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Abstract 

To meet the increasing demand for computational performance, the number of cores in 

embedded processors as well as general-purpose processors, has rapidly grown in recent 

years. How to fully utilize such processors with a high degree of parallelism has now 

become a more important issue than ever.  

In general, the forms of parallelisms can be classified into task-parallelism and data-

parallelism. The task-parallelism is achieved by the concurrent execution of different tasks 

on multiple cores in parallel, and the data-parallelism focuses on executing the same task 

with different input data sets on multiple cores. Many of existing task scheduling 

algorithms only consider the task-parallelism. In other words, each task is executed on a 

single core. However, most scientific and media applications often combine the two kinds 

of parallelism, which means, multiple data-parallel tasks are executed in a task-parallel 

fashion. This mixed-parallel approach significantly increases the scalability of parallelism. 

Many studies have shown that exploiting both task- and data-parallelisms often yields 

better performance than pure data- or task-parallelism. This paper addresses the task 

scheduling problem which takes into account both task- and data-parallelisms. 

In this thesis, we provide an extensive survey on existing task scheduling algorithms. 

Since the scheduling problem is NP-hard, there are a large number of heuristics and meta-

heuristics which aim to find near-optimal results in a practical time. List scheduling is one 

of the most popular heuristics for task scheduling problems, which assigns a particular 

priority to tasks, and schedules these tasks by the assigned priorities. In our thesis, we 

extend the traditional priority strategy to task scheduling for data-parallel tasks. We 

propose six list scheduling algorithms with different strategy of priority assignment. The 

experimental results demonstrate the effectiveness of the proposed algorithms against a 

commercial mathematical programming solver. 

We also find that a specific static priority is hard to be effective against all applications. 

Next, we extend the simple list scheduling to use two static priorities switched during task 

scheduling. In our experiments, we compare the proposed algorithm with traditional list 

scheduling algorithms. The experimental results show that the proposed algorithm yields 



  ii 

 

  

shorter scheduling length, by 2% on average and up to 10%, than pure list scheduling with 

a single priority. 

The advantages of list scheduling algorithms and their variants produce results in a very 

short time and are relatively simple to implement. However, their acquired scheduling 

results are often far from optimal ones. In recent years, many studies have turned to meta-

heuristics to solve task scheduling problems. Meta-heuristics provide certain algorithmic 

frameworks to search the solution space and avoid local optimal results, which are 

effective ways to improve the quality of results. In this thesis, we present an introduction 

of several popular meta-heuristics for task scheduling. Furthermore, an efficient method 

based on a genetic algorithm (one kind of meta-heuristics) is proposed to solve the task 

scheduling problem which considers both task- and data-parallelism. Different from 

traditional genetic algorithms for task scheduling, we propose a novel representation for 

the chromosome of task scheduling and corresponding genetic operators, aiming to reduce 

the search space and improve the computing speed. In addition to the single-thread 

implementation, we parallelize our algorithm with OpenMP to speed up our algorithm. 

Our experiments show that the proposed genetic algorithm finds near-optimal schedules 

and outperforms the previously discussed list scheduling algorithms by 5% on average and 

up to 13%. 

Although the heuristic and meta-heuristic algorithms produce sub-optimal scheduling 

lengths in a reasonable time, it is still desirable to obtain optimal scheduling lengths in 

some cases, for example, to evaluate heuristic algorithms. This thesis proposes an exact 

algorithm to find optimal results. The proposed algorithm is based on depth-first branch-

and-bound search. We present four rules to prune non-optimal branches. The experiments 

show that our algorithm could find best schedules in a practical time. In our experiments 

with up to 100 tasks, the proposed algorithm successfully finds optimal schedules for 135 

test cases out of 160 within 12 hours. Even in the case where optimal schedules are not 

found within 12 hours, the proposed algorithm finds better schedules than state-of-the-art 

heuristic algorithms. 

As mentioned above, this thesis proposes broadly four algorithms for task scheduling 

with both task- and data-parallelisms. The four algorithms feature different characteristics 

on computational complexity and quality of results, and system designers can employ the 

one which best satisfies their requirements on computational complexity and quality of 

results.  
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Chapter 1.  

Introduction 

“Scheduling” is an ancient and important concept for our everyday life. It is used to set 

up daily personal agenda, organize staffs, allocate plant resources and plan aircraft 

landings. In computer science, we also need “scheduling” to allocate different tasks to 

limited computational resources, this process that significantly affects the performance of 

the overall computational system is usually called task scheduling. 

Nowadays many-cores become more and more demanding because of their high 

performance. Even in the embedded system the number of cores also increased rapidly. 

How to design a more effective task scheduling algorithm to utilize all computational 

resources in such systems completely has become an increasingly critical topic. 

The task scheduling algorithms are classified into two major categories. One is dynamic 

scheduling (also known as online scheduling) which is performed on-the-fly at the 

operation time of the systems. The other is static scheduling (also known as offline 

scheduling) which is done at the design time [6]. This thesis focuses on static scheduling. 

Because in many cases, embedded system design where characteristics of the tasks are 

known prior to the compiling stages, static scheduling is often preferred due to its low 

runtime overhead and high predictability.  

In general, the static task scheduling problem tries to schedule a set of tasks and decides 

when and on which core each task is executed. The goal of scheduling algorithms is to 

minimize the overall scheduling length while the obtained scheduling result meets all flow 

dependencies and other constraints, if any. 

Classic task scheduling problems for multi-core architectures assume that each task is 

executed on one of the cores. They try to perform as many tasks as possible in parallel on 

different cores. This execution scheme is called task-parallel execution. A large number 
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of algorithms for task-parallel scheduling have been developed so far. Recent works 

include [7] [8] [9] and [10]. 

Meanwhile, data parallelism is another form of parallelism, which is achieved by 

executing the same task with different data on multiple cores simultaneously. In order to 

fully utilize the potential parallelism of multicore architectures, both task parallelism (i.e., 

inter-task parallelism) and data parallelism (i.e., intra-task parallelism) need to be 

exploited [35] [36]. This paper addresses task scheduling which takes into account both 

task parallelism and data parallelism. In other words, multiple data-parallel tasks can be 

executed simultaneously in a task-parallel fashion.  

This thesis aims to provide a comprehensive study of task scheduling problem which 

schedules a set of data-parallel tasks on multiple cores. In this respect, the first part of our 

thesis presents the dominant existing algorithms for task scheduling problem. We also 

discuss the differences between them and compare their respective scope of application. 

In the following chapters, we first show the definition of task scheduling problem with 

data-parallel tasks and some necessary notations used in this thesis. Then we introduce the 

proposed task scheduling algorithms. 

The task scheduling is a kind of optimization problem. Because of the complex inter-

task dependencies, the solution space of scheduling problem usually is discrete, highly 

non-convex and with a large number of discontinuities. This kind of problem is 

complicated to solve by simple local search algorithm, for example, the greedy algorithm 

or gradient descent. In general, to find the optimal solutions of task scheduling requires 

searching the overall solution space, which is very time-consuming. Therefore, heuristics 

or meta-heuristics are much practical ways to find good enough solutions (also be called 

as near-optimal solution) in an acceptable time. 

We roughly divided existing algorithms for task scheduling problem into exact 

algorithms, heuristics and meta-heuristics in the following discussion. Exact algorithms 

guarantee to find the optimal solution. However, for most complex scheduling problems, 

searching the optimal solutions requires a long executing time. On the other hand, 

heuristics do not guarantee optimality, but can yield a near-optimal solution more quickly. 

Meta-heuristics also do not guarantee to reach an optimal solution. The main difference 

between heuristics and meta-heuristics is that heuristics are a problem-specific method. 

However, meta-heuristics is a framework that provides a set of guidelines or strategies to 
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develop heuristic algorithms. The popular meta-heuristics including: the genetic algorithm 

(GA), the simulated annealing (SA) algorithm, and the ant colony optimization (ACO). 

In chapter 4, we examined the existing state-of-the-art algorithms which based on list 

scheduling for task scheduling problem without data parallelism. List scheduling is one of 

the most popular heuristics for task scheduling problems, which assigns a particular 

priority to each task, and schedules tasks by the assigned priorities. We also extended the 

existing strategies of priority assignment, which makes list scheduling more adaptable to 

schedule data-parallel tasks. There are six algorithms with different priority strategy were 

proposed. In our experiments, the six algorithms, as well as an integer linear programming 

method are evaluated. 

In chapter 5, we further improve the algorithms proposed in chapter 4. We find that the 

simple list scheduling algorithms tend to yield worse results, especially when the target 

system has more cores. To solve the problem, we propose a new list scheduling algorithm 

which employs two static priorities. The new algorithm switches two different priorities 

during the scheduling process. Thus, we call it as dual-mode algorithm. We use a set of 

experiments demonstrated that dual-mode algorithm yields better scheduling results than 

pure list scheduling algorithms. 

Although the algorithms based on list scheduling are proposed in chapters 4 and 5 

obtain good results in a short time. However, these kinds of deterministic algorithms 

generally find a priority strategy based on statistics or experiences. It often yields bad 

schedules for some specific problems. In chapter 6, we proposed a genetic algorithm for 

task scheduling problem. Different from heuristic approaches, genetic algorithm provides 

a set of mechanisms to search global solution space and escape from the local optimal 

solution more efficient. If the parameters are appropriately designed, a better solution is 

always available. Furthermore, we propose a novel chromosome representation for task 

scheduling problem. Our chromosome only encodes information about the order of task 

execution, does not represent which cores are assigned to which tasks. It greatly reduces 

the size of search space and improves the performance of the algorithm. Efficient genetic 

operators (i.e., selection, crossover and mutation) corresponding to the definition of 

chromosome also were presented. Although our genetic algorithm requires a much longer 

execution time than list scheduling algorithm proposed in chapters 4 and 5, since the 

computation is inherently parallel, we parallelize our algorithm with OpenMP to cover this 
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problem. Our experiments show that the proposed genetic algorithm finds near-optimal 

schedules and outperforms the previously discussed list scheduling algorithms. 

As we mentioned earlier, finding the optimal solution is very time-consuming 

especially for complex task scheduling problem. However, in some occasions, it is still 

desirable to obtain optimal schedules, for example, to evaluate heuristic algorithms. In 

chapter 6, we propose an exact task scheduling algorithm. The proposed algorithm is based 

on depth-first branch-and-bound search. In our experiments with up to 100 tasks, the 

proposed algorithm could successfully find optimal schedules for 135 test cases out of 160 

within 12 hours. Even in the case where optimal schedules were not found within 12 hours, 

our experiments show this algorithm always found better schedules than heuristics and 

meta-heuristics proposed in chapters 4, 5 and 6. 
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Chapter 2.  

Related Work 

The task scheduling problem has been extensively studied for decades. From Table 1 

we know that scheduling problems with tasks have arbitrary execution time and arbitrary 

precedence constraints are known to be NP-hard [1] [2] [3]. Pioneering researchers were 

proposed many heuristics and meta-heuristics, aim to find the approximate results in a 

reasonable amount of time. However, exact algorithms are still desirable to obtain optimal 

scheduling lengths in some case. This chapter presents a survey about the existing 

algorithms for solving task scheduling problem. 

 

Table 1. The complexity of scheduling problems [55] 

 

 

 

 

Number of 

Processors 

(m) 

Task 

Processing 

Time Ti 

Precedence 

Constraints 
Complexity 

Arbitrary Equal Tree O(n) 

2 Equal Arbitrary O(n2) 

Arbitrary Equal Arbitrary NP-hard 

Fixed (m>=2) 
Ti=1or2 for 

all i 
Arbitrary NP-hard 

Arbitrary Arbitrary Arbitrary 
Strong NP-

hard 
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2.1. Heuristic Algorithms 

Since scheduling problem is known to be NP-hard, the most research efforts in this area 

are focused on heuristic algorithm to obtaining non-optimal results. The existing heuristics 

for task scheduling can be classified into three categories, list scheduling, cluster based 

scheduling and task duplication-based scheduling. 

List Scheduling 

The most important family of heuristics is based on list scheduling (e.g. [3] [4] [5] [11] 

[12] and [13]). The basic idea of list scheduling is to assign tasks with certain priority, and 

then allocate these tasks to free cores according to the priority repeatedly, until all the tasks 

are scheduled. List scheduling is generally accepted as an attractive approach since it pairs 

low complexity with good results. There are numerous variations of list scheduling using 

different ways to determine the priorities of each task, such as HLF (Highest Level First) 

[1]; LP (Longest Path) [1]; LPT(Longest Processing Time) [5]; and CP (Critical Path) [3]. 

Cluster-Based Scheduling 

For scheduling with communication cost, the cluster-based scheduling schemes [14] 

are often employed. Cluster-based scheduling try to cluster of tasks based on certain 

criteria (e.g. tasks that need to communicate among themselves are grouped together to 

form a cluster). Tasks in same cluster are scheduled on the same processor. the methods 

can reduce inter-processor communication overhead significantly. However, if the 

available number of processors is less than the number of clusters, their solutions may not 

be very efficient. 

Duplication-Based Scheduling 

A general solution for the problem of cluster-based scheduling schemes is task 

duplication-based scheduling [15] [16] [17] [23]. Similar as cluster-based scheduling, task 

duplication is also tried to reduce the inter-processor communication overhead. The basic 

idea of task duplication is to duplicate the preceding task of the currently selected task onto 

the chosen processor. It aims to reduce or optimize the task’s starting or finishing time. 
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The main weakness of duplication-based algorithms is their high complexity. The mainly 

target of duplication-based scheduling is to schedule a set of tasks to an unbounded number 

of computing machines. There are numerous variations of task duplication base algorithms 

using different strategies to determine which tasks to duplicate and on which cores to use 

for the tasks. 

Cluster-based scheduling and duplication-based scheduling are considered be useful 

for systems with negligible communication cost between tasks which are allocated on 

different processors. (e.g. Distributed Computing). 

 

2.2. Meta-Heuristic Algorithms 

Meta-heuristic is a high-level problem-independent algorithmic framework that 

provides a set of guidelines or strategies to develop heuristic algorithms. Most meta-

heuristic algorithms are designed based on some abstraction of nature. The most popular 

meta-heuristics including: genetic algorithm (GA), ant colony optimization (ACO), bee 

algorithms (BA), particle swarm optimization (PSO) and simulated annealing (SA). 

Because of its effectiveness to solve combinational problems, meta-heuristics have 

gained massive popularity in the past years. In this section, we present a brief view of 

scheduling algorithms based on meta-heuristic algorithms. 

Genetic Algorithms (GA) 

The genetic algorithm was first invented by Holland [54]. This algorithm thinks of a 

set of candidate solutions for certain problem as biological population, in each step, the 

good individuals have a higher chance to pass its traits to next generations. And some 

traits of individuals may be mutated and altered. Better individuals will be found over 

successive generations. 

In the past decades, Genetic algorithms have been widely used to evolve solutions for 

many task scheduling problems. Including [9] [18] [41] [42] [43] [44] [45]. How the 

definite the representation of individual for scheduling problem and corresponding 

genetic operators usually are the key issues for genetic task scheduling algorithm design.  

http://scholarpedia.org/article/Algorithm
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Ant Colony Optimization (ACO) 

Ant colony optimization (ACO) is another popular meta-heuristic algorithm for 

combinational problems, it was inspired by the behavior of real ants finding the food. 

When an real ant finds a food source, the ant will leave pheromones on the ways to its 

colony. Because other ants will attract to explore paths with more pheromones, as the time 

goes on, a better (shortest) path from the colony to the food source would normally be 

found.  

 Ant colony optimization is initially proposed in [38]. Although compared with the 

genetic algorithm, Ant colony optimization is relatively new. However, it has been 

successfully applied to the traveling salesman problem [51], the asymmetric traveling 

salesman problem [52], the quadratic assignment problem [53], and the transportation 

planning problems [49] [50].  

