillance systems and 

enhance their quality for the sake of investigations. Enhancement of an image could 

be achieved by image transformations, such as making the image larger i.e. high-

resolution, and clearer i.e. lesser noise and sharper texture, to obtain legible 

information from the shapes, features, or even small details of the subject of interest, 

such as face image or vehicle license number plate. 

In image processing, there are already a number of conventional methods for 

image enlargement such as Bilinear, Bicubic, or Lanczos interpolation, which is 

commonly used to infer a more legible high-resolution image from a low-resolution 

image. Generally, almost every geometric transformation like translating, rotating, 

scaling, and warping requires interpolation to be performed on an image. However, 

these analytic approaches typically suffer from a blurred appearance due to 

perceived loss of detail in textured regions, causing unsatisfying quality in enlarged 

images. The perceived quality of the interpolated images is affected by several 

issues such as sharpness of edges, freedom from artifacts and reconstruction of high 

frequency details etc. (Ruikar and Doye, 2012). 

On the other hand, to effectively reduce noise or block artifacts from a degraded 

image, point-spread-function (PSF) or smoothing filters are commonly used (Lai et 

al., 2005). The stronger the filter is, the lesser the noise. Footages from surveillance 

camera are often distorted by excessive block noise because of highly compression 

process in the systems. So, we need to apply a stronger filter for it to be effective. 

However, consequently the texture component in image such as sharp edges is 

inevitably lost together with noise component due to the filtering process, which 

yields a corrupted blurred image.  

We can conclude that both conventional methods for image enlargement and 

noise reduction have a same common problem, which is the unavoidably missing of 

texture from the image after such process. Therefore, the missing texture in the 

enlarged or smoothed (de-noised) image has to be retained somehow, or estimated 

accurately. Here, super-resolution (SR) techniques can be employed as significant 

approaches to resolve these problems, where they not only enhance image 

resolution or reducing noise, but also able to predict detailed information on the 

missing texture to define a reconstructed image.  

For face images in particular, enhancing the apparent sharpness of face features, 

i.e. eyes, nose and lips, is necessary for a better identification. Even though there are 
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several approaches that have been proposed specially for face image enhancement 

(Baker and Kanade, 2002), enhancing a face image by facial parts is an interesting 

technique that is not extensively explored, yet. Our research will adopt this idea in 

the super-resolution algorithms. 

1.3 Research Scope and Approach 

Numerous algorithms that have been recently employed for image super-

resolution can be basically categorized into two kinds of processes, which as shown 

in Figure 1.3: single-image and multi-frame. Super-resolution for single-image has 

two different approaches, one is a learning-based and the other one is 

reconstruction-based. The reconstruction-based methods are highly dependent on 

two properties: (1) the registration of different input images, and (2) the point spread 

function (PSF). We have to reasonably make a prior assumption on both imaging 

conditions to obtain better gradient details, which is very constraining and unstable, 

inevitably bring to a poor performance as zoom factors increase. The resulting image 

either lacks details or produces overly smooth results.  

Learning-based methods or also known as example-based methods, on the other 

hand, utilize external information from a set of training low-resolution (LR) and high-

resolution (HR) image pairs, to generate a desired HR image. Patches within the 

input LR image are generally extracted and searched within the training set to 

estimate suitable or matched HR patches, by adopting a learning model. The 

example-based methods are best for specific applications, such as face super-

resolution, since it typically uses specific kinds of images as its dictionary.  

From a bigger point of view, there is another advanced approach that has been 

widely adopted in image processing recently, called deep learning. Compared to the 

example-based method, the deep learning approach provides better enhancement of 

image, nevertheless it involves much more complex algorithms and process that 

requires bigger size of data to perform well. This would cost considerably longer 

execution time, need heavy memory and require high-end machines for the process. 

Therefore, for a standard face image quality enhancement to assist identification 

process in crime investigation, the example-based technique is sufficient. 
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Figure 1.3   Classification of the super-resolution algorithms 

Our research will be focusing on single-face-image enhancement, particularly for 

image enlargement and noise reduction process. It is appropriate to employ 

example-based approach instead of reconstruction-based approach, since the 

subject used in this research is specific kind of images, i.e. human faces. There are a 

lots of methods have been proposed using example-based algorithms so far. 

Generally, the main different between those proposed methods are, the different 

combination of different feature extraction method and types of learning model (this 

will be discussed in Section 3.2). Recent researches regarding example-based are 

competing on which combination would provides better performance. However, our 

works do not concern over those matter.  

In present research, we implemented a novel strategy specifically for face image 

enhancement, where we take facial parts into account in super-resolution process. 

We studied the Freeman et al.’s proposal of example-based methods, then we 

improvised and extended the algorithms especially in terms of learning-model and 

database construction, that correspond to facial parts in face image. The original idea 

was to typically gather and classify training image patches into multiple databases 

based on facial parts, i.e. eye database, nose database and lips database, so that 

we can enhance a given face image part by part. For instance, when the face region 

which that we are enhancing is around the part of eye, patches from eye database 

will be utilized to estimate output patches. However, instead of constructing multiple 

databases, we proposed a distance function to determine which facial part is the 

patch from, and incorporate it with Freeman et al.’s learning-model functions.  
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1.4 Research Motivation and Goals 

Have you ever seen a scene from an episode of CSI (a TV show), where two 

detectives are sitting together analyzing surveillance footage, and suddenly one of 

them says: “Zoom in! Let us see if we can get a reflection of her eye.”, and then the 

other detective simply make a magnification by 100 times, “Enhance it!”, and then 

suddenly, miraculously the small and grainy eye becomes bigger and crystal clear, 

that even reflects a precise object of what the suspect is seeing? Well obviously, that 

is a total fiction. In reality, that small image of eye from an analog security camera is 

only going to get blurrier and grainier when you zoom in for a closer look. 

The Murder of Nurin Jazlin, is one of the most unforgettable yet horrific and heart-

breaking case in Malaysian history. Nurin was the 8-year-old girl who was abducted 

and murdered over ten years ago, which shocked the nation. Despite a decent length 

of recording visual of the unidentified suspect, images taken from surveillance 

camera were unable to provide sufficient information for face identification. The 

footage was too blurry to make out a valid license plate number on the motorcycle. 

The lack of evidence is the reason for this case remains unsolved. 

Ten years later, another shocking event took place in Kuala Lumpur International 

Airport, which was the Assassination of Kim Jong-Nam, who is the eldest son of 

deceased North Korean leader. The involved suspects were successfully identified 

thanks to the recent development of image enhancement technology. Investigation 

on this case had smoothly progressed since the murder happens at an open public 

or commercial place that has advanced surveillance systems installed, unlike the first 

case.   

Following the two specific events, I have been motivated to get involve in the 

major of study. There are many things that had been a fiction before, have became 

reality today. We believe the extensive research on this theme, is the least we can do 

to contribute indirectly in advancing image enhancement technology. There are still a 

lot of room for improvement and demands for the benefit of the people, which have 

been a challenge and motivation to researchers in related fields. 

Research Main Goal 

Our goal is to enhance degraded face image particularly in image enlargement 

and noise reduction. We have previously explained the common disadvantages of 

conventional methods, which lead to a very same problem – missing of texture 
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details from the after-processed image. Our aim is to restore texture of facial image 

by taking into consideration their corresponded facial parts, which could not be done 

by conventional methods alone. Although prior research (Freeman et al., 2002) has 

significantly restored the missing texture by its proposed learning model, enhancing 

such face image by taking facial parts into account is a new approach. Most related 

studies that have been proposed onwards only consider the use of different ways of 

texture extraction or different types of learning model as improvisation. For now, 

learning-based approach using a learning model that takes correspondence of facial 

parts into consideration has not been proposed yet. 

In this thesis, a proposal of a new methodology based on example-based 

approach, which incorporate a facial parts compatibility function into the learning 

model is presented. We executed the proposed learning-model onto two different 

cases under two different main objectives, which generally are: 

Research Objective 1 

To enhance apparent of sharpness of texture in a single enlarged face-image by 

restoring the missing texture, which cannot be done by conventional methods alone. 

An enlarged image by a conventional enlargement method such as Lanczos 

interpolation usually suffered from blurred appearance due to the loss of texture 

details or high-frequency component. In order to reduce the blurry effect, we need to 

estimate missing texture of the enlarged image. Training patches database is 

constructed with a collection of enlarged face images in pair with their original HR 

images. We aims to enhance an enlarged face image’s texture by using a learning 

model that observed their texture patch by patch, and facial-parts by facial-parts, in 

example-based super-resolution algorithms.   

Research Objective 2 

To reduce block noise in a compressed degraded face-image by estimating new 

texture details and restore distorted texture especially around face features.  

When an image is compressed, texture in the image is distorted. Even if a point-

spread-function is applied on such degraded noised image, the process only smooth 

or reduce the excessive noise, but not restoring the crucial texture. We implement 

the same idea, i.e. taking facial parts into account, but instead of using enlarged 

images as dictionary, we utilized a collection of compressed degraded image in 
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replace. The methodology is constructed to regenerate distorted texture in the 

degraded image especially on the crucial facial parts like eyes part. 

In addition, we aims to analyze the proposed algorithms and improve them in 

terms of processing time and parameter setting for better performance. The 

experiments involve quantitative assessment. Most of the assessments are based on 

peak signal-to-noise ratio (PSNR), an error metric that is commonly used to measure 

image quality. Resulting face images from our proposed method is assessed and 

compare with Freeman et al.’s method and conventional methods, i.e. Lanczos 

interpolation method in image enlargement experiment and Gaussian filtering 

method in noise reduction experiment. 

Hopefully this study will open a new dimension in learning-based super-resolution 

techniques and fill the gap of the study, where we not only use the same kind of 

images in database, i.e. a collection of face images, but also further considered facial 

part in patch matching process. Since noise and blur are major problems in image 

processing field, we highly expect this research would provide significant 

contributions especially in face image enhancement and identification.  

1.5 Thesis Structure 

The thesis is composed into seven chapters. Chapter 1 briefly elaborated the 

background of our study, field of study with the research objectives and contributions. 

Chapter 2 described the conventional methods of image enlargement and noise 

reduction, along with their common problems and disadvantages. Chapter 3 explains 

the theory of learning-based or also well known as example-based methods, which is 

one of two majors of single image super-resolution techniques. We then introduce 

our proposed methods: their algorithms, experiments, evaluations and discussions, 

in the next three chapters, where the proposed methods for enlarged image 

enhancement, compressed degraded image enhancement, and improved algorithms, 

are presented in details in Chapter 4, 5 and 6, respectively. Research Objective 1 is 

assessed in Chapter 4, while Objective 2 is assessed in the following Chapter 5. In 

the last chapter, the contributions and limitations of the study are reviewed, and the 

recommendations for how the framework should be further developed are provided. 

 



 13 

  CHAPTER 2 

IMAGE DEGRADATION AND ENHANCEMENT 

Degraded images may lead to failure of further analyses in many fields, including 

security surveillance, medical applications, object recognition, and video conversion. 

For example, recorded face images from closed-circuit televisions (CCTVs) or 

surveillance cameras are usually small and noisy due to the low quality of the 

cameras themselves and are also influenced by compression process due to 

memory constraint, making it very difficult to obtain any crucial information from the 

images. Thus, it is necessary to enhance the image in advance by enlarging them 

into larger and more legible images, as well as reducing noise in the image.  

In digital image processing, image enhancement has been highly demanded 

especially for image analysis purpose including image enlargement, noise reduction, 

sharpening and transformation. In this chapter, conventional enlargement methods 

and noise reduction technique, which are directly related to the objectives of our 

study, are briefly described.   

2.1 Image Resampling 

Image resampling refers to the resizing of a digital image, involving 

transformation of image resolution. Image resizing is necessary when we need to up-

sampling or down-sampling, i.e. increase or decrease the total number of pixels in 

image. In digital image processing, low-resolution image commonly refers to the 

image that has a small amount of pixels or small in size, while high-resolution image 

refers to the image that has a large amount of pixels. Therefore, up-sampling 

process for example, is an enlargement process that transforms a low-resolution 

image into a high-resolution image, where the number of pixels is increased more 

than the original ones. Here, comes the problem on how to estimate the unknown 

value for new pixels in the high-resolution image.  

For instance, when we want to up-sample a low-resolution image’s height and 

width by two times respectively, we need the new values information for 4 times of 

pixels number than the original image to generate an output high-resolution image.  

In digital imaging, image interpolation techniques are commonly used in order to 
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determine those unknown values of new pixels. In this section, we will explain the 

algorithm for two of the frequently used methods of resampling, Bilinear and Lanczos 

interpolation. 

2.1.1 Bilinear Interpolation 

Bilinear interpolation is one of the most basic resampling operators other than 

nearest neighbor and cubic convolution, for generating high-resolution image from a 

low-resolution image. The term bilinear refers to the performing of interpolations in 

two dimensions (horizontal and vertical), which is an extension of linear interpolation.  

 When a low-resolution image needs to be enlarged, each pixel of the image has 

to be moved in a certain direction based on the scaling constant. However, when 

scaling up an image by a non-integral scale factor, there are new pixels i.e. holes 

that are not assigned appropriate pixel values. In this case, those holes should be 

assigned appropriate RGB (or color) or grayscale values so that the output image 

does not have non-valued pixels. 

The method assigns a new value to the unknown pixel by taking the 

distance-weighted average of the four nearest known pixel values. The key 

difference in bilinear interpolation is that it uses values of only the four nearest pixels, 

located in diagonal directions from a given pixel, to generate an appropriate output 

value of that pixel.  

As shown in Figure 2.1, the bilinear operator is applied to the surrounding four 

pixel nodes (gray dots), Q(.) to infer the new value of the point (red dot) at which we 

want to interpolate, P(.). Let (i,j) and (x,y) are pixel coordinate or position in low-

resolution (LR) image, Q(.), and enlarged image, P(.), respectively, the bilinear 

function is represented as:    

P(x, y) = (1− a)(1− b)Q(i, j)+ a(1− b)Q(i+1, j)

+ b(1− a)Q(i, j +1)+ abQ(i+1, j +1)
         	 	 	 	 	 	 	 ( 2.1 ) 

where a = x – i and b = y – j. 
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Figure 2.1   The relation of interpolated pixel in bilinear interpolation 

Figure 2.2 is an example of bilinear interpolation in grayscale values. Each new 

pixel value is computed using Equation (2.1), and all of them will then generate an 

up-sampled image or high-resolution image. The example of an enlarged image 

using bilinear interpolation is given in Section 2.1.3. 

 

Figure 2.2   Example of computation of bilinear interpolation 

2.1.2 Lanczos Resampling 

Another common interpolation technique is Lanczos resampling, which is named 

after its inventor, Cornelius Lanczos, who was a Hungarian mathematician and 

physicist. Lanczos resampling is widely used in video up-sampling for digital zoom 

applications and image scaling. Compared to linear interpolation, the Lanczos 
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method minimizes loss of details and can generate a smooth and natural image even 

after enlargement. The difference is that there are many pixels to be referred and 

that each referred pixel is weighted. It exploits 16 surrounding pixels (4x4 nearest 

pixels) or 36 surrounding pixels (6x6 nearest pixels) in interpolation function. The 

method weights the known nearest 16 pixels to compute a desired pixel value using 

a windowed sinc function as a practical up-sampling filter. The sinc function and 

distribution window is illustrated in Figure 2.3. The normalized sinc function is 

commonly used in digital signal processing and information theory. 

