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Abstract

This thesis addresses more reliable and precise novel positioning algorithms for auto-

motive applications using low-end single-frequency Global Navigation Satellite System

(GNSS) receivers. In addition, it refers to the detection and correction of Doppler-

observable outliers and precise point positioning (PPP)/very precise point positioning

(VPPP) algorithms using single or double-difference (SD/DD) observables based on the

GNSS regression (GR) models.

First, mathematical models of pseudoranges, Doppler shifts, and carrier-phase mea-

surements are derived as basic equations for the positioning. The GR models for DD-based

observables are shown, which are similar to the GR models for relative positioning algo-

rithms; however, all antenna positions are unknown. The Kalman filtering algorithms

for recursive estimation of all antenna positions and DD-based integer ambiguity of all

carrier-phases are derived.

Second, methods of detecting Doppler outliers that cause positioning errors at Doppler-

aided GNSS positioning for automotive applications and methods of correcting these errors

are referred. The detection method based on the innovation process in Kalman filtering

and that based on the measurements made on the basis of the difference between C/A code

pseudoranges and Doppler shift range-rates are referred. Then, two correction methods,

namely the Doppler outlier exclusion and Doppler outlier estimation, are proposed.
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VPPP update algorithms based on geometric distance constraints estimate the param-

eters more precisely, including antenna positioning and integer ambiguities. Observables

by four antennas on a squared board in a static situation are used for the positioning.

Compared with the conventional PPP/VPPP algorithms, DD-based PPP/VPPP algo-

rithms are shown to generate more precise positioning results, i.e. approximately 50-cm

root-mean-square errors.

Finally, the estimation algorithms of Euler angles based on baseline vectors for attitude

estimation are referred. When we obtain very precise positions of antennas disposed in a

plane, we estimate the Euler angles from the baseline vectors of multiple antennas using

the least-squares method. The so-called GNSS gyro can be realized as an application of

the above-proposed positioning methods.
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Chapter 1

Introduction

A key issue in Global Navigation Satellite Systems (GNSS) for advanced driving assis-

tant systems (ADAS) or active safety systems (ASS) is to stably obtain the sub-meter-level

vehicle positions by autonomous driving. Multi-GNSS positioning by single-frequency re-

ceivers contributes lower dilution of precision (DOP) values even in satellite-signal blockage

areas; however, the bias error sources of the positioning, e.g. ionospheric delay, are re-

mained, and the positioning performances are approximately limited to more than one

meter. In order to achieve sub-meter-level accuracy, carrier-phase observables are addi-

tionally utilized, and estimation methods of the bias errors are applied for more precise

autonomous positioning.

1.1 Overview of the Global Navigation Satellite Systems

Global Positioning System (GPS), initiated by the U.S. Department of Defense, first

became operational (initial operational capability) with 24 satellites in 1993. By receiving

the navigation messages from four or more satellites, a GPS receiver can effectively fix

any three-dimensional positions on the earth. The GPS was originally developed for mil-

itary purpose, and is comprised of space segment of satellites, control segment of monitor

stations and ground antennas, and user segment of receivers. After removing selective

1



2

availability in 2000, the GPS has achieved several meter-level positioning by standard

point positioning (SPP), and rapidly been expanded to civil application markets [1]–[4].

In recent years, the GNSS or Regional Navigation Satellite Systems (RNSS), namely

not only GPS by the US, but also GLONASS by Russia, BeiDou Satellite System (BDS)

by China, Galileo by EU, and Quasi-Zenith Satellite System (QZSS) by Japan, have been

initiated or planning [5]–[8]. Until 2020, worldwide navigation satellite counts will surpass

130 satellites. Especially in Asian area, a receiver will be able to track more than 30

satellites at a time under open sky environments. QZSS by Japan will become operational

in April 2018, and can complement or augment the GPS for more accurate positioning.

Furthermore GNSS/RNSS will support multi-frequency signals, not only L1 band, but

also L2/L5 bands in the future. The multi-frequency observations can be utilized for real-

time kinematic (RTK) or precise point positioning (PPP) in order to correct ionospheric

propagation delays or to resolve carrier-phase ambiguities.

The GNSS has been applied in a wide range of fields, and played more and more

significant roles, e.g. SPP for various types of mobile vehicles planes/ships/cars or moving

human, or differential GPS (DGPS)/relative positioning based on monitor stations for

topographic surveying. The GPS time can be utilized for time synchronization functions.

The multi-GNSS positioning can provide more precise positions recently, and is expected

to contribute to more precise applications, e.g. lane-keep assistance or autonomous-brake

system in ADAS/ASS.

1.2 Positioning Methods for Automotive Applications

In recent years, the required specifications for automotive applications are dramati-

cally changing from (A) car navigations to (C) ADAS/ASS/automatic driving. The higher
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accuracy positioning are also required by the changes as shown in Figure 1.1. In the case

of (A), SPP basically utilizes just C/A code pseudoranges of low-end single-frequency

receivers without augmentation data from reference stations. The SPP positioning meth-

ods can provide los-cost solutions and higher availability, however, have lower reliability

of observables and lower positioning accuracy. On the other hand, in the case of (B),

relative positioning for topographic surveying additionally utilizes carrier-phase (CP) ob-

servables which provide approximately one hundred times more precise pseudoranges, and

multi-frequency observables, namely L1 and also L2/L5/L6 bandwidth. The augmen-

tation data are also transmitted from reference stations through communication means.

Therefore the positioning has approximately centimeter-level accuracy. The positioning

accuracy of (B) targets less than (a)1.0m, (b)0.5m, and (c)0.1m in stages. (B) employs

・Relative positioning

・RTK-PPP (CLAS)

・MADOCA-PPP

・Standard Point Positioning

・・・・Doppler-aided Positioning

・・・・PPP/VPPP

・・・・DD-PPP/DD-VPPP

High-end

Receiver

Low-end

Receiver

Lower Accuracy Higher Accuracy

C/A code, DP of  L1

C/A code of  L1

C/A code, CP of  L1/L2/L5/L6

C/A code, CP, (DP) of  L1

Meter-level Sub-meter-level Deci-meter-level Centimeter-level

(Reference stations)

(Communication means)

Single frequency receivers

No augmentation info.

Multi frequency receivers

Augmentation info.

Car navigation ADAS/ASS Surveying

Positioning

Cost

(A)

(B)

(C)

Figure 1.1: Target of this study (C)
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RTK equivalent positioning methods with augmentation information, such as RTK-PPP

(CLAS: centimeter-level augmentation system) or MADOCA-PPP (multi-GNSS advanced

demonstration tool for orbit and clock analysis). The positioning techniques of these

high-end receivers are gradually expanded to automotive commodity products. In the

case of this study (C), the target positioning accuracy is sub-meter level required for

ADAS/ASS applications. The positioning methods utilize not only code pseudoranges

but also Doppler shift frequency and carrier-phase pseudoranges of single-frequency re-

ceivers without augmentation data. Advanced positioning algorithms can provide higher

reliability of observables and higher positioning accuracy by Doppler-aided positioning or

PPP-based positioning.

In general, there are three major error sources of GNSS positioning [1]. First one

is GNSS satellite-related error source, e.g. clocks or orbits. Second one is GNSS signal

travel path-related source, e.g. ionospheric or tropospheric signal delays. Third one is

receiver-related source, e.g. observables or multi-path. GNSS observables for positioning

are affected by these error sources, and caused bias or random errors. The satellite-related

errors are globally caused, and the path-related errors are locally caused. According to

standard error model for code pseudoranges, the bias noises are dominant except for multi-

path, and the total amount of the errors is approximately five meters.

PPP-based positioning which utilizes carrier-phase observables needs to resolve inte-

ger ambiguities. They are comparatively easy to be resolved by fixed-point positioning

under open sky environments, however, they have degraded positioning accuracy under

signal blockage areas or multi-path environments. Under these difficult environments,

Doppler shift observables (DP) are effectively utilized to improve positioning accuracy or

availability.
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In order to improve the reliability of these observables, the outlier detection and correc-

tion methods based on the GNSS observables. Although there are a lot of literature about

detection of the outlier or the robust Kalmanfilter [9], [10] to overcome these problems,

we propose the following two methods: 1) statistical tests on the innovation processes

of the Kalman filter, 2) statistical test on the difference between C/A code delta-ranges

and Doppler-shift range-rates. Method-1 is derived by modifying the cycle slip detection

algorithm in [11], [12]. Method-2 can be also applied to carrier-phase delta-ranges.

Augmentation data utilized by the high-end receivers depends on positioning infras-

tructures, e.g. reference stations. In order to remove these error sources and realize the

accuracy equivalent to relative positioning, the high-end receivers utilize the various meth-

ods with augmentation data, namely Satellite Based Augmentation System (SBAS), L1

band experimental signals (LEX) and so on. SBAS broadcasts wide-area differential aug-

mentation data from geostationary satellites, and can correct the satellite orbits and clocks

and the ionospheric signal delays, and achieve one meter or less positioning accuracy [13].

RTK-PPP based on LEX signals broadcasts State Space Representation (SSR) data from

QZSS, and correct satellite orbits or clocks, and ionospheric or tropospheric signal delays

and achieve centimeter-level positioning accuracy [14]. However, the GNSS observables of

reference stations at the same timing are needed to generate augmentation data. MSAS

(SBAS by Japan) needs the observables obtained at 12 monitor stations, and LEX needs

the observables obtained at approximately 200 reference stations of GEONET in Japan.

As the numbers of reference stations are not sufficient in the developing areas, the precise

positioning based on augmentation data likewise RTK-PPP becomes impossible.

In order to resolve the issues of infrastructure dependency, the autonomy-oriented

PPP are effective to improve positioning accuracy for automotive applications. PPP uti-
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lizes carrier-phase observables from multiple rover antennas (receivers) by low-end single-

frequency receivers without any augmentation information [15]–[20]. We have enhanced

our previous PPP algorithms, and applied double-difference (DD) observables among mul-

tiple antennas to the algorithms and derived the DD-based GR models (DD-PPP). The

DD-based technique needs additional rover antennas (receivers), however, it utilizes the

cancellation of several bias error sources by DD-based observables at added antennas with-

out any externally transmitted data. Additionally we have been developing Very Precise

Point Positioning (VPPP) algorithms [21]–[25], the geometrical distances among the an-

tennas are utilized as the constraints to improve PPP positioning estimates. VPPP is also

applied to DD-PPP by the geometrical distance constraints.

1.3 Summary of Contents

This thesis mainly addresses following three topics:

i) Detection and correction of observable outliers for automotive

ii) PPP/VPPP algorithms by or not by DD-based observables among multiple antennas

iii) Euler-angle estimation by baseline vectors among multiple antennas

In Chapter 2, the mathematical models and the characteristic features of three in-

dependent GNSS observables, namely L1-C/A code psudoranges, L1 frequency carrier-

phase pseudoranges, and Doppler frequency shifts, are referred. Then, the GR models for

PPP/SD-PPP/DD-PPP algorithms among multiple antennas are derived, and the devel-

opment to Kalman filtering positioning are shown.

In Chapter 3, the methods of detecting Doppler outliers which cause positioning errors

at Doppler-aided GNSS positioning for automotive, and correcting the errors are referred.

The detection methods are based on the innovation process in Kalman filtering, and based
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on the measurements, namely the differences among C/A code delta-ranges, carrier-phase

delta-ranges and Doppler range-rates. The correction methods are the Doppler outlier

exclusion, and the estimation.

In Chapter 4, VPPP algorithms are applied to PPP/SD-PPP/DD-PPP with multiple

antennas by using constraints of geometrical distances among antennas’ positions and

common receivers’ clock errors based on the minimum mean square (MMS) methods.

Then, the experimental results of the following four positioning methods among multiple

antennas in a static environment are shown.

(a) PPP (Precise Point Positioning)

(b) VPPP (Very Precise Point Positioning)

(c) DD-PPP (Double-Difference Precise Point Positioning)

(d) DD-VPPP (Double-Difference Very Precise Point Positioning)

In Chapter 5, the GR model of baseline-vector estimation based on the DD-PPP GR

model is derived, and the updating equations based on baseline-vector length constraints

are also derived. The estimation algorithms of Euler angles based on baseline vectors

for attitude estimation are referred. The experimental results of the Euler-angle values by

least-squares method using six baseline vectors of four antennas are shown for the so-called

GNSS gyro.



Chapter 2

GNSS Regression (GR) Models

2.1 Introduction

GNSS receivers basically generate three types of raw measurements, namely C/A code

pseudoranges, carrier-phases pseudoranges, and Doppler shift frequencies. The raw data

means the source data for calculating the fixed antenna positions connected to the re-

ceivers, and are generated at baseband processes after down-converter processes of GNSS

RF signals. In general, L1-C/A code pseudoranges and Doppler-shift frequencies are mea-

sured at the acquisition stage of satellite signals in GNSS receivers. Receivers conduct a

search process over the space of code-phase shifts and Doppler-frequency shifts, and rou-

tinely measure them in the carrier tracking loop of an acquisition stage. Doppler observ-

ables are obtained by frequency-locked loop (FLL) and less affected by noises or multipath

compared with C/A code pseudorange observables obtained by delay-locked loop (DLL),

and more robust than carrier-phase observables obtained by phase-locked loop (PLL) [3].

GNSS receivers have the same hardware components of the DLL, the FLL, and the PLL,

however, their loop bandwidth affect the noise characteristic and the signal dynamics of

the raw data [26]. Therefore high-end GNSS receivers for millimeter-level topographic

surveying can provide less positioning fluctuations of SPP which mainly utilizes C/A code

8
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pseudoranges compared with single-frequency GNSS receivers for meter-level mobile ap-

plications. Our proposed PPP/VPPP positioning algorithms are applied to economical

single-frequency GNSS receivers.

In this chapter, first, the mathematical models and the characteristic features of mea-

surements are referred. The GNSS measurement equations are referred in a lot of litera-

ture [1]–[3]. Regardless of the kinds of receivers, the same mathematical equation models

can be applied to the measurements. The models are composed of the geometrical distance

based on the measurement principle and the error terms composed of satellite-related, sig-

nal travelling-related, receiver-related sources, and observation noises.

Second, the GR models of conventional PPP algorithms for a single antenna are shown.

PPP techniques are basically one approach to achieve sub-meter level positioning accuracy

using carrier-phase observables without baseline vector analysis from reference stations.

Then, the expansion equations by individually applying the PPP algorithms to multiple

rover antennas (receivers) are shown.

Lastly the GR models of novel PPP algorithms based on the single difference (SD)

or the double difference (DD) GNSS observables among multiple antennas (receivers) are

referred. The models are derived from the GR models of relative positioning algorithms,

however, all antennas’ positions are unknown parameters.

2.2 Mathematical Models and Features of GNSS Measure-
ments

The C/A code pseudoranges ρpu(t) at GPS time (GPST) t is derived from the signal

travelling time as follows [26]:

ρpu(t) = c [tu(t)− tp(t− τpu)] + epu(t), (2.1)
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where c (≈ 2.99792458 × 108[m/s]) denotes the speed of light, tp(t − τpu) is the emission

time measured by the satellite clock, and tu(t) is the arrival time measured by the user’s

receiver clock. τpu is the signal travelling time from the satellite to the receiver for the code

pseudoranges, and epu is the measurement error.

The relationship between the time of the satellite or the receiver clocks and the GPST

are as follows:

tp(t− τpu) = (t− τpu) + δtp(t− τpu), tu(t) = t+ δtu(t), (2.2)

where δtp is the satellite clock bias, and δtu is the receiver clock bias. Eqs. (2.2) are

substituted in Eq. (2.1), and then we obtain the following equation:

ρpu(t) = c [t+ δtu(t)− ((t− τpu) + δtp(t− τpu))] + epu(t)

= cτpu + c [δtu(t)− δtp(t− τpu)] + epu(t). (2.3)

The travelling time τpu multiplied by the speed of light can be modeled as follows:

cτpu = rpu(t, t− τpu) + δIpu(t) + δT p
u (t), (2.4)

where rpu(t, t − τpu) is the geometric distance between the receiver position at time t and

the satellite position at (t − τpu). δIpu and δT p
u reflect the delays of GNSS signals trav-

elling through the ionosphere and the troposphere, respectively. Finally we obtain the

mathematical model of C/A code pseudoranges as follows:

ρpu(t) = rpu(t, t− τpu) + c [δtu(t)− δtp(t− τpu)] + δIpu(t) + δT p
u (t) + epu(t). (2.5)

The carrier-phase observables ϕp
u(t) at GPST t is derived from the signal travelling

time τpu as follows:

ϕp
u(t) = ϕu(t)− ϕp(t− τpu) +Np

u + ϵpu(t), (2.6)
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where ϕu(t) is the phase of the signal generated by the receiver clock at the arrival time,

and ϕp(t − τpu) is the phase of the signal generated by the satellite at the emission time.

Np
u is the integer ambiguity. ϵpu(t) is the measurement error. We simplify Eq. (2.6) by the

following equation:

ϕp(t− τpu) = ϕp(t)− f × τ, (2.7)

then we obtain as follows:

ϕp
u(t) = f × τ +Np

u + ϵpu(t) =
rpu(t, t− τpu)

λ
+Np

u + ϵpu(t),

λϕp
u(t) = rpu(t, t− τpu) + λNp

u + λϵpu(t), (2.8)

where f and λ are the carrier frequency and wavelength, respectively. rpu(t, t− τpu) is the

geometric distance between the receiver position at time t and the satellite position at

(t− τpu):

λϕp
u(t) = rpu(t, t− τpu) + c [δtu(t)− δtp(t− τpu)] + δIpu(t) + δT p

u (t) + λNp
u + λϵpu(t). (2.9)

Doppler shift frequencies are equivalent to the range rate, and can be regarded as a

projection of the relative velocity on the satellite line-of-sight vector [26],[27]. The Doppler

shift is actually measured as the pseudorange rate, and proportional to the line-of-sight

velocity of the user relative to the satellite over the time interval. The mathematical model

of Doppler shift can be obtained by differentiating Eq. (2.5) as follows:

ρ̇pu(t) = ṙpu(t, t− τpu) + c
[
δṫu(t)− δṫp(t− τpu)

]
+ δİpu(t) + δṪ p

u (t) + ėpu(t), (2.10)

where δṫu(t) and δṫp(t− τpu) are the receiver and satellite clock drifts.

We analyze Doppler frequency shift accuracy compared with L1-C/A code pseudor-

anges. C/A code delta-ranges are the time-differenced pseudorange observables over two
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consecutive times (epochs), namely ρpCA,u(t) - ρ
p
CA,u(t − 1). On the other hand, Doppler

shift range-rates are receiver-satellite values based on Doppler frequency shift observables,

namely λ1D
p
L1,u(t). ρpCA,u(t) is a C/A code pseudorange, and Dp

L1,u(t) is a Doppler fre-

quency shift between satellite p and receiver u at epoch t. λ1 is wave length of carrier

wave and calculated by c/f1. c denotes the speed of light, and f1 is L1 central frequency,

namely f1 = 2 × 77 × 10.23 [MHz] = 1575.42 [MHz]. In theory delta-ranges are nearly

equal to range-rates. C/A code pseudoranges and Doppler shifts observables are proved

to be independent (p.186 in [2]).

Fig. 2.1 shows an example of the comparison between the delta-ranges (red line) ob-

tained from code pseudoranges and the range-rates (blue line) obtained from Doppler

shifts. The observables was collected from a u-blox NEO-7N receiver equipped in the test

vehicle moved in Tokyo, Japan, on April 2, 2014. The satellite elevation is 55-56 degrees
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(brown line), and the C/No (Carrier to Noise ratio) values [28] (black line) calculated

by the baseband process of the receiver are degraded to approximately 30 dB-Hz from

45 dB-Hz because of multipath indirect waves. The delta-ranges have several tens of me-

ter fluctuations when the C/No degradations. On the other hand the range-rates have

small fluctuations. The Doppler shifts are less affected by the indirect waves, and can

stay more accurate than code pseudoranges even under multipath environments. Doppler

observables therefore have the potential to be utilized to smooth the code pseudorange

noises in GNSS difficult environment.

2.3 GNSS Regression Models among Multiple Antennas

2.3.1 GR Equations for GNSS Measurements

First of all, similarly to [15]–[20], we formulate all observed positioning data consisting

of the L1 carrier-phase, pseudoranges based on C/A code, and Doppler shift frequency by

using the GNSS regression models. The natural extensions of GNSS regression models for

multiple frequencies of GPS, Galileo, Compass/BeiDou, GLONASS, and US-GPS mod-

ernization are also similarly formulated. Namely, we consider the following fundamen-

tal measurements of L1 band carrier-phases φp
L1,u(t) (equivalently, Φp

L1,u(t) as the unit

of length), pseudoranges ρpCA,u(t) based on the C/A code, and Doppler shift frequency
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ρ̇pDL1,u(t), respectively, as follows [2], [26], [29], [31]:

ρpCA,u(t) = rpu(t, t− τpu) + δIpu(t) + δT p
u (t) + c [δtu(t)− δtp(t− τpu)]

+δbCA,u − δbpCA + epCA,u(t), (2.11)

Φp
L1,u(t) = λ1φ

p
L1,u(t)

= rpu(t, t− τpu)− δIpu(t) + δT p
u (t) + c [δtu(t)− δtp(t− τpu)]

+δbL1,u − δbpL1 + λ1N
p
u + λ1ε

p
L1,u(t), (2.12)

ρ̇pDL1,u(t) = ṙpu(t, t− τpu) + δİpu(t) + δṪ p
u (t) + c

[
δṫu(t)− δṫp(t− τpu)

]
+δbDL1,u − δbpDL1(t) + εpDL1,u(t), (2.13)

where c (∼= 2.99792458×108[m/s]) denotes the speed of light, and f1 and λ1 are the central

frequency and the wave length of the L1 carrier wave

f1 = 2× 77× 10.23 [MHz] = 1575.42 [MHz].

In Eqs. (2.11)-(2.13), the so-called receiver’s biases, {δbCA,u, δbL1,u, δbDL1,u}, and the

satellite biases, {δbpCA, δb
p
L1, δb

p
DL1}, are contained in the usual observed positioning data

consisting of the L1 carrier-phase, pseudorange based on the C/A codes [32], and Doppler

shift frequency. Also rpu(t, t− τpu) is the geometric distance between the receiver u at the

time t and the satellite p at the time t− τpu (τpu denotes the travel time from the satellite

p (p = 1, . . . , ns) to the receiver u (u = 1, . . . , nr)). Namely,

rpu(t) ≡ rpu(t, t− τpu)

=
[(
xu(t)− xp(t− τpu)

)2
+

(
yu(t)− yp(t− τpu)

)2
+

(
zu(t)− zp(t− τpu)

)2]1/2
= ||u(t)− sp(t− τpu)||, (2.14)

where u ≡
[
xu, yu, zu

]T
and sp ≡

[
xp, yp, zp

]T
are a user (unknown) and satellite positions,

respectively. Also ns denotes the number of the observable satellites. nr denotes the
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number of the receivers one-on-one connected to multiple antennas. Further in Eqs. (2.11)-

(2.12), δIpu(t) and δT p
u (t) reflect the delay or the advance associated with the transmission

of the L1 signal through the ionosphere and the troposphere, respectively. δtu(t) and

δtp(t − τpu) are the clock errors of the receiver u at the time t and the satellite p at the

time t− τpu . N
p
u denotes integer ambiguity between the satellite p and the receiver u, and

epCA,u(t), εpL1,u(t), εpDL1,u(t) denote measurement errors.

Eq. (2.14) contains the satellite orbital errors. The estimated satellite orbits are ob-

tained from the navigation messages which are decoded from the transmitted L1 signal.

Let us denote ŝp as the estimated position of the satellite sp at the time t− τpu . Eq. (2.14)

is expressed by nonlinear terms based on satellites sp and receiver u. We use the following

relations of the derivatives,

∂rpu
∂xu

=
(xu − xp)

rpu
,

∂rpu
∂yu

=
(yu − yp)

rpu
,

∂rpu
∂zu

=
(zu − zp)

rpu
, (p = 1, 2, . . . , ns),

(2.15)

and

∂rpu
∂xp

= −(xu − xp)

rpu
,

∂rpu
∂yp

= −(yu − yp)

rpu
,

∂rpu
∂zp

= −(zu − zp)

rpu
, (p = 1, 2, . . . , ns).

(2.16)

Then we have the relation:

∂rpu
∂u

= −∂rpu
∂sp

. (2.17)

Thus the 1st order Taylor series approximation of Eq. (2.14) around the previous estimated
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value u = û(ν) (ν : iteration counts of the estimation) and sp = ŝp is given by

rpu
∼= rp̂

û(ν) + (gp̂
û(ν))

T[u− sp − (û(ν) − ŝp)]

= ||û(ν) − ŝp||+ (û(ν) − ŝp)T

||û(ν) − ŝp||
[u− sp − (û(ν) − ŝp)]

=
(û(ν) − ŝp)T

||û(ν) − ŝp||
(u− sp) (2.18)

for p = 1, 2, . . . , ns, where

gp̂
û(ν) ≡

[
∂rpu
∂u

]
u=û(ν),sp=ŝp

=
(û(ν) − ŝp)

||û(ν) − ŝp||
. (2.19)

In order to employ the same estimation method as that of previous PPP methods, the

linearized gradient vectors gp̂û are utilized for Extended Kalman filter of the DD-based

PPP method. From Eqs. (2.11)-(2.13), we therefore have the approximations:

ρpCA,u
∼= (gp̂

û(ν))
T(u− sp) + δIpu + δT p

u + c(δtu − δtp) + δbCA,u − δbpCA + epCA,u,(2.20)

Φp
L1,u

∼= (gp̂
û(ν))

T(u− sp)− δIpu + δT p
u + c(δtu − δtp) + δbL1,u − δbpL1 + λ1N

p
L1,u

+λ1ε
p
L1,u, (2.21)

ρ̇pDL1,u = λ1D
p
L1,u

∼= (gp̂
û(ν))

T(u̇− ṡp) + δİpu + δṪ p
u + c(δṫu − δṫp) + δbpDL1 + εpDL1,u. (2.22)

Define the ns × 3 matrix:

Gp̂

û(ν) ≡



(g1̂
û(ν))

T

(g2̂
û(ν))

T

...

(gn̂s

û(ν))
T


=



∂r1̂
û(ν)

∂x̂
(ν)
u

∂r1̂
û(ν)

∂ŷ
(ν)
u

∂r1̂
û(ν)

∂ẑ
(ν)
u

∂r2̂
û(ν)

∂x̂
(ν)
u

∂r2̂
û(ν)

∂ŷ
(ν)
u

∂r2̂
û(ν)

∂ẑ
(ν)
u

...
...

...

∂rn̂s

û(ν)

∂x̂
(ν)
u

∂rn̂s

û(ν)

∂ŷ
(ν)
u

∂rn̂s

û(ν)

∂ẑ
(ν)
u


. (2.23)

In order to simplify the expression, superscript (ν) for the iteration counts of the estimation

is omitted hereafter.
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2.3.2 GR Models for PPP

Eqs. (2.11)-(2.13) are denoted for the observables of L1-CA code pseudoranges, L1

carrier-phases and Doppler shifts. The equations can be applied for L2-CA, L1-PY, L2-PY

and other kinds of observables for multi-frequencies and multi-GNSS navigation signals.