There also are many works for task scheduling [39] [40] based on ant colony 

optimization. In general, scheduling algorithms based on ant colony optimization usually 

adopt the following steps: 

1. Ants produce a scheduling resolution according to some information (generally 

known as pheromones) left by previous ants. 

2. Evaluate scheduling solutions obtained by each ant. The better solutions will leave 

more pheromones. 

3. Go to step 1. 

 

2.3. Exact Algorithms 

In this chapter, we introduce several exact methods for scheduling problem. Although 

most of task scheduling algorithms are based on heuristic algorithms to find sub-optimal 

results, however, on many occasions, it is still desirable to obtain optimal schedules, for 

example, to evaluate heuristic algorithms. 
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Branch-and-Bound Algorithms 

The branch-and-bound algorithm (B&B) is the most frequently used exact method for 

task scheduling problem (i.e. [24] [25] [26] [27]). B&B explores all solution space which 

is represented as a branching tree. B&B prunes the branches if they have no candidates 

to furthermore improve the final results. DF/IHS (depth first/implicit heuristic search) 

[24] is one of task scheduling based on B&B. This method can reduce average 

computation time markedly by combining the branch-and-bound method with CP/MISF 

(critical path/most immediate successors first). J. Carlos [26] proposed a scheduling 

algorithm for heterogeneous system, which is multi-objective B&B algorithm based on 

Pareto dominance. 

Integer Linear Programming  

Linear programming tries to find a maximum or minimum solution while satisfying 

all given constraints. The integer linear programming (ILP) is a subset of linear 

programming. Its constraints and solution must be restricted to integers. When only some 

of the constraints are integer, the problem is called a mixed-integer linear program.  

The exact results of scheduling problem can be acquired by ILP, because constraints 

in task scheduling problem in essence is a set of integer constraint functions. 

Recently, Venugopalan [46] has proposed ILP based approach which aims to find exact 

results for task scheduling problem with communication delays. The contribution of this 

work is to use problem specific knowledge to eliminate the bi-linear forms arising out of 

communication delays, and to run all variable indices in the proposed MILP formulation 

independent of the number of processors which reduces the complexity significantly. 

A* Search Algorithms 

The A* search algorithm [47] is often used for finding the shortest path between two 

points for robot navigation or game. In [48], a new algorithm was reported to solve the 

problem of task scheduling by A* searching algorithm. A* task scheduling algorithm 

starts from a state where all tasks are not scheduled. At each iteration, A* choose one or 

more states with minimum cost to produce new states.  

Usually, the cost is defined as: 
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   𝑐𝑜𝑠𝑡(𝑠) = 𝑔(𝑠) + ℎ(𝑠)     (1) 

Where s is a partial scheduling state, g(s) is its scheduling length. h(n) is a heuristic 

which estimates the scheduling length from the current state to the final state. An 

admissible h(n) will significantly reduce the search space. 

 

2.4. Algorithm for Data-Parallel Task 

Unfortunately, the majority of works on task scheduling (The above mentioned 

algorithms) only consider the task parallelism. Many studies [35] [36] [37] have shown 

that, for a large class of large computational applications, exploiting both task and data 

parallelism yields better speedups compared to either pure task parallelism and pure data 

parallelism. 

There are several research efforts for task scheduling problem with data-parallel tasks. 

Recent works include [28], [29] and [30]. In [28], Yang and Ha proposed a mapping and 

scheduling technique which is based on integer linear programming (ILP) formulation, 

and extended the technique in [29] by assuming that several pipeline stages can share a 

multi-core processor. Vydyanathan also proposed an algorithm for data-parallel tasks in 

[30], which reduces the overall scheduling length by a locality conscious scheduling 

strategy. There is a common assumption in [28], [29] [30] that the degree of data 

parallelism for each task is flexible, and increasing the number of cores assigned to a task 

decreases the execution time of the task. The exact execution time of the task on different 

cores is known before the task schedule starts. However, to acquire the execution times of 

all tasks on different degree of data parallelism may be very tedious and time-consuming. 

This thesis assumes that tasks have a fixed degree of data parallelism which was decided 

by human programmers. 
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Chapter 3.  

The Problem Definition 

The problem of task scheduling can be described as scheduling and mapping a set of 

tasks which belongs to a task graph onto a multicore system, with a goal of minimum 

scheduling length under constraints on inter-task dependency. This section presents the 

application model for the task scheduling problem with data-parallel task. Essential, the 

task scheduling is a kind of mathematical optimization. We also discuss that how to use 

ILP (integer linear programming) to define and solve this problem in this section.  

 

3.1. Task Graph 

The task graph (also be called acyclic directed graph) is an intuitive representation of 

parallel applications. It consists of a set of nodes and directed edges, in which the nodes 

represent tasks and edges represents the flow dependencies between different tasks. An 

example of task graph is shown in Figure 1.  

Task graph has two dummy tasks S and E. The tasks S with no parent is the entry point, 

and the tasks E with no child is the exit point of an application. The common tasks have 

its own execution time and degree of data parallelism which are marked respectively 

behind the correspondent tasks. For example, the task 1 must be executed on 4 cores 

concurrently, and take 10 time units to finish its work. 
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In this thesis, we assume that individual tasks are implemented by human programmers 

using parallel programming techniques. The degree of parallelism for each task does not 

change during the task scheduling process. How to choose an appropriate degree of 

parallelism, and how to determine the execution time of the task on this degree of 

parallelism are beyond the scope of this article. 

 

3.2. System Model 

In this thesis, the target system is assumed to be a set of cores which is fully connected 

by high-speed bus. The architecture of these cores is same (homogeneous system). We 

also assume that:  

 Task has the same execution time on arbitrary cores. 

 The task which is being executed cannot interrupt or preempt by another task.  

 The communication time between tasks is ignorable. 

 

Figure 1. A task graph 

S

1 2

4 5

E

( 4, 10 )

( 3, 40 )

( 3, 20 )

( 1, 30 )3 ( 1, 10 )
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(a) A schedule for Figure 1 which with scheduling length equal to 70 time units 

 

(b) A schedule for Figure 1 which with scheduling length equal to 80 time units 

 

(c) Another schedule for Figure 1 which with scheduling length equal to 70 time 

units 

Figure 2. Some scheduling results for task graph in Figure 1 

 

Time = 0 10 20 30 40 50 60 70 80

Core 0 T1 T2 T2 T5 T5 T5 T5

Core 1 T1 T2 T2 T5 T5 T5 T5

Core 2 T1 T2 T2 T5 T5 T5 T5

Core 3 T1 T3 T4 T4 T4

Time = 0 10 20 30 40 50 60 70 80

Core 0 T2 T2 T5 T5 T5 T5 T1 T3

Core 1 T2 T2 T5 T5 T5 T5 T1

Core 2 T2 T2 T5 T5 T5 T5 T1

Core 3 T4 T4 T4 T1

Time = 0 10 20 30 40 50 60 70 80

Core 0 T1 T2 T2 T5 T5 T5 T5

Core 1 T1 T3 T5 T5 T5 T5

Core 2 T1 T2 T2 T5 T5 T5 T5

Core 3 T1 T2 T2 T4 T4 T4



  14 

 

  

Figure 2 shows several scheduling resolutions for task graph in Figure 1. The target 

system is described in above with four cores. Obviously, the same task graph can be 

scheduled as totally different ways and have different scheduling length. The scheduling 

problem aims to find the minimal overall scheduling length, while meet all constraints 

which are described in this task graph. 

 

3.3. ILP Formulations 

The task scheduling is essentially a kind of mathematical optimization problem. It can 

be formulated by an integer linear programming (ILP) [22]. In this section, we use the 

following ILP formulation to describe the task scheduling problem mentioned in 3.1.  

Before we go into the details of our ILP formulation, we first present the notation used 

in (2) ~ (6). The timei is the execution time of taski, and pari denotes the degree of data 

parallelism of taski. If there is a data dependency between tasksi1 and tasksi2, the flowi1, i2 

equal to 1. Otherwise, the flowi1, i2 equal to 0. starti and finishi denote the start time and 

finish time of taski, respectively. mapi,j denotes mapping information of taski, that is, if the 

mapi,j is equal to 1 means the taski is assigned to corej. 

Minimize: 

 Max(𝑓𝑖𝑛𝑠𝑖ℎ𝑖)        (2) 

Subject to: 

 ∀𝑖     ∑ 𝑚𝑎𝑝𝑖,𝑗j = 𝑝𝑎𝑟𝑖       (3) 

 ∀𝑖     𝑓𝑖𝑛𝑖𝑠ℎ𝑖 = 𝑠𝑡𝑎𝑟𝑡𝑖 + 𝑡𝑖𝑚𝑒𝑖      (4) 

 ∀𝑖1, 𝑖2, 𝑗          𝑚𝑎𝑝𝑖1,𝑗 + 𝑚𝑎𝑝𝑖2,𝑗 ≤ 1  

  ∨ 𝑓𝑖𝑛𝑖𝑠ℎ𝑖1 ≤ 𝑠𝑡𝑎𝑟𝑡𝑖2 

  ∨ 𝑓𝑖𝑛𝑖𝑠ℎ𝑖2 ≤ 𝑠𝑡𝑎𝑟𝑡𝑖1      (5) 

 ∀𝑖1, 𝑖2    𝑓𝑙𝑜𝑤𝑖1,𝑖2 = 1 → 𝑓𝑖𝑛𝑖𝑠ℎ𝑖1 ≤ 𝑠𝑡𝑎𝑟𝑡𝑖2    (6) 
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The objective function (2) indicates that the goal of task scheduling is minimizing the 

overall scheduling results. The Formula (3) expresses that taski must be mapped onto pari 

cores. The Formula (4) guarantee taski takes timei to complete. Formula (5) ensures that 

every task cannot run on same cores at the same time. Formula (6) describes that if taski2 

depend on taski1, the taski2 must be executed until the taski1 finished.  

Then, the task scheduling problem can be defined as follows: Given timei, pari and 

flowi1,i2, try to find appropriate starti, finishi and mapi,j to minimize the overall scheduling 

length. Although at least in theory, solving the above ILP formulas can acquire the exact 

solution of task scheduling problem. However, it is very time-consuming may not practical 

for large task graphs. 
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Chapter 4.  

List Scheduling Algorithms 

List scheduling is a most important heuristic for task scheduling. In this section, we 

propose six heuristic algorithms for scheduling problem. All of the six algorithms are 

based on list scheduling, but their priority assignment strategies are different.  

 

 

Figure 3. Flowchart for list scheduling algorithm 

All 

task?
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and schedule it

Update the 
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Many heuristics for task scheduling are based on list scheduling. The basic idea of list 

scheduling is to make a Readylist. The Readylist contains a sequence of tasks which can 

be scheduled immediately. 

List scheduling repeatedly executes the following three steps until a valid schedule is 

obtained: 

(1). Update the Readylist. 

(2). select a task from Readylist. 

(3). Assign this task to suitable processors. 

The above steps finished until all tasks are scheduled. In step (2), the task with the 

highest priority will be selected first. There are a number of list-based algorithms employ 

different ways to determine the priority of tasks. How to define the priority of tasks is the 

most important issue for the design of list scheduling. The list scheduling described in 

above also summarized in Figure 3. 

 

 

4.1. A Motivating Example 

CP/MISF (critical path/most immediate successor first) is a list-based scheduling 

algorithm. It is designed to handle task scheduling without data parallelism by Kasahara 

and Narita in [24]. Although this algorithm was developed more than three decades ago, 

because of the high quality of results as well as the low computational complexity, 

CP/MISF still be considered as one of the best heuristics in practical use. 

The CP/MISF algorithm, as implied by its name, uses two different factors to determine 

the priority of tasks: the critical path length and the number of immediate successors. The 

critical path length of a task is the longest distance from this task to the end point of the 

overall task graph. Figure 4 is the same task graph as Figure 1. In Figure 4 two numbers 

are written in red behind each task denote its critical path length and the number of 

immediate successors respectively. For example, the critical path length of task 2 is 60, by 
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passing through the task 2 and task 5. In the CP/MISF algorithm, the priority of tasks is 

defined according to the following two rules: 

 If the critical path of task i is longer than that of task j, task i has a higher priority 

than task j. 

 If two tasks have same critical path length, the task with more immediate 

successors has higher propriety than other. 

Figure 6 illustrates the scheduling result of task graph in Figure 4 acquired by the 

CP/MISF algorithm. In the beginning, The tasks 1 and task 2 with no parent tasks except 

the task S are ready to schedule. The CP/MISF algorithm schedules task 2 first, because 

of its longer critical path. Next, tasks 4 and 5 become schedulable, task 5 is selected 

because it has the longest critical path between task 1, task 4 and task 5. Then, followed 

by tasks 2 and 5. The task 4, task 1 and task 3 are scheduled. We can see from Figure 6 

the overall scheduling length acquired by the CP/MISF algorithm is 80 time units. 

The CP/MISF algorithm is very efficient for task scheduling only considering task 

parallelism. However, the CP/MISF algorithm is not worked well for tasks with data 

parallelism. Actually, The scheduling result in Figure 6 is not optimal. Then, we try to 

schedule the same task graph in a better way. In Figure 5 we give the tasks which with 

larger data parallelism higher priority. According to this priority strategy, task 1 is 

 

Figure 4. A task graph with critical path and most immediate successor number 

E

S

1 2

4 5

(4,10,20,1)

(3,40,40,0)

(3,20,60,2 )

(1,30,30,0 )3 (1,10,10,0 )
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scheduled first. Next, task 2 and task 3 can be scheduled at the same time with a task 

parallel fashion. This way works better than CP/MISF algorithm and shortens the overall 

scheduling length by 10 time unit. Of course, this policy is not always effective, but this 

example shows that the degree of data parallelism is an important factor for scheduling 

data-parallel tasks, and should be considered in the priority strategy. 

 

Figure 5.Schedule which takes into account the degree of  

data parallelism 

Time=0 10 20 30 40 50 60 70 80

Core 0 T1 T2 T2 T5 T5 T5 T5

Core 1 T1 T2 T2 T5 T5 T5 T5

Core 2 T1 T2 T2 T5 T5 T5 T5

Core 3 T1 T3 T4 T4 T4

 

Figure 6. Schedule obtained by the CP/MISF algorithm 

 

Time=0 10 20 30 40 50 60 70 80

Core 0 T2 T2 T5 T5 T5 T5 T1 T3

Core 1 T2 T2 T5 T5 T5 T5 T1

Core 2 T2 T2 T5 T5 T5 T5 T1

Core 3 T4 T4 T4 T1
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4.2. The Proposed Priorities 

According to the example in 4.1, we propose a set of algorithms based on list scheduling, 

the priority strategies of which take into account three factors, including the degree of data 

parallelism, the length of critical path and the number of immediate successors. For the 

convenience in writing, we use following notations: 

 P: The degree of data parallelism 

 C: The length of critical path 

 S: The number of immediate successors 

In this chapter, the first proposed algorithm adopts the following priority based on the 

three factors. 

1. If task i has a larger data parallelism than task j, task i has a higher priority than task j. 

2. In case tasks i and j has the same degree of data parallelism, if the critical path of task 

i is longer than that of task j, task i has a higher priority than task j. 

3. In case tasks i and j has the same degree of parallelism and the same length of critical 

paths, if task i has more immediate successors than task j, task i has a higher priority 

than task j. 

We named the above priority strategy as PCS, since the three factors (P, C and S) are 

prioritized in the order of P-C-S. In the PCS algorithm, each task has a priority value which 

is called PriorityPCSi. A larger PriorityPCSi value indicates the task has a higher priority. 