 

Figure 2.3   The normalized sinc (blue) and unnormalized sinc function (red) and 

distribution window 

Example of an interpolated pixel in Lanczos interpolation is given in Figure 2.4, 

where P(x,y) is the unknown pixel value which we want to compute. D(.) are the 

known pixel values from low-resolution image, 16 points of D(.) near the desired 

pixel, P(x,y) are weighted according to sinc function, and a new value is obtained 

from these density values. The value for P(x,y) is expressed by the following 

equation. 
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Here, interpolation operators, h(t) is computed using sinc function as: 

⎩
⎨
⎧

<

≤⋅
=

|)|(0
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th 	 .	 	 	 	                      ( 2.3 ) 

The parameter n is a positive integer, typically 2 or 3, which determines the order of 

the size of filtering window. If the order is chosen to be 2, 16 surrounding points or 

pixels are considered, whereas if the order is 3, 36 surrounding pixels are considered 

to estimate the P(x,y). However, the higher order of Lanczos interpolation requires 

high computational time, which makes them not suitable for many commercial 

software (Singh et al., 2013).   

 

Figure 2.4   The illustration of interpolated pixel in Lanczos interpolation 

2.1.3 Discussion 

An example of enlarged image using bilinear and Lanczos interpolation is shown 

in Figure 2.5. The LR image was enlarged by four times the total number of pixels. 

The circle region is the zoom up version of edge part (texture) in the image for better 

observation. In comparison, the HR image from Lanczos interpolation seems better 

or more natural, where their texture is smooth unlike the HR image from bilinear 
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interpolation, which has block artifacts or grainy along the edges. However, both 

resulting images are inevitably less sharp compare to the ideal image. 

Blur effect in the HR image becomes more obvious as the scaling factor is larger, 

as we can observe in Figure 2.6. We downsizing the original image by different 

scaling factor, i.e. quarter, 1/8, and 1/16 of the total pixels, then we upscale back to 

the original size, i.e. by four times, eight times and 16 times, respectively. The HR 

image obtained from higher times (scaling factor) of enlargement has an excessively 

smoothed texture, causing an unclear image.   

When any of these interpolation operations are applied, the image edges are 

smoothed due to the inherent property of these methods of averaging (or weighted 

averaging) existing pixel values. This results in a loss of high-frequency components 

in the HR image, which has to be retained somehow, or estimated accurately. 

Otherwise, we can hardly get any information from the desired image, which that 

defeat the purpose of image enlargement in the first place. Here, super-resolution 

(SR) techniques have currently been widely adopted to resolve these problems. 

Super-resolution is a significant method that not only enhancing image resolution, but 

also predicting detailed information on the missing high-frequency details to define 

the enlarged image.        

 

Figure 2.5 Enlarged image using bilinear and Lanczos interpolation 
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Figure 2.6   Example of enlarged image under different scaling factor using Lanczos 

2.2 Image Compression and Noise Filtering 

Image compression is a type of data compression applied to digital images, to 

reduce their cost for storage or transmission. Without compression, the volumes of 

data produced by digitizing surveillance image streams would swamp the available 

storage. Since surveillance camera records long-term footage, the process of 

compression is necessarily applied to the recorded footages in order to reduce the 

amount of information that needs to be transmitted and stored.  

Such compression may reduce the size of image data significantly and save a lot 

of memory storage, but at the same time the quality of image also inevitably 

decrease. Texture and details in a compressed image are distorted due to block 

noise appearances, causing less information could be obtained from the image. To 

overcome this, noise-filtering process is required to reduce the block noise for a 

better image observation. 

2.2.1 Data versus Quality 

Surveillance camera record non-stop footages and store them directly to Digital 

Video Recorders (DVRs). There is an inevitable trade-off between video quality and 

cost, since high-resolution, high-frame-rate and uncompressed video requires more 

bandwidth and memory space. For instance, a day’s worth of surveillance can easily 

reach 1 Terabyte of storage! So, scene footages or images from surveillance camera 
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are usually compressed in order to reduce size of data due to memory constraint. 

Such compression yields block noise in images, which leads to degradation of image 

quality causing a loss of information. In other words, the biggest challenge in 

surveillance systems is, either we want to compromise data storage, or quality of 

footage. 

Nowadays, there are high-definition surveillance cameras available that record 

high quality footage, indeed. However, the deployment cost is too expensive and 

unaffordable for many places or owners, so most of them still bear with the use of 

standard surveillance cameras. Owners are attempting to cut storage and 

transmission costs to save money running their surveillance systems and as a result 

compromising video quality over cost (Cohen, 2004 and Gerrard et al., 2007). Thus, 

such compression of image is still practically necessary, so the demand and 

dependency on image enhancement technology to resolve degraded footages 

problems is remarkably high and significant. Therefore, a lot of studies have been on 

going with various developments achieved recently in surveillance image restoration 

fields.  

The compression formats used in surveillance cameras vary by manufacturer and 

product. But the four most commonly used compression formats are: Motion JPEG 

(also written as M-JPEG or M-JPG), H261, Wavelet and MPEG (also written as 

mpg). Image compression is measured as a ratio of the amount of data entering the 

compression system. A compression ratio of 1:1 indicates no compression; 10:1 

indicates that there is 10 times less data after compression, and so on. Several 

compressed images with different compression ratio are given in Figure 2.7, where 

the compression ratio decrease from left to right. The lower the compression ratio is, 

the bigger the size of image data to be stored.  

As we can see in the highly compressed image (the first image from the left), 

block noise has obviously appeared. Texture component, especially around 

important face feature, i.e. eye, nose and lips, are completely distorted compared to 

the original image. Such distortion would lead to a failure of analysis of a face image, 

either in face identification or recognition process, or face matching algorithms. In 

order to resolve the problems, several approaches have been introduced to remove 

block artifacts and enhance the degraded compressed image. 
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Figure 2.7   Degraded face images with different level of compression rate  

2.2.2 Gaussian Filter 

In image processing, point-spread-function (PSF) is commonly used to reduce 

noise of image. One of the PSF is Gaussian filtering method. It is a linear filter that 

usually used to reduce noise or to blur the image. The Gaussian distribution function 

is represented as: 
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Figure 2.8 shows a Gaussian distribution when σ is set by 5. The nearer the 

observed position to the focus or center point is, the higher the concentration. In 

digital image processing, Gaussian distribution is not only used to smooth an image, 

but have also being used to apply noise in image. 

The higher the σ is, the stronger the filter. The stronger the filter is, the lesser the 

noise. Figure 2.9 shows resulting images after Gaussian filtering was applied with 

different σ value. For a highly compressed image, stronger filter (larger σ) is needed 

for a significant volume of noise reduction. Vice versa, for a lower compressed 

image, small σ value, i.e. typically 2 or 3, is sufficient. Larger σ value would only 

increase processing time and risk of texture component being distorted by over 

smoothing process. 
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Figure 2.8   Gaussian distribution (σ = 5) 

From the filtered images, we can observe that block noise have been greatly 

reduced, as the filter was stronger. However, the image become blur due to 

excessive spreading or overly smoothing process, where texture component have 

been missed out together with noise component. This is because both texture and 

noise are high-frequency component in a digital image. Here, it is essential to predict 

and restore back the missing texture details to generate a sharper texture and 

increase identifiability of face image.  

 

Figure 2.9   Block noise reduction using Gaussian filtering with different strength (the 

higher the σ is, the stronger the filter) 

2.3 Chapter Summary 

This chapter present conventional methods for image resampling and their 

common weaknesses or after effect. We have clarified that when interpolation 

function is applied, crucial information such as sharp edges and detailed texture is 
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inevitably smoothed. When scaling factor is increase, the blurry effect becomes 

obvious, encouraging the need to restore the distorted texture components 

somehow. 

We have also described about block noise occurred in degraded image causing 

from a JPEG compression. For noise reduction in image, conventional methods 

using point-spread function (PSF) such as Gaussian filter are significant for less 

amount of degradation. But, for a high amount of degradation (lower quality of 

image), the PSF have to be applied stronger to be effective. However, new problems 

arise. When stronger PSF is applied, texture details or sharp edges are also also 

affected, leading to a blurred resulting image.  

Similar problem with conventional method of image enlargement and noise 

filtering is the missing of texture details in a desired image after the process. Hence, 

it is really useful if there are methods that can be utilized to reconstruct texture and 

reduce the blur effects in the after-processed image.  
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  CHAPTER 3 

EXAMPLE-BASED METHOD 

Several conventional methods of image enlargement, such as Bilinear, Bicubic 

and Lanczos interpolation, are commonly used to infer a more legible high-resolution 

image from a low-resolution image. In previous chapter, we have briefly elaborated 

on how these analytic approaches typically suffer from a blurred appearance due to 

perceived loss of detail in textured regions, causing unsatisfying quality in an 

enlarged image. The image quality appears to be more blurry or fuzzy, especially 

along the texture or edge when the magnification scale is larger. In order to resolve 

these problems, super-resolution techniques have currently been widely adopted. 

This is because super-resolution techniques have not only enhanced image 

resolution, but also predicted detailed information on the missing texture component 

to define and reconstruct the enlarged image’s texture.        

Super-resolution aims to produce a high-resolution image using one or several 

observed low-resolution images. The major difference between interpolation and 

super-resolution methods is that interpolation only involves up-sampling the low-

resolution image, while super-resolution usually involves three major processes, 

which are up-sampling (interpolation), de-blurring and de-noising (Siu and Hung, 

2012). Example-based method or also well known as learning-based method is one 

of super-resolution techniques, which is most suitable for specific applications such 

as face image super-resolution, since it typically uses specific kinds of images as its 

dictionary. This chapter will describe in details about example-based method that has 

been proposed by Freeman et al. (see reference [26]), which is closely related to our 

proposed algorithms later. 

3.1 Example-based Algorithms 

Example-based method utilizes external information from a set of a large volume 

of training image pairs of low-resolution (LR) images and high-resolution (HR) 

images created using pyramidal image system. Compare to conventional 

interpolation methods that only use information from input images, example-based 
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method enables new information to be predicted for the missing high-frequency 

components by exploiting external information available in database.  

Example-based processes basically consists of two phases, which are, 1) a 

training patches database construction phase that extracts patch pairs from both LR 

and HR images, and then stores them as training patches in the database, and 2) a 

super-resolution phase that executes a learning model to reconstruct HR images by 

searching patches in the database that are best matched to the input image patches. 

Freeman et al. has proposed example-based approach for SR using a bandpass 

filter to extract training images’ texture in database to be used as external 

information, and Markov Random Field (MRF) network is employed as learning 

model to estimate plausible texture for output HR image. 

3.1.1 Training Database Construction 

We start from a collection of high-resolution images to construct a database. We 

restrict use of the same kinds of images to obtain better probability of similarity 

among patches. For instance, to process a face-image, multiple different face images 

are used in database. The HR training images are down-sampled typically by one-

quarter the number of original pixels in each dimension (1/16 of the total number of 

pixels) to create LR training images. After that, we initially up-scale the LR images 

back into their original size using interpolation methods such as Lanczos.  

Then, we preprocess the training images to extract high-frequency information so 

that only textures are being observed. We apply a Gaussian filter to the images to 

extract their middle frequency component and stored them into database, Po, as 

outlined in Figure 3.1. Corresponded image texture details are extracted by 

subtracting initial up-scaled images from original HR images, then storing them as 

patches in database, Pc. These patches are typically 5x5 or 7x7 pixels.  
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      Figure 3.1   Database construction process 

3.1.2 Super-resolution Phase 

Example-based method implements a Markov Random Field (MRF) network as 

its learning model. The MRF network probabilistically models the relationships 

between input image patches and estimated training images patches, and between 

neighboring high-resolution patches by using an iterative algorithm. The method 

models the relationship between patches by using the MRF network in high-

frequency domain (texture component) of an image. 

Figure 3.2 illustrates the structure of the MRF network where each circle 

represents a network node and each line indicates the spatial relationship and 

statistical dependencies between nodes. The nodes Y(i,j) represent the LR patches 

at the position (i,j) in the input image. The nodes X(i,j) represents the LR patches in 

the database whose corresponding HR patches are used to estimate the texture 

components at the position (i,j) in the restored (hidden) image. 
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Figure 3.2   MRF network model 

The dependency between nodes are represented as two compatibility functions 

ϕ(.) and ψ(.). For a position (i,j) in the MRF network, the function ϕ[X(i,j),Y(i,j)] known 

as the patch similarity represents the similarity of texture between the observed 

patch Y(i,j) and the estimated patch X(i,j). For a position (i,j) and its adjacent position 

(u,v), the function ψ[X(i,j),X(u,v)] called as the border compatibility represents the 

compatibility of the common border between the estimated patches, X(i,j) and 

adjacent patches, X(u,v). The number of patch candidates is given as a constant 

parameter m. 

The joint probability of X(.) under the condition of Y(.) is defined as: 

P(X |Y ) = φ X(i, j),Y (i, j)[ ]
ij
∏

× ψ X(i, j),X(u,v)[ ]
ij,(u,v)∈NB(i, j )
∏

               ( 3.1 ) 

where NB(i,j) denotes the neighbors of structure X(i,j). The right, left, top, and bottom 

patches of the observed patch are considered as its neighbors.  

To specify the MRF network’s ϕ(.) function, a similar quadratic penalty is imposed 

on differences between the observed input-image-patch, Y(i,j), and the scene-

patches from the training set, X(i,j).  

φ X(i, j),Y (i, j)[ ] = exp −
d X(i, j),Y (i, j)[ ]
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where d(.) is the distance of the two matrices (or vectors) and σ1 is a constant 

parameter. We use the root sum of the squared differences of the pixel values 

between the two patches. 

The input image’s patches are divided in a manner where they overlap each 

others by one or more lines of pixels, to specify the Markov network’s ψ(.) later. 

Figure 3.3 illustrates the overlap region between two patches. Let p be the pixels of 

patch X(i,j) in the overlap region between patches X(i,j) and X(u,v), and let q be the 

corresponding pixels of patch X(u,v), next to patch X(i,j). In this case, the ψ(.) 

function can be represented as:  

ψ X(i, j),X(u,v)[ ] = exp −
d p,q( )
2σ 2
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#
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'

                
( 3.3 )                  

where p (q) is the vector of pixels of the overlap region in patch X(i,j) (X(u,v), 

respectively) and σ2 is a constant parameter. 