It was pointed out in [32] that the magnitude of the satellite’s hardware delay bias δbp∗ is

usually in the range of (several nanosecond ×c), while the receiver’s hardware biases δb∗,u

could exceed (10 nanoseconds ×c). we therefore assume that the satellite’s hardware delay

biases are negligible, and the receiver’s hardware biases are not disregarded, and defined

as the terms of the 3× 1 vector: δbu ≡ [δbCA,u, δbL1,u, δbDL1,u]
T. δİpu(t) and δṪ p

u (t) which

are the delay changes for a short time are very small and negligible.

Here, we define the vectors:

ρpCA,u ≡


ρ1CA,u

...

ρns
CA,u

 , Φp
L1,u ≡


Φ1
L1,u

...

Φns
L1,u

 , Dp
L1,u ≡


D1

L1,u

...

Dns
L1,u

 ,

cδtp ≡


cδt1

...

cδtns

 , s ≡


s1

...

sns

 , ṡ ≡


ṡ1

...

ṡns

 ,

δIu ≡


δI1u

...

δIns
u

 , δTu ≡


δT 1

u

...

δTns
u

 , Np
L1,u ≡


N1

L1,u

...

Nns
L1,u

 ,

eCA,u ≡


e1CA,u

...

ens
CA,u

 , εL1,u ≡


ε1L1,u
...

εns
L1,u

 , εDL1,u ≡


ε1DL1,u

...

εns
DL1,u

 . (2.24)
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Furthermore, from Eq. (2.23), we define a block diagonal matrix with the size (ns× 3ns):

Gp̂
D,û ≡



(g1̂û)
T O O · · · O

O (g2̂û)
T O · · · O

...
. . .

...

...
. . . O

O · · · · · · O (gn̂s
û )T


. (2.25)

Then from Eqs. (2.20)-(2.22), we have the following vector regression equation:

ypu = H p̂
ûθu + vu, (2.26)

where

ypu ≡


ρpCA,u

Φp
L1,u

λ1D
p
L1,u

 , H p̂
û ≡


Gp̂

û 1 1 −I −GD I I

Gp̂
û 1 1 −I −GD I I I

Gp̂
û 1 1 −GD

 ,

θu ≡
[
u, u̇, cδtu, cδ̇tu, δbu, cδt

p, s, ṡ, δIu, δTu, λ1NL1,u

]T
,

vu ≡
[
eTCA,u, λ1(ε

p
L1,u)

T, λ1(ε
p
DL1,u)

T
]T
, (2.27)

and I denote the ns × ns identity matrix and 1 ≡ [1, 1, · · · , 1]T: ns × 1 vector.

The navigation messages broadcasted from GNSS satellites include some knowledge of

the satellite position s, the satellite velocity ṡ, the satellite clock error δtp, as well as the

delay or the advance due to the ionospheric and tropospheric effects, δIu and δTu are, for

instance,

ŝ = s+ es, ˆ̇s = ṡ+ eṡ, ˆcδt
p
= cδtp + eδtp ,

δ̂Iu = δIu + eδIu , δ̂T u = δTu + eδTu , (2.28)
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where e∗ show the estimation errors. Substituting the above relations Eqs. (2.28)-(2.28)

into the GR equations Eqs. (2.20)-(2.21) to utilize Kalman filtering methods, and neglect

s, ṡ, cδtp, δIu, δTu, we have


yp̂CA,û

yp̂L1,û

yp̂DL1,û

 = C p̂
û



u

u̇

cδtu

cδ̇tu

δbu

λ1NL1,u


+ v, (2.29)

where

C p̂
û =


Gp̂

û 1 1

Gp̂
û 1 1 I

Gp̂
û 1 1

 , v =


Gp̂

D,ûes + eδtp − eδIu − eδTu + eCA,u

Gp̂
D,ûes + eδtp + eδIu − eδTu + λ1εL1,u

Gp̂
D,ûeṡ + eδ̇tp + λ1εDL1,u

 , (2.30)

yp̂CA,û=ρsCA,u+Gp̂
D,ûŝ+

ˆcδt
p−δ̂Iu−δ̂T u, (2.31)

yp̂L1,û=Φs
L1,u+Gp̂

D,ûŝ+
ˆcδt

p
+δ̂Iu−δ̂T u, (2.32)

yp̂DL1,û= ρ̇sDL1,u+Gp̂
D,û

ˆ̇s, (2.33)

Gp̂
û≡

[
s1̂û s2̂û · · · sn̂s

û

]T
, (2.34)

Gp̂
D,û≡ diag

(
(g1̂û)

T (g2̂û)
T · · · (gn̂s

û )T
)
. (2.35)

The above Eq. (2.29) is called GNSS regression model (GR model) [15]–[20]. In this thesis,

the positioning results are obtained by the extended Kalman filtering methods based on

the GR models.

Let us consider that multiple antennas ui = 1, . . . , nr are disposed with the given

distance dj,i between any two antennas ui and uj . In this assumption, when we observe
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C/A code pseudoranges and carrier-phases by multiple antennas, we have the following

nr single-frequency GR equations:

yûi
= C p̂

ûi
θui + vui , (2.36)

for i = 1, . . . , nr, where

C p̂
ûi

=


Gp̂

ûi
1 1

Gp̂
ûi

1 1 I

Gp̂
ûi

1 1

 , θui =



ui

u̇i

cδtui

cδ̇tui

δbui

λkNL1,ui


. (2.37)

We show state equations and measurement equations for applying Kalman filtering.

The receiver’s clock errors cδtu are generally modeled as follows [1], [33], [34] (let us call

the following model as the A-model of the receiver’s clock error),

cδtu,t+1 = cδtu,t +∆tcδ̇tu,t + wcδtu,t, (2.38)

cδ̇tu,t+1 = cδ̇tu,t + wcδ̇tu,t
, (2.39)

where ∆t denotes the sampling interval of the receiver’s clock error, and the noise wcδtu,t

and wcδ̇tu,t
are assumed as white Gaussian processes with zero means and covariances qcδt

and qcδ̇t, respectively. Then we can write cδtu,t+1

cδ̇tu,t+1

 =

 1 ∆t

0 1


 cδtu,t

cδ̇tu,t

+

 wcδtu,t

wcδ̇tu,t



≡ FA,cδt

 cδtu,t

cδ̇tu,t

+

 wcδtu,t

wcδ̇tu,t

 . (2.40)
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Then assuming that the time differential of receiver’s clock error cδtu obeys first-order

Malkov models on the time series analysis, we can derive the following equation: cδtu,t+1

cδ̇tu,t+1

 =

 1 ∆t

0 κ


 cδtu,t

cδ̇tu,t

+

 0

wcδ̇tu,t



≡ FB,cδt

 cδtu,t

cδ̇tu,t

+

 0

wcδ̇tu,t

 . (2.41)

Now we present an approximated but simpler estimation algorithm of ηt. Namely define

ηt ≡
[
η1,t, η2,t, · · · , ηnr,t

]T
, (2.42)

where

ηi,t =
[
ui, u̇i, cδtui ,

˙cδtui , δbui , NL1,ui

]T
, (i = 1, · · · , nr). (2.43)

Then the state equation and measurement equation are given by

ηi,t+1 = Ai,t ηi,t + wi,t, (2.44)

yûi,t
= Ci,t ηi,t + vi,t, (2.45)

where

Ai,t ≡



I3×3

I3×3

F∗,cδt

I


, Ci,t ≡


Gûi

1 0 1

Gûi
1 0 1 λ1I

Gûi
0 1 1

 , (2.46)

wi,t ≡
[
03, 03, ∗, wcδ̇tui

, 02+nsi

]T
. (2.47)

Thus, for each state ηi,t, we can obtain the filtering estimate η̂i,t|t and its error covariance

matrix Σηi,t|t by applying the Kalman filter. The approximated estimate η̂t|t and its error



22

covariance are obtained by

η̂t|t =


η̂1,t|t

...

η̂nr,t|t

 , Rη,t|t =


Ση1,t|t O

. . .

O Ση2,t|t

 . (2.48)

2.3.3 GR Models for SD/DD-PPP

Let us consider GR equations of pseudoranges based on C/A code for satellites p and

q, and the receivers (antennas) ui and,uj as follows:

ρpCA,ui

∼= (gp̂ûi
)T(ui − sp) + δIpui

+ δT p
ui

+ c(δtui − δtp)

+δbCA,ui − δbpCA + epCA,ui
, (2.49)

ρpCA,uj

∼= (gp̂ûj
)T(uj − sp) + δIpuj

+ δT p
uj

+ c(δtuj − δtp)

+δbCA,uj − δbpCA + epCA,uj
, (2.50)

ρqCA,ui

∼= (gq̂ûi
)T(ui − sq) + δIqui

+ δT q
ui

+ c(δtui − δtq)

+δbCA,ui − δbqCA + eqCA,ui
, (2.51)

ρqCA,uj

∼= (gq̂ûj
)T(uj − sq) + δIquj

+ δT q
uj

+ c(δtuj − δtq)

+δbCA,uj − δbqCA + eqCA,uj
. (2.52)

Then we subtract Eq. (2.49) from Eq. (2.50), namely, taking the single difference between

the measurements of the receivers ui and uj . The signal travelling paths to the adjacent

GNSS antennas from the same satellite are very close, we therefore can assume

δIpui
∼= δIpuj

, δT p
ui

∼= δT p
uj
,
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then we have the relation for the single difference relation of satellite p:

ρpCA,ujui
≡ ρpCA,uj

− ρpCA,ui

∼= (gp̂ûj
)Tuj − (gp̂ûi

)Tui + (gp̂ûj
)T(−sp)− (gp̂ûi

)T(−sp) + c(δtuj − δtui)

+δbCA,uj − δbCA,ui + epCA,uj
− epCA,ui

. (2.53)

Also we have the single-difference relation of satellite q:

ρqCA,ujui
≡ ρqCA,uj

− ρqCA,ui

∼= (gq̂ûj
)Tuj − (gq̂ûi

)Tui + (gq̂ûj
)T(−sq)− (gq̂ûi

)T(−sq) + c(δtuj − δtui)

+δbCA,uj − δbCA,ui + eqCA,uj
− eqCA,ui

. (2.54)

Then, finally we have the following double-difference measurements equations for pseudor-

anges based on C/A code by subtracting Eq. (2.53) from Eq. (2.54). The ui is the reference

antenna position, and the p is the reference satellite:

ρqpCA,ujui
≡ ρqCA,ujui

− ρpCA,ujui

∼= (gq̂ûj
)Tuj − (gq̂ûi

)Tui −
(
(gp̂ûj

)Tuj − (gp̂ûi
)Tui

)
+(gq̂ûj

)T(−sq)− (gq̂ûi
)T(−sq)−

(
(gp̂ûj

)T(−sp)− (gp̂ûi
)T(−sp)

)
+eqCA,uj

− eqCA,ui
−

(
epCA,uj

− epCA,ui

)
= (gq̂p̂ûj

)Tuj − (gq̂p̂ûi
)Tui − (gq̂ûj ûi

)Tsq + (gp̂ûj ûi
)Tsp + eqpCA,ujui

, (2.55)

where

gq̂p̂ûj
≡ gq̂ûj

− gp̂ûj
gq̂p̂ûi

≡ gq̂ûi
− gp̂ûi

gq̂ûj ûi
≡ gq̂ûj

− gq̂ûi
gp̂ûj ûi

≡ gp̂ûj
− gp̂ûi

eqpCA,ui
≡ eqCA,ui

− epCA,ui
eqpCA,uj

≡ eqCA,uj
− epCA,uj

eqpCA,ujui
≡ eqpCA,uj

− eqpCA,ui
.



24

Again let us consider GR equations of the L1 carrier-phase positioning data for satellites

p, and the receivers (antennas) ui and,uj as follows:

Φp
L1,ui

∼= (gp̂ûi
)T(ui − sp)− δIupi + δTupi + c(δtui − δtp)

+δbL1,ui
− δbpL1 + λ1N

p
L1,ui

+ λ1ε
p
L1,ui

, (2.56)

Φp
L1,uj

∼= (gp̂ûj
)T(uj − sp)− δIupj + δTupj + c(δtuj − δtp)

+δbL1,uj
− δbpL1 + λ1N

p
L1,uj

+ λ1ε
p
L1,uj

, (2.57)

Φq
L1,ui

∼= (gq̂ûi
)T(ui − sq)− δIuqi + δTuqi + c(δtui − δtq)

+δbL1,ui
− δbqL1 + λ1N

q
L1,ui

+ λ1ε
q
L1,ui

, (2.58)

Φq
L1,uj

∼= (gq̂ûj
)T(uj − sq)− δIuqj + δTuqj + c(δtuj − δtq)

+δbL1,uj
− δbqL1 + λ1N

q
L1,uj

+ λ1ε
q
L1,uj

. (2.59)

Then we repeat the similar manner to take the differences for the L1 carrier-phase posi-

tioning data. By subtracting Eq. (2.56) from Eq. (2.57), we have the relation for the single

difference relation of satellite p:

Φp
L1,ujui

≡ Φp
CA,uj

− Φp
CA,ui

∼= (gp̂ûj
)Tuj − (gp̂ûi

)Tui + (gp̂ûj
)T(−sp)− (gp̂ûi

)T(−sp) + c(δtuj − δtui)

+δbL1,uj − δbL1,ui + λ1(N
p
L1,uj

−Np
L1,ui

) + λ1(ε
p
L1,uj

− εpL1,ui
), (2.60)

Also by subtracting Eq. (2.58) from Eq. (2.59), we have the relation for the single-difference

relation of satellite q:

Φq
L1,ujui

≡ Φq
CA,uj

− Φq
CA,ui

∼= (gq̂ûj
)Tuj − (gq̂ûi

)Tui + (gq̂ûj
)T(−sq)− (gq̂ûi

)T(−sq) + c(δtuj − δtui)

+δbL1,uj − δbL1,ui + λ1(N
q
L1,uj

−N q
L1,ui

) + λ1(ε
q
L1,uj

− εqL1,ui
), (2.61)
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Finally we have the following double-difference equations: by subtracting Eq. (2.60) from

Eq. (2.61):

Φqp
L1,ujui

≡ Φq
L1,ujui

− Φp
L1,ujui

∼= (gq̂p̂ûj
)Tuj − (gq̂p̂ûi

)Tui − (gq̂ûj ûi
)Tsq + (gp̂ûj ûi

)Tsp + λ1(N
q
L1,uj

−N q
L1,ui

−Np
L1,uj

+Np
L1,ui

) + λ1(ε
q
L1,uj

− εqL1,ui
− εpL1,uj

− εpL1,ui
)

= (gq̂p̂ûj
)Tuj − (gq̂p̂ûi

)Tui − (gq̂ûj ûi
)Tsq + (gp̂ûj ûi

)Tsp + λ1N
qp
L1,ujui

+ λ1ε
qp
L1,ujui

,(2.62)

where

λ1ε
qp
L1,ui

≡ λ1ε
q
L1,ui

− λ1ε
p
DL1,ui

λ1ε
qp
L1,uj

≡ λ1ε
q
L1,uj

− λ1ε
p
DL1,uj

λ1ε
qp
L1,ujui

≡ λ1ε
qp
L1,uj

− λ1ε
qp
DL1,ui

.

Let us consider GR equations of Doppler shift frequency data for satellites p and q, and

the receivers (antennas) ui and,uj as follows:

ρ̇pDL1,ui

∼= (gp̂ûi
)T(u̇i − ṡp) + δİpui

+ δṪ p
ui

+ c(δṫui − δṫp) + δbpDL1 + λ1ε
p
DL1,ui

, (2.63)

ρ̇pDL1,uj

∼= (gp̂ûj
)T(u̇j − ṡp) + δİpuj

+ δṪ p
uj

+ c(δṫuj − δṫp) + δbpDL1 + λ1ε
p
DL1,uj

, (2.64)

ρ̇qDL1,ui

∼= (gq̂ûi
)T(u̇i − ṡq) + δİqui

+ δṪ q
ui

+ c(δṫui − δṫq) + δbqDL1 + λ1ε
q
DL1,ui

, (2.65)

ρ̇qDL1,uj

∼= (gq̂ûj
)T(u̇j − ṡq) + δİquj

+ δṪ q
uj

+ c(δṫuj − δṫq) + δbqDL1 + λ1ε
q
DL1,uj

. (2.66)

Then we subtract Eq. (2.63) from Eq. (2.64), namely, taking the single difference between

the measurements of the receivers ui and uj . Also if we can assume

δİpui
∼= δİpuj

, δṪ p
ui

∼= δṪ p
uj
,
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then we have the relation for the single-difference relation of satellite p:

ρ̇pDL1,ujui
≡ ρ̇pDL1,uj

− ρ̇pDL1,ui

∼= (gp̂ûj
)Tu̇j − (gp̂ûi

)Tu̇i + (gp̂ûj
)T(−ṡp)− (gp̂ûi

)T(−ṡp) + c(δtuj − δtui)

+δbDL1,uj − δbDL1,ui + λ1ε
p
DL1,uj

− λ1ε
p
DL1,ui

. (2.67)

Also we have the single-difference relation of satellite q:

ρ̇qDL1,ujui
≡ ρ̇qDL1,uj

− ρ̇qDL1,ui

∼= (gq̂ûj
)Tu̇j − (gq̂ûi

)Tu̇i + (gq̂ûj
)T(−ṡq)− (gq̂ûi

)T(−ṡq) + c(δtuj − δtui)

+δbDL1,uj − δbDL1,ui + λ1ε
q
DL1,uj

− λ1ε
q
DL1,ui

. (2.68)

Then, finally we have the following double-difference measurements equations for pseudo-

ranges based on C/A code by subtracting Eq. (2.67) from Eq. (2.68):

ρ̇qpDL1,ujui
≡ ρ̇qDL1,ujui

− ρ̇pDL1,ujui

∼= (gq̂ûj
)Tu̇j − (gq̂ûi

)Tu̇i −
(
(gp̂ûj

)Tu̇j − (gp̂ûi
)Tu̇i

)
+(gq̂ûj

)T(−ṡq)− (gq̂ûi
)T(−ṡq)−

(
(gp̂ûj

)T(−ṡp)− (gp̂ûi
)T(−ṡp)

)
+λ1ε

q
DL1,uj

− λ1ε
q
DL1,ui

−
(
λ1ε

p
DL1,uj

− λ1ε
p
DL1,ui

)
= (gq̂p̂ûj

)Tu̇j − (gq̂p̂ûi
)Tu̇i − (gq̂ûj ûi

)Tsq + (gp̂ûj ûi
)Tsp + λ1ε

qp
DL1,ujui

, (2.69)

where

λ1ε
qp
DL1,ui

≡ λ1ε
q
DL1,ui

− λ1ε
p
DL1,ui

λ1ε
qp
DL1,uj

≡ λ1ε
q
DL1,uj

− λ1ε
p
DL1,uj

λ1ε
qp
DL1,ujui

≡ λ1ε
qp
DL1,uj

− λ1ε
qp
DL1,ui

.

Single-difference GR models (SD-PPP)
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Let us write again the final results of the single-difference measurement equations from

Eqs. (2.53), (2.60), and (2.67) as follows.

ρpCA,ujui

∼= (gp̂ûj
)Tuj − (gp̂ûi

)Tui − (gp̂ûj ûi
)Tsp + c(δtuj − δtui) + δbCA,uj − δbCA,ui

+epCA,ujui
, (2.70)

Φp
L1,ujui

∼= (gp̂ûj
)Tuj − (gp̂ûi

)Tui − (gp̂ûj ûi
)Tsp + c(δtuj − δtui) + δbL1,uj − δbL1,ui

+λ1N
p
L1,ujui

+ λ1ε
p
L1,ujui

, (2.71)

ρ̇pDL1,ujui

∼= (gp̂ûj
)Tu̇j − (gp̂ûi

)Tu̇i − (gp̂ûj ûi
)Tṡp + c(δtuj − δtui) + δbDL1,uj − δbDL1,ui

+λ1ε
p
DL1,ujui

. (2.72)

Now let us assume that the estimated values: ŝp, ˆ̇sp, p = 1, . . . ns, of the satellite positions:

sp and velocities ṡp, are available as follows [15]–[20]. The ŝp and ˆ̇sp come from the

navigation messages of satellites:

ŝp = sp + esp , ˆ̇sp = ṡp + eṡp , p = 1, . . . , ns, (2.73)

where we assume esp , eṡp are Gaussian white noises. Then substituting Eq. (2.73) to

Eqs. (2.71), (2.72), and (2.72), we have

ρ̃p̂CA,ûj ûi
≡ ρpCA,ujui

+ (gp̂ûj ûi
)Tŝp

∼= (gp̂ûj
)Tuj − (gp̂ûi

)Tui + (gp̂ûj ûi
)Tesp + c(δtuj − δtui) + δbCA,uj − δbCA,ui

+epCA,ujui
, (2.74)

Φ̃p̂
L1,ûj ûi

≡ Φp
L1,ujui

+ (gp̂ûj ûi
)Tŝp

∼= (gp̂ûj
)Tuj − (gp̂ûi

)Tui + (gp̂ûj ûi
)Tesp + c(δtuj − δtui) + δbCA,uj − δbCA,ui

+λ1N
p
L1,ujui

+ λ1ε
p
L1,ujui

, (2.75)



28

˜̇ρp̂DL1,ûj ûi
≡ ρ̇pDL1,ujui

+ (gp̂ûj ûi
)T ˆ̇sp

∼= (gp̂ûj
)Tuj − (gp̂ûi

)Tui + (gp̂ûj ûi
)Teṡp + c(δtuj − δtui) + δbCA,uj − δbCA,ui

+λ1ε
p
DL1,ujui

. (2.76)

For the case of p = 1, . . . , ns and ui = u1, uj = u2, we have the following measurement

equation for antennas of u1 and u2 and for ns satellites:

ypu2u1
= Cp

u2u1
ηpu2u1

+ vpu2u1
, (2.77)

where

ypu2u1
≡



ρ̃1̂CA,û2û1

ρ̃2̂CA,û2û1

...

ρ̃n̂s
CA,û2û1

Φ̃1̂
L1,û2û1

Φ̃2̂
L1,û2û1

...

Φ̃n̂s
L1,û2û1

˜̇ρ1̂DL1,û2û1

˜̇ρ2̂DL1,û2û1

...

˜̇ρn̂s
DL1,û2û1



, ηpu2u1
≡



u1

u̇1

u2

u̇2

c(δtu2 − δtu1)

c(δṫu2 − δṫu1)

δbu2 − δbu1

N1
L1,u2u1

N2
L1,u2u1

...

...

...

Nns
L1,u2u1



, (2.78)
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Cp
u2u1

≡



−(g1̂û1
)T 0 (g1̂û2

)T 0 1 0 1 0 · · · · · · 0

...
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
...

...
...

. . .
...

−(gn̂s
û1
)T 0 (gn̂s

û2
)T 0 1 0 1 0 · · · · · · 0

−(g1̂û1
)T 0 (g1̂û2

)T 0 1 0 1 λ1

...
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...
. . .

−(gn̂s
û1
)T 0 (gn̂s

û2
)T 0 1 0 1 λ1

0 −(g1̂û1
)T 0 (g1̂û2

)T 0 1 1 0 · · · · · · 0

...
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
...

...
...

. . .
...

0 −(gn̂s
û1
)T 0 (gn̂s

û2
)T 0 1 1 0 · · · · · · 0



=


−Gp̂

û1
0 Gp̂

û2
0 1 0 1 O

−Gp̂
û1

0 Gp̂
û2

0 1 0 1 λ1I

0 −Gp̂
û1

0 Gp̂
û2

0 1 1 O


, (2.79)

where

Gp̂1̂
û1

≡



(g1̂û1
)T

(g2̂û1
)T

...

(gn̂s
û1
)T


, Gp̂1̂

û2
≡



(g1̂û2
)T

(g2̂û2
)T

...

(gn̂s
û2
)T


,

(2.80)

and 0 is a row or column vector, and 1 is a row or column vector, and O is a (ns × ns)
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zero matrix, and I is the (ns × ns) identity matrix, and

vpu2u1
≡



−(g1̂û2û1
)Tes1 + e1CA,u2u1

−(g2̂û2û1
)Tes2 + e2CA,u2u1

...

−(gn̂s
û2û1

)Tesns + ens
CA,u2u1

−(g1̂û2û1
)Tes1 + λ1ε

1
L1,u2u1

−(g2̂û2û1
)Tes2 + λ1ε

2
L1,u2u1

...

−(gn̂s
û2û1

)Tesns + λ1ε
ns
L1,u2u1

−(g1̂û2û1
)Teṡ1 + λ1ε

1
DL1,u2u1

−(g2̂û2û1
)Teṡ2 + λ1ε

2
DL1,u2u1

...

−(gn̂s
û2û1

)Teṡns + λ1ε
ns
DL1,u2u1



. (2.81)

We assume that all noises:

esp , eṡp , epCA,ui
, εpL1,ui

, εpDL1,ui
, (i ̸= j),

are mutually independent white Gaussian random processes with zero mean and their

variances are Var(esp) = σ2
es , Var(eṡp) = σ2

eṡ
, Var(epCA,ui

) = σ2
eCA

, Var(εpL1,ui
) = σ2

εL1
, and

Var(εpDL1,ui
) = σ2

εDL1
. Then the covariance matrix of vpu2u1 is given by

Rvpu2u1
≡ Cov

[
vpu2u1

]

=


−(gn̂s

û2û1
)Tesns + ens

CA,u2u1

−(gn̂s
û2û1

)Tesns + λ1ε
ns
L1,u2u1

−(gn̂s
û2û1

)Teṡns + λ1ε
ns
DL1,u2u1




−(gn̂s

û2û1
)Tesns + ens

CA,u2u1

−(gn̂s
û2û1

)Tesns + λ1ε
ns
L1,u2u1

−(gn̂s
û2û1

)Teṡns + λ1ε
ns
DL1,u2u1


T

= R
(SD)
ŝ + 2R

(SD)
CA,L1.DL1, (2.82)
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where R
(SD)
ŝ is the following matrix for the ns × 1 vector; gp̂û2û1

, we define

γp̂û2û1
≡ (gp̂û2û1

)T(gp̂û2û1
), (2.83)

R
(SD)
p̂ ≡



γ1̂û2û1

γ2̂û2û1

. . .

γn̂s
û2û1


, R

(SD)
ŝ ≡


σ2
esR

(SD)
p̂ σ2

esR
(SD)
p̂ O

σ2
esR

(SD)
p̂ σ2

esR
(SD)
p̂ O

O O σ2
eṡ
R

(SD)
p̂

 .

(2.84)

Also R
(SD)
CA,L1,DL1 is a block diagonal matrix as

R
(SD)
CA,L1,DL1 ≡


R

(SD)
CA O O

O R
(SD)
L1 O

O O R
(SD)
DL1

 , (2.85)

where

R
(SD)
CA ≡



σ2
eCA

0 · · · 0

0 σ2
eCA

...

...
. . . 0

0 · · · 0 σ2
eCA


, R

(SD)
L1 ≡



λ2
1σ

2
εL1

0 · · · 0

0 λ2
1σ

2
εL1

...

...
. . . 0

0 · · · 0 λ2
1σ

2
εL1


,

R
(SD)
DL1 ≡



λ2
1σ

2
εDL1

0 · · · 0

0 λ2
1σ

2
εDL1

...

