
Doctoral Thesis Reviewed
by Ritsumeikan University

Environment-Aided Manipulation (EAM)
with Snake Robots

(ヘビ型ロボットにおける環境支援型マニピ

ュレーション)

September 2018
２０１８年９月

Doctoral Program in Advanced Mechanical Engineering and
Robotics

Graduate School of Science and Engineering
Ritsumeikan University

立命館大学大学院理工学研究科

機械システム専攻博士課程後期課程

REYES PINNER FABIAN EUGENIO
レイエス ピナー ファビアン エウヘニオ

Supervisor: Professor MA Shugen
研究指導教員： 馬 書根 教授

ii

Fall 2018

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

Committee in Charge:
• Professor MA Shugen, Chair

• Professor HIRAI Shinichi

• Professor NOKATA Makoto

iii

Declaration of Authorship

I, Fabian Eugenio REYES PINNER, declare that this thesis titled, “Environment-Aided Manipu-
lation (EAM) with Snake Robots” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this
University.

• Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the excep-
tion of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made clear
exactly what was done by others and what I have contributed myself.

Signed:

Date:

v

“All men dream: but not equally. Those who dream by night in the dusty recesses of their minds, wake in
the day to find that it was vanity: but the dreamers of the day are dangerous men, for they may act their
dream with open eyes, to make it possible. This, I did.”

T. E. Lawrence

vii

RITSUMEIKAN UNIVERSITY

Abstract

Graduate School of Science and Engineering

Department of Robotics

Doctor of Philosophy

Environment-Aided Manipulation (EAM) with Snake Robots

by Fabian Eugenio REYES PINNER

http://www.ritsumei.ac.jp/gsse/eng/
HTTP://EN.RITSUMEI.AC.JP/

viii

In this thesis, a snake robot in contact with an object is analyzed. The intention is to use the
snake robot to grasp and manipulate the object. This is done by studying this system under
the framework of multi-rigid-body systems, which is compatible with other research regarding
manipulation or even walking with robotic systems.

The main contribution of this thesis is the additional study of the interaction of the snake robot
with the environment. A snake robot is normally in contact with the environment, for exam-
ple, laying on the ground. Unlike robotic manipulators that avoid this contact, snake robots
may not have another choice. By understanding this interaction with the environment, we can
understand how to exploit it, or at least alleviate its influence. This is where the concept of
Environment-aided Manipulation (EAM) is born.

EAM is intended to study any robotic system that tries to manipulate an object, but simulta-
neously has contact with the environment (or any other external object). We will study what
parameters of the snake robot and object have a significant impact on the performance of the
manipulation task.

When trying to manipulate an object with a snake robot, the most important point is to answer
feasibility. In other words, it is important to know if it is even possible to move the object. This is
a question that has not been answered in previous research of snake robots, due to the fact that
often inertial terms are ignored. But we will show that the inertial terms of the snake robot and
object play an important role, they cannot be ignored.

First, the relationship between the size of the snake robot and object is studied to determine if
it is possible to grasp it. This shows the similarities of snake robots with other robotic systems
like manipulators, or even robotic hands, since the kinematic structure is similar. Later, suffi-
cient requirements to grasp the object with form-closure are presented, based on a geometrical
analysis.

Then, a complete study of the subspaces involved is presented. This is done in the framework of
robotic grasping, which is a well-studied framework with several applications, but that had not
been extended to snake robots previously. The projections between joint torques of the snake
robot and the resulting forces applied to the object are studied, and conditions to guarantee
form-closure are presented.

Once a complete analysis of the dynamical model of the snake robot and object are presented,
an analysis using basic differential geometry is shown. This analysis guarantees invariance of
the quantities due to a change of coordinates. In other words, the analysis presented does not
depend on a specific frame of reference. The analysis considers inertial terms to consider the
feasibility due to the inertial parameters of robot and object, which is something that cannot be
understood purely from a kinematic analysis. In other words, a object that is too heavy could
not be moved, regardless of the control strategy.

It is shown that there is a set of postures (shape of the snake robot) that are optimal for pushing
the object. More specifically, it is shown that the position of the center of mass of the snake robot

ix

plays a paramount role when pushing an object. This is regardless of the specific joints’ con-
figurations. In other words, several postures with different joint coordinates will have a similar
performance. It is also shown that the friction between the snake robot and ground has almost
no impact on the instantaneous performance. In other words, the analysis presented shows
that friction can be ignored when calculating optimal postures. This is even more important for
unstructured environments, where determining the friction coefficient would be difficult.

Then, the analysis is extended to consider also the motion of the system. Intuitively, it can be
understood that if pushing against an object, it is desired that the robot does not alter its posture
significantly due to the interaction. It is shown that the postures that maximizes the motion of
the object to be manipulated, are not necessarily the same postures that minimize the motion of
the snake robot. This implies a trade off in the control strategy, a conclusion that could not have
been drawn without the previous analysis.

Finally, a rigorous set of experiments is perform to validate the mathematical analysis presented.
The complete description of the experiment setup, prototype, and results is shown.

xi

Acknowledgements

This thesis could not have been possible without the financing and support from the Ministry of
Education, Culture, Sports, Science and Technology-Japan (MEXT), whose financing for the first
three years allowed for several publications and participation in conferences. I also would like
to thank all the Ritsumeikan University staff that helped me with the necessary procedures and
everyday life problems that arose during my stay in here.

I give personal thanks to all the members of the BioInMech Laboratory for their support and
intellectual discussions that helped me to improve my research. In particular, thanks to my
supervisor Dr. Shugen Ma that was always very patient with me. Thanks to Dr. Kakogawa
Atsushi, Dr. Tian Yang, and Dr. Matsuno Takahiro for their support and guidance during my
stay here. Also thanks to M. Eng. Matsumoto Hisanori for his help in my research. Thanks to
everyone for for their friendship and help. I apologize to everyone I did not mention.

Finally, thanks to my family for the continuous support. Without their caring and encourage-
ment, it would not have been possible to conclude achieve this. I regret not thanking them
enough. Thanks to my father Daniel Reyes for his continuous encouragement, which I have
never deserved. Thanks to my sister for her help, although sometimes in the form of repri-
mands, never ill-intended. Also thanks to my aunt Alicia Cabañas, whose support was crucial
for the fulfillment of this milestone.

xiii

Contents

Declaration of Authorship iii

Abstract viii

Acknowledgements xi

List of Figures xvii

List of Tables xxi

List of Abbreviations xxv

List of Symbols xxvii

1 Introduction 1
1.1 Literature Review . 1
1.2 List of Publications . 5
1.3 Outline of the Thesis . 5

2 Foundations of EAM 7
2.1 The Concept of EAM . 7
2.2 Kinematic Modeling and Inertial Parameters of the Snake Robot 13
2.3 In-depth Analysis of Grasping with Planar Snake Robots: Form-closure and Sub-

spaces . 15
2.3.1 Kinematic Modeling Notes . 16

Constraints imposed by the contact between rigid bodies 16
Hand Jacobian . 18
Grasp Matrix . 19
Kinematic Constraints . 21
Basic properties of a grasp . 21

2.3.2 Analysis of the object’s mappings . 23
2.3.3 Analysis of the snake robot’s mappings . 24
2.3.4 Examples . 27

Example I: Partially Indeterminate, Graspable, Redundant, and Defective
Grasp with Partial Form-closure . 27

Example II: Partially Indeterminate, Graspable, Redundant, Non-defective
Grasp with Partial Form-closure . 28

xiv

2.3.5 Conclusions Regarding Types of Grasps with Snake Robots 29
2.4 Form-Closure - Feasible Solutions . 31

2.4.1 Partial form-closure . 31
2.4.2 Grasping with three adjacent links: grasp condition G3 33

2.5 (Unconstrained) Dynamic Modeling of the Snake Robot 36
2.6 Coupled Dynamic Model Between Snake Robot and Object 37
2.7 Projection onto the Constrained and Unconstrained Spaces 40

2.7.1 Constrained Subspace . 40
2.7.2 Acceleration of the system . 41
2.7.3 Equations of Motion Rewritten . 43
2.7.4 Polar coordinates of the COM of the snake robot 44
2.7.5 Summary . 44

2.8 Slippage Ratio . 45
2.8.1 Definition of Slippage Ratio . 45

3 Optimal Configurations and Optimal Postures 47
3.1 Simplified Interaction Between the Snake Robot and an Object 47

3.1.1 Constraint forces . 49
3.1.2 Contribution of the robot’s parameters to the contact force 50
3.1.3 Fitting the complex model data to the simplified model 52

3.2 Scenarios considered . 53
3.3 Results: Best Postures for Pushing an Object . 54
3.4 Results: Best Postures for Reducing Slippage . 58

3.4.1 Case Study 1 - Snake robot with two joints 58
3.4.2 Case Study 2 - Snake robot with three joints 60
3.4.3 Case Study 3 - Snake robot with four joints 61

3.5 Results: Simplified Model vs. Complex Model . 62

4 Experimental Results 65
4.1 Experimental Setup . 65

4.1.1 Overview of the snake robot prototype . 65
4.1.2 Control Law . 67

4.2 Optimal Postures - Experimental Results . 68

5 Discussion 75

6 Conclusions & Future Work 79
6.1 Conclusion . 79
6.2 Future Work . 79

A Mathematical Background 81
A.1 Differential Geometry . 81
A.2 Dynamic Modeling of Objects . 82
A.3 Metric Tensors and Norms . 82

xv

A.4 Constraints . 82
A.4.1 Kinematic Constraints Between Rigid Bodies 83
A.4.2 Friction Constraints of the Passive Wheels 83
A.4.3 Summary of Constraints . 84

B Prototype Design 87
B.1 v1.0 - Locomotion Part . 89
B.2 v2.0 - Manipulation Part . 96

C Electronics 99
C.1 Shields - Communication with servos . 100
C.2 softPots ADC conversion and conditioning . 100

D Programming 105
D.1 Servo communication - DuoDMXL . 105

D.1.1 Application Programming Interface (API) and Code of DuoDMXL 107

E Resources 109
E.1 Online resources . 109

E.1.1 OPPAS . 109
E.1.2 DuoDMXL - Servo Library and Accessories 109

E.2 Code . 109
E.2.1 DuoDMXL - Servo Library and Accessories 109

Index 159

Bibliography 161

xvii

List of Figures

2.1 Thought Experiment General scenario of a snake robot contacting an object. (a)
The snake robot contacts an object while it may also be contacting the environ-
ment either with its belly (friction) or pushing against a wall, for example. (b) The
snake robot may be able to move the object. (c) The object may be very heavy and
the snake robot will move around the object . 9

2.2 EAM Taxonomy Comparison of EAM and OAL depending on type of objects and
task . 10

2.3 Scenarios and Parameters Considered (a) All three scenarios considered. From
no friction, to ideal unbounded friction (b) Hypercube of parameters. It encom-
passes all possible combinations of friction, configuration of the snake robot, and
ratio of masses . 11

2.4 Kinematic model (a) Kinematic model of the snake robot with respect to an in-
ertial frame {N}. The yellow/black circle denotes the center of mass of the whole
snake robot. The snake robot is in contact with an object and the environment. (b)
The snake robot exerts a force onto the object. This link does not have a passive
wheel. (c) Depending on the slope of the plane, a part of gravity acts on the sys-
tem. (d) Passive wheels provide friction, depending on the mass of the link and
the gravity acting normal to the plane . 13

2.5 Contact between snake robot and object Exploited view of the k-th contact ck

between the object and linki of the snake robot. 17
2.6 Subspaces of GT and G (a) The mapping GT and its subspaces. Notice that

N (GT) is nontrivial and the subspace of contact twists νcc is not fully accessi-
ble.(b) The mapping G and its subspaces. Notice that N (G) is nontrivial. The
subspace of wrenches applied to the object g is not fully accessible (a torque can-
not be exerted onto the object). 24

2.7 Subspaces of a JH and a JT
H (a) The mapping a JH and its subspaces. Notice that

N (a JH) is nontrivial and the subspace of contact twists νcc is fully accessible. (b)
The mapping a JT

H and its subspaces. Notice that N (a JT
H) is trivial. Any contact

force will have an effect in the snake robot. 26

xviii

2.8 Examples grasp: partially indeterminate, graspable, redundant, defective (a)
System considered in Example I. The grasp is defective because the object is con-
tacting link3 which doesn’t have an actuator. The link could be thought of as the
palm of a robotic hand. (b) Notice thatN (G) is nontrivial, therefore there are inter-
nal forces, and are controllable by the snake robot. Also notice that the space g is
not fully accessible. This is because the snake robot cannot exert a torque unto the
object. However, there is partial form-closure since the axes ẑck positively span a
plane. 28

2.9 Examples grasp: partially indeterminate, graspable, redundant, non-defective
(a) System considered in Example II. (b) Notice thatN (G) is non-trivial, therefore
there are internal forces and are controllable by the snake robot. Also notice that
the space g is not fully accessible as in Example I. 29

2.10 Form-closure test with enveloping grasp Three contacts between three adjacent
links of the snake robot and an object. The COM of the object is shown as a yellow
circle. The polygon described by the contact points is also shown. (a) The COM
of the object is inside or outside the polygon and the axes ẑck (b) The axes ẑck span
the whole space when there is form-closure . 32

2.11 Form-closure region (a) Three representative cases are marked: (a.A) Inside the
region (∆x = 0.3, rµ = 0.2). There is form-closure, (a.B) On the boundary (∆x =

0.5, rµ = 0.5). There is not form-closure. (a.C) Outside the region (∆x = 0.8, rµ =

0.6). There is not form-closure. (b) The geometric analysis of the grasp 34
2.12 Form-closure evaluation (a) The grasp region where form-closure is possible (cf.

Fig. 2.11(a)) (b.A) Given a certain object with relative size rµ0, the range where the
first contact point can lie on the first contacting link can be found with (2.42). (b.B)
Given a contact location ∆x0, objects of several sizes can be grasped, as described
by (2.41) . 36

3.1 Interaction between a snake robot and an object simplified (a) Parameters of the
COM of the bodies w.r.t. to the contact point and contact force Tb, f ,. (b) Projection
of a input force into the constrained subspace. (c) Fitting the complex model of
the snake robot into the simplified model . 48

3.2 Scenarios considered (a)-(c) Scenarios 1 through 3. (d) Summary of the procedure
for obtaining the results. The used equations are shown if applicable 55

3.3 Acceleration of the object Acceleration of the object as a function of the robot’s
posture parametrized by the position ||rb1|| and angle θb1 of its COM w.r.t. the
contact with the object. Also shown as a function of disb1 = ||rb1|||sin(θb1)|. (a)
Scenario 1. (b) Scenario 2. (c) Scenario 3. (d) Summary of the maximum object’s
acceleration as a function of the mass ratio κ . 56

xix

3.4 Comparison Postures - Acceleration of the object (a) The snake robot with a good
and bad posture (GP and BP, respectively). (b) Input space for Scenario 1 (GP).
(c) Input space for Scenario 3 (GP). (d) Input space for Scenario 1 (BP). (e) Input
space for Scenario 3 (BP). (f) Increase [%] for the ||aobj||2 of Scenario 3 compared
to Scenario 1 . 57

3.5 Norms of motion of the system (two joints) The first, second, and third column
represent scenario 1, scenario 2, and scenario 3, respectively. A higher value rep-
resents more power transmitted to the respective motion. The configuration of
the robot is qs = {0, 0, 0,−135◦,−135◦}. (a) Acceleration of the object. (b) Accel-
eration of the snake robot. (c) Slippage ratio. Several values of κ are shown 59

3.6 Norms over all the configuration space (three joints) Norms studied over all
configurations of the snake robot. (a) Constraint force (from left to right: scenario
1, 2, and 3). (b) Acceleration of the object (from left to right: scenario 1, 2, and 3).
(c) Slippage ratio (from left to right: scenario 1 and 2) 60

3.7 Representative configurations (three joints) Representative configurations cho-
sen among the best and worst configurations of the snake robot.(a) Acceleration
of the object (b) Slippage ratio . 62

3.8 Norms of motion of the system (four joints) The first, second, and third column
represent scenario 1, scenario 2, and scenario 3, respectively. A higher value rep-
resents more power transmitted to the respective motion. The configuration of
the robot is qs = {0, 0, 0,−135◦,−135◦}. (a) Constraint forces. (b) Acceleration of
the object . 63

3.9 Complex Model vs. Simplified Model Comparison between complex (Scenario
2) and simplified model. (a) Simplified model’s bounds compared to the data col-
lected from the complex model. (c) Surface predicted from the simplified model
as a function of disb1 and dis f . 64

4.1 Experimental Setup (a) The snake robot pushes against an object. (b) A force
sensor reads the pushing force. (c) The tail of the robot controls the servomotors
and send a signal to synchronize the force sensor readings and other feedback . . . 66

4.2 Underside of the Snake Robot (a) Links corresponding to the locomotion part
have passive wheels, in order to provide anisotropic friction. (b) Links corre-
sponding to the manipulation part have a spherical bearing 67

4.3 Torque Control Flow Diagram . 69
4.4 Different types of setups for the snake robot experiment (a) A good posture

pushing the object away. (b) A bad posture. (c) A good posture pulling the object . 70
4.5 Results experiment 1 - A snake robot with good posture pushing against an

object (a) The time history of the normal distance from the COM of the snake
robot to the pushing line for four trials (b) The initial and final robot’s posture for
the fourth trial . 71

xx

4.6 Results experiment 2 - A snake robot with bad posture pushing against an ob-
ject (a) The time history of the normal distance from the COM of the snake robot
to the pushing line for three trials (b) The initial and final robot’s posture for the
second trial . 72

4.7 Results experiment 3 - A snake robot with good posture pulling an object (a)
The time history of the normal distance from the COM of the snake robot to the
pushing line for three trials (b) The initial and final robot’s posture for the third trial 73

4.8 Results experiments - Force applied to the obstacle (a) Good posture while push-
ing (b) Bad Posture (c) Good posture while pulling 74

B.1 OPPAS Snake robot prototype promotion . 87
B.2 OPPAS Overview Main parts composing the snake robot 90
B.3 Spine of OPPAS . 91
B.4 Ribs of OPPAS . 92
B.5 Caps of OPPAS . 93
B.6 Flesh of OPPAS . 94
B.7 The uBracket . 95
B.8 The servoBase . 96
B.9 A module of OPPAS assembled An assembled module with the Biomimetic In-

telligent Mechatronics Laboratory Logo c© . 97
B.10 Parameters of first generation OPPAS Set of parameters used in the Autodesk

c©Fusion 360 Software . 98
C.1 Complete System (a) Overview of the complete system. The snake robot can

communicate with the PC either through USB or wirelessly using a nRF24L01+
transceiver (2.4[Ghz]) (b) Communication using either USB or nrF24L01+ (c) Com-
munication with servomotors . 99

C.2 RS-485 Transceiver EAGLE Schematic of RR-485 transceiver circuit used to inter-
face with servomotors MX-64AR . 101

C.3 RS-485 Shield (a) EAGLE Board layout of the design. (b) Manufactured board . . 102
C.4 SoftPot scaling circuit (a) Connecting the SoftPot raw signal to a scaling circuit

and then to a low-pass filter (b) Analysis and simplification of the scaling circuit . 103
C.5 SoftPot Calibration (VIN=3.3[V],R1=1[kΩ],SP=10[kΩ]) Output response of the

scaling circuit by changing the values of R2 and R3 (a) Using a strong pull-up
resistor (b) Using a weak pull-up resistor . 104

D.1 DuoDMXL Communication Overview Internal layers of the library. DuoDMXL
gives user access to a series of high-level functions, while hiding low-level com-
munication . 106

D.2 Electronic Setup of Duo and servomotors The pins used for communication with
the servos, along an overview of the electrical connections 106

xxi

List of Tables

2.1 Parameters of Example I . 27
2.2 Parameters of Example II . 30

3.1 Parameters of the snake robot . 54
3.2 Parameters of the Simulation for case study 1 . 58
3.3 Results of the norms . 61

B.1 Parts of OPPAS . 90

C.1 Parameters of SoftPot Circuit . 104

xxiii

Listings

2.1 Thought Experiment . 8
4.1 Optimization Problem: Maximize Slippage Ratio . 67
B.1 CC BY 4.0 . 88
E.1 DuoDMXL API . 109
E.2 DuoDMXL.h . 127
E.3 DuoDMXL.cpp . 134

xxv

List of Abbreviations

AB Articulated-body
COM Center of Mass
CRB Composite-rigid-body
DOF Degrees of Freedom
EAM Environment-aided Manipulation
OAL Obstacle-aided Locomotion
OPPAS OPen-source PArametric Snake-robot
SC Serpenoid Curve
sr slippage ratio

xxvii

List of Symbols

Symbol Name Unit

a, b, · · · Vectors will be denoted with lower-case bold letters
A, B, · · · Matrices will be denoted with upper-case bold letters
x̂, ŷ, · · · unitary vectors (usually spanning vectors) have a hat

nop Dimension of operational space twists/wrenches
ns Degrees of freedom of the snake robot (including floating base)
nna Number of non-actuated degrees of freedom of the snake robot (floating base)
na Number of actuated joints of the snake robot
n` Number of links of the snake robot (n` = na + 1)
nobj Degrees of freedom of the object
n Degrees of freedom of the snake robot + object(s) (i.e., n = ns + nobj)
nc, f Number of constraints due to (static) friction
nc,np Number of non-penetration constraints
nc Total number of constraints (i.e., nc = nc, f + nc,np)

ms mass of one link of the snake robot kg
mT total mass of the snake robot (i.e., mT = n`ms) kg
mobj mass of object being pushed by snake robot kg
κ ratio between mass of object and snake robot’s link (i.e., κ := mobj/ms)
robj radio of circle circumscribed to an object to be manipulated meter
` length of a link of the snake robot meter
w width of a link of the snake robot meter
Ms ∈ <ns×ns Inertia matrix of the snake robot
Iobj ∈ <nobj×nobj Inertia matrix of an object
m1 mass denoting the mass of a generic system numbered ’1’ kg
m2 mass denoting the mass of a generic system numbered ’2’ kg
κ dimensionless ratio relating masses of two systems as m2 = m1κ

qna ∈ <nna non-actuated DOFs of the snake robot
qa ∈ <na actuated DOFs of the snake robot (i.e., joints)
qs ∈ <ns generalized coordinates of the snake robot (i.e., qs = [qT

na + qT
a]

T)
qobj ∈ <nobj state of the object(s)
q ∈ <n state of whole system (i.e., q = [qT

s + qT
obj]

T)

Fn ∈ <n n-dimensional subspace of generalized forces
Mn ∈ <n n-dimensional subspace of generalized motions
C ∈ Fn nc-dimensional subspace of constraint forces embedded in Fn

D ∈ Mn (n− nc)-dimensional subspace unconstrained motions embedded in Mn

Tb ∈ Rnop Spanning vectors (wrenches) of non-penetration constraint forces
Tb,n Spanning vectors (moments) of non-penetration constraint forces

xxviii

Tb, f Spanning vectors (forces) of non-penetration constraint forces
Tf ∈ Rnop Spanning vectors (wrenches) of friction constraint forces
Tf ,n Spanning vectors (moments) of friction constraint forces
Tf , f Spanning vectors (forces) of friction constraint forces
fc ∈ Fn constraint forces
fc,np non-penetration constraint forces
fc, f constraint forces due to friction
λ ∈ C constraint forces (coordinates)
λnp ∈ <nc,np non-penetration constraint forces (coordinates)
λb ∈ <nc,np non-penetration constraint forces (coordinates). Equivalent to λnp
λ f ∈ <nc, f tuple of scalars representing constraint forces due to friction (coordinates)

a ◦ b Scalar product between two vectors a and b
a× b Cross product between two vectors a and b
a 6 b Inequalities between scalars
a 6 b Inequalities between vectors. Interpreted element-wise
< ·, · > Inner product
a× cross-product operator (also called skew-operator) of a vector a
||a|| Norm of a vector a. Not necessarily the Euclidean norm
BXA ∈ <6×6 Transformation (for twists) from frame A to B
BX∗A ∈ <6×6 Transformation (for wrenches) from frame A to B

xxix

Dedicado a mi familia . . .

1

Chapter 1

Introduction

Snake robots have shown a lot of promise for locomotion in unstructured environments. How-
ever their application in other tasks, for example manipulating objects, is yet to be deeply stud-
ied. The intention of this thesis is study snake robots in tasks related to manipulation and grasp-
ing, while doing it in a framework that is consistent with other robotic systems.

Snake robots, although similar to robotic manipulators in their kinematic structure, are more
similar to mobile robots due to their lack of a fixed-base. The proper framework to study them
depends also on the task to be performed. If a snake robot is used to interact with objects, for
example to grab them and manipulate them, then the objects’ dynamics have to be considered in
the modeling and control stages. In addition, the snake robot is interacting with the environment
(e.g., touching the ground with its belly to obtain propulsive forces) and this interaction has to
be accounted for.

We propose that the interaction with the environment can be studied along the interaction with
an object in the framework of multibody rigid-body systems. This would put snake robots in a
framework consistent with other mobile robots at the same time as grasping and manipulation
with robotic hands, for example.

The interaction between the snake robot and the environment has a deep effect on the interaction
between the snake robot and object, as it will be studied. Since the snake robot is a mobile robot,
its inertial effects cannot be simply dismissed without further study. The mass of the snake robot
and its shape will also influence the tasks that it can perform.

1.1 Literature Review

Locomotion and manipulation have been long-time studied topics in robotics. The ability to
locomote in places or manipulate objects that humans cannot is an attractive proposal that has
deep social and economical repercussions. However, real life applications may require robots
that are multi-purpose. It is necessary that the robot can adapt to several situations and changes
in its environment. For example, mobile robots may encounter situations where they would

2 Chapter 1. Introduction

need to interact with the environment or manipulate an object. On the other hand, robots specif-
ically built for manipulation (e.g., robotic arms) are usually used in structured environments 1.
This limits their usability and adaptability. Therefore, robots that are capable of both locomotion
and manipulation are a natural and logical extension of robotic research.

Locomotion can be achieved by several mechanical means. For example, robots with wheels,
treads, or legs are capable of locomotion, each with its unique advantages and disadvantages.
Manipulation and grasping using robots has been one of the most heavily researched area of
robotics, mainly due to its potential applications in the manufacturing industry. Several types of
mechanisms have been designed and researched to study manipulation and grasping, including
mechanisms based on human arms and hands.

The combination of both locomotion and manipulation can be achieved by combining both types
of systems. The simplest idea is to have a mobile base and add a robotic arm [1, 2]. The main
drawback is that the robot’s capabilities will be determined by the mechanical design of each
part. Another problem is that this means the robot is divided, at least conceptually, into two
parts: the locomotion part, and the manipulation part. This will greatly influence the control
strategy, since each part will usually have its own modeling and control approach. The main
line of thought of this type of research is how can the locomotion improve the manipulation, or vice
versa.

Snake robots are robots that have a structure similar to biological snakes. This type of robot has
gained attention in the past few years, mainly due to its unique locomotion gaits, which show a
lot of promise for improving locomotion in unstructured environments. To be able to move in
unstructured environments is an attractive idea that has several applications.

For example, in Search and Rescue (SAR) operations [3, 4] more common mobile robots have
show limitations. Snake robots have been proposed as an improvement [5]. Environmental
monitoring could also benefit from robots that can mimic their biological counterparts [6].

Locomotion in planar environments has been probably the main topic of research for snake
robots [7, 8, 9]. Research has been extended to motion in planar slopes [10, 11], and motion in
3D-space [12, 13] Also, there are and more broad studies on locomotion [14] using snake robots.

However, snake robots should not be limited to only locomotion tasks. Although snake robots
could excel in locomotion, with the current stage of research it is not clear if they can be used
to interact with the environment (or an object) dexterously. For example, a snake robot could
try to grab and manipulate an object, or at least push it in a desired trajectory. A snake robot’s
(kinematic) structure resembles a robotic manipulator but there are key differences that have
not been fully addressed in previous research and will be discussed more deeply in Section
2.1. The first key point is that a snake robot is a mobile robot; it has a floating base making it
an underactuated system. Unlike a robotic manipulator with a fixed-base, the snake robot is a
mobile robot that may slip while interacting with an object, limiting the set of forces that it can

1By structured we mean an environment that is well known, and in general is static (there are no moving obstacles,
and if they are, its state can be known a priori). Additionally, its geometry can be explained with geometric equations
(e.g., a plane, boolean combinations of basic primitive shapes).

1.1. Literature Review 3

produce. Another key difference is that snake robots may contact the environment at several
points of its body. Snake robots rely on the friction between its belly and the ground to obtain
propulsive forces for locomotion and may be contacting the environment (e.g., a wall) at the
same time.

Because the kinematic structure of a snake robot resembles a robotic arm, papers that deal with
similar situations can be found in existing literature. In [15] the manipulability of a tentacle arm
(a robotic arm consisting of several links) manipulating an object was studied. In [16] a hyper-
redundant serial robot was considered and both locomotion and manipulation of an object were
considered. In both cases the analysis was purely kinematic while assuming a fixed-base robotic
system. Also, there was no force analysis between the robotic arms and object or with the envi-
ronment. In other words, the main features of a snake robot (i.e., lack of a fixed-base and extra
interaction with the environment) were either ignored or over simplified. In [17] the duality
between locomotion and manipulation of a snake robot was considered under the assumption
that the snake robot can be treated similarly to a robotic arm with a fixed-base when manipu-
lating an object. In [18] a snake robot is used to grasp and drag an object. However, there is
no force analysis (either quasi-static of dynamic) of the interaction between the snake robot and
environment or between the snake robot and grasped object (i.e., the analysis is purely based
on a kinematic model similar to a robotic manipulator). More recently, the idea of attaching a
saw to a snake robot and using it for a cutting task has been proposed [19]. A dynamic model
and control law were proposed showing that a snake robot can be used for tasks other than pure
locomotion.

An interesting idea that combines locomotion and interaction with the environment, called
obstacle-aided locomotion (OAL), has been proposed in [20] where obstacles in the environ-
ment are used as auxiliary sources for propulsion (or to avoid jamming). However, the focus
is still on locomotion and not in controlling the contact forces with the obstacles. Extending
the concept of OAL, in [21, 22] a snake robot pushes against rigid objects in order to move in
a certain direction. However, the analysis is limited to just an instant in time and is difficult to
confirm if this approach could be used as a locomotive gait. In [23] the interaction of a snake-
like robot and obstacles is also studied, which is a similar idea to OAL. From the control point
of view, a strategy for calculating the torque input in order to move the snake robot towards a
desired point via convex optimization was presented in [24]. However, one of the key findings
was that it is extremely difficult for a snake robot to be controlled like a robotic manipulator
since the friction between the ground and the snake robot is not big enough to prevent slipping
of the floating base (contradicting the assumption of a fixed-based used in previous research),
but big enough to not be negligible. Since friction is related to mass, we conjecture that the effect
of mass should not be ignored when dealing with snake robots, and purely kinematic studies
may ignore several of the most important characteristics of a snake robot.

It is the purpose of this line of research to better explain and study a snake robot in a task not
related to locomotion, but related to manipulation and dexterous interaction with the robot’s
environment or external objects. As previously discussed in our thought experiment, under-
standing the physical limitations of such system is important. It is not only a matter of designing

4 Chapter 1. Introduction

a controller for choosing the best input, but to also understand the overall characteristics of the
system. It is intuitively clear, that a snake robot could not manipulate an object that is signifi-
cantly heavier than the robot itself. Therefore, before understanding manipulation, it is useful
to understand the idea of pushing the object first. Manipulation would be a natural extension,
which relates to the directions the object can be pushed to.

Our system consists of a snake robot in contact with one object to be pushed and the objective is
to study the force that can be applied to the object. In addition, the snake robot is contacting the
environment with passive wheels. This adds extra friction constraints, something that robotic
manipulators usually do not have. It is necessary to study if the extra friction forces have any
impact whatsoever in the force exerted onto the object. We conjecture that there should be opti-
mal situations for this interaction, and that the posture (or shape) of the snake robot should have
a significant impact. The mass of the snake robot should also play an important role in under-
standing what objects could be pushed or not, clearly, something that could not be studied with
kinematics alone. At this stage, the analysis is limited to snake robots moving in a plane (not
necessarily the horizontal plane).

Preliminary findings have been reported in [25, 26] that study the effect of the robot’s posture.
It has been found that postures where the center of mass (COM) of the robot is closer to the
object and along the line of action (the direction of pushing) are optimal and produce the highest
object’s acceleration. However, no reason on why these configurations are better was given,
relying on the interpretation of the results. In [27] the effect of the friction on the slippage of the
snake robot was also studied. It is shown that the extra friction does not affect significantly the
force exerted on the object, but minimizes the motion of the snake robot. This is important in
order to understand when the robot pushes the object, or when the snake robot itself is being
pushed away. This separates the problem into two. On one hand, we have the interaction with
an object which resembles the problem of robotic manipulation or pushing. On the other hand,
the interaction with the environment resembles more the problem of locomotion with legged
robots (interaction between the environment and robot to obtain propulsion).

The objective of this paper is to unify previous findings and to extend the analysis under a
framework we call Environment-aided Manipulation (EAM). The purpose of EAM is to study
the interaction between a snake robot and external bodies (obstacles or the environment itself) in
order to accomplish a task that is not related to pure locomotion. In the same way that research
regarding robotic manipulators have benefited from understanding its inertial properties (e.g.,
[28]) we think snake robots could benefit in the same way. Not only snake robots, but in general
robots where there is a coupling between locomotion and manipulation fall in the framework
of EAM. The primary objective is to show that the posture of the robot plays a significant role
in the acceleration of the object. Furthermore, optimal postures are found, regardless of addi-
tional friction forces between the snake robot and the environment, The secondary objective is
to show an analytical simplified model of a snake robot pushing an object, which corroborates
the findings with the full model.

1.2. List of Publications 5

1.2 List of Publications

The following is a list of the publications that lead to the writing of this thesis. The list is in
chronological order, either using the date of publication or the date of the conference, where it
corresponds.

1. F. Reyes and S. Ma, “On planar grasping with snake robots: Form-closure with enveloping
grasps”, in Proc. IEEE Int. Conf. Robotics and Biomimetics (ROBIO 2014), 2014, pp. 556–561
(c©[2014] IEEE)

2. F. Reyes, W. Tang, and S. Ma, “Using a planar snake robot as a robotic arm taking into
account the lack of a fixed base: Feasible region”, in Proc. IEEE Int. Conf. Intelligent Robots
and Syst. (IROS 2015), 2015, pp. 956–962 (c©[2015] IEEE)

3. F. Reyes and S. Ma, “Modeling of snake robots oriented towards grasping and interaction
with the environment”, in In: Proc. Int. Conf. Real-time Computing and Robotics (RCAR
2015), not published, 2015

4. F. Reyes and S. Ma, “Snake robots in contact with the environment: Influence of the config-
uration on the applied wrench”, in Proc. IEEE Int. Conf. Intelligent Robots and Syst. (IROS
2016), 2016, pp. 3854–3859 (c©[2016] IEEE)

5. F. Reyes and S. Ma, “Snake robots in contact with the environment - influence of the friction
on the applied wrench”, in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Syst. (IROS 2017),
2017, pp. 5790–5795. DOI: 10.1109/IROS.2017.8206471 (c©[2017] IEEE)

6. F. Reyes and S. Ma, “Studying slippage on pushing applications with snake robots”, in In:
Proc. Int. Conf. Real-time Computing and Robotics (RCAR 2017), 2017 (c©[2017] IEEE)

7. F. Reyes, H. Matsumoto, and S. Ma, “Design and implementation of modular and paramet-
ric 3d printed snake robot”, The Robotics and Mechatronics Conference (ROBOMECH 2017),
vol. 2017, 2A2–A11, 2017. DOI: 10.1299/jsmermd.2017.2A2-A11. [Online]. Available:
https://www.jstage.jst.go.jp/article/jsmermd/2017/0/2017_2A2-

A11/_article/-char/ja

8. F. Reyes and S. Ma, “Studying slippage on pushing applications with snake robots”, Robotics
and Biomimetics, vol. 4, no. 1, p. 9, 2017, ISSN: 2197-3768. DOI: 10.1186/s40638-017-
0065-3. [Online]. Available: https://doi.org/10.1186/s40638-017-0065-3
(c©[2017] The Authors)

1.3 Outline of the Thesis

The outline of this thesis is as follows. In Chapter 1 the statement of the problem along an
exhaustive literature review is presented. Section 1.2 presents a list of the publications that lead
to the writing of this thesis.

https://doi.org/10.1186/s40638-017-0065-3
https://www.jstage.jst.go.jp/article/jsmermd/2017/0/2017_2A2-A11/_article/-char/ja
https://doi.org/10.1186/s40638-017-0065-3
https://doi.org/10.1186/s40638-017-0065-3
https://www.jstage.jst.go.jp/article/jsmermd/2017/0/2017_2A2-A11/_article/-char/ja
https://doi.org/10.1109/IROS.2017.8206471
https://doi.org/10.1299/jsmermd.2017.2A2-A11

6 Chapter 1. Introduction

Chapter 2 presents the concept of EAM. In particular, Section 2.1 presents the definition of EAM
used in this thesis, along the mathematical analysis of this problem. Section 2.2 presents the
main kinematic model that has been used in this thesis and related published papers. Section
2.3 presents a complete analysis of the mappings involved when a snake robot is in contact
with an object. Necessary conditions for form-closure are presented. Section 2.4 presents a
set of sufficient conditions to have form-closure using an envelope grasp using a snake robot.
Section 2.5 and Section 2.6 move to a full dynamic of the snake robot without and with object(s),
respectively. Section 2.7 discusses the projections of the coupled equations of motion onto the
constrained and unconstrained subspaces. Section 2.8 introduces the slippage ratio relating the
motion of the snake robot and object.

Chapter 3 presents a set of results regarding optimal configurations and postures that maximize
the acceleration of an object, when a snake robot pushes it. First, Section 3.1 presents a mathe-
matical model that simplifies a snake robot contacting a body, into a two-body multi-rigid-body
system. This simplification allows to gather conclusions based on a geometrical analysis. Sec-
tion 3.1 analyzes with rigorous mathematical modeling the problem and simplifies in order to
gain insight. Section 3.2 discusses the scenarios considered in this thesis, which shows that the
conclusions obtained can be applied to a wide range of cases. Section 3.3 discusses analytically
and then shows with simulations that there is a set of optimal configurations of the snake robot
for pushing an object, regardless of the friction with the ground. Section 3.4 extends the anal-
yses to include the motion of the snake robot and object, and shows that there is also a set of
configurations that minimize undesired motion. Section 3.5 shows a comparison between the
simplified model obtained in Section 3.1 and the full complex model.

Chapter 4 presents experimental results to validate the formulations presented in previous chap-
ters. Specifically, experiments to verify the performance of good and bad postures of the snake
robot, as discussed in Section 3.4 are presented. Section 4.1 presents an overview of the pro-
totype of snake robot developed and experimental setup. A more detailed description of the
prototype is given in Appendix B. Section 4.2 shows the experimental results.

Chapter 5 provides an extensive discussion regarding the scope of the analysis presented in this
thesis and its place compared to other research regarding robotic systems.

Chapter 6 summarizes the most important findings of this thesis and presents some comments
regarding the direction that future research may take regarding EAM.

Appendix A presents the minimal mathematical background necessary to understand this doc-
ument. Specifically, Appendix A.1 presents an overview of theory of twists and wrenches which
are used to build the dynamic model of out system in later sections. Appendix A.2 presents the
basic techniques to describe the dynamic model of an object. Appendix A.4 gives a step-by-step
guide on how to add the constraints present in the system and couple the models of several sub-
systems. Appendix C presents the design of the electronic boards and circuits used in the snake
robot prototype. Appendix D presents a hard copy of the libraries developed to control the pro-
totype. Appendix E lists online resources with up-to-date information about the electronics and
libraries discusses in Appendix C and Appendix D.

7

Chapter 2

Foundations of EAM

2.1 The Concept of EAM

The concept of Environmental-aided Manipulation (EAM) refers to the use of the extra inter-
action with the environment to accomplish a task related to manipulation. This interaction with
the environment can be achieved in several ways, sometimes unintentionally. Originally, we
would consider our system (we use the term system referring to the mathematical concept of a
dynamic system, which may be composed of several subsystems) to be composed of only the
snake robot. However the extra interaction with the environment must be accounted for. How
does this interaction affect the system?

For example, regarding locomotion, mobile robots obtain propulsive forces by interacting with
the ground. Regardless of the physical means to obtain this propulsion (for example, wheels,
threads or legs), the principle is the same. Although snake robot’s locomotion, inspired in gaits
of its biological counterparts seems more complicated, it has been proven that the underlying
principle is the same [43, 52], in particular for the most common of gaits: undulatory locomotion
(also called slithering). A mechanical system pushes against the ground and is propelled in the
opposite direction.

The combination of locomotion and manipulation is a tricky endeavor since it is composed of
two complicated tasks. As discussed in Section 1.1, it is common to separate (at least in principle)
locomotion and manipulation. For some robotic systems which are composed of distinct sections
this is relatively easy. For example, in [1, 2] a robot can stop locomoting and concentrate in
manipulating using their robotic arm. The interaction with the environment, and its influence
in the manipulation task is therefore minimized or simply ignored.

Snake robots cannot easily avoid this interaction due to the fact that they are always contacting
the floor. This extra interaction, which can be modeled as both static or dynamic friction de-
pending on the state of the system, can either help or hinder a snake robot trying to perform a
manipulation task. Using this extra friction to help in a manipulation task is a type of EAM. The
new system now consists not only of the snake robot, but also includes the interaction with the
environment.

Consider the following though experiment (cf. Fig. 2.1).

8 Chapter 2. Foundations of EAM

Listing 2.1: Thought Experiment

A snake robot is in contact with an object with the purpose to move

such object into a desired direction. In contrast, we may be

interested in stop it from moving given an external undesirable

force.

The snake robot is in contact with the ground (environment) with

its belly. It may also be contacting other obstacles, for

example, a wall.

If the snake robot tries to move the object, what will happen? Is

the snake robot going to move the object, or is the object so

heavy that the robot will move instead?

These two situations, the robot moving the object or the robot moving around the object, are nor-
mally studied separately. However, under the framework of EAM they are actually proven to
be related; they are simply extremes of the same system. Which one is preferable will depend
on the task at hand.

If the task is to move the object, then the movement of the robot must be minimized and the
situation depicted in Fig. 2.1(b) is desirable. On the other hand, if the task is to locomote while
minimizing interaction with the environment and external objects, then the situation depicted
in Fig. 2.1(c) is the one desired. Notice that the later is related to the concept of climbing [53, 54,
55, 56].

In this thesis, we make almost not distinction between grasping and manipulation. The main
principle behind them is to have a robotic system impart a force onto an object, and therefore
control the object’s behavior. Grasping deals mainly with the task of constraining an object
(static equilibrium), while manipulation mainly refers to making an object move in a desired
way (dynamic equilibrium). We will make a clear distinction when necessary, but otherwise
treat them without distinction.

Since a robot maybe contacting the environment and external objects, it is necessary to be a little
more clear on what types of interaction EAM is considering. A few terms used throughout this
thesis need further clarification. The framework of EAM uses the next terms:

Definition 1. Object: refers to a rigid object(s) to be manipulated. The full inertial parameters
and equations (eqns.) of motion are considered along the eqns. of motion of the snake robot.
However, there is an exception that will be explained later.
Definition 2. Obstacle: refers to any rigid object(s) that the snake robot contacts, but without the
purpose to manipulate it. The eqns. of motion of the obstacles must be considered, too. The
exception is when the obstacle is fixed to the environment or has infinite mass. In this case we
may use the term static obstacle or environment, as explained in the next definition.

2.1. The Concept of EAM 9

torques on
the joints

environment

friction
forces

object

(a)

(b) (c)

object

object

{N} x̂

ŷẑ

x̂

ŷẑ

motion of
the object

motion of
the robot

x̂

ŷẑ

{N} {N}
FIGURE 2.1: Thought Experiment

General scenario of a snake robot contacting an object. (a) The snake robot contacts
an object while it may also be contacting the environment either with its belly
(friction) or pushing against a wall, for example. (b) The snake robot may be able
to move the object. (c) The object may be very heavy and the snake robot will move

around the object

Definition 3. Environment: refers to any object external to the snake robot. Unlike an obstacle,
the environment is considered to be part of an inertial frame and no eqns. of motion are consid-
ered. An example would be a wall or a pole attached to the ground. The environment can be
considered an object with infinite mass.
Definition 4. Constraint forces: refers to any type of force that imposes a constraint between two
objects. The symbol to denote constraint forces is fc or λ, depending on the space studied (more
details in Appendix A.4).

10 Chapter 2. Foundations of EAM

snake head
 & object

tail & environment

snake head
 & object

TYPE

OF OBJECTS

TASK

Free manipulation

Manipulation with the tail
�xed to the environment

Dragging

Branch climbing

Gait-based locomotion

direction of
locomotion

OAL

EAM

non-static

static and
non-static

static
(environment)

manipulation hybrid manipulation
and locomotion locomotion

FIGURE 2.2: EAM Taxonomy
Comparison of EAM and OAL depending on type of objects and task

Definition 4.1. Static friction forces: Special case of constraint forces. In this thesis, a simple
model of Coulomb friction is assumed. In other words, friction forces between two objects, in
the constrained directions, are limited to their respective limit surface [37], which is controlled
with a friction coefficient µs. The term static is dropped since the distinction between static and
kinetic friction should be clear from context. The symbol to denote (static) friction forces is fc, f

or λ f (more details in Appendix A.4.2).
Definition 4.2. Non-penetration constraint forces: Special case of constraint forces. These forces
appear due to the fact that rigid bodies cannot penetrate each other. These forces are also com-
monly called kinematic constraints [35, 37, 39, 40]. In this thesis, these forces are assumed to be
unilateral (two objects can push against each other, but not pull) and unbounded. The symbol
to denote non-penetration (kinematic) forces is fc,np or λnp (more details in Appendix A.4.1).

The whole system then, is composed of the eqns. of motion of the snake robot, object(s), and
obstacle(s), along constraint forces between them. We will show that, when an obstacle is heavy
enough, it behaves (instantaneously) like if it were attached to the environment and its eqns.
of motion can be ignored. Although the environment does not have eqns. of motion, it is still
necessary to consider the constraint forces between the snake robot and the environment. For
example, static friction between the ground and snake robot can be modeled as a constraint force.
Additionally, the constraint that dictates that two objects cannot penetrate each other imposes a
set of kinematic constraints, which then give raise to a set of forces.

2.1. The Concept of EAM 11

(a)
x̂

ŷ

SCENARIO 1

τ1

τ2

�aobj

SCENARIO 2

x̂

ŷ

SCENARIO 3

x̂

ŷ
Tb,f

rb1

θb1

Negligible friction
SCENARIO 1

SCENARIO 2
Non-negligible friction κ

µs

µs = 0

Ideal passive wheels
SCENARIO 3

µs → ∞

Con�guration

Negligible friction
SCENARIO 1

µs = 0

Negligible friction
SCENARIO 1

SCENARIO 2
Non-negligible friction

µs

µs = 0

Ideal passive wheels
SCENARIO 3

µs → ∞

κ

Con�guration

Con�guration

(b)

(b.1)

(b.2)

(b.3)

FIGURE 2.3: Scenarios and Parameters Considered
(a) All three scenarios considered. From no friction, to ideal unbounded friction
(b) Hypercube of parameters. It encompasses all possible combinations of friction,

configuration of the snake robot, and ratio of masses

12 Chapter 2. Foundations of EAM

A special notation that is adopted in this thesis for the constraint forces is the following: The
constraint forces will adopt as parameters the systems that are involved in them. For example, if
the snake robot is contacting a k-th obstacle, the (non-penetration) constraint forces are written
as λnp(snake-robot, obstaclek), denoting that the constraint forces couple these two subsystems.
Since the environment is not considered to have eqns. of motion, the friction between the snake
robot and ground (or any other part obstacle attached to the inertial frame) can be written as
λ f (snake-robot).

This allows use to put the concept of EAM in a similar framework to other robotic research. In
particular, the concept of Obstacle-aided Locomotion (OAL) [20] is similar to EAM, where the
task is locomotion and the robot contacts static objects (the environment). Fig. 2.2 shows how
EAM and OAL are related; the main difference is the objective. Consequently, we consider OAL
to be directly related to climbing [56]. However, as we will show in Chapter 2, both EAM and
OAL are extremes of the same underlying mathematical model, and therefore can be studied
on the same mathematical framework. Which approach should be taken is mainly decided by
the inertial parameters of the external objects. Even if the robot’s objective is to locomote, if the
robot is contacting objects that are not static, then the EAM framework presented in this thesis
is preferable since it considers the dynamic eqns. of the objects.

