
Abstract

Kidnapping Detection and its Recovery in
Simultaneous Localization and Mapping

by

TIAN Yang

Doctor of Philosophy in Department of Robotics

Ritsumeikan University, Biwako-Kusatsu Campus

Professor MA Shugen, Chair

Mobile robots that autonomously execute tasks have been applied in various environments,

such as factories, hospitals and houses. One of the basic fundamental functions required

by the autonomous robot is localization. Localization is the solution to estimate the robot

posture (position and orientation) in the world coordinates provided a known map of the en-

vironment. In an unknown environment, where both the robot posture and the environment

map are unknown, a technique called “Simultaneous Localization and Mapping (SLAM)”

was proposed. Therein, a consistent map of the environment is built while simultaneously

determining the robot posture within this map with data gathered by proprioceptive and

exteroceptive sensors. While the mobile robot performs tasks autonomously, an unexpected

movement, such as being moved to another place by a human, may happen due to the inter-

action with surroundings. This problem is known as “kidnapping” problem, which obstructs

the robot to track its desired posture correctly within the environment map. Previous so-

lutions of the kidnapping problem execute global localization within the map directly and

periodically to obtain the correct robot posture. However, these solutions are not applica-

ble to the robots kidnapped in an unknown environment due to unique situations of the

kidnapping.

In this study, we found that there are two situations after kidnapping happened in an

unknown environment. One situation is that the robot is kidnapped to the explored area

1

during processing SLAM. In this situation, the map of the explored area is available to be

utilized to perform global localization as a solution. Another situation is that the robot is

kidnapped to a new area lacking an environment map. A new SLAM process should be

carried out to realize localization in a new map. Since the solution cannot be determined

before ascertaining under which situation the robot is, solutions about global localization

cannot be directly applied. We thus propose two algorithms (kidnapping detection and

kidnapping recovery) for the kidnapping solution in SLAM. Furthermore, the kidnapping

categories are classified for increasing the efficiency of the solution.

A kidnapping detection framework, performing two checks before and after the update

process which is called “Double Kidnapping Detection and Recognition (DKDR)” utilizes d-

ifferent metrics to detect the kidnapping and recognize the type of kidnapping in real time.

To explain one of the principles of DKDR, we describe a property of filter-based SLAM

that corrects the mapping result of the environment using the current observations after

the update process. The Extend Kalman Filter SLAM (EKF-SLAM) and the Particle Filter

SLAM (PF-SLAM) are modified in simulations and experiments to show that DKDR can

be simply and widely applied in existing filter-based SLAM algorithms. Furthermore, an

improved detection method called “Probabilistic Double Kidnapping Detection and Recog-

nition (P-DKDR)” is proposed by combining probability of features positions and the robot

posture to reduce false alarms in a large-scale environment. Simulations and experiments

were conducted for the comparison between DKDR and P-DKDR.

Based on the results from kidnapping detection, two kidnapping recovery methods are

proposed to solve different types of kidnapping. If the robot is kidnapped to the explored

area, such as being stuck or slip around a spot, an improved Mentor Carol Localization

(MCL) method called “MCL with Map Uncertainty (MCL-MU)”, which takes the map

uncertainty produced by SLAM into the method, is applied to relocalize the robot posture

within the environment map. Furthermore, the dispersive area of the particles in MCL is

limited in a range to increase the efficiency of the method. In the situation that the robot

is moved out of the sensor range, a method called “Known and Unknown Environment’s

2

Simultaneous Localization (KUESL)” is proposed to execute a global localization and a

SLAM simultaneously to determine robot posture according to the probability of estimated

results. Experiments were conducted to show their validity and performance.

With discussing the simulations and experiments results, we found that several failure

cases exist due to the specification of sensors and specific environments, such as the reflection

problem of laser range finder in different objects or the robot is kidnapped to a similar

environment with the environment before the kidnapping. Besides these specific situations,

the proposed kidnapping detection and kidnapping recovery methods can detect and recover

the kidnapping events effectively.

3

Contents

Contents 1

List of Figures 4

List of Tables 6

Acknowledgements 7

1 Introduction 1

1.1 Localization . 1

1.1.1 Relative Measurement . 2

1.1.2 Absolute Measurement . 3

1.1.3 Multiple Sensors Fusion . 3

1.2 Simultaneous Localization and Mapping . 4

1.2.1 Gaussian-based Filter SLAM . 6

1.2.2 Particle Filter based SLAM . 8

1.2.3 Filter-less SLAM . 10

1.2.4 Kidnapping problem in SLAM . 10

1.3 Outline of this Thesis . 11

2 Problem Statement 13

2.1 Analysis of Kidnapping in SLAM . 13

2.2 Solution of kidnapping in SLAM . 15

2.3 Summary . 19

3 Kidnapping Detection 20

3.1 DKDR Framework . 20

1

3.2 Metrics and Thresholds . 25

3.2.1 Metrics in DKDR . 25

3.2.2 Metrics in P-DKDR . 26

3.2.3 Thresholds . 27

3.3 Simulations . 29

3.4 Summary . 38

4 Kidnapping Recovery 39

4.1 Monte Carlo Localization with Map Uncertainty 40

4.1.1 Problem Statement about Map Uncertainty 40

4.1.2 Implementation of MCL-MU . 42

4.2 Known and Unknown Environment’s Simultaneous Localization 44

4.2.1 Basic Idea of KUESL . 44

4.2.2 Implementation of KUESL . 45

4.3 Summary . 46

5 Experiments 47

5.1 Experimental Setup . 47

5.2 Experiments for Kidnapping Detection . 48

5.2.1 Experiments . 51

5.2.2 Discussion . 59

5.3 Experiments for Kidnapping Recovery . 64

5.3.1 Experiments for MCL-MU . 64

5.3.2 Experiments for KUESL . 67

5.3.3 Discussion . 75

5.4 Summary . 77

6 Conclusion and Future Work 78

6.1 Conclusion . 78

6.2 Future Work . 79

Bibliography 81

A Motion Model 87

B Measurement Model 91

2

Published Papers During Doctoral Course 94

3

List of Figures

2.1 Different situations of kidnapping in SLAM. (a) Initial situation of SLAM.
(b) Result of SLAM before kidnapping. (c) The robot is kidnapped to the
explored area. (d) The robot is kidnapped to the unexplored area. 14

2.2 Relationship of proposed methods. 18

3.1 Overall DKDR workflow . 21

3.2 Workflows of prior-check and posterior-check processes 22

3.3 Profile of Half-Normal Distribution. 27

3.4 Dimensions of robot used in simulations. 29

3.5 Results of the simulation in different situation. (a) Simulation Map. (b)
Normal SLAM process. (c) Kidnapping result without detection. (d) Kid-
napping result with detection. 30

3.6 Metrics used to detect kidnapping. (a) Distance. (b) Angle. (c) Qp. (d) Qs. 31

3.7 Map and EKF-SLAM. (a) Map for simulation. (b) Result of EKF-SLAM
without kidnapping. 35

3.8 Non-kidnapping with DKDR. (a) Response of the metric Qp. (b) Response
of the metric Qs. 36

3.9 Non-kidnapping with P-DKDR. (a) Response of the metric Qp. (b) Response
of the metric Qs. 37

5.1 Robot Platform. 49

5.2 Electrical structure of the robot platform. 50

5.3 Software structure of the robot platform. 50

5.4 The map and the mapping result of a non-kidnapping situation. (a) Map
and trajectory. (b) Mapping result. 52

5.5 The example of type A.2 kidnapping. (a) Map and trajectory. (b) Mapping
result without DKDR. (c) Mapping result with DKDR. 54

5.6 The response of metrics of type A.2 kidnapping. (a) Qp. (b) Qs. 55

4

5.7 The example of type B.2 kidnapping. (a) Map and trajectory. (b) Mapping
result without DKDR. (c) Mapping result with DKDR. 56

5.8 The response of metrics of type B.2 kidnapping in Figure 5.7. (a) Qp. (b) Qs. 58

5.9 The map, robot trajectory and Gmapping result of a large indoor environ-
ment.(a) The map and robot trajectory for the experiment. (b) Result of
Gmapping without kidnapping. 60

5.10 Non-kidnapping with DKDR. (a) Response of the metric Qp. (b) Response
of the metric Qs. 61

5.11 Non-kidnapping with P-DKDR. (a) Response of the metric Qp. (b) Response
of the metric Qs. 62

5.12 The map and robot trajectory of slipping situation. 65

5.13 The result of MCL-MU at different time. (a) Initial Step (Time = 0s). (b)
Time = 21s. (c) T = 32s. (d) T = 48s. 66

5.14 The map and robot trajectory of kidnapping to the explored area. 67

5.15 The result of M-MCL-MU in KUESL with kidnapping into the explored area
at different time. (a) Initial Step (Time = 0s). (b) Time = 19s. (c) T = 35s.
(d) T = 63s. 69

5.16 The result of Gmapping in KUESL when the robot is kidnapped to the
explored area. (a)Initial situation. (b) Final map. 70

5.17 The entropy of M-MCL-MU and Gmapping during the experiment in the
explored area. 71

5.18 The map and robot trajectory of kidnapping to a room (new area). 72

5.19 The result of Gmapping in KUESL when the robot is kidnapped to a room
(new area). (a)Initial situation. (b) Final map. 73

5.20 The result of M-MCL-MU in KUESL with kidnapping into a new area at
different time. (a) Initial Step (Time = 0s). (b) Time = 20s. (c) T = 30s.
(d) T = 38s. 74

5.21 The entropy of M-MCL-MU and Gmapping during the experiment in the
new area. 75

5.22 Several robot pose hypothesis in a corridor environment. 76

A.1 Odometry model: The robot motion in the time interval (t − 1, t] is ap-
proximated by a rotation δrot1, followed by a translation δtrans and a second
rotationδrot2. The turns and translation are noisy. 88

5

List of Tables

3.1 Different Types of Kidnapping . 24

3.2 Thresholds of Each Kidnapping Type . 29

3.3 Simulation Conditions . 32

3.4 Operating Characteristics of DKDR . 34

3.5 Operating Characteristics of classification 34

3.6 Operating Characteristics of DKDR and P-DKDR in a large scale environment 35

4.1 Monte Carlo Localization . 41

4.2 Monte Carlo Localization with Map Uncertainty 43

5.1 Specification of Components . 48

5.2 Experiment Condition . 51

5.3 Operating Characteristics of DKDR . 57

5.4 Operating Characteristics of classification 58

5.5 Operating Characteristics of DKDR and P-DKDR in a large scale environment 59

5.6 Performance of KUESL . 72

A.1 Algorithm for sampling from P (xt|ut, xt−1) based on odometry information. 89

6

Acknowledgements

Firstly, I would like to dedicate my sincere gratitude to my supervisor, Prof. Shugen

Ma, of the Department of Robotics in Ritsumeikan University, for his patient guidance,

continuous support, enthusiastic encouragement on my Ph.D research and other research.

His teaching will stay in my mind forever.

Besides my supervisor, I would like to thank Prof. Ryuta Ozawa and Prof. Atsushi

Kakogawa for their valuable suggestions and insightful comments on my research in semi-

nars, but also for the questions incented me to perfect my research from various perspectives.

I am grateful to all my colleagues in Ma laboratory, to Dr. Yi Sun, Mr. Dingxin Ge,

Mrs. Yongchen Tang, Dr. Yang Yang, Dr. Chao Ren, Dr. Norzalilah Binti Mohamad Nor,

Mr. Wenbin Tang, Mr Jie Ma, Mr. Yayi Shen who gave me great help and many useful

comments for my research, to Mr.Fabian Eugenio Reyes Pinner, Dr. Guoteng Zhang who

helped me greatly in the lab, to Dr. Takahiro Matsuno, Mr. Gomez Aladro Victor Antonio,

Mr. Taijyu Yamagami for their assistance and supporting on mechanism design, prototype

fabrication and experiments. Studying with them together in Ritsumeikan University leads

me a colorful and fruitful campus life. It is my pleasure to thank Dr. Zhongkui Wang, and

Mr. Zhe Qiu for their kind help in my research activities and daily life.

My thankfulness goes to all the professors and officers in the Robotics Department, in

the Office of Graduate Studies, and in the Office of International Students at Ritsumeikan

University for guiding and helping me during my stay in Japan. Without their help, I

wouldn’t have been able to fully focus in my research.

Finally, I would like to thank my parents for their unconditional love and support

without minding what and where I wished to accomplish my dreams; my beloved family and

friends for their encouragement, kind words, messages, support, and special understanding

during my study. They always kept being attentive to my health and wellbeing, even from

the far away distance.

Thank you very much.

7

Curriculum Vitæ

TIAN Yang

Education

2002-2005 Qingdao 16th High School (Qingdao, Shandong, China)
Upper Secondary School Student

2005-2009 Qingdao University of Technology (Qingdao, Shandong, China)
Bachelor Degree of Engineering

2010-2013 Ocean University of China (Qingdao, Shandong, China)
Master Degree of Engineering

2013-2018 Ritsumeikan University, BKC (Kusatsu, Shiga, Japan)
Doctoral Candidate, Advanced Mechanical Engineering
and Robotics

Personal

Born June 19, 1986, Jilin, China.

Research Interests SLAM, Localization, Mobile Robot, Sensing.

8

Chapter 1

Introduction

Millions of functional robots exist in the world, and most of them are industrial arm

robots [1]. Different with the success of robotics in the industrial field, mobile robots

still have unsolved challenges [2]. The robots that can move on the ground, underwater,

through air and space are recognized as the mobile robots. The concentration of this study

is concerned with mobile robots moving on the ground although it can be applied any of

these environments.

1.1 Localization

Localization is core challenging competence required of mobile robots to operate tasks

autonomously. From emergency search and rescue [3, 4], to precision agriculture [5, 6]

and underwater exploration [7, 8], there are many applications where it is advantageous to

deploy robots.

The purpose of robot localization is to find out the robot location relative to the envi-

ronment [9, 10]. When we talk about location, pose, or posture we mean the position and

orientation of a robot in a global coordinate system. It is hard to operate tasks for the

autonomous robot if the robot does not know its location relative to the environment. The

1

robot will most likely need to have at least some idea of where it is to be able to operate

and act successfully.

For obtaining the estimated robot pose, two kinds of measurements are available to

provide the basic function of localization. One of them is relative measurements which

only looking at the robot itself to acquire measurements [11]. Since external information

is not included in the measurements, it only provides information relative to the starting

measurement point. Instead, observations get from the environment supply information

about the robot pose is called absolute measurements [11]. The absolute measurements

only looking at the environment that is independent of any previous robot pose estimation.

1.1.1 Relative Measurement

The relative measurements are referred to as dead reckoning [12], which is a process

of estimating the pose only based on the estimated speeds over elapsed time by utilizing

the last known position with proprioceptive sensors [11]. It is subject to cumulative errors

because the pose estimation is based on earlier poses. Odometry and inertial navigation are

two basic techniques to implement dead reckoning.

Odometry works by using the robot model and wheel encoders counting rotation angle

of each wheel to measure the distance and heading direction the robot travelled [13, 14].

However, errors in both travelled distance and orientation are accumulated over time due

to the drift and slippage of the wheel [15]. Another problem of odometry is that it is easily

affected by the situation of the terrain [16]. If the robot is moving on an uneven terrain,

the irregularities of the terrain will cause considerable errors that it cannot be detected it.

Furthermore, error in wheel diameter also can result in odometry errors that cannot be

detected. Although many disadvantages of odometry cause accumulated errors, it is the

most simple way to obtain pose estimation information, therefore, it is one of the important

sources of information for localization.

Inertial navigation measures rotation and acceleration of the robot by gyroscopes and

accelerometers separately [17, 18, 19, 20]. Gyroscopes measured the velocity of orientation

2

detect small accelerations in orientation, and accelerometers detect accelerations along the

axis of the robot coordinates. They also suffer from extensive drift and are sensitive to

bumpy ground. Since the pose estimation is acquired by integration of the sensors informa-

tion, errors are accumulated over time.