...
. . . 0

0 · · · 0 λ2
1σ

2
εDL1


. (2.86)

Double-difference GR models (DD-PPP)
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Let us write again the final results of the double-difference measurement equations

from Eqs. (2.55), (2.62), and (2.69) as follows.

ρqpCA,ujui
= (gq̂p̂ûj

)Tuj − (gq̂p̂ûi
)Tui − (gq̂ûj ûi

)Tsq + (gp̂ûj ûi
)Tsp + eqpCA,ujui

, (2.87)

Φqp
L1,ujui

= (gq̂p̂ûj
)Tuj − (gq̂p̂ûi

)Tui − (gq̂ûj ûi
)Tsq + (gp̂ûj ûi

)Tsp + λ1N
qp
L1,ujui

+ λ1ε
qp
L1,ujui

,

(2.88)

ρ̇qpDL1,ujui
= (gq̂p̂ûj

)Tu̇j − (gq̂p̂ûi
)Tu̇i − (gq̂ûj ûi

)Tṡq + (gp̂ûj ûi
)Tṡp + λ1ε

qp
DL1,ujui

. (2.89)

Then substituting Eq. (2.73) to Eqs. (2.88), (2.89), and (2.89), we have

ρ̃q̂p̂CA,ûj ûi
≡ ρqpCA,ujui

+ (gq̂ûj ûi
)Tŝq − (gp̂ûj ûi

)Tŝp

∼= (gq̂p̂ûj
)Tuj − (gq̂p̂ûi

)Tui + (gq̂ûj ûi
)Tesq − (gp̂ûj ûi

)Tesp + eqpCA,ujui
, (2.90)

Φ̃q̂p̂
L1,ûj ûi

≡ Φqp
L1,ujui

+ (gq̂ûj ûi
)Tŝq − (gp̂ûj ûi

)Tŝp

∼= (gq̂p̂ûj
)Tuj − (gq̂p̂ûi

)Tui + (gq̂ûj ûi
)Tesq − (gp̂ûj ûi

)Tesp + λ1N
qp
L1,ujui

+ λ1ε
qp
L1,ujui

,

(2.91)

˜̇ρq̂p̂DL1,ûj ûi
≡ ρ̇qpDL1,ujui

+ (gq̂ûj ûi
)T ˆ̇sq − (gp̂ûj ûi

)T ˆ̇sp

∼= (gq̂p̂ûj
)Tuj − (gq̂p̂ûi

)Tui + (gq̂ˆ̇uj
ˆ̇ui
)Teṡq − (gp̂ûj ûi

)Teṡp + λ1ε
qp
DL1,ujui

. (2.92)

For the case of p = 1, q = 2, . . . , ns and ui = u1, uj = u2, we have the following measure-

ment equation for antennas of u1 and u2 and for ns satellites:

yqpu2u1
= Cqp

u2u1
ηqpu2u1

+ vqpu2u1
, (2.93)
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where

yqpu2u1
≡



ρ̃2̂1̂CA,û2û1

ρ̃3̂1̂CA,û2û1

...

ρ̃n̂s1̂
CA,û2û1

Φ̃2̂1̂
L1,û2û1

Φ̃3̂1̂
L1,û2û1

...

Φ̃n̂s1̂
L1,û2û1

˜̇ρ2̂1̂DL1,û2û1

˜̇ρ3̂1̂DL1,û2û1

...

˜̇ρn̂s1̂
DL1,û2û1



, ηqpu2u1
≡



u1

u̇1

u2

u̇2

N21
L1,u2u1

N31
L1,u2u1

...

...

...

Nns1
L1,u2u1



, (2.94)
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Cqp
u2u1

≡



−(g2̂1̂û1
)T 0 (g2̂1̂û2

)T 0 0 · · · · · · 0

...
...

...
...

...
. . .

...

...
...

...
...

...
. . .

...

−(gn̂s1̂
û1

)T 0 (gn̂s1̂
û2

)T 0 0 · · · · · · 0

−(g2̂1̂û1
)T 0 (g2̂1̂û2

)T 0 λ1

...
...

...
...

. . .

...
...

...
...

. . .

−(gn̂s1̂
û1

)T 0 (gn̂s1̂
û2

)T 0 λ1

0 −(g2̂1̂û1
)T 0 (g2̂1̂û2

)T 0 · · · · · · 0

...
...

...
...

...
. . .

...

...
...

...
...

...
. . .

...

0 −(gn̂s1̂
û1

)T 0 (gn̂s1̂
û2

)T 0 · · · · · · 0



=


−Gp̂1̂

û1
0 Gp̂1̂

û2
0 O

−Gp̂1̂
û1

0 Gp̂1̂
û2

0 λ1I

0 −Gp̂1̂
û1

0 Gp̂1̂
û2

O


, (2.95)

where

Gp̂1̂
û1

≡



(g2̂1̂û1
)T

(g3̂1̂û1
)T

...

(gn̂s1̂
û1

)T


, Gp̂1̂

û2
≡



(g2̂1̂û2
)T

(g3̂1̂û2
)T

...

(gn̂s1̂
û2

)T


,

(2.96)

and 0 is a row or column vector, and O is a (ns − 1)× (ns − 1) zero matrix, and I is the
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(ns − 1)× (ns − 1) identity matrix, and

vqpu2u1
≡



(g2̂û2û1
)Tes2 − (g1̂û2û1

)Tes1 + e21CA,u2u1

(g3̂û2û1
)Tes3 − (g1̂û2û1

)Tes1 + e31CA,u2u1

...

(gn̂s
û2û1

)Tesns − (g1̂û2û1
)Tes1 + ens1

CA,u2u1

(g2̂û2û1
)Tes2 − (g1̂û2û1

)Tes1 + λ1ε
21
L1,u2u1

(g3̂û2û1
)Tes3 − (g1̂û2û1

)Tes1 + λ1ε
31
L1,u2u1

...

(gn̂s
û2û1

)Tesns − (g1̂û2û1
)Tes1 + λ1ε

ns1
L1,u2u1

(g2̂û2û1
)Teṡ2 − (g1̂û2û1

)Teṡ1 + λ1ε
21
DL1,u2u1

(g3̂û2û1
)Teṡ3 − (g1̂û2û1

)Teṡ1 + λ1ε
31
DL1,u2u1

...

(gn̂s
û2û1

)Teṡns − (g1̂û2û1
)Teṡ1 + λ1ε

ns1
DL1,u2u1



. (2.97)

We assume that all noises:

esp , esq , eṡp , eṡq , epCA,ui
, eqCA,uj

, εpL1,ui
, εqL1,uj

, εpDL1,ui
, εqDL1,uj

; (i ̸= j, p ̸= q),

are mutually independent white Gaussian random processes with zero mean and their

variances are Var(esp) = σ2
es , Var(eṡp) = σ2

eṡ
, Var(epCA,ui

) = σ2
eCA

, Var(εpL1,ui
) = σ2

εL1
, and

Var(εpDL1,ui
) = σ2

εDL1
. Then the covariance matrix of vqpu2u1 is given by

R
(DD)

vqpu2u1
≡ Cov

[
vqpu2u1

]

=


(gn̂s

û2û1
)Tesns − (g1̂û2û1

)Tes1 + ens1
CA,u2u1

(gn̂s
û2û1

)Tesns − (g1̂û2û1
)Tes1 + λ1ε

ns1
L1,u2u1

(gn̂s
û2û1

)Teṡns − (g1̂û2û1
)Teṡ1 + λ1ε

ns1
DL1,u2u1




(gn̂s

û2û1
)Tesns − (g1̂û2û1

)Tes1 + ens1
CA,u2u1

(gn̂s
û2û1

)Tesns − (g1̂û2û1
)Tes1 + λ1ε

ns1
L1,u2u1

(gn̂s
û2û1

)Teṡns − (g1̂û2û1
)Teṡ1 + λ1ε

ns1
DL1,u2u1


T

= (g1̂û2û1
)T(g1̂û2û1

)σ2
esUŝ +R

(DD)
ŝ + 2R

(DD)
CA,L1.DL1, (2.98)
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where Uŝ is the 2(ns − 1)× 2(ns − 1) matrix whose elements are all one, namely

Uŝ ≡



1 · · · 1 1 · · · 1 0 · · · 0

...
. . .

...
...

. . .
...

...
. . .

...

1 · · · 1 1 · · · 1 0 · · · 0

1 · · · 1 1 · · · 1 0 · · · 0

...
. . .

...
...

. . .
...

...
. . .

...

1 · · · 1 1 · · · 1 0 · · · 0

0 · · · 0 0 · · · 0 1 · · · 1

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0 1 · · · 1



, (2.99)

and R
(DD)
ŝ is the following matrix, where for the (ns − 1)× 1 vector; gp̂û2û1

, we define

γp̂û2û1
≡ (gp̂û2û1

)T(gp̂û2û1
), (2.100)

R
(DD)
p̂ ≡



γ2̂û2û1

γ3̂û2û1

. . .

γn̂s
û2û1


, R

(DD)
ŝ ≡


σ2
esR

(DD)
p̂ σ2

esR
(DD)
p̂ O

σ2
esR

(DD)
p̂ σ2

esR
(DD)
p̂ O

O O σ2
eṡ
R

(DD)
p̂

 .

(2.101)

Also R
(DD)
CA,L1,DL1 is a block diagonal matrix as

R
(DD)
CA,L1,DL1 ≡


R

(DD)
CA O O

O R
(DD)
L1 O

O O R
(DD)
DL1

 , (2.102)
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where

R
(DD)
CA ≡



2σ2
eCA

σ2
eCA

· · · σ2
eCA

σ2
eCA

2σ2
eCA

...

...
. . . σ2

eCA

σ2
eCA

· · · σ2
eCA

2σ2
eCA


, R

(DD)
L1 ≡



2λ2
1σ

2
εL1

λ2
1σ

2
εL1

· · · λ2
1σ

2
εL1

λ2
1σ

2
εL1

2λ2
1σ

2
εL1

...

...
. . . λ2

1σ
2
εL1

λ2
1σ

2
εL1

· · · λ2
1σ

2
εL1

2λ2
1σ

2
εL1


,

R
(DD)
DL1 ≡



2λ2
1σ

2
εDL1

λ2
1σ

2
εDL1

· · · λ2
1σ

2
εDL1

λ2
1σ

2
εDL1

2λ2
1σ

2
εDL1

...

...
. . . λ2

1σ
2
εDL1

λ2
1σ

2
εDL1

· · · λ2
1σ

2
εDL1

2λ2
1σ

2
εDL1


. (2.103)

In the cases of nr = 3 and nr = 4, see Appendix A.

Individuating satellite positions

The mathematical models of C/A code pseudorange observables in Eqs. (2.49)-(2.52) sup-

pose that the GNSS satellite positions obtained from the navigation messages at the

antennas ui and uj are approximately the same. However, the positions spi and spj of the

satellite p from the ui and uj are strictly different, and applied as follows:

ρpCA,ui

∼= (gp̂ûi
)T(ui − spi ) + δIpui

+ δT p
ui

+ c(δtui − δtp) + δbCA,ui − δbpCA + epCA,ui
, (2.104)

ρpCA,uj

∼= (gp̂ûj
)T(uj − spj ) + δIpuj

+ δT p
uj

+ c(δtuj − δtp) + δbCA,uj − δbpCA + epCA,uj
, (2.105)

The DD-based measurement equation for C/A code pseudorange observables based on
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Eqs. (2.104), (2.104) is as follows:

ρqpCA,ujui
≡ ρqCA,ujui

− ρpCA,ujui

∼= (gq̂ûj
)Tuj − (gq̂ûi

)Tui −
[
(gp̂ûj

)Tuj − (gp̂ûi
)Tui

]
+(gq̂ûj

)T(−sqj)− (gq̂ûi
)T(−sqi )−

[
(gp̂ûj

)T(−spj )− (gp̂ûi
)T(−spi )

]
+eqCA,uj

− eqCA,ui
− (epCA,uj

− epCA,ui
)

= (gq̂p̂ûj
)Tuj − (gq̂p̂ûi

)Tui − (gq̂ûj
)Tsqj + (gq̂ûi

)Tsqi +
[
(gp̂ûj

)Tspj − (gp̂ûi
)Tspi

]
+ eqpCA,ujui

, (2.106)

Now let us assume that the estimated values: ŝpi , p = 1, . . . , ns, of the satellite positions:

spi , p = 1, . . . , ns, are available as follows [15]–[20]. ŝpi come from the navigation messages

of satellites:

ŝpi = spi + espi , p = 1, . . . , ns, (2.107)

where we assume espi are Gaussian white noises. Then the DD-based estimates for the C/A

code pseudorange and carrier-phase observables in Eqs. (2.90) and (2.91) are modified as

follows:

ρ̃q̂p̂CA,ûj ûi
≡ ρqpCA,ujui

+ (gq̂ûj
)Tŝqj − (gq̂ûi

)Tŝqi −
[
(gp̂ûj

)Tŝpj − (gp̂ûi
)Tŝpi

]
∼= (gq̂p̂ûj

)Tuj − (gq̂p̂ûi
)Tui + (gq̂ûj

)Tesqj − (gq̂ûi
)Tesqi −

[
(gp̂ûj

)Tespj + (gp̂ûi
)Tespi

]
+ eqpCA,ujui

, (2.108)

Φ̃q̂p̂
L1,ûj ûi

≡ Φqp
L1,ujui

+ (gq̂ûj
)Tŝqj − (gq̂ûi

)Tŝqi −
[
(gp̂ûj

)Tŝpj − (gp̂ûi
)Tŝpi

]
∼= (gq̂p̂ûj

)Tuj − (gq̂p̂ûi
)Tui + (gq̂ûj

)Tesqj − (gq̂ûi
)Tesqi

−
[
(gp̂ûj

)Tespj − (gp̂ûi
)Tespi

]
+ λ1N

qp
L1,ujui

+ λ1ε
qp
L1,ujui

, (2.109)

and the observation noises in Eq. (2.97) of the DD-PPP measurement equation are modified
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as follows:

vns
u2u1

≡



ξ2̂1̂û2û1
+ e21CA,u2u1

ξ3̂1̂û2û1
+ e31CA,u2u1

...

ξn̂s1̂
û2û1

+ ens1
CA,u2u1

ξ2̂1̂û2û1
+ λ1ε

21
L1,u2u1

ξ3̂1̂û2û1
+ λ1ε

31
L1,u2u1

...

ξn̂s1̂
û2û1

+ λ1ε
ns1
L1,u2u1



, (2.110)

ξq̂1̂û2û1
= (gq̂û2

)Tesq2 − (gq̂û1
)Tesq1 −

[
(g1̂û2

)Tes12 − (g1̂û1
)Tes11

]
, (2.111)

also the matrix in Eq. (2.101) are modified as follows:

R
(DD)
p̂ ≡



γ2̂û2
+ γ2̂û1

γ3̂û2
+ γ3̂û1

. . .

γn̂s
û2

+ γn̂s
û1


, (2.112)

γp̂ûi
≡ (gp̂ûi

)Tgp̂ûi
. (2.113)

State equations for SD/DD-PPP

In the static case for SD-PPP, we utilize the state vector ηpu2u1 without velocity parameters

u̇1, u̇2 related to Doppler observables in Eq. (2.77) for antennas of u1 and u2 (nr = 2) and

for ns satellites. In order to simplify the expression, superscripts p and subscripts u1,u2

are omitted hereafter.

ηL(t+ 1) = ηL(t), ηL ≡
[
uT1,L, u

T
2,L, c(δtu2 − δtu1), (δbu2 − δbu1)

T, NT
]T

, (2.114)
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where L stands for the coordinates in the local frame (or the local-level system (LLS),

or east-north-up (ENU) system) [20], [26]. And the observation equation y(t) is based

on a local position as a origin and derived from the relation between Eq. (2.93) and the

transformation by TL
W as follows:

y(t) = CηL(t)ηL(t) + v(t), (2.115)

CηL(t) =

 −Gp̂
û1
(TL

W )T Gp̂
û2
(TL

W )T 1 1 O

−Gp̂
û1
(TL

W )T Gp̂
û2
(TL

W )T 1 1 λ1I

 , (2.116)

where Gp̂
ûj
(TL

W )T is a (ns × 3) matrix, and 1 is a column vector, and O is a (ns ×ns) zero

matrix, and I is the (ns×ns) identity matrix. They are related to the corresponding values

in WGS-84 coordinate frame through the linear transformation defined by 3× 3 transfor-

mation matrix TL
W which transforms WGS-84 coordinates into ENU coordinates [34].

In the static case for DD-PPP, we utilize the state vector ηqpu2u1 without velocity param-

eters u̇1, u̇2 related to Doppler observables in Eq. (2.94) for antennas of u1 and u2 (nr = 2)

and for ns satellites. In order to simplify the expression, superscripts p, q and subscripts

u1,u2 are omitted hereafter.

ηL(t+ 1) = ηL(t), ηL ≡
[
uT1,L, u

T
2,L, N

T
]T

, (2.117)

where L stands for the coordinates in the local frame. The observation equation y(t) is

based on a local position as a origin and derived from the relation between Eq. (2.93) and

the transformation by TL
W as follows:

y(t) = CηL(t)ηL(t) + v(t), (2.118)

CηL(t) =

 −Gp̂1̂
û1
(TL

W )T Gp̂1̂
û2
(TL

W )T O

−Gp̂1̂
û1
(TL

W )T Gp̂1̂
û2
(TL

W )T λ1I

 , (2.119)
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where Gp̂1̂
ûj
(TL

W )T is a (ns − 1) × 3 matrix. They are related to the corresponding values

in WGS-84 coordinate frame through the linear transformation defined by 3× 3 transfor-

mation matrix TL
W .

The positioning estimation algorithms based on the Kalman filter [35], [36] (See Ap-

pendix B) for Eqs. (2.114) and (2.115), or Eqs. (2.117) and (2.118) are given as follows:

η̂L(t+ 1|t) = η̂L(t|t) (2.120)

η̂L(t|t) = η̂L(t|t− 1) +K(t)ν(t) (2.121)

ν(t) ≡ y(t)− CηL(t)η̂L(t|t− 1) (2.122)

(: Innovation Process)

K(t) = ΣηL(t|t− 1)CηL(t)
T
[
CηL(t)ΣηL(t|t− 1)CηL(t)

T +R(t)
]−1

(2.123)

(: Kalman Gain)

ΣηL(t+ 1|t) = ΣηL(t|t) (2.124)

ΣηL(t|t) = ΣηL(t|t− 1)−K(t)CηL(t)ΣηL(t|t− 1) (2.125)

Initial condition:


η̂L(0| − 1) = η̄L(0)

ΣηL(0| − 1) = ΣηL(0)



Chapter 3

Detection and Correction of
Observable Outliers

3.1 Introduction

In order to improve the accuracy of C/A code pseudoranges for positioning, the method

of carrier-smoothed code pseudoranges has been proposed [37]. The carrier-smoothed

code pseudoranges are the measurements generated by combining code pseudoranges with

low-noise carrier-phase observables, and can contribute to improve the positioning ac-

curacy. However, in general, carrier-phase observables are mainly utilized by high-end

multi-frequency receivers for surveyors, geophysical researchers, etc., and such receivers

cannot be applied for the civilian navigation. Instead of the carrier-phase observables, the

positioning method by Doppler-smoothed code pseudoranges has been proposed as the

so-called Doppler-aided positioning [27], [38].

Doppler-shift frequencies are measured by the relative motion of satellites and receivers,

i.e. the variations of the distance between satellites and receivers, and Doppler observables

can be measured even by low-end receivers. Doppler shift observables are utilized on

a priority basis even in urban areas because of immunity to cycle-slip and continuous

availability. In [27], [38], Doppler-smoothed pseudoranges are introduced based on the

42
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similar technique of the carrier-smoothed pseudoranges at the preprocessing stage of the

position calculation, and the improved positioning accuracy is reported. The applicability

of Doppler observables for precise positioning at high cost receivers is also reported [34].

The positioning algorithm is based on the multi-frequency pseudorange, Doppler and

carrier-phase measurements, and the Kalman filter is applied to estimate vehicle positions,

velocity and acceleration with the appropriate dynamics model of the vehicle.

By using the modified algorithm of [34], we analyze the test drives which were mainly

conducted in Japan and the United States in 2014. Doppler range-rates are more stable

than code delta-ranges even under multipath environments, and has the same quality level

as carrier-phase delta-ranges, however, unexpected Doppler outliers prone to cause posi-

tioning errors. As a practical matter, we had a vehicle positioning error by Doppler bias in

real test drives under open-sky environment [39]. By using the bias of real observables, the

positioning errors are reproduced by the GR models based on Doppler-aided positioning

method.

Although there are a lot of literature about detection of the outlier or the robust

Kalman filter [9],[10] to overcome these problems, In this chapter, we propose the following

two methods: 1) statistical tests on the innovation processes of the Kalman filter, 2)

statistical test on the difference between C/A code delta-range and Doppler range-rate

measurement. Method-1 is derived by modifying the cycle slip detection algorithm in [11],

[12], and Method-2 is a novel method. In addition, two correction methods, namely the

Doppler outlier exclusion, or the Doppler outlier estimation, for detected anomalies are

proposed.

Chi-squared tests based on Method-1,2 are applied for the Doppler outlier detection.

The tests are expanded to consecutive number of epochs, and appropriate bias-detection
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periods are selected for Method-1,2. The upper probability of the tests is 5% for the both

methods. Method-2 can be also applied to the difference between carrier-phase delta-range

and Doppler range-rate measurement. These detection and correction methods are applied

to the positioning errors caused by Doppler bias of automotive single-frequency receivers.

The experimental results by the combinations of these methods are shown.

3.2 GR Models for Automotive Kinematic Positioning

Let us derive the state equation for kinematic positioning. Since the kinematic case

requires mathematical models of the automobiles, we often apply one of the dynamical

models which are assumed as first-order Markov processes of, the velocity of u (: v), of

the acceleration of u (: a) (the so-called Singer’s moving model [40]). The Singer’s models

are adopted for the east-west (E) coordinate and the north-south (N) coordinate, and a

first-order Markov model of the velocity for the up-down (U) coordinate [34]. The state

vector therefore is defined as follows:

η ≡
[
uT, u̇T, aT, cδtu, cδ̇tu

]T
, (3.1)

The PPP observable equations in Eq. (2.36) which utilize for a single antenna u and the

discrete-time state equations are as follows:

yû,t = C p̂
û,tθu,t + vu,t, θu,t+1 = Au,tθu,t + wu,t, (3.2)

yû,t ≡

 yCA,û

yDL1,û

 , C p̂
û,t ≡

Gp̂
û 0 1

Gp̂
û 0 1

 , θu,t ≡



u

u̇

a

cδtu

cδ̇tu


. (3.3)
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The carrier-phase related obsrvables yp̂L1,û and unknown parameters NL1,u are excluded in

Eq. (2.36)-(2.37), and the receiver’s biases δbu are negligible for the positioning without

carrier-phase observables. The A(t) is the 10 × 10 known matrix defined from Singer’s

models, and details are summarized in [34].

3.3 Detection of Anomalous Observables

We apply two methods of detecting Doppler observable outliers. First method is

the innovation based detection in Kalman filtering (IBD-method), which is a existing

method [41] for more accurate positioning by using carrier-phase observables and utilized

for detecting cycle slips of RTK positioning [11]. Second method is a novel method and

the measurement based detection (MBD-method) which focuses on the difference between

C/A code pseudoranges and Doppler shift range-rates. The Both methods are based on

the chi-squared tests, and applied for Doppler observables of low-end GNSS receivers to

keep the vehicle positioning accuracy high.

3.3.1 IBD-method

Since the innovation process in Eq. (2.122) is a white Gaussian with 0 mean and co-

variance matrix M(t)(= [Mij(t)]; i, j = 1, · · · , 2ns) under the hypothesis H0 such that

there are no Doppler outliers. M(t) is formulated as follows [12]:

M(t) ≡ E[ν(t)νT(t)]

= [C(t)Ση(t|t− 1)CT(t) +R(t)], (3.4)

where Ση(t|t − 1) is the error covariance matrix of η̂L(t|t − 1). Under hypothesis H0,

the j-th element of innovation vector ν which is expressed by νj would be the normal
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distribution with zero mean and variance Mjj . Then νj can be normalized as follows:

νn,j(t) ≡

√
1

Mjj(t)
νj(t), j = 1, . . . , 2ns (3.5)

E[νn,j(t)] = 0, Var[νn,j(t)] = 1. (3.6)

Based on Eq. (3.5), the anomaly of Doppler frequency observables can be detected

by monitoring the normalized innovation processes corresponding to the Doppler shift

observables, i.e. νn,j for j = ns+1, . . . , 2ns. Each element of νn,j(t) is a Gaussian process.

The test statistics Tj(t) of the squared value of νn,j(t) follows the chi-squared distribution

with 1 degree of freedom, namely,

Tj(t) = (νn,j(t))
2. (3.7)

Statistical tests of innovation processes can be easily extended to the tests based on

multiple epochs or observables. νn,j,k is the j-th innovation vector in Eq. (3.5) for k

consecutive epochs. The consecutive νn,j are independent, the mean vector therefore is

zero and the covariance matrix I,

νn,j,k(t) = [νn,j(t), νn,j(t− 1), ..., νn,j(t− k + 1)]T

∼ N([0, 0, ..., 0]T, I). (3.8)

Statistics Tj,k(t) of the sum of k consecutive νn,j follows the chi-squared distribution with

k degrees of freedom,

Tj,k(t) ≡ (νn,j,k(t))
T(νn,j,k(t)). (3.9)

In order to effectively detect the Doppler anomaly, we focus on chi-squared test of each

Doppler shift observable. If Doppler outliers occur, the covariance matrix of the innovation
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process changes. Therefore, we formulate two hypotheses such as,

H0 : the anomal outlier does not occur

H1 : the anomal outlier occurs

Our decision rule of accepting or rejecting the hypothesis is as follows; If Tj,k(t) is larger

than the upper percent point χ2
α(k) whose α is upper probability (α=0.05) and k is degrees

of freedom, then the observed data of Doppler shift contain an outlier (accept H1).

3.3.2 MBD-method

Let us rewrite the mathmatical measurement models in Eqs. (2.11) -(2.13).

ρpCA,u(t) = rpu(t) + δIpu(t) + δT p
u (t) + c [δtu(t)− δtp(t)] +Bp

CA,u(t) + epCA,u(t), (3.10)

Φp
L1,u(t) = rpu(t)− δIpu(t) + δT p

u (t) + c [δtu(t)− δtp(t)] +Bp
L1,u(t)

+λ1N
p
u + λ1ε

p
L1,u(t), (3.11)

ρ̇pDL1,u(t) = ṙpu(t) + δİpu(t) + δṪ p
u (t) + c

[
δṫu(t)− δṫp(t)

]
+ bpDL1,u(t) + εpDL1,u(t),(3.12)

where Bp
CA,u(t), B

p
L1,u(t), b

p
DL1,u(t) contain anomalous measurements based on L1-C/A

code pseudoranges, carrier-phases, Doppler shift frequencies, respectively.