There are several parameters and variables that can be studied in such a complex system. As
discussed previously, the mass of the several subsystems play a very important role in the be-
havior of the robot. The ratio between masses (c.f. (2.50)) is extremely important, since it allow
us to study any object assuming a general snake robot with unitary mass per link (i.e. each link
has 1[kg] of mass).

However, we believe that the most important parameter to study is the friction between the
snake robot and the ground. In real applications, it is not possible to know beforehand the
friction coefficient between a snake robot and the ground. Even in ideal situations, this problem
has been shown to be a stochastic problem, and the problem is less easy to predict the higher the
friction coefficient [57]. It is then interesting to consider extreme cases of friction: unbounded
and negligible.

Since friction is one of the most important parameters to be studied, it is important to provide
a wide range of scenarios that consider several different cases of friction. Fig. 2.3(a) provides an
overview of the Scenarios considered. They are explained more completely in Section 3.2.

Generally speaking we consider the extremes of negligible friction and ideal unbounded friction,
which is the model most commonly used for locomotion with snake robots. Friction is param-
eterized by its friction coefficient µs. Additionally, we consider the ratio between the mass of
the snake robot and object denoted by κ, which is described in (2.50). Additionally, we consider
the configuration of the snake robot (its joints’ angles). These three sets of parameters describe a
wide range of systems, and can be imagined as an hypercube in the parameter space. Fig. 2.3(b)
provides an overview of this hypercube. Fig. 2.3(b.1) shows the an abstraction of the three main
sets of parameters to be studied: ratio of masses κ, friction coefficient µs and configuration (of

2.2. Kinematic Modeling and Inertial Parameters of the Snake Robot 13

p2

p4

ŷ 1

ŷ
2

ŷ 3

ŷ4

θ1

φ1(t)

φ2(t)
x̂
2

x̂3

x̂4

p3

x̂

ŷ

x̂1

objectCOMs

gt

pc

ẑ
(x1, y1)

(a)

Locomotion
section

Manipulation
section

g
gn

gt

θslope

ẑ ŷ

E�ect of gravity

(c)

� i
pc

Tb,f
Link for pushing object
(no passive wheel)

(b)

linki

pf

Tf,f

Passive wheels and
their friction limit

(d)

miµs||gn||

{N}

FIGURE 2.4: Kinematic model
(a) Kinematic model of the snake robot with respect to an inertial frame {N}. The
yellow/black circle denotes the center of mass of the whole snake robot. The snake
robot is in contact with an object and the environment. (b) The snake robot exerts
a force onto the object. This link does not have a passive wheel. (c) Depending
on the slope of the plane, a part of gravity acts on the system. (d) Passive wheels
provide friction, depending on the mass of the link and the gravity acting normal

to the plane

the snake robot). Fig. 2.3(b.2) shows the plane κ-configuration, which is obtained when assum-
ing no friction with the ground (i.e. µs = 0). This plane allows to concentrate on the influence
of the configuration and masses. This particular case has been reported in [25]. Fig. 2.3(b.3)
shows the plane µs-configuration which is obtained when keeping the mass of the object fixed.
This plane allows to concentrate on the influence of friction and configurations. This has been
reported in [26].

2.2 Kinematic Modeling and Inertial Parameters of the Snake Robot

A snake robot can be modeled as a series of rigid links connected by revolute joints [58, 42]. All
joints have their axes parallel to each other, therefore the snake robot is constrained to move on
a plane (but unconstrained in any other way). The kinematic model of a snake robot is similar
to an open-chain robotic manipulator but with the addition of a floating base (c.f. Fig. 2.4(a)).

The snake robot has a total of ns ∈N degrees of freedom (DOFs) and its generalized coordinates
are encapsulate in the vector qs(t) ∈ <ns . The first three coordinates account for the non-actuated
DOFs of the floating base qna(t) = [x1(t), y1(t), θ1(t)]

T ∈ <3×1, where the position of the float-
ing base and its orientation w.r.t. an inertial frame {N} are denoted as [x1(t), y1(t)]

T ∈ <2 and

14 Chapter 2. Foundations of EAM

θ1(t) ∈ <, respectively. There are na = ns − 3 actuated DOFs (the joints of the snake robot) en-
capsulated in the vector qa(t) = [φ1(t), · · · , φna(t)]

T ∈ <na×1. The vector of generalized coordi-
nates of the snake robot is the concatenation of these last two vectors qs(t) = [qna(t)

T qa(t)
T]T,

qs ∈ <ns×1.

The snake robot is composed of n` = na + 1 links each with mass mi. Then, the total mass of the
snake robot is mT = ∑n`

i=1 mi. Under the assumption that all links have the same mass ms, then
mi = ms∀i will be used to denote the mass on any link of the snake robot, and the total mass can
be simplified as mT = n`ms.

The set of Cartesian coordinates of the COM of the snake robot is denoted by COMs ∈ <op,
where nop denotes the dimensions of the operational space. The coordinates COMs are refer-
enced w.r.t. the inerial frame {N}.

The Jacobian for the i-th link is a mapping from the vector of generalized velocities q̇s to the
twist υi ∈ <3 of the link and is denoted as Ji

υi = Jiq̇s. (2.1)

The twist υi, which contains both linear and angular velocities, does not necessarily represent
the velocity of the COM of the i-th link, but rather a quantity that is frame-independent. If the
twist needs to be represented w.r.t. a specific frame of reference, transformations like the ones
discussed in Appendix A.1 can be used. For example, if the twist is represents the velocity at the
origin of the link (cf. Fig. 2.4), and it is wished to know the twist at a frame located at the COM,
then the following transformation may be used

COMυi =
COMX i υi =

COMX i Jiq̇s, (2.2)

where it is assumed that υi is the twist represented at the origin of the link.

This approach of writing the kinematic and dynamic equations of the system without referenc-
ing a specific reference of frame, is discussed in several sources including (but not limited to)
[33, 36]. This approach is very powerful since it allows us to derive conclusions based on ge-
ometry without looking at the contents of the several matrices and vectors involved. This is an
advantage for a multi-dimensional complex system like the one studied in this thesis.

The inertia matrix of the snake robot Ms ∈ <ns×ns can be obtained as

Ms =
i=n`

∑
i=1

mi JT
i Īi Ji, (2.3)

where Īi denotes the inertia tensor of the i-th link with unitary mass, as discussed in Appendix
A. If all the links have the same mass mi = ms∀i, then the inertia tensor of the snake robot can
be factorized as

Ms = ms M̄s, (2.4)

2.3. In-depth Analysis of Grasping with Planar Snake Robots: Form-closure and Subspaces 15

where the inertia tensor

M̄s :=
i=n`

∑
i=1

JT
i Īi Ji (2.5)

is defined as the unitary inertia tensor of the snake robot (i.e., the inertia of the snake robot, if all
links have unitary mass).

2.3 In-depth Analysis of Grasping with Planar Snake Robots: Form-
closure and Subspaces

Most of current literature about snake robots has focused on the study and control of locomotion
in planar environments (Please check [58] and the references therein), as discussed in Chapter
1. However, almost no attention has been paid to the study of grasping an object with a snake
robot. A main cause of this may be the ambiguity in the definition of snake robot. Concepts
like snake-like robot, tentacle arm, elephant trunk arm, and hyper-redundant robot are used almost
interchangeably, causing confusion and problems in the analysis of a specific mechanism.

In this thesis, we consider a snake robot as a robot that mimics the structure of a biological snake,
has only revolute joints, does not have an end-effector, and does not have a fixed-base. The lack
of fixed-base is critical for distinguishing a snake robot from an hyper-redundant manipulator,
since it makes it a mobile robot, and therefore inherently underactuated. In addition, the lack
of an end-effector implies that enveloping grasps [59] are of major importance for snake robots.
Once these characteristics have been established, it is easier to analyze related research.

In [15], the manipulability of a tentacle arm manipulating an object was studied. In [17] the
duality between locomotion and manipulation of a snake robot was considered under the as-
sumption that the snake robot can be treated as a fixed-base manipulator when it is used to
manipulate an object. Pipe-climbing locomotion could be tough as a form of grasping, however,
in current literature the interaction between the snake robot and pipe (modeled as a rigid-body
contact) has not been modeled within the framework of grasping theory [53]. In [29] the require-
ments for form-closure with a snake robot have been considered. However, only relationships
between the size of the object and the links of the robot were considered, without analyzing the
kinematic structure of the system.

The purpose of this paper is to analyze the characteristics of a snake robot grasping an object.
In particular, we analyze the mappings between subspaces created by the introduction of the
kinematic constraints introduced by the contact between the snake robot and object. Several
papers have studied the general characteristics of these subspaces, however, in a general way
and not considering a mobile robot [39, 40, 60]. Therefore, a more detailed analysis is necessary
to understand the properties of a snake robot. Necessary conditions for grasps with form-closure
are also studied.

The following assumptions are considered in this analysis:

16 Chapter 2. Foundations of EAM

• Assumption 1: We consider rigid-body contacts. This means compliance is not considered.
It has been pointed out [37, 39] that this may lead to hyper-static grasps. However, we give
conditions so that this does not happen.

• Assumption 2: Only frictionless point contacts are considered.

• Assumption 3: The snake robot and object are restricted to move only in the horizontal
plane.

• Assumption 4: The object has a circular cross-section. This allows to study the subspaces
and conditions for form-closure in a more general way.

• Assumption 5: For simplicity, it is assumed that the center of mass (COM) of the object is
at the centroid. Further comments can be found in Section 2.3.2.

• Assumption 6: The width of the links of the snake robot is ignored. This facilitates the
analysis, and is justified since the width of snake robots is much smaller than their length.

Vectors and matrices will be denoted with bold letters and unitary vectors with a caret, like x̂. A
right superscript on a quantity denotes the frame on which such quantity is expressed. Unless
otherwise stated, quantities are expressed in the inertial frame {N}. All frames are assumed to
be right-handed.

2.3.1 Kinematic Modeling Notes

This section provides a more in-depth kinematic analysis of the snake robot targeted towards the
analysis of grasping. The kinematic model of a snake robot is similar to an open-chain robotic
manipulator. The reference frames can be assigned in any way, like in the Denavit-Hartenberg
convention [38]. The lack of a fixed-base introduces three extra degrees of freedom (DOFs) that
are not actuated. For details please see Fig. 2.4.

The pose (position and orientation) of the object can be described by the position of the origin
pobj(t) ∈ <2×1 and orientation of a frame {O} attached to the center of mass (COM) of the object.
Both quantities are encapsulated in the vector qobj(t) =

[
pobj(t)T, θobj(t)

]T ∈ <3×1.

The dimension of the operational space of the object is denoted as nν ∈ Z+ The twist of the
object νobj(t) ∈ <6×1 contains the linear υ(t) ∈ <3×1 and angular velocity ω(t) ∈ <3×1 of the
object, i.e., νobj(t) = [υ(t), ω(t)]T. Special considerations for the planar case will be discussed as
necessary.

Constraints imposed by the contact between rigid bodies

We assume there are nc ∈ Z+ contact points. A reference frame {C}k is set at the k-th contact
point (cf. Fig. 2.5). The reference frame {C}k is related to frame {N} by the rotation matrix

Rck =
[

x̂ck ŷck ẑck

]
(2.6)

2.3. In-depth Analysis of Grasping with Planar Snake Robots: Form-closure and Subspaces 17

c k
,o
bj ck,

L

x̂

ŷ

x̂
i

ŷ
i

x̂
ck

ẑ
ck

{N}

{C}k

lin
k
i

ŷck

FIGURE 2.5: Contact between snake robot and object
Exploited view of the k-th contact ck between the object and linki of the snake robot.

where the unitary vectors x̂ck, ŷck, ẑck ∈ <3×1 form a basis for the frame {C}k. The ẑck axis is
normal to the tangent plane at the contact and directed inward to the object. An augmented
matrix R̄ck ∈ <6×6 that will be useful later, can be constructed as:

R̄ck =

[
Rck 03×3

03×3 Rck

]
. (2.7)

The three main models of contact between rigid-bodies are: frictionless point contact, hard fin-
ger, and soft finger [35, 37]. These models express the motions that are constrained by the contact
between the snake robot and object. This paper focuses on frictionless point contacts since form-
closure does not consider friction. This type of contact can only constrain motion in the normal
direction of the plane located at the contact, that is, in the direction of the ẑck axis.

A selection matrix H ∈ <1×6 can be designed to select the constrained directions of motion:

H =
[

0 0 1 0 0 0
]

. (2.8)

Given the k-th contact point between the object and linki, two points are of interest; the point
ck,L ∈ <3×1 attached to linki, and the point ck,obj ∈ <3×1 attached to the object, both coincident
to the origin of the frame {C}k. The twists of these contact points are denoted as νk,L ∈ <6×1 and
νk,obj ∈ <6×1, respectively.

The interaction between the snake robot and the object can be described by what is known as
the Grasp Matrix G and the Hand Jacobian JH. Even though a snake robot is not a robotic hand,
this term will be used to be consistent with modern literature regarding grasping.

18 Chapter 2. Foundations of EAM

Hand Jacobian

The mapping between the joint velocities q̇(t) and the twist νk,L of the contact point on linki

(expressed in the frame {C}k) can be obtained as:

νk
k,L = R̄cT

k Ziq̇. (2.9)

The matrix Zi ∈ <6×n is defined as:

Zi(q(t)) =

[
di,1 · · · di,n

li,1 · · · li,n

]
(2.10)

where di,j, li,j ∈ <3×1 contain the Plücker coordinates of the axes of the joints [37]. For the
specific case of a planar snake robot, and having assigned the reference frames as in Fig. 2.4,
these vectors can be defined as:

di,j =





ẑ0 for j = 1, ∀i

ẑ1 for j = 2, ∀i

S(ck,L − pj−1)
T ẑj−1 for j = 3, ..., i

03×1 for j = i + 1, ..., n

(2.11)

li,j =





03×1 for j = 1, ∀i

03×1 for j = 2, ∀i

ẑj−1 for j = 3, ..., i

03×1 for j = i + 1, ..., n

(2.12)

where S(•) denotes the cross-product matrix (also known as skew-symmetric operator) and ẑj

is the z-axis of the j-th frame. In other words, the j-th column of Zi would be 0 if q̇j does not
contribute to the velocity of the contact point. The vectors di,j, li,j have some special features:

• di,j for j > 3 either lies on the plane or is 03×1.

• li,j for j > 3 is either perpendicular to the plane or is 03×1.

• x̂ck and ẑck lie on the plane ∀k.

• ŷck is perpendicular to the plane ∀k.

2.3. In-depth Analysis of Grasping with Planar Snake Robots: Form-closure and Subspaces 19

By expanding the term R̄cT
k Zi, and taking into account (2.7), (2.11), (2.12), and the previous

considerations, we can arrive at the next expression:

R̄T
ckZi =




x̂T
ckẑ0 x̂T

ckẑ1 x̂T
ckdi,3 · · · x̂T

ckdi,n

0 0 0 · · · 0
ẑT

ckẑ0 ẑT
ckẑ1 ẑT

ckdi,3 · · · ẑT
ckdi,n

0 0 0 · · · 0
0 0 ŷT

ckli,3 · · · ŷT
ckli,n

0 0 0 · · · 0




, (2.13)

where the nature of the planar snake robot becomes clear. The 1st and 3rd rows correspond to
the linear velocities of the contact points in the direction of the x̂ck and ẑck axes, respectively. The
5th row correspond to the angular velocity around the ŷck axes. All quantities expressed in the
local frame {C}k. Now, premultiply by the selection matrix H, in order to take into account the
rigid-body model constraints (this simply selects the 3rd row of (2.13)):

Ji =
[
ẑT

ckẑ0 ẑT
ckẑ1 ẑT

ckdi,3 · · · ẑT
ckdi,n

]
. (2.14)

Finally, by stacking the Jacobians of all contact points, the Hand Jacobian JH ∈ <nc×n can be
obtained:

JH =




HR̄cT
1 Z∗

...
HR̄cT

nc
Z∗


 (2.15)

where the index ∗ in Z∗ indicates the contacting link∗ at the k-th contact.

In summary, the Hand Jacobian JH is a linear mapping between the subspace of generalized
coordinates velocities q̇ and the elements of the twist of the contact point νk

k,L that are constrained
by the rigid-body contact (JH : <n → <nc).

Grasp Matrix

In a similar fashion as in the previous section, a relationship between the twist of the object νobj

and the twists of the contact points νk
k,obj can be found as:

νk
ck,obj = R̄cT

k Dkνobj (2.16)

where

Dk =

[
I3×3 −S(ck,obj − pobj)

03×3 I3×3

]
∈ <6×6 (2.17)

20 Chapter 2. Foundations of EAM

It is worth expanding the term R̄cT
k Dk:

R̄cT
k Dk =




x̂T
ck (S(ck,obj − pobj)x̂ck)

T

ŷT
ck (S(ck,obj − pobj)ŷck)

T

ẑT
ck (S(ck,obj − pobj)ẑck)

T

01×3 x̂T
ck

01×3 ŷT
ck

01×3 ẑT
ck




(2.18)

Now, premultiply the previous expression by the selection matrix H in order to get the matrix
GT

k ∈ <1×6:
GT

k =
[
ẑT

ck (S(ck,obj − pobj)ẑck)
T
]

. (2.19)

The transpose of the Grasp Matrix is obtained by concatenating these expressions for the nc

contacts as

GT =




GT
1
...

GT
nc


 (2.20)

where GT ∈ <nc×6. The structure of the matrix GT has some considerations as well:

• Since axis ẑck lie on the plane ∀k, its third component is 0.

• the vector (S(ck,obj − pobj)ẑck)
T is 01×3 ∀k since these vectors are parallel. Notice that this

is a direct result of having considered the COM of the object at the centroid.

Taking into account these considerations, the matrix GT has the following general structure:

GT =




∗ ∗ 0 0 0 0
...

∗ ∗ 0 0 0 0




where ∗ indicates possibly non-zero elements. This again, shows the planar nature of the system,
since some elements of the twist of the object νobj have no contribution to the twist of the contact
point νk

k,obj.

The matrix (2.20) is intended for spatial cases (nν = 6). For the remainder of this paper it will be
assumed that nν = 3, that is, the operational space is the plane (the 1st, 2nd and 6th columns of
(2.20) are kept). Then, GT would look like:

GT =




∗ ∗ 0
...

∗ ∗ 0


 (2.21)

To avoid abuse of indexes no distinction will be made when using the Grasp Matrix assuming
its dimensions are clear from context.

2.3. In-depth Analysis of Grasping with Planar Snake Robots: Form-closure and Subspaces 21

In summary, the transpose of the Grasp Matrix GT is a linear mapping between the subspace
twist of the object νobj and the elements of the twist of the contact point νk

k,obj that are constrained
by the rigid-body contact (GT : <6 → <nc).

Kinematic Constraints

The general form of constraints has been discussed in Appendix A.4. Here, we present the
specific form they take when dealing with a snake robot contacting an object. This formulation
is compatible with research regarding grasping with robotic hands [37] and other systems [39,
40, 35].

The constraints imposed by contact between rigid bodies can be expressed as:

A

[
q̇

νobj

]
> 0 (2.22)

where the constraint matrix A ∈ <nc×(n+nν) is given by:

A(q, qobj) =
[
−JH GT

]
. (2.23)

Equation (2.22) simply states that the object cannot penetrate the snake robot. These constraints
are holonomic, since they could have been expressed as a function of the configuration of the
system (q(t) and qobj(t)), instead of the velocities (q̇(t) and νobj(t)). However, it is more conve-
nient to treat them at the velocity level, since the mappings are linear [33, 51, 61, 62]. The set
of constraints (2.22) are unilateral, however, when considering grasps with closure it is accept-
able to consider bilateral constraints, delegating the task of calculating and maintaining proper
contact forces to a controller [40]. Since the constraints state that νk

k,L and νk
k,obj must be the same

in the constrained directions (i.e., in the direction of ẑck), for simplicity we will call both these
motions contact twists νcc ∈ <nc×1.

Basic properties of a grasp

There are several concepts that are relevant when studying constraints (2.22) [37, 35]. Given a set
of contacts, one of the most important properties of a grasp is the concept of closure. There are
several definitions of form-closure and force-closure in literature, sometimes even contradictory. In
this paper, we adopt the most modern definitions:

• Form-closure: The object is said to be grasped with form-closure, if any motion would
violate the constraints (2.22). In other words,the object is immobilized.

• Force-closure: If the mechanism used to grasp the object can exert an arbitrary wrench
unto the object, then the grasp has force-closure.

22 Chapter 2. Foundations of EAM

In particular, it is worth mentioning that analysis of form-closure only requires the analysis of
G. That is, we can analyze the grasp while considering the contact points as static [40]. On the
other hand, for the analysis of force-closure, the structure of the snake robot has to be considered
along an analysis of the eqns. of motion (sometimes, ignoring inertial terms).

Aside from the concepts of closure, the analysis of the mappings JH, GT, JT
H, and G can give

useful insights into the properties of the system. The next classifications of grasps are useful
[37]:

• Redundant: If the nullspace of JH, defined as

N (JH) = {q̇|JH q̇ = 0}, (2.24)

is nontrivial (i.e., N (JH) 6= 0), then the grasp is said to be redundant. Any q̇ in N (JH) does
not produce motions of the contact points νk

k,L in the constrained.

• Indeterminate: If the nullspace of GT, defined as

N (GT) = {νobj|GTνobj = 0}, (2.25)

is nontrivial (i.e., N (GT) 6= 0), then the grasp is said to be indeterminate. Object twists νobj

in N (GT) are motions of the object that do not violate the constraints 2.22.

• Defective: If the nullspace of JT
H, defined as

N (JT
H) = {λ|JT

Hλ = 0}, (2.26)

is nontrivial (i.e., N (JT
H) 6= 0), then the grasp is said to be defective. Contact forces λ in

N (JT
H) do not produce any effect in the dynamics of the snake robot described by (2.43).

• Graspable: If the nullspace of G, defined as

N (G) = {λ|Gλ = 0} (2.27)

is nontrivial (i.e., N (G) 6= 0), then the grasp is said to be graspable. Contact forces λ in
N (G) do not produce any effect in the dynamics of the object described by (A.1). These
forces are called internal forces (or sometimes squeezing forces) since they do not contribute
to the acceleration of the object, however, they are the very forces that help to grasp the
object.

• Hyper-static: If some contact forces belong to both N (JT
H) and N (G) then the grasp is

said to be hyper-static. In other words, N (JT
H)
⋂N (G) 6= 0. In hyper-static grasps the

dynamics given by (2.43), (A.1), and constraints (2.22) do not fully describe the system and
compliance has to be introduced into the model [39].

2.3. In-depth Analysis of Grasping with Planar Snake Robots: Form-closure and Subspaces 23

2.3.2 Analysis of the object’s mappings

Before stating our objectives, it is necessary to recall some basic concepts of linear algebra. Given
any linear mapping A ∈ <o×p and its rank (rank(A) 6 min(o, p)) the following subspaces are
important. Its column space (also called range or image) is denoted as R(A) ∈ <o and its row
space asR(AT) ∈ <p. Also, recall that rank(A) = rank(AT).

The dimensions of all subspaces of GT ∈ <nc×3 and G ∈ <3×nc can be summarized as:

GT, G





dim(R(GT)) = rank(GT)

dim(N (GT)) = 3− rank(GT)

dim(R(G)) = rank(GT)

dim(N (G)) = nc − rank(GT)

(2.28)

where R(•) denotes the column space (also called image or range). The next properties for the
grasp are desired:

Objective 1
Partially indeterminate: Since the objective is to constrain the object, it is desired that no
motions of the object are possible. This could be achieved if dim(N (GT)) = 0 This is
not possible for a circular object since an exceptional surface cannot be constrained with
frictionless contacts (p. 230 of [35]), however, its translation can still be constrained. In
other words, it cannot be avoided that dim(N (GT)) = 1. This means that rank(GT) =

3− dim(N (GT)) = 2. Actually, this can be confirmed by looking at (2.21), which tells us
that it could never have full column rank. Notice that, if the COM were not in the centroid,
a couple could be exerted unto the object, and the grasp could be non-indeterminate.

Objective 2
Graspable: Form-closure requires the existence of internal forces. For this to be true, it is
necessary that N (G) 6= 0. This can be accomplished if nc > rank(GT). Notice this is a
necessary, but not a sufficient condition for form-closure.

The involved subspaces are shown in Fig. 2.6. The condition rank(GT) = 2 combined with
nc > rank(GT) implies that at least three frictionless contact points are necessary in order to
constrain the translation (but not the rotation) of the object. Under this condition, the grasp could
have what is called partial form-closure. However, for simplicity we will still refer to it simply
as form-closure, with the understanding that only the translation of the object is constrained.

Although this shows the basic properties that the mappings must have in order to have form-
closure, more conditions are needed since the internal forces can only be positive. Several points
of view exist to check this, and a more rigorous proof of form-closure can be found in the refer-
ences [37, 63]. As a simple test, if the ẑck axes positively span the space of object wrenches g, then
there is form-closure. In the examples presented in 2.3.4 this concepts will be clearly shown.

24 Chapter 2. Foundations of EAM

νobj ∈ �nν

g ∈ �nν

GT

G

R(G
T)

R(G)

νcc ∈ �nc

λ ∈ �nc

N (GT)

N (G)

(a)

(b)
FIGURE 2.6: Subspaces of GT and G

(a) The mapping GT and its subspaces. Notice that N (GT) is nontrivial and the
subspace of contact twists νcc is not fully accessible.(b) The mapping G and its
subspaces. Notice that N (G) is nontrivial. The subspace of wrenches applied to

the object g is not fully accessible (a torque cannot be exerted onto the object).

Also, it can be seen that the conditions for form-closure do not consider the structure of the snake
robot. In the next section, we analyze if a planar snake robot could generate these forces contact
forces.

2.3.3 Analysis of the snake robot’s mappings

The dimensions of all subspaces of JH ∈ <nc×n and JT
H ∈ <n×nc can be summarized as:

JH, JT
H





dim(R(JH)) = rank(JH)

dim(N (JH)) = n− rank(JH)

dim(R(JT
H)) = rank(JH)

dim(N (JT
H)) = nc − rank(JH)

(2.29)

2.3. In-depth Analysis of Grasping with Planar Snake Robots: Form-closure and Subspaces 25

The next desired properties for the grasp can be analyzed:

Objective 3
Redundant: Redundancy is desired, since it would allow the snake robot to have extra
DOFs while maintaining contact with the object. In other words, it is desired thatN (JH) 6=
0. For that, it is necessary that n > rank(JH)

Objective 4
Non-defective: In order to avoid hyper-static grasps and in general contact forces λ that
could not be generated by the snake robot, it is desirable that N (JT

H) = 0. In other words,
it is required that rank(JH) = nc

Combining both objectives, it is clear that necessary conditions are that JH is full row rank (f.r.r.)
and that is has more columns than rows, that is, we need more DOFs n than number of contacts
nc. This mapping would be onto (surjective) meaning that the whole space of motions in the
constrained directions is reachable. However, the mapping is not be one-to-one (injective) since
several joint velocities would map to the same contact twists.

As a dual point of view, it means that JT
H is full column rank (f.c.r.) with more rows than columns.

These means its range is not fully spanned (the mapping is not onto), but is one-to one.

Common methods for the analysis of these subspaces do not take into account that the snake
robot is a mobile robot (i.e., it has non-actuated DOFs). Instead of analyzing JH and JT

H we will
analyze a JH, a JT

H directly. In this way, we will only analyzed the contributions of the joints of the
snake robot,

The dimensions of the subspaces of a JH ∈ <nc×na and a JT
H ∈ <na×nc can be summarized as:

a JH,a JT
H





dim(R(a JH)) = rank(a JH)

dim(N (a JH)) = na − rank(a JH)

dim(R(a JT
H)) = rank(a JH)

dim(N (a JT
H)) = nc − rank(a JH)

(2.30)

The desired properties can be states as follows:

Objective 3
Redundant: Redundancy is desired, since it would allow the snake robot to have extra
DOFs while maintaining contact with the object. Then, it is desired that N (a JH) 6= 0. For
that, it is necessary that na > rank(a JH)

Objective 4
Non-defective: In order to avoid hyper-static grasps and in general contact forces λ that
could not be generated by the snake robot, it is desired that N (a JT

H) = 0. In other words,
it is required that rank(a JH) = nc

Necessary and sufficient conditions are that a JH is full row rank (f.r.r.) and that it has more
columns than rows, that is, we need more actuated DOFs na than number of contacts nc. The

26 Chapter 2. Foundations of EAM

q̇a ∈ �na

aJH

aJT
H

νcc ∈ �nc

λ ∈ �nc
τ a ∈ �na

R(
a J

T
H
)

N (aJH)

R(aJH)

(a)

(b)
FIGURE 2.7: Subspaces of a JH and a JT

H
(a) The mapping a JH and its subspaces. Notice that N (a JH) is nontrivial and the
subspace of contact twists νcc is fully accessible. (b) The mapping a JT

H and its sub-
spaces. Notice that N (a JT

H) is trivial. Any contact force will have an effect in the
snake robot.

mapping would be surjective, but not injective. As a dual point of view, a JT
H is full column rank

(f.c.r.) with more rows than columns. The mapping is one-to-one, but not onto. These concepts
are graphically shown in Fig. 2.7.

The conditions on a JH and a JT
H are more strict than if we had analyzed JH and JT

H. The conditions
on a JH to be f.r.r. (and at the same time a JT

H is f.c.r.) imply that the constraints (2.22) must be
independent. That is easy to accomplish for frictionless contact points as long as the contacts are
not coincident. Furthermore, the condition na > rank(a JH) can be restated as na > nc. This can
be interpreted in several ways, but the easiest one is that, given a number of contacts nc, at least
nc + 1 actuated joints are necessary.

Notice that, thanks to the fact that N (a JT
H) 6= 0 (and as a consequence N (JT

H) 6= 0), the grasp
cannot be hyper-static even if N (G) = 0, since N (JT

H)
⋂N (G) = 0

Remarks: Notice that thanks to the fulfillment of Objective 2 and Objective 4, it can be considered
that a snake robot could grasp the object with form-closure. This can be further explained by

2.3. In-depth Analysis of Grasping with Planar Snake Robots: Form-closure and Subspaces 27

TABLE 2.1: Parameters of Example I

Parameter Value Description
n 6 Number of DOFs of the system
na 3 Number of actuated joints of the snake robot

na + 1 4 Number of links of the snake robot
nc 3 Number of frictionless contacts
GT ∈ <3×3 Transpose of grasp matrix, with its third column full of zeros
G ∈ <3×3 Grasp matrix with its third row full of zeros
JH ∈ <3×6 Hand Jacobian (f.r.r.)
JT

H ∈ <6×3 Transpose of the hand Jacobian (f.c.r.)
dim(R(GT)) 2 Dimensions of the column space of GT

dim(N (GT)) 1 Dimensions of the nullspace of GT. The grasp is partially indeterminate
dim(R(G)) 2 Dimensions of the column space of G
dim(N (G)) 1 Dimensions of the nullspace of G. The grasp is graspable. There exists internal forces.

dim(R(a JH)) 2 Dimensions of the column space of a JH
dim(N (a JH)) 1 Dimensions of the nullspace of a JH. It is redundant. Motions of joint φ6 do not affect the object.
dim(R(a JT

H)) 2 dimensions of the column space of a JT
H

dim(N (a JT
H)) 1 dimensions of the nullspace of a JT

H. It is defective.

looking at the constraint matrix A from 2.23. Since both JH and GT are both f.r.r., so it is A. It
is important to notice that this does not mean that the object could be fully constrained with
respect to (w.r.t.) the inertial frame. It is, however, grasped w.r.t. the snake robot. To guarantee
that the object is fully immobilized w.r.t. the base, a dynamic (or quasi-static) analysis would
be necessary, however, this would be an analysis of force-closure. Grasps with force-closure are
beyond the scope of this paper. However, they are certainly interesting and are considered our
immediate future research. The main difficulty is that the contribution of the actuated joints
(τa) does not affect directly the non-actuated DOFs. In other words, the analysis of form-closure
cannot distinguish the lack of a fixed-base. This makes it obvious that a snake robot would
need the help of external forces (i.e., friction acting on the links) in order to fully constrain and
manipulate the object.

2.3.4 Examples

So far we have given necessary conditions for a snake robot to grasp with form-closure an object.
Next, we present two examples in order to understand these concepts better.

Example I: Partially Indeterminate, Graspable, Redundant, and Defective Grasp with Partial
Form-closure

In this example, we consider a snake robot with three links grasping an object. Fig. 2.8 shows
the system considered. The contacts occur at links: link3, link4, and link5. The general properties
of the system are enumerated in Table 2.1. Furthermore, the contents of the matrix a JT

H ∈ <3×2

are shown. Remember these mapping takes into account only the actuated DOFs of the snake
robot:

a JH =




0 0 0
ẑT

c2d4,4 0 0
ẑT

c3d5,4 ẑT
c3d5,5 0


 ∈ <3×2 (2.31)

28 Chapter 2. Foundations of EAM

x̂

ŷ

GN (G)

p4

p5

ẑc1

ẑc2

ẑc3li
n
k 3

link4

lin
k 5

g ∈ �3

c1

c2

c3

p2

p3

λ ∈ �3

ẑc1

ẑc2

ẑc3

link6
p6

(a)

(b)
FIGURE 2.8: Examples grasp: partially indeterminate, graspable, redundant, de-

fective
(a) System considered in Example I. The grasp is defective because the object is
contacting link3 which doesn’t have an actuator. The link could be thought of as
the palm of a robotic hand. (b) Notice that N (G) is nontrivial, therefore there are
internal forces, and are controllable by the snake robot. Also notice that the space
g is not fully accessible. This is because the snake robot cannot exert a torque unto
the object. However, there is partial form-closure since the axes ẑck positively span

a plane.

where,
d4,4 = ẑ3 × (c2 − p3)

d5,4 = ẑ3 × (c3 − p3)

d5,5 = ẑ4 × (c3 − p4).

It is interesting to see that the structure of a Ja could change if the object were contacting other
links. If it were contacting link4, link5, and link6 the grasp would not be defective.

Example II: Partially Indeterminate, Graspable, Redundant, Non-defective Grasp with Partial
Form-closure

In this example, we consider a snake robot with three links and three contacts grasping an object.
Fig. 2.9 shows the system considered. The contacts occur at links: link5, link6, and link7. The

2.3. In-depth Analysis of Grasping with Planar Snake Robots: Form-closure and Subspaces 29

x̂

ŷ

G
N (G)

p4

p5

ẑc1

ẑc2

ẑc3

lin
k 3

link4

link5

g ∈ �3

c1

c2

c3

p2

p3

λ ∈ �3

ẑc1

ẑc2

ẑc3

link6

lin
k 7

p6

p7

(a)

(b)
FIGURE 2.9: Examples grasp: partially indeterminate, graspable, redundant,

non-defective
(a) System considered in Example II. (b) Notice that N (G) is non-trivial, therefore
there are internal forces and are controllable by the snake robot. Also notice that

the space g is not fully accessible as in Example I.

general properties of the system are enumerated in Table 2.2 Furthermore, the general shape of
the matrix a JT

H ∈ <3×4 is shown.

a JH =



∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗


 ∈ <3×4 (2.32)

The properties of GT and G do not change because they do not depend on the structure of the
mechanism used to grasp the object.

2.3.5 Conclusions Regarding Types of Grasps with Snake Robots

In this section, we have presented a analysis of grasping with snake robots. We have shown that
several properties can be understood through analyzing the kinematic structure of the system

30 Chapter 2. Foundations of EAM

TABLE 2.2: Parameters of Example II

Parameter Value Description
n 7 Number of DOFs of the system
na 4 Number of actuated joints of the snake robot

na + 1 5 Number of links of the snake robot
nc 3 Number of frictionless contacts
GT ∈ <3×3 Transpose of grasp matrix, with its third column full of zeros
G ∈ <3×3 Grasp matrix with its third row full of zeros
JH ∈ <3×7 Hand Jacobian (f.r.r.)
JT

H ∈ <7×3 Transpose of the hand Jacobian (f.c.r.)
dim(R(GT)) 2 Dimensions of the column space of GT

dim(N (GT)) 1 Dimensions of the nullspace of GT. The grasp is partially indeterminate
dim(R(G)) 2 Dimensions of the column space of G
dim(N (G)) 1 Dimensions of the nullspace of G. The grasp is graspable. There exists internal forces.

dim(R(a JH)) 3 Dimensions of the column space of a JH
dim(N (a JH)) 1 Dimensions of the nullspace of a JH. It is redundant.
dim(R(a JT

H)) 3 dimensions of the column space of a JT
H

dim(N (a JT
H)) 0 dimensions of the nullspace of a JT

H. It is not defective.

with tools of linear algebra. The conditions presented are necessary, but not sufficient, for a
snake robot to grasp an object with form-closure.

The main contributions of this section can be summarized as follows:

1. Requirements for partially indeterminate and graspable grasps: At least three frictionless con-
tact points are necessary (nc > 3). The position of the object (but not orientation) is con-
strained.

2. Requirements for redundant and non-defective grasps: It is necessary to have more joints than
contacts (na > nc), i.e., a snake robot with five links. Also, it is necessary that the first
contacting link is not link3.

We have not limited our study to the analysis of GT and G because it is important to consider
the structure of the snake robot in the analysis. Furthermore, we extended the analysis to only
consider the actuated joints of the snake robot. This is not usually done, since regularly the
analysis is done w.r.t. to the palm of a robotic hand, or any other fixed point on the robot. These
properties can be better understood by analyzing and comparing the mappings JH, JT

H, a JH, and
a JT

H.

Form-closure, as it has been presented in this paper, would mean that the object is grasped w.r.t.
the snake robot. However, this is not sufficient for manipulating the object, since the snake robot
does not have a fixed-base and it is not realistic to expect that it can exert arbitrary wrenches
unto the object. In order to analyze manipulation with snake robots a quasi-static or dynamic
analysis would be required, and to test for force-closure.

In the following section, a set of necessary geometric conditions are presented, that have to be
met for a snake robot to grasp an object with (partial) form-closure.

2.4. Form-Closure - Feasible Solutions 31

2.4 Form-Closure - Feasible Solutions

A grasp is said to have form-closure when the motions of the object can be restrained by the
robot. In other words, the robot could stop the object from moving given an external disturbance.
Form-closure does not take friction into account, which makes a more secure grasp [37, 63]. More
specifically, this thesis focuses on the analysis (first-order) of form-closure, that is, we do not take
into consideration the curvature of the surfaces in contact.

Form-closure has some advantages. For example, it can be calculated faster since it relies solely
on geometrical analysis. Force closure-on the other hand, requires to take into account forces,
and consequently it is necessary to consider the forces that a specific robot can exert [37, 39, 64].
A disadvantage of form-closure is that is usually requires more contact points to guarantee a
successful grasp, compared to an analysis using force-closure.

2.4.1 Partial form-closure

Grasps with form-closure have some limitations. As it has been mentioned in [35] and proven
in [65], exceptional surfaces like solids of revolution and circles in the plane can never be fully
restrained with frictionless contacts. In other words, only the translation but not the rotation
of the object can be restrained, achieving only partial form-closure. The minimum number of
contacts necessary to achieve partial form-closure in a plane is three frictionless contacts.

In the remainder of this thesis, the term partial will be dropped, with the understanding that
only translation can be restrained. Another reason to analyze the case of form-closure is that it
can be easily extended to the concept of caging [66].

A complete proof of existence of form-closure is beyond the scope of this thesis and has been
thoroughly researched by other authors. The references [35] and [37] are recommended for a
deeper study of the topic. In the following, a test is described that is conventionally used to
test for form-closure and to obtain a measure of the quality of the grasp [37]. This test can be
formulated as a linear program (LP) optimization problem. Assume a force λk > 0 can be exerted
at the contact on the ẑck direction; such forces are collected on the vector λ ∈ < nc × 1. Denote
with d ∈ < the smallest component of λ. The purpose of the LP is to maximize the quantity d.
The optimal value obtained d∗ is bounded as 0 6 d∗ 6 1. If d∗ > 0 then there is form-closure,
and the lower the value the closer the grasp is to lose form-closure. If d∗ = 0 then there is not
form-closure. Obviously, grasps with high values of d∗ are desired. Therefore, the value d∗ can
be used as a metric to analyze a given grasp. The interpretation of this test is to check if the
object can be squeezed by the robot, without producing movement. This is equivalent to check
that the null-space of the forces is not trivial.

This LP problem can be solved on real-time. However it may be computationally expensive, or
ill-conditioned since we may not know the conditions a priori. In this section, we show that we
can exploit our knowledge of the kinematic structure of the snake robot and propose a simplified
form-closure test that rely purely on geometric insight. This is inspired in other proposed tests,

32 Chapter 2. Foundations of EAM

x̂c1

ẑc1

x̂c2

ẑc2

x̂c3

ẑc3

L
i

Li+1

(a)

c3

c1

c2

ẑc1

ẑc2

ẑc3

L
i+

2

(b)

c3c1

c2

ẑc1

ẑc2

ẑc3

ẑc1

ẑc2

ẑc3

form-closure no form-closure

FIGURE 2.10: Form-closure test with enveloping grasp
Three contacts between three adjacent links of the snake robot and an object. The
COM of the object is shown as a yellow circle. The polygon described by the con-
tact points is also shown. (a) The COM of the object is inside or outside the polygon
and the axes ẑck (b) The axes ẑck span the whole space when there is form-closure

like [59], which basically states that if the contact forces span the whole space, there is form-
closure.

Figure 2.10 shows two intuitive ways to test for form-closure. If the snake robot is contacting an
object, the contact points form a polygon. In the specific case of three contact points, the polygon
is a triangle. Given this triangle, the position of the COM of the object can be calculated and if
it is strictly inside the triangle (by strictly inside we mean it cannot be on the boundary), then
there is form-closure. This test can be seen in Fig. 2.10(a), where the same snake robot grasps
two objects of different size. There is an equivalent interpretation when talking about forces. At
the contact points, the vectors normal to the snake robot ẑck span the subspace of forces that can
be imparted on the object. If these spanning vectors span the plane, then there is form-closure.
This test can be seen in Fig. 2.10(b).

2.4. Form-Closure - Feasible Solutions 33

2.4.2 Grasping with three adjacent links: grasp condition G3

This section focuses on the analysis of form-closure using an enveloping grasp under the specific
situation that the snake robot is contacting the object with three adjacent links. The objective is
to analyze if form-closure is possible or not. Additionally, the set of circumstances under which
form-closure is possible is analyzed, providing a quick test for form-closure. This test is binary,
in other words, it qualifies if a grasp with form-closure is possible or not.

The snake robot and object to be grasped first have to be modeled. This model is purely geomet-
ric, allowing to gather well-grounded conclusions. The main parameters to analyze the problem
are:

• The length of the links `. It is assumed all links have the same length.

• The ratio between the radius of the object and the length of the links, denoted as rµ.

• The position of the contact point on the first contacting link ∆`.

The ratio between the radius of the object and the length of the links rµ is defined as

rµ := robj/`. (2.33)

By using the ratio rµ we can focus on the relationship of size between the robot and object,
allowing to study any case at the same time. Fig. 2.11(a) shows a visual representation of all
involved quantities.

Under the assumption that at least three frictionless point contacts, i.e. nc = 3, are necessary to
form-close the object and that each link can only contact the object at one point, it is concluded
that at least three links are necessary to form-close the object. This has also been discussed in
Section 2.3.5. Furthermore, let’s assume that the first link contacting the object is called Li, and
the next two adjacent links are Li+1 and Li+2. It can be seen in Fig. 2.11(a) that there are three
general cases, depending on the size of the object w.r.t. the snake robot’s link.

Fig. 2.11(b) shows the geometry involved in the grasp. The distance from the joint connecting
the first and second contacting links to the first contact point is denoted by ∆x ∈ <, ∆x > 0. If
∆x = 0 or ∆x = ` then only two contact points exist, even if there are three contacting links. It
can be concluded that a grasp with form-closure is not possible. This would mean the object is
contacting the snake robot at the joint. These cases can be see in 2.11(b.A) and (b.B) The cases
where 0 < ∆x < ` is then what we are interested in, as it can be seen in 2.11(b.C).

There are two types of triangles that can be formed that need to be investigated. The triangles
4pobjc1 pi and4pobj pic2 are created when links Li and Li+1 contact the object. These two trian-
gles are always identical, so their inner angles α1 and α2 must also be identical. The angle α can
be defined as

α := α1 = α2 = tan−1
(

∆x
robj

)
. (2.34)

34 Chapter 2. Foundations of EAM

∆x

c1

c2
c3

∆x

robj

c1

c2

c3

Ln−2

r
obj

∆x

c1

c2

c3

(a)

(a.A) (a.B) (a.C)

Li

L
i+

1

Li+2

c1

c2

∆x = �

c1

c2

c3

pn−3

pn−2

pn−1

pobj

∆x

�−
∆
x

α1
α2

β1

β2

c1

c2

robj

�

(b)

(b.A) (b.B)

(b.C)

Li

L
i+

1

Li+2

FIGURE 2.11: Form-closure region
(a) Three representative cases are marked: (a.A) Inside the region (∆x = 0.3, rµ =
0.2). There is form-closure, (a.B) On the boundary (∆x = 0.5, rµ = 0.5). There
is not form-closure. (a.C) Outside the region (∆x = 0.8, rµ = 0.6). There is not

form-closure. (b) The geometric analysis of the grasp

The next two triangles 4pobjc2 pi+1 and 4pobj pi+1c3 are created when the links Li+1 and Li+2

contact the object. Similarly as before, their inner angles are identical and can be defined as

β := β1 = β2 = tan−1
(
`− ∆x

robj

)
(2.35)

From the requirements of form-closure presented in previous sections, it can be intuitively stated
that a sufficient condition for the existence of form-closure is that 2α + 2β > 180◦. Otherwise,
the COM of the object denoted by pobj would be outside the polygon formed by 4c1c2c3. This

2.4. Form-Closure - Feasible Solutions 35

condition can be described mathematically as

2α + 2β > 180◦, (2.36)

and represented as a function of the parameters ∆x, ` and robj as

tan−1
(

∆x
robj

)
+ tan−1

(
`− ∆x

robj

)
> 90◦, (2.37)

tan−1

(
robj`

robj
2 − ∆x`+ ∆x2

)
> 90◦ (2.38)

After some manipulation of the above expression, the following inequality is obtained:

rµ <

√
∆x`− ∆x2

`2 (2.39)

where the inequality is expressed using the scale invariant ratio (2.33). The definition of the
grasping condition follows naturally as:

G3 := {(rµ, ∆x) : rµ <

√
∆x`− ∆x2

`2 , 0 < ∆x < `} (2.40)

The set G3 describes the region in the ∆x− rµ plane where form-closure with three frictionless
contact points is possible, as shown in Fig. 2.12(a). Since the quantity rµ is scale invariant and
the displacement ∆x is constrained to lie in the range 0 6 ∆x 6 `, a snake robot with unit length
links is considered (` = 1) without regards of the units. In the same figure, three representative
examples are shown, which can be compared to the ones in Fig. 2.11(a). If the relative size
between the object and snake robot fulfills the grasp condition G3 then the COM of the object
will be inside the polygon described by the contact points, and form-closure will be possible
with three adjacent links.

The grasp condition (2.40) answers two very important questions. If the first contact location on
link Li is known (denoted by ∆x0), the range of objects that can be grasped is easily obtained:

0 < rµ <

√
∆x0`− ∆x0

2

`2 (2.41)

or more interestingly, given an object with certain radius (denoted by rµ0) it is possible to analyze
the range of locations where the first contact point on link Li must lie:

∆x1 < ∆x < ∆x2 (2.42)

36 Chapter 2. Foundations of EAM

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

∆x
G3

rµ

(a)

(a.A)

(a.B)

(a.C)

∆x

rµ

rµ0

∆x0∆x1 ∆x2

<

√
∆x0�−∆x0

2

�2

rµ

∆x

rµ
∆x1 < ∆x < ∆x2

(b)

(b.B)(b.A)

FIGURE 2.12: Form-closure evaluation
(a) The grasp region where form-closure is possible (cf. Fig. 2.11(a)) (b.A) Given a
certain object with relative size rµ0, the range where the first contact point can lie
on the first contacting link can be found with (2.42). (b.B) Given a contact location

∆x0, objects of several sizes can be grasped, as described by (2.41)

where the lower and upper limits can be calculated as

∆x1 =
`

2
− 1

2

√
`2 − 4`2rµ02

∆x2 =
`

2
+

1
2

√
`2 − 4`2rµ02.