1.1.2 Absolute Measurement

Absolute measurements provide information from exteroceptive sensors [11] to robot

pose estimation, which is independent of previously estimated robot pose. The robot pose is

not derived from the integration of a sequence of sensors measurements but from the current

measurement only. Therefore, the error of the estimated robot pose does not increase

unbounded, which is different with relative measurements. There are two base methods

can acquire absolute measurements, which are landmark-based methods and feature-based

methods.

Landmark-based methods detect landmarks in the environment from sensors readings,

such as markers, doors and trees [21, 22, 23]. Once landmarks are found, matching with

prior known information of the environment is applied to estimate the robot pose. Another

group of approaches based on features utilizes geometric shapes of the environment, such

as the lines, edges and corners, to estimate the robot pose within a map [24, 25, 26]. The

disadvantage of the absolute measurements is that it costs large amounts of processing and

sensing power to realize matching.

1.1.3 Multiple Sensors Fusion

Fusing relative measurements and absolute measurements with initial information to

estimate robot pose at a certain time is called multiple sensors fusion localization [27, 28, 29]

or filter-based localization [30, 31, 32]. In this case, measurements readings coming from

different sensors are combined with a filter to obtain a more accurate estimated robot

pose. The methods consider uncertainty and confidence of robot pose with a probabilistic

approach.

3

1.2 Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) is an important technique used to de-

termine a robot pose in an unknown environment without a prior map [33, 34, 35, 36, 37].

In SLAM, the robot incrementally builds a consistent map of the environment concurrently

while simultaneously estimating its pose within this map. It is more difficult than localiza-

tion in that the map is known since the map needs to be built along the way.

For explaining the form of SLAM, the following quantities are defined at a time step k:

• xk: the state vector describing the location and orientation of the vehicle

• uk: the control vector, applied at time step k − 1 to drive the robot to a state xk at

time step k

• mi: a vector describing the location of the ith feature whose true location is assumed

time invariant

• zk : an observation taken from the robot of the location of the feature at time step k.

In addition, the following sets are also defined:

• X0:k = {x0, x1, · · · , xk} = {X0:k−1, xk}: the history of vehicle locations

• U0:k = {u1, u2, · · · , uk} = {U0:k−1, uk}: the history of control inputs

• m = {m1,m2, · · · ,mn}: the set of features

• Z0:k = {z1, z2, · · · , zk} = {Z0:k−1, zk}: the set of feature observations.

The core of SLAM is a state estimation problem. In probabilistic form, the simultaneous

localization and mapping (SLAM) problem requires that the probability distribution

P (xk,m|Z0:k, U0:k, x0) (1.1)

4

be computed for all time steps k. This probability distribution describes the joint

posterior density of the landmark locations and vehicle state (at time step k) given the

recorded observations and control inputs up to and including time k together with the

initial state of the vehicle. In general, a recursive solution to the SLAM problem is desirable.

Starting with an estimate for the distribution P (xk−1,m|Z0:k−1, U0:k−1) at time step k− 1,

the joint posterior, following a control uk and observation zk , is computed using Bayes

theorem. This computation requires that a state transition model and an observation

model are defined describing the effect of the control input and observation respectively.

The observation model describes the probability of making an observation zk when the

vehicle location and landmark locations are known and is generally described in the form

P (zk|xk,m) (1.2)

It is reasonable to assume that once the robot location and map are defined, observations

are conditionally independent given the map and the current robot state.

The motion model for the vehicle can be described in terms of a probability distribution

on state transitions in the form

P (xk|xk−1, uk) (1.3)

That is, the state transition is assumed to be a Markov process in which the next state

xk depends only on the immediately preceding state xk−1 and the applied control uk and

is independent of both the observations and the map.

The SLAM algorithm is now implemented in a standard two-step recursive predict-

update form:

Predict

P (xk,m|Z0:k−1, U0:k, x0) =

∫
P (xk|xk−1, uk)× P (xk−1,m|Z0:k−1, U0:k−1, x0)dxk−1 (1.4)

5

Update

P (xk,m|Z0:k, U0:k, x0) =
Pzk|xk,mP (xk,m|Z0:k−1, U0:k, x0)

P (zk|Z0:k−1, U0:k)
(1.5)

Equations 1.4 and 1.5 provide a recursive procedure for calculating the joint posterior

P (xk,m|Z0:k, U0:k, x0) for the robot state xk and map m at a time step k based on all

observations Z0:k and all control inputs U0:k up to and including time step k. The recursion

is a function of a robot model P (xk|xk−1, uk) and an observation model P (zk|xk,m).

It is worth noting that the map building problem may be formulated as computing the

conditional density P (m|X0:k, Z0:k, U0:k). This assumes that the location of the robot xk

is known (or at least deterministic) at all times, subject to knowledge of initial location.

A map m is then constructed by fusing observations from different locations. Converse-

ly, the localization problem may be formulated as computing the probability distribution

P (xk|Z0:k, U0:k,m). This assumes that the landmark locations are known with certainty,

and the objective is to compute an estimate of robot location with respect to the map.

With supplied relative and absolute sensor information, SLAM estimates most likely

configuration of the robot trajectory and map. Various filters were applied to SLAM to

address this state estimation problem [38, 39, 35, 37].

1.2.1 Gaussian-based Filter SLAM

Gaussian-based Filter SLAM provides a framework to estimate a Gaussian random

variable with mean x and covariance matrix P via readings from sensors. The most basic

Gussian-based Filter SLAM is Extended Kalman Filter SLAM (EKF-SLAM) [39, 38, 40, 41]

which is comprised of three main processes: predict, observe and update. These processes

are periodically executed over a series of time steps.

The predict process propagates the state estimation over time. In predict process, the

predicted state xk|k−1 and its covariance matrix Pk|k−1 at time step k are given by

6

xk|k−1 = f(xk−1, uk) + wk

Pk|k−1 = ∇fPk−1|k−1∇fT +Q

(1.6)

where wk is the process noise assumed to be white Gaussian with zero mean and a covariance

Q, the function f depends on the motion model, ∇f is the Jacobian of f with respect to

xk−1, and Pk−1|k−1 denotes the state covariance matrix at time step k − 1.

The observations zk|k−1 that are obtained from the state xk|k−1 and m at the time step

k in observe process are given by

zk|k−1 = h(xk|k−1) + vk (1.7)

where h defines the nonlinear coordinates transformation from the state to the observation

zk|k−1. The noise vk is assumed to be white Gaussian with zero mean, and zk is measured

from the actual environment and its covariance matrix is denoted by Rk).

In update process, the state xk,m and the associated covariance matrix Pk are updated

by EKF using the observation z.

xk
m

 =

xk|k−1

m

+Wk[zk − h(xk|k−1,m)]

Pk = Pk|k−1 −WkSkW
T
k

(1.8)

where

Wk = Pk|k−1∇hTS−1
k

Sk = ∇hPk|k−1∇hT +Rk

(1.9)

and ∇h is the Jacobian of h evaluated at Xk|k−1 and m.

The performance of EKF estimation depends on how similar between linearized model

and originals. The quality of EKF estimation is influenced by the degrees of non-linear in

original models. For reducing the linearization error in the estimator, Unscented Kalman

Filter (UKF) is proposed with higher computation cost.

7

Several deterministic sigma points are generated from a Gaussian distribution via un-

scented transform, which can represent the properties of the underlying distribution [42].

Compare with the liberalization of the original models, the sigma points can directly be

propagated through the original models. A SLAM method based on UKF is called UKF

SLAM which is proposed in [43, 44, 45].

The main computation cost in the EKF-SLAM is involved in the update process which

calculates the robot pose and mapping result with the full covariance matrix. This means

that the computation cost is changed according to the mapping area. For solving this

problem, an alternative solution called Extended Information Filter SLAM (EIF-SLAM)

[46, 47, 48] can reduce the computation cost in update process by information form rather

than moment form to simplify the update process to an addition operation. However, the

mean and covariance cannot be directly got unless processing inversion operation with high

computation cost. Basically, keeping the state history in the information matrix is feasible

since the information matrix is a relatively sparse matrix.

1.2.2 Particle Filter based SLAM

Basically, EKF-SLAM or EIF-SLAM belonging Gaussion-based Filter SLAM assume

that the SLAM distribution should follow the Gaussian distribution to simulate uncertainty

of the system. However, the Gaussion-based Filter SLAM cannot get a good performance

without the noise following Gaussion distribution. In this case, Particle Filter based SLAM

(PF-SLAM) can provide a better solution.

The general form of a particle filter for SLAM is as follows. We assume that, at time

step k − 1, the joint state is represented by wi
k−1, X

i
0:k−1, P (m|Xi

0:k−1, Z0:k−1)
N

i

For each particle, compute a proposal distribution, conditioned on the specific particle

history, and draw a sample from it

xik ∼ π(xk|Xi
0:k−1, Z0:k, uk) (1.10)

8

This new sample is joined to the particle history Xi
0:k = Xi

0:k−1, x
i
k.

Weight samples according to the importance function

wi
k = wi

k−1

P (zk|Xi
0:k, Z0:k−1)P (xik|xik−1, uk)

π(xik|Xi
0:k−1, Z0:k, uk)

(1.11)

The numerator terms of this equation are the observation model and the motion model,

respectively. The former differs from 1.2 because particle filter requires dependency on the

map be marginalized away.

P (zk|X0:k, Z0:k−1) =

∫
P (zk|xk,m)P (m|X0:k−1, Z0:k−1)dm (1.12)

If necessary, perform resampling. (When best to instigate resampling is an open prob-

lem. Some implementations resample every time-step, others after a fixed number of time-

steps, and others once the weight variance exceeds a threshold.) Resampling is accomplished

by selecting particles, with replacement, from the setXi
0:k

N
i , including their associated maps,

with probability of selection proportional to wi
k. Selected particles are given uniform weight,

wi
k = 1/N .

For each particle, perform an EKF update on the observed landmarks as a simple

mapping operation with known robot pose.

With PF-SLAM, a finite number of particles or samples is applied, which is similar to the

localization with a known map using particle filter. Since SLAM needs to not only estimate

robot pose but also mapping the environment, the computation cost is much higher than the

common localization with the known map [24, 30, 32, 49, 8, 50]. For increasing computation

efficiency, only the robot trajectory is sampled in Rao-Blackwellized particle filter [37, 51]

since the map can be produced according to the estimated robot trajectory. FastSLAM [35]

is also affected by this notion to construct each particle representing the hypothesis of the

robot pose with EKF associated with its map. According to the motion model, the particles

are spread to construct the desired distribution. After that, the particles are weighted and

9

resembled based on the measurement model. For increase the number of particles in the

most likely spot, a new proposal distribution is proposed in FastSLAM 2.0 [36].

1.2.3 Filter-less SLAM

Instead of treating SLAM as a recursive filtering problem, Filter-less SLAM also called

Graph-based SLAM casts it as an optimization problem [52]. Since the motion and mea-

surement models usually are non-linear, non-linear least square methods such as Gauss

Newton [53, 54, 55] or Levenberg-Marquardt [56, 57, 58] were applied. With the given rota-

tions, square root SAM [59] was improved with matrix factorization techniques to constrict

iSAM [60]. The Thin Junction Tree Filter [61, 62] and Treemap [63] algorithms perform

this optimization in tree-like topologies.

Filter-less SLAM jointly optimize the entire robot poses during the whole SLAM process

with relative and absolute measurements. For achieving the similar results with filtering

results, forward-backwards smoothing techniques must be employed. The methods are well

suited for rich sensor data application utilizing point clouds or camera image for obtaining

the optimized results. However, the amount of sensor data may cause data association

problems to lead the wrong results in the optimization. Outlier rejection methods have

been proposed to increase the robustness of the filter-less SLAM [63].

1.2.4 Kidnapping problem in SLAM

Kidnapping is a localization problem that occurs when an unexpected movement hap-

pened to the robot due to the interaction with its surroundings. It makes localization fail,

which means that the robot cannot estimate its posture in the environment correctly. Sev-

eral methods were proposed to solve this problem in a previous known-map situation; for

example, Monte Carlo Localization [30, 32, 64, 50] that performs global localization regular-

ly. Although this method is not efficient from the point of view of the time cost associated

with recovering from the kidnapping event, the successful correction of the wrong posture

is reliable. Although the solutions of kidnapping in known environment were proposed,

10

these solutions cannot be applied to the kidnapping in previous unknown situation because

of unique situations caused by kidnapping. This problem motivated us to propose a new

solution to obtain an accurate result of SLAM while kidnapping happens.

1.3 Outline of this Thesis

To propose a reasonable solution for the kidnapping problem, an analysis is carried out

to distinguish different situations of kidnapping. The solution structure including kidnap-

ping detection and kidnapping recovery is determined. After that, a kidnapping detection

framework is proposed with simulations verification. Two kidnapping recovery methods are

introduced according to different kidnapping types. Experiments were conducted to verify

the performance of proposed methods with a robot platform. Conclusions and future works

are summarized according to the experimental results.

Chapter 2 introduces a new problem in SLAM which motivates us to construct a set of

methods to solve it. The problem called kidnapping in SLAM is introduced with analyzed

situations which the robot may encounter. Based on the analyzed situations, we firstly

describe a basic structure of the solution including the kidnapping detection and kidnapping

recovery, and then present the relationship between the proposed methods in the thesis.

Chapter 3 presents the proposed methods of kidnapping detection called Double Kidnap-

ping Detection and Recognition (DKDR) and Probabilistic DKDR (P-DKDR). P-DKDR

follows the framework of DKDR with adding the uncertainty of the estimated state. DKDR

framework can judge whether kidnapping has occurred and identify the type of kidnapping

with filter-based SLAM. The basic structure, metrics and thresholds of DKDR are described,

and simulations on DKDR and P-DKDR with EKF-SLAM are executed. The performance

of each method is evaluated by Receiver Operating Characteristic (ROC) [65].

Chapter 4 describes two methods of kidnapping recovery according to the kidnapping

situations. One of the methods called Monte Carlo Localization with Map Uncertainty

(MCl-MU) is introduced with the problem of basic Monte Carlo Localization method and its

11

implementation. Another method is based on idea of Known and Unknown Environment’s

Simultaneous Localization (KUESL) is introduced. Following the proposed idea of KUESL,

the implementation with Gmapping and Modified MCL-MU (M-MCL-MU) are utilized.

Chapter 5 introduces the experiments to verify methods of kidnapping detection and

kidnapping recovery in an indoor environment. Firstly, the setup of the experiment about

the mobile robot platform is introduced. The experiments preforming DKDR and P-DKDR

are similar to their simulations. The results of the experiments are described and discussed

according to the real situation. The experiments about MCl-MU and KUESL are also

introduced with results evaluated by successful rate. The discussion about experiments

results shows the reasons of the failure cases.

Chapter 6 concludes this thesis and discusses the possible works in the future.

12

Chapter 2

Problem Statement

In this chapter, the problem about kidnapping in previous unknown environment is

analyzed to divide into different situations. Furthermore, a new solution structure of the

problem is introduced based on different kidnapping types.

2.1 Analysis of Kidnapping in SLAM

In an unknown environment, the robot needs to explore unknown area with SLAM,

as shown in Figure 2.1(a)(b). Therein, white circles represent undetected features in the

environment. A mobile robot, carrying an exteroceptive sensor with the limited range

represented as a red dashed circle, is shown as a red triangle. During the SLAM, the

robot collects useful information (features’ positions) about its surroundings while it moves

around in the environment. The robot’s trajectory is shown in green dashed line. When the

robot detects a new feature, the position of the feature is recorded to the map. Blue circles

show that the previous undetected features have been detected and included in the map.