We formal define the PriorityPCSi as follows: 

 

    𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑃𝐶𝑆𝑖 = U2 ∙ 𝑃𝑖 + U ∙ 𝐶𝑖 + 𝑆𝑖   (7) 

 

The Pi, Ci, and Si in formula (7) are the values of P, C and S for task i, respectively. U 

is a constant value greater than any of Pi, Ci, and Si for any i. The next five algorithms CPS, 

CSP, SCP, PSC and SPC are defined in the similar way, but with different priorities using 

the three factors. The task priorities in the five algorithms are defined as follows: 
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   𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝐶𝑃𝑆𝑖 = U2 ∙ 𝐶𝑖 + U ∙ 𝑃𝑖 + 𝑆𝑖   (8) 

   𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝐶𝑆𝑃𝑖 = U2 ∙ 𝐶𝑖 + U ∙ 𝑆𝑖 + 𝑃𝑖   (9) 

  𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑆𝐶𝑃𝑖 = U2 ∙ 𝑆𝑖 + U ∙ 𝐶𝑖 + 𝑃𝑖   (10) 

   𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑃𝑆𝐶𝑖 = U2 ∙ 𝑃𝑖 + U ∙ 𝑆𝑖 + 𝐶𝑖   (11) 

   𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑆𝑃𝐶𝑖 = U2 ∙ 𝑆𝑖 + U ∙ 𝑃𝑖 + 𝐶𝑖   (12) 

 

An important common feature must note that all of the six algorithms use static 

priorities, which means the priorities are determined before scheduling, and they do not 

change while the scheduling process. 

 

4.3. Experiments 

In this section, we adopted the Standard Task Graph (STG) Set [31] [55] which was 

developed at Waseda University to evaluate the effectiveness of the six algorithms. Since 

task graphs in STG do not indicate the degree of data parallelism of each task, we randomly 

assigned it to all of the tasks. The number of cores was changed from two to sixteen.  

We compare the six algorithms proposed in this chapter with integer linear 

programming (ILP) technique (defined in chapter 2). In our experiments, we use IBM 

ILOG CPLEX 12.5 to solve the ILP problems. Actually, In the majority of cases, CPLEX 

cannot find the exact results in a reasonable time. Therefore, we limited the CPU time of 

CPLEX in 60 minutes, and the best solutions found in the limited time were compared 

with the proposed algorithms. We conducted our experiments on dual Xeon processors 

(E5-2650, 2.00Hz) with 128GB memory. 
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4.3.1. Results for Random Task Graphs 

First, we evaluated our algorithms using 20 random task graphs which with 50 tasks. 

Table 2-a, b, c and d show the scheduling lengths obtained by the proposed six algorithms 

as well as the ILP method. We use X to mark in the ILP column if the ILP method failed 

to find any feasible solution within 60 minutes in CPU time. For ease of comparison, in 

each test the best scheduling result is highlighted in red. 

We can see from Table 2, in many benchmarks, the ILP method cannot find a solution 

within the limited CPU times. Even the feasible schedules were found by the ILP method, 

usually are much longer than the scheduling results of other algorithms. 

Figure 7 shows the average scheduling lengths of task graphs with 50 tasks obtained by 

the six algorithms proposed in this paper. We normalized the scheduling lengths to the 

PCS algorithm. This figure shows that, on average, PCS algorithm find better solutions 

than other methods. 

Next, we evaluated our algorithms using 20 random task graphs which with 100 tasks. 

Similar to Table 2, Table 3 shows the scheduling lengths which obtained by seven methods, 

but task graphs with 100 tasks. And Figure 8 shows the average scheduling lengths which 

were normalized to results of PCS. The Table 3 and Figure 8 demonstrated that PCS 

algorithm finds better solutions than other methods on average again. 

From Table 2 and Table 3, we also note that, although PCS worked nice on average, in 

many cases, it still found longer scheduling results than other algorithms. We consider that 

pure list scheduling based algorithms are hard to work well for all task graphs. 
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Figure 7. Averages of normalized schedule lengths for task graphs  

with 50 tasks. 

 
Figure 8. Averages of normalized schedule lengths for task graphs 

with 100 tasks. 
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Table 2-a. Scheduling lengths for task graphs with 50 tasks on 2 cores 

 

Task graph IDs PCS CPS CSP SCP PSC SPC ILP 

rand0000 203 200 200 210 200 212 204 

rand0001 232 233 233 249 233 251 232 

rand0002 188 192 192 199 192 199 197 

rand0003 224 224 224 230 225 228 241 

rand0004 177 181 181 189 181 191 180 

rand0005 495 496 496 520 496 531 504 

rand0006 351 363 363 372 363 375 356 

rand0007 384 387 387 394 391 400 430 

rand0008 434 456 456 447 456 464 460 

rand0009 386 397 397 412 397 410 398 

rand0010 153 162 162 156 163 159 165 

rand0011 205 213 213 208 213 210 198 

rand0012 208 211 211 213 211 213 200 

rand0013 238 252 252 282 252 287 248 

rand0014 195 197 197 196 197 201 208 

rand0015 425 448 448 452 448 444 427 

rand0016 374 390 390 398 395 408 389 

rand0017 439 448 467 492 456 491 471 

rand0018 428 443 443 438 443 430 429 

rand0019 393 409 409 416 403 407 404 
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Table 2-b. Scheduling lengths for task graphs with 50 tasks on 4 cores 

 

Task graph IDs PCS CPS CSP SCP PSC SPC ILP 

rand0000 168 178 178 175 180 178 X 

rand0001 220 214 214 229 214 232 X 

rand0002 173 173 173 183 174 186 197 

rand0003 194 202 202 211 202 201 X 

rand0004 167 168 168 171 170 186 X 

rand0005 439 443 438 448 449 448 464 

rand0006 275 293 293 294 293 305 X 

rand0007 357 348 348 358 349 367 X 

rand0008 409 415 415 424 415 412 456 

rand0009 327 373 373 368 373 363 X 

rand0010 131 139 139 134 140 134 X 

rand0011 181 192 192 177 192 177 191 

rand0012 197 195 195 201 195 212 X 

rand0013 186 214 214 239 214 254 X 

rand0014 171 181 181 175 181 175 X 

rand0015 376 377 377 383 373 386 382 

rand0016 318 330 330 342 331 356 360 

rand0017 377 396 396 414 396 414 X 

rand0018 403 390 390 408 392 414 401 

rand0019 342 368 368 368 369 373 X 
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Table 2-c. Scheduling lengths for task graphs with 50 tasks on 8 cores 

 

Task graph IDs PCS CPS CSP SCP PSC SPC ILP 

rand0000 149 152 152 151 160 160 X 

rand0001 203 210 210 197 210 212 X 

rand0002 161 153 153 156 153 164 X 

rand0003 175 180 180 183 180 189 X 

rand0004 150 155 155 160 154 172 X 

rand0005 432 402 402 438 402 439 X 

rand0006 259 260 252 269 262 281 X 

rand0007 336 325 325 324 324 338 X 

rand0008 366 362 362 367 362 377 X 

rand0009 323 324 324 338 324 349 X 

rand0010 127 134 134 128 134 132 193 

rand0011 180 173 173 178 173 195 X 

rand0012 183 180 180 183 180 183 X 

rand0013 171 170 169 215 170 233 X 

rand0014 166 169 169 164 169 164 X 

rand0015 304 314 314 307 314 307 X 

rand0016 269 289 289 319 302 323 X 

rand0017 306 305 305 326 310 342 X 

rand0018 358 357 357 354 362 363 403 

rand0019 361 373 373 371 373 371 X 
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Table 2-d. Scheduling lengths for task graphs with 50 tasks on 16 cores 

 

Task graph IDs PCS CPS CSP SCP PSC SPC ILP 

rand0000 156 149 152 148 152 160 211 

rand0001 195 204 205 213 204 213 227 

rand0002 150 143 143 149 143 146 199 

rand0003 169 174 174 171 174 184 219 

rand0004 158 159 159 157 159 167 188 

rand0005 406 399 399 413 399 451 463 

rand0006 268 261 261 263 261 282 360 

rand0007 301 283 283 298 283 288 431 

rand0008 360 347 347 370 347 369 438 

rand0009 289 303 303 309 303 286 382 

rand0010 126 133 133 129 133 133 168 

rand0011 135 155 155 172 155 186 175 

rand0012 174 182 183 183 182 197 213 

rand0013 154 174 174 199 174 201 243 

rand0014 160 160 158 162 160 166 191 

rand0015 325 336 336 331 336 343 445 

rand0016 286 301 301 291 304 286 387 

rand0017 333 337 337 319 338 336 481 

rand0018 342 350 350 372 350 382 415 

rand0019 334 332 332 319 332 334 401 
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Table 3-a. Scheduling lengths for task graphs with 100 tasks on 2 cores 

 

Task graph IDs PCS CPS CSP SCP PSC SPC ILP 

rand0000 431 447 447 463 445 466 X 

rand0001 401 411 411 416 411 418 X 

rand0002 459 480 486 508 480 512 X 

rand0003 406 419 419 427 416 431 501 

rand0004 393 417 417 408 422 416 459 

rand0005 814 833 833 868 842 873 X 

rand0006 868 886 882 916 886 899 965 

rand0007 861 872 872 888 869 929 997 

rand0008 796 818 818 824 818 806 X 

rand0009 947 963 963 958 963 974 X 

rand0010 464 485 485 488 485 490 532 

rand0011 445 464 466 456 466 455 X 

rand0012 469 484 484 522 484 528 551 

rand0013 480 502 502 513 502 513 X 

rand0014 391 417 417 422 415 418 X 

rand0015 781 792 792 873 792 866 X 

rand0016 764 862 860 868 857 863 X 

rand0017 860 920 922 936 922 927 X 

rand0018 724 777 792 794 779 828 X 

rand0019 749 825 825 860 825 844 856 
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Table 3-b. Scheduling lengths for task graphs with 100 tasks on 4 cores 

 

Task graph IDs PCS CPS CSP SCP PSC SPC ILP 

rand0000 388 396 396 399 392 406 X 

rand0001 348 361 366 381 362 380 X 

rand0002 413 429 429 448 429 466 X 

rand0003 341 363 363 375 365 375 X 

rand0004 454 369 376 387 382 396 X 

rand0005 704 707 698 739 698 753 X 

rand0006 785 778 778 790 782 813 X 

rand0007 760 773 773 797 773 806 X 

rand0008 701 726 726 750 726 739 X 

rand0009 783 806 810 852 810 843 X 

rand0010 385 402 402 405 402 417 X 

rand0011 394 406 410 400 416 400 X 

rand0012 432 450 450 477 450 490 X 

rand0013 404 435 440 426 437 431 X 

rand0014 354 353 357 370 359 369 X 

rand0015 706 695 694 721 697 734 X 

rand0016 667 700 700 722 700 730 X 

rand0017 746 796 798 828 798 818 X 

rand0018 628 669 662 651 669 686 X 

rand0019 700 725 726 802 743 814 X 
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Table 3-c. Scheduling lengths for task graphs with 100 tasks on 8 cores 

 

Task graph IDs PCS CPS CSP SCP PSC SPC ILP 

rand0000 356 355 355 357 361 368 X 

rand0001 326 345 347 350 346 366 X 

rand0002 380 380 382 387 382 387 X 

rand0003 338 354 354 371 353 365 X 

rand0004 340 355 344 342 350 360 X 

rand0005 713 701 701 764 701 759 X 

rand0006 712 732 730 730 730 731 X 

rand0007 675 728 728 712 728 709 X 

rand0008 637 669 669 671 669 674 X 

rand0009 785 754 754 748 754 774 X 

rand0010 338 354 375 358 356 358 X 

rand0011 353 382 384 389 381 398 X 

rand0012 431 435 435 441 435 443 X 

rand0013 382 402 405 395 402 406 X 

rand0014 327 344 343 342 343 347 X 

rand0015 697 671 658 714 658 692 X 

rand0016 625 649 649 705 657 721 X 

rand0017 730 770 770 816 770 783 X 

rand0018 657 668 668 673 668 679 X 

rand0019 679 705 701 801 701 775 X 
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Table 3-d. Scheduling lengths for task graphs with 100 tasks on 16 cores 

 

Task graph IDs PCS CPS CSP SCP PSC SPC ILP 

rand0000 335 351 346 354 358 368 494 

rand0001 307 327 327 317 326 366 483 

rand0002 365 352 353 381 353 387 501 

rand0003 314 329 327 336 331 365 449 

rand0004 317 314 320 324 320 360 489 

rand0005 668 690 690 699 690 759 920 

rand0006 687 705 701 719 705 731 789 

rand0007 665 694 694 690 696 709 945 

rand0008 607 618 618 620 618 674 900 

rand0009 728 742 742 786 742 774 944 

rand0010 362 370 372 362 361 358 501 

rand0011 336 342 342 344 351 398 480 

rand0012 410 394 397 437 414 443 541 

rand0013 375 395 399 431 394 406 556 

rand0014 313 337 338 325 338 347 473 

rand0015 606 625 625 613 597 692 978 

rand0016 648 670 670 671 670 721 876 

rand0017 677 727 727 750 727 783 1024 

rand0018 591 644 652 615 652 679 832 

rand0019 676 682 686 731 690 775 796 
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4.3.2. Results for Realistic Task Graphs 

The next experiments, we used three task graphs developed from the realistic 

applications, i.e., (a) a part of fpppp from in the SPEC benchmarks, (b) robot control and 

(c) sparse matrix solver [55]. The task graphs are generated by the OSCAR Parallelizing 

Compiler, [32], [33] and [34]. The task graphs of fpppp, robot and sparse contain 334 tasks, 

88 tasks, and 96 tasks, respectively. Table 4 shows the scheduling lengths obtained by six 

proposed algorithms. We can see in general, PCS yielded better scheduling results more 

efficiently than other algorithms. 

Figure 9-(a), (b) and (c) show the normalized the scheduling lengths of three realistic 

task graphs, respectively. We found although PCS algorithm obtains good schedules in 

general. However, for robot on eight cores and sparse on two cores, some others algorithms 

perform better than PCS. 

 

 

  

 

(a) robot 

 

N
o

rm
al

iz
ed

 s
ch

ed
u
le

 l
en

g
th

0.85

0.9

0.95

1

1.05

1.1

1.15

2 cores 4 cores 8 cores 16 cores

PCS

CPS

CSP

SCP

PSC

SPC



  33 

 

  

 

 

(b) sparse 

 

 

(c) fpppp 

 

Figure 9. Normalized schedule lengths for realistic task graphs. 
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Table 4. Scheduling lengths for realistic task graphs 

 

 

Robot 
 

2 cores 4 cores 8 cores 16 cores 

PCS 1951 1739 1731 1615 

CPS 1961 1769 1672 1641 

CSP 1961 1769 1672 1641 

SCP 1975 1791 1715 1637 

PSC 1952 1767 1731 1615 

SPC 2002 1783 1687 1627 

Sparse 
 

2 cores 4 cores 8 cores 16 cores 

PCS 1458 1242 1132 1038 

CPS 1442 1312 1222 1140 

CSP 1442 1312 1222 1140 

SCP 1454 1276 1172 1104 

PSC 1458 1242 1136 1038 

SPC 1454 1248 1166 1086 

Fpppp 
 

2 cores 4 cores 8 cores 16 cores 

PCS 5361 4881 4533 4487 

CPS 5738 5152 4987 4905 

CSP 5738 5152 4987 4905 

SCP 5809 5108 4946 4899 

PSC 5363 4884 4538 4531 

SPC 5509 5032 4689 4623 
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Chapter 5.  

Dual-Mode Algorithm 

In chapter 4, the experimental results show that the PCS algorithm yields the best 

scheduling results on average. However, due to the static priority assigned by list 

scheduling algorithm, it is difficult to produce a good scheduling result for all task graphs. 