Both concepts are shown in Fig. 2.12(b).

2.5 (Unconstrained) Dynamic Modeling of the Snake Robot

Previous sections have concentrated in the geometric (kinematic) analysis of a snake robot con-
tacting an object. In the following, the analysis is extended to consider the inertial parameters of
the system. The equations of motion of the snake robot can be presented in the canonical form

Msq̈s + hs = Bτact + τext (2.43)

2.6. Coupled Dynamic Model Between Snake Robot and Object 37

where Ms(qs) ∈ <ns×ns is the inertia matrix of the snake robot (a symmetric positive definite
(PD) matrix), hs(qs, q̇s) ∈ <ns×1 contains Coriolis and centripetal effects, and τext(q, q̇) ∈ <ns×1

is a vector of torques produced by external forces (e.g., kinetic friction). The matrix B ∈ <ns×na

defined as

B :=

[
03×na

1na×na

]
, (2.44)

is a selection matrix that projects the vector of input forces τact ∈ <na×1 into the space of gener-
alized forces. The matrix 1 denotes the identity matrix of appropriate dimensions. As it can be
seen from model (2.43), the snake robot is underactuated since the actuators do not have a direct
input into the first three rows of (2.43). If all links have the same mass (mi = m` for i = 1, ..., n`),
then the inertia matrix can be factorized as

Ms = ms M̄s =
mT

n`
M̄s, (2.45)

where M̄s is an inertia matrix where all links have unitary mass.

The plane where the system lies depends on the angle θslope (c.f. Fig. 2.4 (c)). Part of the gravity
effects g act parallel to the plane gt = (1 − cos(θslope))g, and the normal component is gn =

cos(θslope)g. The generalized forces resulting from the gravity effects τg can be obtained as

τg =
n`

∑
i=1

mi JT
i gt. (2.46)

If gravity is the only external force acting on the system, then τext = τg and will vanish for the
horizontal plane.

In this thesis, we assume that the snake robot is composed of two distinct sections with a dif-
ferent objective. The locomotion section of the snake robot have passive wheels and additional
constraints due to (static) friction, that will be introduced in Appendix A.4.2, need to be added
to the model. The manipulation section does not have passive wheels and will be used to manipu-
late an object. This idea is equivalent to the model presented in [25] and in [19]. Mathematically,
it could also be linked to [44], where constraints between the snake robot and ground are re-
moved in order to gain controllability.

2.6 Coupled Dynamic Model Between Snake Robot and Object

If the system were composed of two bodies B1 and B2, the equations of motion (now coupled
with the constraints) could be compactly written as

m1 Īa + p = fact + fext + fc (2.47)

38 Chapter 2. Foundations of EAM

Ī :=

[
Ī1 0
0 κ Ī2

]
a :=

[
a1

a2

]
p :=

[
p1

p2

]

fact :=

[
fact1

fact2

]
fext :=

[
fext1

fext2

]
fc = ATλ

while considering the second order constraints

Aa + Ȧυ > 0. (2.48)

The terms facti and fexti for i = 1, 2 express the input (actuated) forces and external acting on
each system, respectively.

Although this is a simplification containing only two bodies, the extension to a snake robot
contacting an object follows naturally, and are shown in more detail in Section 2.7.3. The eqns.
of motion (2.47) exploit the relationship between the masses in the system. The mass of B2 can
be expressed as proportional to the total mass of B1 as

m2 = m1κ, κ > 0. (2.49)

More specifically, when dealing with a snake robot in contact with an object, the previous equa-
tion can be written as

mobj = msκ, κ > 0. (2.50)

This ratio allows us to study several systems at once. The equations show clearly that, it is not
really the mass of the object that is important, but its relationship with respect to the mass of the
snake robot.

The equations of motion of the snake robot (2.43) would replace the equations of B1 and the
object would be represented by B2. All the constraints can be put together

A

[
q̇s

υobj

]
> 0 (2.51)

where the constraint matrix A ∈ <nc×(nop+ns) takes the following form

A =
[
−Js GT

]
. (2.52)

The matrix Js ∈ <nc×ns is called the robot Jacobian (also called hand Jacobian [35, 37]) which
projects the vector of generalized velocities of the snake robot onto the subspace spanned by the
constraints. The matrix G ∈ <nop×nc is usually referred to as Grasp Matrix and its transpose is a
mapping from the motion space of the object to the constrained subspace; it can be constructed
in a similar manner to the robot Jacobian. The constraint forces projected back onto the snake
robot and object are [

τc

fc

]
=

[
−JT

s

G

]
λ = ATλ, (2.53)

2.6. Coupled Dynamic Model Between Snake Robot and Object 39

where τc ∈ <ns is simply the projection of the constraint forces onto the space of generalized
forces of the snake robot and fc ∈ <nop is the wrench acting on the object due to the constraints.

Both the Hand Jacobian and the Grasp Matrix have been thoroughly researched in the context of
grasping. However, as it can be understood by comparing (2.53) to (A.6) and (A.7), both matrices
are nothing more than a change of coordinates.

The more complex equations of motion can be written as

m` Īa + p = fact + fext + ATλ, (2.54)

Ī =

[
M̄s 0
0 κ Īobj

]
a =

[
q̈s

aobj

]
p =

[
hs

pobj

]

fact =

[
Bτact

0

]
fext =

[
τg

κmsgt

]

where (2.54) exploits the relationship mobj = msκ discussed in (2.50) which exists when all links
of the snake robot have the same mass. If a ratio with the total mass of the snake robot mT is
necessary, then the relationship mT = n`ms can be used, and the ratio takes the form

mobj =
mT

n`
κ (2.55)

However, since it is the term ms which appears naturally in the factorization of the inertia tensor
of the snake robot, the ratio (2.50) will be used.

This set of equations is standard in literature regarding multi-body systems (e.g., [33, 34]). How-
ever, the manipulation, analysis, and interpretation of such equations depend greatly on the
system and task to be analyzed. The objective of this paper is to show the properties of such
equations pertaining to a snake robot manipulating an object. This will place snake robots in a
consistent framework with other robotic systems, making more clear the similarities and differ-
ences which may have been omitted in previous research (as discussed in Chapter 1).

Equations (2.54) have been presented in [24, 25, 26], but without a further analytical analysis.
The simplified equations of motion (2.47) will be used for the analysis and interpretation of the
equations. The inertial effects of the snake robot will be characterized by the position of its COM,
which will change depending on the configuration. This will allows us to obtain conclusions that
apply to any snake robot, regardless of the number of joints.

40 Chapter 2. Foundations of EAM

2.7 Projection onto the Constrained and Unconstrained Spaces

2.7.1 Constrained Subspace

By solving for a in (2.54) and substituting in (2.48), the constraint forces can be determined as

Gcλ = −AI−1(fact + fext − p) + Ȧυ, (2.56)

where the matrix Gc ∈ <c×c defined as

Gc := AI−1AT =
1

ms
AĪ−1AT =

1
ms

Ḡc (2.57)

is the metric tensor for the constraint forces and the matrix Ḡc := AĪ−1AT considers the unitary
inertia tensor Ī. It is a symmetric positive semi-definite (PSD) matrix and if it has full-rank (all
the constraints are linearly independent) then it will be positive-definite (PD) and its inverse is
defined as G−1

c = msΦ, where the matrix Φ := Ḡ−1
c can be interpreted as the inverse inertia of

the system (projected onto the subspaces spanned by the constraints).

Multiplying to the left both sides of (2.56) by G−1
c and taking into account (2.57), the constraint

forces can be obtained as

λ =λact + λbias, (2.58)

λact :=−ΦAĪ−1 fact, (2.59)

λbias :=−Φ(AĪ−1(fext − p)−m` Ȧυ). (2.60)

The affine system (2.58) represents a mapping from the inputs fact to the constraint forces, with
a bias term produced by velocity-induced terms and gravity.

The mapping (2.59) shows that the contribution from the input forces to the constraint forces
does not depend explicitly on the masses of both systems, but on their ratio κ = m2/m1 encoded
in Ī (c.f. (2.47)). This mapping can be interpreted in several ways. In the context of robotics, the
most common and useful interpretation is as a mapping from a quadratic region in the input
space, onto the output space of constraint forces. This interpretations is commonly referred to
as force ellipsoid [67, 68, 37, 28], where the origin will be shifted due to the bias terms. However,
the previous analysis usually relies on a mapping from input (joint torques or velocities) to the
force or velocity of an end-effector, without additional constraints. These results could not be
applied directly to a snake robot since there are additional constraint forces and constraints (e.g.,
unilateral constraints for rigid-body contact and friction limits).

Since we are mainly interested in the contributions from the inputs to the constraint forces, the
following linear mapping can be proposed

∆λ :=

[
∆λb

∆λ f

]
= −ΦAĪ−1 fact, (2.61)

2.7. Projection onto the Constrained and Unconstrained Spaces 41

where ∆λ = λ− λbias denotes the contributions only due to the input forces, and ∆λb ∈ <cb×1,
∆λ f ∈ <c f×1, denote the contributions to the contact constraints and friction constraints, respec-
tively. The matrix Φ can be decomposed into the four-block matrix

Φ =

[
Φ11 Φ12

ΦT
12 Φ22

]
(2.62)

to show more clearly the contribution to each set of constraints. The contribution from the inputs
to each set of constraint forces can be expressed more clearly as

[
∆λb

∆λ f

]
= −

[
Φ11Ab1 Ī−1

1 + Φ12A f 1 Ī−1
1

ΦT
12Ab1 Ī−1

1 + Φ22A f 1 Ī−1
1

]
fact1, (2.63)

which takes into account (A.8) and that the object is not directly actuated (2.54). An analytical
expression of Φ for the simplified model (2.47) is obtained in Section 3.1.

2.7.2 Acceleration of the system

Given an input fact, the final acceleration of the system can be obtained by substituting (2.58)
into (2.54). The complete expressions for both the acceleration of the snake robot and object can
be found in [25, 26]. In this paper we will find some simplifications relating the acceleration of
the object aobj as a function of the body constraints λb. The twist aobj encodes both linear and
angular velocity of the object, as discussed in Appendix A. The complete acceleration of both
systems can be written in vector form as

a = aact + abias, (2.64)

where the terms aact, abias ∈ <n defined as

aact :=
1

ms
Ī−1Φ⊥ fact, (2.65)

abias :=
1

ms
Ī−1Φ⊥ (fext − p) + Ī−1ATΦȦυ (2.66)

correspond to the contributions to the acceleration of the object due to the input forces and other
terms, respectively. The new projector Φ⊥ defined as

Φ⊥ :=
(

1− ATΦAĪ−1
)

(2.67)

is a projector from inputs to the space orthogonal to the constrained space C (c.f. Fig. 3.1(b)).
Both projectors Φ for the constrained subspace (2.58) and Φ⊥ for the free subspace (2.64) do not
depend explicitly on ms or mobj, but on their ratio κ. This simplifies the analysis of any snake
robot contacting an object.

The acceleration of the snake robot q̈s and object aobj can be obtained analytically [25, 26]. How-
ever, in this paper we exploit the shape of A (c.f. (A.8)) and find a simplified expression for aobj

42 Chapter 2. Foundations of EAM

as a function of the input forces fact1. This is due to the fact that the subtraction from the identity
matrix in (2.67) only affects the diagonal terms of the matrix ATΦAĪ−1. After all, the only input
for the object is through the coupling with the snake robot, described by Ab.

First, assume the projector Φ⊥ is divided into four blocks as

Φ⊥ =

[
Φ⊥11 Φ⊥12

Φ⊥21 Φ⊥22

]
. (2.68)

Since there are no inputs fact2 on the system, the terms Φ⊥12 and Φ⊥22 make no contribution to the
acceleration of the system. The term Φ⊥21, however, describes the mapping from the input forces
of the snake robot fact1 = Bτact to the acceleration of the object, and can be defined analytically
as

Φ⊥21 := − Ī−1
2 AT

b2

(
Φ11Ab1 Ī−1

1 + Φ12 A f 1 Ī−1
1

)
(2.69)

Taking into account the definition of ∆λb in (2.63), the acceleration of the object can be defined
as

aobj =
1

msκ
Ī−1

2 AT
b2∆λb + abias,obj, (2.70)

where abias,obj ∈ <nop is the bias acceleration for the object (this term will not be analyzed any
further, since it is a term dependent on the state of the system).

The expression (2.70) is an improved version over the ones presented in [25, 26], since it isolates
the terms from A that actually contribute to the acceleration of the object. In particular, the first
term of (2.70) represents the contribution from the input to the snake robot fact1 = Bτact to the
acceleration of the object, through the coupling ∆λ.

The (squared) norm of the acceleration of the object can be defined as

||aobj||2 := 〈aobj, aobj〉 = aT
obj Iobjaobj, (2.71)

which is a coordinate-independent metric (the operator 〈·, ·〉 is the inner product induced by I
[33, 48, 49]), and the acceleration of the object aobj is defined in (2.70). This is not the usual length
of the acceleration that is obtained with the Euclidean inner product, but rather a quantity that
describes the power (strictly speaking, rate of change of power) of the acceleration of the object.
It is a quantity that considers both linear and angular acceleration, while keeping consistency of
units, thanks to the use of the metric tensor.

The solution of the system (i.e., obtaining accelerations and constraint forces as a function of
the system’s state and inputs) considering constraints can be solved as a Linear Complementary
Problem (LCP) or reformulated as a Quadratic Program (QP). Presently, this is a standard pro-
cedure for modeling and simulation of multi-body systems. Due to simplicity’s sake we do not
add here the whole procedure, however there are several references. Specifically, we solve the
QP as presented in [36] p. 224. Equivalently, solutions presented in [41] or more recently in [22]
can be used.

2.7. Projection onto the Constrained and Unconstrained Spaces 43

2.7.3 Equations of Motion Rewritten

Previous analysis assumed a general model. For example, simplifications like fact1 ≡ τact and
fact1 ≡ τact where made, as shown in (2.54). In the following we rewrite the equations for the
accelerations of the snake robot and object in a more specific notation.

Ia + p = f + ATλ, (2.72)

I =

[
Ms 0
0 Iobj

]
a =

[
q̈s

aobj

]

p =

[
hs

pobj

]
f =

[
Bτact

fobj

]

Following the previous section, more general equations can be found for the acceleration of the
snake robot and object as a function of the input joint torques. By solving for q̈s and aobj, the
motion of the snake robot and object can be obtained as

q̈s =
(q̈s Φτact

)
τact +

(
q̈s Φ fobj

)
fobj, (2.73)

aobj = (aobj Φτact) τact +
(

aobj Φ fobj

)
fobj, (2.74)

where the auxiliary mappings q̈s Φτact : <na → <ns , q̈s Φ fobj : <nop → <ns ,
aobj Φτact : <na → <nop , and aobj Φ fobj : <nop → <nop can be defined as

q̈s Φτact :=
1

ms
M̄−1

s

(
1− JT

s

(
G−1

c

)
Js M̄−1

s

)
B (2.75)

q̈s Φ fobj :=
1

msκ
M̄−1

s JT
s

(
G−1

c

)
GT Ī−1

obj (2.76)

aobj Φτact :=
1

msκ
Ī−1

obj G
(

G−1
c

)
Js M̄−1

s B (2.77)

aobj Φ fobj :=
1

msκ
Ī−1

obj

(
1− 1

κ
G
(

G−1
c

)
GT Ī−1

obj

)
(2.78)

The (squared) length of the accelerations of the snake robot ||~̈qs||2 or object ||~aobj||2 can be ob-
tained in an invariant way by considering its metric tensors, where the total expression can be
divided into three terms as

||q̈s||2 = τT
act (Ξτact) τact + f T

obj

(
Ξ fobj

)
fobj + τT

act

(
τact Ξ fobj

)
fobj (2.79)

||aobj||2 = τT
act (Ωτact) τact + f T

obj

(
Ω fobj

)
fobj + τT

act

(
τact Ω fobj

)
fobj. (2.80)

44 Chapter 2. Foundations of EAM

We will concentrate on the contributions of the inputs of the snake robot. It can be verified that
the auxiliary mappings Ξτact and Ωτact , after some manipulation, can be defined as

Ξτact :=
1
m

BT
(

1− ĴT
s

)T
M−1

s

(
1− ĴT

s

)
B (2.81)

Ωτact :=
1

κm
BT M̄−1

s JT
s G−1

c GT Ī−1
obj GG−1

c Js M̄−1
s B (2.82)

where the auxiliary term
ĴT

s := JT
s G−1

c Js M̄−1
s

has been introduced for a more compact notation and any further simplification has been omit-
ted for simplicity’s sake. However, the linear relationship w.r.t. the masses of the system be-
comes evident.

2.7.4 Polar coordinates of the COM of the snake robot

In order to compare snake robots with different number of joints, it is necessary to parameterize
the configuration of the robot with a set of parameters in common. The idea of using the polar
coordinates of the of the snake robot COMs w.r.t. the contact point with the object has been
introduced in [25] and further explored in [26].

The parameterization of the COM of the snake robot coms ∈ <2 can be defined as

coms := {|COMs|,∠COMs} , (2.83)

where the (unsigned) distance from the COMs of the snake robot to the contact point is denoted
by |COMs|, and the angle between this vector and the link contacting the object is denoted as
∠COMs. These quantities can be seen in Fig. 2.3(a), Fig. 3.1, and Fig. 3.2.

This allows us to parameterize any snake robot, regardless of the number of joints, in a consistent
and unified manner, similar to how it has been done for robotic manipulators [28].

2.7.5 Summary

So far, the analysis of the coupling between the equations of the snake robot and the object
have been fully obtained. These mappings usually ignore the dynamics of the object to be ma-
nipulated [38] or are conducted on a purely kinematic model [67]. However, for non-periodic
motions where a steady-state is not to be assumed, these simplifications may not be enough. We
consider that the analysis presented in this section can be used not only on snake robots, but
also used as an improvement from [67, 68] for more general robotic systems.

If there were no passive wheels, the model would ignore the effects of A f 1. In other words, the
second block-column in (2.63) would vanish. However, if there are passive wheels attached to
the snake robot, these terms can be included on the analysis of the system.

2.8. Slippage Ratio 45

At the joint-space level we are talking about configurations of the robot (i.e., its generalized co-
ordinates). However, several configurations will have similar inertial properties. We then, can
propose the following definitions:

Definition 5. Optimal Configurations: Set of generalized coordinates q ∈ <ns of the snake robot
that maximize the acceleration of the object, given the same input.
Definition 6. Optimal Postures: Set of postures of the snake robot, parametrized by the position
of the COM of the robot as defined in (2.83), which maximize the acceleration of the object, given
the same input.

Several configurations can produce postures with the same or similar inertial properties, since
the mapping qs → coms is not injective (it is many-to-one). If the posture of the robot indeed has
significant effects on the acceleration of the object, then snake robots with different number of
joints could be compared, and better strategies for control could be formulated. This is similar
to how robotic arms have benefited from understanding of their operational space properties
over joint-space properties [28]. If the posture of the snake robot does not have a significant
correlation to the acceleration of the object, then it would not be possible to find simple rules for
optimal postures. In Chapter 3 we will show that indeed, the posture of the snake robot has a
significant effect, regardless of the mass of the object to be manipulated. Furthermore, it will be
shown that the optimal postures are independent of the additional frictional constraints due to
passive wheels.

2.8 Slippage Ratio

2.8.1 Definition of Slippage Ratio

As stated in Chapter 1, it is an important problem to predict motion and not only forces, in order
to understand the interaction between the snake robot and object and try to accomplish a task.
If the task is to manipulate an object then it is desirable to maximize the motion of the object
||aobj||2 while minimizing the slippage of the snake robot ||q̈s||2. On the other hand, a snake
robot could locomote using the environment as a source of propulsive forces or as a support,
similar to the idea of climbing [53, 54, 55]. This case resembles more a walking robot where the
contact with the environment is necessary for the robot to move. To the best of our knowledge,
this distinction has not been studied with snake robots. To analyze this we propose the ratio of
accelerations

sr :=
||aobj||2

||aobj||2 + ||q̈s||2
, (2.84)

and call it slippage ratio which is a dimensionless scalar quantity bounded as sr ∈ [0, 1]. Using
this ratio we can analyze the following three general situations:

46 Chapter 2. Foundations of EAM

• sr → 1 which implies that the acceleration of the snake robot is minimal or that the object’s
acceleration is much greater than the robot’s:
||q̈s||2 � ||aobj||2 or ||q̈s||2 ≈ 0.

• sr ≈ 0.5 which implies a similar magnitude of acceleration for the two subsystems:
||q̈s||2 ≈ ||aobj||2.

• sr → 0 which implies that the magnitude of the acceleration of the object is minimal:
||q̈s||2 � ||aobj||2 or ||aobj||2 ≈ 0.

This quantity can be seen as the ratio between a desired output and the total output. By analyzing
the slippage ratio sr, given a configuration and input, we can understand better the behavior of
the system.

47

Chapter 3

Optimal Configurations and Optimal
Postures

In this Chapter, both a complex and simplified models of a snake robot contacting an object
and the environment will be analyzed. It will be shown that the posture of the snake robot,
parameterized by (2.83) has a significant impact on the object’s acceleration. At the same time,
it will be shown that the instantaneous solutions to the system, compatible with all the non-
penetration and friction constraints, are not heavily influenced by friction.

3.1 Simplified Interaction Between the Snake Robot and an Object

In this section, a model that simplifies the snake robot contacting an object as two composite-
rigid bodies (CRBs) is presented, denoted as simple model (c.f. Fig. 3.1). The full model consid-
ering the real equations of motion (2.54), denoted as complex model, will be used as a basis for
comparison.

Although the complex model is generally used for the design of control laws and the analysis
of the system, it is not trivial to extract the effects of some parameters from it. To be able to give
an analytical description of how the shape of the body influences the system, the simple model
(as presented in Section 2.6) will be used to gain intuition on the problem. The snake robot will
be represented by B1 and the object as B2, unless noted otherwise. The motivation is that, if the
snake robot locks its joints it behaves like a CRB, which gives an upper bound on the behavior of
the system. The full articulated robot will never have more inertial effects than the CRB model.

Let’s assume that two bodies B1 and B2 are contacting each other at a point pc, and the matrix
Tb spans the constraint force. Body B1 has an additional constraint due to friction (e.g.,by the
addition of a passive wheel), spanned by the matrix Tf , acting at the point p f . It is be assumed
that only B1 has forces that can be controlled (i.e, inputs that would be the joint actuators) repre-
sented by the vector fact1. The gravity forces acting on the bodies are fg1 and fg2 for B1 and B2,
respectively. The only forces acting on the object are the gravity effects and the constraint force
exerted by the snake robot. This means that the vector of forces f acting on the system (except

48 Chapter 3. Optimal Configurations and Optimal Postures

Tb

Tb,n

Tb,f

Tf

Tf,n

Tf,frb1

rb2

rf

θb1

θb2

θfdis
b1

di
s f

pc

pf

Tb,f Tf,f

θb,f

COM1

COM2

B1

B2

Constrained

subspace

∆λ

∆λ∗

fact1

Subspace orthogonal

to the constraints

(a) (b)

τ1

τ2

~λ ~λ

pc

disb1

pf

di
s f

Simpli!ed

model

(c)

pf1

pf2

pf3

Tf1,f

Tf2,f

Tf3,f

r f1

rf2

rf3

f
act1

τ3 B1

a2
aobj

COMs
COM1

rb1

FIGURE 3.1: Interaction between a snake robot and an object simplified
(a) Parameters of the COM of the bodies w.r.t. to the contact point and contact
force Tb, f ,. (b) Projection of a input force into the constrained subspace. (c) Fitting

the complex model of the snake robot into the simplified model

constraint forces) can be represented as

f := fact + fg, fact :=

[
fact1

0

]
, fg :=

[
fg1

fg2

]
.

3.1. Simplified Interaction Between the Snake Robot and an Object 49

3.1.1 Constraint forces

It is now possible to analyze the effect that the position of the COM of the bodies have on the
constraint forces. By considering the definition of A, its dependence on the matrices Tb and Tf ,
and factorized inertia tensors Ī1 and Ī2, the system to be studied is

∆λ = −Φ

[
−TT

b Ī−1
1

−TT
f Ī−1

1

]
fact1. (3.1)

The matrix Φ ∈ <c×c
[

TT
b (Ī−1

1 + (1/κ) Ī−1
2)Tb TT

b Ī−1
1 Tf

TT
f Ī−1

1 Tb TT
f Ī−1

1 Tf

]−1

(3.2)

plays a fundamental role in describing the system since it has an influence on the magnitude
of the constraint force exerted onto the object ∆λb, the magnitude of the friction forces ∆λ f and
their coupling. In other words, it can be studied when and if the constraints due to friction have
an impact on the wrench exerted on the object.

To analyze the matrix Φ it is necessary to obtain an analytical expression. Under the assumption
that the constraints are linearly independent, the matrix Φ is a positive definite matrix (also
interpreted as the metric tensor of the constrained subspace [33]) and, if divided into four blocks
(c.f. (2.62)), an analytical expression can be obtained as

Φ11 :=
(

TT
b Ī−1

1,2 Tb − TT
b Ī−1

1 Tf (TT
f Ī−1

1 Tf)
−1TT

f Ī−1
1 Tb

)−1
(3.3)

Ī1,2 := Ī−1
1 +

1
κ

Ī−1
2 (3.4)

Φ12 := Φ11Φ̄12 (3.5)

Φ̄12 := (TT
b Ī−1

1 Tf)(TT
f Ī−1

1 Tf)
−1 (3.6)

Φ21 = ΦT
12 (3.7)

Φ22 := (TT
f Ī−1

1 Tf)
−1 + Φ̄T

12Φ11Φ̄12. (3.8)

The terms TT
b Ī−1

1,2 Tb and (TT
f Ī−1

1 Tf)
−1 are positive definite matrices that represent the magnitude

of the wrenches Tb and Tf , respectively, with the inertia parameters as a metric tensor [33, 25].
These terms never vanish. The term TT

f Ī−1
1 Tb represents the coupling between the kinematic

constraints and the friction constraints. This term can vanish under certain conditions making
the constraints decoupled. In other words, it is necessary to further study the matrix Φ in order
to understand how the inertial parameters of the system affect the constraint forces and their
coupling.

Before diving into a more rigorous analysis, it is beneficial to make some simplifications. So
far, the analysis presented has not made any assumptions on the matrices Tb and Tf . Tb and Tf

50 Chapter 3. Optimal Configurations and Optimal Postures

represent wrenches (moments and linear forces) and can be decomposed as

Tb :=

[
Tb,n

Tb, f

]
Tf :=

[
Tf ,n

Tf , f

]
,

Where the terms Tb,n and Tf ,n represent moments, and Tb, f and Tf , f represent forces for Tb and
Tf , respectively. In this paper, it is assumed that only forces (and no moments) can be exerted
between the bodies. This is equivalent to a frictionless point contact or hard finger contact mod-
els [37]. In the same manner, the passive wheels are modeled as only being able to produce a
force in the perpendicular direction to the wheel. Under these considerations, the terms Tb,n

and Tf ,n vanish, allowing only forces to be transmitted. In addition, all quantities in the terms
TT

b Ī−1
1,2 Tb, TT

f Ī−1
1 Tb and TT

f Ī−1
1 Tf have to be represented on the same reference frame. We express

the wrenches Tb and Tf w.r.t. the COM of the bodies. The vector rb1 and rb2 describe the posi-
tion from the contact point pc to the COM of B1 and the COM of B2, respectively. The vector r f

describes the position from the contact point of the passive wheel with the ground to the COM
of B1. By taking into account the transformations presented in Appendix A.1, it can be verified
that the following expressions can be obtained

TT
b Ī−1

1,2 Tb = (1 +
1
κ
)TT

b, f Tb, f + (r×b1Tb, f)
T Ī−1

c1 r×b1Tb, f +
1
κ
(r×b2Tb, f)

T Ī−1
c2 r×b2Tb, f , (3.9)

TT
f Ī−1

1 Tb = TT
f , f Tb, f + (r×f Tf , f)

T Ī−1
c1 (r×b1Tb, f), (3.10)

TT
f Ī−1

1 Tf = TT
f , f Tf , f + (r×f Tf , f)

T Ī−1
c1 (r×f Tf , f), (3.11)

where Ī−1
c1 and Ī−1

c2 represent the rotational inertias of B1 and B2 w.r.t. their COM (assuming
unitary mass).

This shows the contribution of the inertial parameters of the bodies to the constraint forces. The
terms TT

b, f Tb, f , TT
f , f Tb, f , and TT

f , f Tf , f do not depend on the position of the constraints w.r.t. the
COM. Furthermore, the term TT

f , f Tb, f vanishes when the constraints Tb and Tf are orthogonal,
regardless of their position w.r.t. each other. However, this does not guarantee that the term
(r×f Tf , f)

T Ī−1
c1 (r×b Tb, f) vanishes. The second terms of both (3.10) and (3.11) are the moments con-

tributed by the constraints and depend on their position and orientation w.r.t. the COM of the
body.

With these expressions it is possible to explain the effects that the constraints have on the system,
their relationship, and how do they affect each other. Furthermore, optimal configurations of the
snake robot can be studied. Since the configuration of the robot change the position of its COM
and its rotational inertia, the effects that Ī1

c1, rb1, and r f have to be investigated further.

3.1.2 Contribution of the robot’s parameters to the contact force

The contribution mapping from fact1 to ∆λb can be obtained by considering the quantity 〈∆λ , ∆λ〉
which is a coordinate-independent measurement of the constraint forces. The metric tensor Gc

induces a metric on the constrained subspace, and the magnitude of the constraint force can be

3.1. Simplified Interaction Between the Snake Robot and an Object 51

obtained as

〈∆λ , ∆λ〉 :=
1

m1
(∆λT)Ḡc(∆λ)

=
1

m1
(∆λT)(∆λ∗), (3.12)

where the vector ∆λ∗ = (1/m1)Ḡc∆λ is the dual coordinates of ∆λ (c.f. Fig. 3.1(b)). Then, the
magnitude of each set of constraint forces can be obtained as

〈∆λ , ∆λ〉 = 〈∆λb , ∆λ∗b〉+ 〈∆λ f , ∆λ∗f 〉. (3.13)

The quantity we are interested in is 〈∆λb , ∆λ∗b〉 as a function of fact1 and the parameters of the
system. It is the only input the object B2 has (c.f. (2.70)), since it is received through the contact
from the snake robot B1, through the contact force λb. It can be verified that the next expression
is obtained

〈∆λb , ∆λ∗b〉 := f T
act1Ψ fact1, (3.14)

Ψ :=
1

m1
Ī−1

1 AT
b1Φ11(Ab1 + Φ̄12A f 1) Ī−1

1 . (3.15)

The expression (3.14) is a quadratic term representing the contribution of the input forces, as a
function of the system’s parameters. We will focus our attention on the term Φ11 which, since
is a diagonal term of the (inverse) metric tensor Φ, has an important role on both the numerical
stability of the system and in the mapping fact1 → ∆λ.

The matrix Φ11 is composed of two elements

Φ11 := (a− b)−1, (3.16)

where the auxiliary terms

a := TT
b Ī−1

1,2 Tb (3.17)

b := TT
b Ī−1

1 Tf (TT
f Ī−1

1 Tf)
−1TT

f Ī−1
1 Tb (3.18)

are scalars under the assumption that the snake robot is contacting only one object. This allows
us to quantify the norm of Φ11 as

||Φ11|| = |(a− b)−1| = |a− b|−1 > ||a| − |b||−1. (3.19)

By inspecting (3.19), it is evident that the smaller the difference |a| − |b|, the stronger the trans-
mitted contact forces. However, the system becomes numerically unstable as |a| − |b| → 0,
which can be interpreted as the matrix Gc loosing rank. This happens when the constraints
become linearly dependent. Furthermore, the bigger the difference |a| − |b| is, the smaller the
contact force exerted onto the object B2. The norm of the first term |a| can be obtained from (3.9)

52 Chapter 3. Optimal Configurations and Optimal Postures

as
|a| = |TT

b Ī−1
1,2 Tb| 6 a1 + a2 + a3, (3.20)

where the auxiliary terms

a1 := |1 + 1
κ
|||Tb, f ||2, (3.21)

a2 := || Ī−1
c1 ||2||Tb, f ||2(disb1)

2, (3.22)

a3 := |1
κ
||| Ī−1

c2 ||2||Tb, f ||2(disb2)
2, (3.23)

have been defined for a more compact notation. The quantity |b| can be obtained from (3.10)
and (3.11) as

|b| = |TT
b Ī−1

1 Tf (TT
f Ī−1

1 Tf)
−1TT

f Ī−1
1 Tb| 6 b1, (3.24)

b1 = ||Tb, f ||2
(|cos(θb, f)|+ || Ī−1

c ||dis f disb1)
2

1 + || Ī−1
c ||dis2

f

. (3.25)

The terms disb1 and disb2 represent the (unsigned) distances from the COM of B1 and B2 to the
line spanned by the contact force, normal to the contacting surfaces. The distance dis f is the (un-
signed) distance from the COM of B1 to the line spanned by the friction force of the passive wheel
with the ground. The angle θb, f is the angle between the constraint forces spanning vectors Tb, f

and Tf , f (c.f. Fig. 3.1(a)). Simplifications regarding the cross product (as mentioned in Appendix
A.1) have been exploited to arrive to these expressions (e.g., ||Tb, f ||2||rb1||2sin2(θb1) = ||Tb, f ||2(disb1)

2).

Then, a lower bound for ||Φ11|| as a function of the distances disb1, disb2, and dis f can be pro-
posed as:

φ11(disb1, disb2, dis f ;model) := ||Φ11|| (3.26)

> |a1 + a2 + a3 − b1|−1, (3.27)

where model represents the snake robot’s parameters (e.g., inertial parameters like Ic1).

The metric (3.26) is not intended to be a quantitative metric for the system, but a qualitative one.
It describes the effect that the input forces will have on the constraint forces (and therefore, on
the motion of the object) as a function of the parameters of the system, and more importantly, of
the position of the COM of the snake robot B1 w.r.t. the contact constraint location.

3.1.3 Fitting the complex model data to the simplified model

Since the simplified model makes the assumption that there is only one friction constraint, some
simplifications must be made, since the real snake robot has several passive wheels. We assume
that the contact point between the plane and the i-th passive wheel, p f i for i = 1, ..., nw, occur
at the centroid of the link, so that the normal forces are known. nw < n` denotes the number
of links with wheels, where it is assumed that at least one doesn’t have a passive wheel (c.f.

3.2. Scenarios considered 53

Fig. 2.4). The friction at the i-th wheel is spanned by Tf i, f in the direction perpendicular to the
link. The quantities we are interested in are the vectors from to the COM of the snake robot
r f i := COMs − p f i and the angles θ f i := ∠(Tf i, f , r f i). This gives an unsigned distance

dis f i := ||r f i|||sin(θ f i)| for i = 1, ..., nw (3.28)

The mean of the distances is taken and a virtual passive wheel is created with this data and used
for the simplified model.

dis f := mean(dis f i) (3.29)

The procedure can be seen in Fig. 3.1(c).

3.2 Scenarios considered

From existing literature on snake robots (or structurally similar hyper-redundant manipulators,
tentacle arms, etc.) it is not possible to draw conclusions on how the contact with the environ-
ment (either through friction or rigid-body contacts as presented in Section 1.1) has a positive or
negative effect on the system, or any effect whatsoever. This is a key difference of snake robots
compared to robotic manipulators that try to avoid obstacles as much as possible.

To study this we can apply the framework proposed in this paper while changing the number
and type of constraints and studying the resulting acceleration of the object. In general, we
propose three different scenarios depending on the type of constraints present on the system as
follows:

• Scenario 1: The snake robot is in contact with an object but unconstrained in any other
way.

• Scenario 2: The snake robot is contacting one object and has passive wheels in all other
links. The friction between the passive wheels and ground is bounded by its limit surface.

• Scenario 3: The snake robot is contacting one object and has passive wheels in all other
links. The passive wheels impose (unbounded and bilateral) non-holonomic constraints.

Scenario 1 allows us to consider only the inertial properties of the system. It represents a system
where friction between the snake robot and environment is so low that it could be neglected
µs → 0. Scenario 2 on the other hand, allows us to study the effect that passive wheels have on
the system, but with a limit depending on a friction coefficient µs > 0. Scenario 3 considers ideal
passive wheels and could be considered as the extreme case when µs → ∞, which is the most
model used for studying undulatory locomotion with snake robots. It is then clear that any case
of anisotropic friction will lie somewhere between Scenario 1 and Scenario 3. In all cases it is
assumed that the COM of the object is aligned with Tb, f . The different scenarios can be seen in
Fig. 3.2(a)-(c).

The snake robot used for the calculations has the parameters described in Table 3.1. The angles
of the joints are varied in the range [−135◦, 135◦]. The input to the system is the set of joint

54 Chapter 3. Optimal Configurations and Optimal Postures

TABLE 3.1: Parameters of the snake robot

Symbol Value Unit Description
n 6 Number of DOFs of the system
na 3 Number of actuated joints
n` 4 Number of links
nw 3 Number of links with passive wheels
mi 1 [kg] Mass of linki, i = 1, ..., n`

`i 0.15 [m] Length of linki, 1 = 1, ..., n`

Icom,i 0.002 [kg m2] Rotational inertia for the i-th link
τact = [τa1, τa2, τa3]T [N m] Input joint torques

µs 0.1 Coefficient of (static) friction used for Scenario 2

torques τact; its effect on the acceleration of the object will be studied over the quadratic region
defined as

τ̄ = {τact : τT
act M

−1
s τact 6 1}, (3.30)

which is a meaningful region where the power is bounded (unlike the Euclidean ball τT
actτact).

The norm of the acceleration (2.80) which is a scalar function <n
a → < will be calculated over

the input region (3.30) and the maximum value for each configuration will be extracted along
the parameters of the snake robot (e.g., disb1) and compared for all three scenarios. Finally, a
comparison with the simplified model will be shown. A summary of the procedure can be seen
in Fig. 3.2(d).

3.3 Results: Best Postures for Pushing an Object

Fig. 3.3 shows the magnitude of the acceleration of the object ||~aobj||2 for the three proposed
scenarios. Fig. 3.3(a) shows the acceleration of the object as a function of the position of the
COM of the snake robot w.r.t. the contact point pc. A line is fitted to the results for clarity.
As it can be seen, there is a clear relationship between the posture of the snake robot and the
acceleration of the object, regardless of the mass of the object. The object’s mass is varied from
κ = 0.1 to κ = 100. The closer the COM of the robot is to the line of action (i.e., disb1 → 0)
the better. Fig. 3.3(b) and 3.3(c) show the same data but for Scenario 2 and 3, respectively. The
passive wheels do increase the acceleration of the object, however, this increase is small. More
importantly, the same trends can be seen in all scenarios, proving that the posture of the robot
has a significant impact on the acceleration of the object, regardless of the additional friction
forces. It is also interesting to see that although the friction coefficient is very small (c.f. Table
3.1), Scenario 2 behaves almost the same as Scenario 3 (ideal passive wheels). The maximum
acceleration obtained for each scenario and mass ratio κ is extracted and compared in Fig. 3.3(d).
The best ||aobj||2 is obtained when κ = 1 and it can be verified that the passive wheels only have
a small contribution.

Good and bad postures can be analyzed then, based on the distance from the COM of the snake
robot to the action line spanned by Tb, f . Fig. 3.4(a) shows a good posture where the COM is almost

3.3. Results: Best Postures for Pushing an Object 55

(a) (b) (c)
x̂

ŷ

SCENARIO 1

τ1

τ2

�aobj

SCENARIO 2

x̂

ŷ

SCENARIO 3

x̂

ŷ
Tb,f

rb1

θb1

Set a Scenario

Accelerations (3.73 and 3.74)

Constraint forces (3.58)

Constraints (unilateral or friction
limits depend on scenario) (2.9)

Set a con�guration qqqs

k-th
Con�guration qqqs[k]

Accel. object norm (region) (34)

{||aaaob j||2 : aaaob j(τττact),τττact ∈ τ̄}
snake robot’s COM data

||rrrb1|| θb1

disb1 = ||rrrb1|||sin(θb1)|
Maximum accel.
object (scalar)

Obtain the maximum accel. object
for all con�gurations and scenarios

Input torques
(region) (4.30) τ̄

Scenario

(d)

Linear Complementary
Optimization Problem

bounded
friction forces unbounded

friction forces

rb1
rb1

τ1 τ1

τ2 τ2

Tb,f
Tb,f

�aobj �aobj

FIGURE 3.2: Scenarios considered
(a)-(c) Scenarios 1 through 3. (d) Summary of the procedure for obtaining the re-

sults. The used equations are shown if applicable

aligned with Tb, f and a bad posture where the COM is almost perpendicular to Tb, f . Fig. 3.4(b)
and 3.4(c) show the input region (3.30) for Scenario 1 and 3, respectively. The behavior is almost
the same, although Scenario 3 shows a slightly bigger acceleration, an increase of 7.9%, actually.
Fig. 3.4(d) and 3.4(e) show the input region (3.30) for Scenario 1 and 3, respectively, for the bad
posture. As the scale shows, this postures shows a drastic decrease on the acceleration of the
object, even though the input power is the same. Interestingly, the increase in the acceleration
of Scenario 3 compared to Scenario 1 is more drastic. For this bad configuration Scenario 3

56 Chapter 3. Optimal Configurations and Optimal Postures

12 12

0

π
12

π
6

π
4

π
3

5π
12

π
2

7π
122π

33π
4

5π
6

11 π
12

π
13 π 23 π

0.0

0.1

0.2

||rb1||[m]

θb1[rad]κ = 1

0.0 0.10 0.150.05

||aobj ||2

0.19

(a) (b) (c)
disb1 [m]

● ●●●● ● ● ●●●●● ● ● ● ● ●●●●● ● ● ● ● ●●●●●● ● ● ● ●●●●●●
● ● ● ●●

●●●●●
● ● ●●

●●●●●●● ●●●●●● ●●●●● ● ● ● ●
●●●●

● ● ● ● ●
●●●●●

● ● ● ● ●●●●●●
●●●

●●
● ●●
●●

●
● ● ● ●

●●
●●●● ● ● ● ●●

●●●●
● ● ● ●●

●●●●●
● ● ●●●●

●
● ●
●

●●● ●
●

● ● ●●●●● ● ● ● ● ●●●●●
● ● ● ● ●●●●

●● ● ● ● ●●●●●●● ● ● ●●●●●●●
●

●
●●

●
●
●

●
● ●

●
●●●

●
●
●

● ● ●●
●●

●
● ●

●
● ●

●
●●

●● ●
●

● ●
●
●

●
●● ● ●

●
● ●
●●●● ● ● ●

● ●●●●● ● ● ● ● ●●●●●● ● ● ● ●●●●●●● ● ● ●●●●●●●● ● ●●●●●●●●
●

●
●●

●
● ●

●
● ●●
●●●

● ●
●

● ●
●●● ●

●
● ●

●
● ●
●●●

●
● ● ●

● ●
●

●●● ● ● ●
● ●●●●● ● ● ● ● ●●●●●● ● ● ● ●●●●●●● ● ● ●●●●●●●● ● ●●●●●●●●● ●●●●●●●● ●

●
●●

●
●
●

●
● ●

●●
●●

●
● ●

●
● ●
●●

●●
●

● ●
● ●●●●● ● ● ● ●

●●●●● ● ● ● ● ●●●●●● ● ● ● ●●
●●●●● ● ● ●●●●●●●● ● ●●●●●●●●● ●●

●
●●

●●●
●●●
●

●
●●

●
● ●

●●
●●

●
● ●

●
● ●●●

●● ●
● ●

●
●●●●● ● ● ● ● ●●●●● ● ● ● ● ●●

●●●● ● ● ● ●●●●●●● ● ● ●●●●●●●● ● ●●
●●●●●●● ●●●

●●
●

●● ●●
●●

●
●●

●
● ●

●●
●●

●
●

●
●
● ●

●
●●● ● ● ● ● ●●●●● ● ● ● ● ●●●●● ● ● ● ● ●●●●●● ● ● ● ●●●●●●● ● ● ●●●●●●●● ● ●●●