During the robot performing SLAM, the constructed mapping areas can be classified as

explored areas (detected features) or unexplored areas (undetected features). If the robot

was kidnapped into an explored area as shown in Figure 2.1(c), the existing kidnapping

recovery methods can be applied with reasonable modification to correct the robot posture

13

Undetected
Features

Current Robot
Posture

Sensor Range

(a)

Detected Features

Trajectory

Previous
Robot Posure

Undetected
Features

(b)

Kidnapped
Robot Posture

Detected Features Undetected
Features

(c)

Detected Features

Kidnapped
Robot Posture

Detected Features
after Kidnapped

(d)

Figure 2.1. Different situations of kidnapping in SLAM. (a) Initial situation of SLAM. (b)
Result of SLAM before kidnapping. (c) The robot is kidnapped to the explored area. (d)
The robot is kidnapped to the unexplored area.

14

with known features positions. However, if the robot was kidnapped into an unexplored area

as shown in Figure 2.1(d), directly utilizing the existing methods may result in a wrong

estimated posture. Although there is no known-map actually around it, the robot still

tries to estimate its posture with the collected information. These two different possible

situations make the kidnapping in an unknown environment has its unique problems which

need to provide a new solution.

About the influence of the kidnapping in the unknown map situations, it does not only

cause an incorrect estimation of the robot posture but also a deformation of the mapping

result because of the property of SLAM. With filter-less SLAM algorithms [66, 67], the

incorrect collected information is directly added to the explored map after kidnapping, which

affects the consistency of the mapping result. In contrast, the information belonging to the

explored map is not affected, and the explored map can potentially be utilized in the recovery

scheme after kidnapping. However, this property does not exist in filter-based SLAM. In

filter-based SLAM, the explored area may also be deformed by the incorrect information,

which makes the explored map information difficult to be recovered after kidnapping.

To prevent this scenario, a check about kidnapping is required. With timely detection,

the correct information about the explored area will not be deformed by kidnapping. Some

of this information can then be utilized to recovery from the kidnapping with sufficient con-

ditions. After that, a suitable kidnapping recovery method should be carried out according

to the kidnapping situation to relocalize the robot posture in the environment.

2.2 Solution of kidnapping in SLAM

As we described above, the new situations caused by kidnapping in the unknown envi-

ronment makes the accurate robot posture cannot be recovered directly. A new structure of

the solution need to be proposed to relocalize the robot posture effectively and efficiently.

Basically, the solution is divided into two sequential parts, which are kidnapping detection

and kidnapping recovery.

15

The requirement of kidnapping detection is to detect the kidnapping on time to prevent

the robot causing hazardous actions. Since the robot performs at least one localization

task while processing the kidnapping detection, the computation load for the kidnapping

detection should be small to allow the tasks to be executed smoothly. Furthermore, the

kidnapping detection should provide sufficient information about kidnapping to make sure

a suitable kidnapping recovery method is selected.

Classifying kidnapping into several categories should be helpful to provide basic infor-

mation to decide what recovery strategy should be employed after kidnapping. Extending

the classification given in [68], two main types of kidnapping (types A and B) are proposed

in this thesis. Type A kidnapping occurs when the robot does not correctly estimate its

posture after its actual posture changed beyond some range. For example, while operating

a task autonomously, a robot is moved to another place by a human, and this change in

posture is not imported into the SLAM algorithm. In this case, two possible situations (kid-

napped in explored areas or kidnapped in unexplored areas) exist. The ordinary recovery

methods may cause fault if it is applied directly. Similar situations such as entering elevator,

being pushed away by other robots, or falling down from stairs should also be recognized as

type A kidnapping. Type B kidnapping occurs when the robot does not actually change its

posture, the predicted posture however is significantly changed. For example, the robot is

stuck in an area or moving in a slippery area. In this case, since the robot is just kidnapped

in explored area, the ordinary recovery methods could be applied directly. Both type A and

B kidnapping events are divided into two sub-types based on the range of kidnapping (e.g.,

slipping belongs to type B.1 kidnapping, while being stuck belongs to type B.2 kidnapping).

Providing this detailed information can help to design a suitable recovery algorithm, such

as the range of scan-map matching [67, 69, 66].

Existing methods for kidnapping detection can be divided into two types, physical and

mathematical methods. Physical methods that use specific sensors (e.g., barometer [70],

accelerometer [71] and switch [72]) to measure whether or not kidnapping has occurred.

However, these methods have some limitations. First, these methods require additional

16

sensors to be mounted on the robot. Therefore, the reliability of these methods cannot

be ensured when the sensors’ states are abnormal. Second, each sensor can detect only

a specific type of kidnapping, such as the robot is lifted up or stuck in an area. On the

other hand, mathematical methods utilize only inherent sensors such as wheel encoder and

laser range finder (LRF) to observe abnormal situations. Compared with physical methods,

mathematical methods can be used in robots that have proprioceptive and exteroceptive

sensors to locate themselves. Using the entropy of location probabilities [73], the robot can

detect kidnapping with the given information. However, it cannot be applied in SLAM when

the information of the map is unknown. Metric-based detection [68] needs two independently

operating sensor resources, which are required along with pervious test data.

After processing kidnapping detection, different kidnapping recovery methods should

relocalize the robot posture according to the current situation. If the robot is kidnapped

to the explored area, the kidnapping recovery method should relocalize the robot posture

in the map built by SLAM. However, existing global localization methods [64, 30, 32, 50]

require the provided map accurately enough, which the map constructed by SLAM with

uncertainties is not fulfilled. For obtaining an accurate robot posture estimation, the map

uncertainty also should be taken into account in the localization method. In another aspect,

the kidnapping recovery method should start a new SLAM to estimate the robot posture

with a new map if the robot is kidnapped to the unexplored area since the autonomous

mobile robot cannot navigate itself without a map. The robot needs to acquire surrounding

information as soon as possible to construct a map for continuing its tasks.

According to the idea of the solution of kidnapping in the previously unknown environ-

ment, that methods about kidnapping detection and kidnapping recovery are proposed in

this thesis. Their relationship are shown in Figure 2.2. Two kidnapping detection methods

called Double Kidnapping Detection and Recognition (DKDR) and Probabilistic DKDR (P-

DKDR) are proposed with distinct requirements. DKDR needs less computation expense

than P-DKDR, and P-DKDR has less false alarms than DKDR in a large scale environment.

The output of the two kidnapping detection methods are same, which is the type of kidnap-

17

Output:

Kidnapping Type

Kidnapping Detection

Method 1:

Double Kidnapping

Detection and Recognition

Method 2:

Probabilistic Double Kidnapping

Detection and Recognition

Stuck Slip Moved

Kidnapping

Recovery

Monte Carlo

Localization with

Uncertain Map

Known & Unknown Environment’s

Simultaneous Localization

Detection and

Classification

Solution in Known

Environment
Solution in Uncertain

Environment

Figure 2.2. Relationship of proposed methods.

18

ping. It the robot is kidnapped around the place before kidnapping, a method called Monte

Carlo Localization with Map Uncertainty (MCL-MU), which realizes no motion kidnapping

recover based on Monte Carlo Localization, is applied. In the other situation where the

robot is kidnapped out of the range of sensors, a method named Known and Unknown En-

vironment’s Simultaneous Localization (KUESL) is preformed to obtain the correct robot

posture, no matter the robot is in explored area or not. With these methods, a new complete

kidnapping solution is provided in this thesis.

2.3 Summary

This chapter introduced an analysis of kidnapping problem in an unknown environment

while processing SLAM. Two different situations about kidnapping are described based on

the explored area and the new area. Furthermore, the situations of kidnapping in SLAM

without solutions with different types of SLAM are presented.

Based on the kidnapping situations in SLAM, a solution structure including kidnapping

detection and kidnapping recovery is proposed. Furthermore, the type of kidnapping is

defined to obtain detailed information about the kidnapping. In kidnapping detection, a

framework called DKDR, which can detect and distinguished type of kidnapping, is pro-

posed. A method called P-DKDR combining the uncertainty of the estimation based DKDR

is also introduced in the kidnapping detection. MCL-MU and KUESL are introduced as

kidnapping recover to solve different types of kidnapping. The relationship of the proposed

methods is summarized in a relation map.

19

Chapter 3

Kidnapping Detection

In this chapter, we describe a property of filter-based SLAM that corrects the entire

map of the environment with current observations after the update process. Based on

this property, a framework using metrics is implemented in ordinary SLAM processes in

real time to detect and recognize kidnapping, which is called double kidnapping detection

and recognition (DKDR). Furthermore, an improved method called Probabilistic DKDR (P-

DKDR) with improved metrics is also introduced. Third, a new classification for kidnapping

is proposed to provide more information for the kidnapping recovery strategy. Fourth, a

method to determine thresholds for the metrics without previous testing data is applied in

the method. To demonstrate the universality and simplicity of the framework, we report

on the application of the DKDR framework and P-DKDR method in EKF-SLAM with

simulations.

3.1 DKDR Framework

As shown in Figure 3.1, two new processes are embedded into the ordinary SLAM

structure to construct the DKDR framework. After the predict and observe processes, one of

the new processes called prior-check process is performed. The prior-check process includes

the main work for detecting kidnapping and identifying the kidnapping type. Subsequently,

20

Figure 3.1. Overall DKDR workflow

the update process updates all of the information including the robot’s state and the map

information. Another new process called the posterior-check process follows the update

process. In this process, the change in the entire map is checked to detect kidnapping.

As we introduced EKF-SLAM in Section 1.2.1, comparing observations in sequential

time steps can be detect and distinguish kidnapping in the prior-check process. If kidnapping

occurred, the difference between observations zk|k−1 and zk would be enlarged. Thus, the

value of the component in equation 1.8, zk − h(xk|k−1,m), would be significantly increased.

Wk includes the state covariance matrix Pk|k−1 multiplying zk − h(xk|k−1,m), while Pk|k−1

includes variance of each feature’s position. The features’ positions with high variance are

affected obviously by kidnapping. At the end, the map including features’ positionsm would

be changed obviously after the update process. By comparing the difference betweenmk and

mk−1, the robot can check whether the information has changed. This work is accomplished

in the posterior-check process. If kidnapping occurs and has not been detected by the prior-

check process, the posterior-check process could give an alarm. The prior-check process is

a prevention mechanism to stop the fault information from corrupting the information as a

whole.

Two new processes, the prior-check and the posterior-check processes, are introduced in

21

Figure 3.2. Workflows of prior-check and posterior-check processes

22

this section. The posterior-check process includes two functions : detection and recognition.

A complete check-up can be done during the prior-check process. The posterior-check

process using one metric is applied to check information changes after the update process.

The workflow of each process in every time step is shown in Figure 3.2.

To evaluate whether the robot has moved to the designated position, the metric Qp and

its thresholds are needed. A predicted robot state xk|k−1 is generated as an output in the

predict process. The predicted observation zk|k−1 can thus be calculated using equation 1.7.

When the robot actually turns to the predicted state, the actual observation zk should be

similar to the predicted observation zk|k−1. If the difference between these two observations

exceeds a reasonable threshold, it indicates that kidnapping has happened. Although the

kidnapping can be detected by Qp, the type of kidnapping cannot be distinguished; another

metric Qo is needed to ascertain the type of kidnapping.

There are two main types of kidnapping and two subclasses for each type, as denoted

in Section 2.2. The characterization of these kidnapping types is listed in Table 3.1. In

sequential time steps, the positions of several overlapped features in the local coordinates

can be determined. AP denotes the distance between actual and predicted positions of

overlapped features in the local coordinates, whereas CL represents the distance between

the current and last positions of overlapped features in the local coordinates. For dividing

four different types of kidnapping, four thresholds are denoted as T1, T2, T3 and T4. Type

A kidnapping occurs when AP is larger than T1 and CL is larger than T3, e.g., when the

robot is carried to a new place or pushed into an unexpected area. Compared to type A.1

kidnapping, type A.2 kidnapping is much larger than T1, indicating that the situation is

more critical. In type A kidnapping, the situation of the robot after kidnapping cannot be

ascertained. In this case, the algorithm for kidnapping recovery should judge the situation

of the robot.

The autonomous robot may mistakenly estimate that it has moved to the predicted

position, when it is actually still in the same place. This is an example of type B kidnapping,

for which CL is smaller than T3, and it indicates that the robot did not reach the target

23

Table 3.1. Different Types of Kidnapping

Type Condition 1 Condition 2

Non-kidnapping AP ≤ T1 CL > T3

Type A
Type A.1 T2 ≥ AP > T1 CL > T3

Type A.2 AP > T2 CL > T3

Type B
Type B.1 T2 ≥ AP > T1 T4 < CL ≤ T3

Type B.2 AP > T2 CL ≤ T4

due to slippage or another external force. Type B.2 kidnapping is recognized as the stuck

problem, while other problems are classified as type B.1 kidnapping. For type B kidnapping,

the existing methods of kidnapping recovery can be carried out because the robot still

remains the explored area.

With Qp and Qo, it is easy to implement the complete check-up. However, these two

metrics can only serve as pre-tests. If kidnapping cannot be detected with these two met-

rics, another metric Qs is required for the post-test in the posterior-check process, which

determines whether or not the information as a whole is normal. Moreover, the ability to

distinguish normal information from abnormal information is also required.

The final check result (CR) of DKDR is based on the results of each check process, as

shown in equation 3.1.

CR = PrR ∨ PoR

PrR =

 1 if report kidnapping

0 otherwise

PoR =

 1 if report kidnapping

0 otherwise

(3.1)

where PrR and PoR denote the CRs of the prior-check process and posterior-check pro-

cess, respectively. CR is calculated by the OR operation with PrR and RoR. If CR = 1,

DKDR reports that a kidnapping event has occurred and stops SLAM process. Recovery

methods are executed after getting the type of kidnapping from detection, such as Monte

Carlo Localization or starting new SLAM process. Since this study is focus on the detec-

24

tion and classification of kidnapping, recovery methods are not discussed in this chapter.

For calculating CR, OR operation can be replaced by other operations such as the AND

operation to adapt to different requirements, such as the situation requiring less false alarm

and insensitive in detecting kidnapping.

Loop-closure is the task of deciding whether or not a robot has returned to a previously

visited area after an excursion of arbitrary length [74, 75]. Both prior-check and posterior-

check processes could mistake loop-closure for kidnapping if there is no previous prevention

mechanism. To prevent this type of failure, loop-closure is checked before the kidnapping

judgment in the prior-check and posterior-check processes.

3.2 Metrics and Thresholds

Three metrics, Qp, Qo and Qs, were briefly introduced in the previous section. In

this section, we describe these metrics along with a method to determine their appropriate

threshold values.

3.2.1 Metrics in DKDR

Qp and Qo compare the difference in observations directly. Without coordinate transfor-

mation, these metrics need less computation. In DKDR, the metrics are caculated based on

Euclidean distance, which is more efficient than other kind of distance, such as Mahalanobis

distance.

With the root mean square, Qp at time step k is given by

Qp(k) =

√√√√ 1

N

N∑
i=1

∥zik − zik|k−1∥2 (3.2)

where N represents the number of overlapped observed features between sequential time

steps k and k+1. Zi denotes the observation of the ith overlapped feature. Qo at time step

25

k is given by

Qo(k) =

√√√√ 1

N

N∑
i=1

∥zik − zik−1∥2 (3.3)

Qs at the time step k is given by

Qs(k) =

√√√√ 1

M

M∑
i=1

∥mk −mk−1∥2 (3.4)

where M denotes the number of overlapped features between sequential time steps k − 1

and k.

3.2.2 Metrics in P-DKDR

For decreasing the effect of the increasing uncertainty in SLAM process in large scale

environment, Mahalanobis distance is applied in metrics of P-DKDR.