In this chapter, we proposed a new algorithm for task scheduling with data-parallel 

tasks. This algorithm uses two static priorities and applies different priority strategies 

during the task scheduling. Generally, this kind of flexible priority strategy helps the new 

algorithm to achieve better scheduling length on average. In our experiments, the 

experimental results show that the proposed algorithm yields the better scheduling results 

than PCS. 

 

5.1. The Problem of Pure List-Scheduling 

In chapter 4, we proposed six list scheduling algorithms to solve task scheduling 

problem with data parallelism. The list scheduling algorithms use a ready list to contain 

tasks of whose parent tasks are scheduled. The tasks in ready list will be scheduled 

according to certain priority. After a task is scheduled, the ready list will be updated. The 

approach continues until the ready list is empty.  

Among the six proposed algorithms, the PCS algorithm yields the shortest scheduling 

lengths on average. The effectiveness of list scheduling depends the most on how to define 

the priority.  

Generally, the PCS algorithm has the following advantages: the PCS algorithm 

schedules tasks which occupy more free cores first. In the fixed degree of data parallelism 

system, a task with higher data parallelism have fewer chances do task parallelism with 
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another task. If a task cannot do task parallelism, performing it at any time will not affect 

the overall scheduling length. However, scheduling such task earlier may activate some 

sub-tasks, and subsequent scheduling process has more candidate tasks to utilize multi-

cores fully. Due to the above advantages, the PCS algorithm yields the good scheduling 

results in many cases.  

Many studies (for example [1] [2] [24]) have shown that task with longer critical path 

is scheduled later may make the overall scheduling result become longer. The PCS 

algorithm does not always yield good schedules. Especially in system have more cores. 

We investigated the reason carefully and found that, although critical paths have been 

concerned in the PCS algorithm, some small-scale parallel tasks with a longer critical path 

still have lower priority. Such tasks will be executed late and make the overall scheduling 

length longer.  

According to the above theory, scheduling task with longer critical path obtains good 

results in some case. Table 2 and Table 3 shows that CPS or CSP is better than PCS in 

some cases. To solve this problem, we design an new algorithm which has the advantage 

of PCS and CSP/CPS simultaneously, named dual-mode scheduling algorithm. 

 

 

5.2. A Motivating Example 

In this section, we use a simple example to show that the PCS algorithm failed to yield 

good scheduling results for some task graph. Figure 10 shows a task graph, and the critical 

path length and the number of immediate successors of this task graph are written in red. 

Figure 11 is the scheduling results of this task graph obtained by PCS algorithm. We 

assume that the processor has four available cores  

In the beginning, the tasks 1 and 2 with no parent tasks (except task S) are ready to 

schedule. The PCS algorithm schedules task 2 first, because task 2 has a higher degree of 

data parallelism. In next step, the task 1 and tasks 3 is schedulable. The task 3 is selected 

according to the PCS priority. Then, tasks 3, Task 5, task 4 are subsequently scheduled. 

We can see from Figure 11 the total scheduling length is 80 time units. 
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We notice that PCS priority tend to schedule a task which can fully utilize the degree 

of parallelism of CPU. However, it does not consider whether there are enough tasks to 

run in parallel with the currently scheduled task. Actually, in Figure 11, scheduling task 1 

first will lose the opportunity to execute task 1 with the other tasks.  

Next, we try to schedule task 2 first. And then, task 1 and task 3 can be executed 

concurrently. Task 1 and task 4 can be executed at the same time. This way shortens the 

overall scheduling length to 60 time units. And the scheduling result is shown in Figure 

12. 

 

 

Figure 10. A task graph which was marked the CP and MISF 
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5.3. The Overall Dual-mode Scheduling Algorithm 

The list based task scheduling algorithms such as the PCS have a ReadyList, The 

ReadyList contains all tasks whose parent tasks have been scheduled. At each step, list 

based algorithms schedule a task from the ReadyList according to a static priority and 

update its ReadyList. The scheduling process finished until all tasks in task graph are 

scheduled. 

 

Figure 11. The Scheduling result obtained by PCS of task graph in Figure 10. 

 
Figure 12. The optimal scheduling result of task graph in Figure 10 

 

Time = 0 10 20 30 40 50 60 70 80 90

Core 0 T1 T1 T1 T2 T4 T4 T4 T4

Core 1 T1 T1 T1 T2 T5 T5

Core 2 T1 T1 T1 T3 T5 T5

Core 3 T5 T5

Time = 0 10 20 30 40 50 60 70 80 90

Core 0 T2 T1 T1 T1 T5 T5

Core 1 T2 T1 T1 T1 T5 T5

Core 2 T1 T1 T1 T5 T5

Core 3 T4 T4 T4 T4 T3
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In this chapter, we propose a new algorithm based on a variation of list scheduling. The 

major difference between pure list scheduling algorithms is the new algorithm has two 

ready lists. Here, we denote the two types of ready lists as ReadyList1 and ReadyList2. 

ReadyList1 and ReadyList2 are similar to the ready list in the pure list scheduling algorithm 

which contains a set of schedulable tasks. However, there is a restriction of tasks contained 

in ReadyList1, that is, the tasks in ReadyList1 must be with the degree of data parallelism 

between R*IdleCores and IdleCores. The IdleCores denotes the current number of idle 

cores, and R (filling ratio) is a constant between 0 and 1. The task priority strategies of the 

above two ready lists are as follow. 

• Tasks in ReadyList1 are scheduled by the PCS priority 

• Tasks in ReadyList2 are scheduled by the CS priority. 

 

 The PCS priority is the same priority strategy in PCS algorithm, and CS priority 

means:  

1. If the critical path of task i is longer than that of task j, task i has a higher priority 

than task j  

2. In case tasks i and j has the same length of critical paths, if task i has more 

immediate successors than task j, task i has a higher priority than task j. 

 

We can use formal definition of CS as: 

   𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝐶𝑆𝑖 = 𝑈 ∙ 𝐶𝑖 + 𝑆𝑖    (13) 

 

Below is a fundamental algorithm of the dual-mode algorithm. 

1. Initialize ReadyList1, ReadyList2 and IdleCores, as well as calculate the two 

priorities for all tasks.  

• ReadyList1 = Ø 

• ReadyList2 = Ø 

• IdleCores = the number of total cores. 
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2. Select a task at ReadyList1 which with the highest PCS priority.  

3. If ReadyList1 does not contain any task, select a task at ReadyList2 which with the 

highest CS priority.  

4. Finish if all tasks have been scheduled. Otherwise, update ReadyList1, ReadyList2 

and IdleCores. 

5. Go back to step 2. 

 

The R is a parameter which uses to limit the tasks which are contained in ReadyList1, 

the behavior of dual-mode algorithm will be changed by using different R. For example, 

when R = 0, the dual-mode algorithm produces same scheduling result as PCS, because 

the ReadyList1 contains all schedulable tasks, then never go to the step 3. On the other 

hand, when R = 1, ReadyList1 only contains the tasks can fully utilize the idle cores in 

current time, this is, the dual-mode algorithm tries to schedule the task with highest PCS 

priority value, and can completely utilize the current degree of data parallelism. If no such 

tasks exist, the dual-mode algorithm schedules tasks by CS priority. The dual-mode 

scheduling described above also summarized in Figure 13. 

 



  41 

 

  

 

To summarize, dual-mode algorithm tends to find a task to utilize the degree of data 

parallelism completely at the beginning. The parameter R indicates the lowest resource 

usage. This process is called MODE1. A more detailed description of MODE1 is available 

in the Listing 2. If the dual-mode algorithm fails to find any suitable task in MODE1, it 

will switch to MODE2, in this mode, dual-mode algorithm tends to schedule tasks with 

longer critical path primarily. The Listing 3 outlines the MODE2.  

 

 

Figure 13. Flowchart for Dual-mode Scheduling Algorithm 
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Listing 1 presents the pseudo-code for the overall dual-mode algorithm. Listing 2 to 5 

give precise descriptions of all subroutines of Listing 1. The time complexity of the dual-

mode algorithm is O(N2). Here, N denotes the number of tasks of a task graph. First, The 

algorithm for calculating the critical path lengths of each task takes O(N2). And to compute 

the two different priority values using three factors (P, C and S) takes O(N) time to run. 

The two ready lists update and select one task to schedule at each loop takes O(N). The 

main loop of the dual-mode algorithm shown in Listing 1 will repeat N times to schedule 

all the tasks. Therefore, the overall complexity of the dual-mode algorithm is O(N2). 

 

Listing 1.Dual-algorithm 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

 

Calculate C (critical path) for all tasks; 

Calculate S (number of immediate successors) for all 

tasks; 

Calculate priority PCS of all tasks; 

Calculate priority CS of all tasks; 

Initialise 

do 

begin 

task = MODE1; 

if task not exist 

begin 

task = MODE2; 

endif 

if task not exist 

begin 

INCREASE_IDLE_CORE; 

continue 

endif 

SCHEDULE; 

end 

while there are unscheduled tasks exist 
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Listing 2 MODE1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

 

for i from 1 to n 

begin 

if all preceding tasks of task i are 

completed AND R*IdleCores < P 

(the degree of data parallelism) 

of task i < = IdleCores 

begin 

Add task i to ReadyList1; 

end 

end 

return task in ReadyList1 with highest priority_PCS 

 

Listing 3. MODE2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

 

for i from 1 to n 

begin 

if all preceding tasks of task i are 

completed and IdleCores < P 

(the degree of data parallelism) 

of task i <= IdleCores 

begin 

Add task i to ReadyList2; 

end 

end 

return task in ReadyList2 with highest priority_CS 
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Listing 4. INCREASE_IDLE_CORE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

 

t = the second smallest occupied times of all cores; 

idle_cores_number = 0; 

for i from 1 to m 

begin 

if t <= occupied time of core i 

begin 

occupied time of core i = t 

idle_cores_number = 

idle_cores_number + 1; 

end 

end 

 

Listing 5. SCHEDULE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

 

t = the smallest occupied times of all cores; 

p = 0; 

for i from 1 to m 

begin 

if t == occupied time of core i AND p < the 

P of task i 

begin 

Schedule task on core i; 

Update the occupied time of core i; 

p = p + 1; 

end 

 end 
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5.4. Experiments 

The proposed dual-mode algorithm was implemented in C. We used Standard Task 

Graph (STG) Set [31] [55] which was developed at Waseda University to evaluate the 

effectiveness of the proposed algorithms. The scheduling results obtained by the dual-

mode algorithm were compared with PCS algorithm (defined in chapter 4). Since task 

graphs in STG do not indicate the degree of data parallelism for each task, we randomly 

assigned it to all of the tasks. The number of cores was changed from two to sixteen. We 

conducted all of our experiments on dual Xeon processors (E5-2650, 2.00Hz) with 128GB 

memory. 

 

5.4.1. Results for Random Task Graphs 

First, we evaluated our algorithm using 20 random task graphs which with 50 tasks. 

Because using different parameter R greatly affect the following scheduling procedures of 

dual-mode algorithm. we conducted same experiments but the R value is set to 0.7, 0.8, 

0.9 and 1.0.  

Figure 14 shows the average scheduling lengths of task graphs with 50 tasks. We 

compared the proposed dual-mode algorithm with PCS algorithm. And the all scheduling 

results normalized to the results by the result of PCS. From Figure 14 we can find that the 

dual-mode algorithm always gets better results than PCS, especially when the CPU with 

more cores. 
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Next, we conducted similar experiments as Figure 14, but using 20 random task graphs 

which with 100 tasks. As you can see from Figure 15, the dual-mode algorithm yields 

better scheduling results than PCS. The two figures Figure 14 and Figure 15 show very 

clear on that the effectiveness of dual-mode algorithm is significantly improved when 

compared with PCS.  

However, the above experiments cannot clearly determine the best R value. In order to 

find the best R value on average, we evaluated our dual-mode algorithm while the R value 

changed from 0 to 1. 

 In Figure 16 and Figure 17, we scheduled 20 task graphs which consist of 50 tasks 

and 100 tasks respectively. The R value of dual-mode algorithm is changed between 0 and 

1 by 0.05 increment. 

 

Figure 14. Averages of normalized schedule lengths for task graphs with 50 tasks. 
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As we can see from Figure 16 and Figure 17, if the R is small, the dual-mode algorithm 

produces exactly the same scheduling result obtained by the PCS algorithm. A small R 

helps MODE1 to contain more tasks, and fewer tasks are scheduled by MODE2. In this 

case, most tasks scheduled by MODE1 using the PCS priority, therefore, the dual-mode 

algorithm with smaller R behaves similarly to the PCS algorithm.  

On the other hands, if the R is large, MODE1 only schedules tasks which can 

completely utilize the current idle cores. If no such tasks exist, the dual-mode algorithm 

switches to MODE2 and schedules tasks by CS priority. 

We attribute the good results achieved by dual-mode to the fine balance between 

different priority strategies. By adjusting the value of R, we can change the percentage of 

task scheduled by PCS and CS strategies. The experimental results show, on average, R 

approximately equals to 0.85, the dual-mode algorithm yields good scheduling results. 

 

 

 

Figure 15. Averages of normalized schedule lengths for task graphs with 100 tasks. 
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Figure 16. Schedule lengths with 50 tasks (R=0~1) 

 

Figure 17. Schedule lengths with 100 tasks (R=0~1) 
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5.4.2. Results for Realistic Task Graphs 

 

The next experiments, we used three task graphs developed from the realistic 

applications, i.e., (a) a part of fpppp from in the SPEC benchmarks, (b) robot control and 

(c) sparse matrix solver [55].  

Figure 18 shows the average scheduling lengths of three realistic task graphs. Same as 

Figure 14 and Figure 15, we normalized all the results to the result of PCS We found the 

dual-mode algorithm obtained good schedules when R value equal to 0.7 or 0.8. However, 

for fpppp on 16 cores, sparse on 16 and 32 cores, dual-mode algorithm failed to get shorter 

scheduling result than PCS. The quality of dual-mode largely depends on the structure of 

task graph and the target system model. In generally the effectiveness of heuristic need 

evaluate by a lot of experiments. Therefore, we attribute the poor results of sparse on 16 

and 32 cores to isolated experiments. 

 

(a)  robot 
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(b)  Sparse 

 

(c)  fpppp 

Figure 18. Normalized schedule lengths for realistic task graphs. 
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Chapter 6.  

Genetic Algorithm  

In chapter 5, dual-mode algorithm has greatly improved the list scheduling base method 

for task scheduling. But in essence, list scheduling algorithms use static rule based on 

experience or statistics. If the static rules are over-optimized by specific task graph, it may 

difficult to produce optimal solutions or near-optimal to other problems. 

In contrast, meta-heuristics provide a framework for solving for the optimization 

problem. They adopt some random strategies to search larger solution space, and usually 

provide a mechanism to avoid local-optimal resolution. The genetic algorithm is one of 

the most famous meta-heuristics which inspired by natural selection. Due to its efficiency 

to solve combinatorial optimization problems, there are many task scheduling algorithms 

are based on genetic algorithm. Unfortunately, majority of those works only consider the 

data task parallelism. Many studies have shown that, for a large class of large 

computational applications, exploiting both task and data parallelism yields better 

speedups compared to either pure task parallelism and pure data parallelism. 

In this chapter, we present an approach of task scheduling based on a genetic algorithm 

to solve the scheduling problem with both task and data parallelism. Different from 

traditional genetic algorithms for task scheduling [19] [21] [20], we propose a novel 

chromosomal representation for task scheduling and corresponding genetic operators to 

reduce the search space and improve the computing speed. Because the genetic algorithm 

needs to generate and evaluate a large number of chromosomes, it usually requires a long 

execution time. In this chapter, we also parallelize our algorithm with OpenMP. 
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6.1. Genetic Algorithm Fundamentals 

Genetic algorithms are a kind of meta-heuristic algorithms inspired by the processes 

observed in natural selection [54]. Genetic algorithms think of a set of candidate solutions 

for a problem as biological population, and the fitness of each individual is evaluated 

according to Darwin's theory: "Survival of the fittest". The fitter ones are more likely 

selected and produce next generations. During this breeding process, the spontaneous 

mutations occur, creating individuals that are better adaptable to the environment. The 

basic terms of genetic algorithms used in this paper are shown and defined in Table 5. 