 

Figure 3.3   Region of overlap 

3.1.2.1 Patch Candidates Selection 

We previously chose a number of patch candidates that had the most similar 

pattern of texture with the input patch for each node according to its ϕ(.) value from 

Equation (3.2). The number of patch candidates should be reasonable; not too few 

which possibly causes lack of good choice of patches, and not too many since 

processing time would increase unnecessarily or undesirable patches would be 

selected as candidates inevitably. 

Thus far, the number of patch candidates was typically fixed at 16 or 30 closest 

examples. However, more training images means more patches have to be 

considered. If we fix the number of candidates in the case of 100 training images 

same as in the case of 10000 training images, we may unintentionally neglect some 

good candidates from 10000 training images. They probably do not have the best 
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ϕ(.) value, but they may have better ψ(.) value. As was previously explained, we 

must consider both compatibilities justly to obtain the best P(X|Y). 

Therefore, in present research, we set the number of patch-candidates variable 

based on the number of training patches in database. We set one for one, i.e., one 

patch candidate for one training image. For example, if we used 100 training images 

as database, 100 closest examples among the total patches would be chosen as 

candidates. For research experiments later, we have conducted a preliminary 

experiment to find in advance the optimum number of training images needed in 

database. Figure 3.4 shows that the more number of training images used in 

database the better the resulting image (higher PSNR means better image quality). 

PSNR value is optimum when 70–110 images are used in database. For the sake of 

better result, we used 110 images in database for our proposed method later.  

 

Figure 3.4   Number of training images in database against PSNR value for resulting 

image 

3.1.2.2 Super-resolution Process 

Figure 3.5 outlines the inferring process for image super-resolution, i.e., deriving 

an output HR image from a single input LR image. We initially up-scaled the input LR 

image into the targeted size of the HR image, and then extracted its texture 

component (middle frequency) using a Gaussian filter. We divided it into patches to 

find the most similar patches in database Po.  

Those corresponding patches from database Pc were placed together to build a 

base image for the MRF learning model. We processed the image by several 

iterations learned from the MRF relationship to derive its output high-frequency 
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image. Finally, the expected high-frequency component was combined with the 

previous up-scaled image to obtain the final output HR image. 

 

Figure 3.5   Super-resolution process 

3.2 Previous Related Studies 

Various image processes benefit from example-based methods such as in 

panoramic imaging, image compression, pattern recognition, and 3D modeling. 

Several methods have been proposed through different approaches in terms of 

feature extraction and type of learning model. Freeman et al. has proposed example-

based algorithms, using a bandpass filter to extract image textures and a Markov 

random field (MRF) as a learning model to infer the suitable HR patches. Since then, 

many algorithms have been developed using different combination of techniques as 

improvisation. Thus far, Lui et al. suggested another MRF-based SR using wavelet 

feature maps. Yang et al. implemented a dictionary learning strategy to SR using 

sparse representation. Jiji et al. applied a best matching model on wavelet and 

contourlet feature maps. Several years later, Wu et al.’s proposed method adopts a 

contourlet transform feature maps with MRF as its learning model. Some other 

examples of proposed methods are listed in Table 3-1 (the list given was derived 

from reference [35]). 
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Table 3-1   Feature extraction and learning models for example-based super-

resolution 

Authors Feature extraction Learning models 

Freeman et al. Bandpass filtered feature map Markov random field 

Sun et al. Gaussian derivative feature map Markov random field and 
backprojection 

Baker et al. Gradient derivative feature map Best matching 

Suetake et al. Low-and high-frequency 
components 

Best matching 

Chan et al. First-order gradient and norm 
luminance map 

Neighbor embedding 

Li et al. Laplacian pyramid feature map Content-based classification and 
class-specific predictors 

Su et al. Steerable pyramid feature map Best matching 

Jiji et al. Wavelet feature map Best matching 

Lui et al. Wavelet feature map Markov random field 

Jiji et al. Contourlet feature map Best matching 

Ni et al. DCT coefficients Support vector regression 

Chang et al. Bandpass filtered feature map LLE Construction 

Wang et al. Luminance map PCA Construction 

Yang et al. Bandpass filtered feature map Sparse representation 

Hua et al. PCA coefficients Canonical correlation analysis 

Ma et al. Luminance map Position-patch construction 

Shi et al. Luminance map Learning based interpolation 
method and deconvolution 

Dong et al. Luminance map Sparse representation and 
nonlocal similarity 

Glasner et al. Luminance map Reconstruction-based and 
learning based super-resolution 

Wu et al. Contourlet feature map Markov random field 
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  CHAPTER 4 

FACE IMAGE SUPER-RESOLUTION 

Surveillance cameras have been recording digital footage of crime scenes that 

are useful as clues in investigation. Face image especially, from surveillance camera 

often provides valuable information that enables us to identify the identity of 

unidentified person of interest in investigation. Unfortunately, most standard 

surveillance cameras record low-resolution and highly compressed frames due to 

storage constraint, causing poor quality of footage. Thus, most recorded face images 

are frequently too poor to be helpful cues for investigation since less information 

could be obtained.  

One of the main problems is, face images are small in size or low in terms of 

resolution since surveillance camera records from a certain distance, and need to be 

enlarged for a better look and recognition. Several conventional methods of image 

enlargement, such as Lanczos interpolation, are used to infer a larger image from a 

small image, but typically suffer from a blurred appearance due to perceived loss of 

detail in texture regions. While texture of facial features are crucial in face 

identification. Therefore, it is necessary to enlarge a face image and at the same time 

preserve or restored somehow their texture details.  

In this chapter, we present our proposed method specifically for face image 

super-resolution, which takes facial parts into account. Compatibility function for 

learning model in our method is an improvised version of MRF function in Freeman 

et al.’s method before, where a function to estimate facial parts is employed. 

4.1 Normalized Face Image Super-resolution 

Example-based algorithms are most suitable for face image super-resolution 

since they typically use specific kinds of images as their dictionary. So for face image 

enhancement, only face images are used as training images in database. By 

restricting usage of the same kinds of images, the probability of similarity among 

features is better. With the exact same reason, we come up with a significant idea to 

reconstruct face image based on their facial parts. This will certainly increase the 

probability of similarity since patches are chosen from same facial parts. 
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Figure 4.1   Multiple databases based on facial parts 

The original idea was to categorize training patches into multiple databases 

based on their facial parts, for example, a database of eye patches, a database of 

nose patches, and so on as shown in Figure 4.1. However, we propose another way 

of constructing the training database in order to simplify the algorithm, which is by 

utilizing a set of normalized high-resolution face images. These normalized face 

images should all have same size with same ratio of facial features, where face 

feature points (e.g., eyes, noses, mouths, chins, and face boundary lines) in each 

image are approximately at the closer or comparable position.  

By using normalized images, we can simply take patches’ original locations on its 

image into account to determine which facial parts they belong to, rather than 

typically divide multiple facial images into parts manually or categorize training 

patches into several databases beforehand. Based on patch-position information, the 

nearer the distance between training patches’ position to a targeted input patch’s 

position, the higher the compatibility of facial parts. Figure 4.2 illustrates facial parts 

estimation according to patch position. (i,j) refers to a targeted input patch 

coordinate, (k,l) refers to training images’ patch coordinate, while ℓ is the distance 

between both patches. If the targeted patch comes from the eye part, the algorithms 

would prefer patches of eye parts, i.e. patches with shorter ℓ, from the training set to 

be its corresponding patch candidates. 
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Figure 4.2   Facial parts estimation based on patches’ distance 

4.1.1 Database Construction 

A collection of normalized high-resolution images of human faces was utilized as 

training images. Same as Freeman et al. method, only texture component in image 

should be observed during super-resolution process. Each image was down-sampled 

into a low-resolution image by typically one-quarter the number of original pixels in 

each dimension (1/16 the total number of pixels), and resampled back into its original 

size to create an initial up-scaled or enlarged image. Lanczos resampling method 

was employed in this process.  

After that, low-frequency component on both original high-resolution and initial 

up-scaled images was filtered out to retain only their texture, which are high-

frequency component for the former and middle-frequency component for the latter, 

as outlined in Figure 4.5. Both components are then divided into patches in a manner 

where both patches correspond to each other, and overlap their adjacent patches by 

a line of pixels to later specify the Markov network. 

The main feature of our proposed database is each patch's position coordinate 

was observed as in Figure 4.3 to be used later in learning-model during super-

resolution process. Therefore, patches were divided like a grid map, where if patch 

size was 5x5 and overlap region is a line of pixels, patches had to be divided by 

interval of four pixels for each dimension. Given a set of face images with size of 

288x240 in pixels, with interval of four pixels between each patch, a set of 72x60 

patches (4320 patches) can be created exactly from each image.  
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Figure 4.3   Patch coordinate-based database construction 

4.1.2 Learning-model with facial parts estimation 

The underlying idea is to select patches in the database according to their facial 

parts, i.e. using eye patches to reconstruct eyes and nose patches to reconstruct 

nose part. We propose an innovative function to estimate the facial parts 

compatibility, represented as λ(.), which is defined as: 

 
 

                                       ( 4.1 ) 

where ℓ is a Euclidean distance from the original position of training patch X(i,j) in the 

training face image to the targeted node position (i,j) in the restored image, and σ3 is 

a constant parameter. Hence, the joint probability of X(.) under the condition of Y(.) is 

an extension of Equation (3.1), which can be expressed as: 

P(X |Y ) = φ X(i, j),Y (i, j)[ ]
ij
∏

× ψ X(i, j),X(u,v)[ ]
ij,(u,v)∈NB(i, j )
∏

× λ X(i, j)[ ]
ij
∏

,                   ( 4.2 ) 

λ X(i, j)[ ] = exp − ℓ
2σ 3

⎡

⎣
⎢

⎤

⎦
⎥
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Figure 4.4   Proposed learning model with facial-parts compatibility function 

Figure 4.4 shows our proposed network model. m represents the number of 

training images available in database, while (k,l) is coordinate for original position of 

training patch X(i,j) in their image. The main benefit of using normalized facial images 

for the training set is that we do not need to typically divide the images into parts 

manually or categorize them beforehand into eye, nose and mouth databases. Since 

face images have been normalized, we can simply consider patches’ original position 

on its image to determine which facial parts they belong to.  

Hence, the nearer the distance between a targeted input patch, Y(i,j) and a 

training patches, X(k,l) are, the higher facial parts compatibility becomes. In other 

words, if the input patch came from the eye part, the learning model would prioritize 

training patches from eye region in the training set to be its corresponding patch 

candidates.  

4.1.3 Patch Candidates Selection 

The major difference between Freeman et al.’s method and our proposed method 

is the algorithms for patch-candidates selection. Our method selects patch 

candidates for each nodes by not only based on patch’s texture similarity, ϕ(.), but 

also take facial parts compatibility, λ(.) into consideration. Training patches with 

higher pixel values similarity and nearer position to the targeted input patch have a 

higher possibility to be selected.  

Since this time there is a trade-off between two aspects in patch-candidates 

selection process, i.e. ϕ(.) and λ(.), we applied a weighting factor as: 
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 .          ( 4.3 ) 

PC(X|Y) refers to probability of patches candidates, where if we want to select 100 

best patches, C is 1 to 100. α is between zero and one.  

The α can be treated as determining factor to examine the effectiveness of our 

proposed facial parts compatibility function. If α is one, the function would not take 

the facial parts’ compatibility, λ(.), into consideration at all, which means this is similar 

to the Freeman et al. method. Vice versa, if α is zero, it will only take the λ(.) into 

consideration and neglect the patch similarity, ϕ(.). The lower the α value, the higher 

its preference for the facial parts’ compatibility. Regarding the number of patch 

candidates for each node, it is set same as number of training images used in 

database. In experiment later, 110 training face images were used as dictionary so 

the number of patch candidates is 110 patches. 

4.1.3.1 Sorting the candidates 

In another words, α can also be defined as percentage of preference. For 

instance, if α is 0.8, percentage of preference is 80% for ϕ(.) over λ(.). 80% of 

probability value for ϕ(.) and 20% of λ(.) are totaled together to get PC(X|Y). In this 

case, probability is weighted towards texture similarity, where patches with better ϕ(.) 

have higher chance or priority to be selected as candidates, even if their λ(.) is not so 

good (far from targeted facial parts). According to α, patches were sorted amongst 

hundreds thousand patches available in database. Different α makes different 

sequence of patch candidates. Let the number of patch candidates for each nodes is 

110 patches, the first best 110 patches from those patches will be the shortlisted 

patch candidates.  

As example, five patches’ sequence under four different cases of α are sorted as 

in Table 4-1. Values written under Patch 1 to Patch 5 row represent the sum of 

squared differences of patch pixel values, ϕ(.) and distance of patch position, λ(.) to a 

targeted patch. The lower the value, the more similar the patch to, or the closer the 

patch’s position to the targeted patch. It is like a demerit points system where the one 

with lowest points will be the winner. 

 

PC (X |Y ) = φ X(i, j),Y (i, j)[ ]α
ij
∏

× λ X(i, j)[ ] 1−α( )

ij
∏
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Table 4-1   Example of patches sorting based on demerit points 

 
Percentage 

of 
preference 

Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 

Patches 
sequence  

ϕ(.) λ(.) ϕ(.) λ(.) ϕ(.) λ(.) ϕ(.) λ(.) ϕ(.) λ(.) 

α ϕ(.) λ(.) 5 5 3 7 7 3 20 1 1 20 

0.5 50% 50% 5 5 5 10.5 10.5 1,2,3,4,5 

0.2 20% 80% 5 6.2 3.8 4.8 16.2 3,4,1,2,5 

0.9 90% 10% 5 3.4 6.6 18.1 2.9 5,2,1,3,4 

0.6 60% 40% 5 4.6 5.4 12.4 8.6 2,1,3,5,4 

According to ϕ(.) and λ(.), those five patches’ traits can be summarized as 

follows: 

• Patch 1 : Patch similarity and position is fair 

• Patch 2 : High patch similarity but far from targeted patch  

• Patch 3 : Low patch similarity but near to targeted patch 

• Patch 4 : Considerably low patch similarity but very near to targeted patch 

• Patch 5 : Considerably high patch similarity but very far from targeted patch 

Different α will results in different priorities in patches selection process. Table 4-1 

shows different sequences of patches when different α was applied. 

Case 1 : When α is 0.5, the function considers ϕ(.) and λ(.) equitably. So, Patch 2 

and Patch 3 have same demerit points as Patch 1 despite that they have different 

traits. This is because although Patch 2 has a little bit higher λ(.), it has much better 

ϕ(.) compare to Patch 1. Vice versa for Patch 3. Patch 4 and 5 have extremely higher 

points for ϕ(.) and λ(.), respectively, so Patch 1, Patch 2 and Patch 3 are prioritized. 

Case 2 : When α is 0.2, 80% of λ(.) points are accounted, which means patches with 

better facial-parts compatibility are prioritized. Thus, Patch 3 and 4 which have lower 

demerit points of λ(.) are preferred over the others, despite the fact that Patch 4 have 

worse points in terms of ϕ(.).   
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Case 3 : Conversely, when α is higher, for instance 0.9, patches with better ϕ(.) are 

prioritized. As a result, Patch 5 which has the best ϕ(.) is preferred over Patch 2 even 

though it has worse λ(.), followed by Patch 1, Patch 3 and Patch 4. 