With the root mean square, Qp is given by

Qp(k) =

√√√√ 1

N

N∑
i=1

Vi(k)TSi(k)−1Vi(k) (3.5)

where

Vi(k) = zik − zik|k−1

Si(k) = Ri
k +Ri

k|k−1

(3.6)

and N represents the number of the overlapped observed features between sequential time

step k and k + 1. Zi denotes the observation of ith overlapped feature. Qo is given by

Qo(k) =

√√√√ 1

N

N∑
i=1

Wi(k)TMi(k)−1Wi(k) (3.7)

where

Wi(k) = zik − zik−1

Mi(k) = Ri
k +Ri

k−1

(3.8)

Qs is given by

Qs(k) =

√√√√ 1

M

M∑
i=1

Dmi(k)TOmi(k)−1Dmi(k) (3.9)

26

Figure 3.3. Profile of Half-Normal Distribution.

where

Dmi(k) = mk −mk−1

Omi(k) = P i
k + P i

k−1

(3.10)

and M denotes the number of the overlapped features between sequential time step k − 1

and k.

Comparing with DKDR, P-DKDR adds the associated covariance matrix into metrics.

It can decrease the rate of false alarm in the whole detection reports. It causes that the

whole performance of P-DKDR is better than DKDR in a large scale environment. About

the thresholds of metrics, the method proposed in DKDR is used in P-DKDR. Detection

and classification condition are the same as that in DKDR. The difference is the composition

of metrics.

3.2.3 Thresholds

The accuracy of detection and classification is related to the metrics’ thresholds, and

a suitable method that works in real time is required to determine reasonable thresholds.

A method using the ROC curve to determine the thresholds for a system of detection was

proposed; however, this method requires the experimental data in advance, which is not

27

convenient. A method to determine the thresholds along with the corresponding kidnapping

types without previous data is described in this section. This method can be applied in

various localization systems.

If there is no noise in the system, Qp and Qs should be equal to zero in normal situations,

indicating that the actual position of the robot should be the same as the predicted position.

However, some errors in the system cannot be avoided, such as the noise of the observation

and the uncertainty of the robot model. Hence, the values of the metrics deviate from zero

and obey the half-normal distribution (Figure 3.3). Because the standard deviation can

reflect the percentage of events, as shown in Figure 3.3, the thresholds can be determined

by the percentage of kidnapping events. With different values of noise in the system, this

method can provide different suitable thresholds. The different types of kidnapping along

with the metrics and their thresholds used in our simulations and experiments are shown

in Table 3.2. With these values, the robot can judge its situation and provide a suitable

navigation strategy, allowing the robot to avoid explored areas where slippage occurs easily.

The mean µ of these metrics is equal to zero and the covariance σ can be calculated

from the data collected before time step k. Tp1 and Tp2 of Qp can be determined from the

standard deviation σp of Qp shown in equation (3.11):

σp(k) =

√√√√1

k

k∑
i=1

Qp(i)2 (3.11)

The threshold of Qo is equal to Tp1. The threshold of the metric Qs can be determined

by its standard deviation σs shown in equation (3.12):

σs(k) =

√√√√1

k

k∑
i=1

Qs(i)2 (3.12)

Please note that Table 3.1 only describes the conception of kidnapping type which is

different with Table 3.2. In

28

Table 3.2. Thresholds of Each Kidnapping Type

M Type A.1 Type A.2 Type B.1 Type B.2

Qp (Tp1, Tp2] (Tp2,+∞) (Tp1, Tp2] (Tp2,+∞)
Qo (Tp2,+∞) (Tp2,+∞) (Tp1, Tp2] [0, Tp1]
Qs (Ts,+∞) (Ts,+∞) (Ts,+∞) (Ts,+∞)

Tp1 = 3σp, Tp2 = 4σp, Ts = 3σs.

0.40m

0.40m

0.28m

0.28m

L1

L2L3

L4

L5

P1

P2P3

P4 P5

Figure 3.4. Dimensions of robot used in simulations.

3.3 Simulations

Simulations were conducted to investigate the feasibility and accuracy of the proposed

method. To obtain the correct response in an ideal situation, the simulations were conducted

under following conditions:

1. All sensor uncertainties follow Gaussian distributions.

2. The sensors mounted on the robot work well all of the time without temporary non-

operating states.

3. The features are all in static states.

4. Data association is known, and the data association process does not affect the results.

29

−10 −5 0 5 10

−8

−6

−4

−2

0

2

4

6

8

X (m)

Y
 (

m
)

RPF

Wpath

Wpoint

Robot

(a)

−10 −5 0 5 10

−8

−6

−4

−2

0

2

4

6

8

X (m)

Y
 (

m
)

RPF

Wpath

Wpoint

Robot

APR

EPF

ECE

(b)

−10 −5 0 5 10

−8

−6

−4

−2

0

2

4

6

8

10

X (m)

Y
 (

m
)

RPF

Wpath

Wpoint

Robot

APR

EPF

ECE
Kidnapping

(c)

−10 −5 0 5 10

−8

−6

−4

−2

0

2

4

6

8

X (m)

Y
 (

m
)

RPF

Wpath

Wpoint

Robot

APR

EPF

ECE
Kidnapping

(d)

Figure 3.5. Results of the simulation in different situation. (a) Simulation Map. (b)
Normal SLAM process. (c) Kidnapping result without detection. (d) Kidnapping result
with detection.

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

100

200

300

400

500

600

Distance (m)

T
im

e
 S

te
p

Distance

Kidnapping

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

100

200

300

400

500

600

Angle (radian)

T
im

e
 S

te
p

Angle

Kidnapping

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

100

200

300

400

500

600

Qp

T
im

e
 S

te
p

Qp

Tp1

Tp2

Kidnapping

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

100

200

300

400

500

600

Qs

T
im

e
 S

te
p

Qs

Ts

Kidnapping

(d)

Figure 3.6. Metrics used to detect kidnapping. (a) Distance. (b) Angle. (c) Qp. (d) Qs.

31

Table 3.3. Simulation Conditions

Condition Value

Robot Speed 0.3m/s
Control Cycle 0.2s
Observation Cycle 0.2s
Max Range of Observation 3m
SD of Speed Noise 0.09m/s
SD of Orientation Noise 9◦

SD of Observation Position Noise 0.01m
SD of Observation Angle Noise 1◦

* SD: Standard Deviation

We aim to show the correctness of DKDR in the simulations, including the response of

DKDR and the phenomenon after kidnapping without detection. Simulations were executed

using MATLAB on a personal computer (CPU: 3.40GHz Intel Core i5, Memory: 8 GB

DDR3). The source code was based on the EKF-SLAM algorithm in the SLAM package

of Tim Bailey [33]. We modified and implemented our method into this package. The

simulation conditions are shown in Table 3.3. The shape of the robot is shown in Figure

3.4.

The map and different situations are depicted in Figure 3.5. As indicated in Figure

3.5(a), ‘RPF’ denotes the real position of a feature. ‘Wpoint’ denotes the waypoint and

‘Wpath’ denotes the path connected with waypoints. The robot needs to drive itself towards

each waypoint by the shortest path. Figure 3.5(b) shows the ordinary SLAM progress with

the map. ‘APR’ denotes the actual positions of the robot. ‘EPF’ and ‘ECE’ represent the

estimated position of the feature and its covariance ellipses. In normal situation, the EPF is

near the RPF and distance between them becomes larger as time step passed. In this map,

the robot performs the loop-closure before the end because it meets features that have been

found before. Since DKDR recognizes the loop-closure event as an exception, even though

it is similar to kidnapping. It prevents the erroneous triggering of kidnapping detection.

Figure 3.5(c) shows the result for when kidnapping happened without detection. In this

case, the distance between EPF and RPF is large after the kidnapping event, and the EPF,

which should remain in the same position as before kidnapping, is changed. Figure 3.5(d)

32

shows the results for the case when kidnapping occurs with DKDR. The kidnapping was

successfully detected by DKDR and the original information was correctly retained. The

robot can reuse this original information for kidnapping recovery or map joining. These

simulated results indicate that the DKDR can successfully detect kidnapping.

The representative data are shown in Figure 3.6. To judge whether kidnapping had

actually occurred, we calculated real data without uncertainty at each time step. The

distance between the predicted and actual position of the robot is shown in Figure 3.6(a).

The difference between the angles of the predicted and actual orientations of the robot is

shown in Figure 3.6(b). From Figure 3.6, we could easily determine how the differences in the

robot’s position and orientation changed due to kidnapping. The values ofQp for kidnapping

and non-kidnapping situations are shown in Figure 3.6(c). In the non-kidnapping situation,

Qp is lower than the first threshold Tp1. When Type A.2 kidnapping occurs in 501th time

step, Qp is larger than the second threshold Tp2. Moreover, the value of Qs also exceeds Ts,

as shown in Figure 3.6(d). Qs is lower than Ts before kidnapping. Qo is not shown here

since it only be calculated once after Qp beyond its threshold, which has been denoted in

Section 3.1. Since Qo is only calculated after kidnapping is detected shown in Figure 3.2,

it is not shown in Figure 3.6.

We performed several simulations for kidnapping and non-kidnapping situations. If the

robot was moved farther than 0.7 m, the situation is recognized as type A.2 kidnapping.

Type B.2 is defined as when the robot stops at some specific point until its odometry data

exceeded 0.7 m. The ranges of Types A.1 and B.1 are set as 0.2 m. The results processed

by ROC are shown in Table 3.4. About the report of DKDR, the true positive rate is the

fraction of the detected kidnapping out of the total number of actual kidnapping events, and

the false positive rate is the fraction of the incorrectly detected non-kidnapping time steps

out of the total number of actual non-kidnapping time steps. Compared to posterior-check

process, prior-check process has higher true positive rate and false positive rate. Since OR

operation is applied to the system, true positive rate and false positive rate of DKDR are

higher than each check process.

33

Table 3.4. Operating Characteristics of DKDR

True Positive Rate False Positive Rate

0.9990 0.0228

Table 3.5. Operating Characteristics of classification

Kidnapping Type TPR FPR

Type A.1 0.8403 0.0437
Type A.2 0.9763 0.0742
Type B.1 0.7823 0.0486
Type B.2 0.9821 0.0634

The simulated results for kidnapping type classification are shown in Table 3.5. The

true positive rate is the fraction of detected kidnapping events of a certain type out of the

total number of actual kidnapping events of that type, and the false positive rate is the

fraction of wrongly detected kidnapping events of a certain type out of the total number of

actual other types of kidnapping.

For investigating the feasibility and accuracy of P-DKDR, simulations with larger en-

vironment were conducted with P-DKDR and DKDR. The map of simulation has been

shown in Figure 3.7(a). We did simulations in a no actual kidnapping situation during the

whole SLAM process. The results of metrics in P-DKDR of Qp and Qs are shown in Figure

3.9. In non-kidnapping situation, the value of metric Qp is less than the first threshold Tp1,

and metric Qs is lower than the threshold Ts. Comparing with the simulation results of

DKDR shown in Figure 3.8, the value of both metrics is below the thresholds after time

steps increased. This means that, although the uncertainty of the state increased by the

SLAM process, influence in kidnapping detection has been decreased.

Several simulations were conducted to show the performance of P-DKDR and DKDR

during SLAM process. Different simulations were conducted to verify the performance

under the kidnapping situation and the non-kidnapping situation. The kidnapping is a

man-made movement to the robot to simulate the real kidnapping that the robot is moved

by the human in the environment. Then, we can judge whether the report of P-DKDR is

a true alarm or a false alarm or no alarm. In each simulation, one time kidnapping event

34

(a)

(b)

Figure 3.7. Map and EKF-SLAM. (a) Map for simulation. (b) Result of EKF-SLAM
without kidnapping.

Table 3.6. Operating Characteristics of DKDR and P-DKDR in a large scale environment

Kidnapping Detection True Positive Rate False Positive Rate

DKDR 0.9900 0.1203
P-DKDR 0.9800 0.0431

is set randomly from step 500 to time step 800. The results processed by ROC are shown

in Table 3.6. About report of kidnapping in DKDR and P-DKDR, the true positive rate

is the fraction of detected kidnapping out of the total number of actual kidnapping events,

and the false positive rate is the fraction of non-kidnapping time steps that is incorrectly

detected out of the total number of actual non-kidnapping time steps. Comparing with

DKDR, the false positive rate is decreased in P-DKDR, which means that the possibility

of the false alarm is decreased. At the same time, the true positive rate of P-DKDR is also

decreased a little comparing with DKDR. That means although the rate of false alarm is

decreased, P-DKDR is not as sensitive as DKDR dealing with the real kidnapping.

35

(a)

(b)

Figure 3.8. Non-kidnapping with DKDR. (a) Response of the metric Qp. (b) Response of
the metric Qs.

36

(a)

(b)

Figure 3.9. Non-kidnapping with P-DKDR. (a) Response of the metric Qp. (b) Response
of the metric Qs.

37

3.4 Summary

In this chapter, we have introduced DKDR framework which can detect and recognize

kidnapping in real time. Furthermore, a method combing tribalistic estimation in DKDR

called P-DKDR for large scale environments has been also described. The method to

classify the kidnapping type for providing more detail information to kidnapping recovery

has been presented. Distinct metrics and their thresholds have been introduced to realize

detection and recognition of kidnapping. Simulation results show that DKDR framework

and P-DKDR method can be applied into EKF-SLAM to detect and recognize kidnapping.

Experiments for kidnapping detection on a physical platform will be given in Chapter 5.

After proposed kidnapping detection methods, the type of kidnapping is produced as

the output of the kidnapping detection. Based on this specific information, it is possible to

propose efficient methods for kidnapping recovery.

38

Chapter 4

Kidnapping Recovery

After performing DKDR process, 2 categories of kidnapping are recognized. Based on

different kidnapping type, two kidnapping recovery methods are proposed in this chapter.

For type B kidnapping, since the robot is kidnapped around the robot pose before

kidnapping due to a specific reason, a global localization with a map built by SLAM before

kidnapping can be applied to perform kidnapping recovery to obtain the correct robot pose.

Because the map built by SLAM before kidnapping has unified uncertainty, the existing

global localization methods that assume the map provided for localization is accurate enough

cannot be directly utilized. To solve this problem, a new global localization method based

on Monte Carlo Localization is proposed with taking the map uncertainty into account.

Based on the kidnapping detection result that the current robot pose is still around the

robot pose before the kidnapping, the range of spreading articles are limited to fulfill the

requirement that the robot should not move and to increase the efficiency of the method.

About type A kidnapping, the robot is kidnapped to an uncertain area that could

be the explored area or the unexplored area. In this case, a method combining a global

localization and a SLAM is proposed to determine the correct robot pose. The method

performs a global localization with the map built by SLAM before kidnapping and a new

SLAM process simultaneously. After each method obtaining an estimated robot pose, the

probabilities of each estimated robot pose are compared to choose the estimated robot pose

39

with a higher probability as the output of the method. For implementing the idea of the

method, a Monte Carlo Localization (MCL) and a particle filter based SLAM are combined

as an example to show the performance of the method.

4.1 Monte Carlo Localization with Map Uncertainty

For obtaining the correct robot pose after kidnapping in the explored area, an improved

Monte Carlo Localization called Monte Carlo Localization with Map Uncertainty (MCL-

MU) is proposed according to the properties of the kidnapping type. First, a problem

statement based on the previous particle weight evaluation principle in MCL is described to

show the motivation of the study. Second, an improved MCL combing the map uncertainty

into particle weight evaluation is described. To prevent the robot from moving out of the

explored area, the method should be carried out without the robot motion. The method

fulfills these requirements are described at the end of this section.

4.1.1 Problem Statement about Map Uncertainty

Monte Carlo Localization is a method based on particle filter for realizing robot localiza-

tion with a given environment map. Since the robot cannot perform localization excluding

noise including control noise and sensor noise, many hypotheses of robot poses are generated

due to the noise of the robot system. Each particle represents each hypothesis of the robot

pose, and the distribution of likely robot pose is represented by particles distribution.