Table 5. Basic terms of a genetic algorithm. 

 

Terms Meaning 

Environment Problem 

Individual Solution to a problem 

Chromosome Representation for a solution 

Population Set of solutions represented by chromosome 

Gene The basic element in chromosome 

Fitness The degree of adaptation for individual to the 

environment 

Selection The operation of choosing parents 

Crossover The operation of producing child   

Mutation The operation of randomly alter genes 
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Typically, a genetic algorithm can conclude as Figure 19, which consists of the following 

steps. 

 Initialization: Generate the initial population. 

 Calculation of the fitness: The fitness of each individual is calculated according to the 

definition of the problem. 

 Selection: Select the adapted individuals as parents for the next generation. 

 Crossover: Vary the programming of a chromosome (or chromosomes) from one 

generation to the next generation. 

 Mutation: Alter genes for individuals. 

 Go to step 2 until the stopping criteria is reached. 

  

Figure 19. The flow chart of Genetic algorithm 
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6.2. The Proposed Genetic Algorithm 

This section proposes a new algorithm for the task scheduling problem defined in 

Chapter 3. In principle, our algorithm is based on the basic genetic algorithm described in 

Section 6.1. This section presents details of each step of the genetic algorithm tailored for 

our scheduling problem. 

 

6.2.1. Representation of a Chromosome 

In genetic algorithms, a chromosome is a set of strings, which represent a potential 

solution for the problem. Defining an adequate chromosome is one of the most important 

issues for a successful application of genetic algorithms. Since all genetic operators are 

defined on chromosomes, a good chromosome representation will make the genetic 

operators easier to implement and limit the unnecessary search space.  

Several different types of chromosomes for task scheduling problems were proposed in 

previous works. All of them contain the information on both tasks scheduling and mapping, 

which means that both the ordering of task execution and the mapping between tasks and 

cores are encoded. This kind of chromosomes may not be very efficient for task scheduling 

with task and data parallelism, because the tasks can be mapped on multiple cores, 

therefore, the length of chromosomes may tend to be very long. We intend to find a more 

condensed representation of chromosomes. Our proposed chromosome only encodes 

information about the ordering of task execution, while ignoring the mapping between 

tasks and cores. This representation also reduces greatly the size of search space and 

improves the performance of the algorithm. 

The proposed chromosome representation is an array of N elements where N represents 

the number of tasks. This array determines the sequence of the processing of the tasks. 

Figure 20 shows an example of the proposed chromosome. In Figure 20, task1 (T1) will 

be scheduled first, the next one is task2 (T2), and so on. 
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Another important issue on the chromosome representation is that the precedence 

relation between tasks must be maintained. A chromosome is called valid if the scheduling 

solution represented by the chromosome satisfies the precedence relation among the tasks. 

 

6.2.2. Initialization 

Our algorithm begins with a set of randomly generated candidate solutions represented 

by chromosome which is defined in Section 6.2.1. Our algorithm of initialization 

guarantees that all the generated chromosomes are valid. 

The pseudocode of initialization is shown in Listing 6. 

  

  

 

Figure 20. An example of chromosome 
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Listing 6. The algorithm for initialization. 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

order[0] = 0; // dummy task S 

for i = 1 to N  // N is the number of tasks in task graph 

    min = MAX(order[Ti_parent]) + 1; 

    order[i] = RANDOM_BETWEEN(min, i); // random number between min 

and i 

    for j = 0 to (i-1) 

        if(order[j] >= order[i]) then 

            order[j] = order[j] + 1; 

        endif 

    endfor 

endfor 

for i = 1 to N 

    C[order[i]] = i; 

endfor 

 

The initialization algorithm assumes that a task with a larger ID is not a parent for tasks 

with smaller ID. If the task graph does not satisfy this assumption, we need to reorder the 

tasks before the initialization algorithm. In the algorithm, array C[] represents a 

chromosome, and its elements represent genes. As shown in Figure 20, the i-th gene, i.e., 

C[i], represents the i-th scheduled task. Ti_parent indicates a parent task for task i. The 

scheduling order of task i, i.e., order[i] in Listing 6, is randomly generated, but is 

guaranteed to be later than its parent tasks (lines 3 and 4). Thus, the chromosome generated 

by the algorithm is valid. 

 

6.2.3. Fitness Function 

The fitness function is used to decode a chromosome and assign it a fitness value. The 

fitness value in our genetic algorithm represents the scheduling length. We propose a 

deterministic algorithm to schedule the tasks according to the chromosome and the task 

graph. This algorithm also restores the mapping information, that is, on which cores the 

tasks are mapped. The algorithm of our fitness function is as follows. 
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1. Ti = the first gene in the chromosome. 

2. Remove Ti from the chromosome. 

3. Calculate start time of Ti as follows: 

3.1. a = MAX(finished time of Ti’s parents). 

3.2. b = earliest time at which an enough number of cores for executing Ti become 

free. 

3.3. Start time of Ti = MAX(a, b). 

4. Finish time of Ti = start time of Ti + execution time of Ti. 

5. Assign the cores which were selected at step 2.2 to Ti. 

6. Update the occupied time of the cores. 

7. Go back to step 1 until the chromosome is empty. 

8. Fitness value = MAX(finish times of all tasks). 

In essence, the above algorithm schedules tasks as early as possible in the order specified 

by the chromosome. 

 

6.2.4. Selection 

The selection operator is guided by the fitness value of each chromosome calculated by 

the process presented in Section 4.3. Chromosomes with better fitness value have a larger 

probability to survive. In the past work on genetic algorithms, different approaches were 

used in the selection operators such as roulette wheel selection, rank selection, and steady-

state selection. Our algorithm uses the roulette wheel.  

In roulette wheel selection, each chromosome in the population is allocated a segment 

on a virtual roulette wheel of a size proportional to its fitness. The adapter chromosomes 

have a larger segment; it means such chromosomes are more likely to be selected when 

the wheel is spin. This size of the segment for each task is calculated as below: 
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    𝑝𝑖 =
exp (−𝑎(𝑓𝑖−𝑓𝑚𝑖𝑛))

∑ 𝑝𝑗
𝑁
𝑗

   (14) 

 

𝑓𝑚𝑖𝑛 denotes the minimum fitness value in population, and 𝑓𝑖 denotes the fitness value 

of current chromosome. The part of denominator is a normalization factor. The parameter 

α must be greater than 0, and the larger α is, the more likely to select the chromosome with 

higher fitness value (If α is 0, the chromosomes with different fitness values will have 

same chances of being selected). 

 

6.2.5. Crossover 

The crossover operator is analogous to the biological crossover. Two chromosomes are 

chosen from the population, and the child chromosomes are produced from them.  

Since our chromosome represents the order of task execution, simply exchanging part of 

genes between two chromosomes may produce invalid chromosomes which violate 

precedence constraints among the tasks. Therefore, we propose the following algorithm to 

ensure the generated chromosomes are valid.  

 

1. Select two chromosomes, A and B, from the population. 

  

 

Figure 21. An example of crossover. 

 

Chrom A

Child C

T1 T2 T5 T3 T4

Crossover point

Chrom B T4 T1 T5 T2 T3

T1 T2 T4 T5 T3
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2. Randomly choose a crossover point in chromosome A. 

3. Copy the genes in the left segment of the crossover point in chromosome A, to a new 

chromosome C. 

4. Copy the genes which were not selected in step 3 to the child C in the order of 

chromosome B 

 

This algorithm is illustrated in where a new chromosome C is generated from two 

chromosomes A and B by the crossover operation. 

In Figure 21, two genes T1 and T2 in chromosome A are copied to chromosome C, and 

three genes T4, T5 and T3 are copied from chromosome B to C. As long as the two parent 

chromosomes, i.e., A and B, are valid, the child chromosome C is also valid. 

 

6.2.6. Mutation 

The mutation operator randomly alters one or more genes. In genetic algorithms, 

selection operators remove inferior chromosomes, but lose the diversity in the population. 

Mutation is a very important mechanism to recover the diversity. Hence, the mutation 

operator gives us the possibility of producing better children than their parents. Our 

mutation operator also guarantees that the chromosomes after mutation are valid. 

 

Figure 22. A task graph. 
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In the proposed chromosome, the value of i-th gene indicates the task whose execution 

order is i-th. Our mutation changes the order of execution of the task by the following 

algorithm. 

 

1. Generate a random number p (from 0 to 1) for each task. 

2. Go to step 2 if p > m, where m is a given threshold that the chromosome is subjected 

to be mutated. Otherwise, go back to step 1. 

3. Calculate the new location of the selected task as follows: 

3.1. upper = the current location of the task. 

3.2. lower = MAX(locations of its parents) + 1. 

3.3. New location of the task = RANDOM_BETWEEN(lower, upper). 

4. Move the task to the new location and slide other tasks accordingly. 

 

Figure 23 shows an example of mutation for the task graph in Figure 22. Assume that 

T4 in the chromosome in Figure 23(a) is selected for mutation in steps 1 and 2. According 

to Figure 22, T2 is a parent of T4. Therefore, T4 cannot be moved before T2, and there 

 

 

 

(a) A chromosome 

 

 

(b) Possible mutations 

 

Figure 23. An example of mutation. 
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exist three possibilities for mutation of T4 as shown in Figure 23 (b). Our mutation 

algorithm chooses one of the three mutations randomly.  

 

6.2.7. Parallelization of the Algorithm with OpenMP 

The genetic algorithm may require an unacceptably long execution time because a large 

number of chromosomes must be generated and evaluated. Therefore, we use the 

parallelization technique to improve computational efficiency on multicore platforms. 

There are various types of parallelization technologies such as Pthreads, C++11 STL 

threads, OpenMP, Intel TBB, CUDA, and OpenCL. We have chosen OpenMP because of 

its easiness and flexibility on popular multicore platforms running on Linux or MS-

Windows.  

OpenMP is an API for writing multi-threaded applications on shared memory multi-

processor architecture. In our genetic algorithm, a data dependency occurs when 

calculating the normalization factor in the selection operator, but otherwise, all of the 

genetic operators can be performed independently. Based on the above observation, we 

propose the parallelization framework of the algorithm as shown in Figure 24. 

 

 

 

Figure 24. The parallelization framework. 
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6.3. Experiments 

The proposed algorithm was implemented in C++. We evaluated our algorithm with the 

Standard Task Graph (STG) [55]. We used 20 sets of 50 tasks and another 20 sets of 100 

tasks. The number of cores was changed from two to sixteen. 

We conducted all experiments on Intel Core i7 (Core i7-4790K, 4 cores / 8 threads) and 

32GB memory on Ubuntu 14.04. In the discussion in Section 6.2, we have presented a set 

of important parameters. The parameters have strong effects on the execution time and the 

quality of results. Finding the optimal set of parameters is another important and hard 

mission, but these are not included in the scope of this article. We just set the parameters 

as summarized in Table 6. 

The results of scheduling for task graphs with 50 tasks are shown in Table 9-a and Table 

9-b, PCS and Dual-mode are compared with the proposed algorithm. For each benchmark, 

the best solution is marked in red. We can find that the proposed algorithm could 

successfully find best schedules for 157 test cases out of 160 within 12 hours. 

 

Table 6. The list of parameters. 

 

Terms Value 

Population size 16384 

α (selection rate) 0.6 

m (mutation rate) 0.05 

Max generations 50 
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For ease of comparison between the other algorithms, we normalize all results to PCS in 

Figure 25 and Figure 26. Figure 25 shows that for task graphs with 50 tasks, our genetic 

algorithm achieves 2.5%, 5.2%, 6.8% and 6.8% reduction in the scheduling length on 2, 

4, 8 and 16 cores, respectively, compared with the PCS algorithm. And Figure 26 shows 

that for task graphs with 100 tasks, our genetic algorithm achieves 2.5%, 5.2%, 6.8% and 

6.8% reduction in the scheduling length on 2, 4, 8 and 16 cores, respectively, compared 

with the PCS algorithm. Both figures show that our proposed genetic algorithm 

significantly improves the quality of the results.  

The runtimes of the four scheduling algorithms are compared in Table 7. Because a large 

number of chromosomes need be generated and evaluated. The single-threaded 

implementation of the genetic algorithm is much slower than PCS or dual-mode algorithm. 

However, we use the parallelization technique to improve computational efficiency on 

 

Figure 25. Results of three algorithms for task graphs with 50 tasks 
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multicore platforms. The parallelized implementation achieved approximately seven times 

speed-up. 

 

 

Figure 26. Results of three algorithms for task graphs with 100 tasks 
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Table 7. Runtimes of three scheduling algorithms (seconds). 

 

 50 tasks 100 tasks 

PCS  < 0.01 < 0.01 

Dual-mode  < 0.01 < 0.01 

GA  4.01 – 4.64 9.21 – 10.21 

Parallelized GA  0.50 – 0.62 1.12 – 1.38 
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Table 8-a. Scheduling lengths for task graphs with 50 tasks on 2 and 4 cores 

 

Task graph 

IDs 
PCS Dual-mode GA PCS Dual-mode GA 

 2 Cores 4 Cores 

50-0000 203 203 196 168 167 159 

50-0001 232 232 223 220 211 203 

50-0002 188 188 186 173 170 165 

50-0003 224 224 224 194 194 185 

50-0004 177 177 174 167 167 166 

50-0005 495 495 465 439 426 404 

50-0006 351 351 340 275 270 266 

50-0007 384 384 384 357 354 340 

50-0008 434 434 429 409 407 390 

50-0009 386 386 382 327 356 318 

50-0010 153 153 153 131 131 129 

50-0011 205 205 190 181 176 170 

50-0012 208 208 193 197 192 179 

50-0013 238 238 235 186 192 182 

50-0014 195 195 195 171 167 161 

50-0015 425 425 404 376 373 347 

50-0016 374 374 368 318 319 292 

50-0017 439 439 434 377 378 365 

50-0018 428 428 423 403 396 363 

50-0019 393 393 376 342 330 326 
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Table 8-b. Scheduling lengths for task graphs with 50 tasks on 8 and 16 cores 

 

Task graph 

IDs 
PCS Dual-mode GA PCS Dual-mode GA 

 8 Cores 16 Cores 

50-0000 149 148 144 156 151 140 

50-0001 203 201 186 195 198 193 

50-0002 161 153 143 150 146 131 

50-0003 175 180 172 169 165 158 

50-0004 150 155 147 158 157 145 

50-0005 432 406 385 406 388 373 

50-0006 259 246 239 268 249 246 

50-0007 336 312 305 301 279 273 

50-0008 366 354 337 360 345 327 

50-0009 323 326 296 289 292 265 

50-0010 127 125 121 126 127 123 

50-0011 180 172 161 135 146 129 

50-0012 183 178 171 174 169 166 

50-0013 171 171 160 154 155 147 

50-0014 166 163 148 160 147 147 

50-0015 304 307 290 325 347 318 

50-0016 269 266 254 286 293 259 

50-0017 306 314 294 333 312 310 

50-0018 358 354 329 342 344 326 

50-0019 361 365 345 334 336 306 
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Table 9-a. Scheduling lengths for task graphs with 100 tasks on 2 and 4 cores 

 

Task graph 

IDs 
PCS   Dual-mode   GA PCS   Dual-mode   GA 

 2 Cores 4 Cores 

100-0000 431 431 431 388 376 367 

100-0001 401 401 397 348 343 340 

100-0002 459 459 448 413 424 403 

100-0003 406 406 391 341 338 336 

100-0004 393 393 393 354 366 346 

100-0005 814 814 780 704 682 666 

100-0006 868 868 826 785 737 721 

100-0007 861 861 847 760 735 739 

100-0008 796 796 792 701 706 694 

100-0009 947 947 912 783 779 763 

100-0010 464 464 446 385 392 366 

100-0011 445 445 441 394 377 371 

100-0012 469 469 451 432 434 405 

100-0013 480 480 474 404 427 394 

100-0014 391 391 386 354 334 329 

100-0015 781 781 765 706 683 675 

100-0016 764 764 751 667 646 614 

100-0017 860 860 857 746 755 740 

100-0018 724 724 722 628 626 601 

100-0019 749 749 736 700 709 661 
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Table 9-b. Scheduling lengths for task graphs with 100 tasks on 8 and 16 cores 

 

Task graph 

IDs 
PCS   Dual-mode   GA PCS   Dual-mode   GA 

 8 Cores 16 Cores 

100-0000 356 337 332 335 333 317 

100-0001 326 330 326 307 304 305 

100-0002 380 372 354 365 355 335 

100-0003 338 342 326 314 309 298 

100-0004 340 327 322 317 307 303 

100-0005 713 698 666 668 676 638 

100-0006 712 703 680 687 666 654 

100-0007 675 657 630 665 637 622 

100-0008 637 638 618 607 610 597 

100-0009 785 737 710 728 713 692 

100-0010 338 327 317 362 354 324 

100-0011 353 349 354 336 331 310 

100-0012 431 423 380 410 421 387 

100-0013 382 385 378 375 372 369 

100-0014 327 319 319 313 306 305 

100-0015 697 646 621 606 557 541 

100-0016 625 657 607 648 645 601 

100-0017 730 730 696 677 692 657 

100-0018 657 642 625 591 595 567 

100-0019 679 679 646 676 672 631 
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Chapter 7.  