In the case of normal state we can assume as follows:

ṙpu(t)
∼= rpu(t)− rpu(t− 1),

δİpu(t)
∼= δIpu(t)− δIpu(t− 1), δṪ p

u (t)
∼= δT p

u (t)− δT p
u (t− 1),

δṫu(t) ∼= δtu(t)− δtu(t− 1), δṫp(t) ∼= δtp(t)− δtp(t− 1),

then the qpm1(t) which denotes difference measurement between the C/A code derived
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delta-range and the range-rate from the satellite p at the epoch t is formulated as follows:

qpm1
(t) = [ρpCA(t)− ρpCA(t− 1)]− ρ̇pDL1(t)

= [Bp
CA(t)−Bp

CA(t− 1)− bpDL1(t)] + [epCA(t)− epCA(t− 1)− εp(t)DL1]

= µp
m1

(t) + dpm1
(t), (3.13)

µp
m1

(t) = [Bp
CA(t)−Bp

CA(t− 1)− bpDL1(t)], (3.14)

dpm1
(t) = [epCA(t)− epCA(t− 1)− εpDL1(t)]. (3.15)

In order to simplify the expression, the sub script “u” which indicates the receiver is

dropped. The qpm2(t) which denotes difference measurement between the carrier-phase

derived delta-range and the range-rate from the satellite p at the epoch t is formulated as

follows:

qpm2
(t) = [Φp

L1(t)− Φp
L1(t− 1)]− ρ̇pDL1(t)

= [Bp
L1(t)−Bp

L1(t− 1)− bpDL1(t)] + [εpL1(t)− εpL1(t− 1)− εp(t)DL1]

= µp
m2

(t) + dpm2
(t), (3.16)

µp
m2

(t) = [Bp
L1(t)−Bp

L1(t− 1)− bpDL1(t)], (3.17)

dpm2
(t) = [εpL1(t)− εpL1(t− 1)− εpDL1(t)]. (3.18)

The difference of geometric distance rp(t)− rp(t− 1) in Eqs. (3.10), (3.11) and the veloc-

ity ṙp(t) in Eq. (3.12) are almost the same value and canceled, and the values related to

δIp, δT p, δtu, and δtp are also canceled. The bias µp
m1(t) and µp

m2(t) based on anoma-

lous measurements Bp
CA,B

p
L1,and bpDL1, and the noise dpm1(t) and dpm2(t) based on the

measurement noises epCA,ε
p
L1, and εpDL1 are left. When there are no anomalous measure-

ments in the observables of C/A code pseudoranges, carrier-phases and Doppler shifts, the

qpm1(t) and qpm2(t) are nearly zero, and µp(t)m1 and µp(t)m2 are zero, and qpm1(t) = dpm1(t),
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qpm2(t) = dpm2(t).

The noises epCA, ε
p
L1, and εpDL1 are independent white Gaussian with zero mean, and

their variance are supposed to be σ2
ρ, σ

2
Φ, and σ2

D, respectively. The mean and variance of

dpm1(t), d
p
m2(t) and qpm1(t), q

p
m2(t) measured at single epoch are as follows:

epCA(t) ∼ N(0, σ2
ρ), εpL1(t) ∼ N(0, σ2

Φ), εpDL1(t) ∼ N(0, σ2
D), (3.19)

dpm1
(t) ∼ N(0, 2σ2

ρ + σ2
D), dpm2

(t) ∼ N(0, 2σ2
Φ + σ2

D), (3.20)

qpm1
(t) ∼ N(µp

m1
(t), 2σ2

ρ + σ2
D), qpm2

(t) ∼ N(µp
m2

(t), 2σ2
Φ + σ2

D). (3.21)

The variance matrix of the noise dpm1,t,j
between two different epochs t, j is as follows:

E

 dpm1(t)

dpm1(j)


 dpm1(t)

dpm1(j)


T

= E

 dpm1(t)d
p
m1(t) dpm1(t)d

p
m1(j)

dpm1(j)d
p
m1(t) dpm1(j)d

p
m1(j)



=

 2σ2
ρ + σ2

D −σ2
ρ

−σ2
ρ 2σ2

ρ + σ2
D

 , (j = t± 1)

=

 2σ2
ρ + σ2

D 0

0 2σ2
ρ + σ2

D

 , (j ̸= t± 1) (3.22)

where the covariance value of two consecutive epochs is -σ2
ρ when j = t±1, and zero when

j ̸= t± 1. The variance matrix of the noise dpm2,t,j
between two different epochs t, j is as

follows:

E

 dpm2(t)

dpm2(j)


 dpm2(t)

dpm2(j)


T

= E

 dpm2(t)d
p
m2(t) dpm2(t)d

p
m2(j)

dpm2(j)d
p
m2(t) dpm2(j)d

p
m2(j)



=

 2σ2
Φ + σ2

D −σ2
Φ

−σ2
Φ 2σ2

Φ + σ2
D

 , (j = t± 1)

=

 2σ2
Φ + σ2

D 0

0 2σ2
Φ + σ2

D

 , (j ̸= t± 1) (3.23)
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where the covariance value of two consecutive epochs is -σ2
Φ when j = t±1, and zero when

j ̸= t± 1.

dpm1,k
and dpm2,k

are the measurement noise vectors in Eqs. (3.15) and (3.18), respec-

tively, which uses k consecutive epochs. The mean vectors are zero and the covariance

matrixes Σm1 ,Σm2 of dpm1,k
and dpm2,k

are not diagonal matrixes, namely,

dpm1,k
(t) = [dpm1

(t), dpm1
(t− 1), ..., dpm1

(t− k + 1)]T ∼ N([0, 0, ..., 0]T,Σm1), (3.24)

dpm2,k
(t) = [dpm2

(t), dpm2
(t− 1), ..., dpm2

(t− k + 1)]T ∼ N([0, 0, ..., 0]T,Σm2), (3.25)

where

Σm1 ≡



2σ2
ρ + σ2

D −σ2
ρ 0 · · · · · · 0

−σ2
ρ 2σ2

ρ + σ2
D −σ2

ρ

...

0 −σ2
ρ 2σ2

ρ + σ2
D

...

...
. . . 0

... 2σ2
ρ + σ2

D −σ2
ρ

0 · · · · · · 0 −σ2
ρ 2σ2

ρ + σ2
D


, (3.26)

Σm2 ≡



2σ2
Φ + σ2

D −σ2
Φ 0 · · · · · · 0

−σ2
Φ 2σ2

Φ + σ2
D −σ2

Φ

...

0 −σ2
Φ 2σ2

Φ + σ2
D

...

...
. . . 0

... 2σ2
Φ + σ2

D −σ2
Φ

0 · · · · · · 0 −σ2
Φ 2σ2

Φ + σ2
D


. (3.27)

In order to normalize the measurement noise vectors dpm1,k
and dpm2,k

, the zero covari-

ance matrixes Σm1 and Σm2 are decomposed to generate the unitary matrixes Um1 and
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Um2 by the Cholesky decomposition method, respectively, as follows:

Σm1 = dpm1,k
dpTm1,k

= U−1
m1

U−T
m1

, Σm2 = dpm2,k
dpTm2,k

= U−1
m2

U−T
m2

. (3.28)

The mean value of Um1d
p
m1,k

becomes an identity matrix as follows:

E
[
(Um1d

p
m1,k

)(Um1d
p
m1,k

)T
]
= E

[
Um1d

p
m1,k

dpTm1,k
UT
m1

]
= E

[
Um1U

−1
m1

U−T
m1

UT
m1

]
= E [Ik] . (Ik : k × k identity matrix) (3.29)

Therefore the Um1d
p
m1,k

becomes a normalized noise vector, namely dpm1,n,k
. The dpm2,n,k

is also generated in the same manner by using the unitary matrix Um2 .

The qpm1,k
and qpm2,k

are the measurement difference vectors in Eqs. (3.13) and (3.16),

respectively, which use k consecutive epochs. The normalized vectors qpm1,n,k
and qpm2,n,k

are generated by the unitary matrixes Um1 and Um2 in the same manner of the noise

vectors dpm1,k
and dpm2,k

, respectively. The statistics T p
m1,k

(t) and T p
m2,k

(t) of the sum of

squared qpm1,n,k
and qpm2,n,k

, respectively, follow the chi-squared distribution with k degree

of freedom, namely,

qpm1,k
(t) = [qpm1

(t), qpm1
(t− 1), ..., qpm1

(t− k + 1)]T,

qpm2,k
(t) = [qpm2

(t), qpm2
(t− 1), ..., qpm2

(t− k + 1)]T, (3.30)

qpm1,n,k
(t) ≡ Um1q

p
m1,k

(t), qpm2,n,k
(t) ≡ Um2q

p
m2,k

(t), (3.31)

T p
m1,k

(t) ≡ (qpm1,n,k
(t))T(qpm1,n,k

(t)), T p
m2,k

(t) ≡ (qpm2,n,k
(t))T(qpm2,n,k

(t)). (3.32)

If Doppler outliers occur, the measurement difference vector qpm1(t) changes. We there-

fore formulate two hypotheses such as,

H0(normal) : T p
m1,k

< χ2
α(k), T p

m2,k
< χ2

α(k)

Hα(abnormal) : T p
m1,k

≥ χ2
α(k), T p

m2,k
≥ χ2

α(k)



52

Our decision rule of accepting or rejecting the hypothesis is as follows; If T p
m1,k

(t) is larger

than the upper percent point χ2
α(k) whose α is upper probability (α=0.05) and k is degrees

of freedom, then the observed data of Doppler shift contain an outlier (accept Hα). The

α shows the probability of false alarm PFA.

Table 3.1: Detection of observable outliers

Tp
m1,k

Tp
m2,k

Bp
CA Bp

L1 bpDL1

H0 H0 O(Normal) O O

Hα H0 A(Abnormal) O O

H0 Hα O A O

Hα Hα O O A

If Doppler observables have a outlier, the statistics T p
m1,k

(t) follows the non-central

chi-squared distribution with non-central parameter λ as follows:

H1(abnormal) : T p
m1,k

≈ χ2(k, λ)

(λ ≡ (Um1µ
p
m1

)T(Um1µ
p
m1

)),

and the detectable minimum bias Tm1,bias of Doppler observables is derived from the λ as

follows:

Tm1,bias = σD
√
λ, (3.33)

and when the probability of missed detection PMD is defined as the lower probability β

of non-central χ2(k, λ) distribution, and the lower percent point χ2
β(k, λ) is equal to the

upper percent point χ2
α(k) of normal χ2(k) distribution, the λ is decided and the Tm1,bias

is derived from Eq. (3.33). The protection levels of RAIM(Receiver Autonomous Integrity

Monitoring) are defined by PFA, PMD, and Tm1,bias [42].
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3.4 Correction of Doppler Biases

We focus on the correction of Doppler outliers bpDL1 in Eq. (2.13), because we had a

positioning error data of the real test drive whose Doppler-aided positioning was affected

by a Doppler bias. The biased Doppler shift observables are detected by the IBD or MBD-

methods, and then the bias impacts are removed by the following two methods which are

Doppler bias exclusion, or Doppler bias estimation.

In the case of Doppler bias exclusion, if the Doppler bias is detected in the j-th satellite,

then the related observable, i.e. the j-th component of yp̂DL1,û and the related row of

observation matrix C(t) in Eqs. (2.122-2.123) are excluded. The observation noises related

to yp̂DL1,û are similarly excluded from the covariance matrix R(t) in Eq. (2.123). For

example, if j = 2, the 2nd Doppler observable and the related row components with

brackets are excluded as follows:

y1̂CA,û

...

yn̂s
CA,û

y1̂DL1,û

(y2̂DL1,û)

...

yn̂s
DL2,û



=



G1̂
û 0 1 0

...

Gn̂s
û 0 1 0

0 G1̂
û 0 1

(0) (G2̂
û) (0) (1)

...

0 Gn̂s
û 0 1





u

u̇

cδtu

cδ̇tu


+ v. (3.34)

In the case of Doppler bias estimation, if the Doppler bias is detected in the j-th

satellite, then Doppler bias will be augmented as unknown parameter bjDL1 for the j-th

component of yp̂DL1,û to the state vector ηL in Eq. (2.120), and the related column is added

to the last column of observation matrix C(t) in Eqs. (2.122-2.123). The initial values of

the unknown parameters bjDL1 are set to the difference values between Doppler range-rates
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and code delta-ranges. The initial variance 0.1 related to bjDL1 are added into estimation

error covariance matrix Ση(t|t) in Eq. (2.124). The model of Doppler bias bjDL1 is defined

by the state transition matrix A(t) in Eqs. (2.120) and (2.124) is as follows:

bjDL1(t+ 1) = bjDL1(t) + wb(t). (3.35)

The system noise 0.01 related to the bjDL1 are added into covariance matrix Q(t) in

Eq. (2.124).

For example, if j = 2, the unknown parameter for 2nd Doppler observable and the

related column with brackets are added into the state vector and the observation matrix,

respectively as follows:

y1̂CA,û

...

yn̂s
CA,û

y1̂DL1,û

y2̂DL1,û

...

yn̂s
DL1,û



=



G1̂
û 0 1 0 (0)

...

Gn̂s
û 0 1 0 (0)

0 G1̂
û 0 1 (0)

0 G2̂
û 0 1 (1)

...

0 Gn̂s
û 0 1 (0)





u

u̇

cδtu

cδ̇tu

(b2DL1)


+ v. (3.36)

3.5 Experiments

3.5.1 Doppler Bias Sample and the Simulating Positioning Error

In order to verify the detection and correction methods, we use a real observable out-

lier, namely Doppler bias, which causes a vehicle positioning error in real test drives under

open sky environment. The conditions when the error occurred are shown in Table 3.2.

Fig. 3.1 shows the Doppler range-rate bias of SBAS (Satellite-Based Augmentation Sys-

tem) satellite (black line) which causes the error. The bias is extracted by subtracting the
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Table 3.2: Positioning error conditions

Date April 15, 2014

GPS-Time 17:14:41～17:32:05

Location Streets in State of Maryland, US

Antenna(ANT) Patch antenna for automobile

Receiver u-blox GPS-module NEO-7N

Epoch interval 1 [s]

Elevation angle mask 5 [deg.]

C/No mask 20 [dB/Hz]

Measurement Data C/A-L1 Code, Doppler shifts

delta-ranges from the range-rates of the satellite, and has the rectangular shape whose

length is from epoch 60 to 280 and size is approximately 10m/s. The delta-ranges and the

range-rates are independent observables, and the subtracted values, namely the extracted

bias, is also independent.

In order to reproduce the positioning error by the GR model which is the GPS and

Doppler-based Kalman filter positioning, the extracted Doppler range-rate bias is injected

to the original range-rate of PRN6 as a experimental sample (green line). The delta-ranges

of PRN6 (red line) are almost the same values as the original range-rates of PRN6 (blue

line) because of open sky environment. The PRN6 is the closest GPS satellite to the

SBAS satellite. The observables of the SBAS and the PRN6 GPS are independent, and

the injected values, namely the PRN6 range-rate with the extracted bias, is independent.

We confirmed that Doppler dominant positioning causes positioning errors even under

open sky environments due to the Doppler bias sample [39]. In general, Doppler shift

frequency observable is derived from the change of the frequency of the received signal

caused by the relative motion of the GNSS satellite and the receiver. The GNSS signals are
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affected by not only the motions but also the fluctuation on the travel path, and various

geomorphic environments such as scintillation, interference, multipath, and so on.

Generally speaking, standard error model says that one-sigma error of pseudoranges is

approximately 5m [1]. As Doppler shifts are more accurate, one-sigma error of the shifts

is supposed to be approximately one tenth of pseudorange errors that is approximately

0.5m/s. We have the Kalman filter positioning with 5m and 0.5m/s as typical positioning

for C/A code and Doppler shift observables, respectively (see Table 3.3). For comparison,

we use two other different simulation conditions as Code-based positioning or Doppler

based positioning.

Table 3.3: Noise variance for R(t)

Noise variance C/A code pseudoranges Doppler shift frequencies

[m2] [(m/s)2]

Code-based positioning 0.32 32

Typical positioning 5.02 0.52

Doppler-based positioning 10.02 0.32

As for typical positioning, the positioning errors from the vehicle position is gradually

getting bigger according to the vehicle movement. The continuous Doppler bias causes

abnormal velocity vector, and then the continuous abnormal velocity vector finally causes

the bigger positioning errors. In the case of Doppler-based positioning with bigger C/A

code noise and less Doppler noise variance, the amount of positioning errors are the biggest

among three cases. As for Code-based positioning, the positioning errors are smaller than

other two cases, although the biased Doppler is used for the positioning (see Fig. 3.2). The

C/A code pseudoranges are utilized for the positioning on a priority basis.

Fig. 3.3 shows the ENU errors of simulation results. The positioning results by orig-
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inal log data which include no Doppler bias are regarded as the reference trajectory for

evaluating positioning errors. In the case of typical positioning, the positioning error is

simulated even under open sky environment, and has approximately 50-m error to the

direction of east and north. Doppler-based positioning is more affected by the Doppler

bias, and causes the errors after epoch 280 which includes no Doppler bias.

3.5.2 Detection and Correction Results

The experiment of Kalman filter-based positioning has been carried out to detect and

correct the Doppler biases. Table 3.4 shows the conditions of experiments (a)-(c) combined

of the IBD or MBD-methods, the exclusion or estimation correction methods, and a square

or a slope bias wave. C/A code pseudorange and Doppler shift noise variances are supposed

to be 52m and 0.52m/s for all experiments. The variances are decided by the one-sigma

standard deviation error model of pseudoranges [1], and the measurement analysis of the

fixed point positioning of NEO-7N receiver under open sky environments [39]. MBD-
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method also uses σ2
ρ = 5m and σ2

D = 0.5m/s as the noise variances for pseudoranges and

range-rates, respectively.

The IBD or MBD-methods are applied for experiments (a),(b), or experiments (c),

respectively. The bias exclusion or estimation methods are applied for experiments (a),(c),

C/A based positioning

Typical positioning

Doppler based positioning

1000[m]

Vehicle

movement

Figure 3.2: Vehicle trajectories simulated by (a) Code-based, (b) Typical,(c) Doppler-
based positioning
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or experiment (b), respectively. The same upper probability α = 0.05 of chi-squared tests

are used for the both IBD and MBD-methods. The k degrees of freedom for the chi-

squared tests are decided by the number of consecutive epochs for testing which is window

width k. The window width is decided to achieve the better detection performance.

Table 3.4: Experimental conditions

(a) (b) (c)

C/A code pseudorange noise variance 52 [m2]

Doppler shift noise variance 0.52 [(m/s)2]

Detection IBD (Innovation based) O O –

MBD (Measurement based) – – O

Correction Exclusion method O – O

Estimation method – O –

Upper probability α of χ2 tests 0.05

Fig. 3.4 shows the comparison of two correction methods. They are experiment (a)

by the exclusion method and experiment (b) by the estimation method at the same IBD-

method whose window width is 1 epoch. In experiment (a), during the bias-injected

period (black line), the Doppler observable of the target satellite PRN6 which includes

the Doppler bias sample is synchronously excluded (blue line), and the exclusion method

almost can have no response delays at the start and end points of the bias. However,

approximately 30 percent normal Doppler observables (green line) are excluded with the

PRN6 Doppler observable, because the normal observables include spikes which are sudden

fluctuation in one or two epochs. The spikes cause some detection errors, and the number

of normal Doppler shift observables for positioning are decreased. In experiment (b),

during the bias-injected period, the estimated bias values (yellow line) are almost the
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same as the extracted bias. Few other satellites’ Doppler biases are estimated (green line),

because the start condition for the bias estimation is that H1 acceptances by Hypothesis

testing of IBD-method continue for 3 consecutive epochs. The bias estimations are stopped

after several epochs when the estimation value is less than specific threshold level 1.5m/s.

Although the start condition can mask spikes of Doppler innovation values and be effective

to avoid type-I errors for normal Doppler shifts, the condition causes the response delay

of estimation process for several epochs.

Fig. 3.5 shows the comparison of two detection methods. They are experiments (a1-7)

by IBD and experiments (c1-7) by MBD using the same exclusion correction methods. (a1)

denotes the experiment (a) by using Doppler bias model (1). The same square or slope

biases are used for experiments (a1-3), (c1-3), or experiments (a4-7),(c4-7), respectively.
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The square bias waves (1) is the original extracted bias range-rates, and we prepare for the

square (2),(3) or slope biases (4),(5),(6),(7) to evaluate the detection response according

to the bias size. The bias waves are formed by multiplying coefficients to the square bias

wave (1). The coefficients for (2)-(7) are doubled, halved, ascent slope 1, ascent slope 2,

descent slope 1, and descent slope 2, respectively.

The IBD-method chooses 1 epoch as the window width, because the statistics Tj,k in

equation (3.9) can be more widely affected by spikes of Doppler observables when k ≥ 2

than k = 1, and normal Doppler observables are unintentionally excluded for several

consecutive epochs. The excess exclusions degrade the detection capability of the IBD-

method. While the MBD-method chooses 4 epochs as the window width, because the

statistics T p
k in equation (3.32) doesn’t surpass the upper percent point even during the
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bias-injected period when k = 1. k = 4 can effectively detect the Doppler bias and keep

the smaller response delay of correction processes.

In the comparison between experiments (a1-2) and (c1-2) using square biases (black

line), the both detection methods synchronously exclude the target satellite PRN6 (blue

line) during the bias-injected period. There are no critical response delays by the detection

processes at the start and end points of the period. In the comparison between experiments

(a3) and (c3) using halved square bias (black line), the both methods cannot fully detect

the PRN6. MBD-method has intermissive detections.

In the case of experiments (a4-7) and (c4-7) using slope bias (brown line), the both

detection methods have the response delays (blue line). The exclusion of PRN6 is earlier

started by experiment (c5) than experiment (a5). Experiments (c1-7) have less number of

excluded satellites with normal Doppler observable (green line) compared with experiments

(a1-7). We consider that the innovation process in Kalman filter is easily affected by spikes

in Doppler observables obtained by low-end single frequency receivers. On the other hand,

the difference values by the MBD-method are less affected by spike-like noises. because

the noises can be lowered by the subtraction between the delta-ranges and the range-rates.

Also The MBD-method can effectively detect Doppler biases when C/A code pseudorange

observables do not have anomalies caused by noises or multipath. The MBD-method

therefore is required to combine with the quality monitoring process of the C/A code

pseudoranges.

Fig. 3.6 shows the comparison of the positioning results with no correction (green line)

or with three corrections (a),(b),(c) of the square Doppler bias. The gaps between the green

trajectory with no correction and the road gradually get wider due to the abnormal vehicle

speed vectors caused by the Doppler bias. The deviated green trajectory is corrected by
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three correction experiments (a),(b),(c), and the corrected trajectories come close to the

road.

Fig. 3.7 shows the ENU errors of correction results. The positioning results by original

No correction

(a) IBD and exclusion

(b) IBD and estimation

(c) MBD and exclusion

1000[m]

Vehicle

movement

Figure 3.6: Vehicle trajectories corrected by (a) IBD and exclusion, (b) IBD and estima-
tion,(c) MBD and exclusion
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data which include no Doppler bias are regarded as the reference trajectory for evaluating

positioning errors. No correction (green line) causes that the ENU errors are more than

20m in the Doppler bias-injected period. Contrarily, three correction experiments result

in almost less than 20-m errors. Experiment (a),(blue line) results in that there are

some small positioning errors even when no Doppler bias injection because of the excess

exclusion of normal observables. Experiment (b),(yellow line) results in that positioning

errors are bigger than experiment (a) at the start and end points (pink dotted circle) of the

bias-injected period because of some response delays of estimation process. Experiment

(c),(red line) results in that positioning errors are smaller than experiments (a) and (b)

from the start to the end. The positioning misalignments from the reference positioning

are almost less than approximately 10m.

3.6 Concluding Remarks

In this chapter, we have formulated a Doppler-aided Kalman filter positioning from

the PPP GR models. Instead of carrier-phase pseudoranges, Doppler range-rates are uti-

lized with C/A code pseudoranges in the GR model. Experiments of the detection and

correction methods have been done by using the Doppler outlier (bias) from the real re-

ceiver data, and artificially simulated the positioning errors by the bias under open sky

environments. The existing innovation based detection (IBD) method and a novel mea-

surement based detection (MBD) method combined with the exclusion or the estimation

correction methods has been proposed for the injected Doppler bias of PRN6 range-rates,

and been able to remove the impacts of the Doppler bias to keep the vehicle position

accuracy high. We have shown that the both IBD and MBD-methods can properly detect

the Doppler bias by the chi-squared tests. The window widths k of the bias detection
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tests by the IBD or MBD-methods are decided to achieve better detection performance

under the same upper probability of chi-squared tests, namely k = 1 for IBD-method and

k = 4 for MBD-method. The IBD-method can be widely affected by the spikes included in

the normal Doppler observables of automotive single-frequency receivers than the MBD-

method, and provide the false detections of the observables. The exclusion method can

be easier implemented because of the smaller response delays at the start and end points

of the bias-injected period than the estimation method. The MBD and exclusion method

provides the best performance compared with the IBD and exclusion method, and the

IBD and estimation method.

We also consider that Robust Kalman Filter methods can be applied for GNSS observ-

able outliers at a next step, because it is reported to be effective to reduce the impacts of

observable spike noises [9],[10]. The number of satellite signals for C/A code pseudoranges

and Doppler shift observables increases more and more by the operation start of multi-

frequency and multi-GNSS systems. Our proposal can achieve the selective utilization of

the better signals and have the possibility to be effective for more precise positioning.



Chapter 4

DD-PPP/VPPP Algorithms by
using Multiple Antennas

4.1 Introduction

In general, so-called SPP (standard point positioning) utilizes C/A code pseudoranges

of low-end single-frequency receivers solving the nonlinear equations, and has several tens

of meter positioning errors caused by the error sources [43]. On the other hand, rela-

tive positioning additionally utilizes carrier-phase observables which provide more precise

pseudoranges, and augmentation data obtained from reference stations through commu-

nication means. The data are based on multi-GNSS observables at reference stations,

and utilized for cancelling common bias-related error sources by single difference (SD)

or double difference (DD) methods [2] applied to the observables at receivers and the

reference stations. The relative positioning therefore has millimeter-level positioning for

topographic surveying.

PPP also utilizes carrier-phase observables, and is an ultimately desirable technology in

the GPS/GNSS positioning community [29]. According to [15]–[20], the PPP GR models

achieved the positioning accuracy in decimeter-level without any external transmitted

information such as WAAS by the high-end receivers for topographic surveying. Then we

66
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had derived the VPPP (very precise point positioning) algorithm with multiple antennas

and with common receivers’ clock errors by applying the multiple GR models and Kalman

filtering [21]–[25].

We have advanced our previous PPP algorithms, and applied DD-based observables

among multiple antennas to the algorithms and derived the DD-based GR models (DD-

PPP). The DD-PPP GR models are based on the relative positioning GR models, however,

all antennas’ positions are unknown. Furthermore, VPPP algorithm has been applied to

the DD-PPP by geometrical distance constraints among antennas’ position. Although

other methods utilize the distance constraints to fix integer ambiguity of carrier-phase ob-

servables [44], our proposed VPPP algorithms update PPP estimates every epoch by the

minimum mean square (MMS) methods based on the constraints to improve the position-

ing accuracy. In these derivations, we had discovered the simplest derivation of Kalman’s

measurement update equations shown in [23], as a byproduct.