The method takes the previous belief of the robot pose Xt−1 = {x1t−1, x
2
t−1 · · · , xMt−1},

actuation control input ut, and sensor readings zt as the input at time step t, where xmt−1

represents the mth particle of the robot pose at time step t − 1. At time step 0, particles

are dispersed randomly all over the free space in the map if the initial robot pose with

uncertainties is unknown. If the initial robot state is given, particles are spread according

to the given robot pose distribution.

The procedure of the basic MCL in each time step is shown in Table 4.1. Basically,

40

Algorithm 1: MCL(Xt−1,ut,zt)

1 X̄t = Xt = ∅

2 for m = 1 to M do

3 xmt = prediction phase(ut, x
m
t−1)

4 wm
t = update phase(zt, x

m
t)

5 X̄t = X̄t+ < xmt , wm
t >

6 endfor

7 for m = 1 to M do

8 draw xmt from X̄t with probability ∝ wm
t

9 Xt = Xt + xmt

10 endfor

11 return Xt

Table 4.1. Monte Carlo Localization

prediction phase and update phase are processed in MCL to obtain each particle xit and its

weight wi
t at time t. In prediction phase, each particle xit−1 is applied in motion according

to the motion control input ut. The motion model we used is described in Chapter A.

Since the motion control input includes noise, as a result, the particles diverge during this

phase. By doing so, each particle xit at time t is generated. In this phase, any absolute

measurements have been not yet incorporated. The absolute measurement zk is taken into

account in update phase. The weight of each particle wi
t is generated according to xit and zt

including the noise of the sensor. The measurement model we used is described in Chapter

B. After these two phases, a new set of particles Xt is generated according to the weight of

each particle wi
t.

Two problems make the ordinary MCL cannot become the kidnapping recovery method

for type B kidnapping. The first problem is the uncertainty of the map built by previously

excused SLAM before the kidnapping. Since MCL assumes that the given map is accurate

enough, the uncertainty of the map is not considered in the method. In the update phase,

the uncertainty of the map is not included as the input that makes output wi
t cannot

41

represent actual situation. This assumption makes the method cannot obtain an accurate

result with the map built by SLAM because the different part of the map has distinct degree

of uncertainty.

The second problem is about the motion of the robot. Since the type B kidnapping shows

that the robot is still around the kidnapped place, the robot should not move far before the

correct robot pose is recovered. Otherwise, the robot may move out of the mapping area

which makes the kidnapping recover fail. However, current MCL cannot estimate robot pose

without motion control input ut due to the particle deprivation problem [76, 51, 37, 49].

If the particles all converge to an erroneous robot pose, the repeat measurement from the

same robot pose may cause scarcer of particles on each time step until the particles are

decreased to 0.

4.1.2 Implementation of MCL-MU

Since a new set of particles Xt at time step t is draw according to the weight of each

particle wi
t calculated by zt and xit in previous MCL, the information of the map m is

combined to the calculation of the wi
t in our proposed method. The formula of the update

phase is changed to:

wi
t = update phase(zt, xt−1i,m) (4.1)

It can be represented by the probability P (zt|xit,m), which can be divided into following

formula:

P (zt|xit,m) = P (zt|xit)P (zt|m) (4.2)

where P (zt|xit) represents uncertainty of the sensor reading, and P (zt|m) represents uncer-

tainty of the map, respectively.

P (zt|xit) can be calculated by beam range finder model, likelihood field range finder

model or other existing sensor model [11]. P (zt|m) is obtained by the feature likelihood

42

Algorithm 2: MCL-MU(Xt−1,zt)

1 X̄t = Xt = ∅

2 for i = 1 to M do

3 wi
t = update phase(zt, x

i
t−1,m)

4 X̄t = X̄t+ < xit, w
i
t >

5 endfor

6 for i = 1 to M do

7 draw xit from X̄t with probability ∝ wi
t

8 Xt = Xt + xit

9 endfor

10 return Xt

Table 4.2. Monte Carlo Localization with Map Uncertainty

field or occupancy of the grid map [11]. The steps of MCL-MU are shown in Table 4.2.

Since the robot has no motion during the kidnapping recovery, the predict phase is not

included in the MCL-MU.

For fulfilling the requirement of no motion kidnapping recovery, the particles dispersing

way is changed. In the proposed method, initial particles are spread around the kidnapped

place. The dispersing range is limited to the range of the absolute sensor. After dispersing

particles, motion control input ut is set to 0 in each time step. Furthermore, the particles

are re-spreading when the number of particles is decreased below a threshold. Moreover, the

computation cost is reduced since the required number of particles in the proposed method

is smaller than the method spreading particles all over the map. With increased efficiency,

the method can be performed smoothly in real time. Furthermore, it can also decrease the

probability of false kidnapping recovery caused by similar places existing in the map, such

as simple corridor, simple corner or simple wall, since the range of checking area is limited.

43

4.2 Known and Unknown Environment’s Simultaneous Lo-

calization

A method named Known and Unknown Environment’s Simultaneous Localization

(KUESL) which simultaneously processes global localization with a given map and SLAM

is described in this section. This method can deal with the most critical kidnapping prob-

lem that the robot is kidnapped to another place far away. It can recover the robot pose

no matter whether the actual robot is in the explored area or not. We will introduce the

basic idea of the method firstly to show the reason why the method can solve the problem.

After that, an example combing modified MCL-MU (M-MCL-MU) and Gmapping [37] is

described to implement our idea of the method. Furthermore, a technique comparing the

probability of estimated results between M-MCL-MU and Gmapping is shown.

4.2.1 Basic Idea of KUESL

Since the type A kidnapping cannot provide the information about whether the robot

is kidnapped to the explored area, two opposite hypotheses are constructed. One of the

hypothesis is that the robot is kidnapped to the explored area. The other hypothesis

supposes that the robot is kidnapped to a new area. Based on the two hypotheses, a

global localization and a SLAM are processed independently and simultaneously. The global

localization is executed based on the hypothesis that the robot is still in the explored area,

and the SLAM is performed according to the hypothesis that the robot is kidnapped to a

new area.

The reason to set two opposite hypotheses at the same time rather than setting one

hypothesis is that the proposed idea can realize kidnapping recovery effectively without

information loss. If the robot is actually kidnapped to a new area and only one hypothesis

that the robot is still in the explored area exists, the global localization cannot obtain

the robot pose on the map theoretically. In the case that the robot is kidnapped to the

explored area with the hypothesis that the robot is kidnapped to a new area, a new SLAM

44

is processed with new data to estimate the robot pose in a new map built by SLAM without

using the exist map information. This means that the data for the global localization is

lost. The robot needs to cost more time to mapping the environment.

After a specific time period, uncertainties of estimated robot pose in global localization

and SLAM are produced. By comparing the uncertainty in Gmapping and M-MCL-MU,

the more certain estimated robot pose is determined as the output of the method.

4.2.2 Implementation of KUESL

For showing a typical example of implementation our idea, MCL based method which is

a famous global localization method and Gmapping which is a well-known SLAM are applied

to our method. Since the map using in kidnapping recovery is built by SLAM before the

kidnapping, M-MCL-MU is applied with including map uncertainty. As we denoted in

Section 4.1.2, the map uncertainty is added to the weights of particles in MCL-MU. In

M-MCL-MU, the same weight evaluation method is applied. The only difference between

MCL-MU and M-MCL-MU is the dispersing particles method in the initial situation. At

initial situation, particles are spread all over the map in M-MCL-MU replacing the limited

dispersing particles range in MCL-MU.

H(t) = −
M∑
i=1

wi
t logw

i
t (4.3)

During simultaneously processing M-MCL-MU and Gmapping, motion data and mea-

surement data are input to the two methods at the same time, and the estimated result

will not be affected each other. After processing KUESL with a specific time period, two

estimated robot posed are produced separately with their uncertainties. Although both M-

MCL-MU and Gmapping are based on particle filter, the distributions of particles in the two

methods are different. M-MCL-MU can form particles as a multimodal distribution which

means this non-parametric representation can represent multiple estimate robot pose in the

map. However, the particles in Gmapping is basically only tracking one estimated robot

45

pose. It is difficult to represent the uncertainty of estimated robot pose with the highest

particle weight since it cannot be the whole distribution of particles. Instead, the entropy

of statistics [77] H(t) at time step t as shown in Equation 4.3 is applied to obtain the uncer-

tainty of estimated robot pose with all particles weights. The higher entropy represents the

higher uncertainty of the estimation result. In addition, the minimum number of particles

should be same in M-MCL-MU and Gmapping. The estimated robot pose with lower un-

certainties is chosen as the output of KUESL. If the entropy of M-MCL-MU and Gmapping

is same, the result of Gmapping is picked since choosing the result of M-MCL-MU has risks

to obtain a wrong estimation.

4.3 Summary

In this chapter, two kidnapping recovery methods called MCL-MU and KUESL have

been introduced. For MCL-MU, the reasons why previous MCL cannot directly be applied

for kidnapping recovery in previous unknown environment were described. The improve-

ments based on basic MCL for solving the described problems are introduced. About

KUESL, a basic idea combing global localization and SLAM to simultaneously performing

localization in known and unknown environment was presented. Furthermore, an exam-

ple for implementing the proposed idea with M-MCL-MU and Gmapping was described as

well as the method utilizing entropy to determine the output of KUESL. The conducted

experiments for the proposed kidnapping recovery methods will be described in Chapter 5.

46

Chapter 5

Experiments

In this chapter, experiments for verifying the performance of kidnapping detection and

kidnapping recovery are described. Firstly, a mobile robot platform constructed with Robot

Operating System (ROS) is introduced. Then, experiments for verifying the validity of the

proposed two kidnapping detection methods were conducted in an indoor environment. The

performance of kidnapping detection is evaluated by ROC according to the experimental

results. The performance of the two proposed kidnapping recovery methods is described

separately based on the experimental results.

5.1 Experimental Setup

Before describing experiments for kidnapping detection and kidnapping recovery, the

experimental setup including a mobile robot platform is introduced in this section. All

experiments were conducted with the mobile robot platform in this section.

The layered mobile robot platform is shown in Figure 5.1. A Roomba Vacuum Cleaning

Robot is used as the mobile base for the whole platform. The Roomba communicates with

a laptop is placed on top of it in one of the layers. A Laser Range Finder (LRF), which is

also fixed in another layer, is used to get the information of the environment. A gamepad

47

Table 5.1. Specification of Components

Parts Specification

Roomba Roomba 530
LRF RHokuyo URG-04LX

Laptop CPU: 2.20GHz Intel Core i3, Memory: 4 GB DDR3
Regulator OKI-78SR 5V 1.5A
Convertor FTDI FT232RL 5V cable

is used to manually control the Roomba. All the algorithms are performed in the laptop on

the Roomba.

The electronic structure of the platform is shown in Figure 5.2. Roomba supplies power

to the LRF through a regulator. The LRF and the laptop are connected with a USB

cable. Since the laptop cannot directly transfer the data using UART protocol, we added

a UART to USB converter to exchange the information between the Roomba and the

laptop. The laptop and the gamepad are linked with the USB as explained. In the laptop,

Robot Operating System (ROS) [78] is embedded to process the input information. The

components used in the platform are shown in Table 5.1.

The software structure of the whole system is shown in Figure 5.3. The Roomba, LRF

and the gamepad exclusively communicate with the laptop. The laptop gets the odometry

and the scan data from the Roomba and LRF respectively, using the specific drivers for

each component. The gamepad can send motion commands by operator to the laptop with

a specific driver. The laptop can configure the LRFs parameters to change its performance.

With the Roombas driver, the whole platform can be controlled by sending the speed and

direction parameters. The laptop works under Ubuntu 14.04 and Robot Operating System

(ROS) Indigo. Some key parameters used in the experiments are shown in Table 5.2.

5.2 Experiments for Kidnapping Detection

Several experiments were performed to verify the performance of DKDR in a real static

environment. The proposed methods were applied to Gmapping (FastSLAM 2.0) using

48

Laser Range Finder

Laptop

Roomba

Figure 5.1. Robot Platform.

49

Roomba 530
Mini-Din 8p

UART to

USBRegulator

LaptopLRF

GND5V

USB

USB

TXD
RXD
GND

PW
PW
GND

GamePadUSB

Figure 5.2. Electrical structure of the robot platform.

Roomba Driver

Interface

Protocol

Roomba

Interface

Protocol

LRF

Laptop

GamePad

Interface

Protocol

LRF DriverGamePad Driver

ROS

SLAM
Kidnapping

Detection

Kidnap

Recovery

Figure 5.3. Software structure of the robot platform.

50

Table 5.2. Experiment Condition

Condition Value

Max Range of Sensor 4m
Scan Angle of Sensor 180◦

Variance of Speed Noise 0.05m/s
Variance of Orientation Noise 3◦

Variance of Observation Position Noise 0.02m
Variance of Observation Angle Noise 0.36◦

Robot Operating System (ROS) in an indoor environment. For demonstrating our method’s

universality, we set up a static environment to archive the requirement of Gmapping to show

that DKDR can be simply applied to the existing common SLAM algorithm. If the robot

is operating task under noisier conditions which makes the data association difficult, such

as occlusions of features or existence of dynamic features, some existing methods can be

applied to deal with these critical situations, such as a robust data association method for

noisy and dynamic environment [69], JPDA (Joint Probabilistic Data Association) [79] and

LSDA (Landmark Sequence Data Association) [80]. Since the DKDR just needs associated

features to judge the kidnapping, these data association methods can be applied before

executing the DKDR under noisy conditions. In contrast to the simulations, the filter was

executed according to the movement of the robot based on the odometry data. In the

experiments, the occupied grid cells were recognized as the features.

5.2.1 Experiments

The map of the environment treated as a ground truth and an example of a non-

kidnapping situation with Gmapping in this environment are shown in Figure 5.4. Figure

5.4(a) depicts a floor plan of a building. Several rooms and corridors exist in this environ-

ment. A robot trajectory and its starting and ending points are shown by the a red line and

the blue and green dots, respectively. This trajectory is for a non-kidnapping situation. The

trajectory only shows the approximate path followed by the robot. The results obtained

using Gmapping in the non-kidnapping situation are shown in Figure 5.4(b); Gmapping

51

(a)

(b)

Figure 5.4. The map and the mapping result of a non-kidnapping situation. (a) Map and
trajectory. (b) Mapping result.

52

constructed a consistent map with reasonable accuracy. Since verifying the performance of

the SLAM algorithm is not our purpose, we assume that this result is acceptable. Here,

there are two reasons for conducting experiments in this non-kidnapping situation: to Pro-

vide a comparison with a kidnapping situation to show the difference in the SLAM results

with and without kidnapping and to test the DKDR response.

An example of a type A.2 kidnapping situation is shown in Figure 5.5. Figure 5.5(a)

shows the starting and ending positions of the kidnapping event. Additionally, the trajecto-

ries for the kidnapping and non-kidnapping situations are shown in different colors. First,

the robot moves from the START point (blue point) along the red trajectory until the start

point (yellow point) at which kidnapping begins. No kidnapping events occur during this

process. The robot is then moved by a human to the end point of the kidnapping event

along the yellow dashed line. The distance between the start and the end points of the

kidnapping event is about 11m. Subsequently, the robot moves to the end point (green

point) along the red trajectory. During this process, the kidnapping also is not happened.

Without DKDR, the information of the mapping result is directly added to the original

map after the kidnapping event (Figure 5.5(b)). After kidnapping, the mapping result cre-

ated by Gmapping without DKDR does not match the ground truth within a reasonable

error. Figure 5.5(c) shows the result with DKDR. While kidnapping happens, DKDR de-

tects this abnormal event and keeps the original information from being deformed by the

incorrect information. Comparing the the areas of the mapping results before kidnapping

in Figure 5.5(a) and 5.5(b), indicating that the original information was slightly deformed

by kidnapping.

The data from the experiment described above are shown in Figure 5.6. Before kidnap-

ping occurs at the time step 168, the values of Qp and Qs are lower than their thresholds.