Branch-and-Bound Algorithm 

In chapters 4 and 5, we discussed that use heuristics to find acceptable solutions in a 

short execution time. In chapter 6, the proposed genetic algorithm provides a robust 

approach to obtain higher quality solutions. However, the above methods are lack of ability 

to guarantee that the solutions are always optimal. Finding optimal solutions is 

indispensable to evaluate the quality of the algorithms. Also, optimal solutions also 

provide an in-depth understanding of the structure of the scheduling problem, which is 

very useful for theoretical research and the development of heuristic.  

This section proposes an exacting algorithm for the scheduling problem with data 

parallelism. The proposed algorithm basically enumerates all possible solutions and 

explores them in a depth-first way with pruning non-optimal solution spaces. 

 

 

Figure 27. A task graph 
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7.1. Depth-First Search 

Our algorithm uses a branching tree to enumerate all possible schedules systematically. 

For example, Figure 28 shows a branching tree for the task graph in Figure 27. In the tree, 

each node represents a task, and a branch between two nodes denotes that the parent task 

is scheduled no later than the child task. A path from the root to a leaf denotes a schedule. 

 

  

Figure 28. The tree enumerates all possible solutions. 
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(a). One schedule generated from a path (S → 1 → 3 → 2 → 4 → 5 → E) 

  

(b). One schedule generated from a path (S → 1 → 3 → 2 → 4 → 5 → E) 

 

(c) One schedule generated from a path (S → 1 → 3 → 2 → 4 → 5 → E) 

Figure 29. Valid scheduling results for path (S → 1 → 3 → 2 → 4 → 5 → E)  

 

Time = 0 10 20 30 40 50 60 70 80 90

Core 0 T1 T1 T1 T2 T4 T4 T4 T4

Core 1 T1 T1 T1 T2 T5 T5

Core 2 T1 T1 T1 T3 T5 T5

Core 3 T5 T5

Time = 0 10 20 30 40 50 60 70 80 90

Core 0 T1 T1 T1 T5 T5

Core 1 T2 T5 T5

Core 2 T1 T1 T1 T3 T4 T4 T4 T4

Core 3 T1 T1 T1 T2 T5 T5

Time = 0 10 20 30 40 50 60 70 80 90

Core 0 T1 T1 T1 T2 T5 T5

Core 1 T1 T1 T1 T3 T4 T4 T4 T4

Core 2 T2 T5 T5

Core 3 T1 T1 T1 T5 T5
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The path in Figure 28 which is highlighted in yellow can be scheduled by many ways 

(e.g. Figure 29 (a), (b) and (c)). To be more precise, a path may denote more than one 

schedule, For example, path (S → 1 → 3 → 2 → 4 → 5 → E) may leads several different 

schedules which with same scheduling length. on the other hand, multiple paths also can 

generate the same schedule. For example, paths (S → 1 → 2 → 3 → 4 → 5 → E), (S → 1 

→ 3 → 2 → 5 → 4 → E) and (S → 1 → 3 → 2 → 4 → 5 → E) also result in the same 

schedule as shown in Figure 28 also result in the same schedule as shown in Figure 29 (a). 

The important point is that, for a given path, one of its optimal schedules can be found by 

a simple as-soon-as-possible (ASAP) strategy.  

 

 

7.2. Branch-and-Bound Methods 

Our algorithm travels the branching tree from the root to leaves in a depth-first order. 

However, travelling all nodes in the branching tree has time complexity of O(n!), which is 

not practical for large task graphs. The rest of this section presents four rules to prune 

unnecessary branches. 

7.2.1. Related Pattern Rule 

Let us consider the branching tree in Figure 30, Assume that our algorithm already 

visited partial schedule (1 → 2) and now we have reached (2 → 1). Note that the two 

partial schedules contain the same tasks with different orders. If we compare the two partial 

schedules, we can figure out that (2 → 1) cannot be better than (1 → 2), and thus, we 

can prune further branches under (2 → 1). How to compare the two partial schedules is 

as follows. Figure 31(a) and Figure 31(b) show time charts of partial schedules (1 → 2) 

and (2 → 1), respectively. In Figure 31(a), one of the four cores are available at time ten, 

and then, task 3 is schedulable. Here, a task is schedulable if both of the following two 

conditions hold:  

 All flow dependencies are solved  

 The number of available cores is enough to run the task.  
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Similarly, tasks 3, 4 and 5 are schedulable at time 30 in Figure 31(a). In Figure 31(b), 

tasks 3, 4 and 5 are schedulable at time 30. Before time 30, no task is schedulable since no 

core is available. Now, we see that, at any time point, a set of schedulable tasks in partial 

schedule (2 → 1) is a subset of that in partial schedule (1 → 2). For example, at time 

ten, a set of schedulable tasks in partial schedule (2 → 1) is empty, which is a subset of 

{3}. Then, it is guaranteed that no schedule under partial schedule (2 → 1) is better than 

the best schedule under (1 → 2), and therefore, branches under (2 → 1) can be pruned. 

In our algorithm, when we visit a new partial schedule, in other words, when we visit a 

new node in the branching tree, we look-up previously-visited partial schedules with same 

tasks and compare their schedulable task sets. If the schedulable task set of one partial 

schedule is always a subset of the other, we prune the former partial schedule. 

 

7.2.2. Exclusive Task Branch Rule 

Let us consider the task graph in Figure 31. Initially, either task 1 or 2 is schedulable at 

time 0. In this case, scheduling task 1 first leads to an optimal schedule for the following 

reason.  

  

Figure 30: Related patterns 
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Since task 1 requires all of four cores, this task cannot be executed in parallel with any 

other tasks. We refer to a task as an exclusive task if the task cannot run in parallel with 

any other tasks which are not yet scheduled. Task 1 is an exclusive task. On the other hand, 

task 2 is not exclusive since task 2 can run in parallel with task 3.  

There are two types of exclusive task. 

 A task has no parallelizable tasks. 

 All of the parallelizable tasks of the task have been executed. 

Delaying execution of exclusive tasks which can be scheduled at the earliest cannot 

minimize the scheduling length. Our algorithm schedules exclusive tasks as early as 

possible. When visiting a node, and if one of the branches goes to an exclusive task with 

the earliest start time, branches to the other tasks are pruned. 

 

7.2.3. Reducing Meaningless Idle Time 

Let us consider partial schedule in the branching tree shown in Figure 30. There are three 

branches from task 2, going to tasks 3, 4 and 5. If we look at the time chart in Figure 31 

(a), it is obvious that the branch to task 3 is the best among the three. The earliest start time 

of task 4 and that of task 5 are both time 30 because of the flow dependencies. On the other 

hand, the earliest finish time of task 3 is time 20, which is earlier than the earliest start time 

of the other tasks. Therefore, delaying execution of task 3 produces meaningless idle time.  

When traveling a branching tree, if the earliest finish time of a child task is earlier than 

or equal to the earliest start time of the other children, only the former task is visited and 

the other branches are pruned. 
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(a) Partial schedule (1 → 2) 

 

(b) Partial schedule (2 → 1) 

 

Figure 31. Partial schedules with same tasks 

 

Time = 0 10 20 30 40 50

Core 0 T1 T2 T2

Core 1 T1 T2 T2

Core 2 T1 T2 T2

Core 3 T1

{T3, T4, T5}{T3}

Time = 0 10 20 30 40 50

Core 0 T2 T2 T1

Core 1 T2 T2 T1

Core 2 T2 T2 T1

Core 3 T1

{T3, T4, T5}
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7.2.4. Lower Bound Rule 

Similar to typical branch-and-bound algorithms, our algorithm keeps a temporarily-

optimal schedule and updates it when a better schedule is found. When branching to a 

child, our algorithm calculates the lower bound of scheduling length. If the lower bound 

is longer than the length of the temporarily-optimal schedule, the branch is pruned.  

When our algorithm visits a new node in the branching tree, we use two simple formulas 

as follows, in order to check the lower bound of the schedule under the node. 

 

    ∑ 𝐴𝑇𝑗𝑗 + ∑ 𝑃𝑖 × 𝑇𝑖𝑖𝜖𝝋 ≥ 𝑁 × TOP   (15) 

    ∑ 𝐴𝑇𝑗𝑗 − ∑ 𝑃𝑖 × 𝑇𝑖𝑖𝜖𝝎 ≥ MB   (16) 

 

In the formulas, denotes the available time of core j. For example, in Figure 31 (a), ATj 

is 30 for 0 ≤ j ≤ 2, and AT3 = 10. φ is a set of tasks which are not yet scheduled. Pi and 

Ti denote the degree of data parallelism and execution time of task i, respectively. N is the 

number of cores, and TOL is the length of the temporarily-optimal schedule. If formula 

(15) holds, the scheduling length under this node cannot be shorter than TOL, and therefore 

further branches are pruned. 

In formula (16), ω denotes a set of tasks which have already been scheduled. TIT 

represents the total idle time in the temporarily-optimal schedule, and is defined as follows. 

 

   TIT = 𝑁 × TOL − ∑ 𝑃𝑖 × 𝑇𝑖𝑖𝜖𝒂𝒍𝒍 𝒕𝒂𝒔𝒌𝒔   (17) 

 

7.3. Selection Rule 

So far, four rules to prune branches are described. Another important issue in the depth-

first branch-and-bound search is how to select a task to go first when multiple child tasks 

exist.  
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Out of the children, our algorithm selects the child task which has the earliest start time. 

In case there are multiple tasks with the same start time, we select a task based on the PCS 

strategy which was presented in Chapter 4. 

 

   

Table 10. Optimal results for graphs with 10 tasks on 4 cores 

 

Task graph ID Scheduling length Runtime (sec) 

ILP B&B ILP B&B 

10-0000 32 32 6,823 < 1 

10-0001 43 43 21,788 < 1 

10-0002 26 26 60,012 < 1 

10-0003 30 30 71,678 < 1 

10-0004 36 36 2,588 < 1 

10-0005 75 75 40,054 < 1 

10-0006 70 70 46,245 < 1 

10-0007 94 94 50,019 < 1 

10-0008 121 121 6,115 < 1 

10-0009 79 79 58,830 < 1 
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7.4. Experiments 

We implemented our proposed scheduling algorithm in C++, and conducted two sets of 

experiments to test the effectiveness of the proposed algorithm. The experiments were 

conducted on dual Xeon processors (E5-2650, 2.00Hz) with 128GB memory. CPLEX 

fully utilized 16 cores on the host computer, while our algorithm ran on a single core as a 

single thread program. 

In the first experiments, we use 10 sets of 10 tasks, derived from Standard Task Graph 

(STG) [55]. An integer linear programming (ILP) technique (see Section 3.3) was 

compared. In order to solve the ILP problems, IBM ILOG CPLEX 12.5 was used. The 

environment of experiments is dual Xeon processors (E5-2650, 2.00Hz, 128GB memory).  

Table 10 shows scheduling results for 20 task graphs with 10 tasks on four cores. ILP 

and B&B denote the ILP technique using CPLEX and our branch-and-bound algorithm, 

respectively. The results in the table show that our algorithm yields the same scheduling 

length as the ILP technique in any case. Although we have not mathematically proved the 

correctness of our algorithm yet, our algorithm always found the optimal schedule as long 

as we tested.  

As shown in Table 1, in most cases of 10 tasks, our branch-and-bound algorithm found 

optimal schedules within a second. On the other hand, the runtime of CPLEX significantly 

varied depending on the task graph. In the worst case, it took more than 60 hours for 

CPLEX to find the optimal schedule for 10 tasks. 