●●●
●●●

●
●●

●●●
●
● ●●

●●
●

●●
●
● ● ●●

●●
●

●●
● ● ●

●●
●

●
●●

●
● ●

●

●
●● ● ● ● ● ●●●●● ● ● ● ● ●●●●●● ● ● ● ●●●●●●● ● ● ●●●●●●●● ● ●●●

●●●●●●
●
●●

●
●●●●

●
●
●

●●
●

●●●
● ●

●
●●

●
●●

●
● ●

●●
●●

●
●
●
● ● ●

●
●●

●

●
●
●

● ●
●
●

● ● ● ● ● ●●●●●● ● ● ● ●●●●●●● ● ● ●●●●●●●● ● ●●●●●●●●● ●●●●
●

●●●
●
●
●●

●
● ● ●●

●●
●●

● ● ●
●●●●●

● ● ● ●
●●

●●●●● ● ● ●●
●●●●

●
● ●

●●●
● ●

● ●●
● ● ● ● ●●●●●●
● ● ● ●●

●●●●●
● ● ●●

●●●●●●● ●●●● ● ● ●●●●● ● ● ● ●
●●●●

● ● ● ● ●
●●●●●

● ● ● ● ●●●●●●● ● ● ●●●●●●●● ● ●●●●●●●●● ●●●●●● ●●●

■
■
■■■ ■

■
■
■

■■
■
■ ■

■
■
■
■■

■■
■ ■

■ ■ ■■■

■

■■ ■ ■
■
■■

■
■■■

■
■ ■ ■

■

■■■■
■

■

■
■
■

■■
■

■■■■ ■■■■■

■ ■
■

■■
■ ■ ■

■
■

■■■
■

■ ■
■

■ ■

■

■
■

■
■

■ ■ ■
■
■■■■■■

■■■

■■

■

■■

■

■

■

■
■ ■

■

■

■

■
■

■■
■ ■

■
■

■

■
■■

■

■
■

■
■■

■

■

■■

■

■

■

■■
■

■

■

■ ■

■

■

■
■ ■

■

■
■

■■■■■ ■ ■ ■ ■
■
■

■
■

■ ■ ■ ■
■
■
■

■
■

■
■

■

■
■
■
■■■■

■
■

■ ■ ■■■■■■
■

■

■

■■

■

■

■

■

■ ■

■

■

■

■

■

■

■

■
■

■■

■
■

■

■

■

■

■
■

■

■■

■
■
■

■

■
■

■

■

■

■

■
■ ■

■

■

■

■

■
■
■

■
■

■

■ ■

■
■

■
■ ■ ■ ■ ■ ■■

■
■■

■ ■ ■ ■
■
■

■
■■■■

■ ■ ■
■■■

■■■■
■ ■■■■■■■

■

■

■

■
■

■

■

■

■

■
■
■

■
■

■

■

■

■

■ ■

■■
■■

■

■
■

■

■
■

■
■■

■

■
■

■

■ ■

■

■
■■

■
■ ■

■

■
■

■

■■ ■

■
■ ■

■■■
■

■■ ■
■

■ ■
■

■■
■

■■ ■ ■ ■■■
■■■

■■ ■ ■
■■■

■
■■

■■
■■

■■■
■

■■

■

■

■
■

■

■

■

■

■
■

■■

■■

■

■
■

■

■ ■

■■

■
■

■

■ ■

■
■

■
■■

■
■

■
■ ■

■
■

■

■■ ■
■

■ ■
■

■■
■

■■ ■ ■
■
■
■

■■■
■■

■ ■
■

■■
■

■■
■■

■ ■
■

■■

■
■■

■■

■■

■

■
■

■

■■

■■

■■

■

■
■

■

■ ■

■ ■

■■

■

■
■

■

■ ■

■■

■■

■

■
■

■

■■

■■
■ ■

■

■ ■

■
■■

■■
■ ■

■
■ ■

■
■■

■■
■ ■ ■

■
■

■
■■■■

■
■ ■

■
■■

■
■■■

■
■
■

■■
■

■
■
■■

■

■
■

■■

■

■
■

■■

■■

■

■
■

■

■ ■

■■

■
■

■

■

■

■

■
■

■

■

■■
■

■ ■ ■

■■
■■

■ ■
■

■ ■ ■
■■■■

■ ■ ■
■ ■■
■■■■

■
■ ■

■
■■

■
■■■
■

■ ■■

■■
■

■■■

■

■
■

■

■■
■

■■■

■

■■

■

■
■

■

■ ■
■

■
■

■

■
■

■

■ ■
■■

■■

■

■

■

■

■
■

■
■

■

■

■

■

■

■
■

■

■

■
■ ■ ■ ■ ■ ■■■

■■ ■ ■
■ ■ ■

■■■
■■ ■ ■

■
■
■

■■■■
■ ■

■
■■■■■■■

■
■
■

■■

■
■

■

■
■
■

■

■

■

■

■■
■

■

■

■

■

■
■

■

■
■
■

■ ■

■

■
■

■

■

■

■

■
■

■■

■
■

■

■

■

■

■

■

■

■■

■

■

■

■

■ ■

■

■

■
■ ■ ■ ■ ■■■■

■
■

■ ■ ■ ■
■

■
■

■
■
■

■
■
■
■

■
■■■■

■
■
■
■

■■■■■■■
■■

■
■

■

■■
■

■

■

■■

■

■
■
■■

■

■

■

■ ■

■

■

■■
■

■
■

■
■ ■

■

■

■
■

■■
■■

■
■

■

■

■
■■

■

■

■

■

■■

■

■ ■

■ ■■

■ ■ ■ ■ ■■
■

■■■

■
■

■
■

■

■■
■

■■

■
■ ■■

■
■

■■■
■■

■
■■

■ ■ ■ ■■■■■ ■
■

■ ■

■
■

■

■

■
■ ■ ■ ■

■
■■■

■

■ ■ ■
■

■■
■

■■■■

■

■ ■■■■
■■■■
■ ■
■

■
■

■■
■■■

■
■

■

■■■ ■
■

■

◆ ◆◆◆◆ ◆ ◆ ◆◆◆
◆◆ ◆ ◆ ◆ ◆ ◆◆◆◆◆ ◆ ◆ ◆ ◆ ◆◆◆◆◆◆ ◆ ◆ ◆ ◆◆◆◆◆◆

◆ ◆ ◆ ◆◆
◆◆◆◆◆

◆ ◆ ◆◆
◆◆◆◆◆◆◆ ◆◆◆◆◆◆ ◆◆◆◆◆ ◆ ◆ ◆ ◆

◆◆◆◆
◆ ◆ ◆ ◆ ◆

◆◆◆◆◆
◆ ◆ ◆ ◆ ◆◆◆◆◆◆

◆◆◆
◆◆
◆ ◆◆
◆◆

◆
◆ ◆ ◆ ◆

◆◆
◆◆◆◆ ◆ ◆ ◆ ◆◆

◆◆◆◆
◆ ◆ ◆ ◆◆

◆◆◆◆◆
◆ ◆ ◆◆◆
◆

◆
◆ ◆
◆
◆

◆◆ ◆
◆

◆ ◆ ◆◆◆◆◆ ◆ ◆ ◆ ◆ ◆◆◆◆◆
◆ ◆ ◆ ◆ ◆◆◆◆

◆◆ ◆ ◆ ◆ ◆◆◆◆◆◆◆ ◆ ◆ ◆◆◆◆◆◆◆
◆

◆
◆◆

◆
◆
◆

◆
◆ ◆

◆
◆◆◆

◆
◆
◆

◆ ◆ ◆◆
◆◆

◆
◆ ◆

◆
◆ ◆

◆
◆◆

◆◆ ◆
◆

◆ ◆
◆
◆
◆

◆◆ ◆ ◆
◆

◆ ◆
◆◆◆◆ ◆ ◆ ◆

◆ ◆◆◆◆◆ ◆ ◆ ◆ ◆ ◆◆◆◆◆◆ ◆ ◆ ◆ ◆◆◆◆◆◆◆ ◆ ◆ ◆◆◆◆◆◆◆◆ ◆ ◆◆◆◆◆◆◆◆
◆

◆
◆◆

◆
◆ ◆

◆
◆ ◆◆
◆◆◆

◆ ◆
◆

◆ ◆
◆◆◆◆

◆
◆ ◆

◆
◆ ◆
◆◆◆◆
◆ ◆ ◆

◆ ◆
◆

◆◆◆ ◆ ◆ ◆
◆ ◆◆◆◆◆ ◆ ◆ ◆ ◆ ◆◆

◆◆◆◆ ◆ ◆ ◆ ◆◆
◆◆◆◆◆ ◆ ◆ ◆◆◆◆◆◆◆◆ ◆ ◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆◆◆◆ ◆

◆
◆◆

◆
◆
◆

◆
◆ ◆

◆◆
◆◆

◆
◆ ◆

◆
◆ ◆
◆◆

◆◆
◆

◆ ◆
◆ ◆◆◆◆◆ ◆ ◆ ◆ ◆

◆◆◆◆◆ ◆ ◆ ◆ ◆ ◆
◆◆◆◆◆ ◆ ◆ ◆ ◆◆◆

◆◆◆◆ ◆ ◆ ◆◆◆◆◆◆◆◆ ◆ ◆◆◆◆◆◆◆◆◆ ◆◆◆
◆◆

◆◆◆ ◆◆◆
◆

◆
◆◆

◆
◆ ◆

◆◆
◆◆◆
◆ ◆

◆
◆ ◆◆◆
◆◆ ◆

◆ ◆
◆
◆◆◆◆◆ ◆ ◆ ◆ ◆ ◆

◆◆◆◆ ◆ ◆ ◆ ◆ ◆◆
◆◆◆◆ ◆ ◆ ◆ ◆◆◆◆◆◆◆ ◆ ◆ ◆◆◆◆◆◆◆◆ ◆ ◆◆

◆◆◆◆◆◆◆ ◆
◆◆

◆◆
◆

◆◆ ◆◆
◆◆

◆
◆◆

◆
◆ ◆

◆◆
◆◆

◆
◆

◆
◆
◆ ◆

◆
◆◆◆ ◆ ◆ ◆ ◆ ◆◆◆◆◆

◆ ◆ ◆ ◆ ◆◆◆◆◆ ◆ ◆ ◆ ◆ ◆◆◆◆◆◆ ◆ ◆ ◆ ◆◆◆◆◆◆◆ ◆ ◆ ◆◆◆◆◆◆◆◆
◆ ◆
◆◆

◆◆◆
◆◆◆

◆
◆◆

◆◆◆
◆
◆ ◆◆

◆◆◆
◆◆

◆
◆ ◆ ◆◆

◆◆
◆

◆◆
◆ ◆

◆
◆◆

◆
◆

◆◆
◆
◆ ◆

◆

◆
◆◆ ◆ ◆ ◆ ◆ ◆◆◆◆◆ ◆ ◆ ◆ ◆ ◆◆◆◆◆◆ ◆ ◆ ◆ ◆◆

◆◆◆◆◆ ◆ ◆ ◆◆◆◆◆◆◆◆ ◆ ◆
◆◆

◆◆◆◆
◆◆ ◆

◆◆◆
◆◆◆

◆
◆
◆
◆

◆◆
◆

◆◆◆
◆ ◆

◆
◆◆

◆
◆◆

◆
◆ ◆

◆◆
◆◆

◆
◆
◆
◆ ◆ ◆

◆
◆◆

◆

◆
◆
◆

◆ ◆
◆
◆

◆ ◆ ◆ ◆ ◆ ◆◆◆◆◆◆ ◆ ◆ ◆ ◆◆
◆◆◆◆◆ ◆ ◆ ◆◆

◆◆◆◆◆◆ ◆ ◆◆
◆◆◆◆◆◆◆ ◆◆

◆◆
◆

◆◆◆
◆
◆
◆◆

◆
◆ ◆ ◆◆

◆◆
◆◆

◆ ◆ ◆
◆◆◆

◆◆
◆ ◆ ◆ ◆

◆◆
◆◆◆◆◆ ◆ ◆ ◆◆

◆◆◆◆
◆
◆ ◆

◆◆◆
◆ ◆

◆ ◆◆
◆ ◆ ◆ ◆ ◆◆◆◆◆◆
◆ ◆ ◆ ◆◆

◆◆◆◆◆
◆ ◆ ◆◆

◆◆◆◆◆◆◆ ◆◆◆
◆ ◆ ◆ ◆◆◆◆◆ ◆ ◆ ◆ ◆

◆◆◆
◆
◆ ◆ ◆ ◆ ◆

◆◆◆◆◆
◆ ◆ ◆ ◆ ◆◆◆◆◆◆◆ ◆ ◆ ◆◆◆◆◆◆◆◆ ◆ ◆◆◆

◆◆◆◆◆◆ ◆◆◆
◆◆◆ ◆◆◆

▲ ▲▲▲▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲ ▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲ ▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲ ▲▲ ▲▲▲

0.00 0.05 0.10 0.15 0.20

0.05

0.10

0.15

Scenario 1: ||aobj||2 κ = 0.1
κ = 1
κ = 10
κ = 100

●

■

◆

▲

● ●●●● ● ● ●●●●● ● ● ● ● ●●●●● ● ● ● ● ●●●●●● ● ● ● ●●●●●●● ● ● ●●●●●●●● ● ●●
●●●●●●● ●●●●●● ●●●●●

● ● ● ● ●●●●● ● ● ● ● ●●●●●
● ● ● ● ●●●●●●●●●

●●
● ●●
●●

●
● ● ● ●

●
●

●●●● ● ● ● ●●
●●●●● ● ● ●●●●●●●● ● ●●●● ●

● ●●
●●● ●

● ● ● ●●●●● ● ● ● ● ●●●●
● ● ● ● ● ●●●●●● ● ● ● ●●●●●●● ● ● ●●●●●●●●

●
●●

●
●
●
●

● ●●
●●

●
●●
●

● ●
●●

●●
●
● ●

●
● ●

●
●●

●● ●
●

● ● ●
●●●● ● ● ●

● ●●●●● ● ● ●
● ●●●●● ● ● ● ● ●●●●●●

● ● ● ●●●●●●●
● ● ●●●●●●●● ● ●●●●●●●●

●
●

●●
●
● ●

●
● ●●
●●●

● ●
●

● ●
●●

●●
●
● ●

● ● ●
●●

●
●
● ●

●
● ●
●

●●● ● ● ●
●
●●●●● ● ● ● ● ●●●●●● ● ● ● ●●●●●●● ● ● ●●●●●●●● ● ●●●●●●●●● ●●●●●●●● ●

●
●

●●
●
● ●

●
●
●●

●●
●
● ●

●
● ●●●

●●
●

● ●
●
●●●●

● ● ● ● ●
●●●●● ● ● ● ● ●●●●●● ● ● ● ●●●●●●● ● ● ●●●●●●●● ● ●●●●●●●●● ●●

●●●●●● ●●●●
●●●

●● ●
●●

●●●
● ● ●

● ●●●
●● ● ● ● ●

●●●●
● ● ● ● ● ●●●●●

● ● ● ● ●●
●●●● ● ● ● ●●●●●●● ● ● ●●●●●●●● ● ●●

●●●●●●● ●●●
●●

●
●● ●●●●

●
●●

●
● ●

●●
●

●
●●

●
● ●

●
●

●●● ● ● ● ● ●●●●●
● ● ● ● ●●●●● ● ● ● ● ●●●●●● ● ● ● ●●●●●●● ● ● ●●●●●●●●

● ●●●
●●●●●●

●
●●

●
●●

●
● ●●

●●●
●●

●
● ● ●●

●●
●

●●
● ● ●

●●●
●

●●
●
● ●

●
●

●●
● ● ● ● ●●●●● ● ● ● ● ●●

●●●● ● ● ● ●●●●●●● ● ● ●●●●●●●● ● ●●●
●●●●●●

●●
●

●●●●●
●●
●●●

●
●●●
● ●

●
●●

●
●●

●
● ●

●●
●●

●
●●
●

● ●
●●●

●
●
●
●

● ●
●
● ● ● ● ● ● ●●●●●● ● ● ● ●●

●●●●● ● ● ●●●●●●●
● ● ●●●●●●●●● ●●●●●

●●●
●
●●●

●● ● ●●●●●● ● ● ● ●●●●●● ● ● ●
●●

●●●●● ● ●
●
●

●●●●
●
● ●

●●●
● ●

● ●● ● ● ● ● ●●●●●●
● ● ● ●●

●●●●●● ● ●●●●●●●●● ●●●●
● ● ●●●●● ● ● ● ●

●●●●● ● ● ● ● ●●●●●● ● ● ● ●●●●●●● ● ● ●●●●●●●●
● ●●●●●●●●● ●●●●●● ●●●

■ ■
■■■

■
■
■■

■■
■ ■ ■

■
■ ■■
■■

■ ■
■

■ ■ ■■■
■

■

■ ■ ■
■
■■

■
■■■

■
■

■ ■
■

■■
■■■

■
■

■
■

■■■
■■■■
■
■■■

■
■ ■■■■

■ ■
■

■
■

■■
■■

■ ■
■

■ ■

■
■

■
■

■

■ ■
■ ■

■■
■■

■
■■■

■

■
■

■

■
■

■
■

■

■
■

■

■

■

■

■

■
■
■

■ ■
■

■

■

■
■■

■■
■ ■

■■
■

■
■■

■
■

■

■■
■

■
■

■ ■
■

■

■
■ ■

■

■
■

■■■■■ ■ ■ ■ ■
■
■

■
■

■
■ ■

■

■
■■

■
■

■
■

■
■ ■

■

■■■■■

■
■

■ ■■
■■■ ■

■

■

■

■■

■

■

■

■

■ ■
■

■
■

■

■

■

■

■
■

■
■

■
■

■

■

■

■

■
■

■

■■

■
■

■

■

■ ■

■

■■

■
■
■

■

■

■
■
■

■■
■
■ ■

■

■ ■
■

■■■
■ ■ ■ ■

■■

■
■■

■
■

■ ■
■■■

■
■■

■

■ ■
■
■■■■

■
■■

■ ■■
■■

■■■

■

■

■

■
■

■

■
■

■

■
■
■

■■

■

■

■

■

■
■

■

■

■
■

■

■
■

■
■ ■

■

■■

■

■
■

■

■ ■

■

■■
■
■

■

■

■

■■
■

■
■ ■

■ ■ ■
■■

■
■

■
■ ■

■
■ ■
■■■

■
■■ ■

■ ■■■
■■

■
■■

■ ■
■■■

■■
■

■■
■■■

■■■■■

■

■

■

■

■

■

■
■

■

■

■
■

■
■

■

■
■

■

■ ■
■

■
■■

■

■ ■

■

■
■

■
■
■
■

■

■
■

■■■

■■
■ ■

■
■
■

■■
■

■■
■ ■

■
■■

■■■
■■

■ ■
■
■■

■
■■

■
■

■ ■

■
■■

■
■■

■
■
■
■

■
■

■

■
■
■

■
■

■
■

■■■

■

■
■

■ ■

■
■

■

■ ■ ■

■
■

■
■

■
■
■

■
■

■

■
■

■
■

■ ■
■

■ ■
■

■■
■
■
■ ■

■
■ ■
■

■■
■■

■ ■ ■

■■
■

■■
■■

■
■ ■

■
■

■

■■
■■

■ ■■

■
■

■

■
■
■
■

■
■

■

■■

■

■■
■

■
■■

■

■
■

■

■
■

■
■

■

■

■
■

■

■

■

■

■

■

■■ ■ ■ ■
■ ■■
■■

■
■ ■

■ ■ ■
■■

■■
■

■ ■
■ ■■■

■■■
■

■ ■ ■
■■

■
■■

■
■

■
■■

■■■
■■
■

■
■■

■

■

■
■

■
■■

■

■■

■

■
■

■

■ ■

■

■■
■

■
■

■

■
■

■

■

■
■

■

■

■

■

■ ■

■
■

■

■

■
■

■

■
■

■

■

■

■ ■ ■
■ ■

■■■

■■
■

■ ■ ■ ■
■

■■

■
■ ■

■
■ ■■
■■

■
■

■ ■
■

■■■■■■
■■

■
■
■■

■
■■

■
■■

■
■

■

■

■
■

■
■

■■

■

■■

■

■

■
■

■ ■

■

■
■

■

■

■

■

■
■

■
■

■
■

■

■

■

■

■
■

■
■■

■

■

■

■

■ ■

■

■

■
■ ■ ■ ■

■■■
■

■

■ ■ ■ ■ ■

■
■■

■
■
■

■
■
■■

■

■
■■

■

■
■
■
■

■■■■■■■ ■■

■
■

■

■■
■

■

■
■■

■
■

■
■■

■

■
■
■ ■

■

■
■■

■■
■■

■ ■
■

■

■

■
■■

■
■

■

■

■

■

■

■
■

■

■

■
■

■
■

■

■
■

■
■■ ■

■
■ ■

■■■■
■■

■
■

■

■
■

■■
■

■■

■ ■ ■■

■
■

■
■■

■■ ■■■
■

■ ■ ■
■■■■ ■
■ ■ ■

■
■

■
■

■ ■ ■
■ ■

■
■■

■
■
■ ■ ■

■

■■
■

■■■

■

■
■ ■■
■■

■
■■

■ ■
■■

■
■

■■■
■■

■■
■

■
■■ ■
■■

◆◆◆◆◆ ◆ ◆◆◆◆◆
◆◆ ◆ ◆ ◆◆◆◆◆◆◆ ◆ ◆ ◆◆◆◆◆

◆◆ ◆ ◆ ◆◆◆◆◆◆◆◆ ◆ ◆◆◆
◆◆◆◆◆◆ ◆◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆ ◆ ◆ ◆◆◆◆◆

◆◆ ◆ ◆ ◆
◆◆◆

◆◆
◆ ◆ ◆ ◆◆◆◆◆◆◆◆◆◆

◆◆
◆◆◆
◆◆

◆
◆ ◆ ◆ ◆

◆
◆

◆◆◆◆ ◆ ◆ ◆◆
◆

◆◆◆◆◆ ◆ ◆◆◆◆
◆◆◆◆◆ ◆◆◆◆◆ ◆

◆◆◆
◆◆◆◆

◆ ◆ ◆
◆◆◆◆◆◆ ◆ ◆ ◆◆◆◆◆

◆◆ ◆ ◆ ◆◆◆◆◆◆◆ ◆ ◆ ◆◆◆◆◆◆◆◆ ◆ ◆◆◆◆◆◆◆◆◆
◆

◆◆
◆

◆
◆
◆

◆ ◆◆
◆◆

◆
◆◆
◆

◆ ◆
◆◆

◆◆
◆
◆◆

◆
◆ ◆

◆
◆◆

◆◆◆
◆

◆ ◆◆
◆◆◆◆◆ ◆ ◆

◆◆◆◆◆◆◆ ◆ ◆
◆◆◆◆◆◆◆ ◆ ◆ ◆◆◆◆◆◆◆

◆ ◆ ◆◆◆◆◆◆◆◆
◆ ◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆◆◆◆◆

◆
◆

◆◆
◆
◆◆

◆
◆ ◆◆
◆◆◆

◆◆
◆

◆ ◆
◆◆

◆◆
◆
◆ ◆

◆ ◆◆
◆◆

◆
◆
◆ ◆

◆
◆◆
◆

◆◆◆◆ ◆ ◆
◆
◆◆◆◆◆◆ ◆ ◆ ◆◆◆◆◆◆◆ ◆ ◆ ◆◆◆

◆◆◆◆◆ ◆ ◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆

◆
◆◆

◆
◆ ◆

◆
◆
◆◆

◆◆◆
◆ ◆

◆
◆◆◆◆
◆◆
◆

◆ ◆
◆
◆◆◆◆

◆◆ ◆ ◆ ◆
◆◆◆

◆◆◆ ◆ ◆ ◆◆
◆◆◆◆◆ ◆ ◆ ◆◆◆◆

◆◆◆◆ ◆ ◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆

◆◆◆
◆◆

◆◆◆
◆ ◆ ◆

◆◆◆◆
◆◆◆ ◆ ◆ ◆

◆◆◆◆
◆◆ ◆ ◆ ◆◆

◆◆◆◆
◆ ◆ ◆ ◆◆◆

◆◆◆◆ ◆ ◆ ◆◆◆◆
◆◆◆◆ ◆ ◆◆◆◆◆◆◆◆◆

◆◆◆
◆◆◆◆◆◆◆◆

◆
◆

◆◆
◆

◆◆◆◆◆◆◆
◆◆

◆
◆◆

◆◆
◆

◆
◆◆

◆
◆◆ ◆

◆
◆

◆◆◆ ◆ ◆ ◆◆◆◆◆◆
◆ ◆ ◆ ◆◆◆◆◆◆◆

◆ ◆ ◆◆◆◆◆◆◆ ◆ ◆ ◆◆◆◆◆◆◆◆ ◆ ◆◆◆◆◆◆◆◆◆
◆◆◆◆

◆◆◆◆◆
◆
◆
◆◆

◆
◆◆

◆
◆◆◆

◆◆◆
◆◆

◆
◆◆ ◆◆

◆◆
◆

◆◆
◆◆

◆
◆◆◆

◆
◆◆

◆
◆ ◆

◆
◆

◆◆◆ ◆ ◆ ◆◆◆◆◆◆◆
◆ ◆ ◆◆◆

◆ ◆◆◆ ◆ ◆ ◆◆◆◆
◆◆◆◆ ◆ ◆◆
◆◆◆◆◆◆◆

◆◆
◆◆◆◆◆◆

◆◆◆
◆◆◆◆◆◆◆

◆◆
◆◆ ◆

◆
◆◆

◆
◆ ◆

◆
◆◆

◆
◆◆

◆
◆ ◆

◆◆
◆◆

◆
◆◆
◆

◆ ◆
◆◆◆

◆
◆
◆
◆

◆ ◆
◆
◆ ◆◆ ◆ ◆ ◆◆◆◆◆◆◆ ◆ ◆ ◆◆◆

◆◆◆◆◆ ◆ ◆◆◆
◆◆◆◆◆

◆ ◆◆◆
◆◆◆◆◆◆◆◆◆

◆◆◆
◆◆◆
◆
◆◆◆

◆◆ ◆◆◆◆
◆◆◆ ◆ ◆ ◆◆◆◆◆◆◆ ◆ ◆ ◆

◆
◆◆

◆◆◆◆ ◆ ◆
◆
◆

◆◆◆◆
◆
◆ ◆

◆◆◆
◆ ◆

◆◆◆ ◆ ◆ ◆ ◆◆◆◆◆◆◆
◆ ◆ ◆◆◆

◆◆◆◆◆
◆ ◆◆◆◆
◆◆◆◆◆◆◆◆◆◆

◆ ◆◆◆◆◆◆◆ ◆ ◆ ◆◆◆◆
◆◆◆ ◆ ◆ ◆

◆◆◆◆◆◆ ◆ ◆ ◆
◆◆◆◆◆ ◆◆

◆ ◆◆◆◆◆◆◆◆◆
◆◆◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

▲ ▲▲▲▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲ ▲▲▲▲▲ ▲▲▲▲▲▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲ ▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲ ▲▲▲▲ ▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲ ▲▲▲▲ ▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲ ▲▲▲▲ ▲▲▲▲▲▲ ▲▲▲

0.00 0.05 0.10 0.15 0.20

0.05

0.10

0.15

κ = 0.1
κ = 1
κ = 10
κ = 100

●

■

◆

▲

Scenario 2: ||aobj||2

disb1 [m]

● ●●
●● ● ● ●●●●● ● ● ● ● ●●●●● ● ● ● ● ●●●●

●● ● ● ● ●●
●●●●● ● ● ●●

●●●●●
● ● ●●

●●●●●●● ●●●●●● ●●●●
● ● ● ● ●

●●●●
● ● ● ● ●

●●●●●

● ● ● ● ●●●●●●●●●
●●
● ●●
●●

●
● ● ● ●

●
●

●●●● ● ● ● ●
●

●●●●● ● ● ●●●●●●●● ● ●●●● ●
● ●●
●

●● ●
●

● ●
●●●●● ● ● ● ● ●●●●

● ● ● ● ● ●●●●●● ● ● ● ●●●●●●
● ● ● ●●●●●●●●

●
●●

●
●
●

●
● ●●
●●

●
●●
●

● ●
●●

●●
●
●
●

●
● ●

●
●●

●● ●
●

● ●
●
●●●● ● ●

●
● ●●●●● ● ● ●

● ●●●●● ● ● ● ● ●●●●●●
● ● ● ●●●●●●●
● ● ●●●●●●●● ● ●●●●●●●●

●

●
●●

●
● ●

●
● ●●
●●

●
●
●

●
● ●

●●
●●

●
● ●

● ● ●
●

●●
●
● ●

●
● ●
●

●●● ● ● ●
●
●●●

●● ● ● ● ● ●●●●●● ● ● ● ●●●●●●● ● ● ●●●●●●●● ● ●●●●●●●●● ●●●●●●●●
●

●
●

●●
●
● ●

●
●
●●

●●
●
● ●

●
● ●●
●●●
●

● ●
●
●●●●

● ● ● ● ●
●●●

●● ● ● ● ● ●
●●●●● ● ● ● ●●●●●●● ● ● ●●●●●●●● ● ●

●●●●●●●● ●●
●●●●●● ●●

●●
●●●

●● ●
●●

●●●
● ● ●

● ●
●●

●● ● ● ● ●
●●●●

● ● ● ● ● ●
●●●●

● ● ● ● ●●
●●●● ● ● ● ●●●●●●● ● ● ●
●●●●●●●

● ●●
●●●●●●● ●●●

●●
●

●● ●
●●●

●
●●

●
● ●

●●
●

●
●●

●
● ●

●
●

●
●● ● ● ● ● ●●●●●

● ● ● ● ●●●●● ● ● ● ● ●●●●●● ● ● ● ●●●●●●●
● ● ●●●●●●●●

● ●●
●

●●●●●●
●
●●

●
●●

●
● ●

●
●●●

●●
●
● ●

●●
●●

●
●

●
●
● ●

●●●
●

●●
●
● ●

●

●
●●
● ● ● ● ●●●●● ● ● ● ● ●●

●●●● ● ● ● ●●●●●●● ● ● ●●●●●●●● ● ●●●
●●●●●●

●●
●

●
●●●●

●●
●

●●
●

●●●
● ●

●
●●

●
●

●
●
● ●

●●
●●

●
●●
●

● ●
●●●

●

●
●
●

● ●
●
● ● ● ● ● ● ●●●●●

● ● ● ● ●●
●●●●● ● ● ●●●●●●●

● ● ●●●●●●●●● ●●
●●

●
●●●
●
●●●

●● ● ●●●●●● ● ● ● ●●●●●● ● ● ●
●
●●●●●● ● ●

●
●

●●●●
●
● ●

●●●
● ●

● ●● ● ● ● ● ●●●●●●

● ● ● ●●
●●●●●

● ● ●●
●●●●●

●● ●●●●
● ● ●●●●● ● ● ● ●

●●●●
● ● ● ● ●

●●●●●● ● ● ●
●●●●●●● ● ● ●●●●●●●●

● ●●●●●●●●● ●●●●●● ●●●

■ ■

■■■
■

■
■■

■■
■ ■ ■

■
■ ■■
■■

■ ■
■

■ ■ ■■■
■

■

■ ■ ■
■
■■

■
■■■

■
■

■ ■
■

■■
■■■

■
■

■
■

■■■
■■■
■ ■
■■■

■
■ ■
■■■

■ ■
■

■
■

■■
■■

■ ■
■

■ ■

■
■

■
■

■

■ ■
■

■
■■

■■
■

■■■
■

■
■

■

■
■

■
■

■

■
■

■

■

■

■

■

■
■
■

■ ■

■

■

■

■

■■
■■

■ ■
■■

■

■
■■

■

■

■

■■
■

■

■

■ ■

■

■

■
■ ■

■

■
■

■■■■■
■ ■ ■ ■

■
■

■
■

■
■ ■

■

■
■■

■
■

■
■

■
■ ■

■

■■■■■

■
■

■ ■■
■■

■ ■

■

■

■

■■

■

■

■

■

■ ■
■

■
■

■

■

■

■

■
■

■
■

■
■

■

■

■

■

■

■

■

■■

■
■

■

■

■ ■

■

■
■

■
■
■

■

■

■
■

■

■■
■
■

■
■

■ ■
■

■■■

■ ■ ■ ■
■■

■
■■

■
■

■ ■
■■■

■
■■

■

■ ■
■

■■■■
■

■■

■
■■

■■
■

■■

■

■

■

■
■

■

■
■

■

■
■
■

■■

■

■

■

■

■
■

■

■

■
■

■

■
■

■

■
■

■

■■

■

■
■

■

■ ■

■

■■
■
■

■

■

■

■■

■

■
■ ■

■ ■
■
■■

■■
■
■ ■

■
■ ■
■

■■
■

■
■ ■

■ ■■
■

■■
■

■■
■ ■
■

■■
■■

■

■■
■■■

■■■■■

■

■

■

■

■

■

■
■

■

■

■

■

■
■

■

■
■

■

■ ■

■

■

■■

■

■ ■

■

■

■

■
■
■
■

■

■
■

■■■

■■
■ ■

■

■

■

■■
■

■
■

■ ■

■
■■

■
■■

■
■

■ ■
■

■■

■
■■

■
■

■ ■

■
■

■

■
■■

■
■
■
■

■
■

■

■
■
■

■
■

■
■

■
■■

■

■

■

■ ■

■

■

■

■ ■
■

■
■

■
■

■
■
■

■
■

■

■
■

■
■

■ ■
■

■
■
■

■■
■
■
■ ■

■

■ ■

■
■■

■
■

■ ■
■

■■
■

■■
■
■

■
■ ■

■

■

■

■■
■■

■ ■■

■
■

■

■
■
■
■

■

■

■

■■

■

■■

■

■

■■

■

■
■

■

■
■

■

■

■

■

■
■

■

■

■

■

■

■

■■ ■ ■ ■
■
■■

■■

■
■ ■

■ ■
■
■■

■■
■

■ ■
■
■■■

■■
■

■
■ ■

■
■■

■
■■

■
■ ■

■■
■

■■
■■
■

■

■■

■

■

■

■
■
■■

■

■■

■

■
■

■

■ ■

■

■
■

■

■
■

■

■
■

■

■

■
■

■

■

■

■

■ ■

■
■

■

■

■
■

■

■
■

■

■

■

■ ■
■

■ ■
■■■

■■
■

■ ■ ■ ■

■
■■

■
■ ■

■
■ ■■
■■

■
■

■ ■
■

■■
■■■■

■■
■
■
■■

■
■

■
■
■■

■

■
■

■

■
■

■
■

■
■

■

■■

■

■

■
■

■ ■

■

■

■

■

■

■

■

■
■

■
■

■
■

■

■

■

■

■
■

■
■■

■

■

■

■

■ ■

■

■

■

■ ■
■ ■

■■■
■

■

■ ■ ■ ■ ■

■
■■

■

■
■

■
■
■■

■

■
■■

■

■
■
■
■

■■■■■■■ ■■

■
■

■

■■
■

■

■

■■

■

■
■
■■

■

■

■
■ ■

■

■
■■

■■
■■

■ ■

■

■

■

■

■■
■
■

■

■

■

■

■

■
■

■

■

■
■

■
■

■

■
■

■
■■ ■

■
■ ■

■■■
■

■■

■
■

■

■
■

■■
■

■■

■ ■ ■■

■
■

■
■■

■■ ■
■■

■
■ ■ ■

■■■■ ■
■ ■ ■

■
■

■
■

■ ■ ■
■ ■

■
■■

■
■
■ ■ ■

■

■■
■

■■■

■

■
■ ■■
■■

■
■■

■ ■
■■

■
■

■■■
■■

■■
■

■
■■ ■

■■

◆ ◆◆◆◆ ◆ ◆ ◆◆◆◆
◆ ◆ ◆ ◆ ◆ ◆◆◆◆◆ ◆ ◆ ◆ ◆ ◆◆◆◆

◆◆ ◆ ◆ ◆ ◆◆◆◆◆◆◆ ◆ ◆ ◆◆
◆◆◆◆◆

◆ ◆
◆◆

◆◆◆◆◆◆◆ ◆
◆◆◆◆◆ ◆◆◆◆

◆ ◆ ◆ ◆ ◆
◆◆◆◆

◆ ◆ ◆ ◆ ◆
◆◆◆

◆◆

◆ ◆ ◆ ◆ ◆◆◆◆◆◆◆◆◆
◆◆
◆ ◆◆
◆◆

◆
◆ ◆ ◆

◆
◆
◆

◆◆◆◆ ◆ ◆ ◆ ◆
◆

◆◆◆◆◆ ◆ ◆ ◆◆◆
◆◆◆◆◆ ◆ ◆◆◆

◆ ◆
◆ ◆◆
◆

◆◆ ◆
◆

◆ ◆
◆◆◆◆◆ ◆ ◆ ◆ ◆ ◆◆◆◆

◆ ◆ ◆ ◆ ◆ ◆◆◆◆◆◆ ◆ ◆ ◆ ◆◆◆◆◆◆
◆ ◆ ◆ ◆◆◆◆◆◆◆◆

◆
◆◆

◆
◆
◆

◆
◆ ◆◆
◆◆

◆
◆◆
◆

◆ ◆
◆◆

◆◆
◆
◆
◆

◆
◆ ◆

◆
◆◆

◆◆ ◆
◆

◆ ◆◆
◆◆◆◆ ◆ ◆

◆
◆ ◆◆◆◆◆ ◆ ◆ ◆

◆ ◆◆◆◆◆ ◆ ◆ ◆ ◆ ◆◆◆◆◆◆
◆ ◆ ◆ ◆◆◆◆◆◆◆
◆ ◆◆◆◆◆◆◆◆◆

◆ ◆◆◆◆◆◆◆◆
◆

◆
◆◆

◆
◆ ◆

◆
◆ ◆◆
◆◆

◆
◆
◆

◆
◆ ◆

◆◆
◆◆

◆
◆ ◆

◆ ◆ ◆
◆
◆◆◆
◆ ◆

◆

◆ ◆
◆

◆◆◆ ◆ ◆
◆

◆
◆◆◆

◆◆ ◆ ◆ ◆ ◆ ◆◆
◆◆◆◆ ◆ ◆ ◆ ◆◆◆◆◆◆◆ ◆ ◆ ◆◆◆◆◆◆◆◆ ◆ ◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆◆◆◆

◆
◆

◆
◆◆

◆
◆ ◆

◆
◆
◆◆

◆◆◆
◆ ◆

◆
◆ ◆◆
◆◆◆ ◆

◆ ◆
◆
◆◆◆◆

◆ ◆ ◆ ◆ ◆
◆◆◆

◆◆ ◆ ◆ ◆ ◆ ◆
◆◆◆◆◆ ◆ ◆ ◆ ◆◆◆

◆◆◆◆ ◆ ◆ ◆◆◆◆◆◆◆◆ ◆ ◆◆◆◆◆◆◆◆◆ ◆◆
◆◆◆◆◆◆ ◆◆

◆◆
◆◆◆

◆◆ ◆
◆◆

◆◆◆
◆ ◆ ◆

◆ ◆◆◆
◆◆ ◆ ◆ ◆ ◆

◆◆◆◆
◆ ◆ ◆ ◆ ◆ ◆

◆◆◆◆
◆ ◆ ◆ ◆ ◆◆

◆◆◆◆
◆ ◆ ◆ ◆◆◆

◆◆◆◆ ◆ ◆ ◆
◆◆◆◆◆◆◆

◆ ◆◆
◆◆◆◆◆◆◆ ◆

◆
◆

◆◆
◆

◆◆ ◆
◆◆◆

◆
◆◆

◆
◆ ◆

◆◆
◆

◆
◆◆

◆
◆ ◆ ◆

◆
◆

◆◆ ◆ ◆ ◆ ◆ ◆◆◆◆◆
◆ ◆ ◆ ◆ ◆◆◆◆◆ ◆

◆ ◆ ◆ ◆◆◆◆◆◆ ◆ ◆ ◆ ◆◆◆◆◆◆◆
◆ ◆ ◆◆◆◆◆◆◆◆

◆ ◆◆◆
◆

◆◆◆◆
◆
◆
◆◆

◆
◆◆

◆
◆ ◆

◆
◆◆◆

◆◆
◆
◆ ◆ ◆◆

◆◆
◆

◆
◆
◆
◆ ◆

◆◆◆
◆

◆◆
◆
◆ ◆

◆

◆
◆◆
◆ ◆ ◆ ◆ ◆◆◆◆◆ ◆

◆ ◆ ◆ ◆◆
◆ ◆◆◆ ◆ ◆ ◆ ◆◆

◆◆◆◆◆ ◆ ◆ ◆
◆◆◆◆◆◆

◆ ◆ ◆
◆◆

◆◆◆◆
◆◆ ◆

◆◆◆
◆◆◆

◆ ◆◆
◆◆ ◆

◆
◆◆

◆
◆ ◆

◆
◆◆

◆
◆

◆
◆
◆ ◆

◆◆
◆◆

◆
◆◆
◆

◆ ◆
◆◆◆

◆

◆
◆
◆

◆ ◆
◆
◆ ◆ ◆ ◆ ◆ ◆ ◆◆◆◆◆

◆ ◆ ◆ ◆ ◆◆
◆◆◆◆◆ ◆ ◆ ◆◆

◆◆◆◆◆
◆ ◆ ◆

◆◆◆◆◆◆◆◆ ◆◆
◆◆

◆
◆◆

◆
◆
◆◆◆

◆◆ ◆ ◆◆◆
◆◆◆ ◆ ◆ ◆ ◆◆◆◆◆◆ ◆ ◆ ◆

◆
◆◆

◆◆◆◆ ◆ ◆
◆
◆

◆
◆◆◆

◆
◆ ◆

◆◆◆
◆ ◆

◆ ◆◆ ◆ ◆ ◆ ◆ ◆◆◆◆◆◆

◆ ◆ ◆ ◆◆
◆◆◆◆◆

◆ ◆ ◆◆
◆◆◆◆◆

◆◆ ◆◆◆◆
◆ ◆ ◆◆◆◆◆ ◆ ◆ ◆ ◆

◆◆
◆◆

◆ ◆ ◆ ◆ ◆
◆◆◆◆◆◆ ◆ ◆ ◆

◆◆◆◆◆ ◆◆
◆ ◆ ◆◆◆◆◆◆◆◆

◆ ◆◆◆
◆◆◆◆◆◆ ◆◆◆

◆◆◆ ◆◆◆

▲ ▲▲▲▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲ ▲▲▲▲▲ ▲▲▲▲▲▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲ ▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲ ▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲ ▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲ ▲▲▲▲ ▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲ ▲▲▲▲ ▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲▲ ▲ ▲ ▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲ ▲▲▲▲ ▲▲▲▲▲▲ ▲▲▲

0.00 0.05 0.10 0.15 0.20

0.05

0.10

0.15

κ = 0.1
κ = 1
κ = 10
κ = 100

●

■

◆

▲

disb1 [m]

Scenario 3: ||aobj||2

5ππ7π

0

π
12

π
6

π
4

π
3

122122π
33π

4
5π
6

11 π
12

π
13 π
12

23 π
12

0.0

0.1

0.2
κ = 1

0.0 0.10 0.150.05

||aobj ||2

0.19

0

π
12

π
6

π
4

π
3

5π
12

π
2

7π
122π

33π
4

5π
6

11 π
12

π0.0

0.1

0.2

κ = 1

0.0 0.10 0.150.05

||aobj ||2

0.19

●

●

●

●

■

■

■

■

◆

◆

◆

◆

0.05

0.10

0.15

0.20
Max ||aobj ||2, θslope=0, μs =0.1

(d)

● Scenario1
■ Scenario2
◆ Scenario3

κ
0.1 1 10 100

FIGURE 3.3: Acceleration of the object
Acceleration of the object as a function of the robot’s posture parametrized by the
position ||rb1|| and angle θb1 of its COM w.r.t. the contact with the object. Also
shown as a function of disb1 = ||rb1|||sin(θb1)|. (a) Scenario 1. (b) Scenario 2. (c)
Scenario 3. (d) Summary of the maximum object’s acceleration as a function of the

mass ratio κ

improved the acceleration of the object in 44.4%. Fig. 3.4(f) shows the increase on ||aobj||2 of
Scenario 3 compared to Scenario 1. A negative value means that Scenario 1 was actually better.
Results show a surprising behavior. Good postures benefit very poorly from the additional
friction forces. However, bad postures show a significant improvement.

When na > 3 it is not possible to plot the input space in the same way as the previous examples
(c.f. Figure 3.4). However, the configuration of the robot has similar effects regardless of the
number of joints. A snake robot with two and four joints have been presented in [25] and [26],
respectively.

3.3. Results: Best Postures for Pushing an Object 57

(a)

Bad Posture

0.027

(d) (e)

(f)

0.039
(+44.4%)

0.05 0.10 0.15 0.20

disb1 [m]

20

40

60

80

100 Improvement

Scenario 3 [%]

0.0 0.015 0.0250.007

||aobj ||2

0.039

Good Posture

Bad Posture

rb1

rb1

Tb,f

θb1

θb1

τ a
2
[N

m
]

τ a
3
[N

m
]

τa1 [Nm]

τ a
3
[N

m
]

0.177

(b) (c)

Good Posture

0.191
(+7.9%)