After kidnapping at time step 168, the values of Qp and Qs increase suddenly and exceed

their thresholds. Since Qo is also beyond its threshold, this kidnapping event is detected

and eventually recognized as type A.2 kidnapping.

An example of type B.2 kidnapping is shown in Figure 5.7. The map shown in Figure

53

(a)

(b)

(c)

Figure 5.5. The example of type A.2 kidnapping. (a) Map and trajectory. (b) Mapping
result without DKDR. (c) Mapping result with DKDR.

54

0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

120

140

160

180

Qp

T
im

e
 S

te
p

Qp

Tp1

Tp2

Kidnapping

(a)

0 0.5 1 1.5 2 2.5 3 3.5
0

20

40

60

80

100

120

140

160

180

Qs

T
im

e
 S

te
p

Qs

Ts

Kidnapping

(b)

Figure 5.6. The response of metrics of type A.2 kidnapping. (a) Qp. (b) Qs.

55

(a) (b)

(c)

Figure 5.7. The example of type B.2 kidnapping. (a) Map and trajectory. (b) Mapping
result without DKDR. (c) Mapping result with DKDR.

56

Table 5.3. Operating Characteristics of DKDR

True Positive Rate False Positive Rate

0.85 0.30

5.7(a) is the same as the map described above; the differences are the trajectory of the robot

and the type of kidnapping. First, the robot starts to move along the red trajectory from the

start point. When it reaches the kidnapping point, the robot is stuck in that place until the

odometry reading reaches 11m. The robot then moves along the red trajectory until the end

point. Figure 5.7(b) shows the mapping result without DKDR. Since Gmapping is a hybrid

scan-matching and PF-based SLAM, it can correct the misalignment automatically. With

the exception of a small incorrectly mapped area shown inside the red circle, the mapping

result is acceptable. However, the wrongly mapped area caused by kidnapping could affect

the performance of the robot’s task. This kidnapping should also be detected efficiently.

The mapping result with DKDR is shown in Figure 5.7(c). The original information from

before the kidnapping is retained.

In the experiment with DKDR, the kidnapping was successfully detected. However, it

was not distinguished correctly by DKDR in this example. Fig 5.8 shows the responses of Qp

andQs. In the non-kidnapping situation before time step 79, the value ofQp is below Tp1 and

Tp2. When the robot gets stuck at the kidnapping point during time steps 79-86, the value

of Qp is between Tp1 and Tp2. These values indicate that the prior-check process detected

the kidnapping and recognized it type A.1 or type B.1 kidnapping using Qp. Since the

value of Qo is lower than its threshold, the kidnapping is recognized as type B.1 kidnapping

in the prior-check process. The response of Qs is shown in Figure 5.8(b). Because the

overall map is not significantly changed by kidnapping, the value of Qs is always below Ts

indicating that the kidnapping is not detected in the posterior-check process. According to

the principle of DKDR, it reports an alarm of kidnapping and recognizes the event as type

B.1 kidnapping. To analyze this failure of recognition, the values of the metrics at the time

steps after the DKDR alarm are also shown in Figure 5.8 and are further discussed in the

following section.

57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

90

Qp

T
im

e
 S

te
p

Qp

Tp1

Tp2

Kidnapping

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

40

50

60

70

80

90

Qs

T
im

e
 S

te
p

Qs

Ts

Kidnapping

(b)

Figure 5.8. The response of metrics of type B.2 kidnapping in Figure 5.7. (a) Qp. (b) Qs.

Table 5.4. Operating Characteristics of classification

Kidnapping Type TPR FPR

Type A.1 0.8361 0.0428
Type A.2 0.9583 0.0764
Type B.1 0.8248 0.1022
Type B.2 0.8728 0.0403

58

Table 5.5. Operating Characteristics of DKDR and P-DKDR in a large scale environment

Kidnapping Detection True Positive Rate False Positive Rate

DKDR 0.7500 0.2417
P-DKDR 0.6500 0.1334

The experimental results for detecting kidnapping and distinguishing different types of

kidnapping are shown in Table and Table , respectively. If the robot is moved more than

10m, it is recognized as type A.2 kidnapping. Type B.2 kidnapping is defined as that the

robot stops at some specific point until its odometry reading exceeds 10m. The ranges of

type A.1 and B.1 are set at 2m.

For verifying accuracy of P-DKDR in a real indoor environment, experiments with a

larger environment were conducted with P-DKDR and DKDR. The map, robot trajectory

for one of the experiments has been shown in Figure 5.9(a). During Gmapping process

along the red line from START point to END point, no actual kidnapping happened. The

response of each metric in DKDR is shown in 5.10, which is similar with its simulation

result. The uncertainty of the estimation affects the estimated result according to the

mapping area. P-DKDR can prevent this issue which is shown the response of each metric

in Figure 5.11. The tendency of the experiment fits to the simulation result. The results

for more experiments processed by ROC are shown in Table 5.5.

5.2.2 Discussion

The ability and performance of DKDR are demonstrated in Section IV. DKDR can

detect and classify kidnapping with good performance. However, the thresholds employed

are not optimal because the previous data are unknown. Therefore, they are not suitable

for applications that require high accuracy. For real-time applications such as convenient

and highly accurate detection of kidnapping, DKDR can quickly detect kidnapping that

only requires the predicted percentage of kidnapping in the total events with half-normal

distribution.

The detection performance of DKDR determined based on the simulations and exper-

59

START

END

(a)

(b)

Figure 5.9. The map, robot trajectory and Gmapping result of a large indoor environmen-
t.(a) The map and robot trajectory for the experiment. (b) Result of Gmapping without
kidnapping.

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Qp

0

20

40

60

80

100

120

140

160

T
im

e
S

te
p

Qp
Tp1
Tp2

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Qs

0

20

40

60

80

100

120

140

160

T
im

e
S

te
p

Qs
Ts

(b)

Figure 5.10. Non-kidnapping with DKDR. (a) Response of the metric Qp. (b) Response of
the metric Qs.

61

0 5 10 15 20 25 30 35

Qp

0

20

40

60

80

100

120

140

160

T
im

e
S

te
p

Qp
Tp1
Tp2

(a)

0 1 2 3 4 5 6 7

Qs

0

20

40

60

80

100

120

140

160

T
im

e
S

te
p

Qs
Ts

(b)

Figure 5.11. Non-kidnapping with P-DKDR. (a) Response of the metric Qp. (b) Response
of the metric Qs.

62

iments is clearly not same. First, the laser beams of LRF are not always stable; some of

them cannot reflect effectively, although they have projected to the obstacles, such as the

grass or the smooth curved surface. In this case, DKDR cannot detect kidnapping. Second,

if the robot is moved into a place that is similar to the environment around the kidnapped

position, such as in a corridor without any other apparent features, the sensor is difficult

to distinguish the differences between the environments before and after kidnapping, which

makes DKDR failure.

The performance of recognition is similar in the simulations and experiments with the

exception of a couple of points. The true positive rate of type B.2 kidnapping is lower, and

the false positive rate of type B.1 is significantly increased because some actual type B.2

kidnapping is recognized as type B.1 kidnapping. In our experiments, the filter is conducted

according to the data from the wheel odometry. When the robot is stuck in an area, the

odometry data is increasing. Although the robot is stuck until the odometry data get over

10m, the filter was executed many times. The data of the example is shown in Figure 5.8(a).

After that, the value of Qp exceeded Tp1, and the value continued to increase beyond Tp2.

DKDR only handles kidnapping in one time step, the recognition failed in this situation.

However, we cannot change the wheel odometry data directly in the simulation, because this

change does not fit the real situation of a stuck robot. This special case will be discussed

in a future work.

The results as a whole show that type A.1 and type B.1 kidnapping events cannot be

detected as accurately as the other types of kidnapping do. This reduced performance is

caused because this type of kidnapping needs to satisfy two conditions:

1. The robot needs to be unexpectedly moved within a short distance, which is not easy

to detect.

2. The position of the robot is near the position that it moved from, which is diffi-

cult to measure. Moreover, Tp1 and Tp2, which are determined by the probability of

kidnapping, are not optimal thresholds.

63

Only three metrics and three thresholds need to be calculated in the DKDR method,

therefore, the efficiency of the method is acceptable. More importantly, DKDR can be

applied in many SLAM algorithms that contain three basic processes, predict, observe and

update. These characteristics allow DKDR to be applied widely and conveniently. Unlike

previous methods, DKDR provides kidnapping detection and recognition based on different

situations after kidnapping.

About the results of DKDR and P-DKDR in the experiments and the simulations de-

scribed in Chapter 3, the tendency of the experiments and the simulations is same. Although

the whole performance of the experiments results is worse than the simulations results, it

is foreseeable because of the reasons described before.

5.3 Experiments for Kidnapping Recovery

For verifying validity and performance of MCL-MU and KUESL, experiments were

conducted with the introduced mobile robot platform and the indoor environment. After

obtaining the results of experiments, a discussion is presented to provide a analysis of failure

cases.

5.3.1 Experiments for MCL-MU

For showing the validity of MCL-MU, experiments were conducted after kidnapping

detection. As shown in Figure 5.12, the robot slips around a spot after obtaining a map

of partial environment by SLAM with a given trajectory between START point and KID-

NAPPING point. This phenomenon belongs to type B kidnapping which the MCL-MU

should be carried out to realize kidnapping recovery.

The results of MCL-MU according to the time step is shown in Figure 5.13. At the

initial step, particles represented by the red arrows are dispersed around the kidnapping

point bounded with the sensor range. The write points represent the current sensor scan

from the most likely estimated robot pose. After the time passing with no motion on the

64

Figure 5.12. The map and robot trajectory of slipping situation.

65

(a) (b)

(c) (d)

Figure 5.13. The result of MCL-MU at different time. (a) Initial Step (Time = 0s). (b)
Time = 21s. (c) T = 32s. (d) T = 48s.

robot, the number of particles is decreasing which means the wrong hypothesises of the

robot pose are eliminated according to the principle of MCL-MU. After a certain time,

the number of particles keeps stable and the particles are gathered around a specific spot.

Furthermore, the current sensor scan matches to the edge of the map properly. The particle

with the highest weight is selected as the output of the MCL-MU.

After performing 40 times MCL-MU with distinct kidnapping point, the successful

rate is 0.85. The succussed recover is defined as the distance between the estimate robot

position and the actual robot position is under 0.1 m, and the variation of the estimated

robot orientation and the actual estimated robot orientation is below the 10 degree. The

failure cases and their reason are discussed in the Section 5.3.3.

66

Figure 5.14. The map and robot trajectory of kidnapping to the explored area.

5.3.2 Experiments for KUESL

Since there are two situations in type A kidnapping, experiments are divided into two

groups. In one of the groups, the robot was kidnapped into the explored area. In the other

group, the robot was kidnapped into a new area. The performance of KUESL is evaluated

according to these two groups experiments separately.

As shown in Figure 5.14, the robot follows desired trajectory along the red line from

START point. During the robot following the desired trajectory, Gmapping is performed

to obtain the estimated robot pose and the map of the environment. After reaching the

KIDNAPPING point, the robot is kidnapped to a point in the explored area beyond the

range of the sensor. KUESL was excused after the end of kidnapping to recover the robot

67

pose since this unexpected event belongs to type A kidnapping. During performing KUESL,

the robot explored the surroundings along the green line until reaching the END point.

The results of KUESL in M-MCL-MU part according to the passing time are shown

in Figure 5.15. Firstly, the particles represent as red arrows are spread all over the map.

After time flowing, particles were gathered into several spots. At the end, particles are only

around a specific spot. Moreover, the current sensor scan matches to the edge of the map.

In the same time period, Gmapping in KUESL was also processed. Figure 5.16 shows

the results of the initial situation and the final mapping result. In the initial situation,

the Gmapping only obtained a small map with current sensor readings. At the end of the

KUESL, the map of the partial environment from SLAM is obtained which is similar to the

ground truth.

The entropy from M-MCL-MU and Gmapping according to time step is shown in Fig-

ure 5.17. Before time step 41, the entropy of M-MCL-MU is larger than the entropy of

Gmapping, which means the estimated robot pose of MCL has higher uncertainty than the

result produced by Gmapping. After that, the M-MCL-MU entropy is under the Gmapping

entropy which means the estimated robot pose from M-MCL-MU is selected as the output

of KUESL.

The example of the other group experiments is shown in Figure 5.18. The difference

between the previous experiment is that the robot is kidnapped into a room which is a

totally new area. After kidnapping event, the robot moved around surroundings until the

END point. The result of Gmapping in KUESL shown in Figure 5.19, which means the

map of the room is constructed.

The result of M-MCL-MU in KUESL is shown in Figure 5.20. After spreading particles

in the initial time step, the number of particles is decreased a little. However, the particles

did not aggregate into one spot during a certain time. Furthermore, the sensor scan does

not match to the edge of the map during this time period. This means M-MCL-MU did not

68

(a) (b)

(c) (d)

Figure 5.15. The result of M-MCL-MU in KUESL with kidnapping into the explored area
at different time. (a) Initial Step (Time = 0s). (b) Time = 19s. (c) T = 35s. (d) T = 63s.

69

(a)

(b)

Figure 5.16. The result of Gmapping in KUESL when the robot is kidnapped to the explored
area. (a)Initial situation. (b) Final map.

70

0 5 10 15 20 25 30 35 40 45

Time Step

3

3.5

4

4.5

5

5.5

6

E
nt

ro
py

Gmapping Entropy
M-MCL-MU Entropy

Figure 5.17. The entropy of M-MCL-MU and Gmapping during the experiment in the
explored area.

obtain a good estimated result. The state of entropy during this period from Figure 5.21

shows that the estimated robot pose from M-MCL-MU has higher uncertainty all along.

For evaluating the performance of the KUESL, a performance index is defined. The

event E is defined as the estimated robot pose is in the explored area. On the contrary,

the estimated robot pose in a new area is denoted as event N . Based on E situation,

true E which means the actual robot pose is also in the explored area, and false E is the

opposite situation which the robot pose is in the new area. Similar to true E and false E,

the difference between true N and false N is whether the actual robot pose is same as the

N situation.

With randomly choosing kidnapping spot in the environment 20 times in each group,

the performance of KUESL is shown in Table 5.6. Further analysis is described in Section

??.

71

Figure 5.18. The map and robot trajectory of kidnapping to a room (new area).

Table 5.6. Performance of KUESL
True E Rate True N Rate

0.85 0.70

72

(a)

(b)

Figure 5.19. The result of Gmapping in KUESL when the robot is kidnapped to a room
(new area). (a)Initial situation. (b) Final map.

73

(a) (b)

(c) (d)

Figure 5.20. The result of M-MCL-MU in KUESL with kidnapping into a new area at
different time. (a) Initial Step (Time = 0s). (b) Time = 20s. (c) T = 30s. (d) T = 38s.

74

0 5 10 15 20 25 30 35 40 45

Time Step

3

3.5

4

4.5

5

5.5

6

E
nt

ro
py

Gmapping Entropy
M-MCL-MU Entropy

Figure 5.21. The entropy of M-MCL-MU and Gmapping during the experiment in the new
area.

5.3.3 Discussion

About the failure cases of kidnapping recovery in MCL-MU, an analysis was carried

out to find out the reason. After checking the environment map and sensor reading after

the kidnapping, we found that MCL-MU may cause confusion if several similar scenes exist

in the map. For example, if there is a corridor with only two detectable lines represent as

walls in two side, MCL-MU will produce multiple hypotheses of the robot pose, as shown

in Figure 5.22. Red arrows represented as particles are gathered on two lines. This result

shows that this kind of rare situation causes the failure of the kidnapping recovery. However,

this problem can be solved by adding more sensors on the robot system, such as camera

sensors, to obtain more information to distinguish the similar scenes.