The GRmodels for PPP algorithm by applying the DD-based GNSS observables among

multiple antennas (receivers) are shown in Chapter 2. The Kalman filtering algorithms for

recursive estimation of all antennas’ positions and the DD-based integer ambiguity of all

carrier-phase observables are derived.

In this chapter, we show the advantages of VPPP method which utilizes the DD-based

observables and the geometric distance constraints among multiple antennas’ positions.

The MMS estimation method based on the constraints are applied for every epoch in

conjunction with the DD-PPP Kalman filtering algorithms.

We have carried out the experiments of static positioning by four antennas located

on a square area. The experimental results of our proposed DD-PPP/VPPP algorithms

comparing with the previous PPP/VPPP algorithms are shown. Then we show the DD-
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PPP/VPPP root-mean-square (RMS) error comparison results between two and four an-

tennas through 24-hour static positioning.

4.2 DD-PPP/VPPP Algorithms and Updating by Constraints

For the case of p = 1, q = 2, . . . , ns and ui = u1, uj = u2 (nr = 2), we have the follow-

ing measurement equations for antennas of u1 and u2 and for ns satellites. In the static

case, Doppler shift observables are not necessary in the GR equations for PPP/VPPP

positioning, because the antennas are located at the fixed positions, and the speed param-

eters related to Doppler observables are zero.

PPP GR Equations for Two Antennas

The PPP observable equations in Eq. (2.36) are individually utilized for antennas of u1

and u2. The Doppler-related observables yp̂DL1,ûi
and unknown parameters u̇i, cδ̇tui are

excluded in Eq. (2.36)-(2.37).

yû1(t) = C p̂1
û1
(t)θu1(t) + vu1(t), θu1(t+ 1) = θu1(t), (4.1)

yû2(t) = C p̂2
û2
(t)θu2(t) + vu2(t), θu2(t+ 1) = θu2(t), (4.2)

yûi
≡

 yCA,ûi

yL1,ûi

 , C p̂i
ûi

≡

[
Gp̂

ûi
1 1 0

Gp̂
ûi

1 1 λ1I

]
, θui ≡


ui

cδtui

δbui

NL1,ui

 , i = 1, 2. (4.3)

SD-PPP GR Equations for Two Antennas

The SD-PPP observable equations in Eq. (2.77) are utilized for antennas of u1 and u2. The

Doppler-related SD-based observables ˜̇ρp̂DL1,û2û1
(p = 1, . . . , ns) and unknown parameters

u̇1, u̇2, cδṫu2u1 are excluded in Eq. (2.77)-(2.81).

yû2û1(t) = Cû(t)ηu2u1(t) + vu2u1(t), ηu2u1(t+ 1) = ηu2u1(t), (4.4)
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yû2û1 ≡

 yCA,û2û1

yL1,û2û1

 , C p̂
û ≡

−Gp̂
û1

Gp̂
û2

1 1 0

−Gp̂
û1

Gp̂
û2

1 1 λ1I

 , ηu2u1 ≡


u1

u2

cδtu2u1

δbu2u1

NL1,u2u1

 . (4.5)

DD-PPP GR Equations for Two Antennas

The DD-PPP observable equations in Eq. (2.93) are utilized for antennas of u1 and u2.

The Doppler-related DD-based observables ˜̇ρq̂p̂DL1,û2û1
(p = 1, q = 2, . . . , ns) and unknown

parameters u̇1, u̇2 are excluded in Eq. (2.93)-(2.97).

yp̂1̂û2û1
(t) = C p̂1̂

û (t)ηp1u2u1
(t) + vp1u2u1

(t), ηp1u2u1
(t+ 1) = ηp1u2u1

(t), (4.6)

yp̂1̂û2û1
≡

 yp̂1̂CA,û2û1

yp̂1̂L1,û2û1

 , C p̂1̂
û ≡

−Gp̂11̂1
û1

Gp̂21̂2
û2

0

−Gp̂11̂1
û1

Gp̂21̂2
û2

λ1I

 , ηp1u2u1
≡

 u1

u2

Nns1
L1,u2u1

 . (4.7)

Updating by Constraint Conditions

The constraint conditions are applied to update PPP/DD-PPP estimates as follows.

Namely, when we obtain the filtering estimates η̂t|t and the error covariance matrix Σηt|t,

we apply the geometric distance and clock constraint conditions. The PPP algorithms

with constraint updating is hereinafter called VPPP (“Very” Precise Point Positioning):

dji = ||uj − ui||+ edji , (4.8)

cδtj − cδti = ecδtji , (4.9)

where the measurement error edji is assumed as a Gaussian white noise with edji ∼

N(0, rdji). We should note that the electrical phase center of an antenna is generally

not identically to its geometric center. The phase center can also vary with the direction
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of arrival (azimuth and elevation) of the signal and such variation can range from under a

millimeter to 1 cm∼2 cm, depending upon antenna design. Usually the phase center vari-

ation is treated as measurement noise [26], and edji and ecδji are mutually independent

Gaussian white noises with

edji ∼ N(0, rdji), ecδtji ∼ N(0, rcδtji). (4.10)

In the case of nr = 2, define the constraint conditions at time t:

γ21,t ≡

[
d21

cδt1

]
, (4.11)

and consider the following relations of the conditional probability density function (CPDF):

p(ηt|Y t, γ21,t) =
p(ηt, Y

t, γ21,t)

p(Y t, γ21,t)
=

p(ηt, γ21,t|Y t)p(Y t)

p(Y t, γ21,t)

=
p(γ21,t|ηt, Y t)p(ηt|Y t)p(Y t)

p(Y t, γ21,t)

=
p(Y t)

p(Y t, γ21,t)
p(ηt|Y t)p(γ21,t|ηt, Y t)

≡ K0(Y
t, γ21,t)p(ηt|Y t)p(γ21,t|ηt), (4.12)

Y t ≡ {y0, y1, · · · , yt}, K0(Y
t, γ21,t) ≡

p(Y t)

p(Y t, γ21,t)
.

Then we have relations:

p(ηt|Y t) =
1

(2π)n′/2|Ση,t|t|1/2
exp

{
− 1

2
[ηt − η̂t|t]

TΣ−1
η,t|t[ηt − η̂t|t]

}
, (4.13)

p(γ21,t|ηt) =
1√

2πrd21
exp

{
− [d21 − ||u2 − u1||]2

2rd21

}
× 1√

2πrcδt21
exp

{
− (cδt2 − cδt1)

2

2rcδt21

}
. (4.14)
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Therefore, p(ηt|Y t, γ21,t) in Eq. (4.12) is expressed as follows:

p(ηt|Y t, γ21,t) = K0(Y
t, γ21,t)

1

(2π)n′/2|Ση,t|t|

× exp
{
− 1

2
[ηt − η̂t|t]

TΣ−1
η,t|t[ηt − η̂t|t]

}
× 1√

2πrd21
exp

{
− [d21 − ||u2 − u1||]2

2rd21

}
× 1√

2πrcδt21
exp

{
− (cδt2 − cδt1)

2

2rcδt21

}
. (4.15)

Then we remark that the constraints is expressed by the quadratic form of η as follows:

[d21 − ||u2 − u1||]2

2rd21
=

1

2rd21

{
d221 + ||u2 − u1||2 − 2d21||u2 − u1||

}
=

1

2rd21

{
d221 + (u2 − u1)

T(u2 − u1)− 2d21||u2 − u1||
}

∼=
1

2

{ d221
rd21

+
1

rd21
uT2 u2 −

1

rd21
uT2 u1 −

1

rd21
uT1 u2 +

1

rd21
uT1 u1 − cT21u2 + cT21u1

}
,

(4.16)

where

||u2 − u1|| ∼=
(û2 − û1)

T

||û2 − û1||2
(u2 − u1) ≡ κT21(u2 − u1), (4.17)

and

dTκ21 ≡
2d21κ

T
21

rd21
. (4.18)

Also we have

(cδt2 − cδt1)
2

2rcδt21
=

1

2
[cr21(cδt2)

2 + cr21(cδt1)
2 − 2cr21(cδt2)(cδt1)], (4.19)

where

cr21 ≡
1

rcδt21
.
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Finally, we have the expression of the quadratic form:

1

2

[d21 − ||u2 − u1||]2

rd21
+

1

2

(cδt2 − cδt1)
2

rcδt21
∼=

1

2
{ηTMη21η + cTη21η +

d221
rd21

}, (4.20)

where therefore, we have the following quadratic form for the power term of the CPDF

(4.15):

1

2
(η− η̂ )Σ−1

η (η − η̂) +
1

2

[d21 − ||u2 − u1||]2

rd21
+

1

2

(cδt2 − cδt1)
2

2rcδt21

∼=
1

2

{
ηTΣ−1

η η − ηTΣ−1
η η̂ − η̂TΣ−1

η η + η̂TΣ−1
η η̂ + ηTMη21η + cTη21η +

d221
rd21

}
=

1

2

{
ηT(Σ−1

η +Mη21)η − ηT(Σ−1
η η̂ − 1

2
cη21)− (η̂TΣ−1

η − 1

2
cη21)η + η̂TΣ−1

η η̂ +
d221
rd21

}
=

1

2

{
[η − (Σ−1

η +Mη21)
−1(Σ−1

η η̂ − 1

2
cη21)]

T(Σ−1
η +Mη21)

×[η − (Σ−1
η +Mη21)

−1(Σ−1
η η̂ − 1

2
cη21)]− (Σ−1

η η̂ − 1

2
cη21)

T(Σ−1
η +Mη21)

−1

(Σ−1
η η̂ − 1

2
cη21) + η̂TΣ−1η̂ +

d221
rd21

}
.

Then the update estimated vector η̌ and error covariance matrix Σ̌η of η based on the

minimum mean square estimate are given by

η̌21 =
(
Σ−1
η21 +Mη21

)−1
(Σ−1

η21 η̂21 −
1

2
cη21), (4.21)

Σ̌η21 =
(
Σ−1
η21 +Mη21

)−1
. (4.22)

In the case of VPPP under two independent PPP positioning,

Mη21 ≡



1
rd21

I − 1
rd21

I

cr21 −cr21

Ons+3 Ons+3

− 1
rd21

I 1
rd21

I

−cr21 cr21

Ons+3 Ons+3


, (4.23)

cTη21 ≡
[
dTκ21 0Tnr+4 −dTκ21 0Tnr+4

]
, (4.24)
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Ons+3 is the (ns + 3)× (ns + 3) zero matrix, and 0ns+4 is the (ns + 4) zero vector.

In the case of constraint updating under DD-PPP positioning, the receiver clock errors

cδt2 and cδt1 are canceled. The clock-related constraint cr21 therefore is unnecessary.

Mη21 ≡



1
rd21

I − 1
rd21

I 0 · · · 0

− 1
rd21

I 1
rd21

I 0 · · · 0

0 · · · 0 0 · · · 0

...
...

...

0 · · · 0 0 · · · 0


, (4.25)

cTη21 ≡
[
dTκ21 −dTκ21 0T · · · 0T

]
. (4.26)

In the cases of nr = 3 and nr = 4, see Appendix A.

These updated values are applied to Eqs. (2.120) and (2.124), respectively, as

η̂t|t ≡ η̌, Σ̂η,t|t ≡ Σ̌η.

Additional constraints

See Appendix C.

4.3 Experiments

We carried out the comparison of positioning methods by using the GPS data obtained

under the experimental conditions (see Table 4.1). Single-frequency and economical u-blox

GPS receiver NEO-M8N and patch antennas (ANTs) for automobile were used for the

experiments. The antennas ANT-1, 2, 3, 4 were located at the corners of a square board

(see Fig. 4.1), and the coordinates of their positions in the WGS84 system are listed in

Table 4.2. The positioning errors applying the relative positioning method are less than
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a few centimeters, and the positions are used to evaluate the proposed positioning as

reference positions. Receivers connected to ANT-1 and 2, or receivers connected to ANT-

3 and 4 are operated by synchronized clocks, respectively. ANT-1 and 4 are reference

antennas for SD/DD-based positioning methods. ANT-X is the antenna for two frequency

topographic surveying GNSS receiver, and located on the center of the square board.

Table 4.1: Experimental Conditions

Date March 8, 2015

GPS-Time 06:00:00～06:10:00

Location Biwako Kusatsu Campus, Ritsumeikan Univ.

Antenna(ANT) INPAQ patch antenna for automobile

Receiver u-blox GPS-module NEO-M8N (FW2.0)

Epoch interval 1 [s]

Elevation angle mask 15 [deg.]

Measurement Data C/A Code Pseudorange, L1-Carrier-Phase

Table 4.3 shows the DD-PPP/VPPP positioning conditions. The state variables, namely

antenna positions and integer ambiguity, are estimated by Kalman filter as unknown pa-

rameters. The initial values of the positions are obtained by SPP, and affect the positioning

accuracy. The broadcast ephemeris and Klobucher parameters obtained from navigation

messages are utilized as the SPP conditions. The data provided by international GNSS

service (IGS) are not effective for improving the SPP. The noise variances for Kalman

filtering are decided under the better positioning results.

Table 4.4 shows the positioning methods (a)-(f). The methods (e) and (f) utilize SD-

based observables which can cancel the satellite, ionosphere, and troposphere-related er-

rors. The methods (c) and (d) utilize DD-based observables which can additionally cancel

the receiver-related errors. On the contrary, the methods (a) and (b) utilize the broadcast

messages for satellites and the signal delay models for ionosphere or troposphere, and es-
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U
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Figure 4.1: GNSS antenna array on a square board

Table 4.2: Real antennas positions by relative positioning

WGS-84

X [m] Y [m] Z [m]

ANT-1 -3761236.152 3636879.281 3635962.036

ANT-2 -3761236.711 3636878.709 3635962.020

ANT-3 -3761236.392 3636878.384 3635962.676

ANT-4 -3761235.833 3636878.954 3635962.689

timate the receiver-related errors. All methods (a)-(f) estimate the integer ambiguity of

raw, SD, and DD-based carrier-phase, respectively. The constraint of geometric distance

among antennas are applied to the methods (b),(d), and (f).

Fig. 4.2 shows the concept of the positioning (a), (b), (c), (d) when two antennas ANT-

1 (u1), 2 (u2) are used, and the positioning (c2), (d2) when four antennas ANT-1 (u1), 2 (u2),

3 (u3), 4 (u4) are used. (a)PPP is individually applied for each antenna to estimate each

antenna position. (b)VPPP additionally utilizes the updating algorithm by geometric
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distance constraint (GDC) on (a). (c)DD-PPP utilizes the DD-based observables (DDO)

for a pair of two antennas. (d)DD-VPPP additionally utilizes the updating algorithm by

GDC on (c). (c2)DD-PPP utilizes DDOs for six pairs of two antennas. (d2)DD-VPPP

additionally utilizes the updating algorithm by GDCs of six pairs of two antennas on (c2).

Table 4.3: DD-PPP/VPPP positioning conditions

State variables Initial values [m] Initial variance [m2]

Antenna positions SPP 12

Integer ambiguity DD of (ϕ− ρ− 2δ̃I) 102

SPP conditions

Satellite orbits/clocks Broadcast ephemeris (IGS)

Ionosphere models Klobucher (IGS)

Troposphere models Saastamoinen

Noise variance [m2]

C/A code pseudoranges 0.32

Carrier-phase pseudoranges 0.082

Satellite orbits 0.052

Satellite clocks 0.032

Geometric distance 0.012

4.3.1 Comparison of PPP/VPPP/DD-PPP/DD-VPPP

The positioning experiments of (a) PPP and (b) VPPP for two methods; without

differences of C/A code and L1 carrier-phase observables in [23],[24] (call WOD-methods),

and the presently proposed (c) DD-PPP and (d) DD-VPPP by taking double differences for

observables (call DD-methods), are carried out by applying the Kalman filter formulation

under static positioning conditions.

Fig. 4.3 shows the positioning errors for the ANT-1 (u1) and 2 (u2), respectively, using

GPS observables in 06:00:00 - 06:00:59 (60 epochs) by the DD-methods with the local level

axes (ENU: East, North, and Height(Up)), where the blue and red lines show the ENU

errors of (c) DD-PPP and (d) DD-VPPP results, respectively. The errors are computed
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Table 4.4: Positioning methods

(a) (b) (c) (d) (e) (f)

Positioning methods PPP VPPP DD-PPP DD-VPPP SD-PPP SD-VPPP

Satellite orbit Broadcast

Satellite clock error Broadcast

Satellite H/W bias Negligible Canceled by SD

Ionospheric delay Klobuchar

Tropospheric delay Magnavox

Estimation method Kalman filter

Antenna position Static

Receiver H/W bias 1st-order Markov Canceled by DD 1st-order Markov

Receiver clock bias 1st-order Markov 1st-order Markov

Integer ambiguity Random walk

Distance constraint – O – O – O

GDC

u
1

u
2

DDO

GDC

GDC

u
4

u
3

u
1

u
2

GDC GDCGDC GDC

(d) 2-ANTs, DD-VPPP
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DDO
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DDO DDO
DDO DDO

DDO

Figure 4.2: Positioning concept for two and four antennas

by difference between each estimated position and the corresponding position shown in

Table 4.2. We can observe from Fig. 4.3 that the positioning quality is slightly improved

by using VPPP (using the geometric constraints), and (d) DD-VPPP just needs several

seconds after the positioning start to reach the fixed position. The RMSE (Root Mean
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Square Error) of ENU coordinate is defined as follows:

RMSE =

√√√√ 1

nr

1

ne

nr∑
i=1

ne∑
t=1

(
(E2

e,i,t +N2
e,i,t + U2

e,i,t)/3
)

(4.27)

where ne denotes the number of epochs. Ee,i,t, Ne,i,t, Ue,i,t means the ENU errors of antenna

i at epoch t, respectively. The RMSE of 60 epochs (ne=60) Eastward, Northward, Upward

errors at the individual antenna (nr=1) in Fig. 4.3 are shown in Table 4.5. The 2 ANTs

horizontal ENU RMS errors of (d) DD-VPPP1 is slightly better than that of (c) DD-PPP,

and the improvement ratio of the errors from (c) to (d) is approximately 88%.

Fig. 4.4 shows the RMS errors of PPP and VPPP ENU coordinate by WOD (a),(b)

and DD-methods (c),(d) which utilize two antennas, ANT-1 and ANT-2. The vertical axis

shows the RMS errors of two antennas (nr=2) after 10 seconds (tenth epoch) from the

positioning start (ne=1) in Eq. (4.27). The horizontal axis shows sequential numbers of ex-

periments. The experiments for the comparison of four positioning methods (a),(b),(c),(d)

are repeated 10 times during 06:00:00 - 06:10:00 (GPST) every 1 minute. The results show

the RMS errors of estimated positions after 10 seconds from the positioning starts, which

are 60(k-1)+10 (k=1∼10: the sequential number) seconds from 06:00:00. Basically, the

RMS errors of u-blox NEO-M8 GPS positioning are approximately 2.5-m CEP (Circular

Error Probability) [45], while the errors of the four positioning methods are less than 1.5m.

There are some fluctuations among estimated positions, because the priori initial estima-

tions by SPP (Standard Point Positioning) are used as the antennas’ position for Kalman

filter, however, (d) DD-VPPP has the smallest RMS errors. The total improvement ratio

from (a) PPP to (d) DD-VPPP is approximately 84%.

(e) SD-PPP and (f) SD-VPPP approximately have the same RMS errors as (c) DD-

PPP and (d) DD-VPPP, respectively, because the clock error difference of receivers con-
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Figure 4.3: ENU errors of ANT-1 and ANT-2

Table 4.5: RMS errors of DD-methods

[m] RMS[m]

EN ENU

E 0.3619

(c) DD-PPP N 1.2374 0.9116 0.7801

ANT-1 U 0.4046

E 0.9374

(d) DD-VPPP N 1.1608 1.0550 0.8616

U 0.0294

E 1.4710

(c) DD-PPP N 1.0880 1.2933 1.1272

ANT-2 U 0.6815

E 0.8643

(d) DD-VPPP N 1.1619 1.0240 0.8552

U 0.3116

Total (c) DD-PPP - – 1.1188 0.9693

(2-ANTs) (d) DD-VPPP - – 1.0396 0.8584

nected to the ANT-1 and 2 operated by synchronized clock has little influence on the

SD/DD-based positioning. The DD-based positioning approximately has the same perfor-
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Figure 4.4: RMS errors of four positioning methods

Table 4.6: Improvement ratio of DD-VPPP

Start time Sampled time (a) PPP (b) VPPP (c) DD-PPP (d) DD-VPPP (d) / (a) (d) / (b)

1 6:00’00 6:00’10 1.1171 0.8736 1.0783 0.8574 76.7 98.1

2 6:01’00 6:01’10 1.3877 1.3110 1.2658 1.2797 92.2 97.6

3 6:02’00 6:02’10 1.1570 1.1574 1.1941 1.1858 102.5 102.5

4 6:03’00 6:03’10 1.1300 0.8416 0.7789 0.7595 67.2 90.3

5 6:04’00 6:04’10 1.4372 1.2139 1.1363 1.1111 77.3 91.5

6 6:05’00 6:05’10 1.4057 1.0071 1.2537 0.9475 67.4 94.1

7 6:06’00 6:06’10 1.0161 0.7637 0.8899 0.7236 71.2 94.7

8 6:07’00 6:07’10 1.2895 1.2760 1.2075 1.2131 94.1 95.1

9 6:08’00 6:08’10 1.1806 1.0681 1.1253 1.0465 88.6 98.0

10 6:09’00 6:09’10 1.1801 1.2368 1.2812 1.2188 103.3 98.5

1.230 1.075 1.121 1.034 84.1 96.0

RMS error [m] Improvement ratio [%]

Average

mance even in the case of ANT-1 and 4 operated by desynchronized clock, however, the

SD-based positioning has a high probability of performance degradation.

4.3.2 Comparison of the Number of Antennas and Constraints

In order to compare the positioning accuracy by the number of antennas and con-

straints, we carried out the 24-hours static positioning by using four low-cost single-

frequency GPS receivers (four antennas) obtained under the experimental conditions (see
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Table 4.7). Compared with the conditions in Table 4.1, the same antennas and receivers

NEO-M8N are used, however, the firmware version FW3.1 is different from FW2.0. The

antennas ANT-1, 2, 3, 4 were located at the corners of a square, 80 cm on a side on the

rooftop of the vehicle, and the coordinates of their positions in the WGS84 system are

listed in Table 4.8, and they are also obtained by the relative positioning method. Each

receiver is operated by its individual clock because of the receiver clock offset cancellations

by the DD-based positioning technique among receivers. Fig. 4.5 shows the GPS satellite

Table 4.7: Experimental Conditions

Date February 13-14, 2017

GPS-Time 03:00:00～02:59:59 (24-hours)

Location Sanda works, Mitsubishi Electric Corp.

Antenna(ANT) INPAQ patch antenna for automobile

Receiver u-blox GPS-module NEO-M8N (FW3.1)

Epoch interval 1 [s]

Elevation angle mask 10 [deg.]

Measurement Data C/A Code Pseudorange, L1-Carrier-Phase

Table 4.8: Real antennas positions by relative positioning

WGS-84

X [m] Y [m] Z [m]

ANT-1 -3717933.028 3688815.774 3628264.294

ANT-2 -3717933.658 3688815.561 3628263.855

ANT-3 -3717933.790 3688814.943 3628264.343

ANT-4 -3717933.164 3688815.161 3628264.785

constellations every 2-hours based on the observables obtained by the 24-hours GPS static

positioning. In general, the orbits of GPS satellites are nearly circular, and the orbital pe-

riod is approximately 11 hours and 58 minutes. Each satellite approximately goes around

the earth two times a day, and the rotation of the earth is 24-hours. The satellites return

again to the first positions after 24-hours. Fig. 4.6 shows the Eastward/Northward (EN)
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errors of NEO-M8N positioning every 2-hours during 24-hours. According to the u-blox

product catalog [45], the errors of NEO-M8N GPS positioning are approximately 2.5-m

CEP (Circular Error Probability). The EN errors of the positioning results in Fig. 4.6

shows approximately less than 2.5m from the average positioning accuracy, however, the

average values tend to have northward offsets. The tendency is generally caused by the

GPS satellite constellations. Fig. 4.7 shows the Upward (U) errors of NEO-M8N position-

ing every 2-hours during 24-hours. In general, the upward errors of the positioning is worse

than the EN errors, because the only satellites above the horizon can be acquired by the

receivers and utilized for the positioning. Fig. 4.7 shows that the downward errors of more

than 4m frequently occur. Table. 4.9 shows the EN and the ENU RMS errors of SPP for

four antennas every 2-hours. The SPP results of the antenna positions are obtained by

GR models and utilized as the initial values for the positioning (a)-(f).

Fig. 4.8 shows the RMS errors of (c) DD-PPP and (d) DD-VPPP on ENU and EN

coordinate by using the two antennas ANT-1, 4 or the four antennas ANT-1, 2, 3, 4. In the

case of two antennas, the DD-based observables and the distance constraint d21 in Eq. (4.8)

by one pair of ANT-1, 4 are utilized for the positioning. In the case of four antennas, the

DD-based observables and the distance constraints d21, d31, d41, d32, d42, d43 in Eq. (4.8)

by six pairs of ANT-1, -2, ANT-1, -3, ANT-1, -4, ANT-2, -3, ANT-2, -4, ANT-3, -4 are

utilized for the positioning. The vertical axis shows the RMS errors of two antennas (nr=2)

or four antennas (nr=4) after 10 seconds (tenth epoch) from the positioning start (ne=1)

in Eq. (4.27). The horizontal axis shows sequential numbers of experiments. The experi-

ments for the comparison of two positioning methods (c) and (d) are repeated 120 times

during 13:00:00 - 14:59:59 (GPST) or during 17:00:00 - 18:59:59 (GPST) every 1 minute, re-

spectively. The former time period has the smallest RMS errors of the total four antennas’
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SPP, and the latter time period has the biggest RMS errors of the total four antennas’

SPP in Table 4.9. The results show the RMS errors of estimated positions after 10 sec-

onds from the positioning starts, which are 60(k-1)+9 (k=1∼120: the sequential number)

seconds from the start time 13:00:00 or 17:00:00.

There are some fluctuations among the RMS positioning errors, because the fluctu-

ations of SPP affect the positioning accuracy as the priori initial estimations of the an-

tennas’ position for the Kalman filter. Some of the RMS errors on EN coordinates are

approximately less than 20 cm∼30 cm. The 4-ANTs, DD-PPP(blue)/VPPP(red), EN has

less fluctuations compared with the 2-ANTs, DD-PPP/VPPP,EN. Table 4.10 shows the

average RMS errors and the improvement ratio (120-times) in Fig 4.8. Basically, the

errors of u-blox NEO-M8 GPS positioning are approximately 2.5-m CEP (Circular Error

Probability) [45], while the average RMS errors in all cases are approximately less than

1.5m, and 4-ANTs,DD-VPPP, EN has the smallest RMS errors which are approximately

50∼60 cm. Although the time period 17:00:00 - 18:59:59 (GPST) has the bigger ENU RMS

errors of SPP, the 4-ANTs, DD-VPPP,EN has almost the same average RMS errors as

that of the smallest time period 13:00:00 - 14:59:59 (GPST), because the upward errors of

SPP cause the difference of the positioning RMS errors between the both time periods.