● ●●
●●

●
● ●
●

●●●
● ● ● ● ●●

●●

● ●
●

● ● ●●●●●
● ● ● ● ●●●●●●
● ● ● ●●●●●●

●● ●
●●●●

●●●●●
●●●●●● ●●●●

●
●

● ● ● ●●●
●
● ● ● ● ● ●●

●●●
● ● ● ● ●●●●

●●

●●
●●● ● ●

●●●
●● ● ●

● ●●
●●●● ● ● ● ●●●●●●

● ●
● ●●
●●●●●

● ● ●●●● ● ● ●●●●● ● ● ● ● ●●●●● ● ● ● ● ●●●●
●
● ● ● ● ●●●●

●●
●

● ● ●
●

●
●●●

● ●
● ●●
●●

●●●
●●●●●●● ● ● ●

●●●●●●
● ● ● ●

●●●●● ● ● ● ● ●
●●

●●
● ● ● ● ●●

●●
● ●

●
● ●

●
●●

●●
● ● ●

● ●●●●●
● ● ● ● ●●●●●

● ● ● ● ●●
●●

●●

●
● ●

●
●●

●●
●

●
●

●
●
●

●●
●

●
●

●

●
●●●

●●
● ● ● ●

●●
●●● ● ● ● ● ●

●
●

●●
●

● ●
●
●●

●●● ● ● ● ● ●●●
●●

● ●

●
●
●
●●

●

●
●

●
●

●

●●
●

●
●
● ●

●
● ●
●

●●
●

●●
● ●

●
●●

●
●

●
●

● ● ●

●
●●

●

●

●
●

●

●●

●●
●

●

●

●
●

●●

●

●
●
●

● ●

●

●

●
●

●

● ●
●

●

● ●

●

●

●

●
●

●
●

●
●

●●

●
●
●

● ● ●

●

●

●
●●

●

●

●

●
●

●
●

●

●●
● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●●

●

●

●

●
●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

● ●●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●
●

●
●

●

●

●

● ●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●●

●●

●
●
●

●
●

●

●

●

●●
●

●

●

●●●
●

●
●

● ●

●
●

●
●

●
●

●

●

●

●●

●

●
●●

●

●
●

●

●

●●

●
●
●

●

● ●

●
●

●

●

●
● ●

●●

●

●
●

●

●

● ●
●

●●●

●
●

●
●

● ●
●

●●
●●

●
● ●

●
●●

●
●●

●
●

●
●●

●

●
●

●
●

●
● ●
●

●
●

●●

●●
● ●●●●●●●● ●

●●
●

●●
●●●
●

●

●●●●●●● ●
● ●

●●●●
●●

● ● ●
●

●

●
●

●
● ●

●
●

●
●
●

●
● ●

● ●
●

●●
●

● ●
● ● ●●●●●●

● ● ●
●●●●●●

●● ● ●●●
●●●●●

● ●
●

●●
●

●●
● ●

●●●●●●
●● ● ●

●●●●●●●
● ● ●

●●●●●● ● ● ● ●

●●●●● ● ● ● ● ●
● ● ●

● ●
●●●

●●
● ● ●

●
●
●●●

●
●●

● ● ●●●●●●
●
● ● ●●●●●●●●● ●●●●●●●● ●

●●●●● ● ●●●●

●● ● ● ●
●●●

●●

● ● ● ● ●●
●●●●● ● ● ●●●

●●●●
● ● ●

●●● ● ●
●●

● ●
● ● ●●●●●●

● ● ● ●●●●●●●
●

● ●●●●●
●

●
●● ●●●● ● ● ●●●●● ● ●

● ● ●●
●●● ● ● ● ● ●●●●●
● ● ● ● ●●●●●●
● ● ● ●●

●●
●

●●

● ●
●●●●●●●●●

●
●●

●
●● ●●●■ ■■
■■

■
■ ■
■

■■
■
■ ■ ■ ■ ■■

■■

■ ■
■

■ ■ ■■■■■
■ ■ ■ ■ ■■■■■■
■ ■ ■ ■■■

■■■
■■ ■

■■■■
■■■■■

■■■■■■ ■■■■
■
■

■ ■ ■ ■■■
■
■ ■ ■ ■ ■ ■■

■■■
■ ■ ■ ■ ■■■■

■■

■■
■■

■ ■ ■
■■■

■■ ■ ■
■ ■■
■■■■ ■ ■ ■

■■■■■■

■ ■
■ ■■
■■■■■

■ ■ ■■■■ ■ ■ ■■■■■ ■ ■ ■ ■ ■■■■■ ■ ■ ■ ■ ■■■■
■
■ ■ ■ ■ ■■

■■
■■

■
■ ■

■
■

■
■■■

■ ■
■ ■■
■■

■■■
■■■■■■■ ■ ■ ■

■■■■■■
■ ■ ■ ■

■■■■■ ■
■ ■ ■ ■

■■
■■
■ ■ ■

■ ■■

■■
■ ■

■
■ ■

■
■■

■■
■ ■ ■

■ ■■
■■■

■ ■ ■ ■ ■■■■■
■ ■ ■ ■ ■■

■■
■

■

■
■ ■

■
■■

■■
■

■
■

■
■
■

■■
■

■
■

■

■
■■■

■■

■ ■ ■ ■

■■
■■■ ■ ■

■ ■ ■

■
■

■■
■

■ ■
■
■■

■■■ ■
■ ■ ■ ■■■

■■

■ ■

■
■
■
■■■

■
■

■
■

■

■■
■

■
■
■ ■

■
■ ■
■

■■
■

■■
■ ■

■
■■

■
■

■
■

■ ■ ■

■■■

■

■

■
■

■

■■

■■
■

■

■

■
■

■■

■

■
■
■

■ ■

■

■

■
■

■

■ ■
■

■

■ ■

■

■

■

■
■

■ ■

■
■

■■

■
■
■

■ ■ ■

■

■

■
■■

■

■

■

■
■

■■
■

■■
■ ■

■

■

■

■

■

■
■

■

■
■

■

■

■

■
■■

■

■

■

■
■

■
■

■
■

■
■

■

■

■■

■

■

■

■

■

■

■■

■
■

■

■
■

■

■
■ ■

■

■

■
■

■

■
■

■■

■

■

■

■

■

■

■ ■

■

■

■
■

■
■

■
■

■
■

■

■

■

■ ■
■

■

■

■

■
■

■

■
■

■

■

■

■

■
■■

■■

■
■ ■

■
■

■

■

■

■■
■

■

■

■■■
■

■
■

■ ■

■
■

■■
■

■

■

■

■

■■

■

■
■■

■

■
■

■

■

■■

■
■
■

■

■ ■

■
■

■

■

■
■ ■

■■

■

■
■

■

■

■ ■ ■

■■■

■
■

■
■

■ ■
■

■■
■■

■
■ ■

■
■■

■
■■

■
■

■
■■

■

■
■

■
■

■ ■ ■
■

■
■

■■

■■

■ ■■■■■
■■■ ■
■■

■
■■

■■■
■

■

■■■
■■■■ ■
■ ■

■■■■

■■

■ ■ ■
■

■

■
■

■
■ ■

■
■

■
■
■

■
■ ■

■ ■
■

■■
■

■
■

■ ■ ■■■■■■
■ ■ ■

■■■■■■
■■ ■ ■■■
■■■■■

■ ■
■

■■
■

■■
■ ■

■■■
■■■

■■ ■ ■
■■■■

■■■
■ ■ ■

■■■■■■ ■ ■ ■ ■

■■■■■ ■ ■ ■ ■ ■
■ ■ ■

■ ■
■■■

■■
■ ■ ■

■
■
■

■■
■

■■
■ ■ ■■■■■■

■
■ ■ ■■■■■■■■■ ■■■■■■■■ ■

■■■■■ ■ ■■■■

■■ ■ ■ ■
■■■

■■

■ ■ ■ ■ ■■
■■■■■ ■ ■ ■■■

■■■■
■ ■ ■

■■■
■ ■

■■

■ ■
■ ■ ■■■■■■

■ ■ ■ ■■■■■■■
■

■ ■■■■■
■

■
■■

■■■■ ■ ■ ■■■■■ ■ ■
■ ■ ■■

■■■ ■ ■ ■
■ ■■■■■

■ ■ ■ ■ ■■■■■■
■ ■ ■ ■■

■■
■

■■

■ ■
■■■■■■

■
■■

■
■■

■
■■ ■■■◆ ◆
◆◆◆
◆

◆ ◆
◆

◆◆◆
◆ ◆ ◆ ◆ ◆

◆
◆◆

◆ ◆
◆ ◆ ◆ ◆◆◆◆◆
◆ ◆ ◆ ◆ ◆◆◆◆◆◆
◆ ◆ ◆ ◆◆◆

◆◆◆◆◆
◆
◆◆◆◆

◆◆◆◆
◆ ◆
◆◆◆◆◆ ◆

◆◆◆
◆
◆

◆ ◆ ◆ ◆
◆◆

◆◆
◆ ◆ ◆ ◆ ◆◆

◆◆◆
◆ ◆ ◆ ◆ ◆◆◆◆◆◆

◆◆
◆◆◆ ◆ ◆
◆◆◆

◆◆ ◆ ◆
◆ ◆
◆◆◆◆◆ ◆ ◆ ◆ ◆◆◆

◆◆◆
◆ ◆ ◆ ◆◆◆◆◆◆◆

◆ ◆ ◆◆◆◆ ◆ ◆ ◆◆◆◆◆ ◆ ◆ ◆ ◆ ◆◆◆◆◆
◆ ◆ ◆ ◆ ◆◆◆◆

◆ ◆
◆ ◆ ◆ ◆◆◆◆
◆◆

◆
◆ ◆ ◆◆◆
◆◆◆

◆ ◆
◆ ◆◆◆◆◆◆◆

◆◆◆◆◆◆◆ ◆ ◆ ◆

◆◆◆◆◆◆
◆ ◆ ◆ ◆

◆◆◆◆◆ ◆ ◆ ◆ ◆ ◆
◆◆

◆◆
◆ ◆ ◆ ◆ ◆◆

◆◆
◆ ◆ ◆

◆ ◆ ◆
◆◆

◆◆ ◆
◆ ◆

◆ ◆◆◆
◆◆
◆ ◆ ◆ ◆ ◆◆◆◆◆

◆ ◆ ◆ ◆ ◆◆
◆◆

◆◆
◆

◆ ◆
◆
◆◆

◆◆
◆

◆◆
◆
◆◆

◆◆
◆

◆◆

◆
◆

◆◆◆
◆◆
◆ ◆ ◆ ◆

◆◆◆◆◆ ◆ ◆ ◆ ◆ ◆
◆

◆
◆◆
◆ ◆ ◆

◆
◆◆
◆◆◆ ◆ ◆ ◆ ◆ ◆

◆◆
◆◆
◆ ◆

◆
◆
◆
◆◆

◆

◆
◆

◆
◆

◆

◆◆
◆

◆
◆
◆ ◆

◆
◆ ◆
◆

◆◆
◆

◆◆
◆ ◆

◆
◆◆◆

◆
◆

◆

◆ ◆ ◆
◆◆◆

◆
◆

◆
◆

◆
◆◆

◆◆
◆

◆

◆

◆
◆

◆◆

◆
◆
◆
◆

◆ ◆

◆
◆

◆
◆

◆

◆ ◆
◆

◆

◆ ◆

◆

◆

◆

◆
◆

◆ ◆

◆ ◆

◆◆

◆◆
◆ ◆ ◆

◆

◆
◆

◆
◆◆

◆

◆

◆

◆ ◆
◆◆

◆
◆
◆

◆ ◆
◆
◆

◆

◆

◆

◆◆

◆
◆

◆

◆

◆

◆

◆
◆◆

◆

◆

◆

◆
◆

◆
◆

◆
◆

◆
◆

◆

◆

◆◆

◆
◆

◆

◆

◆

◆

◆◆

◆
◆

◆

◆
◆

◆

◆
◆◆

◆

◆

◆
◆

◆

◆
◆

◆◆

◆

◆

◆

◆

◆
◆

◆ ◆

◆

◆

◆
◆

◆
◆

◆
◆

◆
◆

◆

◆

◆

◆ ◆
◆

◆

◆

◆

◆
◆

◆

◆ ◆

◆

◆

◆

◆
◆

◆◆
◆
◆

◆
◆ ◆
◆◆

◆

◆

◆

◆◆
◆

◆
◆

◆
◆◆◆

◆◆

◆ ◆

◆◆

◆◆
◆

◆

◆

◆

◆

◆◆

◆

◆
◆◆

◆
◆

◆

◆
◆

◆◆

◆
◆
◆
◆

◆ ◆

◆
◆

◆

◆

◆
◆ ◆

◆◆
◆

◆
◆

◆
◆

◆ ◆ ◆
◆◆◆

◆
◆

◆
◆

◆ ◆
◆

◆◆
◆◆

◆
◆ ◆

◆
◆◆

◆
◆◆

◆
◆

◆
◆◆

◆

◆
◆

◆
◆

◆ ◆ ◆
◆

◆
◆

◆◆
◆◆
◆ ◆◆◆◆◆

◆◆◆ ◆
◆◆

◆
◆◆◆◆◆

◆
◆
◆◆◆◆◆◆◆ ◆ ◆ ◆

◆◆◆◆
◆◆
◆ ◆ ◆

◆
◆

◆ ◆ ◆
◆ ◆

◆◆◆
◆◆

◆
◆ ◆

◆ ◆
◆

◆◆
◆
◆ ◆

◆ ◆ ◆◆◆◆◆◆
◆ ◆ ◆

◆◆◆◆◆◆
◆◆ ◆ ◆◆◆
◆◆◆◆◆

◆ ◆
◆◆◆

◆
◆◆

◆ ◆

◆◆◆◆◆◆
◆◆ ◆ ◆

◆◆◆◆◆◆◆
◆ ◆ ◆

◆◆◆◆◆◆ ◆ ◆ ◆ ◆

◆◆◆◆◆ ◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆

◆◆◆
◆◆

◆ ◆ ◆
◆ ◆◆
◆◆

◆
◆◆

◆ ◆ ◆◆◆◆◆◆◆
◆ ◆ ◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆◆◆◆ ◆

◆◆◆◆◆ ◆ ◆◆◆◆
◆◆ ◆ ◆ ◆

◆◆◆◆◆
◆ ◆ ◆ ◆ ◆◆

◆◆◆◆◆ ◆ ◆ ◆◆◆
◆◆◆◆

◆ ◆ ◆◆◆◆ ◆ ◆
◆◆

◆ ◆ ◆ ◆ ◆◆◆◆◆◆
◆ ◆ ◆ ◆◆◆◆◆◆◆◆
◆ ◆◆◆◆◆

◆
◆
◆◆

◆◆◆◆ ◆ ◆ ◆◆◆◆◆ ◆ ◆
◆ ◆ ◆◆

◆◆◆ ◆ ◆ ◆ ◆ ◆◆◆
◆◆

◆ ◆ ◆ ◆ ◆◆◆◆◆◆
◆ ◆ ◆ ◆◆

◆◆◆
◆◆

◆ ◆
◆◆◆◆◆◆◆◆◆

◆
◆◆◆

◆◆ ◆◆◆▲ ▲▲▲▲
▲

▲ ▲
▲

▲▲
▲
▲ ▲ ▲ ▲ ▲▲

▲▲

▲ ▲
▲

▲ ▲ ▲▲▲▲▲
▲ ▲ ▲ ▲ ▲▲▲▲▲▲
▲ ▲ ▲ ▲▲▲

▲▲▲▲▲ ▲
▲▲▲▲

▲▲▲▲▲
▲▲▲▲▲▲ ▲▲▲▲

▲
▲

▲ ▲ ▲ ▲▲▲
▲▲
▲ ▲ ▲ ▲ ▲▲▲▲▲

▲ ▲ ▲ ▲ ▲▲▲▲▲▲

▲▲
▲▲▲ ▲ ▲
▲▲▲

▲▲ ▲ ▲
▲ ▲▲
▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲▲▲

▲ ▲
▲ ▲▲
▲▲▲▲▲

▲ ▲ ▲▲▲▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲▲▲▲
▲
▲ ▲ ▲ ▲ ▲▲

▲▲
▲▲

▲
▲ ▲ ▲

▲
▲

▲▲▲
▲ ▲

▲ ▲▲
▲▲▲▲▲

▲▲▲▲▲▲▲ ▲ ▲ ▲

▲▲▲▲▲▲
▲ ▲ ▲ ▲

▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲
▲▲

▲▲
▲ ▲ ▲ ▲ ▲▲

▲▲
▲ ▲

▲
▲ ▲

▲
▲▲

▲▲ ▲ ▲ ▲
▲ ▲▲▲▲▲

▲ ▲ ▲ ▲ ▲▲▲▲▲
▲ ▲ ▲ ▲ ▲▲

▲▲
▲▲

▲
▲ ▲

▲
▲▲

▲▲
▲

▲▲
▲
▲
▲

▲▲
▲

▲▲

▲
▲

▲▲▲
▲▲
▲ ▲ ▲ ▲

▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲

▲
▲

▲▲
▲ ▲ ▲

▲
▲▲

▲▲▲ ▲
▲ ▲ ▲ ▲▲▲

▲▲

▲ ▲

▲
▲
▲
▲▲▲

▲
▲

▲
▲

▲

▲▲
▲

▲
▲
▲ ▲

▲
▲ ▲
▲

▲▲
▲

▲▲
▲ ▲

▲
▲▲

▲
▲

▲
▲

▲ ▲ ▲

▲▲▲

▲
▲

▲
▲

▲
▲▲

▲▲
▲

▲

▲

▲
▲

▲▲

▲
▲
▲
▲

▲ ▲

▲

▲

▲
▲

▲

▲ ▲
▲

▲

▲ ▲

▲

▲

▲

▲
▲

▲ ▲

▲ ▲

▲▲

▲
▲
▲ ▲ ▲

▲

▲
▲

▲
▲▲

▲

▲

▲

▲ ▲
▲▲

▲
▲
▲

▲ ▲
▲

▲

▲

▲

▲

▲▲

▲
▲

▲

▲

▲

▲

▲
▲▲

▲

▲

▲

▲
▲

▲
▲

▲
▲

▲
▲

▲

▲

▲▲

▲

▲

▲

▲

▲

▲

▲▲

▲
▲

▲

▲
▲

▲

▲
▲ ▲

▲

▲

▲
▲

▲

▲
▲

▲▲

▲

▲

▲

▲

▲

▲

▲ ▲

▲

▲

▲
▲

▲
▲

▲
▲

▲
▲

▲

▲

▲

▲ ▲
▲

▲

▲

▲

▲
▲

▲

▲ ▲

▲

▲

▲

▲

▲
▲▲

▲
▲

▲
▲ ▲
▲▲

▲

▲

▲

▲▲
▲

▲
▲

▲
▲▲▲

▲
▲

▲ ▲

▲▲

▲▲
▲

▲

▲

▲

▲

▲▲

▲

▲
▲▲

▲
▲

▲

▲

▲

▲▲

▲
▲
▲
▲

▲ ▲

▲
▲

▲

▲

▲
▲ ▲

▲▲
▲

▲
▲

▲
▲

▲ ▲ ▲

▲▲▲

▲
▲

▲
▲

▲ ▲
▲

▲▲
▲▲

▲
▲ ▲

▲
▲▲

▲
▲▲

▲
▲

▲
▲▲

▲

▲
▲

▲
▲

▲ ▲ ▲
▲

▲
▲

▲▲

▲▲
▲ ▲▲▲▲▲

▲▲▲ ▲
▲▲

▲
▲▲▲▲▲

▲
▲

▲▲▲▲▲▲▲ ▲ ▲ ▲

▲▲▲▲
▲▲
▲ ▲ ▲

▲
▲

▲ ▲
▲

▲ ▲
▲
▲

▲
▲▲

▲
▲ ▲

▲ ▲
▲

▲▲
▲

▲ ▲
▲ ▲ ▲▲▲▲▲▲

▲ ▲ ▲
▲▲▲▲▲▲

▲▲ ▲ ▲▲▲
▲▲▲▲▲

▲ ▲
▲

▲▲
▲

▲▲
▲ ▲

▲▲▲▲▲▲
▲▲ ▲ ▲

▲▲▲▲▲▲▲
▲ ▲ ▲

▲▲▲▲▲▲ ▲ ▲ ▲ ▲

▲▲▲▲▲ ▲ ▲ ▲ ▲ ▲
▲ ▲ ▲ ▲ ▲

▲▲▲
▲▲

▲ ▲ ▲
▲
▲
▲▲▲

▲
▲▲

▲ ▲ ▲▲▲▲▲▲
▲
▲ ▲ ▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲ ▲ ▲▲▲▲

▲▲ ▲ ▲ ▲
▲▲▲

▲▲

▲ ▲ ▲ ▲ ▲▲
▲▲▲▲▲

▲ ▲ ▲▲▲
▲▲▲▲

▲ ▲ ▲
▲▲▲ ▲ ▲

▲▲

▲ ▲ ▲ ▲ ▲▲▲▲▲▲
▲ ▲ ▲ ▲▲▲▲▲▲▲▲
▲ ▲▲▲▲▲

▲
▲
▲▲

▲▲▲▲ ▲ ▲ ▲▲▲▲▲ ▲ ▲
▲ ▲ ▲▲

▲▲▲ ▲ ▲ ▲
▲ ▲▲▲▲▲

▲ ▲ ▲ ▲ ▲▲▲▲▲▲
▲ ▲ ▲ ▲▲

▲▲
▲

▲▲

▲ ▲
▲▲▲▲▲▲

▲
▲▲

▲
▲▲

▲
▲▲ ▲▲▲

κ = 0.1
κ = 1
κ = 10
κ = 100

●

■

◆
▲

τa1 [Nm]

τ a
2
[N

m
]

0.0 0.10 0.150.05

||aobj ||2

0.19

FIGURE 3.4: Comparison Postures - Acceleration of the object
(a) The snake robot with a good and bad posture (GP and BP, respectively). (b)
Input space for Scenario 1 (GP). (c) Input space for Scenario 3 (GP). (d) Input space
for Scenario 1 (BP). (e) Input space for Scenario 3 (BP). (f) Increase [%] for the

||aobj||2 of Scenario 3 compared to Scenario 1

58 Chapter 3. Optimal Configurations and Optimal Postures

TABLE 3.2: Parameters of the Simulation for case study 1

Symbol Value Unit Description
n 5 Number of DOFs of the system
na 2 Number of actuated joints
mi 1 [kg] Mass of linki, i = 1, ..., n`

`i 0.15 [m] Length of linki, 1 = 1, ..., n`

Icom,i 0.002 [kg m2] Rotational inertia for the i-th link
τact = [τa1, τa2]T [N m] Input joint torques

µs 0.1 Coefficient of (static) friction used for Scenario 2

3.4 Results: Best Postures for Reducing Slippage

3.4.1 Case Study 1 - Snake robot with two joints

In order to show more specific and qualitative results, we apply the mappings and study a snake
robot with two joints, the same as in the previous section. The small number of joints allows us
to show graphically the magnitude of the studied norms as a function of the joint torques. First,
we study a snake robot with the parameters described in Table 3.2. The snake robot is contacting
an object with its tail (first link) and the contact occurs at the middle of the link (c.f. Figure 3.2).
The angles of the joints are varied in the range [−135◦, 135◦] every 10◦ (784 configurations in
total) and the metrics (2.79), (2.80), and (2.84) are calculated within the quadratic region (3.30).

One example configuration can be seen in Fig. 3.5, where it is assumed that the object has a
hundred times the mass of a link of the robot (i.e., κ = 100). The first, second, and third columns
represent the three scenarios depicted in Fig. 3.2, respectively. A lighter color represents a higher
value of the depicted norm. Fig. 3.5(a) shows the magnitude of the acceleration of the object
||~aobj||2. It can be seen that it barely changes regardless of the scenario (i.e., independently of the
fact that the snake robot has or hasn’t passive wheels, the object will accelerate the same given
the same input). Fig. 3.5(b) shows the magnitude of the acceleration of snake robot ||~̈qs||2. This
shows clearly that, even if the object’s acceleration is similar for all three scenarios, the behavior
of the snake robot changes. The addition of passive wheels (second and third columns) increase
the area where the snake robot’s slippage is minimal. Without passive wheels, the snake robot
will slip in almost any direction of the input space.

The slippage ratio (2.84) gives quantitative information about the movement of the system and
can be studied in the same way as the previous norms. Figure 3.5(c) shows the value of the
slippage ratio for all three scenarios with several values for κ for one configuration. It can be
seen that sr → 0 in the region where there is no contact with the object (i.e., the snake robot can
move freely and therefore ||aobj||2 → 0). It is interesting to see that in all three scenarios it is
always possible to make the object move. However, Scenario 2 (non-ideal passive wheels) has a
limited region where the slippage ratio is high, compared to Scenario 3, where a whole region
seems to give high values of slippage-ratio. These regions in the input space are highlighted in

3.4. Results: Best Postures for Reducing Slippage 59

- 0.06
- 0.04
- 0.02
0.00
0.02
0.04
0.06

(b)

τ1 [N m]

2
N
m

τ
[

]

0.001

0.003

0.005
0.007

(a)

0.002
0.004
0.006
0.008

0.002
0.004
0.006
0.008

0.18
0.36
0.54
0.72
0.90

0.162
0.324
0.486
0.648
0.810

0.162
0.324
0.486
0.648
0.810

||q̈s||2 [W/s]

||aobj ||2 [W/s]

0.0
4

0.0
0

- 0.
04

Scenario 1 Scenario 2

Scenario 3

κ = 0.1

κ = 1

κ = 10

κ = 100

τ1
τ2

sr

- 0.05

0.00

0.05
- 0.05

0.00
0.05

0.00
0.05
0.10
0.15
0.20

- 0.05

0.00

0.05
- 0.05

0.00

0.05

0.0

0.5

1.0

- 0.05

0.00

0.05

- 0.05

0.00

0.05

0.0
0.5
1.0

(c) Slippage Ratio

Low slippage of
the snake robot

High slippage
ratio

Ratio mass object

High acceleration
of the object

FIGURE 3.5: Norms of motion of the system (two joints)
The first, second, and third column represent scenario 1, scenario 2, and scenario 3,
respectively. A higher value represents more power transmitted to the respective
motion. The configuration of the robot is qs = {0, 0, 0,−135◦,−135◦}. (a) Acceler-
ation of the object. (b) Acceleration of the snake robot. (c) Slippage ratio. Several

values of κ are shown

Fig. 3.5(b) and 3.5(c). Regions where the slippage of the snake robot is minimized tend to have
higher slippage ratio.

60 Chapter 3. Optimal Configurations and Optimal Postures

0

π

12

π

6

π

4

π

3

5π

12

π

2
7π

122π

3
3π

4

5π

6

11 π

12

π

13 π

12

7π

6

5π

4
4π

3 17 π

12
3π

2

19 π

12

5π

3

7π

4

11 π

6

23 π

12

0

π

12

π

6

π

4

π

3

5π

12

π

2
7π

122π

3
3π

4

5π

6

11 π

12

π

13 π

12

7π

6

5π

4
4π

3 17 π

12
3π

2

19 π

12

5π

3

7π

4

11 π

6

23 π

12

0

π

12

π

6

π

4

π

3

5π

12

π

2
7π

122π

3
3π

4

5π

6

11 π

12

π

13 π

12

7π

6

5π

4
4π

3 17 π

12
3π

2

19 π

12

5π

3

7π

4

11 π

6

23 π

12

0.0

0.4

0.6

0.8

1.0

0.2

Constraint force(a)

scenario 1 scenario 2 scenario 3

0

π

12

π

6

π

4

π

3

5π

12

π

2
7π

122π

3
3π

4

5π

6

11 π

12

π

13 π

12

7π

6

5π

4
4π

3 17 π

12
3π

2

19 π

12

5π

3

7π

4

11 π

6

23 π

12

0

π

12

π

6

π

4

π

3

5π

12

π

2
7π

122π

3
3π

4

5π

6

11 π

12

π

13 π

12

7π

6

5π

4
4π

3 17 π

12
3π

2

19 π

12

5π

3

7π

4

11 π

6

23 π

12

0

π

12

π

6

π

4

π

3

5π

12

π

2
7π

122π

3
3π

4

5π

6

11 π

12

π

13 π

12

7π

6

5π

4
4π

3 17 π

12
3π

2

19 π

12

5π

3

7π

4

11 π

6

23 π

12

Acceleration of the object(b)

scenario 1 scenario 2 scenario 3

0

π

12

π

6

π

4

π

3

5π

12

π

2
7π

122π

3
3π

4 5

π

6
11 π

12

π

13 π

12

7

π

6

5π

4
4π

3 17 π

12
3π

2

19 π

12

5π

3

7π

4

11 π

6

23 π

12

0

π

12

π

6

π

4

π

3

5π

12

π

2
7π

122π

3
3π

4

5π

6

11 π

12

π

13 π

12

7π

6

5π

4
4π

3 17 π

12
3π

2

19 π

12

5π

3

7π

4

11 π

6

23 π

12

Slippage Ratio

0.4

0.6

0.8

0.2

0.005

0.010

0.015

0.020

0.025

(c)

scenario 1 scenario 2

∠COM

|COM |

∠COM ∠COM

|COM | |COM |

∠COM

|COM |

∠COM

|COM |

∠COM

|COM |

0.0

0.002

0.004

0.006

0.008

∠COM

|COM |

∠COM

|COM |

FIGURE 3.6: Norms over all the configuration space (three joints)
Norms studied over all configurations of the snake robot. (a) Constraint force
(from left to right: scenario 1, 2, and 3). (b) Acceleration of the object (from left
to right: scenario 1, 2, and 3). (c) Slippage ratio (from left to right: scenario 1 and

2)

3.4.2 Case Study 2 - Snake robot with three joints

The proposed framework and metrics can be applied to a snake robot with any number of
joints. In this section, a snake robot with three joints is studied. However, studying the three-
dimensional input space could be cumbersome. Instead, the norms ||λ||2, ||aobj||2 and slippage
ratio (2.84) are studied as a function of the polar coordinates of the COM of the snake robot
(|COM|,∠COM) w.r.t. the contact point, as discussed in previous sections.

Fig. 3.6(a) reports the result for the norm of constraint forces ||λ||2. The polar plots show the
results for scenario 1, 2, and 3, respectively. The higher the value, the bigger the constraint forces.
It can be seen that in scenario 1 (negligible friction) there is a clear trend for configurations with
the COM of the snake robot at angles 90◦ and −90◦ to have a higher impact on the wrench
applied to the object. Although scenario 2, and 3 report a higher norm of the constraint forces,
this is due to the addition of passive wheels. From this figure alone it is not possible to ascertain
the impact on the object.

3.4. Results: Best Postures for Reducing Slippage 61

TABLE 3.3: Results of the norms

Concept Scenario 1 Scenario 2 Scenario 3
Worst ||~aobj||2 0.000763215 0.00107454 0.00107454
Best ||~aobj||2 0.00785302 0.00861168 0.00861168

Worst sr 0.00138484 0.00185713 0.00185098
Best sr 0.0267348 0.988638 0.988643

Fig. 3.6(b) reports the result for the norm of the object’s acceleration ||aobj||2. The polar plots
report the results for scenario 1, 2, and 3, respectively. It can be seen that the addition of passive
wheels (even ideal ones) have little impact on the acceleration of the object. However, the con-
figuration of the snake robot, parametrized with the polar coordinates of its COM, have a clear
and meaningful impact on the acceleration of the object.

Although basic intuition would tell that the addition of constraints (i.e., passive wheels) should
have an impact on the force applied to the object (through the constraint forces λ), and conse-
quently on its acceleration aobj, this study shows that is not the case (at least, not that simply).

An important addition of this paper w.r.t. [25, 26] is the study of the slippage ratio sr. By
studying the relationship between motions of both systems (snake robot and object) we can
understand how the additional constraints have an impact on the system. A snake robot without
passive wheels will slip as it pushes the object. Therefore, minimizing this motion while keeping
a steady force on the object (and therefore producing an acceleration) is desirable. Fig. 3.6(c)
shows the result of the slippage ratio (2.84). It can be seen that in Scenario 1 (without passive
wheels) the same trend as with the object’s acceleration appears. However, passive wheels (even
non-ideal ones) have a big impact on the slippage ratio (take notice of the change of scale).

To show more clearly the impact of the configuration of the snake robot on the acceleration and
slippage of the system, Fig. 3.7 shows the best and worst configurations for the acceleration of
the object Fig. 3.7(a) and for slippage ratio Fig. 3.7(b). The results are summarized in Table 3.3.
It can be seen that passive wheels (Scenario 2 and 3) have little impact on the acceleration, but a
significant one on decreasing the slippage of the snake robot (sr → 1).

3.4.3 Case Study 3 - Snake robot with four joints

Finally, for the sake of showing that the results are consistent independently of the number of
joints, a study case with a four-jointed snake robot is presented. The parameters of the snake
robot are the same as in the previous sections. The results can be seen in Fig. 3.8.

The norm of the acceleration of the object can be seen in Fig. 3.8(b) for all three scenarios. It
can be seen that, regardless of the friction with the ground, the results are the same. This shows
that the analysis and model presented are valid for any snake robot, regardless of the number of
joints.

62 Chapter 3. Optimal Configurations and Optimal Postures

Worst and best configurations for ||aobj||
2

Scenario 1 - No passive wheels Scenario 2 - Passive wheels w/ friction limit

(a)

Worst and best configurations for SR

Scenario 1 - No passive wheels Scenario 2 - Passive wheels w/ friction limit

(b)

FIGURE 3.7: Representative configurations (three joints)
Representative configurations chosen among the best and worst configurations of

the snake robot.(a) Acceleration of the object (b) Slippage ratio

3.5 Results: Simplified Model vs. Complex Model

The simplified model, and the metric (3.26) can be compared to the behavior of the complex
model presented in Section 3.3. The simplified model requires the parameters of the snake robot
when simplified as a CRB. In particular, we require the rotational inertia of the snake robot w.r.t.
its COM ||Ic1||. We propose to use the following two values

||Ic1||min := min(||Ic1||), (3.31)

||Ic1||max := max(||Ic1||), (3.32)

where min(||Ic1||) and max(||Ic1||) represent the minimum (e.g. the snake robot is curled up)
and maximum (i.e. the snake robot is fully extended) rotational inertia that the snake robot

3.5. Results: Simplified Model vs. Complex Model 63

(b)

Scenario 2■ Scenario 3◆

(a)

Scenario 1

π

0

π
12

π
6

π
4

π
3

5 π
12

π
27 π

122 π
3

3 π
4

5 π
6

11 π
12

π

13 π
12

7 π
6

5 π
4

4 π
3 17 π

12 3 π
2

19 π
12

5 π
3

7 π
4

11 π
6

23 π
12

0

π
12

π
6

π
4

π
3

5 π
12

π
27 π

122 π
3

3 π
4

5 π
6

11 π
12

π

13 π
12

7 π
6

5 π
4

4 π
3 17 π

12 3 π
2

19 π
12

5 π
3

7 π
4

11 π
6

23 π
12

0

π
12

π
6

π
4

π
3

5 π
12

π
27 π

122 π
3

3 π
4

5 π
6

7 π
6

5 π
4

4 π
3 17 π

12 3 π
2

19 π
12

5 π
3

7 π
4

11 π
6

23 π
12

Scenario 2■ Scenario 3◆Scenario 1

0

π
12

π
6

π
4

π
3

5 π
12

π
27 π

122 π
3

3 π
4

5 π
6

11 π
12

π

13 π
12

7 π
6

5 π
4

4 π
3 17 π

12 3 π
2

19 π
12

5 π
3

7 π
4

11 π
6

23 π
12

0

π
12

π
6

π
4

π
3

5 π
12

π
27 π

122 π
3

3 π
4

5 π
6

11 π
12

π

13 π
12

7 π
6

5 π
4

4 π
3 17 π

12 3 π
2

19 π
12

5 π
3

7 π
4

11 π
6

23 π
12

0

π
12

π
6

π
4

π
3

5 π
12

π
27 π

122 π
3

3 π
4

5 π
6

11 π
12

π

13 π
12

7 π
6

5 π
4

4 π
3 17 π

12 3 π
2

19 π
12

5 π
3

7 π
4

11 π
6

23
12

0.2
0.3
0.4
0.5
0.6
0.7

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.000
0.002
0.004
0.006
0.008
0.010

0.000
0.002
0.004
0.006
0.008
0.010

0.000
0.002
0.004
0.006
0.008
0.010

Constraint force

Acceleration of the object

High acceleration
of the object

FIGURE 3.8: Norms of motion of the system (four joints)
The first, second, and third column represent scenario 1, scenario 2, and scenario
3, respectively. A higher value represents more power transmitted to the respec-
tive motion. The configuration of the robot is qs = {0, 0, 0,−135◦,−135◦}. (a)

Constraint forces. (b) Acceleration of the object

presents.

Fig. 3.9 shows the bounds predicted by (3.26) when compared to the data obtained from the full
model. In all cases Scenario 3 was considered, since the simplified model considers constraints
due to friction without an explicit limit. Fig. 3.9(a) shows that the behavior is correctly predicted.
The smaller disb1 is, the bigger the acceleration of the object. The value dis f = 0 was assumed.
Fig. 3.9(b) shows the surface predicted by (3.26) when varying disb1 and dis f . The behavior
is independent of dis f , except for small values. This is a good match to the behavior of the
complex model, where it has been shown that the extra friction forces have a small effect on the
acceleration of the object.

It is clear that the trends described by the simplified model are similar to the ones of the full
complex model. This analysis can help to provide some insight on the reason of this behaviour.
However, it is important to notice that the simplified model has made several assumptions. This
is due to the complex model of the snake robot, which is difficult and impractical to further ana-
lyze analytically. The simplified model is intended to provide qualitative conclusions regarding
the behaviour of the system. It is not intended to be a rigorous quantitative metric.

64 Chapter 3. Optimal Configurations and Optimal Postures

0.00 0.05 0.10 0.15 0.20

0.05

0.10

0.15

0.20

disb1[m]

||aobj||2

(a)

κ = 0.1
φ11(||Ic1||min), κ = 0.1

φ11(||Ic1||max), κ = 0.1

κ = 10
φ11(||Ic1||min), κ = 10

φ11(||Ic1||max), κ = 10

κ = 100
φ11(||Ic1||min), κ = 100

φ11(||Ic1||max), κ = 100

κ = 1
φ11(||Ic1||min), κ = 1

φ11(||Ic1||max), κ = 1

0.05
0.10
0.15
0.20

0.00
0.05

0.10
0.15

0.20 0.0

0.5

1.0

disb1[m]

disf [m]

||aobj||2

(b)

φ11(||Ic1||min), κ = 0.1

φ11(||Ic1||min), κ = 10

φ11(||Ic1||min), κ = 100

φ11(||Ic1||min), κ = 1

FIGURE 3.9: Complex Model vs. Simplified Model
Comparison between complex (Scenario 2) and simplified model. (a) Simplified
model’s bounds compared to the data collected from the complex model. (c) Sur-

face predicted from the simplified model as a function of disb1 and dis f

65

Chapter 4

Experimental Results

In this Chapter we present a brief demonstration of how a snake robot can be used for pushing
an object, while taking advantage of the results presented throughout the thesis. First, in Section
4.1 the experimental setup is fully explained. Section 4.2 presents a series of experiments where
a snake robot pushes against an obstacle. The configuration and other parameters of the snake
robot are measured. We propose a torque control law that maximizes the force imparted onto
the object (and therefore its acceleration), while minimizing the slippage of the snake robot.
This torque is obtained as the solution of an optimization problem described in Listing 4.1 and
discussed in Section 4.1.2.

4.1 Experimental Setup

This section presents the details regarding the experimental setup The prototype is briefly ex-
plained in Section 4.1.1. The full details of the prototype are explained in Appendix B, Appendix
C, and Appendix D.

4.1.1 Overview of the snake robot prototype

The snake robot is composed of three main parts: the body, the electronics, and the software. The
overall design is shown in Fig. 4.1. The design of the body of the snake robot is more completely
described in Appendix B. The body consists of eight links and seven joints (i.e., na = 7). The
weight of each link is roughly 1 [kg]. Each joint is actuated by a servomotor. The snake robot is
divided into two parts as discussed in Section 2.2: locomotion part and manipulation part (cf.
Fig. 4.1).

To simulate an obstacle to be pushed, a 6DOF force sensor (DynPick 200R24) is used. This can
be seen in 4.1(b). The sensor is guarded by a shell and fixed to the environment. The shell
is free to rotate, since the obstacle is mounted on a bearing. This is to eliminate the effect of
tangential friction between the snake robot’s link an obstacle, something that is necessary to
keep the assumptions discussed in Section 2.3 more realistic. This is similar [42], where the
robot’s shell was also free to rotate.

66 Chapter 4. Experimental Results

Obstacle

Snake robot

microcontroller

(a)

(b)

x

y

pushing force

(c)

trigger

power

free
rotation

FIGURE 4.1: Experimental Setup
(a) The snake robot pushes against an object. (b) A force sensor reads the push-
ing force. (c) The tail of the robot controls the servomotors and send a signal to

synchronize the force sensor readings and other feedback

The locomotion part’s objective is to provide anisotropic friction force between the snake robot
and the ground, enabling locomotion [43, 58]. The manipulation part, on the other hand has
a spherical bearing on each link, in order to remove additional constraints. This has been re-
searched previously in [24], which shows that if all links have the same frictional forces, it is
very difficult to control the snake robot. Conceptually, removing these constraints is similar to
what has been done in [47], where some links are slightly lifted from the ground to increase the
manipulability of the snake robot. However, these may lead to a change in weight distribution
which would be difficult to account for without the proper sensors. Therefore, the spherical
bearings provide a similar behaviour without complicating the problem. The underside of the
snake robot can be seen in Fig. 4.2.

The electronics of the prototype are described in Appendix C. A microcontroller on board of

4.1. Experimental Setup 67

(a) (b)

free wheels

ball caster

FIGURE 4.2: Underside of the Snake Robot
(a) Links corresponding to the locomotion part have passive wheels, in order to
provide anisotropic friction. (b) Links corresponding to the manipulation part

have a spherical bearing

the snake robot is in charge of all information gathering and low-level control. For example,
the microcontroller communicates with the servomotors (either for sending a desired position/-
command) or asking its current angle. Additionally, the microcontroller can perform basic timer-
based routines, for example, perform gaits. The microcontroller can communicate via USB with
a PC, where high-level control commands are computed.

4.1.2 Control Law

The objective is to obtain a vector of input torques τact that maximizes the acceleration of the
object to be pushed. However, as discussed in Section 2.8, it is possible to maximize the slippage
ratio (2.84). By doing this a vector that maximizes the acceleration of the object, while mini-
mizing the slippage of the robot, can be selected. We do this by proposing the problem as an
optimization problem, as described in the following.

Listing 4.1: Optimization Problem: Maximize Slippage Ratio

Maximize the slippage ratio of the snake robot subject to the

following constraints:

- Unilateral constraints: The snake robot can only push, not pull,

the object

- Unitary input: The input must be within the unitary Euclidean

ball

Mathematically speaking, the optimization problem can be stated as:

68 Chapter 4. Experimental Results

Optimization Problem I
maximize

τact
: sr

s.t. : ∆λb > 0

τT
actτact 6 1

output : {τ∗act, sr(τ∗act)}

(4.1)

The first constraint ∆λb > 0 is to be interpreted element-wise. In other words, each constraint
force corresponding to a body contact must be positive (i.e., pushing). The second constraint
τT

actτact 6 1 is a simple scalar constraint in order to have a bounded problem. The output of
the optimization problem (4.1) are the values τ∗act which is the vector of input torques that max-
imizes the slippage ratio sr (τ∗act could also be interpreted as the argument that maximizes the
optimization problem argmax) and the slippage ratio (cost function in the context of optimiza-
tion) evaluated at τ∗act.

By using the definition of slippage ratio (2.84) and definitions of accelerations (2.79) (2.80) and
constraint forces (3.14) the optimization problem can be stated more clearly as

maximize
τact

:
τT

actΞτact

τT
act(Ξ + Ω)τact

s.t. : (Φ11Ab1M−1
s + Φ12A f 1M−1

s)τact > 0

τT
actτact 6 1

output : {τ∗act, sr(τ∗act)}

(4.2)

Unfortunately, because the input space is 7-dimensional, it cannot be plotted as in Section 3.3.
Since the object is fixed in this case, we cannot maximize its acceleration. But since the accel-
eration of the object depends only on the snake robot (i.e., the object has no other means of
propulsion), maximizing the force applied is equivalent. A flow diagram of the methodology
used to control the snake robot can be seen in Fig. 4.3. The application starts with a setup rou-
tine that only needs to run once. Based on the parameters of the snake robot, a basic model is
constructed. Then, the control loop starts. At every iteration the state of the robot is obtained.
The angles qs are measured and if outside of a desired limit, the robot stops to avoid damage.
Then the forward kinematic mappings (e.g., the Jacobian’s (2.1)) are obtained along the inertia
matrix Ms. Then the optimization problem (4.2) is solved, and the obtained torque τ∗act is sent
to the servomotors. The history of the angles and torques, along a time stamp of the absolute
time since the experiment began is saved as a CSV (Comma-separated Values) file, in order to
reconstruct the scene off-line.

4.2 Optimal Postures - Experimental Results

Three experiments are performed to show an application of EAM. As discussed in Section 3.3,
configurations where the COM is along the action line of pushing are optimal. However, the

4.2. Optimal Postures - Experimental Results 69

Read state of the
robot (joint's angles)

Stop signal?false true

Calculate forward
kinematics

Are the angles
within their limits?

true false

STOP all servos

Calculate
Dynamic Model

Start Optimization
Problem

Send desired torques
to the servos

Calculate model

kinematic
parameters

inertial
parameters

OUTSIDE APPLICATION

START APPLICATION

FIGURE 4.3: Torque Control Flow Diagram

analysis provided is only at one instant of time. In other words, it is very difficult to predict how
the system will behave as the snake robot pushes. This is one problem of snake robots that are
under-actuated.

The experimental setup is as shown in Fig. 4.1. There are three different setups to perform:

• Good Posture (pushing): In these trials, the snake robot is pushing the object away from
the robot itself. By good posture we mean that the COM of the snake robot is close to the

70 Chapter 4. Experimental Results

(a) (b)

Good posture
pushing

Tb,f

rb1

Bad Posture Good posture
pulling

rb1

(c)

Tb,f

rb1

FIGURE 4.4: Different types of setups for the snake robot experiment
(a) A good posture pushing the object away. (b) A bad posture. (c) A good posture

pulling the object

action line, as discussed in Section 3.3.

• Bad Posture: In these trials, the snake robot is pushing against the object, but the normal
distance from the COM of the snake robot to the object is significantly bigger.

• Good Posture (pulling): In these trials, the snake robot is pulling the object towards the
robot itself. The distinction between pushing or pulling is purely semantic, as it is still a
positive non-penetration force.

The different setups can be seen in Fig. 4.4.

The snake robot is commanded to maximize the slippage ratio (2.84) at every iteration, given the
information about the object’s location (w.r.t. the robot), the parameters of the robot (e.g., kine-
matic and inertial parameters) and feedback from the joints’ angles. Several trials are performed
for each setup.

Fig. 4.5 shows the results for the first experimental setup: Good Posture (pushing). The time
history of the COM’s normal distance to the action line is shown in Fig. 4.5(a). Four trials were

4.2. Optimal Postures - Experimental Results 71

Initial Posture Trial 4

Final Posture Trial 4

0 1 2 3

0.1

0.2

0.3

0.4

time[s]

[m
]

(Normal) Distance COM Timeline

Initial Posture

Final Posture

1

2

3

4

Trial 1
no data

(a) (b)

Good Posture Pushing
pushing force

pushing force

(normal) distance
com to contact

FIGURE 4.5: Results experiment 1 - A snake robot with good posture pushing
against an object

(a) The time history of the normal distance from the COM of the snake robot to the
pushing line for four trials (b) The initial and final robot’s posture for the fourth

trial

performed1. As it can be seen, when the robot pushes the obstacle away from itself, the COM
tends to get further and further away. In other words, even if the robot starts at a good posture,
as the system evolves in the time the robot tends to get into a bad configuration. 4.5(b) shows
the robot’s posture (reconstructed from the feedback history). As it can be seen, in all trials the
COM starts almost perfectly aligned with the action line.

Fig. 4.6 shows the results for the second experimental setup: Bad Posture. The time history of the
COM’s normal distance to the action line is shown in Fig. 4.6(a). Three trials were performed.
As it can be seen, the robot is not capable of moving much, but still the COM gets a little closer to
the action line. In other words, the robot tends to curl itself. In the first trial, the snake robot lost
contact very quickly and the experiment was terminated to avoid damage to the robot. 4.6(b)
shows the robot’s posture (reconstructed from the feedback history).

Fig. 4.7 shows the results for the third experimental setup: Good Posture while pulling. The
time history of the COM’s normal distance to the action line is shown in Fig. 4.7(a). Three trials
were performed. The COM doesn’t move away from the action line too much, in fact, it gets a
little closer. In this case, it is very natural for the robot to curl itself. 4.7(b) shows the robot’s
posture (reconstructed from the feedback history).

1The CSV of the joints’ angles for trial 1 was corrupted, so the system could not be reconstructed off-line. However
the force sensor readings were saves successfully, as shown in Fig. 4.8

72 Chapter 4. Experimental Results

0 2 4 6 8 10

0.1

0.2

0.3

0.4

time[s]

[m
]

(Normal)Distance COM Timeline 1

2

3

Initial Posture

Final Posture

(a) (b)

Bad Posture
Initial Posture Trial 2

Final Posture Trial 2

pushing force

(normal) distance
com to contact

pushing force
(normal) distance

com to contact

FIGURE 4.6: Results experiment 2 - A snake robot with bad posture pushing
against an object

(a) The time history of the normal distance from the COM of the snake robot to the
pushing line for three trials (b) The initial and final robot’s posture for the second

trial

In all experiments, it is interesting to see how the system evolves while solving an optimization
problem. It is important to remark again, that the optimization problem tries to maximize the
slippage ratio (2.84) which is a trade-off between the motion of the object and the robot itself.
In other words, it would be possible to instead try to maximize the acceleration of the object
directly, but this would result in a high slippage of the robot, making it more difficult to maintain
control while performing a task.

The force sensor readings were synchronized with the robot. It is possible to obtain the mag-
nitude of the force imparted onto the obstacle. Notice that, because the link of the robot is a
simple planar object, it is always possible to ascertain that the direction of the pushing force is
perpendicular to the snake robot. This is possible because, as mentioned in Section 4.1, the force
sensor is mounted on a bearing, allowing free rotation. If there were friction between the link
and obstacle, then it would be more difficult to know the direction of the force.

Fig. 4.8 shows the time history of the force sensor readings for all setups and trials. Fig. 4.8(a)
corresponds to the first setup: Good posture while pushing. It can be seen that the force is
almost constant throughout the trial. On the right, a histogram shows that, aside from trial
1, the statistical distribution of of the force is very similar. Forces tend to group around 3[N].
However, the robot eventually looses contact with the obstacle. Fig. 4.8(b) corresponds to the
second setup: Bad posture. Trial 1 ended early because the robot lost contact. The other two

4.2. Optimal Postures - Experimental Results 73

Good Posture Pulling

0 2 4 6 8

0.1

0.2

0.3

0.4

time[s]

[m
]

(Normal) Distance COM Timeline

1

2

3
Initial Posture

Final Posture

(a) (b)

Final Posture Trial 3

(normal) distance
com to contact

Initial Posture Trial 3

pushing force

pushing force

(normal) distance
com to contact

FIGURE 4.7: Results experiment 3 - A snake robot with good posture pulling an
object

(a) The time history of the normal distance from the COM of the snake robot to the
pushing line for three trials (b) The initial and final robot’s posture for the third

trial

trials showed very similar responses. The maximum force tended to group around 2[N]. Fig.
4.8(c) corresponds to the third setup: Good posture while pulling. All trials showed very similar
responses. In all cases, the maximum force grouped a little lower than 3[N], very similar to setup
1.

It is interesting that all trials showed similar responses, even though the control law was cal-
culated with an optimization problem, that may not give the same answer, even for similar
initial conditions. As it can be seen, good postures allows the robot to impart a stronger force,
almost 50% more than the bad posture. The best setup was pushing the obstacle with a good
posture, however, the robot may loose contact eventually. On the other hand, pulling the ob-
stacle seemed to give very consistent results. In fact, we consider that this can be extended in
the future to enveloping grasps, as discussed in 2.4. Thanks to these trials, it is evident that the
robot will naturally tend to some postures more than others. Pushing the object seems to lead
to bad postures, while pulling leads to get the COM of the robot closer to the object. This can
also be extended to climbing [56] or OAL [20]. As discussed in Chapter 2, Manipulation and
Locomotion are mathematically related, and can be better understood under the framework of
EAM.

74 Chapter 4. Experimental Results

Good Posture: Pulling (cost function = sr)

Good Posture: Pushing (cost function = sr)

(a)

Bad Posture (cost function= sr)

(b)

(c)

1 2 3 4 5
0

1

2

3

4

5

6

7

time[s]

Fo
rc

e
[N

]

Force Magnitude Timeline

0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Force[N]

Histogram of Force Magnitude

1

2

3

4

3

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

time[s]

Fo
rc

e
[N

]

Force Magnitude Timeline

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

Force[N]

Histogram of Force Magnitude

1

2

3

0 2 4 6 8 10
0

1

2

3

4

5

6

7

time[s]

Fo
rc

e
[N

]

Force Magnitude Timeline

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Force[N]

Histogram of Force Magnitude

1

2

3

3

FIGURE 4.8: Results experiments - Force applied to the obstacle
(a) Good posture while pushing (b) Bad Posture (c) Good posture while pulling

75

Chapter 5

Discussion

In this thesis, a complete analysis of a snake robot interacting with an object has been presented.
The analysis started with a kinematic analysis to consider feasibility of form-closure, but later
extended to consider the inertial parameters of both robot and object. As it has been seen, the in-
teraction of the snake robot with the ground, which is considered part of the environment, has a
deep and meaningful impact on the acceleration of an object to be pushed. This interaction with
the environment can be either helpful (it minimizes the slippage of the robot) or harmful (too
much friction constrains the snake robot). The framework of Environment-aided Manipulation
(EAM) presented in this thesis helps to elucidate this complex system.

Compared to literature discussed in Chapter 1, several parameters that had been ignored previ-
ously have been included in the analysis. This allows to provide conclusions and insights that
would not be possible otherwise. For example, we made no assumptions that the effects of the
passive wheels can be modeled as non-holonomic constraints, which is the most common model
for studying snake robots. This assumption is equivalent to the Scenario 3 presented in Section
3.2. This is due to the fact that locomotion is usually studied, and a steady-state response can
be obtained, since locomotion is a periodic input. However, for the topic of grasping with snake
robots this assumption is not well suited, as it has been discussed in [24]. The scenarios pre-
sented in this thesis consider all possible cases of anisotropic friction: negligible, bounded, and
ideal (unbounded). The results have the same tendency for all three scenarios.

The analysis presented can be applied to any planar snake robot, regardless of the number of
joints. Additionally, as it has been shown in Chapter 3, the optimal postures of the snake robot to
push an object are almost not influenced by factors like friction. On the other hand, the slippage
of the snake robot is minimized when using passive wheels, as it has been shown in Section 3.4.

The analysis presented uses a general methodology to build the dynamical models of snake
robot and object, in the framework of rigid-bodies. This is inspired in methods presented in [33,
36] among others. A great advantage of this is that the analysis is easily applicable to spatial mo-
tions. In other words, it can be expanded to consider snake robots in 3D motion, not necessarily
confined to a plane.