Case 4 : When α is slightly weighted towards ϕ(.), for instance, 60% of ϕ(.) and 40% 

of λ(.), Patch 2 is prioritized over the others instead of Patch 5 which has best ϕ(.). 

We can conclude that when a moderate value of α is applied, the function would 

recommend patches which have moderate points, and demote those which has 

extremely high demerit points either of ϕ(.) or λ(.), i.e. Patch 4 and Patch 5. 

Above assessment shows how five different patches are sorted during patch-

candidates selection process. In reality, there are hundreds thousand training 

patches available in database that are needed to be sorted. The huge number of 

patches comprising patches with minor different of traits, some may have same ϕ(.) 

but slightly different λ(.), or slightly different ϕ(.) but same λ(.) and so on. Hence, best 

α for each different face sample super-resolution is varied. 

4.1.4 Iteration Process 

Figure 4.5 illustrates overall algorithms for the proposed face image super-

resolution method, starting from how a training patches database was constructed, 

until how a resulting super-resolved face image finally generated. 

As shown in the algorithms, before iteration process, an initial image model was 

created by merging the best matched HR patches (patches with the best ϕ(.) – at this 

time λ(.) was not considered yet) of all nodes. This image would look grainy or has 

block artifacts since the chosen patches are not fit with their adjacent patches yet, 

which proves that local patches alone are not sufficient to estimate plausible looking 

high-resolution images (Freeman et al. 2002). Here, the iteration process was 

applied to remove those artifacts. 

Iteration process is performed to find a set of output patches that are best 

matched with each other in overlap border. The aim is to find a set of output patches, 

X(.), where P(X|Y) is maximum. By using only the already selected patch candidates 

before (no need to observe all patches in the database), P(X|Y) would typically be at 

an optimum value, and additionally the processing time can also be reduced. 
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Figure 4.5   Master algorithms for face image super-resolution 
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Iteration process concerns the border compatibility, ψ(.) value. XC in Equation 

(4.4) is replaced with the selected patch candidates in sequence for each node until 

P(X|Y) shows no improvement or reach optimum value. PC(X|Y) is the known 

probability value from Equation (4.3), which has different value for each patch 

candidates. 

                ( 4.4 ) 

We replace the initial chosen patches with the best patches that are compatible 

together with the neighboring patches (patches with the best ψ(.) values) amongst 

the patch candidates on all nodes. First iteration is done when all nodes have been 

processed. The image resulting from the first iteration is smoother than that from the 

initial image model because patches were connected to each other better than 

before iteration process. We carry out the same procedure iteratively until the P(X|Y) 

value becomes optimum. 

After iteration process, the reconstructed texture component will then be 

synthesized with the initially enlarged image before (from Lanczos resampling) to 

generate the final resulting HR image. 

4.1.5 Resulting Image Evaluation Method 

Performance of our proposed method is evaluated based on how closer the 

resulting HR image to the ideal output image. Ideal output image is the original HR 

image of a test sample before it was down-sampled or degraded. In image 

processing practice, there are several error metrics were introduced to measure the 

degree of dissimilarity or error between the two images, in terms of image’s pixel 

value. One of the most commonly used error metrics is peak signal-to-noise ratio 

(PSNR). 

PSNR is most easily defined by mean squared error (MSE). Given an original 

image, O(i,j) and a processed image of which we want to evaluate, P(i,j), with MxN is 

the image size in pixels, MSE is defined as: 

MSE = 1
M ×N

[O(i, j)−P(i, j)]2
j=0

N−1

∑
i=0

M−1

∑                                ( 4.5 ) 

P(X |Y ) = ψ XC (i, j),X(u,v)!" #$
(u,v)∈NB(i, j )
∏

×PC (X |Y )
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The MSE represents the cumulative squared error between the processed and 

the original image, whereas PSNR represents a measure of the peak error. The 

PSNR (in dB) is defined as: 

PSNR =10 log10
MAX 2

MSE
⎛

⎝
⎜

⎞

⎠
⎟  .          ( 4.6 ) 

Here, MAX is the maximum valid value for a pixel. For an 8 bits image, the 

maximum value for the data is 255. The higher the PSNR, the better the quality of 

the reconstructed image. 

Quality of a resulting image can also be assessed by eye alone, by looking and 

comparing the sharpness of texture or edges with those in ideal image, but in most 

cases, it is difficult to distinguish between them especially when we want to estimate 

quality of resulting images from several methods. In our case, we will compare the 

performance of our method with previous Freeman’s method and conventional 

Lanczos resampling method, based on PSNR evaluation. 

4.2 Experimental Results and Discussions 

4.2.1 Experiments Setup 

As the proposed method’s algorithms involve a lot of variable parameters and 

options to be considered, which would leads to vary possible outcomes, it is 

recommended to find the most preferred values of those parameters before we carry 

out the main experiments. The important parameters that have significant role in the 

method include size of patch, number of training images in database, times of 

iteration, value of σ for Gaussian filtering and value of weighting factor, α in facial-

part’s compatibility function. Since this experiment’s objective is to assess the 

effectiveness of our proposed facial-part’s compatibility function, we let value of α be 

variable from 0.0 to 1.0 with 0.1 increments (see Section 4.1.3).  

Previously, we have assessed the optimum number of training images needed in 

database (see Figure 3.4), i.e. 70–110 face images. Regarding the size of patch, we 

typically use 5x5 in pixels for now. The detailed assessment on the best setting of 

patch size will be presented and discussed later in Section 4.4. Here, we conducted 

preliminary experiments to find the best number of iterations and best value of σ for 

Gaussian filtering using Freeman et al.’s method (when α is 1). 
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(1) Times of iteration process 

Iteration process refers to repetition of inferring process, where patch on each 

node was replaced with patch from a set of selected patch-candidates consecutively 

to find the best matched patch with adjacent or neighboring patches (see Section 

4.1.4). The number of selected patch candidates for each node is 110 patches. We 

raster-scan starting from bottom to top and left to right. For instance, at a current 

inferred node’s position, we search and replace within 110 patch-candidates one by 

one to find the best compatible patch in terms of patch similarity, ϕ(.), facial parts 

compatibility, λ(.) and overlap border compatibility, ψ(.). First iteration is complete 

when all nodes were inferred. Resulting face image after first iteration will visibly 

better than before iteration because patch with patches in adjacent nodes had been 

connected as if they are stitched to each other thanks to the operation of ψ(.).  

But how many times of iteration is necessary? Generally, one time of iteration is 

sufficient but we insist to find out how much different would it make if the times of 

iteration is increase. So we ran the method on a sample of face image, with 1, 3, 5, 

10, and more times of iteration to observe the improvement of resulting PSNR. The 

assessment results are given in Table 4-2, and their graph is plotted in Figure 4.6, 

with comparison to resulting PSNR for Lanczos resampling result. 

Table 4-2 PSNRs of resulting image for different times of iteration 

Example-based Lanczos 
resampling 

Times of 
iteration PSNR [dB] PSNR [dB] 

0 26.334 

27.025 

1 29.261 

3 29.615 

5 29.639 

10 29.654 

15 29.654 

20 29.654 
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Figure 4.6   Resulting PSNRs for different times of iteration process 

From the PSNRs assessment, one time of iteration is sufficient to achieve a 

better resulting image than Lanczos resampling method, indeed. Whereas when no 

iteration process was applied, the resulting PSNR is worse than the resulting PSNR 

from Lanczos resampling method, proving that iteration process is absolutely 

necessary. This is because before iteration process, patches were selected by not 

considering border compatibility yet, so they are not well connected to each other 

causing block artifacts and grainy appearance, as can be observed in images of 

texture (high-frequency maps) given in Figure 4.7. With meticulously selected 

patches, such noisy elements can be greatly reduced as we can observe in texture 

image below. 

   
Before iteration process After one time of iteration After 10 times of iteration 

Figure 4.7   Texture image (high-frequency maps) of a face sample before and after 

iteration process 
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As the number of iteration reaches 10 times, no improvement is observed 

onwards. Henceforth, we will run 10 times of iterations for execution of our proposed 

method in all experiments. Even though one time of iteration is sufficient, the different 

between one and 10 times of iteration is merely one second of processing time, so it 

is still reasonable to do iterations as much as it provides improvement of PSNR. 

(2) σ  value for Gaussian filter 

In the proposed method’s algorithm (see Figure 4.5), Gaussian filter is used to 

extract texture (middle-frequency component) of an initial up-scaled image, during 

both process of database construction and super-resolution. The difference (or 

subtraction) of a filtered image and its original image will generate texture 

component. Patches of this texture will be observed during the search and match 

routine in the method.  

In Gaussian filter, the σ parameter plays an important role (this is discussed in 

Chapter 2, Section 2.2.2) to determine strength of filter applied on an image. Higher 

σ value makes a stronger filter, generating a lower frequency image. If we subtract 

the filtered image from the original ones, we will get a high-frequency image 

representing the image texture. Different σ would generate different amount or 

degree of texture. For example, in Figure 4.8, texture component appears thicker 

when the σ value is larger. 

    
σ = 1 σ = 2 σ = 3 σ = 4 

Figure 4.8   Gaussian filtered face image with different σ 

Different sharpness of extracted texture yields different results of super-resolution 

process. It is better to find in advance the best σ before we conduct the main 

experiments. So we ran the SR method with same conditions: size of patch is 5x5, α 

is 1, number of training images in database is 110 face images, on the same face 

sample before, with different σ value in the filtering process. We evaluated their 
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PSNR improvement to find the best σ value for Gaussian filtering. According to 

resulting PSNRs in Table 4-3, the best σ value to be used in main experiments later 

is 2. 

Table 4-3   PSNR values for a resulting image when different σ value was applied 

σ value for 
Gaussian filtering 1 2 3 4 5 

PSNR [dB] of 
resulting image 29.596 29.654 29.372 29.330 28.976 

 

Figure 4.9   PSNR evaluation graph for resulting images of different σ 

4.2.2 PSNR Assessments and Resulting Images 

A set of face images taken from 110 subjects (see Appendix A) was utilized for 

the database, among whom 74 were males and 36 were females. All the original HR 

face images used in the experiment were in grayscale, and their size is 288x240 in 

pixels. These HR face images were down-sampled to generate their corresponding 

LR images using Lanczos resampling, by quarter-size of the number of pixels on 

each dimension, i.e. 72×60 pixels. We then up-sampled back these LR images to 

their original size to get initial enlarged images. The HR and LR (initially up-scaled) 

images were divided into patches of 5x5, and stored in pairs with information of patch 

position. 

Experiments with the proposed method were conducted on six samples of face 

images shown in Figure 4.10. These six samples are not included in database. We 

execute the proposed method with different values of weighting factor, α to evaluate 
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its performance and effectiveness. Peak signal-to-noise ratios (PSNRs) are 

employed to estimate quality of super-resolved images to assess the performance of 

the proposed method. The higher PSNR values indicate better results. 

   

Sample 1 Sample 2 Sample 3 

 

   

Sample 4 Sample 5 Sample 6 

Figure 4.10   Input LR face images 

The PSNR evaluations’ graph against weighting factor, α is shown in Figure 4.11. 

If α is zero, the algorithm will only take into considerations the facial part function, or 

else, if α is one, it will not take into account the function, which is same as that in 

Freeman et al.’s method. PSNR evaluation results indicate that as the α value was 

between 0.5–0.9, the PSNR value achieved better results than Freeman et al.’s 

results (when α is 1), which simultaneously proves that our proposed function is 

effective. 

 

Figure 4.11   PSNR for resulting images of different samples against α parameter    
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The PSNR assessment results are listed in Table 4-4, with resulting PSNR for 

Lanczos resampling and Freeman et al.’s method for comparison. Table 4-4 

indicates that the proposed method (when the best α value was applied) achieved 

the highest PSNR for all six samples. 

Table 4-4   PSNR assessment for six samples 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 

Lanczos 
method 27.03 24.88 26.28 25.40 25.29 25.62 

Freeman 
et al.’s 
method 

29.65 26.56 29.00 28.59 27.89 27.57 

Proposed 
method 

30.39 

( α = 0.8) 

27.11 

( α = 0.6) 

29.70 

( α = 0.9) 

29.20 

( α = 0.7) 

28.56 

( α = 0.9) 

28.32 

( α = 0.8) 

Figure 4.12 shows resulting images for Sample 1 to 6 with a scaling factor of four. 

Figure 4.12(a) has input LR images with 72×60 in size, and Figure 4.12(e) has 

original HR images with 288×240 in size for each sample. The resulting images of 

the Lanczos method, Freeman et al.’s method, and the proposed method are 

provided in Figure 4.12(b), Figure 4.12(c) and Figure 4.12(d), respectively. Boxed 

image on the right side of each resulting images of the first sample is the zoomed up 

version of the marked regions, where the details of the results of all methods can be 

observed. The Lanczos interpolation method blurred most of the details of facial 

images in Figure 4.12(b), especially along the face lines. The super-resolved results 

with Freeman et al.’s method and the proposed method in Figure 4.12(c) and Figure 

4.12(d) are significantly sharper than those from interpolation approaches. This is 

due to the reason that patches were used as process units instead of pixels and the 

correlation of adjacent patches was taken into consideration by the learning model.  

We have also executed the proposed method on more face samples (30 samples 

including the six samples) for assessment. Appendix B gives the images of 30 faces 

in original HR size (288x240 in pixels), while their PSNR results under different α 

value are compiled in Appendix C, which will be referred later for experiments in 

Section 4.3. 
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Figure 4.12   Resulting images for enlargement by four times of scaling factor: (a) 

input LR facial images; (b) Lanczos resampling method; (c) Freeman et al.’s method; 

(d) the proposed method; (e) original HR facial images. 

4.2.3 Comparing Quality of Texture 

We observed the resulting images from the proposed and the Lanczos methods. 

As we can see from Figure 4.13, specifically in the boxed region, the proposed 

method generates sharper and clearer edges than those with Lanczos resampling. 

The main reason for this is that SR methods manage to predict the missing high-

frequency information using external images, preserving sharp edges and image 

details. 
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Figure 4.13   Comparison between Lanczos resampling and proposed method’s 

resulting images 

We also analyzed the resulting image with Freeman et al.’s method. Freeman et 

al.’s and the proposed methods yielded comparable resulting images. However, 

Freeman et al.’s method could mistakenly predict output patches in some places. 

Figure 4.14 shows that unnatural artifacts were observed in circled area in the 

resulting image with Freeman et al.’s method, while the resulting image from the 

proposed method is free from such artifacts or noise, and looked more natural. This 

is because our proposed method not only took into consideration the similarity 

between patches’ pixel values, but also took into account which part of the face those 

patches came from. 