The improvement ratio of the EN RMS errors in the 4-ANTs case are approximately 68%.

One of the causes to affect the SPP accuracy is the ionosphere delay parameters of the

Klobuchar model [46] in the navigation messages from satellites. The model parameters

simulate the changes of the zenith directional ionosphere delays for a day by the cosine

curve. The GPS parameters can improve the ionospheric bias errors, 4m∼5m, which is

the biggest cause of the positioning errors by approximately 50%. The QZSS also broad-

casts the original parameters, the altitude positioning errors can be improved more than
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GPS in Japan and the areas surrounding Japan. The difference between GPS and QZSS

parameters does not appear during the time period 11:00:00 - 23:00:00 (GPST) in Table

4.9, because the cosine curve of the Klobuchar model does not get involved in the period.

Fig. 4.9 shows an example of the four antennas’ DD-PPP(blue) /VPPP(red) EN RMS

errors compared with the NEO-M8N positioning results(yellow). The positioning period

is 20 minutes, 13:50:00 - 14:09:59 (GPST). The DD-PPP/VPPP have smaller positioning

fluctuations than NEO-M8N, and the errors tend to have offsets from the real antennas’

positions to the same northeastward directions except for the ANT-2. The baseline vec-

tors, namely the differences between two antenna positions, could have smaller errors by

canceling the offsets of the two antennas. Table 4.11 shows the RMS errors of three posi-

tioning methods in Fig. 4.9. The EN RMS errors of the DD-VPPP is approximately half

compared with that of the NEO-M8N.

4.4 Concluding Remarks

In this chapter, we have presented a novel PPP algorithm based on double difference

(DD) observables, and the update equations of an improved VPPP algorithm by minimum

mean square (MMS) methods based on geometric distance constraints (GDC) of multiple

antennas. The updating process based on the constraints are applied to the positioning

estimates every epoch in conjunction with the DD-PPP Kalman filtering algorithms.

The experiments of four antennas (receivers) have been carried out in a static sit-

uation. The DD-VPPP needs several seconds to reach a fixed position, and has the

smallest root-mean-square (RMS) errors among four positioning methods, namely PPP

and VPPP of without DD (WOD) and DD-methods when two antennas are used. The

total improvement ratio from the conventional PPP method to our proposed DD-VPPP
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is approximately 84%. Furthermore, the DD-based PPP/VPPP algorithms based on GR

models have approximately the same positioning performance under the both synchronous

or asynchronous clock operation, and easy to be utilized under multiple antenna system

which includes asynchronous clock operation compared with SD-based positioning.

The experiments of the 24-hours static positioning by using four low-end single-frequency

GPS antennas (receivers) have been carried out. In the case of the RMS errors of two

antenna DD-PPP/VPPP, We have achieved less than 40-cm positioning errors on hori-

zontal east-north (EN) coordinate after ten seconds (epochs) from the positioning starts

without any external transmitted information. Our proposed DD-VPPP methods are ap-

proximately less than half on EN coordinate, and less than 1/4 on east-north-up (ENU)

coordinates compared with the low-cost single-frequency u-blox NEO-M8N positioning.

In the case of the improvement ratios of the averaged RMS errors from DD-PPP to DD-

VPPP, when the antenna numbers are increased from 2-ANTs to 4-ANTs, the ratios are

approximately improved from 82% to 66% on EN coordinates. The 4-ANTs DD-VPPP

has less fluctuations of the RMS errors caused by SPP, because six GDCs are applied to

the MMS estimation method of DD-VPPP.

Compared with the positioning results of u-blox NEO-M8N single-frequency receivers

without carrier-phase observables, the improvement ratios of the DD-VPPP positioning

errors from the NEO-M8N are approximately 70% as ENU RMS errors, and approximately

50% as EN RMS errors. The total EN RMS errors of 1200 epochs and four antennas is

less than 40 cm. The errors tend to have offsets from the real antennas’ positions to the

same directions. The baseline vectors, i.e. the differences between two antenna positions,

could have smaller errors by canceling the offsets of two antennas.
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3:00:00-4:59:59 GPST 5:00:00-6:59:59 GPST 7:00:00-8:59:59 GPST

  (PDOP=1.92, HDOP=1.03, VDOP=1.61)   (PDOP=1.79, HDOP=0.96, VDOP=1.51)   (PDOP=1.83, HDOP=1.05, VDOP=1.51)

9:00:00-10:59:59 GPST 11:00:00-12:59:59 GPST 13:00:00-14:59:59 GPST

  (PDOP=1.96, HDOP=0.96, VDOP=1.70)   (PDOP=1.80, HDOP=0.98, VDOP=1.51)   (PDOP=1.82, HDOP=0.92, VDOP=1.57)

15:00:00-16:59:59 GPST 17:00:00-18:59:59 GPST 19:00:00-20:59:59 GPST

  (PDOP=2.06, HDOP=1.13, VDOP=1.73)   (PDOP=2.01, HDOP=0.99, VDOP=1.75)   (PDOP=2.12, HDOP=1.17, VDOP=1.78)

21:00:00-22:59:59 GPST 23:00:00-0:59:59 GPST 1:00:00-2:59:59 GPST

  (PDOP=1.81, HDOP=0.92, VDOP=1.54)   (PDOP=1.83, HDOP=1.00, VDOP=1.51)   (PDOP=1.88, HDOP=1.06, VDOP=1.55)

Figure 4.5: GPS satellite constellations during 24-hours
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Figure 4.6: Eastward/Northward errors of NEO-M8N positioning during 24-hours
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Figure 4.7: Upward errors of NEO-M8N positioning during 24-hours

Table 4.9: EN and ENU RMS errors [m] of SPP for four antennas

Time period ANT-1 ANT-2 ANT-3 ANT-4 Total(4-ANTs)

(GPST) EN ENU EN ENU EN ENU EN ENU EN ENU

03:00:00-05:00:00 1.2348 1.8531 1.1074 1.8779 1.0678 1.7777 0.9493 1.6604 1.0946 1.7943

05:00:00-07:00:00 1.0996 2.3821 0.9701 2.2625 0.8414 2.0950 0.8159 1.9252 0.9386 2.1731

07:00:00-09:00:00 1.0279 2.1424 0.8502 2.3907 0.9195 2.0975 0.7216 2.0057 0.8868 2.1638

09:00:00-11:00:00 1.0486 1.8842 0.9663 1.7747 0.8485 1.5911 0.8207 1.5779 0.9256 1.7118

11:00:00-13:00:00 0.9877 1.3642 0.9008 1.7558 0.9214 1.2651 0.7830 1.2377 0.9013 1.4209

13:00:00-15:00:00 0.7488 1.1816 0.8134 1.2664 0.8433 1.3179 0.7586 1.2254 0.7920 1.2488

15:00:00-17:00:00 1.1336 2.0562 0.9449 1.4207 0.8959 1.5390 0.9272 1.5062 0.9798 1.6495

17:00:00-19:00:00 0.8298 1.9591 0.9448 2.2779 0.7618 1.9974 0.7538 1.9545 0.8261 2.0516

19:00:00-21:00:00 1.0390 2.1567 1.1269 2.0377 1.0447 2.0504 0.9847 2.0176 1.0501 2.0663

21:00:00-23:00:00 1.0774 1.8064 0.9113 1.5961 1.0078 1.7984 0.8721 1.5745 0.9705 1.6973

23:00:00-01:00:00 1.5054 1.8484 1.3202 1.6095 1.4544 1.7142 1.4286 1.5907 1.4288 1.6938

01:00:00-03:00:00 1.4866 2.3697 1.3229 2.0169 1.4721 2.2941 1.4416 2.1319 1.4322 2.2075
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Figure 4.8: ENU and EN RMS errors of two/four antennas’ positioning during 2-hours

Table 4.10: Average EN and ENU RMS errors of DD-PPP/VPPP for two/four antennas

Time period Antenna ENU (RMS) EN (RMS)

(GPST) numbers (c) (d) (d)/(c) (c) (d) (d)/(c)

DD-PPP DD-VPPP Improvement DD-PPP DD-VPPP Improvement

(10sec) (10sec) ratio (10sec) (10sec) ratio

[m] [m] [%] [m] [m] [%]

13:00:00-14:59:09 2-ANTs 1.1998 0.9409 78.42 0.7242 0.5903 81.52

4-ANTs 1.2582 0.7812 62.09 0.7945 0.5634 70.92

17:00:00-18:59:09 2-ANTs 1.9193 1.7413 90.73 0.7479 0.6200 82.91

4-ANTs 2.0123 1.7233 85.64 0.8218 0.5496 66.88



90

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

N
o

rt
h

w
a

rd
 e

rr
o

rs
 [

m
]

Eastward errors [m]

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

N
o

rt
h

w
a

rd
 e

rr
o

rs
 [

m
]

Eastward errors [m]

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

N
o

rt
h

w
a

rd
 e

rr
o

rs
 [

m
]

Eastward errors [m]

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

N
o

rt
w

a
rd

 e
rr

o
rs

 [
m

]

Eastward errors [m]

 NEO-M8N

 DD-PPP

 DD-VPPP

ANT-4 ANT-3

ANT-1 ANT-2

: ANT position

20 minutes (1200 epochs)

Figure 4.9: EN RMS errors of a sample of four antenna positioning

Table 4.11: EN and ENU RMS errors [m] of a sample of four antennas

Positioning ANT-1 ANT-2 ANT-3 ANT-4 Total(4-ANTs)

Methods EN ENU EN ENU EN ENU EN ENU EN ENU

NEO-M8N 0.8819 1.0596 0.6612 1.3130 0.5397 0.8693 0.6483 0.8898 0.6940 1.0481

DD-PPP 0.5750 0.5219 0.4921 1.5613 0.3065 0.4720 0.3898 0.8572 0.4524 0.9576

DD-VPPP 0.3626 0.4549 0.3657 0.8783 0.2411 0.7709 0.3892 0.7026 0.3445 0.7187



Chapter 5

Euler Angle Estimation by
Baseline Vectors

5.1 Introduction

In general, not only positions, velocities, and accelerations but also body attitude of

vehicles are important information for the navigation or system control of vehicle mobile

applications. Basically the more reliable and higher performed attitude determination

system (ADS) are developed by combining Global Navigation Satellite System (GNSS)

receiver systems with inertial navigation systems (INS). The ADS performance can be

achieved by approximately 0.5 degrees as 1-sigma errors within one minute at three-

dimensional performance, however, the several expensive multi-frequency receivers are

utilized to solve the attitude accuracy, the reliability, and the output rate. Even any ex-

pensive receiver cannot resolve the limitation of non-positioning state under the tunnels

and the underground parking and higher output rate, therefore the INS could complement

the GNSS receiver for the disadvantages of ADS [47].

Relative positioning equivalent methods by low-cost single frequency GNSS receivers

and their patch antennas are applied for the vehicle heading determination [48]. The

integer ambiguity resolution of the double-difference (DD) carrier-phase observables are

91
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needed. In order to stably obtain the fixed integer ambiguities, the detection and correction

of cycle slips are needed. The inertial measurement units (IMU) with gyro sensors are

utilized for the detection and correction.

We propose one approach of the body attitude estimation methods by low-end single-

frequency receivers for automotive applications. The baseline-vector estimation algorithms

are derived from the DD-based PPP among multiple antennas. The update algorithms

by baseline-vector length constraints are derived to improve the accuracy in conjunction

with the baseline-vector estimation.

The GR models of DD-PPP/VPPP algorithms based on double-difference (DD) ob-

servables are shown in Chapter 2. The DD-PPP/VPPP can cancel the biases or the delays

by single-difference (SD) or DD methods [49]. Even when low-cost single-frequency GNSS

receivers are used, more precise positioning of DD-PPP/VPPP are shown compared with

the conventional PPP/VPPP methods in Chapter 4.

In order to estimate the body attitude by the array-aided PPP comprised of multiple

antennas, the observation equations are defined to estimate the baseline vectors between

two antennas. The equations for the SD or DD-based observables are derived, and the

gradient vectors from two antennas to a same satellite are assumed as approximately

the same [50]. We present a novel GR model of the baseline-vector estimation derived

from DD-based PPP algorithm. The gradient vectors are precisely estimated by DD-PPP

methods, and the vectors for the baseline vectors are the average of two different vectors

from two antennas to a same satellite. The baseline-vector lengths can be utilized as

constraints by the similar minimum mean square method of VPPP/DD-VPPP [21], [24].

In order to obtain the body attitude angles (Euler angles) using multiple baseline

vectors, the rotation matrix based on Euler’s principal rotation theorem is considered as a
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simpler method. The weighted least-squares method by multiple baseline vectors is applied

to obtain the theorem-based parameters. Euler angles are obtained by the components of

the rotation matrix in the sequence of Z-Y-X axis.

In order to show the estimation results of the baseline vectors and Euler angles, we

analyze the experimental results of static positioning by four antennas located on a square

area. The six baseline vectors of four antenna deployment in a plane are utilized for the

estimation methods.

5.2 Baseline Vector Estimation and Updating by Constraints

For the case of p = 1, q = 2, . . . , ns and ui = u1, uj = u2 (nr = 2), we have the

DD-based PPP measurement equation for antennas of u1 and u2 and for ns satellites as

follows [23], [50]:

yqpu2u1
(t) = Cqp

u2u1
(t)ηqpu2u1

(t) + vqpu2u1
(t), (5.1)

where

yqpu2u1
≡

 yp̂1̂CA,û2û1

yp̂1̂L1,û2û1

 , ηqpu2u1
≡

 u1

u2

Nns1
L1,u2u1

 , Cqp
u2u1

≡

 −Gp̂1̂
û1

Gp̂1̂
û2

0

−Gp̂1̂
û1

Gp̂1̂
û2

λ1I

 ,

Gp̂1̂
ui

≡


(g2̂1̂ûi

)T

(g3̂1̂ûi
)T

...

(g
n̂s1̂)
ûi

)T

 : (ns − 1)× 3. (5.2)

yp̂1̂CA,û2û1
，yp̂1̂L1,û2û1

are observation vector matrixes, and the both matrix sizes are ((ns −

1)× 1). vqpu2u1 is an observation noise vector matrix,

In Eqs. (5.1),(5.2) of DD-PPP method, the distance between two antennas ui, uj is

very small compared with the distance between the satellites and the antennas (receivers),
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namely approximately 20,000 kilometers, therefore the gradient vectors gq̂p̂ûji
of baseline

vector uji are assumed as the average values of gq̂p̂ûi
and gq̂p̂ûj

as follows:

gq̂p̂ûi

∼= gq̂p̂ûj

∼=
1

2
[gq̂p̂ûi

+ gq̂p̂ûj
] ≡ gq̂p̂ûji

, (5.3)

Then in the case of the baseline vector u21 between two antennas u1,u2, the GR equations

for Kalman filtering are derived as follows:

yqpu2u1
(t) = Cqp

û21
(t)ξqpu21

(t) + vqpu2u1
(t), (5.4)

where

Cqp
û21

≡

 Gp̂1̂
û21

0

Gp̂1̂
û21

λ1I

 , ξqpu21
≡

[
u21

Nns1
L1,u2u1

]
,

Gp̂1̂
û21

≡


(g2̂1̂û21

)T

(g3̂1̂û21
)T

...

(gn̂s1̂
û21

)T

 : (ns − 1)× 3. (5.5)

State Equations for Baseline Vector Estimation

In the static case for antennas, we utilize the state vector ξp1u21 in Eq. (5.4) for antennas of

u1 and u2 (nr = 2) and for ns satellites. In order to simplify the expression, superscripts

s, 1 and subscripts u1,u2 are omitted hereafter.

ξL(t+ 1) = ξL(t), ξL ≡
[
uT21,L, N

T
]T

, (5.6)

where L stands for the ENU coordinates in the local frame. And the observation equation

y(t) is based on a local position as a origin; û1 and derived from the relation between

Eq. (5.4) and the transformation by TL
W as follows:

y(t) = CξL(t)ξL(t) + v(t), (5.7)

CξL(t) =

 Gp̂1̂
û21

(TL
W )T O

Gp̂1̂
û21

(TL
W )T λ1I

 , (5.8)
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where Gp̂1̂
ûji

(TL
W )T is a (ns − 1) × 3 matrix, and O is a (ns − 1) × (ns − 1) zero matrix,

and I is the (ns − 1) × (ns − 1) identity matrix. The same positioning algorithms based

on the Kalman filter in Eqs. (2.120)-(2.125) are applied to the state vector ξ in Eqs. (5.6)

and (5.7).

Updating by Constraint Conditions

The constraint conditions are applied to update baseline-vector estimates as follows.

Namely, when we have obtained the filtering estimates ξ̂t|t and the error covariance matrix

Σt|t, we apply the constraint conditions the baseline-vector length lji:

lji,t = ||uji,t||+ elji,t , (5.9)

where elji,t is mutually independent Gaussian white noises with

edji,t ∼ N(0, rdji,t), (5.10)

where

||uji|| =
√

ujiTuji. (5.11)

Define the followings as constraints:

lnr,t ≡ [l21,t, l31,t, · · · , lnr1,t, · · · , lnrnr−1,t], (5.12)

and consider the following relations of the conditional probability density function (CPDF),

p(ξt|Y t, lnr,t) =
p(ξt, Y

t, lnr,t)

p(Y t, lnr,t)
=

p(ξt, lnr,t|Y t)p(Y t)

p(Y t, lnr,t)

=
p(lnr,t|ξt, Y t)p(ξt|Y t)p(Y t)

p(Y t, lnr,t)

= K0(Y
t, lnr,t)p(ξt|Y t)p(lnr,t|ξt). (5.13)
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Then we have relations from Kalman filtering methods:

p(ξt|Y t) =
1

(2π)n′/2|Σξ,t|t|1/2
exp

{
− 1

2
(ξt − ξ̂t|t)

TΣ−1
ξ,t|t(ξt − ξ̂t|t)

}
.

Then we have relatins from Eq. (5.9):

p(lnr,t|ξt) =
1√
2πrlji

exp
{
− {lji,t − ||uji,t||}2

2rlji

}
. (5.14)

Therefore, the power terms Eq. (5.13) is expressed by the quadratic form as follows:

p(ξt|Y t, lnr,t) = K0(Y
t, lT−nr,t)

× 1

(2π)n′/2|Σξ,t|t|1/2
exp

{
− 1

2
(ξt − ξ̂t|t)

TΣ−1
ξ,t|t(ξt − ξ̂t|t)

}
× 1√

2πrlji
exp

{
− {lji,t − ||uji,t||}2

2rlji

}
, (5.15)

where the constraints are expressed by the quadratic form of ξ as follows:

{lji − ||uji||}2

2ruji

∼=
1

2rlji
(l2ji + uTjiuji − 2ljiκ

T
jiuji)

=
1

2
(uTji

I

rlji
uji −

2lji
rlji

κTjiuji +
l2ji
rlji

)

=
1

2
(ξTjiMjiξji − clji

Tξji +
l2ji
rlji

), (5.16)

where

Kji ≡
I

rlji
(: 3× 3), clji ≡

2ljiκ
T
ji

rlji
. (5.17)

In the case of nr = 2,

1

2

{l21 − ||u21||}2

rl21
∼=

1

2
{ξTM21ξ + cTl21ξ +

l221
rl21

}, (5.18)

where

M21 ≡

[
K21 Ons−1

Ons−1 Ons−1

]
, cl21 ≡

[
−cTl12 0Tnr−1

]
,
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Ons−1 is zero matrix of (ns − 1)× (ns − 1), and 0ns−1 is zero vector of 1× (ns − 1),

K21 ≡
I

rl21

T

(: 3× 3), cTl21 ≡ 2l21κ
T
21

rl21
.

Therefore, finally we have the following quadratic form as the power term of Eq. (5.15),

1

2
(ξ − ξ̂)Σ−1(ξ − ξ̂) +

1

2

{l21 − ||u21||}2

rl21

∼=
1

2
{ξTΣ−1ξ − ξTΣ−1ξ̂ − ξ̂TΣ−1ξ + ξ̂TΣ−1ξ̂ + ξTMξ21ξ + cTξ21ξ +

l221
rl21

}

=
1

2
{ξT(Σ−1 +Mξ21)ξ − ξT(Σ−1ξ̂ − 1

2
cξ21)− (ξ̂TΣ−1 − 1

2
cξ21)ξ + ξ̂TΣ−1ξ̂ +

l221
rl21

}

=
1

2
{[ξ − (Σ−1 +Mξ21)

−1(Σ−1ξ̂ − 1

2
cξ21)]

T(Σ−1 +Mξ21)

×[ξ − (Σ−1 +Mξ21)
−1(Σ−1ξ̂ − 1

2
cξ21)]

−(Σ−1ξ̂ − 1

2
cξ21)

T(Σ−1 +Mξ21)
−1(Σ−1ξ̂ − 1

2
cξ21) + ξ̂TΣ−1ξ̂ +

l221
rl21

}.

Then the updated estimates ξ21 and the updated error covariance Σ21 of ξ21 based on the

minimum mean square estimate are given by

ξ̌21 = (Σ−1
ξ21

+Mξ21)
−1(Σ−1

ξ21
ξ̂21 + cξ21) (5.19)

Σ̌ξ21 = (Σ−1
ξ21

+Mξ21)
−1. (5.20)

In the cases of nr = 3 and nr = 4, see Appendix D.

5.3 Euler Angle Estimation Algorithms

The rotation angles α, β, γ around X,Y,Z-axes, respectively, are called Euler angles,

and the corresponding rotation matrixes are as follows:

Γ(X,α) ≡

1 0 0

0 cosα sinα

0 −sinα cosα

 ,Γ(Y, β) ≡

cosβ 0 −sinβ

0 1 0

sinβ 0 cosβ

 ,Γ(Z, γ) ≡

 cosγ sinγ 0

−sinγ cosγ 0

0 0 1

 .

(5.21)
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X

Z

Y

Figure 5.1: Euler’s principal rotation theorem

In the case of nr = 2, the rotation matrix of Z-Y-X sequence from the vector rf,N,21 on

the reference frame to the estimated baseline vector ûN,21 on the body frame is as follows:

ûN,21 = Γ(X,α)Γ(Y, β)Γ(Z, γ)rf,N,21

= Γ(α, β, γ)rf,N,21, (5.22)

where N denotes normalized,

rf,N,21 ≡
rf,21

||rf,21||
= [x

(R)
N,21, y

(R)
N,21, z

(R)
N,21]

T
, ûN,21 ≡

û21
||û21||

= [x̂N,21, ŷN,21, ẑN,21]
T.(5.23)

The rotation matrix Γ(α, β, γ) in Eq. (5.22) is a combined matrix of the rotation ma-

trixes Γ(α), Γ(β), Γ(γ) in Eq. (5.21), and derived as shown in Eq. (5.25). Euler angles

α, β, γ are derived from the elements of the rotation matrix Γ(α, β, γ) as follows:

roll : α = tan−1Γ32

Γ33
, pitch : β = tan−1 −Γ31√

Γ2
32 + Γ2

33

, yaw : γ = tan−1Γ21

Γ11
, (5.24)

where Γ21 denotes the matrix element of the second row and first column.
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In order to obtain Euler angles by multiple baseline vectors, we consider Euler’s prin-

cipal rotation theorem shown in Fig. 5.1. According to the theorem, any vector can be

brought into the target vector by one rotation angle ϕ around the vector n. The ϕ is

the angle between two vectors rf,N,21 and ûN,21, and the n is the common normal vector

of two vectors rf,N,21 and ûN,21. The vector rf,N,21 is identical with the vector ûN,21 by

rotating of the angle ϕ around the principal axis n. Therefore, the rotation matrix Γ is

expressed by another way of the rotation matrix Γ̃(ϕ,n) by using the angle ϕ and the

vector n as shown in Eq. (5.26) [47], [51]. The angle ϕ is obtained from the inner product

of the two vectors, and the vector n is obtained from the outer product of the two vectors.

Euler angles in Eq. (5.24) are similarly obtained from the elements of the rotation matrix

Γ̃(ϕ,n).

Γ(α, β, γ)

=

 cosγcosβ −sinγcosα+ cosγsinβsinα sinγsinα+ cosγsinβcosα

sinγcosβ cosγcosα+ sinγsinβsinα −cosγsinα+ sinγsinβcosα

−sinβ cosβsinα cosβcosα

 (5.25)

∼= Γ̃(ϕ,n)

=

 cosϕ+ (1− cosϕ)nx
2 (1− cosϕ)nxny − nzsinϕ (1− cosϕ)nznx + nysinϕ

(1− cosϕ)nxny + nzsinϕ cosϕ+ (1− cosϕ)ny
2 (1− cosϕ)nynz − nxsinϕ

(1− cosϕ)nznx − nysinϕ (1− cosϕ)nynz + nxsinϕ cosϕ+ (1− cosϕ)nz
2

 ,

(5.26)

where

cosϕ = rf,N,21 · ûN,21 : inner product,

n = (nx, ny, nz)
T =

rf,N,21 × ûN,21

||rf,N,21 × ûN,21||
: outer product. (5.27)

In the case of multiple antennas, we derive the computational algorithms by estimat-

ing the multiple baseline vectors ûN,ji from the reference antenna i to other antennas j
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disposed in a plane [47], [52]. The appropriate rotation matrix Γ to minimize the rotation

errors from the multiple reference baseline vectors rf,N,ji to the multiple baseline vectors

ûN,ji is estimated by the least-squares method, and that is the corresponding equations to

estimate the parameters θ of Euler’s principal rotation theorem as follows (See Appendix

E):

min
Γ

nr∑
i<j

||ûN,ji − Γrf,N,ji||2Q−1
ûN,ji

= min
θ

nr∑
i<j

||ûN,ji −Hjiθ||2Q−1
ûN,ji

, (5.28)

where

ûN,ji ≡

 x̂N,ji

ŷN,ji

ẑN,ji

 , θ ≡


cosϕ

nxsinϕ

nysinϕ

nzsinϕ

 , Hji ≡

x
(R)
N,ji 0 z

(R)
N,ji −y

(R)
N,ji

y
(R)
N,ji −z

(R)
N,ji 0 x

(R)
N,ji

z
(R)
N,ji y

(R)
N,ji −x

(R)
N,ji 0

 , (5.29)

and, QûN,ji
denotes the error covariance of the estimates ûN,ji.

The Euler-angle estimation by the parameters of Euler’s principal rotation theorem

under Z-Y-X sequence is as follows. First of all, the multiple vectors rf,ji and ûji are

normalized as shown in Eq. (5.23) as follows:

rf,N,ji ≡
rf,ji

||rf,ji||
= [x

(R)
N,ji, y

(R)
N,ji, z

(R)
N,ji]

T
, ûN,ji ≡

ûji
||ûji||

= [x̂N,ji, ŷN,ji, ẑN,ji]
T, (5.30)

and mapped on the X-Y,X-Z,and Y-Z planes to estimate the rotation angles in the se-

quence.