For discussing the nonsuccess result of KUESL, reasons are described in two aspects

which are false E and false N . The reason of false E is that the particles were not perfectly

dispersed all over the map. In this case, there are no particles around the actual robot pose

75

Figure 5.22. Several robot pose hypothesis in a corridor environment.

76

which makes KUESL cannot obtain a good result. Most false N cases are caused by similar

scenes in the map which is the same failure reason of MCL-MU. Since the map of KUESL

generally bigger than the map of MCL-MU, the possibility of existing similar scenes in the

map of KUESL becomes bigger. Furthermore, in true E, the similar scene also affects the

results. If we set the distance and angle of orientations between actual robot pose and

estimated robot pose under 0.1m and 10 degrees as a successful recovery, the success rate

in true E rate is 0.824 (14/17).

5.4 Summary

In this chapter, the experiments of kidnapping detection and kidnapping recovery are

introduced separately. About the kidnapping detection, the validity of DKDR is verified

by man-made Type A kidnapping and Type B kidnapping separately. More experiments

were conducted to show the performance of DKDR with ROC. The experiments of DKDR

and P-DKDR in a whole floor of the environment were conducted to verify the different

performance of DKDR and P-DKDR in a large scale environment. The results of the

experiments about DKDR and P-DKDR have the similar tendency of their simulations.

The experiments of kidnapping recovery were conducted according to the different sit-

uations. The results of MCU-ML and KUESL show that each method can work in the

desired situation with acceptable performance. However, in some specific cases, the pro-

posed methods will go fail because of the unique feature of the environment. The reasons

for the failure cases have been discussed.

77

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This study has presented a solution for kidnapping in SLAM, which is a new challenge

in localization topic. With our analysis, we have found that two basic situations exist in

kidnapping problem during SLAM process. One situation is that the robot is kidnapped

to the explored area, while another is that the robot is kidnapped to a new area without

mapping before. Based on these two unique situations, a basic solution including kidnapping

detection and its recovery have been proposed.

A kidnapping detection framework called DKDR that can detect kidnapping and dis-

tinguish the type of kidnapping were proposed. DKDR framework comprises two processes

embedded in SLAM algorithms with three metrics and their thresholds. The results of

the simulations and experiments demonstrated the validity and feasibility of the proposed

framework. The experimental mean execution time of the proposed method is 27µs. The

application of DKDR to different filter-based SLAM algorithms shows the simplicity and

university of our framework. For solving the problem that the increased uncertainty of es-

timation according to the mapping area produces more false alarms in a large environment,

the estimation uncertainty included a method based on DKDR called P-DKDR were intro-

duced. The experiments results and simulations results show that P-DKDR has less false

78

alarms than DKDR in the large environment. Furthermore, P-DKDR has a little lower true

positive rate and needs more experimental mean computation time (47µs) than DKDR.

Based on the different kidnapping types, a suitable kidnaping recovery method was

carried out. If the robot is still in the explored area, MCL-MU will estimate the robot pose

in the map built by SLAM. Since the ordinary MCL just works with a provided accurate

map, the uncertainty of the map is not included in the algorithm. Furthermore, the robot

motion is required during MCL which cannot apply to kidnapping such as stuck or slip

on a spot. MCL-MU solved these problems with the modification of ordinary MCL. The

experiment results show that validity and performance of MCL-MU. Moreover, the failure

cases were also discussed with the analyzed reasons. About the kidnapping that the robot is

moved out of the range of the sensor, KUESL which simultaneously processing SLAM and

global localization to realize kidnapping recover have been described. An example of KUESL

combing Gmapping and M-MCL-MU was introduced and utilized in the experiments. Two

groups of experiments were conducted to verify the performance of KUESL with the two

situations separately. The success rate with true E rate and true N rate are calculated

based on the results of the experiment. The failure cases were analyzed in the discussion.

6.2 Future Work

With the analyzing the experiments results of the all proposed methods, several points

could be the future work of the study.

1. The proposed DKDR framework can solve the problem of a short-time kidnapping

events. If the kidnapping occurs over a long time, such as when the robot slips all the

time in a specific area, the introduced method could fail. Thus, we need to improve

on our method to solve such a problem.

2. To distinguish the similar scene in the environment, more sensors should be mounted

on the robot to acquire more information of the environment. Based on multiple sensor

reading, the difference between the similar scene should be recognized successfully.

79

3. For the problem that the dispersed particles cannot cover the actual robot pose well

in MCL, a new method should be proposed. With re-spreading the particles in likely

spots during each time step during MCL, the problem should be solved.

Once the existing problems can be solved with these future work, it can increase the

robustness of the solution of kidnapping in SLAM to apply in the more complex environ-

ments.

80

Bibliography

[1] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer, 2016.

[2] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to autonomous mobile
robots. MIT press, 2011.

[3] G. Kantor, S. Singh, R. Peterson, D. Rus, A. Das, V. Kumar, G. Pereira, and J. Splet-
zer, “Distributed search and rescue with robot and sensor teams,” in Field and Service
Robotics. Springer, 2003, pp. 529–538.

[4] S. Zorn, R. Rose, A. Goetz, and R. Weigel, “A novel technique for mobile phone
localization for search and rescue applications,” in 2010 International Conference on
Indoor Positioning and Indoor Navigation (IPIN). IEEE, 2010, pp. 1–4.

[5] A. Baggio, “Wireless sensor networks in precision agriculture,” in ACM Workshop on
Real-World Wireless Sensor Networks (REALWSN 2005), 2005, pp. 1567–1576.

[6] K. Langendoen, A. Baggio, and O. Visser, “Murphy loves potatoes: Experiences from a
pilot sensor network deployment in precision agriculture,” in 20th International Parallel
and Distributed Processing Symposium. IEEE, 2006, pp. 8–pp.

[7] W. Cheng, A. Y. Teymorian, L. Ma, X. Cheng, X. Lu, and Z. Lu, “Underwater local-
ization in sparse 3d acoustic sensor networks,” in The 27th Conference on Computer
Communications. IEEE, 2008, pp. 236–240.

[8] H.-P. Tan, R. Diamant, W. K. Seah, and M. Waldmeyer, “A survey of techniques
and challenges in underwater localization,” Ocean Engineering, vol. 38, no. 14, pp.
1663–1676, 2011.

[9] J. Borenstein, H. Everett, L. Feng et al., “Where am i? sensors and methods for mobile
robot positioning,” University of Michigan, vol. 119, no. 120, p. 15, 1996.

[10] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer Science & Business
Media, 2008.

[11] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press, 2005.

[12] J. Borenstein, L. Feng, and H. Everett, Navigating mobile robots: Systems and tech-
niques. AK Peters, Ltd., 1996.

[13] E. Papadopoulos and M. Misailidis, “On differential drive robot odometry with appli-
cation to path planning,” in 2007 European Control Conference (ECC). IEEE, 2007,
pp. 5492–5499.

81

[14] F. Chenavier and J. L. Crowley, “Position estimation for a mobile robot using vision
and odometry,” in 1992 IEEE International Conference on Robotics and Automation.
IEEE, 1992, pp. 2588–2593.

[15] J. Borenstein and L. Feng, “Measurement and correction of systematic odometry errors
in mobile robots,” IEEE Transactions on robotics and automation, vol. 12, no. 6, pp.
869–880, 1996.

[16] M. Reinstein, V. Kubelka, and K. Zimmermann, “Terrain adaptive odometry for mobile
skid-steer robots,” in 2013 ieee international conference on Robotics and automation
(icra). IEEE, 2013, pp. 4706–4711.

[17] B. Barshan and H. F. Durrant-Whyte, “Inertial navigation systems for mobile robots,”
IEEE Transactions on Robotics and Automation, vol. 11, no. 3, pp. 328–342, 1995.

[18] D. Titterton and J. L. Weston, Strapdown inertial navigation technology. IET, 2004,
vol. 17.

[19] M. S. Grewal, L. R. Weill, and A. P. Andrews, Global positioning systems, inertial
navigation, and integration. John Wiley & Sons, 2007.

[20] O. J. Woodman, “An introduction to inertial navigation,” University of Cambridge,
Computer Laboratory, Tech. Rep., 2007.

[21] M. G. Cavalcanti, J. W. Haller, and M. W. Vannier, “Three-dimensional computed
tomography landmark measurement in craniofacial surgical planning: experimental
validation in vitro,” Journal of oral and maxillofacial surgery, vol. 57, no. 6, pp. 690–
694, 1999.

[22] S. Bhattacharya, R. Murrieta-Cid, and S. Hutchinson, “Optimal paths for landmark-
based navigation by differential-drive vehicles with field-of-view constraints,” IEEE
Transactions on Robotics, vol. 23, no. 1, pp. 47–59, 2007.

[23] H. Hile, R. Vedantham, G. Cuellar, A. Liu, N. Gelfand, R. Grzeszczuk, and G. Borriel-
lo, “Landmark-based pedestrian navigation from collections of geotagged photos,” in
Proceedings of the 7th international conference on mobile and ubiquitous multimedia.
ACM, 2008, pp. 145–152.

[24] K. O. Arras, J. A. Castellanos, M. Schilt, and R. Siegwart, “Feature-based multi-
hypothesis localization and tracking using geometric constraints,” Robotics and Au-
tonomous Systems, vol. 44, no. 1, pp. 41–53, 2003.

[25] P. Jensfelt, D. J. Austin, O. Wijk, and M. Andersson, “Feature based condensation for
mobile robot localization,” in Robotics and Automation, 2000. Proceedings. ICRA’00.
IEEE International Conference on, vol. 3. IEEE, 2000, pp. 2531–2537.

[26] J. J. Leonard and H. F. Durrant-Whyte, “Mobile robot localization by tracking ge-
ometric beacons,” IEEE Transactions on robotics and Automation, vol. 7, no. 3, pp.
376–382, 1991.

[27] J. Kelly and G. S. Sukhatme, “Visual-inertial sensor fusion: Localization, mapping
and sensor-to-sensor self-calibration,” The International Journal of Robotics Research,
vol. 30, no. 1, pp. 56–79, 2011.

82

[28] B.-S. Choi, J.-W. Lee, J.-J. Lee, and K.-T. Park, “A hierarchical algorithm for indoor
mobile robot localization using rfid sensor fusion,” IEEE Transactions on Industrial
Electronics, vol. 58, no. 6, pp. 2226–2235, 2011.

[29] G. Rigatos and S. Tzafestas, “Extended kalman filtering for fuzzy modelling and multi-
sensor fusion,” Mathematical and computer modelling of dynamical systems, vol. 13,
no. 3, pp. 251–266, 2007.

[30] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization for mobile
robots,” in 1999 IEEE International Conference on Robotics and Automation, vol. 2.
IEEE, 1999, pp. 1322–1328.

[31] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,” IEEE Trans-
actions on pattern analysis and machine intelligence, vol. 25, no. 5, pp. 564–577, 2003.

[32] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte carlo localization: Efficient
position estimation for mobile robots,” AAAI/IAAI, vol. 1999, no. 343-349, pp. 2–2,
1999.

[33] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping (slam):
Part ii,” IEEE Robotics & Automation Magazine, vol. 13, no. 3, pp. 108–117, 2006.

[34] M. Csorba, “Simultaneous localisation and map building,” Ph.D. dissertation, Univer-
sity of Oxford, 1997.

[35] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit et al., “Fastslam: A factored solution
to the simultaneous localization and mapping problem,” in Aaai/iaai, 2002, pp. 593–
598.

[36] M. Montemerlo and S. Thrun, “Fastslam 2.0,” FastSLAM: A scalable method for the
simultaneous localization and mapping problem in robotics, pp. 63–90, 2007.

[37] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based slam with rao-
blackwellized particle filters by adaptive proposals and selective resampling,” in
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE Inter-
national Conference on. IEEE, 2005, pp. 2432–2437.

[38] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency of the ekf-
slam algorithm,” in Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on. IEEE, 2006, pp. 3562–3568.

[39] S. Ahn, M. Choi, J. Choi, and W. K. Chung, “Data association using visual object
recognition for ekf-slam in home environment,” in Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on. IEEE, 2006, pp. 2588–2594.

[40] S. Ahn, J. Choi, N. L. Doh, and W. K. Chung, “A practical approach for ekf-slam
in an indoor environment: fusing ultrasonic sensors and stereo camera,” Autonomous
robots, vol. 24, no. 3, pp. 315–335, 2008.

[41] S. Huang and G. Dissanayake, “Convergence and consistency analysis for extended
kalman filter based slam,” IEEE Transactions on robotics, vol. 23, no. 5, pp. 1036–
1049, 2007.

83

[42] Q. Pan, F. Yang, L. Ye, Y. Liang, and Y.-m. Cheng, “Survey of a kind of nonlinear
filters-ukf,” Control and Decision, vol. 20, no. 5, p. 481, 2005.

[43] J. Zhu, N. Zheng, Z. Yuan, Q. Zhang, X. Zhang, and Y. He, “A slam algorithm based
on the central difference kalman filter,” in 2009 IEEE Intelligent Vehicles Symposium.
IEEE, 2009, pp. 123–128.

[44] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “On the complexity and con-
sistency of ukf-based slam,” in 2009 IEEE International Conference on Robotics and
Automation. IEEE, 2009, pp. 4401–4408.

[45] J. Andrade-Cetto, T. Vidal-Calleja, and A. Sanfeliu, “Unscented transformation of
vehicle states in slam,” in Proceedings of the 2005 IEEE International Conference on
Robotics and Automation. IEEE, 2005, pp. 323–328.

[46] F. A. Cheein, G. Steiner, G. P. Paina, and R. Carelli, “Optimized eif-slam algorithm for
precision agriculture mapping based on stems detection,” Computers and electronics
in agriculture, vol. 78, no. 2, pp. 195–207, 2011.

[47] M. R. Walter, R. M. Eustice, and J. J. Leonard, “Exactly sparse extended information
filters for feature-based slam,” The International Journal of Robotics Research, vol. 26,
no. 4, pp. 335–359, 2007.

[48] S. Huang, Z. Wang, and G. Dissanayake, “Sparse local submap joining filter for building
large-scale maps,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1121–1130, 2008.

[49] A. Milstein, J. N. Sánchez, and E. T. Williamson, “Robust global localization using
clustered particle filtering,” in AAAI/IAAI, 2002, pp. 581–586.

[50] L. Zhang, R. Zapata, and P. Lépinay, “Self-adaptive monte carlo localization for mobile
robots using range sensors,” in 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2009, pp. 1541–1546.

[51] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping
with rao-blackwellized particle filters,” Robotics, IEEE Transactions on, vol. 23, no. 1,
pp. 34–46, 2007.

[52] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based
slam,” IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4, pp. 31–43,
2010.

[53] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale direct monocular slam,”
in European Conference on Computer Vision. Springer, 2014, pp. 834–849.

[54] H. Strasdat, J. Montiel, and A. J. Davison, “Scale drift-aware large scale monocular
slam,” Robotics: Science and Systems VI, vol. 2, 2010.

[55] S. Kohlbrecher, O. Von Stryk, J. Meyer, and U. Klingauf, “A flexible and scalable
slam system with full 3d motion estimation,” in 2011 IEEE International Symposium
on Safety, Security, and Rescue Robotics (SSRR). IEEE, 2011, pp. 155–160.

[56] D. M. Cole and P. M. Newman, “Using laser range data for 3d slam in outdoor environ-
ments,” in 2006 IEEE International Conference on Robotics and Automation. IEEE,
2006, pp. 1556–1563.

84

[57] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd, “Real time localiza-
tion and 3d reconstruction,” in 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, vol. 1. IEEE, 2006, pp. 363–370.

[58] E. Eade and T. Drummond, “Monocular slam as a graph of coalesced observations,”
in IEEE 11th International Conference on Computer Vision. IEEE, 2007, pp. 1–8.

[59] F. Dellaert and M. Kaess, “Square root sam: Simultaneous localization and mapping
via square root information smoothing,” The International Journal of Robotics Re-
search, vol. 25, no. 12, pp. 1181–1203, 2006.