Although the analysis presented has been rigorous, there are several questions that remain unan-
swered. Section 3.3 and Section 3.4 show that the set of postures optimal for pushing an object

76 Chapter 5. Discussion

and minimizing the slippage of the snake robot are not the same. Additionally, it can be seen
in Fig. 3.5 that the input is not the same. Fig. 3.6 shows that posture plays an important role
in maximizing the force imparted onto the object, and therefore in maximizing the resulting
acceleration. However, there is no cleat set of postures that maximize the slippage ratio. We
consider this to be the first step to formulate a strategy. A weighted combination can be consid-
ered to choose between maximizing the acceleration of the object, or minimizing the slippage of
the robot. This is similar to how applications for robotic manipulators have benefited from the
knowledge of their inertial properties.

In Section 3.3 snake robots with two, three, and four joints were considered. All case studies
showed the same results. Postures where the COM is close to the line of action of pushing are
optimal, regardless of the number of joints. We consider this to be an important result, since
it can be extended to a continuous snake robot (i.e. na → ∞), where rigorous modeling may
not possible. In other words, this thesis shows that it the particular configuration of the robot
(i.e., the set of joints’ angles) is not the primary concern but rather the overall shape of the snake
robot, in other words, its posture. It is the inertial properties of the posture that have a significant
impact on the system.

Since the analysis is done using general differential geometry and algebra, the mappings and
metrics presented can be applied to any robotic system with similar features. We consider this
to be an extension of the concept of force ellipsoid or even manipulability metrics [38, 63, 69, 70,
67, 68] which sometimes ignore either mobile robots or the effect of inertial parameters.

A limitation of the models presented so far is that the results are limited to planar snake robots
on a horizontal plane. Under other circumstances, the effect of gravity must be considered as an
external force. This can be done easily by projecting the gravity onto the plane, and considering
its normal and tangential components, as can be seen in Fig. 2.4. In the presence of gravity, it
would be necessary to consider the effects on the constraint forces. For example, if the snake
robot is pushing against the object on a slope, then gravity would be affecting the object, which
in turn would be pushing against the robot.

Although the primary concern of this thesis has been to study a snake robot pushing against an
object, the next logical step would be to extend the results to a more complicated manipulation,
like dexterous (non-prehensile) manipulation and prehensile manipulation. Although sufficient
conditions for grasps with form-closure have been presented, the next step would be to study
force-closure. To do this, the set of forces that the snake robot can apply must be studied. This is
a challenging topic, since the snake robot is under actuated. However, the study about slippage
ratio would be helpful to extend this concept, since it is a metric that quantifies the motion of
the system. The lower the value of the slippage ratio, the more the snake robot slips.

The framework of EAM is intended to study several systems under a unifying framework, as
discussed in Chapter 2. More and more effects have to be considered, but not without taking
into consideration the task to be fulfilled. Obviously, more complicated friction models could
be considered. However, more complicated does not equate to useful. Snake robots have to be

Chapter 5. Discussion 77

used in more diverse tasks than locomotion, in order to understand what type of models and
control strategies are necessary.

The main drawback of the EAM framework presented in this thesis, is that it relies on modeling
all bodies on the system as rigid bodies. This ensures that a feasible and unique solution can
be found. However, it limits the number of bodies in contact and may not be suitable for more
realistic scenarios. If more contacts are considered, for example, between the snake robot and
ground or one link contacting an obstacle at several points, the system may be hyper-static
[40]. One way to avoid this is to consider compliance at the contacts. However, estimating this
compliance is not trivial, and it may be difficult without knowing very precisely the properties of
the snake robot, environment, and object to be manipulated. The framework of EAM discussed
here can be used as a basic case to be compared to.

79

Chapter 6

Conclusions & Future Work

6.1 Conclusion

In this thesis a system composed of a planar snake robot and object has been presented. The
objective is to study several parameters that may influence a manipulation task.

It is shown that the optimal configurations to push an object are the ones that have the COM
of the robot along the action line. These configurations also minimize the slippage of the snake
robot. However, although the configurations are the same, the inputs are not. A trade off must
take place. Either the acceleration of the object is maximized, or the robot’s slippage minimized.
An analytical model is presented that shows some insights into this interaction. The simplified
model can qualitatively explain why these configurations are optimal.

Additionally, it has been shown that additional friction forces between the snake robot and
ground have very little impact on the acceleration of the object to be manipulated. However,
these friction forces can help to reduce the slippage of the snake robot.

Finally, a control law based on an optimization problem is proposed, and experimental results
are shown. Both mathematical analysis and experimental results show that postures where the
COM is aligned with he action line minimize the slippage of the robot, while allowing to push
the object better.

6.2 Future Work

As it has been shown, the interaction with the object can be characterized by the constraint forces
imposed between the object and snake robot. If it is the objective to move the object, a set of joint
torques (i.e., the input to the system) has to be selected in orderer to maximize the acceleration
of the object. Howe ever, the model and analysis presented are not limited to manipulation. The
framework of EAM can be extended to locomotion.

For example, if it is necessary to move around an object while not damaging it, then the con-
straint forces (and consequentially the acceleration of the object) have to be minimized. At the

80 Chapter 6. Conclusions & Future Work

same time, if locomotion is the objective, maximizing the motion of the robot is necessary. These
objectives are dual to the objectives of manipulation.

Manipulation requires to maximize the acceleration of the object and minimize the slippage of
the robot. This can be simplified as maximizing the slippage ratio proposed in this thesis.

On the other hand, locomotion may be formulated as minimizing the forces imparted onto the
object while maximizing the motion of the robot. This could be simplified as minimizing the
slippage ratio.

Cases where a combination is necessary can also be studied. For example, climbing [56] requires
to grasp the environment very strongly and then using this interaction to propel the robot in a
desired direction. This can also be considered similar to Obstacle-aided locomotion (OAL) [20,
21, 22].

All these cases are one specific case of EAM. The next logical direction for this study, is to then
use the knowledge presented in this thesis to formulate better control strategies. The control
strategy proposed in this paper is but one of many possible choices. In particular, the optimiza-
tion problem (4.2) handles the slippage ratio as a cost function to be maximized. Another point of
view taken in [24] and [22] is to propose the minimization of input torques, while formulating
the control objectives as (soft) constraints. Although this seems theoretically correct, the evolu-
tion of the system must also be accounted. In [22] the evolution of the system was not studied
so it is not possible to ascertain the performance under that particular control law.

81

Appendix A

Mathematical Background

In this section, we give a very brief introduction to the mathematical topics necessary to under-
stand this paper. We recommend [33, 34] for a more detailed treatment. The foundations of the
model used in this paper have been presented in [24, 25, 26]; readers are encouraged to read this
reference for a more detailed treatment of snake robots in the framework of articulated-bodies.

A.1 Differential Geometry

Assume a body B is to be studied. Its twist υ ∈ <6×1 (concatenation of linear and angular veloc-
ity) and a wrench f ∈ <6×1 (concatenation of linear force and torque) acting on the body can be
expressed w.r.t to any reference frame, not necessarily attached to the COM of the body.

To express the quantities w.r.t. a specific frame, the following transformations can be used. Let’s
denote with a superscript the point where a twist or wrench are expressed (e.g., Aυ denotes
the twist υ at frame A). The following transformations can be used for changing from reference
frame {A} to frame {B} as

Bυ = BX A
Aυ, B f = BX∗A

A f ,

with the transformations for twists and wrenches defined as

BX A :=

[
E 0
−Er× E

]
, BX∗A :=

[
E −Er×

0 E

]
,

where E ∈ SO(3) denotes the rotation matrix required to change frame {A} into frame {B},
r ∈ <3×1 is the translation vector from the origin of frame {A} to the origin of frame {B} (r
is expressed w.r.t. frame {A}), and r× ∈ <3×3 denotes the cross-product operator (also called
skew-operator [35, 36]) for a vector r = [rx, ry, rz] with the property (r×)T = −r×. Another
useful fact that will be required later is the norm of the vector r×a defined as

||r×a|| = ||r× a|| = ||r||||a|||sin(θ)|,

for any vector a, where the angle θ is the angle between r and a.

82 Appendix A. Mathematical Background

A.2 Dynamic Modeling of Objects

A rigid-body is able to move in its operational space with dimensions nop ∈N and its equations
of motion can be compactly written as

Iobjaobj + pobj = fobj, (A.1)

where aobj, pobj, and fobj ∈ <nop denote the acceleration, velocity-produced terms, and total
wrench acting on the body, respectively. The inertia tensor w.r.t the COM of the object can
always be factorized as proportional to the mass as

Iobj = mobj Īobj, I−1
obj =

1
mobj

[
Ī−1

com 0
0 1

]
. (A.2)

The inertia tensor Īobj represents the inertia of a body with unitary mass (i.e., mobj = 1) and is
defined as

Īobj :=

[
Īcom 0

0 1

]
, (A.3)

where Īcom denotes the rotational inertia of the object when mobj = 1. This factorization is an
important fact that will be exploited in later formulations. More details about the spatial inertia
tensor can be found in [36].

A.3 Metric Tensors and Norms

It is important to notice that, a generic system that is not composed of point-masses, may not
be orthogonal. This means that the common definition of norm of a twist ||υ||2 based on inner
product (e.g., ||υ||2 = υ · υ = υTυ) would give incorrect results.

Let’s denote the metric tensor of the covariant basis as I and its inverse by I−1. The (squared)
length of a twist and wrench is an invariant quantity and can be obtained using the scalar prod-
uct {◦} while taking into account the metric tensor as

||~υ||2 = ~υ ◦~υ = υT Iυ, (A.4)

||~f ||2 = ~f ◦ ~f = f T I−1 f . (A.5)

A.4 Constraints

The system considered in this document is composed of several bodies that may or may not
have contact between each other. The snake robot is modeled as an open kinematic chain. The
constraints imposed by the joints are not modeled, since we use the kinematic model (i.e, the
Geometric Jacobians 2.1) to build the dynamic model 2.43. This is consistent with a Lagrangian

A.4. Constraints 83

Framework [37, 35, 38] and avoids the need to calculate the internal forces that keep the robot
together.

On the other hand, when the snake robot contacts an object, a set of non-penetration constraints
appear that keep the bodies from penetrating each other. These constraints, also called kinematic
constraints or body constraints are introduced in Appendix A.4.1 and explained in more detail in
Appendix 2.3. The forces that keep the bodies from penetrating each other have to be calculated
[33, 37, 39, 40, 41] and added to the system.

A.4.1 Kinematic Constraints Between Rigid Bodies

Assume two systems B1 and B2 are contacting each other at several points, imposing nc,np ∈ N

non-penetration (also called kinematic or body) constraints

Abυ > 0, (A.6)

Ab := TT
b

[
− bcX1

bcX2

]
υ :=

[
υ1

υ2

]

where υ1 and υ2 denote the twists of B1 and B2, respectively. The transformations bcX1, bcX2

change the twists of B1 and B2 from their local frames to the contact points (bc for body-constraint).
The matrix Tb spans the directions where motion is constrained (e.g., for a frictionless contact
point, it spans the normal direction at the contact). The constraints denote that rigid bodies can-
not penetrate or pull each other, only push. The matrix Ab ∈ <nc,np×n is usually called constraint
matrix and it is a projection from the velocities of the system onto a subspace spanned by the
constraints, referred to as constrained subspace.

A.4.2 Friction Constraints of the Passive Wheels

Friction is a complicated topic since several models exist to model it, but in practice it is unreal-
istic to know it accurately a priori. Furthermore, friction can be considered as kinetic friction or
static friction depending if both surfaces are sliding w.r.t. each other or not, respectively. In the
case of kinetic friction, it can be incorporated fairly easily into the model of the snake robot as
an external force [8, 42]. However, static friction has to be modeled as a constraint force. This
introduces several problems for snake robots since there are too many contacts between the belly
of the snake robot and the ground, rendering the problem statically indeterminate.

It is common practice to introduce mechanical means for snake robots to have anisotropic fric-
tion at the contacts with the ground. In other words, the friction parallel to the links should
be very low and in the perpendicular direction very high. In fact, this has been proven to be a
very important property to ensure that snake robots have the ability to locomote [43, 42]. This
is usually done by introducing passive wheels with their respective non-slippage constraints.

84 Appendix A. Mathematical Background

However, these constraints are usually presented in their unbounded form. In other words, it is
assumed that the static friction forces can achieve arbitrarily high values and the total DOFs of
the snake robot remain constrained [44, 45, 46]. From a mathematical point of view, this elim-
inates the need to analyze the problem dynamically, since the system is not supposed to gain
momentum in the constrained directions.

Although this seems to give good enough results for locomotion or other periodic motions, it
may not be the same for other tasks. It is interesting then, to consider the limit surfaces of the
friction forces [37]. In this paper, we assume the snake robot has anisotropic friction with the
ground and consider only friction in the direction perpendicular to the link.

The constraints due to static friction can be constructed similarly to the kinematic constraints
presented on the previous section. Let’s assume that the i-th link of the snake robot is contact-
ing the floor with a passive wheel which imposes friction in the direction perpendicular to the
wheel, while allowing free motion on the direction parallel to the link. It is assumed that the
passive wheel is located at the COM of the link (c.f. Fig. 2.4(c)), and that nw < n` links have pas-
sive wheels which impose nc, f = nw constraints due to friction. The constraints can be written
compactly as

A f υ = 0, (A.7)

A f := TT
f

[
− f cX1 0

]
υ :=

[
υ1

υ2

]
.

The transformation f cX1 changes the twist of B1 from its local frames to the point where the
friction is located (fc for friction constraint).

In this paper we assume there are no friction forces acting on links interacting with the object.
This can be achieved by lifting slightly the links or by other mechanical means (e.g., retractable
wheels or casters). This idea is similar to the shape controllable points introduced in [47, 44] which
allow the snake robot to avoid singularities (i.e., not loose rank), or more recently, to the idea of
dividing the snake robot into a part for locomotion and another one for a task [19].

A.4.3 Summary of Constraints

A complete system can be constructed by stacking as many constraints as there are on the sys-
tem. If there are nc,np ∈ N non-penetration constraints and nc, f ∈ N constraints due to friction,
the total constraint matrix and constraint forces can be obtained as

Aυ > 0 fc := ATλ,

A :=

[
Ab

A f

]
λ =

[
λb

λ f

]

where A ∈ <nc×n is the constraint matrix including all the constraints, nc = nc,np + nc, f is the
total number of constraints, n is the number of DOF on the system, and λ ∈ <nc×1 is the vector of

A.4. Constraints 85

constraint forces. Considering the definition of A f in (A.7), the constraint matrix is a triangular
matrix, since the friction forces acting on the snake robot do not constrain directly the object.
This leads to the expression

A =

[
Ab

A f

]
=

[
Ab1 Ab2

A f 1 0

]
, (A.8)

This fact will be exploited in section 2.7.2 to obtain a simplified expression for the acceleration
showing clearly the effect that the extra friction forces have.

Additional constraints are necessary, depending on the nature of the constraint forces

λb > 0, |λ f | 6 mµs||gn||, (A.9)

where m`, g, and µs denote the mass of a link, gravity acceleration, and coefficient of static
friction, respectively. Inequalities are meant to be component-wise.

The formulation used in this document to model the system in the framework of multi-body
rigid systems is mainly based in [33, 48, 49]. Friction has also been considered, mainly using the
formulations presented in [41, 36], which also discuss how to resolve the resulting optimization
problem. Additional documents are [50, 51] that also discuss this topic.

In practical applications, the previously shown formulation of the constraints is either formu-
lated as a Linear Complementary Problem (LCP) or as a Quadratic Problem [36, 35]. If it is
necessary to implement the constraints in a simulation (i.e., forward dynamics) it is necessary to
add some stabilization terms [41, 36, 50] in order to avoid errors due to numerical drift.

87

Appendix B

Prototype Design

This section provides documentation for the snake robot OPPAS, an open-source and para-
metric snake robot. The Appendix E has information about where to get the most up-to-date
information and files.

The name OPPAS stands for OPpen-source Parametric Snake-robot. OPPAS is a snake robot
intended for research with robots that mimic the structure of a snake. The main reason I started
this project is because I wanted a fast way to produce a snake robot that was easy to build and
deploy, but without the need of drastic changes if a component of the robot changes.

FIGURE B.1: OPPAS Snake robot prototype promotion

OPPAS has been presented in [31] at Fukushima, Japan.

OPPAS is a project being developed in Ritsumeikan University, by the Biomimetic Intelligent
Mechatronics (BioInMech) Laboratory.

88 Appendix B. Prototype Design

OPPAS is licensed under the Creative Commons Attribution 4.0 International. A summary of
the license is provided below:

Listing B.1: CC BY 4.0

Share - copy and redistribute the material in any medium or format

Adapt - remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license

terms.

Under the following terms:

Attribution - You must give appropriate credit, provide a link to the

license, and indicate if changes were made. You may do so in any

reasonable manner, but not in any way that suggests the licensor endorses

you or your use.

No additional restrictions - You may not apply legal terms or technological

measures that legally restrict others from doing anything the license

permits.

In essence, a snake robot is very simple; it is a series of links connected by joints. However, the
shape and size of the links and joints will change depending on the components you use. For ex-
ample, a big battery may require a long but slender link. But, depending on the microcontroller
you use, you may need a short but thick link. Although putting together a bunch of u-brackets
and other rigid parts is easy, this leaves the electronics and other components exposed, while
at the same time properly fixing the components to the robot may be difficult. By making the
design parametric, different snake robots can be produced, according to your requirements.

Another property I was interested in was modularity. By modularity I mean that a module (link
+ joint) of the snake robot is composed of different elements that can be interchanged without
needing to redesign other parts. For example, if your snake robot requires passive wheels (e.g.,
for achieving anisotropic friction) just design the ’belly’ of the robot without altering the rest.
Or, you may change the wheel’s model and redesign the necessary part. You are using a bigger
battery that doesn’t fit the current robot? Just make a longer link without affecting the joints.

However, there are some sacrifices to be made to keep the design as general as possible. Since
the design is parametric (and the number of parameters is limited) the design is not optimal. In
other words, there may be a lot of *wasted* space inside the robot.

OPPAS is an attempt to make snake robots easier to build and to test your ideas. It is open-
source; the robot was designed using Autodesk Fusion 360. The files can be downloaded and the
whole project can be recreated in your computer. I consider this to be more useful than sharing
STL files that have to be downloaded and modified to fit your needs. As mentioned before,

https://creativecommons.org/licenses/by/4.0/legalcode

B.1. v1.0 - Locomotion Part 89

OPPAS is parametric. Read the documentation for information about the available parameters.
Finally, I wanted a robot that could be afforded by anyone. The current version of OPPAS has
been printed in ABS using a Zortrax M200. Although the Zortrax may not be affordable by
everyone, I have printed also some parts in my own Overlord Pro, and although the tolerances
are more difficult to overcome, it still works. Each module costs less than US$ 20 (using eSun
ABS).

There are several weak points in the current design of OPPAS. In particular, I would like to
improve the following points:

1. Waterproof: Make the design waterproof

2. Support for more servos: Currently, OPPAS Mk. 1.0 is designed with the ROBOTIS MX-64
servos in mind. I would like to support more servo’s models in the future, but parameter-
izing them is rather difficult (e.g., they have different shapes, the screw holes positions are
in different arrangements)

3. Smaller: Due to the MX-64 servo’s size, OPPAS Mk 1.0 is big in comparison to other snake
robots. If possible, I would like to make it a little smaller next time

B.1 v1.0 - Locomotion Part

The main idea of OPPAS is to provide a platform for developers interested in snake robots or
similar. A module of OPPAS consists of a link and a joint. A link and joint are further divided
into the following parts (c.f. Fig. B.2):

The main idea of the design of parts was to separate the parts according to their role in the robot:

1. Skeleton: The spine, ribs and caps provide the main (kinematic) structure of the robot. It
provides the main shape and can also be used as a base for the components.

2. Flesh: It provides the interface between the robot and the exterior. At the same time it pro-
tects the components (i.e., do not allow the boards and cables to be completely exposed).

3. Joint: The servos or other actuators are mounted at the joint, providing motion.

The link’s main objective is to give structure to the robot and it has a big influence on the total
length of the robot. In addition it will house the components (e.g., batteries, sensors, microcon-
troller boards). Depending on the robot you need, you may skip the link altogether and just put
together a bunch of joints.

The link is divided into two sets of parts: the skeleton and the flesh. The main role of the skeleton
is to provide the structure of the robot. The main parts of the skeleton are:

The design of the spine provides a flexible way to attach extra components. The idea is that you
can design a specific base for the components you use, and then attach it to the spine. The spine
has a set of rails and the geometry of these can be controlled parametrically. The final length of

90 Appendix B. Prototype Design

FIGURE B.2: OPPAS Overview
Main parts composing the snake robot

TABLE B.1: Parts of OPPAS

spine Provides the main support for the link
ribs Additional structure to attach the flesh components to the spine
caps It helps to put all together and enclose the internal components. It also provides an interface with the joint’s parts

the spine is controlled by the number of segments (rail’s teeth + spacing) and the geometry of
these.

The main parameters of the spine that can be changed are summarized as follows:

• spineInnerDiameter: The spine has an hexagonal cross-section, circumscribed on a
circle with a diameter called spineInnerDiameter. A set of four M2.5 screw holes are
automatically generated

• rail*: The set of parameters related to the rail design (railNeck, railWidth, railInnerWidth,
railHeight) controls the geometry of the cross-section of the rail. The parameters railSpacing
and railThickness control their geometry along the longitudinal axis of the spine. One
’segment’ is composed of one rail’s segment (I sometimes call them teeth) and a spacing.

• noSegments: Number of segments (rail’s tooth + its spacing) composing the spine

B.1. v1.0 - Locomotion Part 91

FIGURE B.3: Spine of OPPAS

• linkLength: The final length of the link is controlled by how many segments (a tooth and
its spacing) you need, and its size controlled by railSpacing and railThickness. If
you need a constant rail just set railSpacing= 0, railThickness=desired length, and
noSegments=1. This allows to generate a link always consistent with a discrete number
of teeth

The main role of the ribs is to attach the flesh components to the spine. A secondary objective I
had into mind is to also provide a structure to attach extra components (e.g., sensors) if required.

Once the three components of the flesh slide into the ribs, their movement is constrained without
the need of extra parts, like bolts or screws. The model of OPPAS that can be currently down-
loaded does not provide additional holes to attach the vertebras to the spine. It relies completely
on friction and the form-closure achieved when the *flesh parts are attached. This is to keep the
design consistent and avoid problems, since a screw hole of a given size may not be compatible
with the user’s chosen railThickness.

The main parameters of the ribs that can be changed are summarized as follows:

• midCircle: This parameter is seen along several parts of OPPAS. For the ribs, it works
along textttouterCircle to generate the structure of the ribs

92 Appendix B. Prototype Design

FIGURE B.4: Ribs of OPPAS

• outerCircle: This parameter controls the size of the ribs. An equilateral triangle is in-
scribed into a circle with diameter outerCircle and used to control the rib’s size. The pa-
rameters midCircle and outerCircle should always follow the constraint: |outerCircle|
> |midCircle|

• ribCircle: Final parameter to control the size of the rib. This parameter is not used in
any other part of the design

The caps enclose the link and provide an interface with the joints. In addition, the interior of the
caps accommodates to the ribs for extra support. Four slots are provided to pass cables, which
location and size can be controlled by the user. Additional pegs provide extra strength to the
design to avoid rotations along the longitudinal axis.

The main parameters of the caps that can be changed are summarized as follows:

• capDiameter: The outer diameter of the caps. It should be at least as big as outerCircle,
but I recommend it a little bigger. In current implementation of OPPAS, the value is set as
capDiameter = 1.1*outerCircle

• outerCircle: Outer circle will be the diameter of the cap contacting the joint’s parts

B.1. v1.0 - Locomotion Part 93

FIGURE B.5: Caps of OPPAS

• capThickness: Thickness of the cap (not considering the internal cavity where the ribs
fit)

• slotDiameter: Control the location of the slots. In the current design of OPPAS, the
parameter is set as slotDiameter = 0.5*midCircle to keep the design consistent. If
required, change this to a fixed value

• slotThikness: Thickness of the slots

• slotLength: Length of the slots

• slotHole: Diameter of the slot’s hole. Use this to pass cables with connectors. In general,
I advice slotHole to be at least 10[mm]

• midCircle: A set of four pegs are generated automatically at a circle with this diameter.
If needed, change this to a fixed value

• capPegDiam: Diameter of the pegs

• capPegDepth: Length of the pegs. I use ’depth’ since a matching hole is generated into
other parts

94 Appendix B. Prototype Design

The flesh components are the main interface between the robot and the exterior. These parts can
be designed independently from the rest of the design, but I provide a set of parts as an example.
The flesh parts slide into the ribs and provide extra constraints. Once all parts of the flesh are
inserted, the ribs should not be able to come apart from the spine.

FIGURE B.6: Flesh of OPPAS

The main parameters of the flesh that can be changed are summarized as follows:

• fleshInnerDiameter: The inner diameter of the flesh parts is controlled by this param-
eter. The strength and available space inside the robot are affected. The outer size is the
same as ‘capDiameter‘. You can change these values according to your application.

• ribRail*: The set of parameters (ribRailThickness, ribRailWidth, and ribRailDepth)
control the geometry of the rails that slide into the ribs. There is a built-in tolerance for the
rails, so that they fit correctly into the ribs even if there is shrinking of the material.

The flesh parts in OPPAS should not be considered as a definite design. The purpose of textbfOP-
PAS is that they can be redesigned to accommodate to your needs, without needing to change
(drastically) the rest of the parts. Several designs of the flesh could be designed and used in the
same base robot.

B.1. v1.0 - Locomotion Part 95

FIGURE B.7: The uBracket

The joint of is composed of two parts: uBracket and servoBase, as seen in Fig. B.7 and Fig. B.8,
respectively. These are the parts that would require the most effort from the user if another servo
is used.

The uBracket connects the servo’s horn to the link, providing motion. There are four slots, de-
signed so that the link can be connected with a 90[deg] angle to provide flexibility in the con-
struction of your robot. If the axes of all servos are parallel, the result is what is known as ’planar
snake robot’. What is known as ’serpentine’ or ’undulatory’ locomotion can be achieved. With
the motors connected with an offset of 90[deg], 3D motions can be achieved.

The outer diameter of the uBracket is controlled by capDiameter and the slots are designed to
match the ones in the module caps. The main parameters of the uBracket that can be changed
are summarized as follows:

• uBracketThickness: Thickness of the uBracket.

96 Appendix B. Prototype Design

FIGURE B.8: The servoBase

• hornLength: Distance from the uBracket base to the axis of the servomotor. The longer
hornLength is, the bigger the range of motion of the joint. However, this means a weaker
uBracket.

The servoBase of the current design of OPPAS is designed for the MX-64AR servos of ROBOTIS.
Therefore, no extra parameters are provided to the user.

The final module obtained can be seen in Fig. B.9. The values for the parameters are summarized
in Fig. B.10.

B.2 v2.0 - Manipulation Part

TODO

B.2. v2.0 - Manipulation Part 97

FIGURE B.9: A module of OPPAS assembled
An assembled module with the Biomimetic Intelligent Mechatronics Laboratory

Logo c©

98 Appendix B. Prototype Design

FIGURE B.10: Parameters of first generation OPPAS
Set of parameters used in the Autodesk c©Fusion 360 Software

99

UNO (Arduino)

nrF24L01+
nrF24L01+ microntroller

snake robot

USB (comm + power)

2.5GHz @ 1Mbps

Tx

Rx

Data

GND
3V3

SP3485 GND
GND

U
A
R
T

R
S
4
8
5

D+

D-
DI

RO

RSE
A

B

12V

SMPS2Dynamixel
AC-DC

Powerbank

uU
SB

SPI

AC

MX-64AR
chain

PC

(a)

UNO (Arduino)

nrF24L01+
nrF24L01+

USB (comm. + power)

2.5GHz @ 1Mbps

uU
SB

SPI

PC
(b)

Serial Ports

Serial Ports

microntroller

microntroller

Tx

Rx

Data

GND
3V3

SP3485

U
A
R
T

R
S
4
8
5

D+

D-
DI

RO

RSE
A

B

MX-64AR
chain

(c)

FIGURE C.1: Complete System
(a) Overview of the complete system. The snake robot can communicate with the
PC either through USB or wirelessly using a nRF24L01+ transceiver (2.4[Ghz]) (b)
Communication using either USB or nrF24L01+ (c) Communication with servo-

motors

Appendix C

Electronics

This section details the overall framework of the electronics of the prototype. The complete
design including all signals can be seen in Fig. C.1.

Fig. C.1(b) focuses on the communication part of the prototype.

Fig. C.1(c) focuses on the communication between microcontroller and servomotors. Additional
information about the software implementation can be found in Appendix D.1.

100 Appendix C. Electronics

C.1 Shields - Communication with servos

The servomotors used in this prototype are Dynamixel model MX-64AR (Robotis http://en.
robotis.com/). The servomotors are connected to the main microcontroller board Duo (Red-
bear https://redbear.cc/duo) through a RS-485 BUS. A transceiver is necessary to change
the microcontroller TTL-level signals into the RS-485 levels.

A ST4485EB (STMicroelectronics http://www.st.com/en/interfaces-and-transceivers/
st4485eb.html) was selected as the transceiver, and it is connected to the microcontroller as
seen in Fig. C.1(c). It is worth noticing that the Duo is a 3.3[V] level micro controller board, since
it uses an STM32F205 ARM 32-bit Cortex-M3 @120 MHz microcontroller (STMicroelectronics).
If using a 5[V] microcontroller, a 5[V] transceiver is necessary. The SN65HVD1782DR (Texas
Instruments https://store.ti.com/SN65HVD1782DR.aspx) has been tested using the li-
brary DuoDMXL described in D.1 The schematic design can be seen in Fig. C.2. Fig. C.3 shows
the board design and a manufactured sample.

The EAGLE schematics and additional up-to-date information can be accessed through the pub-
lic repositories listed in Appendix E.

C.2 softPots ADC conversion and conditioning

For measuring the contact location between the snake robot and an external object, a special
type of potentiometers, called SoftPots (Spectra Symbol http://www.spectrasymbol.com/)
were selected. The SoftPots resistance changes linearly w.r.t. the position where they are pressed,
as it can be seen in Fig. C.4(a). Then the position where the SoftPot is being pressed can be cal-
culated by measuring the resulting voltage in a simple voltage divider configuration. However,
the SoftPots by themselves have two problems:

• Short-circuit: If the SoftPot is pressed at more than one places at the same time, a short-
circuit occurs and the SoftPot may burn.

• Floating signal: If nothing is touching the SoftPot, then the signal will float unpredictably.
In other words, it cannot be determined if there is contact or not.

These two problems can be solved easily, as it can be seen in Fig. C.4(a). The short-circuit can be
avoided by limiting the current with in-series resistors R1 and R2. R2 is chosen to be a trimmer
potentiometer (trimpot) in order to use it for more precise calibration. The floating signal can be
avoided using a weak pull-up resistor R3. This will ensure that, when there is no contact, the
signal will saturate to the input voltage VIN.

The use of R1, R2, and R3 scales the SoftPot signal and the signal is no longer linear. However,
the new output signal can be calculated using the following formulas:

Vout =
RB

RA + RB
VIN, (C.1)

http://www.st.com/en/interfaces-and-transceivers/st4485eb.html
http://en.robotis.com/
https://redbear.cc/duo
http://www.st.com/en/interfaces-and-transceivers/st4485eb.html
http://www.spectrasymbol.com/
https://store.ti.com/SN65HVD1782DR.aspx
http://en.robotis.com/

C.2. softPots ADC conversion and conditioning 101

FIGURE C.2: RS-485 Transceiver
EAGLE Schematic of RR-485 transceiver circuit used to interface with servomotors

MX-64AR

where

RA :=
(

1
R1 + αSP

+
1

R3

)−1

=
R1R3 + αR3SP
R1 + R3 + αSP

, (C.2)

RB := βSP + R2. (C.3)

The output voltage Vout can then be calculated as

Vout =
(R1 + R3 + αSP)(R2 + βSP)

R1R3 + αR3SP + (R1 + R3 + αSP)(R2 + βSP)
VIN, (C.4)

where SP represents the nominal resistance of the SoftPot, and β = [0, 1] determines the SoftPot’s
position, as seen in Fig. C.4(a). The coefficients α and β are related through the relation α = 1− β.

102 Appendix C. Electronics

(a)

(b)
FIGURE C.3: RS-485 Shield

(a) EAGLE Board layout of the design. (b) Manufactured board

The new set of equivalent resistors RA = RA(R1, R2, R3, SP, β) and RB = RB(R1, R2, R3, SP, β)

determine a new circuit.

As it can be seen in (C.4), the new voltage divider is non-linear w.r.t. the position of the SoftPot β,
and the resulting SoftPot’s value Vout would need the calculation of (C.4) on-line. However, if a
weak pull-up resistor is used, the behavior is almost linear, as it can be seen in Fig. C.5, where the
pull-up resistor’s value between a strong and weak pull-up resistor is compared, while keeping
R1 and SP fixed. Fig. C.5(a) and Fig. C.5(b) show the output response Vout of the scaling circuit
using a strong pull-up resistor (R3=10[k]Ω]) and a weak pull-up resistor (R3=100[k]Ω]), respec-
tively. Also notice than the selection of R2 changes the slope of the response. The prototype used
in this thesis uses the parameters listed in C.1. Both Figs. Fig. C.5(a) and (b) show a comparison

C.2. softPots ADC conversion and conditioning 103

Vin
SoftPot value
GND

RC low-pass
�lter

Rf

Cf

R1

R2

R3

scaling circuit

R1

R2

R3 R1

R2

R3
RA

RB

(a)

(b)

αSP

βSP

Vout Vout Vout

0

1

FIGURE C.4: SoftPot scaling circuit
(a) Connecting the SoftPot raw signal to a scaling circuit and then to a low-pass

filter (b) Analysis and simplification of the scaling circuit

with the ideal original response without the scaling circuit.

104 Appendix C. Electronics

TABLE C.1: Parameters of SoftPot Circuit

Parameter Description Value Unit
VIN input voltage 3.3 [V]
R1 series resistor 1 [kΩ]
R2 series resistor 1 [kΩ]
R3 pull-up resistor 100 [kΩ]
SP nominal resistance of SoftPot 10 [kΩ]

0.

0.5

1.

R2[kOhm]

VIN

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

position SP

V
ou

t

[V] Response - strong pull-up resistor R3

Signal without

scaling circuit

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

position SP

V
ou

t

Response - weak pull-up resistor R3

Signal without

scaling circuit

[V]

(a)

(b)

0.

0.5

1.

R2[kOhm]

VIN

FIGURE C.5: SoftPot Calibration (VIN=3.3[V],R1=1[kΩ],SP=10[kΩ])
Output response of the scaling circuit by changing the values of R2 and R3 (a)

Using a strong pull-up resistor (b) Using a weak pull-up resistor

105

Appendix D

Programming

D.1 Servo communication - DuoDMXL

DuoDMXL is a library for controlling Dynamixel servos using a Duo (or Photon) as main mi-
crocontroller. This library allows the user to write or read all of the possible registers in the
servomotors. Specifically, it is meant for MX-64 servomotors. Other models like AX have differ-
ent EEPROM registers, but the library can be adapted easily.

Communication is delegated to the basic functions:

1. sendWord() which writes a value to a register of the servo.

2. readWord() which reads the current value of a register of the servo.

3. readInformation() which reads a response (set of bytes) from the servomotors. It
could be requested information or a simple no-error response.

and all other functions call these basic functions with the appropiate parameters. This not only
decreases the code size, but also allows for easier creation of user-defined functions.

The Dynamixel servos have their own protocol for communication, which you can check in
the communication section of the ROBOTIS manual http://support.robotis.com/en/.
Depending on the servos you are communicating with, you need to transform the half-duplex
UART signal of the Duo (or Photon) unto a TTL signal for some servos (e.g., MX-64T) which can
be done with a tri-state buffer, or use a RS-485 transceiver for servos that use RS-485 bus (e.g.,
MX-64AR).

The DuoDMXL repository includes eagle schematics and board layouts for two types of ’shields’.
The Duo Tri-state Buffer Shield is used for half-duplex communication with TTL levels. It takes
the TX and RX signal from the DUO (or Photon) and the signal of a control pin, and changes it
into communication with only one line of data. The Duo RS-485 Shield is used to communicate
with a RS-485 transceiver. It takes the TX and RX signal from the DUO (or Photon) and the sig-
nal of a control pin and outputs differential communication through the two signals D+ and D-
(also called A and B). The library works equally with both hardware setups.

Prerequisites:

http://support.robotis.com/en/

106 Appendix D. Programming

FIGURE D.1: DuoDMXL Communication Overview
Internal layers of the library. DuoDMXL gives user access to a series of high-level

functions, while hiding low-level communication

FIGURE D.2: Electronic Setup of Duo and servomotors
The pins used for communication with the servos, along an overview of the elec-

trical connections

D.1. Servo communication - DuoDMXL 107

1. Hardware:

• RS-485 transceiver or Tri-state buffer

2. Software dependencies:

• None (as of version 2.0)

Installation: This library is mainly intended to be used with the Arduino IDE. Just download the
source code in DuoDMXL_src\ directory and move it to a new directory
...\documents\Arduino\libraries\DuoDMXL\. The next time you restart the Arduino
IDE, the library DuoDMXL will be detected automatically.

D.1.1 Application Programming Interface (API) and Code of DuoDMXL

DuoDMXL provides an API to the user, allowing for full control of the servos. The documen-
tation can be found in the resources listed at Appendix E.1. The main files of DuoDMXL are:
DuoDMXL.h and DuoDMXL.cpp described in Listing E.2 and Listing E.3, respectively, both lo-
cated in Appendix E.2.1.

109

Appendix E

Resources

Up-to-date information, schematics, and documentations can be found in the following public
repositories.

E.1 Online resources

E.1.1 OPPAS

1. Repository: https://github.com/FabReyesMecha/OPPAS

2. Documentation: https://fabreyesmecha.github.io/OPPAS/

3. GrabCad: https://grabcad.com/library/oppas-open-source-parametric-snake-robot-1

E.1.2 DuoDMXL - Servo Library and Accessories

1. Repository: https://github.com/FabReyesMecha/DuoDMXL

2. Documentation: https://fabreyesmecha.github.io/DuoDMXL/

E.2 Code

E.2.1 DuoDMXL - Servo Library and Accessories

Listing E.1: DuoDMXL API

https://fabreyesmecha.github.io/OPPAS/
https://fabreyesmecha.github.io/DuoDMXL/
https://grabcad.com/library/oppas-open-source-parametric-snake-robot-1
https://github.com/FabReyesMecha/OPPAS
https://github.com/FabReyesMecha/DuoDMXL

Basic functions

This set of functions are intended to w ork behind the scenes .

In other w ords, the user should not have to w orry about them.

They deal w ith low -level communication and are called by other functions.

 int DynamixelClass::readInformation(void)

Information |

:--------- |:----------

Description | General function to read the status package from a servo. It then extracts the error (if any) or desired data (for

example, if the current positon of a servo w as requested)

Notation | Private function. Not available to the user

Parameters | None

Returns | A number representing an error or data

 int DynamixelClass::sendWord(uint8_t ID, uint8_t address, int param, int noParams)

Information |

:--------- |:----------

Description | Function to set the value of a servo's address. noParams should be ONE_BYTE or TWO_BYTES, depending on how

many bytes w e need to send

Notation | Dynamixel.sendWord(ID, address, param, noParams)

Parameters | uint8_t ID: ID of the servo

| uint8_t address: Address to w rite to.

| int param: Value to w rite to the servo's address

| int noParams: Number of bytes to w rite (one or tw o bytes)

Returns | A number representing an error (if any)

 int DynamixelClass::readWord(uint8_t ID, uint8_t address, int noParams)

Information |

:--------- |:----------

Description | Function to read the value of a servo's address. noParams should be ONE_BYTE or TWO_BYTES, depending on

how many bytes w e need

Notation | Dynamixel.readWord(ID, address, noParams)

Parameters | uint8_t ID: ID of the servo

| uint8_t address: Address to read from.

| int noParams: Number of bytes to read (one or tw o bytes)

Returns | A number representing an error (if any) or the desired data

For example, to change the ID of a servo, a new ID should be w ritten to the register's address 0x03.

This can be accomplished quickly and cleanly w ith the follow ing code:

int DynamixelClass::setID(uint8_t ID, uint8_t newID){

 return(sendWord(ID, EEPROM_ID, newID, ONE_BYTE));

}

This should make it easier for the user to w rite custom functions. The hierarchy of the library is show n (simplif ied) in the

follow ing picture.

110 Appendix E. Resources

Functions related to the EEPROM area of the servos

 void DynamixelClass::begin(long baud, uint8_t directionPin)

Information |

:--------- |:----------

Description | Initialize communication w ith the servos w ith a user-defined pin for the data direction control

Notation | Dynamixel.begin(baud, directionPin)

Parameters | long baud: Desired baudrate for communication w ith the servos. For MX-64AR the default baudrate is 1Mbps (if I

remember correctly)

| uint8_t directionPin: direction used for f low control.

Returns | Nothing

 void DynamixelClass::begin(long baud)

Information |

:--------- |:----------

Description | Initialize communication w ith the servos w ith a pre-defined pin (D15) for the data direction control

Notation | Dynamixel.begin(baud)

Parameters | long baud: Desired baudrate for communication w ith the servos.

Returns | Nothing

 void DynamixelClass::end()

Information |

:--------- |:----------

Description | End communication w ith the servos

Notation | Dynamixel.end()

Parameters | None

E.2. Code 111

Returns | Nothing

 int DynamixelClass::readModel(uint8_t ID)

Information |

:--------- |:----------

Description | Function to read the servo model. EEPROM Address 0(x00) and 1(0x01)

Notation | model = Dynamixel.readModel(ID)

Parameters | uint8_t ID: ID of the servo

Returns | ID of the servo

 int DynamixelClass::readFirmware(uint8_t ID)

Information |

:--------- |:----------

Description | Function to read the version of the f irmw are. EEPROM Address 2(0x02)

Notation | fw = Dynamixel.readFirmw are(ID)

Parameters | uint8_t ID: ID of the servo

Returns | Number representing the f irmw are version of the servo

 int DynamixelClass::setID(uint8_t ID, uint8_t newID)

Information |

:--------- |:----------

Description | Function to set the ID of the servo. EEPROM Address 3(0x03)

Notation | Dynamixel.setID(ID, new ID)

Parameters | uint8_t ID: Current ID of the servomotor

| uint8_t new ID: New ID of the servomotor

Returns | Number representing an error (if any)

 int DynamixelClass::readID(uint8_t ID)

Information |

:--------- |:----------

Description | Function to read the ID of the servo. EEPROM Address 3(0x03)

Notation | id = Dynamixel.readID(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Current ID of the servo

 int DynamixelClass::setBD(uint8_t ID, long baudrate)

Information |

:--------- |:----------

Description | Function to set baudrate. EEPROM Address 4(0x04)

Notation | Dynamixel.setBD(ID, baudrate)

Parameters | uint8_t ID: Current ID of the servomotor

| long baudrate: Desired baudrate for communication. Up to 1Mbps (use 1000000) is off icially supported by the servos. This

functions truncates the number so there may be a small error on the f inal value. If you need a precies value, use setBDTable(ID,

baud) w here the follow ing relationship holds: baud = (2000000/baudrate) -1

Returns | Number representing an error (if any)

NOTE: After changing the baudrate you need to restart the serial communication w ith the servos, using the new baudrate. For

example:

 //begin communication with the current baudrate

 Dynamixel.begin(baudrate, dataPin);

112 Appendix E. Resources

 //change baudrate

 Dynamixel.setBD(servoID, newBaudrate);

 //stop communication and restart with the new baudrate

 Dynamixe.end();

 Dynamixel.begin(newBaudrate, datapin);

 int DynamixelClass::setBDTable(uint8_t ID, uint8_t baud)

Information |

:--------- |:----------

Description | Function to set baudrate based on the manual's table. EEPROM Address 4(0x04). This is a more precise value. For

example, for communication at 57600 bps use '34'.

Notation | Dynamixel.setBDTable(ID, baud)

Parameters | uint8_t ID: Current ID of the servomotor

| uint8_t baud: Number from 0 to 255 representing a desired baudrate for communication. The resulting baudrate in bps can be

calculated as: baudrate = 2000000/(baud + 1)

Returns | Number representing an error (if any)

NOTE: After changing the baudrate you need to restart the serial communication w ith the servos, using the new baudrate. See

the previous note and follow ing example:

 unsigned long baudrate = 57600 //Currently, the servos are communicating a 57600 bps

 uint8_t newBaud = 9; //A value of 9 corresponds to 200,000 bps. Check ROBOTIS documentation

 //begin communication with the current baudrate

 Dynamixel.begin(baudrate, dataPin);

 //change baudrate

 Dynamixel.setBDTable(servoID, newBaud);

 //stop communication and restart with the new baudrate

 Dynamixe.end();

 unsigned long baudrate = 2000000/(newBaud+1); //This transforms the value 9 into 200,000

 Dynamixel.begin(baudrate, datapin);

 int DynamixelClass::readBD(uint8_t ID)

Information |

:--------- |:----------

Description | Function to read the setting of the baudrate. EEPROM Address 4(0x04)

Notation | baudrate = Dynamixel.readBD(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Number from 0 to 255 representing the baudrate currently being used

 int DynamixelClass::setRDT(uint8_t ID, uint8_t RDT)

Information |

:--------- |:----------

Description | Set the Return Delay Time (RDT) in microseconds. EEPROM Address 5(0x05)

Notation | Dynamixel.setRDT(ID, RDT)

Parameters | uint8_t ID: Current ID of the servomotor

| uint8_t RDT: Desired RDT value

Returns | Number representing an error (if any)

 int DynamixelClass::readRDT(uint8_t ID)

E.2. Code 113

Information |

:--------- |:----------

Description | Read the Return Delay Time (RDT) value. EEPROM Address 5(0x05)

Notation | rdt = Dynamixel.readRDT(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Current value of RDT

 int DynamixelClass::setCWAngleLimit(uint8_t ID, int limit)

Information |

:--------- |:----------

Description | Set the value for the CW Angle limit. EEPROM Address 6(0x06) and 7(0x07)

Notation | Dynamixel.setCWAngleLimit(ID, limit)

Parameters | uint8_t ID: Current ID of the servomotor

| int limit: Desired limit

Returns | Number representing an error (if any)

 int DynamixelClass::readCWAngleLimit(uint8_t ID)

Information |

:--------- |:----------

Description | Read the value for the CW Angle limit. EEPROM Address 6(0x06) and 7(0x07)

Notation | cw Limit = Dynamixel.readCWAngleLimit(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Angle being used for clockw ise limit of the servo

 int DynamixelClass::setCCWAngleLimit(uint8_t ID, int limit)

Information |

:--------- |:----------

Description | Set the value for the CCW Angle limit. EEPROM Address 8(0x08) and 9(0x09)

Notation | Dynamixel.setCCWAngleLimit(ID, limit)

Parameters | uint8_t ID: Current ID of the servomotor

| int limit: Desired limit

Returns | Number representing an error (if any)

 int DynamixelClass::readCCWAngleLimit(uint8_t ID)

Information |

:--------- |:----------

Description | Read the value for the CCW Angle limit. EEPROM Address 8(0x08) and 9(0x09)

Notation | ccw Limit = Dynamixel.readCCWAngleLimit(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Angle being used for counter-clockw ise limit of the servo

 int DynamixelClass::setTempLimit(uint8_t ID, uint8_t Temperature)

Information |

:--------- |:----------

Description | Set the limit temperature. EEPROM Address 11(0x0B)

Notation | Dynamixel.setTempLimit(ID, Temperature)

Parameters | uint8_t ID: Current ID of the servomotor

| uint8_t Temperature: Temperature that w ill be set as limit. The servo w ill shutdow n if this temperature is reached. Documentation

suggests not modifying the default value.