 

Figure 4.14   Comparison between Freeman et al. and proposed method’s resulting 

images 

4.3 Experiments on Various Conditions of Face Images 

Until now, we have performed the proposed method onto normalized face images 

as the test images. In this section, we want to take a challenge by conducting further 

experiments on various conditions of face images. We want to observe the 

effectiveness of our method in different circumstances. How is the method’s 

performance if we use a random facial image that is not normalized as sample, while 

the same database of normalized images is utilized in the process? For the sake of 
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experiment, we used a variety set of face samples such as shifted face, magnified 

face and different angle of face as test images.  

Before we conduct the experiment, it is necessary indeed to fix the α parameter 

in advance, so that we would not have to observe every α value for each sample. 

Therefore, we performed proposed method on 30 samples of normalized face 

samples to find the average PSNRs for each α value.  

 

Figure 4.15   Average PSNR value from 30 samples against α 

Figure 4.15 presents the average PSNR from 30 output images. The best output 

image for each sample has different α value. We take the average of best α value 

from each sample to be the fixed value. The average of the best α value for 30 

samples is 0.71 (see Appendix C).  

We performed the algorithm with α value is fixed as 0.71, to compare with 

Freeman method i.e. when α = 1, on another different 30 samples. Each output 

image from proposed method for those 30 samples give better PSNR than Freeman 

et al. results. Table 4-5 indicates that even with the fixed α value, our proposed 

method shows improvement with better PSNR result in average than Freeman et 

al.’s result. Improvement value in average is 0.61 [dB]. 

Table 4-5   Average PSNR improvement for 30 samples between Freeman et al. and 

our proposed method  

 
Freeman et al. Proposed Improvement 

Average, μ 28.271 [dB] 28.881 [dB] +0.610  

Standard deviation, σ 1.292  1.294  0.203  
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4.3.1 Shifted Face Image 

Figure 4.16 shows samples of shifted face images. We shifted the face to the left 

and right sides by 5%, 10%, 15% and 20% pixels respectively. We down-sampled 

each samples into quarter-size of original size by Lanczos resampling to create input 

images. By using the same set of normalized database, we performed the Lanczos, 

Freeman et al. and proposed method to get HR resulting image for each samples.  

 

Figure 4.16   Shifted image example 

Figure 4.17 outlines the PSNR graph for resulting images from those shifted face 

samples. The graph indicates that with our proposed method, when α is fixed as 

0.71, gives better results in spite of shifting occurred. But, it become worse as the 

image is shifted, since the position of face features have changed. Freeman et al. 

and Lanczos method gives nearly same PSNR value even the position of face is 

shifted, since both methods do not take patch position into consideration. While α is 

0, PSNR value is lower than PSNR from Freeman et al. method and becoming worse 

when the face position is shifted. Therefore, it is necessary to consider the similarity 

of patch, ϕ(.) as well as we consider the category or position of patch, λ(.). 

 

Figure 4.17   PSNR graph against shift percentage for Freeman et al., Lanczos and 

proposed method (when α = 0 and 0.71) 
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4.3.2 Magnified and Shrink Face Image 

Figure 4.18 shows magnified and shrink face image samples with different 

percentage. The facial parts in the magnified face, such as eyes appear bigger than 

those in the original face image (0% of magnification). We execute our proposed 

method on those images and measured the PSNR for their resulting images.  

 For a fair evaluation, we only evaluate the part of face in boxed area, since some 

images’ facial parts were cropped due to magnification. For example, face image of 

30% magnification loses some parts of texture of chin and hair, compare to the 

original size of face. The existence and absence of such texture would affect the 

PSNR assessment, differently. Thus, it is important to standardize the part of image, 

which we want to evaluate.  

 The PSNR results are shown in Figure 4.19. PSNR graph shows that even for 

magnified or shrink face, our proposed method achieves better results than Freeman 

et al. and Lanczos resampling method. We assume that when the face is magnified, 

minor details of texture in patches will decrease or become less complex since the 

size of patch is same. Therefore, the magnification did not give any unwanted effects 

to the results, but conversely has better results than the original size. On the other 

hand, when the face is shrink, details of texture in a patch increase or become more 

complex, causing the declination of PSNR. 

 

Figure 4.18   Magnified and shrink face samples 

 



 54 

 

Figure 4.19   PSNR results for magnified and shrink face samples using Lanczos 

resampling, Freeman et al. and proposed method 

4.3.3 Different Direction of Face 

Figure 4.20 shows samples with different facing direction. We execute those 

three methods on samples below to compare the results.        

 

Figure 4.20   Different direction of face samples 

     Figure 4.21 shows PSNR comparison between those three methods. Our 

proposed method gives better results for every sample when α is 0.71. When α is set 

as 0, where only patch position is considered, the resulting PSNRs for every sample 

are lower than PSNR result from Freeman et al. method. Nevertheless, our proposed 

method gives better PSNR than the PSNR results from Lanczos method. 
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Figure 4.21   PSNR results for five different directions of face samples using 

Freeman et al., Lanczos and proposed method 

4.4 Adaptive Patch Size to Scaling Factor 

There are many variable parameters in this method, which may lead to varied 

possibility of resulting images. Some of the main parameters are image patch size, 

weighting factor in compatibility functions, number of training images in database and 

scaling factor of magnification.  

Till now, the size of patch used in example-based methods is typically 5x5 or 7x7 

in pixels, and the scaling factor is set typically as 4 times enlargement (16 times the 

total number of pixels of LR image). However, there is no thorough analysis yet 

regarding those two parameters, i.e. patch size and scaling factor. Is it really the best 

patch size for the SR process? How about other cases of magnification, where their 

scaling factor is different? What is the most suitable setting of patch size when we 

want to enlarge an LR image by different scaling factor, e.g. 3 times or 5 times? 

It is important to find the most suitable parameter’s value in order to make the 

application more convenience, stable or less sensitive, besides user-friendly. 

Therefore, we attempt to perform an in-depth analysis of the super-resolution 

algorithms in terms of patch size and scaling factor. Our aim is to find the most 

appropriate patch size to be set in the process, which may provides better results, 

under different cases of magnification. 
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4.4.1 Parametric Analysis 

We conducted an experiment by demonstrating the SR algorithms onto several 

sets of input LR images that have different scaling factor, i.e. 2, 3, 4, 5, and 6 times 

respectively. We used different size of patch during SR process, i.e. 5x5, 7x7, 9x9, 

and 11x11, and applied them onto each set of images to reconstruct HR images. The 

overlap region between patches is one pixel. Since the image size must be fit or 

compatible to the scaling factor and patch size to avoid any unnecessary remain part 

of image during SR process, we beforehand processed all the original HR face 

images by adjusting them to a desired size. The adjusted sizes of HR images are 

respectively shown in Table 4-6. 

 Table 4-6   Adjusted size of HR images [(width) x (height)] to be fit with scaling factor 

and patch size setting. 

Patch 
Size 

Scaling factor 

2 3 4 5 6 

5x5 240x288 240x288 240x288 240x280 240x288 

7x7 240x288 240x288 240x288 240x300 240x288 

9x9 240x288 240x288 240x288 240x280 240x288 

11x11 240x280 240x300 240x280 240x280 240x300 

13x13 240x288 240x288 240x288 240x300 240x288 

   Given an image’s original size is 240x288 and scaling factor is 2, the size of 

downscaled image (LR image) is 120x144. We generated training face images and 

input samples (HR and LR) accordingly to Table 4-6, producing 25 sets of training 

images database and input samples. Each set of training images database consists 

of 110 face images, while the set of input LR images (different face images from 

those in database) consists of 30 samples.  

We ran the proposed method onto those sets of input LR images to reconstruct 

sets of resulting HR images, respectively according to image size setting and scaling 

factor in Table 4-6. Each set is processed using different patch size as illustrated in 

Figure 4.22. As a result, 25 sets of resulting HR images were generated. We 

employed peak signal-to-noise ratios (PSNRs) to evaluate the super-resolved 

images for assessment. For overview analysis, we observed the average of resulting 
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PSNRs of each set of 30 output HR images. The resulting average PSNRs are 

shown in Table 4-7.    

 

Figure 4.22   PSNR assessments process (set by set) 

Table 4-7   Average PSNR[dB] for sets of 30 output HR images 

Patch 
Size 

Scaling factor 

2 3 4 5 6 

5x5 35.973 31.112 28.913 25.572 24.103 

7x7 35.852 32.027 28.487 26.123 25.624 

9x9 35.600 31.498 29.262 26.523 24.904 

11x11 35.280 30.924 28.506 27.070 25.163 

13x13 35.221 31.442 28.898 26.578 25.718 

   The bolded values note the best patch size for each case of magnification. We 

can observe that in Table 4-7, there is a consistency of relation between the best 

patch size and scaling factor. Surprisingly, the best patch size is adaptable to the 

scaling factor of magnification. Let the scaling factor is n, we can conclude that the 

best setting of patch size for each scaling factor can be expressed as (2n+1)2. With 
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this formula, we can now easily determine the size of patch to be used in the 

proposed SR method when we want to enlarge an LR image under a certain scaling 

factor. 

4.4.2 Improved Algorithms 

We employed the formula into the SR method. The proposed algorithms can be 

simply illustrated as in Figure 4.23. The bolded lines indicate the preferred flow of 

SR. For example, if we want to magnify an LR image by 3 times, the algorithms will 

select the most suitable database, i.e. 7x7 patch database, to be used in SR 

process, yielding the best possible output HR image.  

 

Figure 4.23   Algorithms for the using of the best patch size in SR process 

4.5 Chapter Summary 

In this longest chapter of the thesis, a novel method specifically for face image 

super-resolution is presented. We have proposed an innovative example-based 

method to predict missing texture in face image by taking their facial parts into 

consideration during patch selection process. First, training database was 

constructed using a set of normalized facial images, which then were divided into 

patches and stored with information on their original position on their image. Second, 

Markov random field was used to model patch structures for a super-resolved image, 
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by incorporating the proposed facial parts compatibility function in the learning 

model.  

Compare to Freeman et al.’s method and Lanczos resampling method, the 

proposed method performed better in terms of PSNRs. Texture along the edge of 

face in resulting image from proposed method are much sharper and clearer 

especially when we compare to Lanczos resampling image, emphasizing that our 

proposed method manage to well restore the missing texture. 

We have also found the best α, in average, for the proposed method. Even with 

fixed α, i.e. 0.71, the proposed method achieves better resulting PSNRs. 

Furthermore, experiments on random face images which are not normalized has 

clarified that when α is 0.71, the proposed method still provides better or comparable 

results as normalized face sample. 

In addition, an in-depth analysis of face image super-resolution method was 

conducted, concerning the patch-size setting and scaling factor. We conducted an 

experiment using different setting of patch size and scaling factor, to find the best 

patch size to be used when performing the SR method. We also have analyzed their 

relationship with scaling factor of enlargement. According to resulting PSNRs 

assessment, interestingly we found that the best patch size is adaptable to the 

scaling factor. The best setting of patch size for can be determined by (2n+1)2, where 

n refers to scaling factor. Since the proposed method involves many variable 

parameters, which may lead to varied possibility of results, this finding would 

contributes to make the application of the method more stable and convenience. By 

using the algorithms to determine a patch size for SR process, we have narrowed 

down the ways of finding the best possible resulting HR image for the method. 
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  CHAPTER 5 

COMPRESSED FACE IMAGE RESTORATION 

Since surveillance cameras records long-term footage, practically the footage is 

being compressed due to memory constraint. Consequently scenes from footage 

usually suffer with block noise from such compression. In order to obtain better 

information from the footage, it is necessary to restore the degraded compressed 

image by reducing the block noise and restore image texture. Gaussian filter is one 

of the Point Spread Function (PSF) that has been commonly adopted in image 

enhancement to simply filter out noise component in an image (this is discussed in 

more detail in Chapter 2, Section 2.2).  

The problem of filtering method is texture component will be indiscriminately 

filtered out together with noise component, causing a blur image. It gets blurrier if the 

filter is applied stronger, especially in case of restoring a highly compressed image, 

where a stronger filter is required to reduce the heavy block noise. In this chapter, an 

image restoration method using example-based approach to enhance quality of a 

compressed face image is proposed.  

5.1 Block Noise Reduction for Face Image Restoration 

In example-based tradition, the database should only include images that are 

similar type with input image for better probability of similarity among textures. The 

key idea of our method is to further categorize patches based on facial parts, i.e., as 

a database of eye patches, a database of nose patches and so on. Since learning-

model already includes λ(.), multiple databases of facial parts are unnecessary.  

Previously, we have proposed a method for example-based super-resolution by 

taking facial parts compatibility, λ(.) into account, to restore texture in a high-

resolution image generated from a targeted low-resolution image. Here, we want to 

apply the same approach, but this time our target is a compressed (block noised) 

image. We aims to reconstruct back distorted face texture in a compressed image, 

which cannot be done by Gaussian filter. 
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We incorporate the idea from Chapter 4 into image restoration for block noise 

reduction, but this time we used original HR face images and their degraded images 

as training set. We have proposed two methods of restoration, one is named as 

Direct method and the other one is Smooth method.  

5.1.1 Proposed Restoration Methods 

We used a collection of normalized high-resolution face images to construct a 

database. The normalized training images have the same size and ratio of facial 

features, where facial-feature points (e.g., eye, nose, mouth, chin, and face boundary 

lines) in each image are at approximately closer positions. Unlike the method in 

Chapter 4, this time we utilized degraded images instead of LR images, as shown in 

Figure 5.1. So we applied JPEG compression to HR images to create their 

corresponding degraded images. Then, each patch's original position in the training 

images, where (k,l) is training-patch-position coordinate, was observed later in the 

proposed learning-model function during restoration process.  

 

Figure 5.1   Training database comprising multiple compressed face images 

5.1.1.1 Direct Method 

The training images in database need to be pre-processed to extract high-

frequency information so that only texture is observed. There are several methods of 

texture extraction in image processing that have led to the proposal of several 

example-based super-resolution methods, as mentioned in Chapter 3.  
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Figure 5.2   Previous super-resolution method’s database construction 

Figure 5.2 shows how a training patches database was constructed before in our 

proposed super-resolution method. We applied a Gaussian filter onto initial enlarged 

LR image to extract texture (middle-frequency component), while texture in HR 

image (high-frequency component) is its difference with the enlarged image. Both 

texture components were then divided into patch pairs.  

In present chapter, our targets were different from those of previous chapter. The 

objective now is to restore texture in a compressed (block noised) image. We 

adopted the same process as super-resolution method before, but we used original 

HR and degraded face images as training set where a degraded face sample is the 

target.  

One of the main concerns in example-based method is, what is the appropriate 

method to extract high-frequency information to reconstruct output texture? In 

particular, this time a noisy image is the target. Here, we have proposed two 

methods of restoration, which have different way of HR image’s texture extraction: 

Direct method and Smooth method.  

Direct method uses a straight-forward approach, as outlined in Figure 5.3, which 

directly takes the difference between the original HR image and its corresponding 

degraded image to be the high-frequency components. While for degraded-image’s 

texture extraction, we applied a Gaussian filter on the degraded image then 

subtracted the filtered image from the degraded image to obtain the middle-

frequency components, which is similar to the previous SR method. Both high-

frequency component and middle-frequency component are stored in pairs in the 

database. 
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Figure 5.3   Direct method’s database construction 

Figure 5.4 outlines the overall image-restoration algorithms for the Direct method. 