Then the parameters θ̂(Z, γ), θ̂(Y, β), and θ̂(X,α) for the rotations around Z-axis, Y-

axis and X-axis are estimated by the least-squares method in the sequence, respectively.
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Eq. (5.28) is developed and expressed by the quadratic form of θ as follows:

nr∑
i<j

||ûN,ji −Hjiθ||2Q−1
ûN,ji

=

nr∑
i<j

(ûN,ji −Hjiθ)
TQ−1

ûN,ji
(ûN,ji −Hjiθ)

=

nr∑
i<j

(ûTN,jiQ
−1
ûN,ji

ûN,ji − ûTN,jiQ
−1
ûN,ji

Hjiθ − θTHT
jiQ

−1
ûN,ji

ûN,ji + θTHT
jiQ

−1
ûN,ji

Hjiθ)

= θT
nr∑
i<j

(HT
jiQ

−1
ûN,ji

Hji)θ −
nr∑
i<j

(ûTN,jiQ
−1
ûN,ji

Hji)θ

−θT
nr∑
i<j

(HT
jiQ

−1
ûN,ji

ûN,ji) +

nr∑
i<j

(ûTN,jiQ
−1
ûN,ji

ûN,ji), (5.31)

Eq. (5.31) is differenciated by θ,

2

nr∑
i<j

(HT
jiQ

−1
ûN,ji

Hji)θ − 2

nr∑
i<j

(HT
jiQ

−1
ûN,ji

ûN,ji) = 0, (5.32)

and finally the estimate θ̂ is obtained by the weighted least squares method as follows:

θ̂ =

 nr∑
i<j

(HT
jiQ

−1
ûN,ji

Hji)

−1
nr∑
i<j

(HT
jiQ

−1
ûN,ji

ûN,ji). (5.33)

Then each rotation matrix Γ̃(Z, ϕ,n), Γ̃(Y, ϕ,n), and Γ̃(X,ϕ,n) in Eq. (5.26), respec-

tively, is derived through Eq. (5.27) from the parameter θ̂. Finally, Euler angles γ, β, α

in Eq. (5.24) are obtained from each rotation matrix of Eq. (5.26) in the Z-Y-X sequence.

5.4 Experiments

5.4.1 Baseline Vectors Estimation

The measurement equation of the baseline-vector estimations in Eq. (5.4) is derived

from the equation of the DD-PPP. The both equations estimate the DD-based integer am-

biguities by Kalman filter. For the PPP method, when the estimated integer ambiguities

Nns1
L1,u2u1

converge to the fixed integers, the unknown antenna positions are approaching to
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the real positions. As a preliminary experiment, we have checked the integer ambiguities

(IA) convergence by the two antenna DD-PPP positioning. Fig. 5.2 shows the IA conver-

gence in the two cases, (1) the synchronous processes of two receivers by a common clock,

and (2) the asynchronous processes by the individual clocks. The experiments by the both

processes are conducted at the same time for 10-minutes. The IA convergence of the pro-

cess (1) takes approximately 200 epochs which is half of the process (2). The base clock

is TCXO and the frequency accuracy is 26MHz±0.5 ppm. In the case of (2), the different

clock with the fluctuation ±0.5 ppm are supplied to the two receivers, and the DD-based

IA estimations based on the observables obtained by the shifted clocks could cause the

delay of the IA convergence. We consider that the process (2) could cause the delay of

the position convergences, and use the process (1) for the baseline-vector estimations.

The GPS observation data obtained by the experiment shown in Table 4.1 are used for
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Figure 5.2: Integer Ambiguity convergence of DD-PPP
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Figure 5.3: Reference and baseline vectors on ENU coordinates

Table 5.1: Six vectors on the reference and the body frame

Reference frame Body frame

E [m] N [m] U [m] E [m] N [m] U [m]

rf,21 1 0 0 u21 0.799 -0.015 -0.006

rf,31 1 1 0 u31 0.812 0.783 -0.003

rf,41 0 1 0 u41 0.013 0.797 0.000

rf,32 0 1 0 u32 0.012 0.798 0.002

rf,42 -1 1 0 u42 -0.786 0.812 0.006

rf,43 -1 0 0 u43 -0.799 0.014 0.003

the baseline-vector estimation. The four antennas ANT-1, 2, 3, 4 are located at the corners

of a square board (see Fig. 4.1). The receivers connected to the ANT-1 and ANT-2, or

ANT-3 and ANT-4 are synchronized by a common clock, respectively. The coordinates

of the antennas’ reference positions in the WGS84 system are listed in Table 4.2, and the

positioning error applying the relative positioning method is less than a few centimeters.

In general, in order to estimate three-dimensional body attitude, the reference frame

and the body frame are defined. The attitude is obtained by the rotation from the ref-



104

erence frame to the body frame. In the case of four antennas, as shown in Fig. 5.3,

there are six baseline vectors based on the number of two-antenna pairs. The red vectors

rf,21, rf,31, rf,41, rf,32, rf,42, rf,43 show the reference vectors of the reference frame, and ide-

ally located along the axes of the ENU coordinates. The green vectors u21, u31, u41, u32, u42, u43

show the baseline vectors of the body frame on the ENU coordinates, and are fixed to

the body of the square board. We apply the ENU (ENU: East, North, and Height(Up))

coordinates to the both frame. The ANT-1 position is the origin of the ENU coordinates.

Table 5.1 shows the six reference vectors rf,ji on the reference frame, and the six baseline

vectors uji calculated from the relative positioning in Table 4.2. The reference vectors are

reference values on the local tangent plane, namely the EN plane. The vectors’ values are

approximately the same, and the rotational angles of the corresponding vectors are less

than a few degrees.

Fig. 5.4 shows the six baseline vectors u21,u31,u41,u32,u42,u43 estimated by Eq. (5.4)

and the vector u21 updated by the vector length constraint in Eq. (5.9) on the EN plane.

The measurement time is 20 minutes (1200 epochs). All estimates without constraints are

gradually converged to the real positions which are the end points of the baseline vectors

(green arrows). The ENU root-mean-square (RMS) errors of the baseline-vector estimates

after 1200 epochs are approximately 10 cm as shown in Table 5.2. On the contrary, u21

(C) is converged adjacent to the real position in several epochs after the estimation start.

Furthermore, when the IA fixed values are forced to utilize for the baseline-vector estima-

tion in Eq. (5.4), the ENU RMS errors of the estimates are approximately less than 1 cm

after setting the values as shown in Table 5.2.
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Figure 5.4: Baseline-vector estimation

Table 5.2: RMS errors of estimated baseline vectors

ENU RMS errors [m] u21 u31 u41 u32 u42 u43

After 1200 epochs 0.0966 0.0873 0.0538 0.1118 0.0919 0.0724

After set IA fixed values 0.0106 0.0040 0.0058 0.0072 0.0075 0.0053

5.4.2 Euler Angle Estimation

Fig. 5.5 shows the estimation results of Euler angles from the reference frame to the

body frame obtained in Eq. (5.24). The error covariance QûN,ji
in Eq. (5.33) is supposed to

be the (3× 3) identity matrix. (a) utilizes only u21 baseline-vector estimates, (b) utilizes

six baseline-vector estimates, and (c) utilizes only u21 updated by constraints to estimate

Euler angles. The rotation angles between the two frames obtained in Table 5.1, namely

a few degrees, are utilized to correct the Euler-angle estimation results. One vector u21

estimates only two rotation angles γ,β in the Z-Y sequence in Table 5.3. (a) shows that

the angles γ,β are approximately 10 degrees even after 1200 epochs. On the contrary,

(b) shows that all rotation angles are estimated by six baseline vectors and gradually
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converged as time goes by, and less than 5 degrees in approximately 600 epochs, and less

than 2 degrees in approximately 1200 epochs. (c) shows that the rotation angle γ in the

X-Y plane is less than 2 degrees in several epochs, because the u21 vector is precisely

estimated by the constraints, and converge to the fixed point around the real position on

the EN coordinates. However, the upward errors of the vector is not small, therefore the

rotation angle β is more than 20 degrees.

The baseline-vector estimates are gradually converged to the real positions, however,

it takes approximately 20 minutes. The improvements of the vector positions are caused

by improving the estimation of the integer ambiguities Nns1
L1,u2u1

in Eq. 5.5 with the lapse

of time. When the fixed integer ambiguities are used as the initial values for the vector

estimations, the more precise accuracy is obtained than usual. The Euler-angle estimation

by six baseline vectors are worse than one vector just after the estimation, however, the

better rotation angle estimates are obtained with the lapse of time. It is high possibility

for Euler angles to be more precise for shorter time as the number of baseline vectors is

increased.

5.5 Concluding Remarks

We have presented a novel baseline-vector estimation algorithms based on the double-

difference (DD) positioning method, namely DD-PPP, and applied a novel update algo-

rithm based on the vector length constraints. GPS data are applied to the coupled GR

equations for multiple antennas in the case of unknown positions. The experiments for

the baseline-vector estimations among four antennas in the static situation for 20 minutes

have been carried out. The six baseline vectors are estimated at a time, and the vectors’

positions gradually converge to the real positions. When the vector length constraints are
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applied, the positions can be reached adjacent to the real position in several epochs.

We have obtained Euler angles from the reference frame to the body frame by the

least-squares method of six baseline vectors through the parameters of Euler’s principal

rotation theorem. The experiments for Euler-angle estimation by utilizing the vectors have

been carried out for 20 minutes. Euler angles by six baseline vectors are more precisely

estimated compared with one vector, and gradually converged to less than 2 degrees in

approximately 1200 epochs.

In general, GNSS receivers for vehicles need higher availability, therefore higher sensi-

tivity are achieved by longer correlation time. However, the longer correlations cause the

broad correlation peaks, and the tendency of worse positioning accuracy or positioning

fluctuations as a result. The fluctuations directly cause the worse absolute positioning

accuracy, however, the offsets toward the same direction at two antennas contribute the

improvement of the baseline-vector accuracy. When the two receivers are operated by

the synchronized clock, the receiver-related offset difference are reduced, and the vector

accuracy are expected to be improved.

Presently the DD-based algorithms for PPP and VPPP provide the positioning accu-

racy in sub-meter error level, and has the potential capability for estimating the baseline

vectors, namely the position differences between two antennas. When DD-PPP/VPPP

positioning performance would be improved, Euler angles by multiple baseline vectors

would be more precise. Furthermore, we find that the higher estimated accuracy of inte-

ger ambiguities in DD-PPP can provide the higher accuracy of baseline vectors. In the

future, we will apply integer ambiguity resolution methods to DD-PPP methods.
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Table 5.3: Baseline vectors for Euler-angle estimations

Estimated Euler-angles Baseline vectors for the estimation

γ (Z − axis) rf,21, rf,31, rf,41, rf,32, rf,42, rf,43

β (Y − axis) rf,21, rf,43

α (X − axis) rf,41, rf,32
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Figure 5.5: Euler-angle estimation



Chapter 6

Conclusions

The advanced GNSS positioning researches of sub-meter-level accuracy for automotive

applications have been considered. In this chapter, the main findings and contributions

obtained in this thesis are summarized, and recommendations are made for future research

and for users of the methods.

The novel GNSS regression (GR) models for single difference (SD)/double difference

(DD) based precise point positioning (PPP) have been derived in Chapter 2. The math-

ematical models of three types of raw measurements, namely C/A code pseudoranges,

carrier-phase pseudoranges, and Doppler shift frequencies, are utilized as the basic equa-

tions for positioning. For comparison, the coupled PPP GR equations for multiple anten-

nas are shown. The SD/DD-PPP GR models for L1 observables of multiple antennas are

derived based on the mathematical models of SD/DD observables.

In order to improve observable reliability for positioning, the methods for detecting

and correcting observable outliers of Doppler-aided positioning have been proposed in

Chapter 3. A Doppler-aided Kalman filter positioning for single-frequency receivers are

formulated from PPP GR models, and reproduced the real receiver’s positioning error by

Doppler bias under open sky environments. The chi-squared tests by the existing inno-
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vation based detection (IBD) method and a novel measurement based detection (MBD)

method are applied to detect the bias. The exclusion or the estimation correction methods

combined with the detection methods are proposed, and shows the correction results of

the positioning errors. The MBD and exclusion method provides the best performance

among three combination methods, because it is less affected by the false detections of

Doppler observables and has the smaller response delays at the start and end points of

the bias-injected period. Furthermore, the MBD-method can be applied to the detection

of not only Doppler outliers but also C/A code pseudorange outliers or carrier-phase cycle

slips.

In order to achieve the sub-meter level positioning, the improved Very PPP (VPPP)

algorithms based on the minimum mean square (MMS) methods by geometric distance

constraints among multiple antennas have been derived, and applied to the PPP or the

DD-PPP in Chapter 4. The experiments of four antennas (receivers) are carried out in a

static situation. DD-VPPP has the smallest root-mean-square (RMS) errors among four

positioning methods, namely PPP and VPPP of without DD (WOD) and DD-methods

when two antennas are used. The total improvement ratio from the PPP to the DD-VPPP

is approximately 84%. The experiments of the 24-hours static positioning by using four

low-end single-frequency GPS antennas are carried out. The two antenna DD-PPP/VPPP

achieve less than 40-cm positioning errors on horizontal east-north (EN) coordinate after

ten seconds (epochs). DD-VPPP are approximately less than half on EN coordinate,

and less than 1/4 on east-north-up (ENU) coordinates compared with the u-blox NEO-

M8N positioning. The improvement ratios of the averaged RMS errors from DD-PPP to

DD-VPPP are approximately improved from 82% to 66% on EN coordinates.

The GR models for baseline-vector estimation with vector length constraints, and the
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Euler-angle estimation algorithms based on the vectors have been derived in Chapter

5. The experiments for the baseline-vector estimates among four antennas in the static

situation are carried out. During 20 minutes, six baseline vectors among four antennas

are estimated at a time, and the vectors’ positions are gradually approaching the real

positions. The Euler-angle estimation from the reference frame to the body frame by the

least-squares method of six baseline vectors through the parameters of Euler’s principal

rotation theorem are conducted. Euler angles by six baseline vectors are more precisely

estimated compared with one vector, gradually converged to less than 2 degrees after 1200

epochs.

Recommendations

Future studies to improve the methods described in this thesis can be recommended.

The innovation processes of the extended Kalman filter are stated to be effective to

detect the observable outliers in Chapter 3. We consider that Robust Kalman filter meth-

ods can be applied for GNSS observable outliers as a next step, because it is reported to

be effective to reduce the impacts of observable spike noises [9], [10].

The ENU RMS errors of SPP methods are stated to be approximately 2.0m at Table 4.9

in Chapter 4. The position u1,u2 estimation by Kalman filter positioning utilizes SPP

results as initial values. The SPP fluctuations cause the fluctuations of the DD-PPP/DD-

VPPP positioning. When the relative positioning values close to the real positions are

used as the initial values, the positioning errors are reduced to less than 0.5m from ap-

proximately 1.5m of SPP initial values. The ionosphere delay parameters of Quasi-Zenith

Satellite System (QZSS) are stated to be effective to improve SPP results, and additionally

Satellite Based Augmentation System (SBAS) or International GNSS Service (IGS) pa-
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rameters broadcasted from GNSS satellites can contribute to improve SPP. Furthermore,

in order to get more precise initial positions of the antennas u1,u2, the receivers on the

vehicles can utilize the last positions just before the stop, and the positions specified by the

auxiliary sensors, namely gyro or altitude sensors, or the positions transmitted through

communication means from reference stations.

The static positioning by DD-PPP/VPPP are stated to achieve approximately 50-cm

RMS errors in Chapter 4. We consider the kinematic positioning of the DD-PPP/VPPP

by using multiple antennas as a next step. PPP kinematic positioning algorithms by single

antenna has been developed, and Singer models are applied as the state equations. Fur-

thermore, the individual PPP kinematic positioning of two antennas (receivers) has been

improved through VPPP-updating method by geometric distance constraints between two

antennas. In the case of DD-PPP, we consider that the multiple unknown antenna posi-

tions are treated in a unified manner in the Kalman filter algorithms.

DD-PPP/VPPP methods are stated to have the unknown parameters of the multiple

antennas’ positions and the double-difference integer ambiguities which are estimated by

the Kalman filter. Even though the fixed integer ambiguities and the small variances of

them are set as the initial values, DD-PPP positioning results have offset values from the

real antenna positions. The fixed integer values are obtained by the relative positioning

in the static situation. While the baseline-vector estimates are more precisely obtained

by the usage of the fixed integer ambiguities, because the offset values of two antennas

can be canceled. It therefore can be effective for improving the attitude estimation among

multiple antennas to converge the integer ambiguities to the fixed values in shorter time.
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Publications during Doctoral Course

Journal papers:

A. Mouri, Y. Kubo, S. Sugimoto, and M. Ohashi: Detection and Correction of Doppler

Outliers in Kalman Filter-based Positioning, Transactions of The Institute of Systems,

Control and Information Engineers, Vol. 29, No. 1, pp. 18-28, January (2016).

A. Mouri, Y. Karatsu, S. Sugimoto, Y. Kubo, M. Ohashi and G. Okuda: New

PPP/VPPP Algorithms by using Multiple Antennas, Transactions of The Institute of

Systems, Control and Information Engineers, Vol. 29, No. 12, pp. 525-534, December

(2016).

Conference papers:

A. Mouri, Y. Kubo and S. Sugimoto: Detection and Correction of Doppler Biases in

Kalman Filter-based Positioning, Proc. of the 46th ISCIE International Symposium on

Stochastic Systems Theory and Its Applications (SSS’14), pp. 156-164, Kyoto, November

(2014).

S. Sugimoto, Y. Suzuki, Y. Karatsu, M. Ozaki, A. Mouri, Y. Kubo: VPPP Algorithms

with Multiple Antennas and their Applications, Proc. of the 27th Int. Tech. Meeting of

The Satellite Division of the Institute of Navigation (ION GNSS+ 2014), pp. 1073-1084,

Tampa, Florida, September (2014).

Y. Karatsu, A. Mouri, Y. Kubo, and S. Sugimoto: Advancement of GNSS positioning

using multiple antennas, Proc. of the 59th Annual Conference of the Institute of Systems,
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Control and Information Engineers (ISCIE), Osaka, May 20-22 (2015) (in Japanese).

Y. Karatsu, A. Mouri, Y. Kubo and S. Sugimoto: Further Development of VPPP

Algorithms with Multiple Antennas, Proc. of the 28th Int. Tech. Meeting of The

Satellite Division of the Institute of Navigation (ION GNSS+ 2015), pp. 1181-1192,

Tampa, Florida, September (2015).

A. Mouri, Y. Karatsu, G. Okuda, S. Sugimoto, and Y. Kubo: Very Precise Point

Positioning Algorithms among GNSS Antennas, Proc. of the 60th Annual Conference of

the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 25-27

(2016) (in Japanese).

A. Mouri, G. Okuda, S. Sugimoto, and Y. Kubo: VPPP Algorithms of Baseline Vector

Estimation among Multiple Antennas, Proc. of the 48th ISCIE International Symposium

on Stochastic Systems Theory and Its Applications (SSS’16), Fukuoka, will appear in

May (2017).

A. Mouri, G. Okuda, Y. Kubo and S. Sugimoto: Novel VPPP Algorithms with Multiple

Antennas and Attitude Estimation, Proc. of the 30th Int. Tech. Meeting of The Satellite

Division of the Institute of Navigation (ION GNSS+ 2017), Moterey, California, will

appear in June (2017).



Bibliography

[1] B. W. Parkinson and J. J. Spilker: The Global Positioning System: Theory and

Applications, Vol. I, II, AIAA Publications (1996).

[2] B. Hofmann-Wellenhof, H. Lichtenegger and J. Collins: GPS; Theory and Practice,

5th revised edition, Springer-Verlag (2001).

[3] E. D. Kaplan and C. J. Hegarty (Eds.): Understanding GPS: Principles and Appli-

cations 2nd edition. Artech House, Boston and London (2006).

[4] http://www.navcen.uscg.gov/. UNITED STATES COAST GUARD Navigation Cen-

ter Homepage, operated by U.S. Department of Homeland Security.

[5] http://www.glonass-iac.ru/en/. Information and Analysis Center for Positioning,

Navigation and Timinig Homepage, operated by Russian Government.

[6] http://en.beidou.gov.cn/. BeiDou Navigation Satellite System Homepage, operated

by Chinese Government.

[7] http://www.gsc-europa.eu/. European GNSS Service Centre Homepage, operated by

European GNSS Agency.

[8] http://qzss.go.jp/en/. Michibiki (Quasi-Zenith Satellite System) Homepage, operated

by Japanese Cabinet Office.

115



116

[9] T. Nakamizo: Robust Estimation (in Japanese), Measuremnet and Control, Vol. 23,

No. 6, pp. 541-549, June (1984).

[10] Y. Kaneda, Y. Irizuki and M. Yamakita: Design Methods of Robust Kalman Filter

Based on Statistics and Its Alpplication (in Japanese), Trans. of ISCIE, Vol. 27, No.

2, pp. 49-58, (2014).

[11] Y. Kubo, K. Sone and S. Sugimoto: Fault Detection in Carrier Phase GPS Posi-

tioning Based on Hypotheses Testing of Innovation Processes, Int. J. of Innovative

Computing, Information and Control Vol. 1, No. 3, pp. 461-478, Sept. (2005).

[12] M. Kamimura, R. Tomita, T. Nagano, A. Chabata Y. Kubo and S. Sugimoto: De-

tection of Cycle Slips and Multipath in GNSS RTK Precise Point Positioning, Proc.

24th Int. Technical Meeting of the Satellite Division of the Institute of Navigation

(ION GNSS 2011), pp. 1056-1067, Portland, OR, Sept. (2011).

[13] International Standarss and Recommended Practices, Annex 10 to the Convention

on Civil Aviation: Aeronautical Telecommunications, Vol. I: Radio Navigation Aids,

6th Ed., July (2006).

[14] R. Hirokawa, Y. Sato, S. Fujita and M. Miya: Compact SSR Messages with Integrity

Information for Satellite based PPP-RTK Service, Proc. 29th Int. Technical Meeting

of the Satellite Division of the Institute of Navigation (ION GNSS+ 2016), pp. 3372-

3376, Portland, OR, Sept. (2016).

[15] S. Sugimoto and Y. Kubo: GNSS Regressive Models and Precise Point Positioning,

Proc. of the 36th ISCIE Int. Symp. on Stochastic Systems Theory and Its Applications,

Saitama, pp. 47-48, Nov. (2004).



117

[16] S. Sugimoto and Y. Kubo: Carrier-Phase-Based Precise Point Positioning - a novel

approach based on GNSS regression models, Proc. GNSS 2004 Symposium, No. P94,

Sydney, NSW, Australia, Dec. (2004).

[17] Y. Kubo, A. Kitao, S. Fujita, and S. Sugimoto: A New RTK Algorithm for Carrier-

Phase-Based Precise Point Positioning Based on GNSS Regression Model, Proc. ION-

GNSS 2005, pp. 1492-1499, Long Beach, Sept. (2005).

[18] S. Sugimoto and Y. Kubo: Unified Methods of Point and Relative Positioning Based

on GNSS Regression Equations, Proc. 19th Int. Tech. Meeting of the Satellite Division

of The Institute of Navigation (ION GNSS 2006), pp. 345-358, Fort Worth, Texas,

Sep. (2006).

[19] S. Sugimoto, Y. Kubo, S. Fujta and T. Kazuno: A New GNSS Regressive Positioning

Algorithm Based on GR Models, Proc. of the 38th ISCIE Int. Symp. on Stochastic

Systems Theory and Its Applications, pp. 166-173, Suwa, Nagano, Japan, (Nov. 2006).

[20] S. Sugimoto: GNSS Positioning Algorithms based on GR Models, Section 7.2.1 of

GPS Handbook (in Japanese) ed. by S. Sugimoto and R. Shibasaki, Asakura-Shoten,

Tokyo, Japan (2010).

[21] S. Sugimoto, Y. Kubo and S. Fujita: Very Precise Point Positioning Based on GR

Models, Proc. of the 38th ISCIE Int. Symp. on Stochastic Systems Theory and Its

Applications, pp. 174-179, Suwa, Nagano, Japan, Nov. (2006).

[22] S. Sugimoto, Y. Suzuki and Y. Kubo: RTK-VPPP Algorithms in Urvan Canyons,

Proc. of the 45th ISCIE Int. Symp. on Stochastic Systems Theory and Its Applications,

pp. 178-186, Okinawa, Japan, Nov. (2013).



118

[23] S. Sugimoto, Y. Suzuki, Y. Karatsu, M. Ozaki, A. Mouri, Y. Kubo: VPPP Algorithms

with Multiple Antennas and their Applications, Proc. of the 27th Int. Tech. Meeting

of The Satellite Division of the Institute of Navigation (ION GNSS+ 2014), pp. 1073-

1084, Tampa, Florida, Sept. (2014),

[24] Y. Karatsu, M. Ozaki, Y. Kubo, S. Sugimoto: Further Studies on the VPPP Algo-

rithms by using Multiple Antennas, Proc. of the 46th ISCIE Int. Symp. on Stochastic

Systems Theory and Its Applications, pp. 171-179, Kyoto, Japan, Nov. (2014).

[25] Y. Karatsu, A. Mouri, Y. Kubo and S. Sugimoto: Further Developments of VPPP Al-

gorithms with Multiple Antennas, Proc. of the 28th Int. Tech. Meeting of the Satellite

Division of the Institute of Navigation (ION GNSS+ 2015), pp. 1181 - 1192, Tampa,

Florida (Sept. 2015).

[26] P. Misra and P. Enge: Global Positioning System - Signals, Measurements, and Per-

formance, 2nd Edition, Ganga-Jamuna Press, Massachusetts (2006).

[27] M. Bahrami and M. Ziebart: A Kalman Filter-based Doppler-smoothing of Code

Pseudoranges in GNSS-Challenged Environments, Proc. 24th Int. Technical Meeting

of the Satellite Division of the Institute of Navigation (ION GNSS 2011), pp. 2362-

2372, Portland, OR, Sept. (2011).

[28] O. Arai: Functions of Positioning Signal Receiver Equipments Section 5.2.7 of GPS

Handbook (in Japanese) ed. by S. Sugimoto and R. Shibasaki, Asakura-Shoten, Tokyo,

Japan (2010).



119

[29] Y. Gao, and X. Shen: A New Method for Carrier-Phase-Based Precise Point Posi-

tioning, Journal of the Institute of Navigation, Vol 49, No. 2, pp. 109-116 (Summer

2002).

[30] Peter J. G. Teunissen and A. Kleusberg (Eds.): GPS for Geodesy, 2nd Edition,

Springer-Verlag, New York (1998).

[31] A. Leick: GPS Satellite Surveying, 3rd Edition, John Wiley & Sons, New York (2004).

[32] Y. Gao and Z. Z. Lin: Precise Ionosphere Modeling Using Regional GPS Network

Data, J. of Global Positioning Systems, Vol. 1, No. 1, pp. 18-24, July (2002).

[33] R. G. Brown and P. Y. C. Hwang: Introduction to Random Signals and Applied

Kalman Filtering, 3rd Edition, John Wiley & Sons, New York (1997).

[34] A. Chabata, Y. Suzuki, Y. Kubo and S. Sugimoto: RTK-PPP Algorithms using GNSS

Observables from Few Satellits, Proc. 25th Int. Technical Meeting of the Satellite

Division of the Institute of Navigation (ION GNSS 2012), pp. 3696-3707, Nashville,

Tennessee, Sept. (2012).

[35] T. Katayama: Applied Kalman Filtering, New edition, Asakura, Tokyo, 2000 (in

Japanese).