Returns | Number representing an error (if any)

 int DynamixelClass::readTempLimit(uint8_t ID)

114 Appendix E. Resources

Information |

:--------- |:----------

Description | Read the limit temperature. EEPROM Address 11(0x0B)

Notation | tempLimit = Dynamixel.readTempLimit(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Temperature used as upper limit

 int DynamixelClass::setLowVoltageLimit(uint8_t ID, uint8_t lowVoltage)

Information |

:--------- |:----------

Description | Set the low est voltage limit. EEPROM Address 12(0x0C)

Notation | Dynamixel.setLow VoltageLimit(ID, low Voltage)

Parameters | uint8_t ID: Current ID of the servomotor

| uint8_t low Voltage: Low er bound for voltage limit

Returns | Number representing an error (if any)

 int DynamixelClass::readLowVoltageLimit(uint8_t ID)

Information |

:--------- |:----------

Description | Read the low est voltage limit. EEPROM Address 12(0x0C)

Notation | low VoltageLimit = Dynamixel.readLow VoltageLimit(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Low er bound voltage

 int DynamixelClass::setHighVoltageLimit(uint8_t ID, uint8_t highVoltage)

Information |

:--------- |:----------

Description | Set the highest voltage limit. EEPROM Address 13(0x0D)

Notation | Dynamixel.setHighVoltageLimit(ID, highVoltage)

Parameters | uint8_t ID: Current ID of the servomotor

| uint8_t highVoltage: Upper bound for voltage limit

Returns | Number representing an error (if any)

 int DynamixelClass::readHighVoltageLimit(uint8_t ID)

Information |

:--------- |:----------

Description | Read the highest voltage limit. EEPROM Address 13(0x0D)

Notation | highVoltageLimit = Dynamixel.readHighVoltageLimit(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Upper bound voltage

 int DynamixelClass::setMaxTorque(uint8_t ID, int MaxTorque)

Information |

:--------- |:----------

Description | Set the maximum torque. EEPROM Address 14(0x0E) and 15(0x0F)

Notation | Dynamixel.setMaxTorque(ID, MaxTorque)

Parameters | uint8_t ID: Current ID of the servomotor

| int MaxTorque: Value from [0, 1023] used for maximum output torque.

Returns | Number representing an error (if any)

 int DynamixelClass::readMaxTorque(uint8_t ID)

E.2. Code 115

Information |

:--------- |:----------

Description | Read the maximum torque. EEPROM Address 14(0x0E) and 15(0x0F)

Notation | maxTorque = Dynamixel.readMaxTorque(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Value from [0, 1023] representing the maximum output torque currently used.

 int DynamixelClass::setSRL(uint8_t ID, uint8_t SRL)

Improved functionality in DuoDMXL v.0.3.

Information |

:--------- |:----------

Description | Set the Status Return Level. EEPROM Address 16(0x10)

Notation | Dynamixel.setSRL(ID, SRL)

Parameters | uint8_t ID: Current ID of the servomotor

| uint8_t SRL: 0, 1, or 2 for 'no return against all commands', 'return only for the READ command', or 'Return for all commands',

respectively.

Returns | Number representing an error (if any)

As of DuoDMXL v.0.3 the user can choose any SRL.

How ever, DuoDMXL assumes on reset that all servos have the same SRL and ALL communications return a package (i.e.,

 SRL=2).

If you changed the value of SRL on a previous session, there may be problems w ith the communication, since the value of SRL is

w ritten in the EEPROM memory of the servos.

If you are having troubles w ith communication use:

 Dynamixel.begin(baud, dataPin);

 delay(500);

 Dynamixel.setSRL(254, 2);

at the beginning of your program to set all servos to 'Return for all commands'.

NOTE: 254 is the broadcast ID. Any command is sent to all servos.

 int DynamixelClass::readSRL(uint8_t ID)

Information |

:--------- |:----------

Description | Read the Status Return Level value. EEPROM Address 16(0x10)

Notation | srl = Dynamixek.readSRL(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Actual value of the SRL address

 int DynamixelClass::setAlarmLED(uint8_t ID, uint8_t alarm)

Information |

:--------- |:----------

Description | Set Alarm LED. EEPROM Address 17(0x11)

Notation | Dynamixel.setAlarmLED(ID, alarm)

Parameters | uint8_t ID: Current ID of the servomotor

| uint8_t alarm: The servo's LED w ill blink if an error occurs

Returns | Number representing an error (if any)

 int DynamixelClass::readAlarmLED(uint8_t ID)

116 Appendix E. Resources

Information |

:--------- |:----------

Description | Read Alarm LED value. EEPROM Address 17(0x11)

Notation | alarm = Dynamixel.readAlarmLED(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Actual value of the alarm address

 int DynamixelClass::setShutdownAlarm(uint8_t ID, uint8_t SALARM)

Information |

:--------- |:----------

Description | Set Shutdow n alarm. EEPROM Address 18(0x12)

Notation | Dynamixel.setShutdow nAlarm(ID, SALARM)

Parameters | uint8_t ID: Current ID of the servomotor

| uint8_t SALARM: Check the documentation. Depending on the value sent, the servo w ill output a 0% torque if an alarm is

activated. By default the value is 36 (0x24) w hich in binary is '0010 0100', meaning overload+overheating error.

Returns | Number representing an error (if any)

 int DynamixelClass::readShutdownAlarm(uint8_t ID)

Information |

:--------- |:----------

Description | Read Shutdow n alarm value. EEPROM Address 18(0x12)

Notation | alarm = Dynamixel.readShutdow nAlarm(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Read the value of the alarm address to verify if an alarm w as activated

 int DynamixelClass::setMultiTurnOffset(uint8_t ID, int offset)

Information |

:--------- |:----------

Description | Set the multi-turn offset values. EEPROM ADDRESS: 20(0x14) and 21(0x15)

Notation | Dynamixel.setMultiTurnOffset(ID, offset)

Parameters | uint8_t ID: Current ID of the servomotor

| int offset: Angle used for servo's offset in multi-turn mode

Returns | Number representing an error (if any)

 int DynamixelClass::readMultiTurnOffset(uint8_t ID)

Information |

:--------- |:----------

Description | Read the multi-turn offset values. EEPROM ADDRESS: 20(0x14) and 21(0x15)

Notation | offset = Dynamixel.readMultiTurnOffset(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Read the actual offset being used for multi-turn mode

 int DynamixelClass::setResolutionDivider(uint8_t ID, uint8_t divider)

Information |

:--------- |:----------

Description | Set the resolution divider value. EEPROM ADDRESS: 22(0x16)

E.2. Code 117

Notation | Dynamixel.setResolutionDivider(ID, divider)

Parameters | uint8_t ID: Current ID of the servomotor

| uint8_t divider: Divider for the servo's angle. By default divider=1

Returns | Number representing an error (if any)

 int DynamixelClass::readResolutionDivider(uint8_t ID)

Information |

:--------- |:----------

Description | Read the resolution divider value. EEPROM ADDRESS: 22(0x16)

Notation | divider = Dynamixel.readResolutionDivider(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Actual value used for the servo's divider

Functions related to the RAM area of the servos

 int DynamixelClass::torqueEnable(uint8_t ID, bool Status)

Information |

:--------- |:----------

Description | Function to turn ON or OFF torque. RAM Address 24(0x18)

Notation | Dynamixel.torqueEnable(ID, Status)

Parameters | uint8_t ID: Current ID of the servomotor

| bool Status: True or False for enabling or disabling torque, respectively.

Returns | Number representing an error (if any)

 int DynamixelClass::torqueEnableStatus(uint8_t ID)

Information |

:--------- |:----------

Description | Function to check if the servo generates torque. RAM Address 24(0x18)

Notation | status = Dynamixel.torqueEnableStatus(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | 1 if torque is enabled. 0 if disabled

 int DynamixelClass::ledStatus(uint8_t ID, bool Status)

Information |

:--------- |:----------

Description | Function to turn ON or OFF the servo's LED. RAM Address 25(0x19)

Notation | Dynamixel.ledStatus(ID, Status)

Parameters | uint8_t ID: Current ID of the servomotor

| bool Status: True or False for enabling or disabling the LED, respectively. I do not provide a function to read this register, so

visual confirmation should be used.

Returns | Number representing an error (if any)

 int DynamixelClass::setGainD(uint8_t ID, int gain)

Information |

:--------- |:----------

Description | Function to set the value of the Derivative gain. RAM Address 26(0x1A)

Notation | Dynamixel.setGainD(ID, gain)

Parameters | uint8_t ID: Current ID of the servomotor

| int gain: Number [0,254] used for the Derivative gain of the servo. Related to the servo's PID control

Returns | Number representing an error (if any)

118 Appendix E. Resources

 int DynamixelClass::readGainD(uint8_t ID)

Information |

:--------- |:----------

Description | Function to read the value of the Derivative gain. RAM Address 26(0x1A)

Notation | gainD = Dynamixel.readGainD(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Derivative gain

 int DynamixelClass::setGainI(uint8_t ID, int gain)

Information |

:--------- |:----------

Description | Function to set the value of the Integral gain. RAM Address 27(0x1B)

Notation | Dynamixel.setGainI(ID, gain)

Parameters | uint8_t ID: Current ID of the servomotor

| int gain: Number [0,254] used for the Integral gain of the servo. Related to the servo's PID control

Returns | Number representing an error (if any)

 int DynamixelClass::readGainI(uint8_t ID)

Information |

:--------- |:----------

Description | Function to read the value of the Integral gain. RAM Address 27(0x1B)

Notation | gainI = Dynamixel.readGainI(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Integral gain

 int DynamixelClass::setGainP(uint8_t ID, int gain)

Information |

:--------- |:----------

Description | Function to set the value of the Proportional gain. RAM Address 28(0x1C)

Notation | Dynamixel.setGainP(ID, gain)

Parameters | uint8_t ID: Current ID of the servomotor

| int gain: Number [0,254] used for the Proportional gain of the servo. Related to the servo's PID control

Returns | Number representing an error (if any)

 int DynamixelClass::readGainP(uint8_t ID)

Information |

:--------- |:----------

Description | Function to read the value of the Proportional gain. RAM Address 28(0x1C)

Notation | gainP = Dynamixel.readGainP(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Proportional gain

 int DynamixelClass::move(uint8_t ID, int Position)

Information |

:--------- |:----------

Description | Function to move servo to a specif ic position. RAM Address 30(0x1E) and 31(0x1F)

Notation | Dynamixel.move(ID, Position)

Parameters | uint8_t ID: Current ID of the servomotor

| int Position: Number [0,4095] representing the desired position. The unit is about 0.088 degrees

Returns | Number representing an error (if any)

E.2. Code 119

 int DynamixelClass::setMovingSpeed(uint8_t ID, int speed)

Information |

:--------- |:----------

Description | Function to set the desired moving speed. RAM Address 32(0x20) and 33(0x21)

Notation | Dynamixel.setMovingSpeed(ID, speed)

Parameters | uint8_t ID: Current ID of the servomotor

| int speed: Number [0,1023] representing moving speed. The unit is about 0.114 rpm.

Returns | Number representing an error (if any)

 int DynamixelClass::readMovingSpeed(uint8_t ID)

Information |

:--------- |:----------

Description | Function to read the desired moving speed. RAM Address 32(0x20) and 33(0x21)

Notation | speed = Dynamixel.readMovingSpeed(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Moving speed value in the register

 int DynamixelClass::setTorqueLimit(uint8_t ID, int torque)

Information |

:--------- |:----------

Description | Function to set the value of the goal torque. RAM Address 34(0x22) and 35(0x23)

Notation | Dynamixel.setTorqueLimit(ID, torque)

Parameters | uint8_t ID: Current ID of the servomotor

| int torque: Number [0,1023] used for torque limit. The servo w ill not exert a higher torque. According to documentation, if the

motor is disabled due to activating an alarm, this register w ill be set to 0. To re-enable the servo set a non-zero value. When the

motor is turned on, the torque limit w ill take the value currently w ritten in the EEPROM address 0x0E. Check the function

setMaxTorque() if you w ant to change this value.

Returns | Number representing an error (if any)

 int DynamixelClass::readTorqueLimit(uint8_t ID)

Information |

:--------- |:----------

Description | Function to read the value of the goal torque. RAM Address 34(0x22) and 35(0x23)

Notation | torqueLimit = readTorqueLimit(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Torque limit value [0,1023]

 int DynamixelClass::readPosition(uint8_t ID)

Information |

:--------- |:----------

Description | Read the actual position. RAM Address 36(0x24) and 37(0x25)

Notation | pos = Dynamixel.readPosition(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | The actual position of the servo

 int DynamixelClass::readSpeed(uint8_t ID)

Information |

:--------- |:----------

Description | Read the actual speed. RAM Address 38(0x26) and 39(0x27)

Notation | speed = Dynamixel.readSpeed(ID)

Parameters | uint8_t ID: Current ID of the servomotor

120 Appendix E. Resources

Returns | The actual speed of the servo (possible values [0,2047]). [0,1023] correspond to CCW and [1024,2047] to CW speeds,

respectively. In other w ords, the magnitude is given by the f irst nine bits [0,1023] and the tenth bit denotes the direction.

 int DynamixelClass::readLoad(uint8_t ID)

Information |

:--------- |:----------

Description | Read the load. RAM Address 40(0x28) and 41(0x29)

Notation | load = Dynamixel.readLoad(ID)

Parameters | uint8_t ID: Current ID of the servomotor

| Reads the currently applied load. How ever, according to documentation, this value is inferred from the internal torque value and

should not be used for accurate torque measurement. It is better to read the current.

Returns | The currently applied load. If the load is CCW the value w ill be [0,1023] and of CW then [1024,2047]

 int DynamixelClass::readVoltage(uint8_t ID)

Information |

:--------- |:----------

Description | Function to read the voltage. RAM Address 42(0x2A)

Notation | voltage = Dynamixel.readVoltage(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | (10 times) The actual voltage

 int DynamixelClass::readTemperature(uint8_t ID)

E.2. Code 121

Information |

:--------- |:----------

Description | Function to read the Temperature. RAM Address 43(0x2B)

Notation | temp = Dynamixel.readTemperature(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Actual temperature of the servo (Celsius degrees)

 int DynamixelClass::registeredStatus(uint8_t ID)

Information |

:--------- |:----------

Description | Check if there is an instruction registered. RAM Address 44(0x2C)

Notation | status = Dyunamixel.registeredStatus(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | 0 if there are no commands registered, and 1 otherw ise

 int DynamixelClass::moving(uint8_t ID)

Information |

:--------- |:----------

Description | Check if goal position command is being executed (Address 0x30?). RAM Address 46(0x2E)

Notation | moving = Dynamixel.moving(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | 0 if the servo is not moving and 1 if otherw ise

 int DynamixelClass::lockEEPROM(uint8_t ID)

Information |

:--------- |:----------

Description | Locks the EEPROM area. RAM Address 47(0x2F). Pow er must be turned off to reset it

Notation | Dynamixel.lockEEPROM(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Number representing an error (if any)

 int DynamixelClass::setPunch(uint8_t ID, int Punch)

Information |

:--------- |:----------

Description | RAM Address 48(0x30) and 49(0x31). Honestly, I do not understand this feature even after reading the

documentation

Notation | Dynamixel.setPunch(ID, Punch)

Parameters | uint8_t ID: Current ID of the servomotor

| int Punch: number [0,1023]

Returns | Number representing an error (if any)

 int DynamixelClass::readPunch(uint8_t ID)

Information |

:--------- |:----------

Description | Reads the value of RAM Address 48(0x30) and 49(0x31). See the note in setPunch()
Notation | punch = Dynamixel.readPunch(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | punch

 int DynamixelClass::readCurrent(uint8_t ID)

Information |

122 Appendix E. Resources

:--------- |:----------

Description | Function to read the current. RAM ADDRESS: 68(0x44) and 69(0x45)

Notation | current = Dynamixel.readCurrent(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Actual current running through the servo

TODO: Add picture

 int DynamixelClass::torqueControl(uint8_t ID, bool enable)

Information |

:--------- |:----------

Description | Torque control mode enable. RAM ADDRESS: 70(0x46). The servo can run continuously trying to achieve the desired

(goal) torque. See setGoalTorque(). When torque mode is enabled, you can no longer control the servo's positon.

Notation | Dynamixel.torqueControl(ID, enable)

Parameters | uint8_t ID : Current ID of the servomotor

| bool enable: True for enabling and False for disabling

Returns | Number representing an error (if any)

 int DynamixelClass::readTorqueControl(uint8_t ID)

Information |

:--------- |:----------

Description | Read the Torque control mode status. RAM ADDRESS: 70(0x46)

Notation | status = Dynamixel.readTorqueControl(ID)

Parameters | uint8_t ID : Current ID of the servomotor

Returns | 1 if torque mode is enabled and 0 otherw ise

 int DynamixelClass::setGoalTorque(uint8_t ID, int torque)

Information |

:--------- |:----------

Description | Function to set the goal torque. RAM ADDRESS: 71(0x47) and 72(0x48). In reality you are setting a desired current

and the torque w ill be proportional

Notation | Dynamixel.setGoalTorque(ID, torque)

Parameters | uint8_t ID : Current ID of the servomotor

| int torque: [0,1023] for CCW torque and [1024,2047] for CW. The unit is 4.5 [mA]. The goal torque value cannot be bigger than the

torque limit value

Returns | Number representing an error (if any)

E.2. Code 123

 int DynamixelClass::setGoalAccel(uint8_t ID, uint8_t accel)

Information |

:--------- |:----------

Description | Function to set goal acceleration/ RAM ADDRESS: 73(0x49)

Notation | Dynamixel.setGoalAccel(ID, accel)

Parameters | uint8_t ID : Current ID of the servomotor

| uint8_t accel: desired acceleration [0,254]

Returns | Number representing an error (if any)

Custom Functions

These functions build upon the previous ones to provide more advanced functionality.

In particular there are several functions in order to f ind your connected servo in case you don't know its ID or the baudrate it is

communicating w ith.

This is very useful for debugging new code that may overw rite a register accidentaly.

For example, if you can' remember your servo's ID or don't know the baudrate it is using, and you do not have the USB2Dynamixel

product to debug your servo, then you can use this functions to f ind it.

Needless to say, I w rote these functions because at some point I accidentally changed the servo's ID and baudrate to an

unknow n value and couldn't communicate w ith it.

Connect only one servo to f ind it.

 void DynamixelClass::configureServo(uint8_t ID, uint8_t newID, long baud)

Information |

:--------- |:----------

Description | Configure both ID and Baudrate of the servo

Notation | Dynamixel.configureServo(ID, new ID, baud)

Parameters | uint8_t ID : Current ID of the servomotor

| uint8_t new ID : New ID for the servomotor

| long baud : New baudrate for communication

Returns | Nothing

 void DynamixelClass::setAngleLimit(uint8_t ID, int CWLimit, int CCWLimit)

124 Appendix E. Resources

Information |

:--------- |:----------

Description | Set both angle limits

Notation | Dynamixel.setAngleLimit(ID, CWLimit, CCWLimit)

Parameters | uint8_t ID : Current ID of the servomotor

| int CWLimit: Clockw ise limit for the servo

| int CCWLimit: Counter-clockw ise limit for the servo

Returns | Nothing

 void DynamixelClass::setWheelMode(uint8_t ID, bool enable)

Information |

:--------- |:----------

Description | Function to set both limits to 0. The servo is functioning in w heel mode

Notation | Dynamixel.setWheelMode(ID, enable)

Parameters | uint8_t ID: Current ID of the servomotor

| bool enable: Enables or disables servo's w heel mode. If disabled, the servo defaults to the usual [0,4095] range of motion

Returns | Nothing

 void DynamixelClass::setJointMode(uint8_t ID)

Information |

:--------- |:----------

Description | Function to set the servo as joint mode. Equivalent to setWheelMode(ID, false)

Notation | Dynamixel.setJointMode(ID)

Parameters | uint8_t ID: Current ID of the servomotor

Returns | Nothing

 void DynamixelClass::setDIP(uint8_t ID, int gainD, int gainI, int gainP)

Information |

:--------- |:----------

Description | Function to set all gains. Be careful w ith the order

Notation | Dynamixel.setDIP(ID, gainD, gainI, gainP)

Parameters | uint8_t ID : Current ID of the servomotor

| int gainD: Derivative gain

| int gainI: Integral gain

| int gainP: Proportional gain

Returns | Nothing

 int DynamixelClass::findByBaudRate(long baudRate)

Information |

:--------- |:----------

Description | Function to f ind the ID of the servo, if you have the correct baudrate. Assume begin() has been called

Notation | foundID = Dynamixel.f indByBaudRate(baudRate)

Parameters | long baudRate: baudrate used for communication

Returns | Found ID of the servo. If no servo is found (meaning you have the incorrect baudrate) then the value returned is -1

 int DynamixelClass::findByID(uint8_t id, uint8_t directionPin)

Information |

:--------- |:----------

Description | Function to f ind the baudrate to communicate w ith the servo, if you have the correct ID. Assume begin() has NOT

been called

Notation | Dynamixel.f indByID(id, directionPin)

Parameters | uint8_t id: Current id of the servomotor. This function assumes the ID is correct and you are only trying to f ind the

E.2. Code 125

correct baudrate

| uint8_t directionPin: The pin used for data f low control.

Returns | The baudrate (table value [0,255]) representing the baudrate. Returns -1 if the servo w as not found

 void DynamixelClass::findServo(uint8_t directionPin)

Information |

:--------- |:----------

Description | Find the servo w ithout having any information. Assume begin() has NOT been called. The function doesn't return

anything but prints the result to the terminal (Use the Arduino IDE built in terminal monitor). This is the last resort to f ind your servo

info. Since it tries all baudrates and IDs, it may take a w hile

Notation | Dynamixel.f indServo(directionPin)

Parameters | uint8_t directionPin: Pin used for f low control

Returns | Nothing. Check the output in the terminal

 void DynamixelClass::changeTimeOut(uint8_t newTimeOut)

Introduced in DuoDMXL v.0.3.

Information |

:--------- |:----------

Description | Change time out period (w aiting time for status package). Unit is [ms]. The maximum value is 255. The default value is

50[ms]

Notation | Dynamixel.changeTimeOut(new TimeOut)

Parameters | uint8_t new TimeOut: New time out period

Returns | Nothing

 void DynamixelClass::changeCoolDown(uint16_t newCoolDown)

Introduced in DuoDMXL v.0.3.

Information |

:--------- |:----------

Description | Change cool dow n period (time betw een sending commands). Unit is [ms]. The maximum value is 65,535 (i.e., 65.535

seconds). The default value is 0[ms]

Notation | Dynamixel.changeCoolDow n(new CoolDow n)

Parameters | uint16_t new CoolDow n: New cool dow n period

Returns | Nothing

126 Appendix E. Resources

E.2. Code 127

Listing E.2: DuoDMXL.h

/*
DuoDMXL v2.0

MX-64AR Half Duplex USART/RS-485 Communication Library

Target Boards:

Redbear Duo

Particle Photon (not tested)

Arduino Leonardo

or any other board with two hardware serial ports (soft serial not

tested)

DuoDMXL.h:

Definitions of constants and methods for class DynamixelClass

Initially based on Savage’s DynamixelSerial Library

http://savageelectronics.blogspot.jp/2011/01/arduino-y-dynamixel-ax

-12.html

Copyright(c) 2016 Fabian Eugenio Reyes Pinner

Created by Fabian E. Reyes Pinner on 2016-06-01 (August 1st, 2016)

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU Lesser General Public License as published

by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef DuoDMXL_h

#define DuoDMXL_h

128 Appendix E. Resources

// EEPROM AREA

///

#define EEPROM_MODEL_NUMBER_L 0

#define EEPROM_MODEL_NUMBER_H 1

#define EEPROM_VERSION 2

#define EEPROM_ID 3

#define EEPROM_BAUD_RATE 4

#define EEPROM_RETURN_DELAY_TIME 5

#define EEPROM_CW_ANGLE_LIMIT_L 6

#define EEPROM_CW_ANGLE_LIMIT_H 7

#define EEPROM_CCW_ANGLE_LIMIT_L 8

#define EEPROM_CCW_ANGLE_LIMIT_H 9

#define EEPROM_LIMIT_TEMPERATURE 11

#define EEPROM_DOWN_LIMIT_VOLTAGE 12

#define EEPROM_UP_LIMIT_VOLTAGE 13

#define EEPROM_MAX_TORQUE_L 14

#define EEPROM_MAX_TORQUE_H 15

#define EEPROM_RETURN_LEVEL 16

#define EEPROM_ALARM_LED 17

#define EEPROM_ALARM_SHUTDOWN 18

#define EEPROM_TURN_OFFSET_L 20 //MX-64

#define EEPROM_TURN_OFFSET_H 21 //MX-64

#define EEPROM_RESOLUTION_DIV 22 //MX-64

// RAM AREA //

#define RAM_TORQUE_ENABLE 24

#define RAM_LED 25

#define RAM_CW_COM_MAR 26 //AX-12

#define RAM_CCW_COM_MAR 27 //AX-12

#define RAM_CW_COM_SLOPE 28 //AX-12

#define RAM_CCW_COM_SLOPE 29 //AX-12

#define RAM_D_GAIN 26 //MX-64

#define RAM_I_GAIN 27 //MX-64

#define RAM_P_GAIN 28 //MX-64

#define RAM_GOAL_POSITION_L 30

#define RAM_GOAL_POSITION_H 31

#define RAM_GOAL_SPEED_L 32

#define RAM_GOAL_SPEED_H 33

#define RAM_TORQUE_LIMIT_L 34

#define RAM_TORQUE_LIMIT_H 35

#define RAM_PRESENT_POSITION_L 36

#define RAM_PRESENT_POSITION_H 37

#define RAM_PRESENT_SPEED_L 38

#define RAM_PRESENT_SPEED_H 39

#define RAM_PRESENT_LOAD_L 40

#define RAM_PRESENT_LOAD_H 41

#define RAM_PRESENT_VOLTAGE 42

#define RAM_PRESENT_TEMPERATURE 43

E.2. Code 129

#define RAM_REGISTERED_INSTRUCTION 44

#define RAM_MOVING 46

#define RAM_LOCK 47

#define RAM_PUNCH_L 48

#define RAM_PUNCH_H 49

#define RAM_CURRENT_L 68 //MX-64

#define RAM_CURRENT_H 69 //MX-64

#define RAM_TORQUE_CONTROL 70 //MX-64

#define RAM_GOAL_TORQUE_L 71 //MX-64

#define RAM_GOAL_TORQUE_H 72 //MX-64

#define RAM_GOAL_ACCEL 73 //MX-64

// Status Return Levels

///

#define RETURN_NONE 0

#define RETURN_READ 1

#define RETURN_ALL 2

// Instruction Set

///

#define DMXL_PING 1

#define DMXL_READ_DATA 2

#define DMXL_WRITE_DATA 3

#define DMXL_REG_WRITE 4

#define DMXL_ACTION 5

#define DMXL_RESET 6

#define DMXL_SYNC_WRITE 131 //0x83

#define DMXL_BULK_READ 146 //0x92

// Specials ///

#define OFF 0

#define ON 1

#define DMXL_GOAL_SP_LENGTH 7

#define DMXL_ACTION_CHECKSUM 250

#define BROADCAST_ID 254

#define DMXL_START 255

#define Tx_MODE 1

#define Rx_MODE 0

//Length of commands

#define LENGTH_READ 4 //All read functions requiere only a length

of 4 (Instruction + command adress + length of data + checksum)

#define LENGTH_ACTION 2 //Action only requires a length of 2 (

Instruction + checksum)

#define LENGTH_PING 2 //Ping only requires a length of 2 (

Instruction + checksum)

#define LENGTH_RESET 2 //Reset only requires a length of 2 (

Instruction + checksum)

130 Appendix E. Resources

#define ONE_BYTE 1

#define TWO_BYTES 2

#include <inttypes.h>

#include <math.h>

#if defined(ARDUINO) && ARDUINO >= 100 // Arduino IDE Version

#include "Arduino.h"

#else

#include "WProgram.h"

#endif

class DynamixelClass {

private:

// ---------------------------Platform-dependent pins

#if (PLATFORM_ID==88) || defined(SPARK)

uint8_t _directionPin = D15; //For Duo or Photon

#else

uint8_t _directionPin = 4; //For Leonardo

#endif

// ---------------------------Message Structure

static const uint8_t MIN_RETURN_LEN = 5; //Minimum length of return

package {0xFF, 0xFF, ID, lengthMessage, Error_Byte, checksum}

uint8_t Incoming_Byte, dataLSB, dataMSB, Checksum;

int Error_Byte, data;

// ---------------------------Buffers

uint8_t PACKAGE[64] = {};

uint8_t RESPONSE[64]= {};

uint8_t statusReturnLevel = RETURN_ALL; //Status return level. (

default)2: Return for all commands. 1: Return only for the READ

command. 0: No return (except PING)

// ---------------------------Error definitions. Use negative values.

static const int NO_ERROR = 0;

static const int NO_SERVO_RESPONSE = -1;

static const int LENGTH_INCORRECT = -2;

// ---------------------------Variables regarding performance of

DuoDMXL

long _baudrateDMXL = 0; //Current baudrate used with the servos

static const uint16_t USBSERIAL_TIMEOUT = 2000; //Waiting time [ms]

after Serial.begin() with PC. It allows the device to be recognized

properly

E.2. Code 131

static const uint16_t DMXLSERIAL_TIMEOUT = 500; //Waiting time [ms]

after Serial1.begin() with servos

uint8_t TIME_OUT = 50; //Waiting time (milliseconds) for the

incomming data from servomotor. Recommended value:50

uint16_t COOL_DOWN = 0; //Cool down period (milliseconds) before

sending another command to the dynamixel servomotor

// ---------------------------flags

bool _response_within_timeout = true; //Assume every byte of the

response is within time

// ---------------------------Communication related functions

int readInformation(void);

bool waitData(int, int);

bool waitData(int);

bool waitData();

public:

// ---------------------------General functions

int sendWord(uint8_t ID, uint8_t address, int params, int noParams,

uint8_t instruction);

int sendWords(uint8_t IDs[], uint8_t noIDs, uint8_t address, int

params[], int noParams);

int readWord(uint8_t ID, uint8_t address, int noParams);

void readWords(uint8_t IDs[], uint8_t noIDs, uint8_t address, int

noParams, int *response);

void begin(long baud, uint8_t directionPin);

void begin(long baud);

void end(void);

int reset(uint8_t ID);

int ping(uint8_t ID);

void action(uint8_t ID);

// ---------------------------EEPROM Area Instructions

int readModel(uint8_t ID);

int readFirmware(uint8_t ID);

int setID(uint8_t ID, uint8_t newID);

int readID(uint8_t ID);

int setBD(uint8_t ID, long baud);

int setBDTable(uint8_t ID, uint8_t baud);

int readBD(uint8_t ID);

int setRDT(uint8_t ID, uint8_t RDT);

132 Appendix E. Resources

int readRDT(uint8_t ID);

int setCWAngleLimit(uint8_t ID, int limit);

int readCWAngleLimit(uint8_t ID);

int setCCWAngleLimit(uint8_t ID, int limit);

int readCCWAngleLimit(uint8_t ID);

int setTempLimit(uint8_t ID, uint8_t Temperature);

int readTempLimit(uint8_t ID);

int setLowVoltageLimit(uint8_t ID, uint8_t lowVoltage);

int readLowVoltageLimit(uint8_t ID);

int setHighVoltageLimit(uint8_t ID, uint8_t highVoltage);

int readHighVoltageLimit(uint8_t ID);

int setMaxTorque(uint8_t ID, int MaxTorque);

int readMaxTorque(uint8_t ID);

int setSRL(uint8_t ID, uint8_t SRL);

int readSRL(uint8_t ID);

int setBoardSRL(uint8_t SRL);

int setAlarmLED(uint8_t ID, uint8_t alarm);

int readAlarmLED(uint8_t ID);

int setShutdownAlarm(uint8_t ID, uint8_t SALARM);

int readShutdownAlarm(uint8_t ID);

int setMultiTurnOffset(uint8_t ID, int offset);

int readMultiTurnOffset(uint8_t ID);

int setResolutionDivider(uint8_t ID, uint8_t divider);

int readResolutionDivider(uint8_t ID);

// ---------------------------RAM Area Instructions

int torqueEnable(uint8_t ID, bool Status);

int torqueEnableStatus(uint8_t ID);

int ledStatus(uint8_t ID, bool Status);

int setGainD(uint8_t ID, int gain);

int readGainD(uint8_t ID);

int setGainI(uint8_t ID, int gain);

int readGainI(uint8_t ID);

int setGainP(uint8_t ID, int gain);

int readGainP(uint8_t ID);

int move(uint8_t ID, int Position);

int move(uint8_t IDs[], uint8_t noIDs, int Positions[]);

//int moveSpeed(uint8_t ID, int Position, int Speed);

int setMovingSpeed(uint8_t ID, int speed);

int readMovingSpeed(uint8_t ID);

int setTorqueLimit(uint8_t ID, int torque);

int readTorqueLimit(uint8_t ID);

int readPosition(uint8_t ID);

void readPosition(uint8_t IDs[], uint8_t noIDs, int *positions);

int readSpeed(uint8_t ID);

int readLoad(uint8_t ID);

int readVoltage(uint8_t ID);

E.2. Code 133

int readTemperature(uint8_t ID);

int registeredStatus(uint8_t ID);

int moving(uint8_t ID);

int lockEEPROM(uint8_t ID);

int setPunch(uint8_t ID, int Punch);

int readPunch(uint8_t ID);

int readCurrent(uint8_t ID);

int torqueControl(uint8_t ID, bool enable);

int readTorqueControl(uint8_t ID);

int setGoalTorque(uint8_t ID, int torque);

int setGoalAccel(uint8_t ID, uint8_t accel);

// ---------------------------Custom functions

int setAng(uint8_t ID, float angle);

int setAng(uint8_t ID, float angle, char unit);

void setDirectionPin(uint8_t pin);

uint8_t getDirectionPin();

void setBaudrateDMXL(long baud);

long getBaudrateDMXL();

void configureServo(uint8_t ID, uint8_t newID, long baud);

void setAngleLimit(uint8_t ID, int CWLimit, int CCWLimit);

void setWheelMode(uint8_t ID, bool enable);

void setJointMode(uint8_t ID);

void setDIP(uint8_t ID, int gainD, int gainI, int gainP);

int findByBaudRate(long baudRate);

int findByID(uint8_t id, uint8_t directionPin);

void findServo(uint8_t directionPin);

void changeTimeOut(uint8_t newTimeOut);

void changeCoolDown(uint16_t newCoolDown);

void servoIntroduction(uint8_t ID);

// ---------------------------Multi-compatibility functions

void sendData(uint8_t);

void sendDataBuff(uint8_t*, uint8_t);

int availableData(void);

uint8_t readData(void);

uint8_t peekData(void);

void beginCom(long);

void endCom(void);

void serialFlush(void);

void delayms(unsigned int);

void delayus(unsigned int);

};

extern DynamixelClass Dynamixel;

134 Appendix E. Resources

#endif //DuoDMXL_h

Listing E.3: DuoDMXL.cpp

/*
DuoDMXL v2.0

MX-64AR Half Duplex USART/RS-485 Communication Library

Target Boards:

Redbear Duo

Particle Photon (not tested)

Arduino Leonardo

or any other board with two hardware serial ports (soft serial not

tested)

DuoDMXL.h:

Definitions of constants and methods for class DynamixelClass

Initially based on Savage’s DynamixelSerial Library

http://savageelectronics.blogspot.jp/2011/01/arduino-y-dynamixel-ax

-12.html

Copyright(c) 2016 Fabian Eugenio Reyes Pinner

Created by Fabian E. Reyes Pinner on 2016-06-01 (August 1st, 2016)

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU Lesser General Public License as published

by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

#include "DuoDMXL.h"

E.2. Code 135

// Macro for Comunication Flow Control

#if (PLATFORM_ID==88) || defined(SPARK)

#define setDPin(DirPin,Mode) (pinMode(DirPin,Mode)) // Select the

Switch to TX/RX Mode Pin

#define switchCom(DirPin,Mode) (digitalWrite(DirPin,Mode)) // Switch

to TX/RX Mode

#define printPC(value) (Serial.print(value)) // Print to the PC

#define printlnPC(value) (Serial.println(value)) // Print to the PC

#else

#define setDPin(DirPin,Mode) (pinMode(DirPin,Mode)) // Select the

Switch to TX/RX Mode Pin

#define switchCom(DirPin,Mode) (digitalWrite(DirPin,Mode)) // Switch

to TX/RX Mode

#define printPC(value) (Serial.print(value)) // Print to the PC

#define printlnPC(value) (Serial.println(value)) // Print to the PC

#endif

// Private Methods

//

//General function to read the status package from the servo

int DynamixelClass::readInformation(void)

{

unsigned long startTime = millis();

int processTime, lengthMessage, dataLength;

//Reset flag

_response_within_timeout = true;

//Reset the buffer

memset(RESPONSE, 0, 64);

//DuoDMXL v.1.6. Do nothing until we have the start bytes, ID, length

of the message (four bytes). Even at 9600bps, it should take around

3.33[ms] for the four bytes to arrive

waitData(4, (int) TIME_OUT);

//DuoDMXL v.1.0+. Only proceed if there was no problem in the

communication

while ((availableData() > 0) && _response_within_timeout){

Incoming_Byte = readData(); //First byte of the header

//For now, DuoDMXL assumes there are no problems in the rest of

the communication

if ((Incoming_Byte == 255) && (peekData() == 255)){

//Fill buffer for debugging

RESPONSE[0] = Incoming_Byte;

136 Appendix E. Resources

RESPONSE[1] = readData(); //Second byte of the header

RESPONSE[2] = readData(); //Dynamixel ID

RESPONSE[3] = lengthMessage = readData(); //Length of

the message

dataLength = lengthMessage-2;

waitData((int) TIME_OUT); //Do nothing until the

next byte is in the buffer

RESPONSE[4] = Error_Byte = readData(); //Error

if(dataLength == 0){

data = Error_Byte; //No data is returned.

Send Error_Byte. This is the common response when

sending commands

}

else if(dataLength == 1){

waitData((int) TIME_OUT);

dataLSB = readData(); //LSB of the data

data = (int) dataLSB;

RESPONSE[5] = dataLSB;

}

else if(dataLength == 2){

waitData(1, TIME_OUT);

dataLSB = readData(); //LSB of the data

dataMSB = readData(); //MSB of the data

data = dataMSB << 8;

data = data + dataLSB;

RESPONSE[5] = dataLSB;

RESPONSE[6] = dataMSB;

}

else{

data = LENGTH_INCORRECT; //The length was not

correct or there was some problem

}

waitData((int) TIME_OUT);

RESPONSE[MIN_RETURN_LEN + dataLength] = readData(); //

checksum

delayms(COOL_DOWN);

return (data);

}

}

E.2. Code 137

//If there was a TIME_OUT and not enough bytes, there was an error in

communication

delayms(COOL_DOWN);

return (NO_SERVO_RESPONSE); // No servo Response

}

//Wait for a certain number of bytes ’length’, for a certain amount of time

’timeLimit’ [ms]

bool DynamixelClass::waitData(int length, int timeLimit){

unsigned long startTime = millis();

int processTime;

bool response_within_timeout = true;

while((availableData() <=length) && response_within_timeout){

processTime = (int) millis();

processTime = processTime - startTime; //time since this function

started

response_within_timeout = (bool) (processTime <= timeLimit); //is the

communication within the allowed time?

}

//Set global flag

_response_within_timeout = response_within_timeout;

return response_within_timeout;

}

//Wait for one byte, for a certain amount of time ’timeLimit’ [ms]

bool DynamixelClass::waitData(int timeLimit){

return waitData(0, timeLimit);

}

//keep waiting until there is at least one byte in the buffer

bool DynamixelClass::waitData(){

while(!availableData()){}

return true;

}

//-----------Public Methods---

/*
Function to set (write) the value of a servo’s address.

noParams should be ONE_BYTE or TWO_BYTES, depending on how many bytes we

need to send

In general, instruction should be either DMXL_WRITE_DATA or DMXL_REG_WRITE

*/

138 Appendix E. Resources

int DynamixelClass::sendWord(uint8_t ID, uint8_t address, int param, int

noParams, uint8_t instruction){

uint8_t param_MSB, param_LSB, length, lengthPackage;

uint8_t *package = NULL;

param_MSB = param >> 8;

param_LSB = param;

//Based on numbers of parameters, decide size of outgoing package and

calculate checksum

if(noParams == 0){

length = 2; //instruction + checksum = 2

Checksum = (~(ID + length + instruction))&0xFF;

lengthPackage = 6;

package = new uint8_t[lengthPackage];

package[5] = Checksum;

}

else if(noParams == ONE_BYTE){

length = 4; //instruction + address + param_LSB +

checksum = noParams + 3 = 4

Checksum = (~(ID + length + instruction + address + param_LSB))

&0xFF;

lengthPackage = 8;

package = new uint8_t[lengthPackage];

package[5] = address;

package[6] = param_LSB;

package[7] = Checksum;

}

else if(noParams == TWO_BYTES){

length = 5; //instruction + address + param_LSB +

param_MSB + checksum = noParams + 3 = 5

Checksum = (~(ID + length + instruction + address + param_LSB +

param_MSB))&0xFF;

lengthPackage = 9;

package = new uint8_t[lengthPackage];

package[5] = address;

package[6] = param_LSB;

package[7] = param_MSB;

package[8] = Checksum;

}

E.2. Code 139

//Rest of the package, common for either a 0, ONE_BYTE or TWO_BYTES

package

package[0] = DMXL_START;

package[1] = DMXL_START;

package[2] = ID;

package[3] = length;

package[4] = instruction;

switchCom(_directionPin,Tx_MODE);

sendDataBuff(package, lengthPackage);

serialFlush();

switchCom(_directionPin,Rx_MODE);

//free(package);

delete[] package;

if((instruction == DMXL_PING) || ((statusReturnLevel==RETURN_ALL) &&

(ID!=BROADCAST_ID))){

return(readInformation());

}

else{

return(NO_ERROR);

}

}

//Function to set the value of a several servos’ address. noIDs is how many

servos we are communicating with

//params is an array with values (one for each servo). noParams should be

ONE_BYTE or TWO_BYTES, depending on how many bytes we need to send per

servo

int DynamixelClass::sendWords(uint8_t IDs[], uint8_t noIDs, uint8_t address,

int params[], int noParams){

//1- Prepare information

uint8_t length = (noParams+1)*noIDs + 4; //instruction + address +

noParams + (1 + noParams)*noIDs + checksum = (1 + noParams)*noIDs +

4

uint8_t lengthPackage = length + 4; //DMXL_START + DMXL_START +

BROADCAST_ID + length + {package}

uint8_t package[lengthPackage] = {};

uint16_t tempChecksum = 0;

//2- Buffer to hold all the information

package[0]=DMXL_START;

package[1]=DMXL_START;

package[2]=BROADCAST_ID;

package[3]=length;

package[4]=DMXL_SYNC_WRITE;

140 Appendix E. Resources

package[5]=address;

package[6]=noParams;

for(uint8_t i=0; i<noIDs; i++){

//Save ID

package[7 + i*(1 + noParams)] = IDs[i];

//Save LSB and MSB

for(uint8_t j=0; j<noParams; j++){

package[7 + i*(1 + noParams) + 1 + j] = (uint8_t) (params

[i] >> (8*j));

}

}

//Obtain cheksum and save it in the last position of the buffer.

Checksum starts at the ID

for(uint8_t i=2; i<(lengthPackage-1); i++){

tempChecksum += package[i];

}

Checksum = (~tempChecksum)&0xFF;

package[lengthPackage-1] = Checksum;

//Send the package

switchCom(_directionPin,Tx_MODE);

sendDataBuff(package, lengthPackage);

serialFlush();

switchCom(_directionPin,Rx_MODE);

}

//Function to read the value of a servo’s address. noParams should be

ONE_BYTE or TWO_BYTES, depending on how many bytes we need

int DynamixelClass::readWord(uint8_t ID, uint8_t address, int noParams){

Checksum = (~(ID + LENGTH_READ + DMXL_READ_DATA + address + noParams))

&0xFF;

//Prepare a buffer with all information

uint8_t package[8] = {DMXL_START, DMXL_START, ID, LENGTH_READ,

DMXL_READ_DATA, address, noParams, Checksum};

switchCom(_directionPin,Tx_MODE);

sendDataBuff(package, 8);

serialFlush();

switchCom(_directionPin,Rx_MODE);

//Depending on the current value of statusReturnLevel read or skip the

status package

E.2. Code 141

//if reading a word, then we only expect a package when

statusReturnLevel is RETURN_ALL or RETURN_READ

if(statusReturnLevel==RETURN_NONE){

return(NO_ERROR);

}

else{

return(readInformation());

}

}

//Function to read the value of a several servos. noParams should be

ONE_BYTE or TWO_BYTES, depending on how many bytes we need

//This function assumes address and noParams is the same for all servos. It

is necessary to pass a previously allocated array

void DynamixelClass::readWords(uint8_t IDs[], uint8_t noIDs, uint8_t address

, int noParams, int *response){

//1- Prepare information

uint8_t length = 3*noIDs + 3; //instruction + 0x00 + noParams1 +

ID1 + address1 + ... + noParamsN + IDN + addressN + Checksum

uint8_t lengthPackage = length + 4; //DMXL_START + DMXL_START +

BROADCAST_ID + length + ...

uint8_t package[lengthPackage] = {};

uint16_t tempChecksum = 0;

//2- I need to create a buffer to hold all the information

package[0] = DMXL_START;

package[1] = DMXL_START;

package[2] = BROADCAST_ID;

package[3] = length;

package[4] = DMXL_BULK_READ;

package[5] = 0x00;

for(uint8_t i=0; i<noIDs; i++){

package[6 + i*3] = noParams;

package[6 + i*3 + 1] = IDs[i];

package[6 + i*3 + 2] = address;

}

//3- Obtain cheksum and save it in the last position of the buffer.

Checksum starts at the ID

for(uint8_t i=2; i<(lengthPackage-1); i++){

tempChecksum += package[i];

}

Checksum = (~tempChecksum)&0xFF;

package[lengthPackage-1] = Checksum;

142 Appendix E. Resources

//4- Send the package

switchCom(_directionPin,Tx_MODE);

sendDataBuff(package, lengthPackage);

serialFlush();

switchCom(_directionPin,Rx_MODE);

//5- Read the return package and save it

for(uint8_t i=0; i<noIDs; i++){

response[i] = readInformation();

}

}

//Initialize communication with the servos with a user-defined pin for the

data direction control

//By default, always set status return level as RETURN_ALL. TODO: Read SRL

from either the servos, or the EEPROM

void DynamixelClass::begin(long baud, uint8_t directionPin){

//Save private variables

setBaudrateDMXL(baud);

setDirectionPin(directionPin);

//Start connection using the selected pin

setDPin(_directionPin, OUTPUT);

beginCom(baud);

delayms(DMXLSERIAL_TIMEOUT);

//Set the SRL to RETURN_ALL

setSRL(BROADCAST_ID, RETURN_ALL);

}

//Initialize communication with the servos with a pre-defined pin (D15) for

the data direction control

void DynamixelClass::begin(long baud){

//Save private variables

setBaudrateDMXL(baud);

//Start communication with the default pin

setDPin(_directionPin, OUTPUT);

beginCom(baud);

delayms(DMXLSERIAL_TIMEOUT);

//Set the SRL to RETURN_ALL

setSRL(BROADCAST_ID, RETURN_ALL);

}

E.2. Code 143

//End communication

void DynamixelClass::end(){

endCom();

}

//Function inherited from Savage’s library

int DynamixelClass::reset(uint8_t ID){

//Upon reset, SRL should be set to RETURN_ALL

statusReturnLevel = RETURN_ALL;

return(sendWord(ID, 0, 0, 0, DMXL_RESET));

}

//Ping a servo

int DynamixelClass::ping(uint8_t ID){

return(sendWord(ID, 0, 0, 0, DMXL_PING));

}

//Send the ACTION Instruction

void DynamixelClass::action(uint8_t ID){

sendWord(ID, 0, 0, 0, DMXL_ACTION);

}

//Function to read the servo model. EEPROM Address 0(x00) and 1(0x01)

int DynamixelClass::readModel(uint8_t ID){

return(readWord(ID, EEPROM_MODEL_NUMBER_L, TWO_BYTES));

}

//Function to read the version of the firmware. EEPROM Address 2(0x02)

int DynamixelClass::readFirmware(uint8_t ID){

return(readWord(ID, EEPROM_VERSION, ONE_BYTE));

}

//Function to set the ID of the servo. EEPROM Address 3(0x03)

int DynamixelClass::setID(uint8_t ID, uint8_t newID){

return(sendWord(ID, EEPROM_ID, newID, ONE_BYTE, DMXL_WRITE_DATA));

}

//Function to read the ID of the servo. EEPROM Address 3(0x03)

int DynamixelClass::readID(uint8_t ID){

return(readWord(ID, EEPROM_ID, ONE_BYTE));

}

//Function to set baudrate. EEPROM Address 4(0x04).