The texture components from the degraded input image were extracted through the 

same process as in the database, which is using a Gaussian filter. We then found a 

set of patch candidates for each input patch node for the iteration process. 

 

Figure 5.4   Restoration process for Direct method 

The MRF network in Figure 4.4 probabilistically models the relation between the 

input patches and the training patch-pairs in terms of ϕ(.) and λ(.), and between the 

neighboring estimated HR patches in terms of ψ(.). A set of patch candidates for 

each input node according to ϕ(.) and λ(.) were selected in advance with weighting 

factor, α as in Equation (4.3) previously. Then, the only element left to be considered 

is which patch amongst the candidates is the best neighbor.  

Iteration process involves a stitching algorithm that iteratively infers a set of best 

neighboring patches that have the most compatible ψ(.) values on the overlap region 

between nodes, as illustrated in Figure 3.3. Before iteration, we created an initial 

image as the base image by merging the most similar patches (patches with the 

lowest ϕ(.)) of all nodes. This image would looks uneven and unnatural since the 

chosen patches would not yet be compatible with their neighboring patches. Hence, 

the iteration process is executed to reduce the incompatible effects in the image. 
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Theoretically, the aim with the iteration process is to find a set of X(.), that will 

improve the joint probability, P(X|Y) in Equation (4.2) as best as possible. By only 

using a limited number of selected candidates to determine the P(X|Y), the 

processing time can be reduced. We found the best P(X|Y) to get the best 

neighboring patches by replacing X(.) with the selected patch-candidates alternately, 

as has been discussed in Chapter 4, Equation (4.4). The PC(X|Y) in Equation (4.4) is 

the known probability value from Equation (4.3), which is different for each patch 

candidate. 

We replaced the initial chosen patches on every node with the best patches 

among patch candidates that have highest compatibility with their neighboring nodes. 

The first iteration was done when all nodes have been processed. We carried out the 

same procedure iteratively until 10 times of iteration as recommended in previous 

chapter. 

Finally, we combined the estimated restored high-frequency component image 

directly with the degraded input image to obtain a final restored image. 

5.1.1.2 Smooth Method 

Smooth method uses a different texture-extraction process for original HR image 

in database construction, as outlined in Figure 5.5. It independently extracts high-

frequency component from original HR image by applying a Gaussian filter. 

Gaussian filter smoothed out the original HR image to obtain low-frequency 

component. The difference between the original HR image and low-frequency 

component represents their textures (high-frequency component). As for degraded 

image, we used the same process of extraction as for the Direct method. Both 

texture components were then divided into patches in which both patches 

correspond to each other and store them in the database. 

 

Figure 5.5   Smooth method’s database construction 
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Since the extraction process during database construction is different for both 

methods, the combined components that reconstruct restored image are also 

different. For the Smooth method, we combined the restored high-frequency 

component (restored texture) with the low-frequency component from the degraded 

input image to obtain a final restored image, as shown in Figure 5.6.  

 

Figure 5.6   Restoration process for Smooth method 

5.2 Results and Discussions 

For evaluation, we gathered a database comprising normalized face images 

taken from 100 subjects. All the original HR face images used in the experiment were 

288x240 size in pixels. We applied block noise to the original HR images by using a 

JPEG compression tool with different quality rates between 1 to 13%, resulting in 

compression ratios from 134:1 to 111:1, to generate six sets of degraded training 

images. JPEG-block sizes in 8x8 pixels yielded similar noise to a simple eight times 

magnification of 1/8 low-resolution image, but further degraded because of mosquito 

and quantization noise. Our main target was the lowest quality, i.e., 1% quality-rated 

degraded samples. A set of highly compressed face images used in database (100 

subjects) and as test samples (30 subjects) are given in Appendix D and Appendix E, 

respectively. Figure 5.7 presents three examples of the lowest quality rate (1%) of 

JPEG-degraded face samples. 

We evaluated our methods on a set of 30 lowest-quality face images to 

determine their effectiveness. We ran the iteration process 10 times under different α 

(0.0, 0.1, …, and 1.0), and Gaussian parameter’s σ values was changed from 4 to 12 

to find the best resulting images. We used PSNRs to evaluate the resulting images 

and compared them to the original ones (ideal result) to assess the performance of 

our methods.  
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5.2.1 Fixing σ and α Value 

It is necessary to fix the σ and α for assessment. To find the best σ for the Direct 

and Smooth methods, we ran the restoration process on 30 input images of lowest 

quality samples under different σ to find their average PSNRs. 

Figure 5.8 shows the average PSNRs for 30 samples: input images, Gaussian-

filtered images, and best output images from our methods (when best α was applied) 

for the Direct and Smooth methods for different σ. Gaussian-filtered blurred images 

and our methods’ output images effectively exhibited higher average PSNRs than the 

input images. However, the higher the σ, the lower the PSNRs value of the 

Gaussian-filtered images. We can observe that PSNRs fell drastically when σ was 

more than 5. Conversely, those for the output images from both of our methods 

increased gradually. 

 
Sample 1 

 
Sample 2 

 
Sample 3 

Original face samples 

   

 
Sample 1 

 
Sample 2 

 
Sample 3 

Degraded input face images 

Figure 5.7   Original and degraded test images 
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Figure 5.8   Average PSNRs of 30 samples: input image, Gaussian-filtered image, 

and Direct and Smooth methods’ output images 

Even the Gaussian filter has significantly reduced noise, unfortunately the filtered 

image losses their important high-frequency texture component. The image becomes 

too blurry when σ was 12. Conversely, the output images with our methods’ exhibited 

higher PSNRs since they also included predicted high-frequency components. 

Table 5-1 lists those average PSNRs for each σ. According to the list, the best σ 

for the Gaussian-filtering method is 5, for the Direct method is 10, and for the Smooth 

method is 8. So, we fixed the σ for each method onwards.  

We then calculated the average α of a set of best α values when σ was 10 for the 

Direct method and 8 for the Smooth method, from 30 output samples to have a fixed 

α. From the set of the 30 best output images from assessment in Figure 5.8, where α 

is variable from 0.0 to 1.0, the best α in average was 0.4 for both the Direct and 

Smooth methods.  

According to Equation (4.3), when α was set to 0.4, the learning model is 

weighted towards λ(.) rather than ϕ(.), i.e. 60% of λ(.) over 40% of ϕ(.), during patch-

candidate selection. In other words, the method prefers patches with higher facial 

parts compatibility value rather than patch similarity. Hence, we can conclude that 

the proposed λ(.) function in learning model is very significant and effective for a 

compressed image restoration. 
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Table 5-1   Average PSNRs of 30 Face Images: Input Image, Gaussian-filtered 

Image, and Proposed Methods’ Output Images 

Gaussian 

parameter, σ 

PSNR [dB] 

Input 
Gaussian-

filtered 

Direct 

method 

Smooth 

method 

4 18.690 21.121 19.646 21.260 

5 18.690 21.193 20.439 21.503 

6 18.690 21.039 20.954 21.656 

7 18.690 20.752 20.840 21.698 

8 18.690 20.430 21.102 21.765 

9 18.690 20.071 21.864 21.765 

10 18.690 19.719 21.921 21.694 

11 18.690 19.348 21.779 21.620 

12 18.690 18.983 21.642 21.537 

 

Figure 5.9 presents resulting images for the lowest quality of 1% for Sample 1. 

Figure 5.9(a) is the original HR image and Figure 5.9(b) is its degraded input image. 

The results obtained from the Gaussian-filtering, Direct, and Smooth methods are 

shown in Figure 5.9(c), Figure 5.9(d), and Figure 5.9(e), respectively. The boxed 

images on the right side of each image are the zoomed versions of the marked 

regions in the images, where the details of the results can be observed. The 

Gaussian-filtering method effectively reduced block noise in the image; however, 

most of the face details are blurred, as shown in Figure 5.9(c), especially along the 

edges. The restored images with our methods in Figure 5.9(d) and Figure 5.9(e) are 

significantly sharper than the Gaussian-filtered output image. The proposed methods 

effectively restored image texture including eye parts. 
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Figure 5.9   Resulting images for Sample 1 with fix σ and α: (a) original face image; 

(b) degraded input image; (c) Gaussian-filtered image (σ=5); (d) Direct method’s 

output image (σ=10, α=0.4); (e) Smooth method’s output image (σ=8, α=0.4). 

5.2.2 Comparison between Direct and Smooth Methods 

     We compared the resulting PSNRs amongst the output images from our 

Direct and Smooth methods for the 30 samples. Among them, we found that outputs 

for Sample 2 and 3 had the largest difference in PSNRs when the Direct method 



 70 

outperformed the Smooth method and vice versa. Table 5-2 shows the different 

PSNRs for the two samples. 

Table 5-2   PSNRs for resulting image of Sample 2 and 3 from Direct and Smooth 

methods 

Method 
Samples 

2 3 

Direct 22.850 22.561 

Smooth 22.153 22.844 

For Sample 2, the Direct method outperformed the Smooth method with a 

difference of 0.697 dB. For Sample 3, the Smooth method outperformed the Direct 

method with a difference of 0.283 dB. Figure 5.10 and Figure 5.11 show the details 

of the processed images for Samples 2 and 3, respectively, showing the entire face 

and parts of the (a) original, (b) degraded input, (c) output images with the Direct 

method, and (d) output images with the Smooth method.  

Because the patches and input images were normalized from the positions of the 

eyes, the algorithms of our methods, which use the positions of facial parts, tend to 

use patches of eyes for the target eyes. Therefore, the eye parts were accurately 

restored. Regarding the PSNR evaluation, the Direct method outperformed the 

Smooth method due to the fact that the Direct method numerically reduced the block 

noise directly since patches for the Direct method are generated from the image 

including JPEG noise, while patches for the Smooth method are generated by 

eliminating the effect of JPEG noise. 

However, the images generated with the Smooth method seemed to be more 

natural, and the quality improvement was stable for different σ. Hence, the Smooth 

method can be used when natural appearing images are required. Nevertheless, 

both methods manage to reconstruct the distorted texture especially the eyes part, 

which was hardly visible before in the degraded image. 



 71 

 

Figure 5.10   Resulting images of Sample 2. 

 

Figure 5.11   Resulting images of Sample 3. 
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5.2.3 Evaluation for Different Quality-rate Samples 

It is necessary to evaluate our method’s performance on different quality of 

images, too. In previous experiment, we have used the lowest quality rated face 

images as test images, i.e. 1%, which compression ratio is approximately 134:1, and 

observed their effectiveness. In this subsection, we want to test our methods on 

different case of image quality for comparison. A set of 30 face samples were 

compressed by different quality rate, i.e. 1, 3, 5, 8, 10, and 13%, generating six sets 

of degraded face samples. Figure 5.12 shows three samples under different quality 

rate. As quality rate is higher, compression ratio decreases and block noise in 

images also decreases. Texture in lowest quality rated image is completely distorted 

especially eye and nose parts, compared to the highest quality ones. 

We demonstrated Gaussian-filtering and our two proposed methods on six sets 

of 30 samples. For the Gaussian-filtering method, we set the σ value from 1 to 6 

orderly to find the highest average value of output PSNR for each set. Table 5-3 

shows average PSNRs of Gaussian-filtering method on different σ for the six sets of 

30 samples. The bolded values are the best resulting PSNRs obtained after block 

noise was filter out.  

We fixed σ at 10 and 8 for the Direct and Smooth methods, respectively, 

regardless of the sample quality rate to standardize the results for the lowest-quality-

rate samples. Table 5-4 shows the average PSNRs for input images, best Gaussian-

filtering output images (from Table 5-3), and our methods’ output images for different 

quality rates. Table 5-5 shows the improvement of PSNR, while Figure 5.13 

illustrates their graph. 
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Quality rate [%] Sample 1 Sample 2 Sample 3 

1 

   

3 

   

5 

   

8 

   

10 

   

13 

   

Figure 5.12   Degraded images of JPEG under different quality rate. 
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Table 5-3   Average PSNRs [dB] of 30 samples for Gaussian-filtered output images 

under different σ 

Quality rate 

for set of 30 

samples [%] 

Gaussian filtering, σ 

1 2 3 4 5 6 

1 19.64 20.38 20.87 21.12 21.19 21.04 

3 19.89 20.62 21.08 21.32 21.38 21.20 

5 23.23 24.03 24.31 24.14 23.72 23.12 

8 26.36 26.95 26.34 26.03 25.08 24.12 

10 27.74 28.15 27.60 26.52 25.38 24.29 

13 29.27 29.39 28.35 26.99 25.65 24.46 

 

Table 5-4   Average PSNRs [dB] of 30 Samples for Input, Best Gaussian-filtered, and 

Proposed Methods’ Output Images for Different Quality Rates 

Sample 
JPEG quality rate [%] 

1 3 5 8 10 13 

Input 18.690  18.961  22.157  25.130  26.516  28.044  

Gaussian-
filtering 
method 

21.193  21.376  24.308  26.948  28.151  29.392  

Direct 
method 21.921  22.255  24.618  26.715  27.607  28.676  

Smooth 
method 21.765  22.059  24.930  27.098  27.987  28.985  
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Table 5-5   Average PSNRs’ Improvement from Gaussian-filter and Proposed 

Methods for Different Quality of Samples 

PSNR 
improvement 
[dB] 

JPEG quality rate [%] 

1 3 5 8 10 13 

Gaussian-
filtering 
method 

2.503 2.415 2.151 1.818 1.635 1.347 

Direct 
method 3.231 3.294 2.461 1.585 1.091 0.632 

Smooth 
method 3.075 3.098 2.773 1.968 1.471 0.941 

 

Figure 5.13   Average PSNR improvement of Gaussian-filtered and proposed 

methods’ output images against quality rate of input images 

Based on results in Figure 5.13, our methods provided better improvement for 

images of lower quality rates. Direct method outperformed Smooth method and 

Gaussian-filtering method at a quality rate of 3% and below, while Smooth method 

gave best improvement at a quality rate between 5 to 8%. However, as the quality 

rate increased, i.e., higher than 9%, the conventional Gaussian-filtering method 

performed better for noise reduction. In other words, our proposed methods perform 

well for low-quality images. 
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5.3 Chapter Summary 

     In present chapter, we have proposed an image-restoration process that 

involves the example-based method by constructing a patch database using a set of 

image pairs between original and degraded images. We used the same learning 

model proposed in Chapter 4, which includes the facial-parts compatibility function. 