In the next set of experiments, we compared our branch-and-bound algorithm with three 

algorithms, the PCS, dual-mode and genetic algorithm which were introduced in Chapter, 

4, 5 and 6 respectively. We used 20 sets of 50 tasks and another 20 sets of 100 tasks from 

STG. The number of cores was changed from two to sixteen. The runtimes of our branch-

and-bound algorithm are limited to 12 hours or 1 second. When the runtime of our branch-

and-bound algorithm exceeded the limited time, we suspended the algorithm and used the 

best schedule found by that time. The runtime of the PCS and dual-mode algorithms was 

less than 1 second in any case. 
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Table 11-a. Scheduling lengths for task graphs with 50 tasks on 2 cores  

 

Task graph 

IDs 

Scheduling length B&B  

Runtime 

12 hours 

(sec) PCS 
Dual- 

mode 
GA 

B&B 

12 hours 

B&B 

1 sec 

50-0000 203 203 196 196 196 2 

50-0001 232 232 223 222 222 < 1 

50-0002 188 188 186 186 186 < 1 

50-0003 224 224 224 224 224 16 

50-0004 177 177 174 174 174 < 1 

50-0005 495 495 465 465 465 < 1 

50-0006 351 351 340 338 338 < 1 

50-0007 384 384 384 384 384 38 

50-0008 434 434 429 428 428 < 1 

50-0009 386 386 382 382 382 < 1 

50-0010 153 153 153 153 153 4 

50-0011 205 205 190 190 190 < 1 

50-0012 208 208 193 192 192 < 1 

50-0013 238 238 235 234 234 < 1 

50-0014 195 195 195 195 195 < 1 

50-0015 425 425 404 402 402 < 1 

50-0016 374 374 368 366 366 < 1 

50-0017 439 439 434 434 434 20 

50-0018 428 428 423 421 421 < 1 

50-0019 393 393 376 376 376 < 1 

  



  80 

 

  

Table 11-b. Scheduling lengths for task graphs with 50 tasks on 4 cores  

 

  

Task graph 

IDs 

Scheduling length B&B  

Runtime 

12 hours 

(sec) PCS 
Dual- 

mode 
GA 

B&B 

12 hours 

B&B 

1 sec 

50-0000 168 167 159 155 157 8 

50-0001 220 211 203 202 202 < 1 

50-0002 173 170 165 162 162 < 1 

50-0003 194 194 185 181 186 114 

50-0004 167 167 166 166 166 < 1 

50-0005 439 426 404 397 397 < 1 

50-0006 275 270 266 258 260 6 

50-0007 357 354 340 339 340 X 

50-0008 409 407 390 387 387 < 1 

50-0009 327 356 318 314 314 3 

50-0010 131 131 129 128 130 50 

50-0011 181 176 170 170 170 < 1 

50-0012 197 192 179 179 179 2 

50-0013 186 192 182 178 178 7 

50-0014 171 167 161 159 159 462 

50-0015 376 373 347 345 345 < 1 

50-0016 318 319 292 292 292 < 1 

50-0017 377 378 365 359 362 6,800 

50-0018 403 396 363 363 363 < 1 

50-0019 342 330 326 323 323 < 1 
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Table 11-c. Scheduling lengths for task graphs with 50 tasks on 8 cores  

 

Task graph 

IDs 

Scheduling length B&B  

Runtime 

12 hours 

(sec) PCS 
Dual- 

mode 
GA 

B&B 

12 hours 

B&B 

1 sec 

50-0000 149 148 144 139 142 1,250 

50-0001 203 201 186 184 184 2 

50-0002 161 153 143 139 139 1 

50-0003 175 180 172 165 170 7,210 

50-0004 150 155 147 147 147 < 1 

50-0005 432 406 385 379 379 < 1 

50-0006 259 246 239 231 236 306 

50-0007 336 312 305 296 300 13,700 

50-0008 366 354 337 333 333 2 

50-0009 323 326 296 289 291 13 

50-0010 127 125 121 118 120 1,380 

50-0011 180 172 161 159 159 < 1 

50-0012 183 178 171 170 171 15 

50-0013 171 171 160 158 161 294 

50-0014 166 163 148 144 148 1,860 

50-0015 304 307 290 289 289 2 

50-0016 269 266 254 245 248 24 

50-0017 306 314 294 286 290 X 

50-0018 358 354 329 328 328 < 1 

50-0019 361 365 345 343 343 6 
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Table 11-d. Scheduling lengths for task graphs with 50 tasks on 16 cores  

 

Task graph 

IDs 

Scheduling length B&B  

Runtime 

12 hours 

(sec) PCS 
Dual- 

mode 
GA 

B&B 

12 hours 

B&B 

1 sec 

50-0000 156 151 140 136 141 4,680 

50-0001 195 198 193 192 193 2 

50-0002 150 146 131 128 129 9 

50-0003 169 165 158 158 159 X 

50-0004 158 157 145 144 144 < 1 

50-0005 406 388 373 360 360 9 

50-0006 268 249 246 243 254 354 

50-0007 301 279 273 260 269 X 

50-0008 360 345 327 319 319 < 1 

50-0009 289 292 265 260 270 149 

50-0010 126 127 123 122 125 X 

50-0011 135 146 129 129 129 1 

50-0012 174 169 166 164 164 27 

50-0013 154 155 147 144 148 251 

50-0014 160 147 147 143 144 X 

50-0015 325 347 318 309 309 < 1 

50-0016 286 293 259 254 259 38 

50-0017 333 312 310 308 308 X 

50-0018 342 344 326 326 326 1 

50-0019 334 336 306 299 299 5 
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The detailed results for task graphs with 50 tasks are shown in Table 11. The tables show 

not only the scheduling length but also the runtime of the branch-and-bound algorithm. 

The ‘X’ mark in the right most column means that our branch-and-bound algorithm could 

not find the optimal result within 12 hours. In such cases, the length of the best schedule 

found in 12 hours is written in the tables. For 73 test cases out of 80, our branch-and-bound 

algorithm successfully found optimal schedules within 12 hours. Even when optimal 

schedules are not found, our branch-and-bound algorithm always found better schedules 

than the other three algorithms. 

 

 

 

  

 

Figure 32. Average schedule length normalized by B&B for 

task sets with 50 tasks 
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Table 12-a. Scheduling lengths for task graphs with 100 tasks on 2 cores 

 

Task graph 

IDs 

Scheduling length B&B  

Runtime 

12 hours 

(sec) PCS 
Dual- 

mode 
GA 

B&B 

12 hours 

B&B 

1 sec 

100-0000 431 431 431 431 431 18 

100-0001 401 401 397 396 396 < 1 

100-0002 459 459 448 446 446 < 1 

100-0003 406 406 391 391 391 < 1 

100-0004 393 393 393 393 393 73 

100-0005 814 814 780 774 774 < 1 

100-0006 868 868 826 820 820 < 1 

100-0007 861 861 847 845 845 7 

100-0008 796 796 792 792 792 < 1 

100-0009 947 947 912 910 910 < 1 

100-0010 464 464 446 445 445 1 

100-0011 445 445 441 440 440 227 

100-0012 469 469 451 451 451 < 1 

100-0013 480 480 474 472 472 < 1 

100-0014 391 391 386 386 386 36 

100-0015 781 781 765 763 763 < 1 

100-0016 764 764 751 748 748 < 1 

100-0017 860 860 857 857 857 6 

100-0018 724 724 722 720 720 29 

100-0019 749 749 736 736 736 < 1 

 



  85 

 

  

Table 12-b. Scheduling lengths for task graphs with 100 tasks on 4 cores 

 

Task graph 

IDs 

Scheduling length B&B  

Runtime 

12 hours 

(sec) PCS 
Dual- 

mode 
GA 

B&B 

12 hours 

B&B 

1 sec 

100-0000 388 376 367 358 377 3,610 

100-0001 348 343 340 335 340 11,500 

100-0002 413 424 403 390 391 9 

100-0003 341 338 336 325 330 33 

100-0004 354 366 346 340 351 8,470 

100-0005 704 682 666 655 655 2 

100-0006 785 737 721 706 718 24 

100-0007 760 735 739 711 734 9,310 

100-0008 701 706 694 694 701 X 

100-0009 783 779 763 747 767 89 

100-0010 385 392 366 363 368 72 

100-0011 394 377 371 364 367 165 

100-0012 432 434 405 405 405 < 1 

100-0013 404 427 394 390 393 32 

100-0014 354 334 329 316 325 34 

100-0015 706 683 675 650 671 102 

100-0016 667 646 614 603 606 9 

100-0017 746 755 740 705 720 135 

100-0018 628 626 601 571 595 19,700 

100-0019 700 709 661 659 659 4 
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Table 12-c. Scheduling lengths for task graphs with 100 tasks on 8 cores  

 

Task graph 

IDs 

Scheduling length B&B  

Runtime 

12 hours 

(sec) PCS 
Dual- 

mode 
GA 

B&B 

12 hours 

B&B 

1 sec 

100-0000 356 337 332 316 337 1,330 

100-0001 326 330 326 317 319 X 

100-0002 380 372 354 346 353 45 

100-0003 338 342 326 320 336 211 

100-0004 340 327 322 306 321 X 

100-0005 713 698 666 644 644 8 

100-0006 712 703 680 659 690 190 

100-0007 675 657 630 622 654 X 

100-0008 637 638 618 614 628 X 

100-0009 785 737 710 684 712 135 

100-0010 338 327 317 315 321 131 

100-0011 353 349 354 346 349 X 

100-0012 431 423 380 380 380 < 1 

100-0013 382 385 378 363 380 1,270 

100-0014 327 319 319 314 325 X 

100-0015 697 646 621 621 685 X 

100-0016 625 657 607 599 611 88 

100-0017 730 730 696 684 709 4,750 

100-0018 657 642 625 604 635 X 

100-0019 679 679 646 631 640 9 
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Table 12-d. Scheduling lengths for task graphs with 100 tasks on 16 cores  

 

Task graph 

IDs 

Scheduling length B&B 

Runtime 

12 hours 

(sec) PCS 
Dual- 

mode 
GA 

B&B 

12 hours 

B&B 

1 sec 

100-0000 335 333 317 311 319 X 

100-0001 307 304 305 302 305 X 

100-0002 365 355 335 335 340 11 

100-0003 314 309 298 289 306 712 

100-0004 317 307 303 297 305 X 

100-0005 668 676 638 623 630 14 

100-0006 687 666 654 629 655 562 

100-0007 665 637 622 604 638 X 

100-0008 607 610 597 597 590 X 

100-0009 728 713 692 663 696 394 

100-0010 362 354 324 315 328 581 

100-0011 336 331 310 299 315 X 

100-0012 410 421 387 387 387 < 1 

100-0013 375 372 369 353 372 2,060 

100-0014 313 306 305 305 305 X 

100-0015 606 557 541 540 565 X 

100-0016 648 645 601 594 611 74 

100-0017 677 692 657 632 668 23,400 

100-0018 591 595 567 563 579 X 

100-0019 676 672 631 631 633 5 
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The detailed results for task graphs with 100 tasks are shown in Table 12. For 62 test 

cases out of 80, our branch-and-bound algorithm successfully found optimal schedules 

within 12 hours.  

At the same time, the B&B also helps us to evaluate other algorithms more accurately. 

In Figure 32 and Figure 33, each bar indicates the average scheduling length of 20 task 

graphs which is normalized to the B&B (limited to 12 hours). As the number of overall 

cores and tasks increase, PCS or dual-mode algorithm is less likely to achieve good results. 

For task graphs with 50 tasks, the genetic algorithm is only 0.1%, 1.0%, 1.9% and 1.7% 

worse, while the PCS is 2.8%, 6.7%, 9.5% and 9.4% worse than B&B on 2, 4, 8 and 16 

cores respectively. For task graphs with 100 tasks, the genetic algorithm is only 0.1%, 

2.2%, 2.2% and 1.3% worse, while the PCS is 2.1%, 6.8%, 7.9% and 7.4% worse than 

B&B on 2, 4, 8 and 16 cores respectively. 

  

 

Figure 33. Average schedule length normalized by B&B for 

task sets with 100 tasks 
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Chapter 8.  

Conclusions 

Task scheduling is a very important problem to exploit the maximum capability of 

multicore processors. In order to deal with different challenges in practical use, we 

presented a series of different algorithms for task scheduling for data-parallel tasks on 

multicore architectures.  

In Section 4, we proposed six algorithms base on list scheduling. The experimental 

results show that, among the six algorithms, the PCS algorithm yields the best scheduling 

results on average. Furthermore, according to the shortcomings of the PCS (using static 

priority), we proposed a new algorithm for task scheduling which is called dual-mode 

algorithm. Different from common list scheduling algorithms, the proposed algorithm has 

two priority types, and changes its behavior under the available cores conditions of the 

system. This algorithm has achieved 2%, reduction in the scheduling length on average. 

For more powerful systems, we presented a genetic algorithm for the task scheduling 

problem which takes into account both task parallelism and data parallelism. Moreover, 

we proposed a new chromosome representation and corresponding genetic operators 

which aim to minimize the execution time and search space. We also proposed a 

parallelization method for the genetic algorithm. Our experiments show that the proposed 

genetic algorithm significantly improved the scheduling lengths over the PCS and dual-

mode algorithm. 

In order to deeper understand the scheduling problem and better evaluate the 

effectiveness of proposed algorithms. The study of finding optimal solutions for task 

scheduling is also indispensable. We proposed an exact algorithm for the scheduling 

problem with data parallelism. The proposed algorithm enumerates all possible solutions 

and explores them in a depth-first way. We presented four rules to prune non-optimal 

branches. The experiments show that our algorithm could find best schedules in a practical 

time for large task sets (the number of tasks is up to 100).  
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There are several works we plan to conduct in the future: (i) considering the cost of the 

communication; (ii) using CUDA to speed up our genetic algorithm further. (iii) 

comparing our genetic algorithm with other meta-heuristics, e.g., ACOs for task 

scheduling. 

Considering the cost of the communication; we assume the communication cost 

between 2 tasks is scheduled on different cores can ignore. This assumption may not be 

practical in some case, e.g., task scheduling on distributed computing system. In the future, 

we plan to study task scheduling with communication cost. 

Using CUDA to speed up our genetic algorithm further; the fewer compute units of 

CPU limit the parallel version of our genetic algorithm, so we hardly achieve furthermore 

speed up by OpenMP. Since GPU has much more compute units than CPU, CUDA is an 

ideal tool for our algorithm. In future, we plan to design the CUDA version of our genetic 

algorithm. 

Comparing our genetic algorithm with other meta-heuristic; there are a large 

number of works for task scheduling with other meta-heuristics, e.g., ACOs. We plan to 

extend those methods to our problem and compare them with our genetic scheduling 

algorithm. 



  91 

 

  

Acknowledgements 

Firstly, I would like to express my heartfelt gratitude to my supervisor Professor 

Hiroyuki Tomiyama, His patient guidance, encouragement and advice helped me in all the 

time of my Ph.D. study life and writing of this thesis. He not only taught me how to do 

scientific research and present my ideas in a better way, but also profoundly impressed me 

by his modesty, carefulness and gentleness. I feel honoured to be his student, and I am sure 

I still have much to learn from him in the future. 

I sincerely acknowledge my gratefulness to Professor Lin Meng, as both a teacher and 

friend. He helped me a lot in research and life. He also was the first person who encouraged 

me to obtain the Ph.D. I would also like to thank Professor Ittetsu Taniguchi for giving 

me various suggestions throughout the work. 

I would like to express my special thanks to Professor Katsuhiro Yamazaki and 

Professor Tomonori Izumi for their kind acceptance to be examiners of my Ph.D. thesis. 

Finally, I am forever grateful to my parents and wife for their endless support, 

understanding and love. Without my lovely family, I would not be able to finish this work. 

  



  92 

 

  

References 

[1] G. Coffman, "Computer and Job-shop Scheduling Theory," New York, Wiley, 1976. 

[2] M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the 

Theory of NP Completeness, " San Francisco, CA, W. H. Freeman, 1979. 

[3] R. L. Graham, L. E. Lawler, J. K. Lenstra and A. H. Kan, "Optimization and 

Approximation in Deterministic Sequencing and Scheduling: A Survey", Annuls of 

discrete Mathematics, vol. 5, no. 10, pp. 287-326, December 1979. 

[4] T. L. Adam, K. M. Chandy, and J. R. Dickson, "A Comparison of List Schedules for 

Parallel Processing Systems," Commun. Ass. Comput. Mach., vol. 17, no. 12, pp. 

685-690, December 1974. 

[5] T. Gonzalez, O.H. Ibarra and S. Sahni, "Bounds for LPT Schedules on Uniform 

Processors," SIAM Journal on Computing, vol. 6, no. 1, pp. 155-166, 1977. 

[6] Y.K. Kwok, and I. Ahmad, "Static Scheduling Algorithms for Allocating Directed 

Task Graphs to Multiprocessors,” ACM Computing Surveys (CSUR), vol. 31, no.4, 

pp. 406-471, December 1999. 

[7] M.R. Devi, and A. Anju, "Multiprocessor Scheduling of Dependent Tasks to 

Minimize Makespan and Reliability Cost Using NSGA-II," International Journal in 

Foundations of Computer Science & Technology, vol. 4, no. 2, pp. 27-39, March 

2014. 

[8] Y. Xu, K. Li, L. He, L. Zhang, and K. Li, "A Hybrid Chemical Reaction 

Optimization Scheme for Task Scheduling on Heterogeneous Computing Systems," 

IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 12, pp. 3208-

3222, December 2015. 

[9] Y. Xu, K. Li, L. He, L. Zhang, and K. Li, "A Genetic Algorithm for Task Scheduling 

on Heterogeneous Computing Systems Using Multiple Priority queues," 

Information Sciences, vol. 270, no. 20, pp. 255-287, June 2014.  



  93 

 

  

[10] P. Tendulkar, P. Poplavko, I. Galanommatis, and O. Maler,  "Many-Core 

Scheduling of Data Parallel Applications Using SMT Solvers," Digital System 

Design (DSD), 17th Euromicro Conference on, pp. 27-29, August 2014. 