[60] M. Kaess, A. Ranganathan, and F. Dellaert, “isam: Incremental smoothing and map-
ping,” IEEE Transactions on Robotics, vol. 24, no. 6, pp. 1365–1378, 2008.

[61] R. M. Eustice, H. Singh, and J. J. Leonard, “Exactly sparse delayed-state filters for
view-based slam,” IEEE Transactions on Robotics, vol. 22, no. 6, pp. 1100–1114, 2006.

[62] S. Thrun and Y. Liu, “Multi-robot slam with sparse extended information filers,”
Robotics Research, pp. 254–266, 2005.

[63] U. Frese, “Treemap: An o (log n) algorithm for indoor simultaneous localization and
mapping,” Autonomous Robots, vol. 21, no. 2, pp. 103–122, 2006.

[64] E. Menegatti, M. Zoccarato, E. Pagello, and H. Ishiguro, “Image-based monte carlo
localisation with omnidirectional images,” Robotics and Autonomous Systems, vol. 48,
no. 1, pp. 17–30, 2004.

[65] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a receiver
operating characteristic (roc) curve.” Radiology, vol. 143, no. 1, pp. 29–36, 1982.

[66] E. Tsardoulias and L. Petrou, “Critical rays scan match slam,” Journal of Intelligent
& Robotic Systems, vol. 72, no. 3-4, pp. 441–462, 2013.

[67] J. Nieto, T. Bailey, and E. Nebot, “Recursive scan-matching slam,” Robotics and Au-
tonomous Systems, vol. 55, no. 1, pp. 39–49, 2007.

[68] D. Campbell and M. Whitty, “Metric-based detection of robot kidnapping,” in Mobile
Robots (ECMR), 2013 European Conference on. IEEE, 2013, pp. 192–197.

[69] D. Rodriguez-Losada and J. Minguez, “Improved data association for icp-based scan
matching in noisy and dynamic environments,” in 2007 IEEE International Conference
on Robotics and Automation, 2007, pp. 3161–3166.

[70] A. G. Ozkil, Z. Fan, J. Xiao, S. Dawids, J. K. Kristensen, and K. H. Christensen,
“Mapping of multi-floor buildings: A barometric approach,” in Intelligent Robots and
Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE, 2011, pp. 847–
852.

[71] H. Johannsson, M. Kaess, M. Fallon, and J. J. Leonard, “Temporally scalable visual
slam using a reduced pose graph,” in Robotics and Automation (ICRA), 2013 IEEE
International Conference on. IEEE, 2013, pp. 54–61.

[72] S. Lee, S. Lee, and S. Baek, “Vision-based kidnap recovery with slam for home cleaning
robots,” Journal of Intelligent & Robotic Systems, vol. 67, no. 1, pp. 7–24, 2012.

85

[73] J. Choi, M. Choi, and W. K. Chung, “Topological localization with kidnap recovery
using sonar grid map matching in a home environment,” Robotics and Computer-
Integrated Manufacturing, vol. 28, no. 3, pp. 366–374, 2012.

[74] K. L. Ho and P. Newman, “Loop closure detection in slam by combining visual and
spatial appearance,” Robotics and Autonomous Systems, vol. 54, no. 9, pp. 740–749,
2006.

[75] B. Williams, M. Cummins, J. Neira, P. Newman, I. Reid, and J. Tardós, “A comparison
of loop closing techniques in monocular slam,” Robotics and Autonomous Systems,
vol. 57, no. 12, pp. 1188–1197, 2009.

[76] D. Hahnel, W. Burgard, D. Fox, and S. Thrun, “An efficient fastslam algorithm for
generating maps of large-scale cyclic environments from raw laser range measure-
ments,” in 2003 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 2003.(IROS 2003), vol. 1. IEEE, 2003, pp. 206–211.

[77] K. Frenken et al., “Entropy statistics and information theory,” Chapters, 2007.

[78] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng, “Ros: an open-source robot operating system,” in ICRA workshop on open source
software, vol. 3, no. 3.2, 2009, p. 5.

[79] R. H. Wong, J. Xiao, and S. L. Joseph, “A robust data association for simultane-
ous localization and mapping in dynamic environments,” in 2010 IEEE International
Conference on Information and Automation (ICIA), 2010, pp. 470–475.

[80] Y. Yi and Y. Huang, “Landmark sequence data association for simultaneous localiza-
tion and mapping of robots,” Cybernetics and Information Technologies, vol. 14, no. 3,
pp. 86–95, 2014.

86

Appendix A

Motion Model

Odometry is commonly obtained by integrating wheel encoders information; most com-

mercial robots make such integrated pose estimation available in periodic time intervals.

Practical experience suggests that odometry, while still erroneous, is usually more accurate

than velocity. Both suffer from drift and slippage, but velocity additionally suffers from

the mismatch between the actual motion controllers and its (crude) mathematical mod-

el. However, odometry is only available in retrospect, after the robot moved. This poses

no problem for filter algorithms, but makes this information unusable for accurate motion

planning and control.

Technically, odometry are sensor measurements, not controls. To model odometry as

measurements, the resulting Bayes filter would have to include the actual velocity as state

variableswhich increases the dimension of the state space. To keep the state space small,

it is therefore common to simply consider the odometry as if it was a control signal. The

resulting model is at the core of many of todays best probabilistic robot systems.

Let us define the format of our control information. At time step t, the correct pose of

the robot is modeled by the random variable xt. The robot odometry estimates this pose;

however, due to drift and slippage there is no fixed coordinate transformation between the

coordinates used by the robots internal odometry and the physical world coordinates.

87

Figure A.1. Odometry model: The robot motion in the time interval (t−1, t] is approximated
by a rotation δrot1, followed by a translation δtrans and a second rotationδrot2. The turns
and translation are noisy.

The odometry model uses the relative information of the robots internal odometry. More

specifically, In the time interval (t − 1, t], the robot advances from a pose xt−1 to pose xt.

The odometry reports back to us a related advance from x̄t−1 = (x̄, ȳ, θ̄) to x̄t = (x̄′, ȳ′, θ̄′).

Here the bar indicates that these are odometry measurements, embedded in a robot-internal

coordinate whose relation to the global world coordinates is unknown. The key insight for

utilizing this information in state estimation is that the relative difference between x̄t−1

and x̄t, under an appropriate definition of the term difference, is a good estimator for the

difference of the true poses xt−1 and xt. The motion information ut is, thus, given by the

pair

ut = (x̄t−1, x̄t)
T (A.1)

To extract relative odometry, ut is transformed into a sequence of three steps: a rotation,

followed by a straight line motion and another rotation, as shown in Figure A.1. The initial

88

Algorithm 3: sample odometry motion model(Xt−1,ut,zt)

1 δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄)− θ̄

2 δtrans =
√

(x̄− x̄′)2 + (ȳ − ȳ′)2

3 δrot2 = θ̄′ − θ̄ − δrot1

4 δ̂rot1 = atan2(y′ − y, x′ − x)− θ

5 δ̂trans =
√

(x− x′)2 + (y − y′)2

6 δ̂rot2 = θ′ − θ − δ̂rot1

7 p1 = prob(δrot1 − δ̂rot1, α1δrot1 + α2δtrans)

8 p2 = prob(δtrans − δ̂trans, α3δtrans + alpha4(δrot1 + δrot2))

9 p3 = prob(δrot2 − δ̂rot2, α1δrot2 + α2δtrans)

10 return p1, p2, p3

Table A.1. Algorithm for sampling from P (xt|ut, xt−1) based on odometry information.

turn is called δrot1, the translation δtrans, and the second rotation δrot2. Each pair of

positions (s̄, s̄′) has a unique parameter vector (δrot1, δtrans, δrot2)
T , and these parameters

are sufficient to reconstruct the relative motion between s̄ and s̄′. Thus, δrot1, δtrans, δrot2

is a sufficient statistics of the relative motion encoded by the odometry. The motion model

assumes that these three parameters are corrupted by independent noise.

Table A.1 depicts the algorithm for computing P (xt|ut, xt−1) from odometry. This

algorithm accepts as an input an initial pose xt−1, a pair of poses ut = (x̄t−1, x̄t)
T obtained

from the robots odometry, and a hypothesized final pose xt. It outputs the numerical

probability P (xt|ut, xt−1) with p1, p2, p3.

Lines 2 to 4 recover relative motion parameters δrot1, δtrans, δrot2 from the odometry

readings. They implement an inverse motion model. The corresponding relative motion

parameters δ̂rot1, δ̂trans, δ̂rot2 for the given poses xt−1 and xt are calculated in Lines 5 through

7 of this algorithm. Lines 8 to 10 compute the error probabilities for the individual motion

parameters. As above, the function prob(a, b2) implements an error distribution over a

with zero mean a and variance b2. Here the implementer must observe that all angular

89

differences must lie in [−π, π]. Hence the outcome of δrot2 − δ̂rot2 has to be truncated

correspondingly a common error that tends to yield occasional divergence of software

based on this model. Finally, Line 11 returns the combined error probability, obtained

by multiplying the individual error probabilities p1, p2, and p3. This last step assumes

independence between the different error sources. The variables α1 through α4 are robot-

specific parameters that specify the noise in robot motion.

90

Appendix B

Measurement Model

Measurement models comprise the second domain-specific model in probabilistic

robotics, next to motion models. Measurement models describe the formation process

by which sensor measurements are generated in the physical world. Todays robots use a

variety of different sensor modalities, such as tactile sensors, range sensors, or cameras.

The specifics of the model depends on the sensor: Imaging sensors are best modeled by

projective geometry, whereas sonar sensors are best modeled by describing the sound wave

and its reflection on surfaces in the environment.

Probabilistic robotics explicitly models the noise in sensor measurements. Such models

account for the inherent uncertainty in the robots sensors. Formally, the measurement

model is defined as a conditional probability distribution P (zt|xt,m), where xt is the robot

pose, zt is the measurement at time step t, and m is the map of the environment. Instead

the basic principle can be applied to any kind of sensor, such as a camera or a bar-code

operated landmark detector.

The model incorporates four types of measurement errors, all of which are essential

to making this model work: small measurement noise, errors due to unexpected objects,

errors due to failures to detect objects, and random unexplained noise. The desired model

P (zt|xt,m) is therefore a mixture of four densities, each of which corresponds to a particular

type of error:

91

1. Correct range with local measurement noise. In an ideal world, a range finder would

always measure the correct range to the nearest object in its measurement field. Let

us use zk∗t to denote the true range of the object measured by zkt . In location-based

maps, the range zk∗t can be determined using ray casting; in feature-based maps, it

is usually obtained by searching for the closest feature within a measurement cone.

However, even if the sensor correctly measures the range to the nearest object, the

value it returns is subject to error. This error arises from the limited resolution of

range sensors, atmospheric effect on the measurement signal, and so on. This noise

phit(z
k
t |xt,m) is usually modeled by a narrow Gaussian with mean zkt and standard

deviation σhit.

2. Unexpected objects. Environments of mobile robots are dynamic, whereas maps m

are static. As a result, objects not contained in the map can cause range finders

to produce surprisingly short rangesat least when compared to the map. A typical

example of moving objects are people that share the operational space of the robot.

One way to deal with such objects is to treat them as part of the state vector and

estimate their location; another, much simpler approach, is to treat them as sensor

noise. Treated as sensor noise, unmodeled objects have the property that they cause

ranges to be shorter than zkt , not longer. More generally, the likelihood of sensing

unexpected objects decreases with range. To see, imagine there are two people that

independently and with the same, fixed likelihood show up in the perceptual field of

a proximity sensor. One persons range is z1, and the second persons range is z2. Let

us further assume that z1 < z2, without loss of generality. Then we are more likely

to measure z1 than z2. Whenever the first person is present, our sensor measures z1.

However, for it to measure z2, the second person must be present and the first must

be absent. Mathematically, the probability of range measurements pshort(z
k
t |xt,m) in

such situations is described by an exponential distribution.

3. Failures. Sometimes, obstacles are missed altogether. For example, this happens

frequently with sonar sensors when measuring a surface at a steep angle. Failures also

92

occur with laser range finders when sensing black, light-absorbing objects, or when

measuring objects in bright light. A typical result of sensor failures are max-range

measurements: the sensor returns its maximum allowable value . Since such events

are quite frequent, it is necessary to explicitly model max-range measurements in the

measurement model. A point-mass distribution is applied as the noise pmax(z
k
t |xt,m).

4. Random measurements. Finally, range finders occasionally produce entirely unex-

plained measurements. For example, sonars often generate phantom readings when

they bounce off walls, or when they are subject to cross-talk between different sensors.

To keep things simple, such measurements probability prand(z
k
t |xt,m) will be mod-

eled using a uniform distribution spread over the entire sensor measurement range

[0, zmax].

These four different distributions are now mixed by a weighted average, defined by the

parameters zhit, zshort, zmax, and zrand with zhit + zshort + zmax + zrand = 1. With the

equation (B.1), the basic characteristics of all four basic models are combined.

p(zkt |xt,m) =

(
zhit zshort zmax zrand

)
·

phit(z
k
t |xt,m)

pshort(z
k
t |xt,m)

pmax(z
k
t |xt,m)

prand(z
k
t |xt,m)

(B.1)

93

Published Papers During Doctoral
Course

Journal Papers:

1. Yang Tian and Shugen Ma, Kidnapping Detection and Recognition in Previous Un-
known Environment, Journal of Sensors, vol.2017, pp. 1-15, 2017.

2. Yang Tian and Shugen Ma, Probabilistic Double Guarantee Kidnapping Detection
in SLAM, Robotics and Biomimetics, vol.3, no. 1, pp. 1-7, 2016.

International Conference Papers:

1. Yang Tian, Takahiro Matsuno and Shugen Ma, Development of Remote Robot
Control System for Snake-like Robot based on SSH Protocol and iOS System, In
Proc. of the 2016 IEEE International Conference on Robotics and Biomimetics (RO-
BIO2016), Qingdao, China, pp. 100-105, Dec. 2016.

2. Yang Tian, Victor Gomez and Shugen Ma, Influence of Two SLAM Algorithms using
Serpentine Locomotion in a Featureless Environment, In Proc. of the 2015 IEEE In-
ternational Conference on Robotics and Biomimetics (ROBIO2015), Zhuhai, China,
pp. 182-187, Dec. 2015.

3. Yang Tian and Shugen Ma, A Double Guarantee Kidnapping Detection in Simul-
taneous Localization and Mapping, In Proc. of the 2014 IEEE International Con-
ference on Multisensor Fusion and Information Integration for Intelligent Systems
(MFI2014), Beijing, China, pp. 1-6, Sep. 2014.

94

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Localization
	Relative Measurement
	Absolute Measurement
	Multiple Sensors Fusion

	Simultaneous Localization and Mapping
	Gaussian-based Filter SLAM
	Particle Filter based SLAM
	Filter-less SLAM
	Kidnapping problem in SLAM

	Outline of this Thesis

	Problem Statement
	Analysis of Kidnapping in SLAM
	Solution of kidnapping in SLAM
	Summary

	Kidnapping Detection
	DKDR Framework
	Metrics and Thresholds
	Metrics in DKDR
	Metrics in P-DKDR
	Thresholds

	Simulations
	Summary

	Kidnapping Recovery
	Monte Carlo Localization with Map Uncertainty
	Problem Statement about Map Uncertainty
	Implementation of MCL-MU

	Known and Unknown Environment's Simultaneous Localization
	Basic Idea of KUESL
	Implementation of KUESL

	Summary

	Experiments
	Experimental Setup
	Experiments for Kidnapping Detection
	Experiments
	Discussion

	Experiments for Kidnapping Recovery
	Experiments for MCL-MU
	Experiments for KUESL
	Discussion

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Motion Model
	Measurement Model
	Published Papers During Doctoral Course