Our proposed restoration methods involve the Direct and Smooth methods that are 

appropriate to restore a block-noised image. The differences between both methods 

are, 1) way of texture extraction for HR image in database construction, and 2) final 

restored image reconstruction process. The experimental results obtained from face 

images demonstrated excellent performance of our methods in terms of PSNR in 

comparison with the conventional Gaussian-filtering method. Both proposed methods 

managed to reconstruct crucial facial parts that were hardly visible or completely 

distorted before. However, when quality rate is over 9%, which means lesser noise, 

Gaussian filter alone is sufficient.  
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  CHAPTER 6 

IMPROVED PATCH SEARCHING ALGORITHM 

In Chapter 4, we have presented the framework of our proposed method for face 

images super-resolution purpose that takes the correspondence of facial parts into 

consideration. The method utilizes a set of normalized human face images as 

training database, where facial parts can be estimated according to patch’s original 

position in image. The nearer the position of training-patch to a currently observed 

patch’s position, the higher the facial-parts compatibility. We have proposed a 

learning model that select patch candidates not only based on texture similarity, but 

also based on facial parts’ compatibility, i.e. using eye patches for eyes part and 

nose patches for nose part. The proposed method gives better resulting high-

resolution image in terms of peak signal-to-noise ratio (PSNR) compare to the 

Freeman et al.’s and Lanczos interpolation methods, indirectly indicates that super-

resolution process using facial parts compatibility is a significant approach.  

However, since the method depends on patches’ position or coordinate, patches 

from each image in database must also be divided in a manner of a grid map, i.e. if 

patch size is 5x5, patches should be cut with interval of five pixels vertically and 

horizontally. This way of patch-division consequently reduces diversity of patches’ 

texture patterns from an image since some texture patterns may had been 

overlooked compare to pixel-by-pixel cutting style. Figure 6.1 shows an example of 

comparison between both types of patch-division method, where colored box is an 

example of patch within a face image. Figure 6.1(a) presents the patch-by-patch 

dividing method with patch’s coordinate (a,b) with one pixel overlap border, while 

Figure 6.1(b) presents a fine way of patch division (pixel-by-pixel). We can observe 

that one-pixel-interval cutting method gives more fine patches compare to patch-by-

patch cutting. The number of patches from (b) is about 15 times more than the 

number of patches extracted from (a).  
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Figure 6.1   Patches generation method. 

In this chapter, we proposed a method that utilizes an improved patch-searching 

algorithm, which not adopt patch-position information but compatible with the one-

pixel-interval patch cutting method. The proposed method restricts a specific patch-

searching area around the targeted facial part to find patch candidates, in order to 

ensure that patches were selected by taking facial parts into consideration and cope 

with the massively increased size of the patch database. We employ a currently 

observed patch’s position information as pinpointed position and specified a certain 

range of searching area nearby. In other words, we have liberalized the way of 

patch-division to get much better choice of patch’s position or texture, but on the 

other hand restrict patch-searching area to ensure that patch candidates were 

selected by taking facial parts into consideration. Our aim is that the proposed 

method obtains better resulting image since more detailed patches were observed. 

6.1 Face Image Super-resolution with Restricted Patch-searching Area 

The previous face image SR method relies on patch-position’s coordinate during 

patch candidates selection process, so patches from face images in database must 

be divided in a manner of a two-dimensional grid map, where if patch size was 5x5, 

patches were divided by interval of five pixels horizontally and vertically. This cutting 

method caused some fine texture patterns unavoidably being neglected, compare to 

typical one-pixel-interval cutting. Therefore, we proposed a face image SR method 
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that also considers facial parts during patch estimation, and on the other hand 

compatible with one-pixel-interval cutting approach. 

Even a set of normalized face images was used, yet each face has slightly 

different size or shape of face feature, i.e. small or big eye, full or thin lip, pointed or 

rounded nose tip and so on. By using one-pixel-interval fine cutting method, we can 

increase accuracy of texture similarity and choice since more detailed patches were 

observed. 

We proposed new patch-searching algorithms that independent from relying on 

patch-position information to estimate their facial parts. The algorithms use only 

information of test image’s patch position to indicate the targeted position, and then 

restricted a certain range of searching area nearby the currently targeted position or 

facial part.  

Figure 6.2 illustrates the searching method to select patch candidates for each 

node.  Let (a,b) is test image’s current patch position, we pinpoint the exact same 

position onto training images in database. Then, we set a certain range of searching 

area, (2s+1)2 around the pinpointed position. We raster-scanning patches available 

within the specified search area in each training images through the pixels from left 

to right, top to bottom (scan line by scan line) to select a set of 100 most similar 

patches as patch candidates for each nodes. If s is 10, searching area will be within 

21x21 pixels of perimeter around the pinpointed position of node, giving 441 patches 

to be considered from each training face image.  

 

Figure 6.2   Proposed patch-searching algorithms. 
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Since facial parts compatibility function, λ(.) is not relevant for this method, we 

only observed patch similarity, ϕ(.) as in Freeman et al.’s method (see Equation 

(3.1)) to find patch candidates. Then, we iteratively replace patch for each nodes 

amongst selected patch candidates to find the best possible set of neighboring 

patches according to border compatibility, ψ(.). 

6.2 Results and Discussions 

We demonstrated the proposed improved searching algorithm in SR method to 

enlarge a set of 30 LR face images. Size of searching area, s was set differently from 

3, 5, 10, 15, 20, 30, and 40 to observe their performance. The size of patch was 5x5. 

We demonstrated our proposed method on a set of 30 test LR face images using 

different size of search area, (2s+1)2, where s is set as 3, 5, 10, 15, 20, 30 and 40.  

The number of face images available in database (excluded test images) is 100. 

6.2.1 PSNR Assessment for Different Range of Search Area  

We observed average PSNRs for 30 resulting HR face images as shown in Table 

6-1, while Figure 6.3 presents the graph.  

Table 6-1   Average PSNR for 30 resulting HR images with different size of search 

area 

Search area 
radius, s 

Average PSNR 
[dB] 

3 28.635 

5 28.922 

10 29.080 

15 29.124 

20 29.140 

30 29.016 

40 28.950 
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Figure 6.3   Average PSNR for 30 resulting HR images with different size of search 

area. 

Hypothetically, the wider the search area the better the results, since more 

number of training patches were observed for selecting patch candidates. However, 

Figure 6.3 indicates that the PSNR value decreased as s was larger than 20. We 

found that the results were better when a certain range of search area was set, i.e. 

when s is between 10 and 20. We conclude that even if we may found much higher 

similar LR texture (middle-frequency component) from patches available outside the 

perimeter or far from the targeted position, they do not necessarily give suitable 

corresponding HR texture (high-frequency component) since they came from 

different facial parts. Therefore, by restricting search area nearby the targeted facial 

part, the proposed method manages to restrict then find similar LR patches from 

database that give plausible corresponding HR patches to reconstruct the HR image. 

6.2.2 Computational Cost 

Since our method restricted patch-searching area, the number of searched 

patches during patch-candidates selection was greatly reduced and considerably 

fewer than the number of searched patches in the previous method, as shown in 

Table 6-2. From a set of 100 training face images available in database, the number 

of searched patches for each node for the improved method is about one-third (when 

s is 20) of the number of searched patches in previous method. In addition, the 

improved method achieves better resulting PSNR than the previous ones thanks to 

fine cutting of patch (pixel by pixel). 
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Table 6-2   Number of searched patches for previous and improved method 

 Previous method 
(using facial parts 
compatibility,  λ(.)) 

Improved method 
(using restricted 

search area, s = 20) 

Number of searched 
patches for each node 
(from 100 training images) 

432,000 168,100 

Average PSNR [dB] 28.91 29.14 

The smaller the size of search area, the smaller the number of searched patches, 

the faster the processing time. From Figure 6.3, according to the resulting average 

PSNRs, we can observe that we only need to search within 12,100 patches (s=5) in 

order to get a resulting HR image that has better or similar quality as the resulting HR 

image from previous method, i.e. 28.91[dB]. That was approximately 1/35 times the 

number of searched patches in previous method. In other words, the proposed 

method has not only improved searching algorithms and given better results yet on 

the other hand, greatly reduced computational cost. 

We compared the improved method’s processing time with the previous one’s. 

Table 6-3 presents experiment environment for the process. We demonstrated the 

previous method, where α is set as 0.71 as recommended in Section 4.3, to 

reconstruct an HR image. While for the proposed method, we set s as 20. We 

calculated the processing time for three stages of operation, which are database 

construction, patch-candidates selection and iteration process, for the sake of 

comparison. 

Table 6-3   Experiment environment 

OS Windows 7 Home Premium SP1 

CPU Intel Core i5 3.2GHz 

Memory 4GB 

Language C++ 

Software Visual Studio 2012 
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Table 6-4   Comparison of computational time between previous and proposed 

improved method 

Process 

Computational time [s] 

Previous 
method 

Improved 
method 

Database construction 71.47 49.91 

Patch candidates selection 607.52 52.83 

Iteration 2.44 2.66 

Whole process 918.62 141.44 

Table 6-4 shows the record of computational time for each stage for previous and 

proposed improved method. In comparison, computational time for patch-candidates 

selection process shows huge different between both methods. We successfully 

reduced the computational time by approximately 90% by using the proposed patch-

searching algorithms for patch-candidates selection. The computational times for 

other stages show insignificant different between both methods since those stages 

are unassociated with the proposed patch-searching algorithms.  

6.3 Chapter Summary 

This chapter proposed improved patch-searching algorithms for previously 

proposed face image super-resolution. Prior method in Chapter 4 employed patch’s 

position information to estimate facial parts’ compatibility. Since the method relies on 

patch’s coordinate to estimate the facial parts, patches from images in database 

were divided in a manner of five or more pixels intervals according to patch size. This 

way of patch-division caused some detailed texture patterns may have been 

overlooked, compare to pixel-by-pixel patch-division. Hence, we have improved 

patch-searching method to be compatible with one-pixel-interval patch division so 

that more detailed texture or position can be observed. We restricted patch-

searching area so that patch-candidates are selected from amongst patches around 

targeted facial parts, and at the same time to cope with the massively increased size 

of the patch database due to fine division of patches. In other words, we have 

simplify the way of patch-division to obtain much better details of texture, but on the 

other hand restricted patch-searching area to take facial parts into consideration, in 

replace of facial parts compatibility before.  
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Furthermore, typically the wider the size of searching area the better the results, 

since more number of patches were observed, but our experiment results show 

differently. The resulting PSNRs show that when searching area, s was larger than 

20, the PSNRs value decreased. We found that even if a selected patch has higher 

similarity of LR texture (middle-frequency component), it does not necessarily give 

plausible HR texture (high-frequency component) for an observed LR patch. 

Therefore, by restricting patch-searching area to ensure that patches were selected 

from a targeted facial part, the method increases the possibility of selecting plausible 

correspondence HR patch. Although less number of training patches was observed 

due to limited search area, the improved method achieves better resulting PSNRs 

compare to the previous method, thanks to the fine way of patch-division. On top of 

that, since the number of searched patches was reduced, execution time has greatly 

speed up by 90%. In summary, the proposed patch-searching algorithms achieve 

better resulting PSNR of HR image than the previous method’s with faster 

processing times.  
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  CHAPTER 7 

CONCLUSIONS 

This final chapter recalls the objectives for the research carried out in this thesis. 

A summary of the methodological contributions is also given, followed by a critical 

assessment of these contributions. This thesis concludes by presenting an agenda 

for future research to improve the performance of face image enhancement 

methodology. 

In the beginning of the thesis, the demands of face image enhancement in 

surveillance fields were clarified, and some issues with conventional image 

enlargement and noise reduction methods in particular were raised. Recent 

development of super-resolution technique was briefly discussed, and approach 

which is related to our research, i.e. example-based methods were explained in 

details in terms of theory and algorithms.  

A framework for face image enhancement by taking facial parts into consideration 

was proposed in the middle of the thesis. The present research methodology can be 

simplified into three parts:  

1. Chapter 4 : Method of face image super-resolution by taking facial parts 

into account 

2. Chapter 5 : Method of face image restoration for block noise reduction, 

which includes two proposed approaches: Direct and Smooth Method 

3. Chapter 6 : Improved patch-searching algorithms for fast and effective 

execution of the proposed method 

7.1 Research Goals Revisited 

Our main goal is to enhance a single degraded face image by taking facial parts 

into account. To achieve that, a facial parts compatibility function was adopted in the 

learning-model. We had examined performance of the proposed methods based on 

PSNR assessment. According to experimental results, the proposed methods 

provide excellent performance and manage to restore the missing texture of a face 
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image, which clarified that the idea of considering facial parts in machine learning 

technique provides an effective measure to enhance a face image. 

Research Objective 1 

To enhance apparent of sharpness of texture in a single enlarged face-image by 

restoring the missing texture, which cannot be done by conventional methods alone. 

Presented experimental results show that our proposed super-resolution method 

has effectively restored the missing texture of facial parts, and yields sharper and 

clearer image of face feature than those from conventional interpolation method of 

Lanczos. According to PSNRs assessment given in Table 4-4 and Table 4-5, 

proposed method achieves improvement of PSNR by approximately 3 [dB] and 0.6 

[dB], in average, compared to the Lanczos resampling method and Freeman et al. 

method, respectively.  

Since the proposed learning-model utilized patch position to determine facial 

parts, we have to use standardized face images where face feature points are at 

nearly same position on each image, as dictionary. It is recommended to examine 

performance of the proposed learning-model on non-standard face sample, for 

instance, different angle and size of face. From experiments in Section 4.3, resulting 

PSNRs indicate that our proposed method still achieves better performance than the 

other two methods. This is because the method also takes patch pattern similarity 

into account with adjustment of the α.  

Till now, amongst learning-based methods that have been proposed, size of 

patch that have been used is typically 5x5 or 7x7 in pixels, for a typical four times 

magnification. In Section 4.4, we have further conducted an in-depth analysis of 

parameter setting to increase our method’s performance. Surprisingly, PSNR 

assessments have revealed that the best setting of patch size is adaptable to the 

magnification times (or scaling factor). Best patch size in the algorithms can be 

determined by a formula: ( 2 x (scaling factor) + 1)2. 

In conclusion, our research has fulfilled the above-mentioned objective. On top of 

that, we have also improved the algorithms involved in the proposed method in terms 

of parameter setting.  
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Research Objective 2 

To reduce block noise in a compressed degraded face-image by estimating new 

texture details and restore distorted texture especially around face features.  

Chapter 5 has introduced two variations of compressed face image restoration 

methods: Direct Method and Smooth Method. A set of highly compressed (lowest 

quality rates) face samples was used in experiments. Both proposed methods are 

executed with different σ (for Gaussian filtering) to get the best resulting images. 

Based on experimental results, proposed method achieves better PSNR than 

Gaussian filtered image (conventionally de-noised image), proving that the proposed 

learning model can also works for degraded compressed image restoration. 

As we can see on the given highly degraded face samples, texture of facial 

features is completely distorted. Facial features like eyes do not seem like eyes 

anymore. Unlike the prior experiment (in Objective 1), this time the challenge is to 

predict new information for the ruined part of face. In response to that, that is why the 

best α, in average, for compressed image restoration is lower, i.e. α =0.4 (the 

assessment is given in Subsection 5.2.1), than the best α for enlargement process, 

i.e. α = 0.71, before. Lower α means patches with higher facial parts compatibility are 

highly preferred or prioritized. In other words, our proposed facial parts function has 

played a significant role to achieve this second objective.  