[11] H. El-Rewini, H. Ali and Ted Lewis, "Task Scheduling in Parallel and Distributed 

Systems," New Jersey, Prentice-Hall, Inc. Upper Saddle River, 1995. 

[12] G. Sinevriotis and T. Stouraitis, "A Novel List-Scheduling Algorithm for the Low-

Energy Program Execution," IEEE International Symposium on Circuits and 

Systems, pp. 26-29, May 2002. 

[13] J. Brest and V. Zumer, "A Performance Evaluation of List Scheduling Heuristics for 

Task Graphs Without Communication Costs," Proc. International Workshop on 

Parallel Processing, pp. 21-24, August 2000. 

[14] H.B. Chen, B. Shirazi, K. Kavi and A.R. Hurson, "Static Scheduling Using Linear 

Clustering and Task Duplication," Proc. ISCA Int'l Conf. Parallel and Distributed 

Computing and Systems, pp. 285-290, 1993.  

[15] T. Yang and A. Gerasoulis, "DSC: Scheduling Parallel Tasks on an Unbounded 

Number of Processors," IEEE Trans. Parallel and Distributed Systems, vol. 5, no. 9, 

pp. 951-967, September 1994. 

[16] D. Darbha and D. P. Agrawal "Optimal Scheduling Algorithm for Distributed-

Memory Machines," IEEE Trans. Parallel and Distributed Systems, vol. 9, no. 1, 

pp.87-95, February 1998. 

[17] C.I. Park and T.Y. Choe, "An Optimal Scheduling Algorithm Based on Task 

Duplication," IEEE Trans. Computers, vol. 51, no. 4, pp. 444-448, April 2002. 

[18] L. Wang, H. Siegel, V. Roychowdhury and A. Maciejewski "Task Matching and 

Scheduling in Heterogeneous Computing Environments Using a Genetic-

Algorithm-Based Approach," J. Parallel Distrib. Comput., vol. 47, no. 1, pp. 8-22, 

November 1997. 

[19] H.M. Ghader, K. Fakhr, M. Javadi, G. Bakhshzadeh, "Static Task Graph Scheduling 

Using Learner Genetic Algorithm," Int. Conf. on Soft Computing and Pattern 

Recognition, pp. 7-10, December 2010. 



  94 

 

  

[20] S. Gupta, G. Agarwal, and V. Kumar, "Task Scheduling in Multiprocessor System 

Using Genetic Algorithm," Int. Conf. on Machine Learning and Computing, pp. 9-

11 February 2010.   

[21] O. Sathappan, P. Chitra, P. Venkatesh and M. Prabhu "Modified Genetic Algorithm 

for Multi Objective Task Scheduling on Heterogeneous Computing System", Int. J. 

Inform. Technol. Commun, vol. 1, no. 2, pp.146-158, 2011. 

[22] Y. Yi, W. Han, X. Zhao, A. T. Erdogan, and T. Arslan, "An ILP Formulation for 

Task Mapping and Scheduling on Multi-Core Architectures," Int. Conf. on Design 

Automation and Test in Europe Conference & Exhibition, pp. 20-24, April 2009. 

[23] T. Hagras and J. Janecek. "A High Performance, Low Complexity Algorithm for 

Compile-Time Task Scheduling in Heterogeneous Systems," Proc. the International 

Parallel and Distributed Processing Symposium, vol. 31, no. 7, pp.653-670, July 

2005. 

[24] H. Kasahara and S. Narita, "Practical Multiprocessor Scheduling Algorithms for 

Efficient Parallel Processing," IEEE Trans. on Computers, vol. 33, no. 11, pp. 1023-

1029, November 1984. 

[25] S. Fujita, "A Branch-and-Bound Algorithm for Solving the Multiprocessor 

Scheduling Problem with Improved Lower Bounding Techniques," Computers, 

IEEE Transactions on, vol. 60, no. 7, pp. 1006-1016, June 2011.  

[26] J.C. Soto-Monterrubio, A. Santiago, H. J. Fraire-Huacuja, J. Frausto-Solís1 and J. 

David Terán-Villanueva "Branch and Bound Algorithm for the Heterogeneous 

Computing Scheduling Multi-Objective Problem" International Journal of 

Combinatorial Optimization Problems and Informatics, vol. 7, no. 3, pp. 7-19, 

December 2016. 

[27] O. Sinnen, A. V. Kozlov, and A. Z. S. Shahul, "Optimal Scheduling of Task Graphs 

on Parallel Systems," Proc. Ninth Int. Conf. on Parallel and Distributed Computing 

Applications and Technologies, pp. 323-328, December 2008. 

[28] H. Yang and S. Ha, "ILP Based Data Parallel Multi-Task Mapping/Scheduling 

Technique for MPSoC," International SoC Design Conference, pp. 134-137, 

December 2008. 



  95 

 

  

[29] H. Yang and S. Ha, "Pipelined Data Parallel Task Mapping/Scheduling Technique 

for MPSoC," Design Automation and Test in Europe, pp. 20-24, April 2009. 

[30] N. Vydyanathan, S. Krishnamoorthy, G.M. Sabin, U.V. Catalyurek, T. Kurc, P. 

Sadayappan, and J.H. Saltz, "An Integrated Approach to Locality-Conscious 

Processor Allocation and Scheduling of Mixed-Parallel Applications," IEEE Trans. 

on Parallel and Distributed Systems, vol. 20, no. 8, pp. 1158-1172 October 2008. 

[31] T. Tobita and H. Kasahara, "A Standard Task Graph Set for Fair Evaluation of 

Multiprocessor Scheduling Algorithms," Journal of scheduling, vol. 5, no. 5, 

September 2002. 

[32] H. Kasahara, H. Honda and S. Narita, "Parallel Processing of Near Fine Grain Tasks 

Using Static Scheduling on OSCAR," Proc. IEEE ACM Supercomputing, pp. 856-

864, November 1990. 

[33] H. Kasahra, H. Honda, A.Mogi, A. Ogura, K. Fujiwara and S. Narita, "A Multi-grain 

Parallelizing Compilation Scheme for OSCAR," Proc. 4th Workshop on Languages 

and Compilers for Parallel Computing, pp. 283-293, August 1991.  

[34] A. Yoshida, K. Koshizuka and H. Kasahara, "Data-Localization for Fortran 

Macrodataflow Computation Using Partial Static Task Assignment," Proc. 10th 

ACM Int. Conf. on Supercomputing, pp. 61-68, May 1996. 

[35] S. B. Hassen, H. E. Bal, and C. J. H. Jacobs, "A Task and Data-Parallel Programming 

Language Based on Shared Objects," ACM Trans. Program. Lang. Syst., vol. 20, no. 

6, pp. 1131-1170, November 1998. 

[36] S. Ramaswamy, S. Sapatnekar, and P. Banerjee, "A Framework for Exploiting Task 

and Data Parallelism on Distributed Memory Multicomputers," IEEE Trans. 

Parallel Distrib. Syst., vol. 8, no. 11, pp. 1098-1116, November 1997. 

[37] A. R adulescu, C. Nicolescu, A. J. C. van Gemund, and P. P. Jonker, " CPR: Mixed 

Task and Data Parallel Scheduling for Distributed Systems." International Parallel 

and Distributed Processing Symposium, pp. 23-27, April 2000. 

[38] M. Dorigo, "Optimization, Learning and Natural Algorithms", Ph.D. Thesis, 

Politecnico di Milano, Italy, 1992. 



  96 

 

  

[39] F. Ferrandi, P.-L.Lanzi, C.Pilato, D. Sciuto and A. Tumeo. "Ant Colony Heuristic 

for Mapping and Scheduling Tasks and Communications on Heterogeneous 

Embedded Systems." IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst., vol. 29, no 

6, pp. 911-924, June 2010. 

[40] Li, K., Xu, G., Zhao, G., Dong, Y. and Wang, D. "Cloud Task Scheduling Based on 

Load Balancing Ant Colony Optimization." In Chinagrid Conference (ChinaGrid), 

Sixth Annual. IEEE, pp. 3-9, 2011, 

[41] A. J. Page and T.J. Naughton, "Dynamic Task Scheduling Using Genetic Algorithms 

for Heterogeneous Distributed Computing," 19th International Parallel and 

Distributed Processing Symposium, pp.189-197, April 2005. 

[42] E.S. H. Hou, N. Ansari and H. Ren, "A Genetic Algorithm For Multiprocessor 

Scheduling," IEEE Transactions on Parallel and Distributed Systems, vol. 5 no. 2, 

pp. 113-120, February 1994.  

[43] F. Omara and M. Arafa, "Genetic Algorithms for Task Scheduling Problem," 

Journal of Parallel and Distributed Computing, vol. 70, no. 1, pp.13-22, January 

2010. 

[44] P. Roy, M. Mejbah and N. Das. "Heuristic Based Task Scheduling in Multiprocessor 

Systems with Genetic Algorithm by Choosing the Eligible Processor," International 

Journal of Distributed and Parallel Systems (IJDPS), vol. 3, no.4, pp. 111-121, 

August 2012. 

[45] R. Entezari-Maleki and A. Movaghar, "A Genetic-Based Scheduling Algorithm to 

Minimize the Makespan of the Grid Applications," International Journal of Grid 

and Distributed Computing, vol. 4, no. 2, pp. 11-24, June 2011. 

[46] S. Venugopalan and O. Sinnen, "ILP Formulations for Optimal Task Scheduling 

with Communication Delays on Parallel Systems," IEEE Trans. Parallel Distrib. 

Syst., vol. 26, no. 1, January 2015. 

[47] R. Dechter and J. Pearl, "Generalized Best-First Search Strategies and the Optimality 

of A*," Journal of the ACM (JACM), vol.32, no.3, pp. 505-536, July 1985.   

[48] A.Z. Semar Shahul and O. Sinnen, "Scheduling Task Graphs Optimally with A*," 

The Journal of Supercomputing, vol.51 no.3, pp. 310-332, March 2010. 



  97 

 

  

[49] Z. Yang, B. Yu and C. T. Cheng, "A Parallel Ant Colony Algorithm for Bus Network 

Optimization," Computer-Aided Civil and Infrastructure Engineering, vol.22, no.1, 

pp. 44-55, January 2007. 

[50] B. J.Vitins, and K. W. Axhausen, "Optimization of Large Transport Networks Using 

the Ant Colony Heuristic," Computer-Aided Civil and Infrastructure Engineering, 

vol.24, no.1, pp. 1-14, January 2009. 

[51] M. Dorigo, "Ant Colonies for the Travelling Salesman Problem" BioSystems, vol.43, 

no. 2, pp. 73-81, July 1997. 

[52] J. Bai, GK Yang, Y.W. Chen, LS Hu and C.C. Pan," A Model Induced Max-Min 

Ant Colony Optimization for Asymmetric Traveling Salesman Problem," Applied 

Soft Computing, vol.13, no. 3, pp. 1365-1375, March 2013. 

[53] L.M. Gambardella and É.D. Taillard," Ant Colonies for the Quadratic Assignment 

Problem," Future Generation Computer Systems, vol.17, no. 4, pp. 441-449, January 

2001. 

[54] J. H. Holland "Genetic Algorithms," Scientific American, vol. 267, pp. 66-72, July 

1992. 

[55] http://www.kasahara.elec.waseda.ac.jp/schedule/ 

(Last accessed: April, 2018) 

  

https://www.sciencedirect.com/science/journal/03032647/43/2
https://www.sciencedirect.com/science/journal/03032647/43/2
https://www.sciencedirect.com/science/article/pii/S1568494612001901
https://www.sciencedirect.com/science/article/pii/S1568494612001901


  98 

 

  

Publications  

Journal Publications 

 Y. Liu, L. Meng, I. Taniguchi and H. Tomiyama, "Novel List Scheduling Strategies 

for Data Parallelism Task Graphs," International Journal on Networking and 

Computing, vol. 4, no. 2, pp. 279-290, July 2014. 

 Yining Xu, Yang Liu, Junya Kaida, Ittetsu Taniguchi, and Hiroyuki Tomiyama, 

"Static Mapping of Multiple Parallel Applications on Non-Hierarchical Manycore 

Embedded Systems," IEICE Transactions on Fundamentals of Electronics, 

Communications and Computer Sciences, vol. E99-A, no. 7, pp. 1417-1419, July 

2016. 

 Y. Liu, L. Meng, I. Taniguchi, and H. Tomiyama, "A Dual-Mode Scheduling 

Approach for Task Graphs with Data Parallelism," International Journal of 

Embedded Systems, Inderscience Publishers, vol. 9, no. 2, pp. 147-156, April 2017. 

 Y. Liu, L. Meng, I. Taniguchi, and H. Tomiyama, "A Branch-and-Bound Approach to 

Scheduling of Data-Parallel Tasks on Multicore Architectures," Accepted for 

publication in International Journal of Embedded Systems, Inderscience Publishers. 

 

International Conference Publications 

 Y. Liu, I. Taniguchi, H. Tomiyama, and L. Meng, "List Scheduling Strategies for Task 

Graphs with Data Parallelism," In Proc. of International Symposium on Computing 

and Networking (CANDAR), pp. 168-172, Matsuyama, Dec. 2013. 

 Y. Liu, L. Meng, I. Taniguchi, and H. Tomiyama, "A Dual-Mode Scheduling 

Algorithm for Task Graphs with Data Parallelism," In Proc. of Asia Pacific 

Conference on Circuits and Systems (APCCAS), pp. 371-374, Ishigaki, Japan, 

November 2014. 

 Yining Xu, Junya Kaida, Yang Liu, Ittetsu Taniguchi, Hiroyuki Tomiyama, "Static 

Task Mapping for Non-Hierarchical Manycore SoCs," In Proc. of International 

Technical Conference on Circuits/Systems, Computers and Communications (ITC-



  99 

 

  

CSCC), pp. 519-521, Seoul, Korea, June-July 2015. 

 Y. Liu, L. Meng, I. Taniguchi, and H. Tomiyama, "A Branch-and-Bound Algorithm 

for Scheduling of Data-Parallel Tasks," In Proc. of Workshop on Synthesis and System 

Integration of Mixed Information Technologies (SASIMI), pp. 96-100, Kyoto, 

October 2016. 

 Y. Liu, L. Meng, H. Tomiyama, "A Genetic Algorithm for Scheduling of Data-

Parallel Tasks," International Symposium on Advanced Technologies and 

Applications in the Internet of Things (ATAIT), Osaka, April 2018. 

 

Domestic Workshops and Meetings 

 Yang Liu, Ittetsu Taniguchi, Hiroyuki Tomiyama and Lin Meng, "List Scheduling 

Algorithms for Task Graphs with Data Parallelism," 電子情報通信学会 VLD/DC/

情報処理学会 SLDM研究会, 鹿児島, 2013年 11月. 

 Yang Liu, Ittetsu Taniguchi, Hiroyuki Tomiyama and Lin Meng, "List Scheduling 

Strategies for Task Graphs with Data Parallelism," 第 14回留日中国人研究成果

報告会論文集, pp. 265-268, 大阪, 2013年 11月. 

 Yang Liu, Lin Meng, Ittetsu Taniguchi and Hiroyuki Tomiyama, "A Dual-Mode 

Scheduling Strategy for Task Graphs with Data Parallelism," 電子情報通信学会

VLD/CPSY/RECONF/情報処理学会 SLDM研究会, 横浜, 2015年 1月. 

 Yang Liu, Yining Xu, Lin Meng, Ittetsu Taniguchi and Hiroyuki Tomiyama, "A Fast 

and Exact Algorithm for Scheduling of Data-Parallel Tasks," 電子情報通信学会総

合大会, 草津, 2015年 3月. 

 