//The baudrate change takes effect immediately. You need to use end() and

then begin() with the new baudrate

int DynamixelClass::setBD(uint8_t ID, long baud){

uint8_t Baud_Rate = round((2000000.0/((float) baud)) -1);

144 Appendix E. Resources

return(sendWord(ID, EEPROM_BAUD_RATE, Baud_Rate, ONE_BYTE,

DMXL_WRITE_DATA));

}

//Function to set baudrate based on the manual’s table. EEPROM Address 4(0

x04)

//The baudrate change takes effect immediately. You need to use end() and

begin() with the new baudrate

int DynamixelClass::setBDTable(uint8_t ID, uint8_t baud){

return(sendWord(ID, EEPROM_BAUD_RATE, baud, ONE_BYTE, DMXL_WRITE_DATA)

);

}

//Function to read the setting of the baudrate. EEPROM Address 4(0x04)

int DynamixelClass::readBD(uint8_t ID){

return(readWord(ID, EEPROM_BAUD_RATE, ONE_BYTE));

}

//Set the Return Delay Time (RDT) in microseconds. EEPROM Address 5(0x05)

int DynamixelClass::setRDT(uint8_t ID, uint8_t RDT){

return(sendWord(ID, EEPROM_RETURN_DELAY_TIME, RDT/2, ONE_BYTE,

DMXL_WRITE_DATA));

}

//Read the Return Delay Time (RDT) value. EEPROM Address 5(0x05)

int DynamixelClass::readRDT(uint8_t ID){

return(readWord(ID, EEPROM_RETURN_DELAY_TIME, ONE_BYTE));

}

//Set the value for the CW Angle limit. EEPROM Address 6(0x06) and 7(0x07)

int DynamixelClass::setCWAngleLimit(uint8_t ID, int limit){

return(sendWord(ID, EEPROM_CW_ANGLE_LIMIT_L, limit, TWO_BYTES,

DMXL_WRITE_DATA));

}

//Read the value for the CW Angle limit. EEPROM Address 6(0x06) and 7(0x07)

int DynamixelClass::readCWAngleLimit(uint8_t ID){

return(readWord(ID, EEPROM_CW_ANGLE_LIMIT_L, TWO_BYTES));

}

//Set the value for the CCW Angle limit. EEPROM Address 8(0x08) and 9(0x09)

int DynamixelClass::setCCWAngleLimit(uint8_t ID, int limit){

return(sendWord(ID, EEPROM_CCW_ANGLE_LIMIT_L, limit, TWO_BYTES,

DMXL_WRITE_DATA));

}

//Read the value for the CCW Angle limit. EEPROM Address 8(0x08) and 9(0x09)

int DynamixelClass::readCCWAngleLimit(uint8_t ID){

E.2. Code 145

return(readWord(ID, EEPROM_CCW_ANGLE_LIMIT_L, TWO_BYTES));

}

//Set the limit temperature. EEPROM Address 11(0x0B)

int DynamixelClass::setTempLimit(uint8_t ID, uint8_t Temperature){

return(sendWord(ID, EEPROM_LIMIT_TEMPERATURE, Temperature, ONE_BYTE,

DMXL_WRITE_DATA));

}

//Read the limit temperature. EEPROM Address 11(0x0B)

int DynamixelClass::readTempLimit(uint8_t ID){

return(readWord(ID, EEPROM_LIMIT_TEMPERATURE, ONE_BYTE));

}

//Set the lowest voltage limit. EEPROM Address 12(0x0C)

int DynamixelClass::setLowVoltageLimit(uint8_t ID, uint8_t lowVoltage){

return(sendWord(ID, EEPROM_DOWN_LIMIT_VOLTAGE, lowVoltage, ONE_BYTE,

DMXL_WRITE_DATA));

}

//Read the lowest voltage limit. EEPROM Address 12(0x0C)

int DynamixelClass::readLowVoltageLimit(uint8_t ID){

return(readWord(ID, EEPROM_DOWN_LIMIT_VOLTAGE, ONE_BYTE));

}

//Set the highest voltage limit. EEPROM Address 13(0x0D)

int DynamixelClass::setHighVoltageLimit(uint8_t ID, uint8_t highVoltage){

return(sendWord(ID, EEPROM_UP_LIMIT_VOLTAGE, highVoltage, ONE_BYTE,

DMXL_WRITE_DATA));

}

//Read the highest voltage limit. EEPROM Address 13(0x0D)

int DynamixelClass::readHighVoltageLimit(uint8_t ID){

return(readWord(ID, EEPROM_UP_LIMIT_VOLTAGE, ONE_BYTE));

}

//Set the maximum torque. EEPROM Address 14(0x0E) and 15(0x0F)

int DynamixelClass::setMaxTorque(uint8_t ID, int MaxTorque){

return(sendWord(ID, EEPROM_MAX_TORQUE_L, MaxTorque, TWO_BYTES,

DMXL_WRITE_DATA));

}

//Read the maximum torque. EEPROM Address 14(0x0E) and 15(0x0F)

int DynamixelClass::readMaxTorque(uint8_t ID){

return(readWord(ID, EEPROM_MAX_TORQUE_L, TWO_BYTES));

}

//Set the Status Return Level. EEPROM Address 16(0x10).

146 Appendix E. Resources

//DuoDMXL assumes that upon reset, all servos have RETURN_ALL. If the value

was changed in a previos session, use setSRL(BROADCAST_ID, 2) or

setBoardSRL(SRL)

//The change in SRL takes place beginning with the NEXT communication. Even

if sending RETURN_NONE, you may still get a status return

int DynamixelClass::setSRL(uint8_t ID, uint8_t SRL){

//Send the new desired status return level

int error = sendWord(ID, EEPROM_RETURN_LEVEL, SRL, ONE_BYTE,

DMXL_WRITE_DATA);

statusReturnLevel = SRL;

return(error);

}

//Read the Status Return Level value. EEPROM Address 16(0x10)

int DynamixelClass::readSRL(uint8_t ID){

return(readWord(ID, EEPROM_RETURN_LEVEL, ONE_BYTE));

}

//Forcefully set SRL value saved in the DUO, instead of the servo’s SRL

value

int DynamixelClass::setBoardSRL(uint8_t SRL){

//change the current value of statusReturnLevel

statusReturnLevel = SRL;

return(NO_ERROR);

}

//Set Alarm LED. EEPROM Address 17(0x11)

int DynamixelClass::setAlarmLED(uint8_t ID, uint8_t alarm){

return(sendWord(ID, EEPROM_ALARM_LED, alarm, ONE_BYTE, DMXL_WRITE_DATA

));

}

//Read Alarm LED value. EEPROM Address 17(0x11)

int DynamixelClass::readAlarmLED(uint8_t ID){

return(readWord(ID, EEPROM_ALARM_LED, ONE_BYTE));

}

//Set Shutdown alarm. EEPROM Address 18(0x12)

int DynamixelClass::setShutdownAlarm(uint8_t ID, uint8_t SALARM){

return(sendWord(ID, EEPROM_ALARM_SHUTDOWN, SALARM, ONE_BYTE,

DMXL_WRITE_DATA));

}

//Read Shutdown alarm value. EEPROM Address 18(0x12)

int DynamixelClass::readShutdownAlarm(uint8_t ID){

return(readWord(ID, EEPROM_ALARM_SHUTDOWN, ONE_BYTE));

E.2. Code 147

}

//Set the multi-turn offset values. EEPROM ADDRESS: 20(0x14) and 21(0x15)

int DynamixelClass::setMultiTurnOffset(uint8_t ID, int offset){

return(sendWord(ID, EEPROM_TURN_OFFSET_L, offset, TWO_BYTES,

DMXL_WRITE_DATA));

}

//Read the multi-turn offset values. EEPROM ADDRESS: 20(0x14) and 21(0x15)

int DynamixelClass::readMultiTurnOffset(uint8_t ID){

return(readWord(ID, EEPROM_TURN_OFFSET_L, TWO_BYTES));

}

//Set the resolution divider value. EEPROM ADDRESS: 22(0x16)

int DynamixelClass::setResolutionDivider(uint8_t ID, uint8_t divider){

return(sendWord(ID, EEPROM_RESOLUTION_DIV, divider, ONE_BYTE,

DMXL_WRITE_DATA));

}

//Read the resolution divider value. EEPROM ADDRESS: 22(0x16)

int DynamixelClass::readResolutionDivider(uint8_t ID){

return(readWord(ID, EEPROM_RESOLUTION_DIV, ONE_BYTE));

}

//FUNCTIONS TO ACCESS COMMANDS IN THE RAM AREA

//Function to turn ON or OFF torque. RAM Address 24(0x18)

int DynamixelClass::torqueEnable(uint8_t ID, bool Status){

return(sendWord(ID, RAM_TORQUE_ENABLE, (int) Status, ONE_BYTE,

DMXL_WRITE_DATA));

}

//Function to check if the servo generates torque. RAM Address 24(0x18)

int DynamixelClass::torqueEnableStatus(uint8_t ID){

return(readWord(ID, RAM_TORQUE_ENABLE, ONE_BYTE));

}

//Function to turn ON or OFF the servo’s LED. RAM Address 25(0x19)

int DynamixelClass::ledStatus(uint8_t ID, bool Status){

return(sendWord(ID, RAM_LED, (int) Status, ONE_BYTE, DMXL_WRITE_DATA))

;

}

//Function to set the value of the Derivative gain. RAM Address 26(0x1A)

int DynamixelClass::setGainD(uint8_t ID, int gain){

return(sendWord(ID, RAM_D_GAIN, gain, ONE_BYTE, DMXL_WRITE_DATA));

}

148 Appendix E. Resources

//Function to read the value of the Derivative gain. RAM Address 26(0x1A)

int DynamixelClass::readGainD(uint8_t ID){

return(readWord(ID, RAM_D_GAIN, ONE_BYTE));

}

//Function to set the value of the Integral gain. RAM Address 27(0x1B)

int DynamixelClass::setGainI(uint8_t ID, int gain){

return(sendWord(ID, RAM_I_GAIN, gain, ONE_BYTE, DMXL_WRITE_DATA));

}

//Function to read the value of the Integral gain. RAM Address 27(0x1B)

int DynamixelClass::readGainI(uint8_t ID){

return(readWord(ID, RAM_I_GAIN, ONE_BYTE));

}

//Function to set the value of the Proportional gain. RAM Address 28(0x1C)

int DynamixelClass::setGainP(uint8_t ID, int gain){

return(sendWord(ID, RAM_P_GAIN, gain, ONE_BYTE, DMXL_WRITE_DATA));

}

//Function to read the value of the Proportional gain. RAM Address 28(0x1C)

int DynamixelClass::readGainP(uint8_t ID){

return(readWord(ID, RAM_P_GAIN, ONE_BYTE));

}

//Function to move servo to a specific position. RAM Address 30(0x1E) and

31(0x1F)

int DynamixelClass::move(uint8_t ID, int Position){

return(sendWord(ID, RAM_GOAL_POSITION_L, Position, TWO_BYTES,

DMXL_WRITE_DATA));

}

//Function to move servos to a specific positions. RAM Address 30(0x1E) and

31(0x1F)

int DynamixelClass::move(uint8_t IDs[], uint8_t noIDs, int Positions[]){

return(sendWords(IDs, noIDs, RAM_GOAL_POSITION_L, Positions, TWO_BYTES

));

}

//Function to set the desired moving speed. RAM Address 32(0x20) and 33(0x21

)

int DynamixelClass::setMovingSpeed(uint8_t ID, int speed){

return(sendWord(ID, RAM_GOAL_SPEED_L, speed, TWO_BYTES,

DMXL_WRITE_DATA));

}

//Function to read the desired moving speed. RAM Address 32(0x20) and 33(0

x21)

E.2. Code 149

int DynamixelClass::readMovingSpeed(uint8_t ID){

return(readWord(ID, RAM_GOAL_SPEED_L, TWO_BYTES));

}

//Function to set the value of the goal torque. RAM Address 34(0x22) and

35(0x23)

int DynamixelClass::setTorqueLimit(uint8_t ID, int torque){

return(sendWord(ID, RAM_TORQUE_LIMIT_L, torque, TWO_BYTES,

DMXL_WRITE_DATA));

}

//Function to read the value of the goal torque. RAM Address 34(0x22) and

35(0x23)

int DynamixelClass::readTorqueLimit(uint8_t ID){

return(readWord(ID, RAM_TORQUE_LIMIT_L, TWO_BYTES));

}

//Read the actual position of one servo. RAM Address 36(0x24) and 37(0x25)

int DynamixelClass::readPosition(uint8_t ID){

return(readWord(ID, RAM_PRESENT_POSITION_L, TWO_BYTES));

}

//Read the actual position of several servos. RAM Address 36(0x24) and 37(0

x25)

void DynamixelClass::readPosition(uint8_t IDs[], uint8_t noIDs, int *
positions){

readWords(IDs, noIDs, RAM_PRESENT_POSITION_L, TWO_BYTES, positions);

}

//Read the actual speed. RAM Address 38(0x26) and 39(0x27)

int DynamixelClass::readSpeed(uint8_t ID){

return(readWord(ID, RAM_PRESENT_SPEED_L, TWO_BYTES));

}

//Read the load. RAM Address 40(0x28) and 41(0x29)

int DynamixelClass::readLoad(uint8_t ID){

return(readWord(ID, RAM_PRESENT_LOAD_L, TWO_BYTES));

}

//Function to read the voltage. RAM Address 42(0x2A)

int DynamixelClass::readVoltage(uint8_t ID){

return(readWord(ID, RAM_PRESENT_VOLTAGE, ONE_BYTE));

}

//Function to read the Temperature. RAM Address 43(0x2B)

int DynamixelClass::readTemperature(uint8_t ID){

return(readWord(ID, RAM_PRESENT_TEMPERATURE, ONE_BYTE));

}

150 Appendix E. Resources

//Check if there is an instruction registered. RAM Address 44(0x2C)

int DynamixelClass::registeredStatus(uint8_t ID){

return(readWord(ID, RAM_REGISTERED_INSTRUCTION, ONE_BYTE));

}

//Check if goal position command is being executed (Address 0x30?). RAM

Address 46(0x2E)

int DynamixelClass::moving(uint8_t ID){

return(readWord(ID, RAM_MOVING, ONE_BYTE));

}

//Locks the EEPROM. RAM Address 47(0x2F)

int DynamixelClass::lockEEPROM(uint8_t ID){

return(sendWord(ID, RAM_LOCK, 1, ONE_BYTE, DMXL_WRITE_DATA));

}

//RAM Address 48(0x30) and 49(0x31)

int DynamixelClass::setPunch(uint8_t ID, int Punch){

return(sendWord(ID, RAM_PUNCH_L, Punch, TWO_BYTES, DMXL_WRITE_DATA));

}

//RAM Address 48(0x30) and 49(0x31)

int DynamixelClass::readPunch(uint8_t ID){

return(readWord(ID, RAM_PUNCH_L, TWO_BYTES));

}

//Function to read the current. RAM ADDRESS: 68(0x44) and 69(0x45)

int DynamixelClass::readCurrent(uint8_t ID){

return(readWord(ID, RAM_CURRENT_L, TWO_BYTES));

}

//Torque control mode enable. RAM ADDRESS: 70(0x46)

int DynamixelClass::torqueControl(uint8_t ID, bool enable){

return(sendWord(ID, RAM_TORQUE_CONTROL, (int) enable, ONE_BYTE,

DMXL_WRITE_DATA));

}

//Read the Torque control mode status. RAM ADDRESS: 70(0x46)

int DynamixelClass::readTorqueControl(uint8_t ID){

return(readWord(ID, RAM_TORQUE_CONTROL, ONE_BYTE));

}

//Function to set the goal torque. RAM ADDRESS: 71(0x47) and 72(0x48)

int DynamixelClass::setGoalTorque(uint8_t ID, int torque){

return(sendWord(ID, RAM_GOAL_TORQUE_L, torque, TWO_BYTES,

DMXL_WRITE_DATA));

}

E.2. Code 151

//Function to set goal acceleration/ RAM ADDRESS: 73(0x49)

int DynamixelClass::setGoalAccel(uint8_t ID, uint8_t accel){

return(sendWord(ID, RAM_GOAL_ACCEL, accel, ONE_BYTE, DMXL_WRITE_DATA))

;

}

//CUSTOM FUNCTIONS---

//Function to move servo to a specific angle [deg]. RAM Address 30(0x1E) and

31(0x1F)

int DynamixelClass::setAng(uint8_t ID, float angle){

//transform angle into 0-4095 values

int Position;

Position = (int) (map(angle, 0.0, 360.0, 0.0, 4095.0));

Position = constrain(Position, 0, 4095);

return(sendWord(ID, RAM_GOAL_POSITION_L, Position, TWO_BYTES,

DMXL_WRITE_DATA));

}

//Function to move servo to a specific angle [deg]. RAM Address 30(0x1E) and

31(0x1F)

//unit specify the input units: ’b’: bit-value, ’d’: degrees, ’r’: radians

int DynamixelClass::setAng(uint8_t ID, float angle, char unit){

int Position, error;

if(unit == ’b’){

Position = (int) angle;

error = move(ID, Position);

}

else if(unit == ’d’){

error = setAng(ID, angle);

}

else if(unit == ’r’){

Position = (int) (map(angle, 0.0, 2*M_PI, 0.0, 4095.0));

Position = constrain(Position, 0, 4095);

error = move(ID, Position);

}

else{

error = -2;

}

return(error);

}

//Set the direction pin of the serial communication with DMXL

152 Appendix E. Resources

void DynamixelClass::setDirectionPin(uint8_t pin){

_directionPin = pin;

}

//Get the direction pin of the serial communication with DMXL

uint8_t DynamixelClass::getDirectionPin(){

return(_directionPin);

}

//Set the baudrate of the serial communication with DMXL without ending/

beginning serial

void DynamixelClass::setBaudrateDMXL(long baud){

_baudrateDMXL = baud;

}

//Get the baudrate of the serial communication with DMXL

long DynamixelClass::getBaudrateDMXL(){

return(_baudrateDMXL);

}

//Configure both ID and Baudrate of the servo. By changing the baudrate, the

communications will restart automatically

//The next time time you call the servos you need to use the NEW baudrate

void DynamixelClass::configureServo(uint8_t ID, uint8_t newID, long baud){

setID(ID, newID);

setBD(newID, baud);

//End communications and restart with new baudrate

end();

begin(baud, _directionPin);

}

//Set both angle limits.

void DynamixelClass::setAngleLimit(uint8_t ID, int CWLimit, int CCWLimit){

sendWord(ID, EEPROM_CW_ANGLE_LIMIT_L, CWLimit, TWO_BYTES,

DMXL_WRITE_DATA);

sendWord(ID, EEPROM_CCW_ANGLE_LIMIT_L, CCWLimit, TWO_BYTES,

DMXL_WRITE_DATA);

}

//Function to set both limits to 0. The servo is functioning in wheel mode

void DynamixelClass::setWheelMode(uint8_t ID, bool enable){

if (enable){

setAngleLimit(ID, 0, 0);}

else{

setAngleLimit(ID, 0, 4095);}

}

E.2. Code 153

//Function to set the servo as joint mode. Equivalent to setWheelMode(ID,

false)

void DynamixelClass::setJointMode(uint8_t ID){

setAngleLimit(ID, 0, 4095);

}

//Function to set all gains

void DynamixelClass::setDIP(uint8_t ID, int gainD, int gainI, int gainP){

setGainD(ID, gainD);

setGainI(ID, gainI);

setGainP(ID, gainP);

}

//Function to find the ID of the servo, if you have the correct baudrate.

Assume begin() has been called

int DynamixelClass::findByBaudRate(long baudRate){

int foundID;

for(int i=0; i<254; i++){ //Search every ID possible

if((foundID=readID(i))!=-1){ //If we get anything but

a communication error, return the value

return(foundID);

}

}

return(NO_SERVO_RESPONSE); //Return error if nothing found

}

//Function to find the baudrate to communicate with the servo, if you have

the correct ID. Assume begin() has NOT been called

int DynamixelClass::findByID(uint8_t id, uint8_t directionPin){

int foundID;

long roundedBaudRate;

for(int i=0; i<=254; i++){

roundedBaudRate = (2000000)/(i+1); //Search every

possible baudrate

begin(roundedBaudRate, directionPin); //begin

communication

if((foundID=readID(id)) == id){ //if we get the same

ID as the one we assumed correct

return(readBD(id)); //return the baudrate

}

end(); //end communication

}

154 Appendix E. Resources

return(NO_SERVO_RESPONSE); //If nothing found, return error

}

//Find the servo without having any information. Assume begin() has NOT been

called

void DynamixelClass::findServo(uint8_t directionPin){

int error;

long roundedBaudRate;

for(uint8_t i=0; i<=254; i++){ //Try every baudrate

roundedBaudRate = (2000000)/(i+1);

begin(roundedBaudRate, directionPin);

for(uint8_t j=0; j<254; j++){ //Try every ID

if((error=readID(j)) != -1){ //If we get anything but an

error

//digitalWrite(led1, HIGH);

printPC("Attempting ID: ");

printPC(j);

printPC(", attempted baud rate is: ");

printPC(i);

printPC(", and the returned baudrate is: ");

printlnPC(readBD(j));

}

else{

printPC("Attempted ID: ");

printPC(j);

printPC(", attempted baud rate is: ");

printlnPC(i);

}

}

end();

}

}

//Change time out period (waiting time for status package). Unit is [ms].

The maximum value is 255

void DynamixelClass::changeTimeOut(uint8_t newTimeOut){

TIME_OUT = newTimeOut;

}

//Change cool down period (time between sending commands). Unit is [ms]. The

maximum value is 65,535 (i.e., 65.535 seconds)

void DynamixelClass::changeCoolDown(uint16_t newCoolDown){

COOL_DOWN = newCoolDown;

}

E.2. Code 155

//Print information about the servo. Use carefully since it uses the Serial

port

void DynamixelClass::servoIntroduction(uint8_t ID){

printlnPC("--");

printPC("Hi, I am a servo model ");

printPC(ID);

printPC(" with Firmware version ");

printPC(readFirmware(ID));

printlnPC(", my ID is ");

printPC(readID(ID));

printPC(", communicating at a baudrate of ");

printPC(readBD(ID));

printPC(", with a RDT of ");

printlnPC(readRDT(ID));

printPC("CW limit set as ");

printPC(readCWAngleLimit(ID));

printPC(", CCW limit set as ");

printlnPC(readCCWAngleLimit(ID));

printPC("The temperature limit, lowest voltage limit, highest voltage

limit, and max torque are: ");

printPC(readTempLimit(ID));

printPC(", ");

printPC(readLowVoltageLimit(ID));

printPC(", ");

printPC(readHighVoltageLimit(ID));

printPC(", ");

printlnPC(readMaxTorque(ID));

printPC("My Status return level, Alarm LED, and shutdown alarm

settings are: ");

printPC(readSRL(ID));

printPC(", ");

printPC(readAlarmLED(ID));

printPC(", ");

printlnPC(readShutdownAlarm(ID));

printPC("The multi-turn offset setting and resolution divider are: ");

printPC(readMultiTurnOffset(ID));

printPC(", ");

printlnPC(readResolutionDivider(ID));

printPC("The DIP gains are: ");

printPC(readGainD(ID));

printPC(", ");

printPC(readGainI(ID));

156 Appendix E. Resources

printPC(", and ");

printlnPC(readGainP(ID));

printPC("The value of moving speed is: ");

printlnPC(readMovingSpeed(ID));

printPC("The value of torque limit (goal torque) is: ");

printlnPC(readTorqueLimit(ID));

printPC("My present load is: ");

printPC(readLoad(ID));

printPC("I am operating at a voltage of ");

printPC(readVoltage(ID));

printPC(" and a temperature of ");

printlnPC(readTemperature(ID));

printPC("Is there a function waiting to be executed in Registered?: ")

;

printlnPC(registeredStatus(ID));

printPC("Is a moving (goal_position) command being executed?: ");

printlnPC(moving(ID));

printlnPC("--");

}

//--------------------Multi-compatibility functions------------------------

void DynamixelClass::sendData(uint8_t val){

#if (PLATFORM_ID==88) || defined(SPARK)

Serial1.write(val); //For Duo or Photon

#else

Serial1.write(val); //For Leonardo

#endif

}

void DynamixelClass::sendDataBuff(uint8_t* buff, uint8_t len){

#if (PLATFORM_ID==88) || defined(SPARK)

Serial1.write(buff, len); //For Duo or Photon

#else

Serial1.write(buff, len); //For Leonardo

#endif

}

// Check Serial Data Available

int DynamixelClass::availableData(void){

E.2. Code 157

#if (PLATFORM_ID==88) || defined(SPARK)

return Serial1.available();

#else

return Serial1.available();

#endif

}

// Read Serial Data

uint8_t DynamixelClass::readData(void){

#if (PLATFORM_ID==88) || defined(SPARK)

return Serial1.read();

#else

return Serial1.read();

#endif

}

// Peek Serial Data

uint8_t DynamixelClass::peekData(void){

#if (PLATFORM_ID==88) || defined(SPARK)

return Serial1.peek();

#else

return Serial1.peek();

#endif

}

// Begin Serial Comunication

void DynamixelClass::beginCom(long speed){

#if (PLATFORM_ID==88) || defined(SPARK)

Serial1.begin(speed);

#else

Serial1.begin(speed);

#endif

}

// End Serial Comunication

void DynamixelClass::endCom(void){

#if (PLATFORM_ID==88) || defined(SPARK)

Serial1.end();

#else

Serial1.end();

#endif

}

// Wait until data has been written

158 Appendix E. Resources

void DynamixelClass::serialFlush(void){

#if (PLATFORM_ID==88) || defined(SPARK)

Serial1.flush();

#else

Serial1.flush();

#endif

}

// Macro for Timing. Delay milliseconds

void DynamixelClass::delayms(unsigned int ms){

#if (PLATFORM_ID==88) || defined(SPARK)

delay(ms);

#else

delay(ms);

#endif

}

// Macro for Timing. Delay Microseconds

void DynamixelClass::delayus(unsigned int us){

#if (PLATFORM_ID==88) || defined(SPARK)

delayMicroseconds(us);

#else

delayMicroseconds(us);

#endif

}

DynamixelClass Dynamixel;

159

Index

composite-rigid body, 53
constraint force, 15

defective, 28

EAM, 13
environment, 15
Environment-aided Manipulation, 13
environmental monitoring, 2

Grasp Matrix, 23
graspable, 28, 29

Hand Jacobian, 23

indeterminate, 28

kinematic constraint force, 16

mobile robot, 1

non-defective, 31
non-penetration force, 16

object, 14
obstacle, 14
oppas, 85
Optimal Configurations, 50
Optimal Postures, 50
Optimization Problem, 73

partially indeterminate, 29

redundant, 28, 31

slippage ratio, 51
snake robot, 1
static friction, 16
static friction constraint force, 16

161

Bibliography

[1] Y. Yamamoto and X. Yun, “Coordinating locomotion and manipulation of a mobile ma-
nipulator”, IEEE Trans. Autom. Control, vol. 39, no. 6, pp. 1326–1332, 1994, ISSN: 0018-9286.

[2] K. Nagatani, T. Hirayama, A. Gofuku, and Y. Tanaka, “Motion planning for mobile ma-
nipulator with keeping manipulability”, in Proc. IEEE Int. Conf. Intelligent Robots and Syst.
(IROS 2002), vol. 2, 2002, 1663–1668 vol.2.

[3] R. Murphy, “Trial by fire [rescue robots]”, IEEE Robot. Autom. Mag., vol. 11, no. 3, pp. 50–
61, 2004, ISSN: 1070-9932.

[4] A. Davids, “Urban search and rescue robots: From tragedy to technology”, IEEE Intell.
Syst., vol. 17, no. 2, pp. 81–83, 2002, ISSN: 1541-1672.

[5] S. Hirose and E. F. Fukushima, “Snakes and strings: New robotic components for rescue
operations”, Int. J. Robotics Research, vol. 23, no. 4-5, pp. 341–349, 2004. DOI: 10.1177/
0278364904042202. eprint: http://ijr.sagepub.com/content/23/4-5/341.
full.pdf+html. [Online]. Available: http://ijr.sagepub.com/content/23/4-
5/341.abstract.

[6] D. Roa and K. Melo, “Mechanical stability margin for scouting poses in modular snake
robots”, in IEEE Int. Symposium on Safety, Security, and Rescue Robotics (SSRR 2016), 2016,
pp. 182–188. DOI: 10.1109/SSRR.2016.7784296.

[7] S. Ma, “Analysis of creeping locomotion of a snake-like robot”, Advanced Robotics, vol. 15,
no. 2, pp. 205–224, 2001.

[8] M. Saito, M. Fukaya, and T. Iwasaki, “Serpentine locomotion with robotic snakes”, IEEE
Control Syst. Mag., vol. 22, no. 1, pp. 64–81, 2002, ISSN: 1066-033X.

[9] P. Liljebäck, K. Pettersen, Ø. Stavdahl, and J. Gravdahl, “A simplified model of planar
snake robot locomotion”, in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS
2010), 2010, pp. 2868–2875.

[10] S. Ma and N. Tadokoro, “Analysis of creeping locomotion of a snake-like robot on a slope”,
Autonomous Robots, vol. 20, no. 1, pp. 15–23, 2006.

[11] R. L. Hatton and H. Choset, “Sidewinding on slopes”, in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA 2010), IEEE, 2010, pp. 691–696.

[12] S. Ma, Y. Ohmameuda, and K. Inoue, “Dynamic analysis of 3-dimensional snake robots”,
in Proc. IEEE Int. Conf. Intelligent Robots and Syst. (IROS 2004), IEEE, vol. 1, 2004, pp. 767–
772.

[13] P. Liljebäck, Ø. Stavdahl, and K. Y. Pettersen, “Modular pneumatic snake robot: 3d mod-
elling, implementation and control”, Modeling, Identification and Control, vol. 29, no. 1,
pp. 21–28, 2008.

http://ijr.sagepub.com/content/23/4-5/341.abstract
http://ijr.sagepub.com/content/23/4-5/341.full.pdf+html
https://doi.org/10.1109/SSRR.2016.7784296
https://doi.org/10.1177/0278364904042202
http://ijr.sagepub.com/content/23/4-5/341.abstract
http://ijr.sagepub.com/content/23/4-5/341.full.pdf+html
https://doi.org/10.1177/0278364904042202

162 Bibliography

[14] R. L. Hatton, R. A. Knepper, H. Choset, D. Rollinson, C. Gong, and E. Galceran, “Snakes
on a plan: Toward combining planning and control”, in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA 2013), 2013, pp. 5174–5181.

[15] J. S. Pettinato and H. E. Stephanou, “Manipulability and stability of a tentacle based robot
manipulator”, in Proc. IEEE Int. Conf. Robotics and Automation (ICRA ’89), IEEE, 1989, pp. 458–
463.

[16] G. Chirikjian and J. Burdick, “The kinematics of hyper-redundant robot locomotion”, IEEE
Trans. Robot. Autom., vol. 11, no. 6, pp. 781–793, 1995, ISSN: 1042-296X.

[17] Z. Wang, S. Ma, B. Li, and Y. Wang, “A unified dynamic model for locomotion and ma-
nipulation of a snake-like robot based on differential geometry”, Science China Information
Sciences, vol. 54, no. 2, pp. 318–333, 2011.

[18] G. Salvietti, H. Zhang, J Gonzalez-Gomez, D. Prattichizzo, and J. Zhang, “Task priority
grasping and locomotion control of modular robot”, in Proc. IEEE Int. Conf. Robotics and
Biomimetics (ROBIO 2009), IEEE, 2009, pp. 1069–1074.

[19] S. Nansai, M. R. Elara, and M. Iwase, “Dynamic hybrid position force control using virtual
internal model to realize a cutting task by a snake-like robot”, in Proc. IEEE Int. Conf.
Biomedical Robotics and Biomechatronics (BioRob 2016), IEEE, 2016, pp. 151–156. DOI: 10.
1109/BIOROB.2016.7523614.

[20] P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl, “Hybrid modelling and con-
trol of obstacle-aided snake robot locomotion”, Robotics, IEEE Transactions on, vol. 26, no. 5,
pp. 781–799, 2010.

[21] C. Holden and Ø. Stavdahl, “Optimal static propulsive force for obstacle-aided locomo-
tion in snake robots”, in Proc. IEEE Int. Conf. Robotics and Biomimetics (ROBIO 2013), 2013,
pp. 1125–1130.

[22] C. Holden, Ø. Stavdahl, and J. T. Gravdahl, “Optimal dynamic force mapping for obstacle-
aided locomotion in 2d snake robots”, in Proc. IEEE Int. Conf. Intelligent Robots and Syst.
(IROS 2014), 2014, pp. 321–328.

[23] Z. Y. Bayraktaroglu and P. Blazevic, “Understanding snakelike locomotion through a novel
push-point approach”, Journal of dynamic systems, measurement, and control, vol. 127, no. 1,
pp. 146–152, 2005.

[24] F. Reyes, W. Tang, and S. Ma, “Using a planar snake robot as a robotic arm taking into
account the lack of a fixed base: Feasible region”, in Proc. IEEE Int. Conf. Intelligent Robots
and Syst. (IROS 2015), 2015, pp. 956–962.

[25] F. Reyes and S. Ma, “Snake robots in contact with the environment: Influence of the con-
figuration on the applied wrench”, in Proc. IEEE Int. Conf. Intelligent Robots and Syst. (IROS
2016), 2016, pp. 3854–3859.

[26] ——, “Snake robots in contact with the environment - influence of the friction on the ap-
plied wrench”, in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Syst. (IROS 2017), 2017,
pp. 5790–5795. DOI: 10.1109/IROS.2017.8206471.

[27] ——, “Studying slippage on pushing applications with snake robots”, in In: Proc. Int. Conf.
Real-time Computing and Robotics (RCAR 2017), 2017.

https://doi.org/10.1109/IROS.2017.8206471
https://doi.org/10.1109/BIOROB.2016.7523614
https://doi.org/10.1109/BIOROB.2016.7523614

Bibliography 163

[28] O. Khatib, “Inertial properties in robotic manipulation: An object-level framework”, Int. J.
Robotics Research, vol. 14, no. 1, pp. 19–36, 1995. DOI: 10.1177/027836499501400103.
eprint: http://dx.doi.org/10.1177/027836499501400103. [Online]. Available:
http://dx.doi.org/10.1177/027836499501400103.

[29] F. Reyes and S. Ma, “On planar grasping with snake robots: Form-closure with enveloping
grasps”, in Proc. IEEE Int. Conf. Robotics and Biomimetics (ROBIO 2014), 2014, pp. 556–561.

[30] ——, “Modeling of snake robots oriented towards grasping and interaction with the en-
vironment”, in In: Proc. Int. Conf. Real-time Computing and Robotics (RCAR 2015), not pub-
lished, 2015.

[31] F. Reyes, H. Matsumoto, and S. Ma, “Design and implementation of modular and paramet-
ric 3d printed snake robot”, The Robotics and Mechatronics Conference (ROBOMECH 2017),
vol. 2017, 2A2–A11, 2017. DOI: 10.1299/jsmermd.2017.2A2-A11. [Online]. Available:
https://www.jstage.jst.go.jp/article/jsmermd/2017/0/2017_2A2-

A11/_article/-char/ja.
[32] F. Reyes and S. Ma, “Studying slippage on pushing applications with snake robots”, Robotics

and Biomimetics, vol. 4, no. 1, p. 9, 2017, ISSN: 2197-3768. DOI: 10.1186/s40638-017-
0065-3. [Online]. Available: https://doi.org/10.1186/s40638-017-0065-3.

[33] W. Blajer, “A geometrical interpretation and uniform matrix formulation of multibody
system dynamics”, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für
Angewandte Mathematik und Mechanik, vol. 81, no. 4, pp. 247–259, Apr. 1, 2001, ISSN: 1521-
4001. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/
1521-4001(200104)81:4<247::AID-ZAMM247>3.0.CO;2-D/abstract (visited
on 01/03/2016).

[34] R. Featherstone, Rigid body dynamics algorithms. USA: Springer US, 2014.
[35] R. M. Murray, S. S. Sastry, and Z. Li, A Mathematical Introduction to Robotic Manipulation,

1st. Boca Raton, FL, USA: CRC Press, Inc., 1994, ISBN: 0849379814.
[36] R. Featherstone, Rigid Body Dynamics Algorithms. Boston, MA: Springer US, 2008, ISBN:

978-0-387-74314-1 978-1-4899-7560-7. [Online]. Available: http://link.springer.
com/10.1007/978-1-4899-7560-7 (visited on 10/29/2015).

[37] B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics. New York, USA: Springer-
Verlag Inc., 2008, ISBN: 978-3-540-23957-4.

[38] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning and Con-
trol, 1st. London: Springer Publishing Company, Incorporated, 2008, ISBN: 1846286417,
9781846286414.

[39] D. Prattichizzo and A. Bicchi, “Dynamic analysis of mobility and graspability of general
manipulation systems”, IEEE Trans. Robot. Autom., vol. 14, no. 2, pp. 241–258, 1998, ISSN:
1042-296X.

[40] A. Bicchi, C. Melchiorri, and D. Balluchi, “On the mobility and manipulability of general
multiple limb robots”, IEEE Trans. Robot. Autom., vol. 11, no. 2, pp. 215–228, 1995, ISSN:
1042-296X.

[41] P. Lötstedt, “Mechanical systems of rigid bodies subject to unilateral constraints”, SIAM
Journal on Applied Mathematics, vol. 42, no. 2, pp. 281–296, 1982. DOI: 10.1137/0142022.

https://doi.org/10.1177/027836499501400103
https://www.jstage.jst.go.jp/article/jsmermd/2017/0/2017_2A2-A11/_article/-char/ja
http://onlinelibrary.wiley.com/doi/10.1002/1521-4001(200104)81:4<247::AID-ZAMM247>3.0.CO;2-D/abstract
https://doi.org/10.1186/s40638-017-0065-3
http://link.springer.com/10.1007/978-1-4899-7560-7
https://doi.org/10.1299/jsmermd.2017.2A2-A11
https://doi.org/10.1137/0142022
https://doi.org/10.1186/s40638-017-0065-3
https://doi.org/10.1186/s40638-017-0065-3
https://www.jstage.jst.go.jp/article/jsmermd/2017/0/2017_2A2-A11/_article/-char/ja
http://link.springer.com/10.1007/978-1-4899-7560-7
http://onlinelibrary.wiley.com/doi/10.1002/1521-4001(200104)81:4<247::AID-ZAMM247>3.0.CO;2-D/abstract
http://dx.doi.org/10.1177/027836499501400103
http://dx.doi.org/10.1177/027836499501400103

164 Bibliography

eprint: https://doi.org/10.1137/0142022. [Online]. Available: https://doi.
org/10.1137/0142022.

[42] P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl, Snake robots: modelling, mecha-
tronics, and control. Springer Science & Business Media, 2012.

[43] J Gray, “The mechanism of locomotion in snakes”, J. Exp. Biol., vol. 23, no. 2, pp. 101–120,
1946.

[44] F. Matsuno and H. Sato, “Trajectory tracking control of snake robots based on dynamic
model”, in Proc. IEEE Int. Conf. Robotics and Automation (ICRA 2005), 2005, pp. 3029–3034.

[45] K. Watanabe, M. Iwase, S. Hatakeyama, and T. Maruyama, “Control strategy for a snake-
like robot based on constraint force and verification by experiment”, Advanced Robotics,
vol. 23, no. 7-8, pp. 907–937, 2009.

[46] H. Date, Y. Hoshi, and M. Sampei, “Locomotion control of a snake-like robot based on dy-
namic manipulability”, in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Syst. (IROS 2000),
IEEE, vol. 3, 2000, pp. 2236–2241.

[47] F. Matsuno and K. Mogi, “Redundancy controllable system and control of snake robots
based on kinematic model”, in Proc. IEEE Int. Conf. on Decision and Control (CDC 2000),
IEEE, vol. 5, 2000, pp. 4791–4796.

[48] P. Grinfeld, Introduction to tensor analysis and the calculus of moving surfaces. London: Springer,
2013.

[49] G. Liu and Z. Li, “A unified geometric approach to modeling and control of constrained
mechanical systems”, IEEE Trans. Robot. Autom., vol. 18, no. 4, pp. 574–587, 2002, ISSN:
1042-296X.

[50] T. Inoue and S. Hirai, Mechanics and Control of Soft-fingered Manipulation. London: Springer-
Verlag London, 2009, ISBN: 978-1-84800-980-6.

[51] Y. Chen, “Equations of motion of constrained mechanical systems: Given force depends
on constraint force”, Mechatronics, vol. 9, no. 4, pp. 411 –428, 1999, ISSN: 0957-4158. [On-
line]. Available: http://www.sciencedirect.com/science/article/pii/
S0957415898000531.

[52] S. Hirose, Biologically Inspired Robots: Snake-like Locomotors and Manipulators. Oxford Uni-
versity Press, 1993.

[53] A. Kuwada, S. Wakimoto, K. Suzumori, and Y. Adomi, “Automatic pipe negotiation con-
trol for snake-like robot”, in Proc. IEEE Int. Conf. Advanced Intelligent Mechatronics (AIM
2008), IEEE, 2008, pp. 558–563.

[54] A. Shapiro, A. Greenfield, and H. Choset, “Frictional compliance model development and
experiments for snake robot climbing”, in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA 2007), IEEE, 2007, pp. 574–579.

[55] A. Greenfield, A. A. Rizzi, and H. Choset, “Dynamic ambiguities in frictional rigid-body
systems with application to climbing via bracing”, in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA 2005), IEEE, 2005, pp. 1947–1952.

[56] Y. Guan, L. Jiang, H. Zhu, W. Wu, X. Zhou, H. Zhang, and X. Zhang, “Climbot: A bio-
inspired modular biped climbing robot—system development, climbing gaits, and exper-
iments”, Journal of Mechanisms and Robotics, vol. 8, no. 2, p. 021 026, 2016.

http://www.sciencedirect.com/science/article/pii/S0957415898000531
https://doi.org/10.1137/0142022
https://doi.org/10.1137/0142022
http://www.sciencedirect.com/science/article/pii/S0957415898000531
https://doi.org/10.1137/0142022

Bibliography 165

[57] K. T. Yu, M. Bauza, N. Fazeli, and A. Rodriguez, “More than a million ways to be pushed.
a high-fidelity experimental dataset of planar pushing”, in Proc. IEEE/RSJ Int. Conf. In-
telligent Robots and Systems (IROS 2016), 2016, pp. 30–37. DOI: 10.1109/IROS.2016.
7758091.

[58] P. Liljebäck, K. Pettersen, Ø. Stavdahl, and J. Gravdahl, “A review on modelling, imple-
mentation, and control of snake robots”, Robot. Auto. Sys., vol. 60, no. 1, pp. 29 –40, 2012,
ISSN: 0921-8890.

[59] J. C. Trinkle, J. M. Abel, and R. P. Paul, “Enveloping, frictionless, planar grasping”, in Proc.
IEEE Int. Conf. Robotics and Automation (ICRA ’87), Citeseer, 1987.

[60] A. Bicchi, “On the Closure Properties of Robotic Grasping”, International Journal of Robotics
Research, vol. 14, pp. 319–334, 1995.

[61] F. E. Udwadia and R. E. Kalaba, “A new perspective on constrained motion”, English, Pro-
ceedings: Math. and Physical Sciences, vol. 439, no. 1906, pp. 407–410, 1992, ISSN: 09628444.
[Online]. Available: http://www.jstor.org/stable/52227.

[62] E. Todorov, “Convex and analytically-invertible dynamics with contacts and constraints:
Theory and implementation in mujoco”, in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA 2014), 2014, pp. 6054–6061.

[63] R. Suárez, J. Cornella, and M. R. Garzón, Grasp quality measures. Institut d’Organització i
Control de Sistemes Industrials, 2006.

[64] D. Prattichizzo, M. Malvezzi, M. Gabiccini, and A. Bicchi, “On the manipulability ellip-
soids of underactuated robotic hands with compliance”, Robotics and Autonomous Systems,
vol. 60, no. 3, pp. 337–346, 2012, ISSN: 0921-8890. DOI: 10.1016/J.ROBOT.2011.07.
014. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0921889011001461.

[65] X. Markenscoff, L. Ni, and C. H. Papadimitriou, “The geometry of grasping”, Int. J. Robot.
Res., vol. 9, no. 1, pp. 61–74, 1990.

[66] A. Rodriguez, M. T. Mason, and S. Ferry, “From caging to grasping”, Int. J. Robot. Res.,
vol. 31, no. 7, pp. 886–900, 2012.

[67] J. T. Y. Wen and L. S. Wilfinger, “Kinematic manipulability of general constrained rigid
multibody systems”, IEEE Trans. Robot. Autom., vol. 15, no. 3, pp. 558–567, Jun. 1999, ISSN:
1042-296X. DOI: 10.1109/70.768187.

[68] B. Bayle, J. Y. Fourquet, and M. Renaud, “Manipulability analysis for mobile manipula-
tors”, in Proc. IEEE Int. Conf. Robotics and Automation (ICRA 2001), vol. 2, 2001, 1251–1256
vol.2. DOI: 10.1109/ROBOT.2001.932782.

[69] K. van den Doel and D. K. Pai, “Constructing performance measures for robot manipula-
tors”, in Proc. IEEE Int. Conf. Robotics and Automation (ICRA 1994), 1994, 1601–1607 vol.2.

[70] S. Patel and T. Sobh, “Manipulator performance measures-a comprehensive literature sur-
vey”, Journal of Intelligent & Robotic Systems, vol. 77, no. 3-4, pp. 547–570, 2015.

https://doi.org/10.1016/J.ROBOT.2011.07.014
https://doi.org/10.1109/70.768187
https://doi.org/10.1016/J.ROBOT.2011.07.014
https://doi.org/10.1109/IROS.2016.7758091
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.7135
https://doi.org/10.1109/ROBOT.2001.932782
http://www.jstor.org/stable/52227
https://www.sciencedirect.com/science/article/pii/S0921889011001461
https://doi.org/10.1109/IROS.2016.7758091
https://www.sciencedirect.com/science/article/pii/S0921889011001461

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Literature Review
	List of Publications
	Outline of the Thesis

	Foundations of EAM
	The Concept of EAM
	Kinematic Modeling and Inertial Parameters of the Snake Robot
	In-depth Analysis of Grasping with Planar Snake Robots: Form-closure and Subspaces
	Kinematic Modeling Notes
	Constraints imposed by the contact between rigid bodies
	Hand Jacobian
	Grasp Matrix
	Kinematic Constraints
	Basic properties of a grasp

	Analysis of the object's mappings
	Analysis of the snake robot's mappings
	Examples
	Example I: Partially Indeterminate, Graspable, Redundant, and Defective Grasp with Partial Form-closure
	Example II: Partially Indeterminate, Graspable, Redundant, Non-defective Grasp with Partial Form-closure

	Conclusions Regarding Types of Grasps with Snake Robots

	Form-Closure - Feasible Solutions
	Partial form-closure
	Grasping with three adjacent links: grasp condition G3

	(Unconstrained) Dynamic Modeling of the Snake Robot
	Coupled Dynamic Model Between Snake Robot and Object
	Projection onto the Constrained and Unconstrained Spaces
	Constrained Subspace
	Acceleration of the system
	Equations of Motion Rewritten
	Polar coordinates of the COM of the snake robot
	Summary

	Slippage Ratio
	Definition of Slippage Ratio

	Optimal Configurations and Optimal Postures
	Simplified Interaction Between the Snake Robot and an Object
	Constraint forces
	Contribution of the robot's parameters to the contact force
	Fitting the complex model data to the simplified model

	Scenarios considered
	Results: Best Postures for Pushing an Object
	Results: Best Postures for Reducing Slippage
	Case Study 1 - Snake robot with two joints
	Case Study 2 - Snake robot with three joints
	Case Study 3 - Snake robot with four joints

	Results: Simplified Model vs. Complex Model

	Experimental Results
	Experimental Setup
	Overview of the snake robot prototype
	Control Law

	Optimal Postures - Experimental Results

	Discussion
	Conclusions & Future Work
	Conclusion
	Future Work

	Mathematical Background
	Differential Geometry
	Dynamic Modeling of Objects
	Metric Tensors and Norms
	Constraints
	Kinematic Constraints Between Rigid Bodies
	Friction Constraints of the Passive Wheels
	Summary of Constraints

	Prototype Design
	v1.0 - Locomotion Part
	v2.0 - Manipulation Part

	Electronics
	Shields - Communication with servos
	softPots ADC conversion and conditioning

	Programming
	Servo communication - DuoDMXL
	Application Programming Interface (API) and Code of DuoDMXL

	Resources
	Online resources
	OPPAS
	DuoDMXL - Servo Library and Accessories

	Code
	DuoDMXL - Servo Library and Accessories

	Index
	Bibliography