We have also extended our experiments using samples of different compression 

rate. From the assessment, we have concluded that, Direct Method is best for a 

highly compressed image, and Smooth Method is best for medium level of 

compressed image. For an image of which noise are barely visible, a Gaussian 

filtering is sufficient. 

7.2 Contributions 

Methodological Contributions 

Numerous approaches in learning-based super-resolution field that have been 

proposed do not involve the strategy of taking facial parts into account for face image 

enhancement, yet. The proposed modified learning model that incorporate facial-

parts function may open a new topic of interest in related fields.  
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Moreover, the special characteristic of learning-based approach is its dictionary 

where a collection of same kind of images is exploited. In our works, we have not 

only utilized images from the same kind, i.e. training face images for face image 

enhancement, but further classifying them by facial parts, i.e. eye patches for eye 

parts enhancement. This would greatly increase the likelihood of a chosen patch to 

be the best-fit patch in the algorithms.  

In terms of image quality improvement, the proposed method for enlarged face 

image enhancement achieved 3[dB] and 0.6[dB] of PSNR improvement, in average, 

compared to the Lanczos resampling and Freeman et al.’s method, respectively. For 

face identification in crime investigation, even a 1[dB] of improvement is significant. 

We have also upgraded the proposed method by modifying the patch-searching 

algorithm, which contributes to speed up the processing time by ten times for better 

application.  
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7.3 Limitations 

In present framework, since the proposed learning-model estimates facial parts 

according to patch position in image, we have to use a set of standardized face 

image which facial feature points are at nearly same position. This specific condition 

limits the usage of the proposed method since in reality, face images taken from 

surveillance systems in some cases are random, for instance, has different angle or 

rotation. We must preprocess the targeted face image to somehow fit with face 

images used in database. However, set of a standard face images for database can 

easily be acquired, where we can use face photos of identity cards.   

In addition, images database must be preprocessed according to scaling factor, 

or compression rate of a targeted sample. How do we enhance a degraded face 

sample which degradation level is unknown? Using training images that have 

different compression rate with the targeted image as database, is an interesting 

experiment to be conducted in future tasks.  

7.4 Directions for Future Research 

Further experiments can be carried out following the task-oriented approach 

proposed in this section. 

7.4.1 Utilization of feature maps  

Various related studies in example-based super-resolution fields basically 

proposed different combination of types of feature maps and learning-model (see 

Table 3-1). In present research, we use a Gaussian filter to extract texture (middle-

and-high frequency component) from images and employed Markov Random Field 

as learning model. We have proposed an improvised learning model involving facial 

parts compatibility function. For future experiments, we may apply several different 
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methods of texture extraction in the proposed method to examine their performance, 

as shown in Figure 7.1. By this assessment, we may find which feature maps would 

provides best performance for the proposed method. 

 

Figure 7.1   Further experiments using different feature maps 

7.4.2 Restoration for different types of noise 

Other than block noise of JPEG compression, there are several common types of 

noise in digital imaging that has yet to be examined in the present work, comprising: 

1. Gaussian noise  

2. Salt-and-pepper noise (or also well known as impulse noise) 

3. Quantization noise 

Experiments on the performance of proposed method on degraded image from 

different type of noise can be conducted. Assessments of which types of noise has 

effectively reduced by the proposed method would be useful for application.  



 91 

BIBLIOGRAPHY 

1) M. P. J. Ashby : “The Value of CCTV Surveillance Cameras as an Investigative Tool: An 

Empirical Analysis”, European Journal on Criminal Policy and Research, vol. 23, no. 3, pp. 441-

459 (2017) 

2) G. Gerrard, G. Parkins, I. Cunningham, W. Jones, S. Hill and S. Douglas : “National CCTV 

strategy”, Home Office and ACPO publication (2007) 

3) H. Greenspan : “Super-Resolution in Medical Imaging”, The Computer Journal, vol. 52, no. 1, pp. 

43–63 (2009) 

4) B. K. Gunturk, A. U. Batur, Y. Altunbasak, M. H. Hayes and R. M. Mersereau : "Eigenface-

domain super-resolution for face recognition", IEEE Transactions on Image Processing, vol. 12, 

no. 5, pp. 597-606 (2003) 

5) H. Shen, M. K. Ng, P. Li, L. Zhang : “Super-Resolution Reconstruction Algorithm To MODIS 

Remote Sensing Images”, The Computer Journal, vol. 52, no. 1, pp. 90–100 (2009) 

6) H. Seibel, S. Goldenstein, A. Rocha : “Eyes on the target: Super-resolution and license-plate 

recognition in low-quality surveillance videos”, IEEE Access, vol. 5, pp. 20020-20035 (2017) 

7) T. Quan, P. Li, F. Long, S. Zeng, Q. Luo, P. N. Hedde, G. U. Nienhaus, and Z. -Li. Huang : 

“Ultra-fast, high-precision image analysis for localization-based super resolution microscopy”, 

Optics Express, vol. 18, no. 11, pp. 11867-11876 (2010) 

8) R. Keys : “Cubic Convolution Interpolation for Digital Image Processing”, IEEE Transactions on 

Acoustics, Speech, and Signal Processing, vol. 29, no. 6, pp. 1153-1160 (1981) 

9) C. E. Duchon : “Lanczos Filtering in One and Two Dimensions”, Journal of Applied Meteorology, 

vol. 18, pp. 1016–1022 (1979) 

10) C. Singh, S. Singh, R. Saini and A. K. Saini : “A Comparative Analysis of Image Scaling  

Algorithms”, International Journal of Image, Graphics and Signal Processing, pp. 55-62 (2013) 

11) S. D. Ruikar and D. D. Doye : “Image Denoising using Tri Nonlinear and Nearest Neighbour  

Interpolation with Wavelet Transform”, International Journal of Information Technology and  

Computer Science, vol. 4, pp. 36-44 (2012) 

12) N. Muelle and T. K. Nguyen : “Image interpolation using classification and stitching”, in  

Proceedings of  the 15th IEEE International Conference on Image Processing, pp. 901-904 (2008)   

13) V. Patel and K. Mistree : “A Review on Different Image Interpolation Techniques for Image  

Enhancement”,  International Journal of Emerging Technology and Advanced Engineering, vol. 3, 

no. 12, pp. 129-133 (2013) 

14) S. C. Park, M. K. P. and M. G. Kang : “Super-Resolution Image Reconstruction: A Technical 

Overview”, IEEE Signal Processing Magazine, vol.20, pp.21-36 (2003) 



 92 

15) D. Capel and A. Zisserman : “Computer vision applied to super resolution”, IEEE Signal 

Processing Magazine, vol.20, pp.75-86 (2003) 

16) H. Ozdemir and B. Sankur : “Subjective Evaluation of Single-Frame Super-resolution 

Algorithms”, in Proceedings of the 17th European Signal Processing Conference, EUSIPCO, 

pp.1102-1106 (2009) 

17) S. Farsiu, M. Robinson, M. Elad, and P. Milanfar : “Fast and robust multiframe super resolution”, 

IEEE Transactions On Image Processing, vol. 13, no.10, pp. 1327–1344 (2004) 

18) J. Hu and Y. Luo : “Single-image superresolution based on local regression and nonlocal self-

similarity”, Journal of Electronic Imaging, vol. 23, no.3 (2014) 

19) W.-C. Siu and K.-W. Hung : “Review of image interpolation and super-resolution”, in Proceedings 

of Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), 

IEEE, pp. 1–10 (2012) 

20) H. He and W.-C. Siu : "Single image super-resolution using Gaussian process regression", in 

Proceedings of IEEE International Conference Computer Vision and Pattern Recognition 

(CVPR2011), pp.449–456 (2011) 

21) S. Dai, M. Han, W. Xu, Y. Wu, Y. Gong, and A. K. Katsaggelos : “SoftCuts: A soft edge 

smoothness prior for color image super-resolution”, IEEE Transactions on Image Processing, 

vol.18, no.5, pp.969–981 (2009) 

22) J. Sun, J. Sun, Z. Xu, and H. Y. Shum : "Gradient Profile Prior and Its Applications in Image 

Super-Resolution and Enhancement", IEEE Transactions on Image Processing, vol.20, no.6, pp. 

1529–1542 (2011) 

23) S. Baker and T. Kanade : “Limits on super-resolution and how to break them”, IEEE Transactions 

on Pattern Analysis and Machine Intelligence, vol. 24, no. 9, pp. 1167–1183 (2002) 

24) Z. Lin and H.-Y. Shum : “Fundamental Limits of Reconstruction-Based Super-resolution 

Algorithms under Local Translation”, IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 26, no. 1 (2004) 

25) Z. Lin, J. He, X. Tang and C.-K. Tang : “Limits of Learning-Based Superresolution Algorithms”, 

in Proceedings of the 11th IEEE International Conference on Computer Vision (2007)  

26) W. T. Freeman, T. R. Jones, and E. C. Pasztor : “Example-based super-resolution”, IEEE 

Computer Graphics and Applications, vol. 22, no. 2, pp. 56–65 (2002) 

27) W.T. Freeman, E.C. Pasztor, and O.T. Carmichael : “Learning Low-Level Vision”, International 

Journal of Computer Vision, vol. 40, no. 1, pp. 25–47 (2000) 

28) W.T. Freeman and E.C. Pasztor : “Markov Networks for Super-resolution”, in Proceedings of the 

34th Annual Conference Information Sciences and Systems (CISS 2000), Department of Electrical 

Engineering, Princeton Univ. (2000) 



 93 

29) S. Shuji, S. Takashi, and I. Akihiko : “Example-based super-resolution to achieve fine 

magnification of low-resolution images”, NEC Technical Journal, vol. 7, no. 2, pp. 81–85 (2012) 

30) S. F. Lui, J. Y. Wu, and H.-S. Mao : “Learning-based super-resolution system using single facial 

image and multi-resolution wavelet synthesis”, Asian Conference on Computer Vision (ACCV), 

pp. 96–105 (2007) 

31) J. Yang, J. Wright, T. S. Huang, and Y. Ma. : “Image super-resolution via sparse representation”, 

IEEE Transactions on Image Processing, vol. 19, no. 11, pp. 2861–2873 (2010) 

32) J. Yang, Z. Wang, Z. Lin, and S. Cohen : “Coupled Dictionary Training for Image Super-

Resolution”, IEEE Transactions on Image Processing, vol. 21, no. 8, pp. 3467–3478 (2012) 

33) C. V. Jiji and S. Chaudhuri : “Single frame super-resolution using learned wavelet coefficients”, 

International Journal of Imaging Systems and Technology, vol. 14, no. 3, pp. 105–112 (2004) 

34) C. V. Jiji and S. Chaudhuri : “Single-frame images super-resolution through contourlet learning”, 

EURASIP Journal on Advances in Signal Processing, pp. 1–11 (2006) 

35) W. Wu, Z. Liu, W. Gueaieb, and X. He : “Single-image super-resolution based on Markov 

Random Field and contourlet transform”, SPIE Journal of Electronic Imaging, vol. 20, no. 2, 

023005 (2011) 

36) X. Lai, Z. Lin, E. S. Ward and R. J. Ober : “Noise suppression of point spread functions and its 

influence on deconvolution of three-dimensional fluorescence microscopy image sets", Journal of 

Microscopy, vol. 217, pp. 93-108 (2005) 

37) S. Al-ameri, N. Kalyankar, and S. Khamitkar : “Deblured Gaussian blurred images”, Journal of 

Computing, vol. 2, no. 4, pp. 33–35 (2010) 

38) G. M. P. van Kempen and L. J. van Vliet : “Improving the restoration of textured objects with 

prefiltering”, in Proceedings of the 3rd Annual Conference of the Advanced School for Computing 

and Imaging (ASCI’97), pp. 174–179 (1997) 

39) G. Dougherty and Z. Kawaf : “The point spread function revisited: Image restoration using 2-D 

deconvolution”, Radiography, vol. 7, no. 4, pp. 255–262 (2001) 

40) T. Nir and N. Karpel : "Example based learning of image stitching for an omni-directional camera 

using a variational optical flow methodology", in Proceedings of SPIE 7000, Optical and Digital 

Image Processing (2008) 

41) J.-Y. Cui et al. : "Example-Based Image Compression", presented at the 17th IEEE International 

Conference on Image Processing (ICIP) (2010) 

42) K. Grauman, G. Shakhnarovich and T. Darrell : "Virtual Visual Hulls: Example-Based 3D Shape 

Inference from Silhouettes", in Proceedings of the 2nd Workshop on Statistical Methods in Video 

Processing (SMVP), Prague, Czech Republic (2004) 



 94 

43) B.-Y. Koo, E.-J. Park, D.-K. Choi et al. : "Example-based statistical framework for parametric 

modeling of human body shapes", Computers in Industry, vol. 73, pp. 23–38 (2015) 

44) Y. Fukumizu, Y. Akamatsu, T. Izumi and H. Yamauchi : “Images up-scaling algorithm based on 

the total variation method and morphological emphasizing”, The Journal of the Institute of Image 

Electronics Engineers of Japan, vol. 41, no. 5 (2012) 

45) S. Hamdan, Y. Fukumizu, T. Izumi and H. Yamauchi, “Example-based Face Image Super-

resolution Taking into Consideration Correspondence of Facial Parts”, IEEJ Transactions on 

Electronics, Information and Systems, vol. 12, no. 6, pp. 917-924 (July 2017) 

46) S. Hamdan, Y. Fukumizu, T. Izumi and H. Yamauchi : “Face Image Super-Resolution with 

Adaptive Patch Size to Scaling Factor”, Journal of Image and Graphics, vol. 6, No. 2, pp. 167-173  

(December 2018) 

47) S. Hamdan, Y. Fukumizu, T. Izumi and H. Yamauchi, “Improved face image super-resolution with 

restricted patch-searching area”, in Proceedings of the 3rd International Conference on 

Cryptography ICCSP '19, Security and Privacy, pp. 184-190 (January 2019) 

48) S. Hamdan, Y. Fukumizu, T. Izumi and H. Yamauchi : “Example-based Face-image Restoration 

for Block-noise Reduction”, to appear in Journal of Image and Graphics. 

 

 

 

 



 95 

 

 

 

 

 

APPENDIXES  



 96 

Appendix A 

Face Images for Training Patches Database [288 x 240 pixels] 
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Appendix B 

30 Samples of Face Images for Experiment Purpose [288 x 240 pixels] 
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Appendix C 

Face Image Super-resolution Method : Compilation of PSNR [in dB] Results for 

30 Face Samples with Different α 
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Appendix D 

JPEG Compressed Face Images of the Lowest Quality Rate for Training 

Patches Database [288 x 240 pixels] 
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Appendix E 

30 Samples of Degraded Face Images for Experiment Purpose and Their 

Resulting Images from Direct Method and Smooth Method 

Original image Degraded image Direct method Smooth method 
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