[36] S. Sugimoto: Stochastic Statistics and Kalman Filter, Appendix A4 in GPS Handbook

(in Japanese), pp. 432-460, ed. by S. Sugimoto and R. Shibasaki, Asakura-Shoten,

Tokyo, Japan (2010).

[37] M. E. Cannon: High Accuracy GPS Semi-Kinematic Positioning: Modelling and

Results, Proc. 2nd Int. Tech. Meeting of the Satellite Division of the Institute of

Navigation (ION GPS-89), pp. 405-418, (1989).



120

[38] M. Bahrami and M. Ziebart: Doppler-Aided Positioning: Improving Single-Frequency

RTK in the Urban Environment, GPS World, pp. 47-56, May (2011).

[39] A. Mouri, Y. Kubo and S. Sugimoto: Detection and Correction of Doppler Biases in

Kalman Filter-based Positioning, Proc. of the 46th ISCIE International Symposium

on Stochastic Systems Theory and Its Applications (SSS’14), pp. 156-164, Kyoto,

Nov. (2014).

[40] R. A. Singer: Estimating Optimal Tracking Filter Performance for Manned Maneu-

vering Targets, IEEE Trans. Aerospace and Electronic Systems, Vol. AES-6, No. 4,

pp. 473-483, July (1970).

[41] M. Basseville: Detecting Changes in Signals and Systems, Automatica, Vol. 24, No.

3, pp. 499-501, (1979).

[42] J. Wang and Y. Kubo: RAIM error detection based on least square residuals, Section

7.4.3 in GPS Handbook (in Japanese), ed. by S. Sugimoto and R. Shibasaki, Asakura-

Shoten, Tokyo, Japan (2010).

[43] Y. Kubo: Point Positioning Algorithms, Appendix A3 in GPS Handbook (in

Japanese), pp. 422-431, ed. by S. Sugimoto and R. Shibasaki, Asakura-Shoten, Tokyo,

Japan (2010).

[44] G. Giorgi: The Multivariate Constrained LAMBDA Method for Single-epoch, Single-

frequency GNSS-based Full Attitude Determination, Proc. 23rd Int. Technical Meet-

ing of the Satellite Division of the Institute of Navigation (ION GNSS 2010), pp.

1429-1439, Portland, OR, Sept. (2010).

[45] u-blox Product Catalog Issue 18.0, u-blox AG, Feb. (2016).



121

[46] S. Fujita Y. Kubo: Correction of Ionosphere Delays, Section 4.2 in GPS Handbook (in

Japanese), pp. 78-87, ed. by S. Sugimoto and R. Shibasaki, Asakura-Shoten, Tokyo,

Japan (2010).

[47] M. Fukuda: GNSS Applications to Attitude Determination Systems, Chapter 13 in

GPS Handbook (in Japanese), pp. 306-330, ed. by S. Sugimoto and R. Shibasaki,

Asakura-Shoten, Tokyo, Japan (2010).

[48] P. Henkel and C. Gunther: Attitude determination with low-cost GPS/INS, Proc.

ION GNSS+ 2013, pp. 2015-2023, Nashville, Tennessee, Sept. (2013).

[49] A. Mouri, Y. Karatsu, S. Sugimoto, Y. Kubo, M. Ohashi and G. Okuda: New

PPP/VPPP Algorithms by using Multiple Antennas, Transactions of The Institute

of Systems, Control and Information Engineers, Vol. 29, No. 12, pp. 525-534, Dec.

(2016).

[50] Peter J. G. Teunissen: A-PPP: Array-Aided Precise Point Positioning with Global

Navigation Satellite Systems, IEEE Trans. on Signal Processing, Vol. 60, No. 6, pp.

1-12, June (2012).

[51] F. Landis Markley and John L. Grassidis: Attitude Representations, 2.9 in Funda-

mentals of Spacecraft Attitude Determination and Control, pp. 41-59, Space Technol-

ogy library, New York, USA (2014).

[52] G. Wahba: A Least Squares Estimate of Spacecraft Attitude, SIAM Review, Vol. 7,

No. 3, p. 409, July (1965).



Appendix A

DD-PPP/VPPP Equations for
Three or Four Antennas

Let us define the (ns − 1)× 1 vectors as follows:

ρ̃ns
CA,ji ≡


ρ̃2̂1̂CA,ûj ûi

...

ρ̃n̂s1̂
CA,ûj ûi

 , Φ̃ns
L1,ji ≡


Φ̃2̂1̂
L1,ûj ûi

...

Φ̃n̂s1̂
L1,ûj ûi

 , N n̂s
L1,ji =


N 2̂1̂

L1,ujui

...

N n̂s1̂
L1,ujui

 , (A.1)

also define 3× (ns − 1) matrix

gns
j =

[
g2̂1̂ûj

· · · gn̂s1̂
ûj

]
: 3× (ns − 1). (A.2)

Measurement equation for antennas of u1, u2 and u3 (nr = 3) is as follows:

yns
u3u2u1

= Cns
u3u2u1

ηns
u3u2u1

+ vns
u3u2u1

, (A.3)
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where



ρ̃2̂1̂CA,û2û1

...

ρ̃n̂s1̂
CA,û2û1

ρ̃2̂1̂CA,û3û1

...

ρ̃n̂s1̂
CA,û3û1

ρ̃2̂1̂CA,û3û2

...

ρ̃n̂s1̂
CA,û3û2

Φ̃2̂1̂
L1,û2û1

...

Φ̃n̂s1̂
L1,û2û1

Φ̃2̂1̂
L1,û3û1

...

Φ̃n̂s1̂
L1,û3û1

Φ̃2̂1̂
L1,û3û2

...

Φ̃n̂s1̂
L1,û3û2



=



−(g2̂1̂û1
)T (g2̂1̂û2

)T 0 · · ·· · ·· · ·· · ·· · ·· · ·· · · 0
...

...
...
. . .

...

−(gn̂s1̂
û1

)T (gn̂s1̂
û2

)T
...

. . .
...

−(g2̂1̂û1
)T (g2̂1̂û3

)T
...

. . .
...

...
...

...
. . .

...

−(gn̂s1̂
û1

)T (gn̂s1̂
û3

)T
...

. . .
...

−(g2̂1̂û2
)T (g2̂1̂û3

)T
...

. . .
...

...
...

...
. . .

...

−(gn̂s1̂
û2

)T (gn̂s1̂
û3

)T
... · · ·· · ·· · ·· · ·· · ·· · ·· · · 0

−(g2̂1̂û1
)T (g2̂1̂û2

)T λ1

...
...

. . .

−(gn̂s1̂
û1

)T (gn̂s1̂
û2

)T λ1

−(g2̂1̂û1
)T (g2̂1̂û3

)T λ1

...
...

. . .

−(gn̂s1̂
û1

)T (gn̂s1̂
û3

)T λ1

−(g2̂1̂û2
)T (g2̂1̂û3

)T λ1

...
...

. . .

−(gn̂s1̂
û2

)T (gn̂s1̂
û3

)T λ1





u1

u2

u3

N21
L1,u2u1

...

Nns1
L1,u2u1

N21
L1,u3u1

...

Nns1
L1,u3u1

N21
L1,u3u2

...

Nns1
L1,u3u2



+ v.

(A.4)

In this case, we have

M3 ≡



( 1
rd21

+ 1
rd31

)I − 1
rd21

I − 1
rd31

I 0 · · · 0

− 1
rd21

I ( 1
rd21

+ 1
rd32

)I − 1
rd32

I
...

...

− 1
rd31

I − 1
rd32

I ( 1
rd31

+ 1
rd32

)I 0 · · · 0

0 · · · 0 0 · · · 0

...
...

...
...

0 · · · 0 0 · · · 0


,

(A.5)
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cM3 ≡
[
dTκ21 + dTκ31 −dTκ21 + dTκ32 −dTκ31 − dTκ32 0T · · · 0T

]
. (A.6)

Then the measurement equation for four antennas of u1, · · · , u4 (nr = 4) is as follows:

yns
u4u3u2u1

= Cns
u4u3u2u1

ηns
u4u3u2u1

+ vns
u4u3u2u1

, (A.7)

where



ρ̃ns
CA,21

ρ̃ns
CA,31

ρ̃ns
CA,41

ρ̃ns
CA,32

ρ̃ns
CA,42

ρ̃ns
CA,43

Φ̃ns
L1,21

Φ̃ns
L1,31

Φ̃ns
L1,41

Φ̃ns
L1,32

Φ̃ns
L1,42

Φ̃ns
L1,43



=



−(gns
1 )T (gns

2 )T

−(gns
1 )T (gns

3 )T

−(gns
1 )T (gns

4 )T

−(gns
2 )T (gns

3 )T

−(gns
2 )T (gns

4 )T

−(gns
3 )T (gns

4 )T

−(gns
1 )T (gns

2 )T λ1I

−(gns
1 )T (gns

3 )T λ1I

−(gns
1 )T (gns

4 )T
. . .

−(gns
2 )T (gns

3 )T
. . .

−(gns
2 )T (gns

4 )T
. . .

−(gns
3 )T (gns

4 )T λ1I





u1

u2

u3

u4

Nns
L1,21

Nns
L1,31

Nns
L1,41

Nns
L1,32

Nns
L1,42

Nns
L1,43



+ v,

(A.8)

M
(11)
4 ≡

 ( 1
rd21

+ 1
rd31

+ 1
rd41

)I − 1
rd21

I

− 1
rd21

I ( 1
rd21

+ 1
rd32

+ 1
rd42

)I

 , M
(12)
4 ≡

 − 1
rd31

I − 1
rd41

I

− 1
rd32

I − 1
rd42

I

 ,

M
(21)
4 ≡

 − 1
rd31

I − 1
rd32

I

− 1
rd41

I − 1
rd42

I

 , M
(22)
4 ≡

 ( 1
rd31

+ 1
rd32

+ 1
rd43

)I − 1
rd43

I

− 1
rd43

I ( 1
rd41

+ 1
rd42

+ 1
rd43

)I

 ,
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M4 ≡



M
(11)
4 M

(12)
4 O O

M
(21)
4 M

(22)
4 O O

O O O O

O O O O


, (A.9)

c
(11)
M4

= dTκ21 + dTκ31 + dTκ41, c
(12)
M4

= −dTκ21 + dTκ32 + dTκ42,

c
(13)
M4

= −dTκ31 − dTκ32 + dTκ43, c
(14)
M4

= −dTκ41 − dTκ42 − dTκ43,

cM4 ≡
[
c
(11)
M4

c
(12)
M4

c
(13)
M4

c
(14)
M4

0T · · · 0T
]
. (A.10)



Appendix B

Kalman Filter Estimation
Methods

Kalman filter was officially announced by Rudolf E. Kalman in 1960, and is the op-

timum filter which successively estimates system states on the basis of the following four

conditions: (1) Linearity of system equations, (2) White noises of systems and observable

noises, (3) Gaussian of noises, and (4) Least square norm.

Kalman filter is also based on the discrete-time system theory, and we consider linear

stochastic system models as follows:

(State equation): x(t+ 1) = Fx(t) +Gw(t), (B.1)

(Observation equation): y(t) = H(t)x(t) + v(t), (B.2)

where

x(t) ∈ Rn: State vector, y(t) ∈ Rp: Observation vector,

w(t) ∈ Rr: System-noise vector, v(t) ∈ Rp: Observation-noise vector,

F ∈ Rn×n, G ∈ Rn×r, H(t) ∈ Rp×n: Coefficient matrix.

Eq. (B.1) shows a stochastic process of x(t). Eq. (B.2) is equivalent with a linear-

regression equation for unknown parameter estimation. The equations of Kalman filter
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are as follows:

(System equations)

x̂(t+ 1|t) = Fx̂(t|t) (B.3)

x̂(t|t) = x̂(t|t− 1) +K(t)
[
y(t)−H(t)x̂(t|t− 1)

]
(B.4)

(Covariance matrix of estimation errors)

P (t+ 1|t) = FP (t|t)FT +GQ(t)GT (B.5)

P (t|t) = P (t|t− 1)−K(t)H(t)P (t|t− 1) (B.6)

(Kalman gain)

K(t) = P (t|t− 1)HT(t)
[
H(t)P (t|t− 1)HT(t) +R(t)

]−1
(B.7)

(Innovation process)

ν(t) ≡ y(t)−H(t)x̂(t|t− 1) (B.8)

M(t) ≡ H(t)P (t|t− 1)HT(t) +R(t) (B.9)

(Initial condition)

x̂(0| − 1) = x̄(0), P (0| − 1) = Σ(0) (B.10)

where R(t) is an observation-noise covariance matrix, and Q(t) is a system-noise covari-

ance matrix. ν(t) is a Gaussian white noise process with zero mean, and independent

between epochs. M(t) is a covariance matrix of ν(t).

The Kalman filtering process has two steps. One is the update step of Eqs. (B.4) and

(B.6). The other is the prediction step of Eqs. (B.3) and (B.5). The initial conditions

generated by SPP are input into the update step. The observables y(t) and R(t) are input

into the update step, and Q(t) is input into the prediction step every epoch, respectively.

GNSS observation equations are nonlinear functions, therefore extended Kalman filter
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is utilized for state estimation. In general, nonlinear system models are as follows:

(State equation): x(t+ 1) = ft(x(t)) + w(t), (B.11)

(Observation equation): y(t) = ht(x(t)) + v(t). (B.12)

The nonlinear functions ft and ht are expanded by Taylor series around the estimate values

x̂(t|t) and x̂(t|t− 1), respectively, as follows:

ft(x(t)) = ft(x̂(t|t)) + F̂t(x(t)− x̂(t|t)) + · · · , (B.13)

ht(x(t)) = ht(x̂(t|t− 1)) + Ĥt(x(t)− x̂(t|t− 1)) + · · · , (B.14)

where

F̂t =

(
∂ft
∂x(t)

)
x=x̂(t|t)

, Ĥt =

(
∂ht
∂x(t)

)
x=x̂(t|t−1)

. (B.15)

The terms greater than the first-order term of Taylor series in Eqs. (B.13) and (B.14) are

negligible. Then, they are input into Eqs. (B.11) and (B.12), respectively, as follows:

x(t+ 1) = F̂tx(t) + w(t) + ft(x̂(t|t))− F̂tx̂(t|t), (B.16)

y(t) = Ĥtx(t) + v(t) + ht(x̂(t|t− 1))− Ĥtx̂(t|t− 1). (B.17)

Then, we obtain linearized system models as follows:

x̃(t+ 1) = x(t+ 1)− ft(x̂(t|t)) + F̂tx̂(t|t) = F̂tx(t) + w(t), (B.18)

ỹ(t) = y(t)− ht(x̂(t|t− 1)) + Ĥtx̂(t|t− 1) = Ĥtx(t) + v(t). (B.19)

We consider that Ĥt = CηL and the state equation x(t+ 1) = x(t) in a static observation

environment of GNSS signals, Eqs. (2.120)-(2.125) are derived as extended Kalman filter.



Appendix C

Antennas’ Height Constraints for
DD-VPPP

If we can assume that the heights of two antennas are approximately same. Namely, the

local East, North, Up (ENU) coordinates of antennas’ positions u1 and u2 are described

by

u1 =

 u1,E

u1,N

u1,U

 , u2 =

 u2,E

u2,N

u2,U

 , (C.1)

respectively. Then we assume that

u1,U ∼= u2,U, (C.2)

or

d21 ≡ ||u2,EN − u1,EN||+ ed21 , (C.3)

a21 ≡ 0 = (u2,U − u1,U) + ea21 , (C.4)

where ed21 , ea21 are assumed as zero mean Gaussian white noises such as

ea21 ∼ N(0, rea21 ), ea21 ∼ N(0, rea21 ).
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Then the constraint (or the so-called pseudo-observation) updates the CPDF of the state

vector η as follows:

p(ηt|Y t, d21,t, a21,t)

= K0(Y
t, d21,t)p(ηt|Y t)p(d21,t, a21,t|ηt). (C.5)

Then we have

p(d21,t, a21,t|ηt) =
1√

2πrd21
exp

{
− [d21 − ||u2,EN − u1,EN||]2

2rd21

}
× 1√

2πra21
exp

{
− [a21 − (u2,U − u1,U)]

2

2ra21

}
. (C.6)

Therefore, p(ηt|Y t, d21,t, a21,t) in Eq. (C.5) is expressed as follows:

p(ηt|Y t, d21,t, a21,t) = K0(Y
t, d21,t, a21,t)

1

(2π)n′/2|Ση,t|t|1/2

× exp
{
− 1

2
[ηt − η̂t|t]

TΣ−1
η,t|t[ηt − η̂t|t]

}
× 1√

2πrd21
exp

{
− [||u2,EN − u1,EN||]2

2rd21

}
× 1√

2πra21
exp

{
− [a21 − (u2,U − u1,U)]

2

2ra21

}
. (C.7)

The power term of the exponential in Eq. (C.6) can be expressed by the quadratic form of

the state vector η as follows:

[d21 − ||u2,EN − u1,EN||]2

2rd21

=
1

2rd21

{
d221 + ||u2,EN − u1,EN||2 − 2d21||u2,EN − u1,EN||

}
=

1

2rd21

{
d221 + (u2,EN − u1,EN)

T(u2,EN − u1,EN)− 2d21||u2,EN − u1,EN||
}

∼=
1

2

{ d221
rd21

+
1

rd21
uT2,ENu2,EN − 1

rd21
uT2,ENu1,EN − 1

rd21
uT1,ENu2,EN +

1

rd21
uT1,ENu1,EN

−cT21,ENu2 + cT21,ENu1

}
, (C.8)
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where

||u2,EN − u1,EN|| ∼=
(û2,EN − û1,EN)

T

||û2,EN − û1,EN||2
(u2,EN − u1,EN)

≡ κT21,EN(u2,EN − u1,EN), (C.9)

and

cT21,EN =
2d21κ

T
21,EN

rd21
. (C.10)

Finally, we have the expression of the quadratic form:

1

2

[d21 − ||u2,EN − u1,EN||]2

rd21

∼=
1

2

{
ηTM2,ENη + cTM2,EN

η +
d221
rd21

}
, (C.11)

where

M2,EN ≡



1
rd21

BEN − 1
rd21

BEN 0 · · · 0

− 1
rd21

BEN
1

rd21
BEN 0 · · · 0

0 · · · 0 0 · · · 0

...
...

...

0 · · · 0 0 · · · 0


, BEN ≡


1 0 0

0 1 0

0 0 0

 , (C.12)

cTM2,EN
≡

[
cT21,EN −cT21,EN 0T · · · 0T

]
. (C.13)

And then

[0− (u2,U − u1,U)]
2

2ra21

=
1

2ra21

{
u22,U + u21,U − u2,Uu1,U − u1,Uu2,U

}
=

1

2

{
u2,U

1

ra21
u2,U + u1,U

1

ra21
u1,U − u2,U

1

ra21
u1,U − u2,U

1

ra21
u1,U

}
=

1

2
ηTM2,Uη, (C.14)
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where

M2,U ≡



1
ra21

BU − 1
ra21

BU 0 · · · 0

− 1
ra21

BU
1

ra21
BU 0 · · · 0

0 · · · 0 0 · · · 0

...
...

...

0 · · · 0 0 · · · 0


, BU ≡


0 0 0

0 0 0

0 0 1

 . (C.15)

Then we have the following quadratic form for the power term of the CPDF of Eq. (C.5):

1

2
(η − η̂)Σ−1

η (η − η̂) +
1

2

[d21 − ||u2EN − u1,EN||]2

rd21
+

1

2

[0− (u2,U − u1,U)]
2

ra21

=
1

2

{
ηTΣ−1

η η − ηTΣ−1
η η̂ − η̂TΣ−1

η η + η̂TΣ−1
η η̂ + ηTM2,ENη + cTM2,EN

η +
d221
rd21

+ ηTM2,Uη
}

=
1

2

{
ηT(Σ−1

η +M2,EN +M2,U)η − ηT(Σ−1
η η̂ − 1

2
cM2,EN

)− (η̂TΣ−1
η − 1

2
cM2,EN

)η + η̂TΣ−1
η η̂ +

d221
rd21

}
=

1

2

{
[η − (Σ−1

η +M2,EN +M2,U)
−1(Σ−1

η η̂ − 1

2
cM2,EN

)]T(Σ−1
η +M2,EN +M2,U)

×[η − (Σ−1
η +M2,EN +M2,U)

−1(Σ−1
η η̂ − 1

2
cM2,EN

)]

−(Σ−1
η η̂ − 1

2
cM2,EN

)T(Σ−1
η +M2,EN +M2,U)

−1(Σ−1
η η̂ − 1

2
cM2,EN

) + η̂TΣ−1η̂ +
d221
rd21

}
.

Then the update estimated vector η̌ and error covariance matrix Σ̌η of η based on the

minimum mean square estimate are given by

η̌ =
(
Σ−1
η +M2,EN +M2,U

)−1
(Σ−1

η η − 1

2
cM2,EN

),

Σ̌η =
(
Σ−1
η +M2,EN +M2,U

)−1
. (C.16)



Appendix D

Baseline Vector Estimation for
Three or Four Antennas

Let us define the (ns − 1)× 1 vectors as follows:

ρ̃ns
CA,ji ≡


ρ̃2̂1̂CA,ûj ûi

...

ρ̃n̂s1̂
CA,ûj ûi

 , Φ̃ns
L1,ji ≡


Φ̃2̂1̂
L1,ûj ûi

...

Φ̃n̂s1̂
L1,ûj ûi

 , N n̂s
L1,ji =


N 2̂1̂

L1,ujui

...

N n̂s1̂
L1,ujui

 , (D.1)

also define 3× (ns − 1) matrix

gns
ji =

[
g2̂1̂ûji

· · · gn̂s1̂
ûji

]
: 3× (ns − 1). (D.2)

Measurement equation for antennas of u1, u2 and u3 (nr = 3) is as follows:

yns
u3u2u1

= Cns
u21u31u32

ξns
u21u31u32

+ vns
u3u2u1

, (D.3)
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where



ρ̃2̂1̂CA,û2û1

...

ρ̃n̂s1̂
CA,û2û1

ρ̃2̂1̂CA,û3û1

...

ρ̃n̂s1̂
CA,û3û1

ρ̃2̂1̂CA,û3û2

...

ρ̃n̂s1̂
CA,û3û2

Φ̃2̂1̂
L1,û2û1

...

Φ̃n̂s1̂
L1,û2û1

Φ̃2̂1̂
L1,û3û1

...

Φ̃n̂s1̂
L1,û3û1

Φ̃2̂1̂
L1,û3û2

...

Φ̃n̂s1̂
L1,û3û2



=



(g2̂1̂û21
)T 0 · · ·· · ·· · ·· · ·· · ·· · ·· · · 0

...
...
. . .

...

(gn̂s1̂
û21

)T
...

. . .
...

(g2̂1̂û31
)T

...
. . .

...
...

...
. . .

...

(gn̂s1̂
û31

)T
...

. . .
...

(g2̂1̂û32
)T

...
. . .

...
...

...
. . .

...

(gn̂s1̂
û32

)T
... · · ·· · ·· · ·· · ·· · ·· · ·· · · 0

(g2̂1̂û21
)T λ1

...
. . .

(gn̂s1̂
û21

)T λ1

(g2̂1̂û31
)T λ1

...
...

. . .

(gn̂s1̂
û31

)T λ1

(g2̂1̂û32
)T λ1

...
...

. . .

(gn̂s1̂
û32

)T λ1





u21

u31

u32

N21
L1,u2u1

...

Nns1
L1,u2u1

N21
L1,u3u1

...

Nns1
L1,u3u1

N21
L1,u3u2

...

Nns1
L1,u3u2



+ v.

(D.4)

In this case, we have

M3 ≡



1
rl21

I 0 · · · 0

1
rl31

I
...

...

1
rl32

I 0 · · · 0

0 · · · 0 0 · · · 0

...
...

...
...

0 · · · 0 0 · · · 0


, (D.5)



135

cM3 ≡
[
−cTl21 −cTl31 −cTl32 0T · · · 0T

]
. (D.6)

Then the measurement equation for four antennas of u1, · · · , u4 (nr = 4) is as follows:

yns
u4u3u2u1

= Cns
u21u31u41u32u42u43

ξns
u21u31u41u32u42u43

+ vns
u4u3u2u1

, (D.7)

where



ρ̃ns
CA,21

ρ̃ns
CA,31

ρ̃ns
CA,41

ρ̃ns
CA,32

ρ̃ns
CA,42

ρ̃ns
CA,43

Φ̃ns
L1,21

Φ̃ns
L1,31

Φ̃ns
L1,41

Φ̃ns
L1,32

Φ̃ns
L1,42

Φ̃ns
L1,43



=



(gns
21 )

T

(gns
31 )

T

(gns
41 )

T

(gns
32 )

T

(gns
42 )

T

(gns
43 )

T

(gns
21 )

T λ1I

(gns
21 )

T λ1I

(gns
21 )

T . . .

(gns
21 )

T . . .

(gns
21 )

T . . .

(gns
21 )

T λ1I





u21

u31

u41

u32

u42

u43

Nns
L1,21

Nns
L1,31

Nns
L1,41

Nns
L1,32

Nns
L1,42

Nns
L1,43



+ v,

(D.8)
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M4 ≡



1
rl21

I 0 · · · 0

1
rl31

I
...

...

1
rl41

I
...

...

1
rl32

I
...

...

1
rl42

I
...

...

1
rl43

I 0 · · · 0

0 · · · · · · · · · · · · 0 0 · · · 0

...
...

...
...

0 · · · · · · · · · · · · 0 0 · · · 0



, (D.9)

cM4 ≡
[
−cTl21 −cTl31 −cTl41 −cTl32 −cTl42 −cTl43 0T · · · 0T

]
. (D.10)



Appendix E

Rotation Matrix by Euler’s
Principal Rotation Theorem

Let us define the rotation angle ϕ and the normal vector n between two normalized

baseline vectors s,t:

s = (x0, y0, z0), t = (x1, y1, z1). (E.1)

According to the Euler’s principal rotation theorem, the position of s is moved to the

position of t by the rotation of the angle ϕ around the normal vector which is called Euler

axis. cosϕ is obtained from the inner product of two vectors s, t, and the normal vector

n is obtained from the outer product of two vectors s,t.

cosϕ = s · t

= x0x1 + y0y1 + z0z1, (E.2)

n = (nx, ny, nz)
T =

s× t

||s× t||

=
1

sinϕ
(y0z1 − z0y1, z0x1 − x0z1, x0y1 − y0x1).

(E.3)
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From Eq.(E.2)-(E.3), we have following equations:

cosϕ = x0x1 + y0y1 + z0z1, (E.4)

nxsinϕ = y0z1 − z0y1, (E.5)

nysinϕ = z0x1 − x0z1, (E.6)

nzsinϕ = x0y1 − y0x1. (E.7)

Transforming Eq.(E.4)-(E.7), (x1, y1, z1) are expressed by (x0, y0, z0),(nx, ny, nz), and ϕ:

x1 = x0cosϕ+ z0nysinϕ− y0nzsinϕ, (E.8)

y1 = y0cosϕ− z0nxsinϕ+ x0nzsinϕ, (E.9)

z1 = z0cosϕ+ y0nxsinϕ− x0nysinϕ. (E.10)

Eq.(E.8)-(E.10) are expressed by matrix form as follows:

 x1

y1

z1

 =

 x0 0 z0 −y0

y0 −z0 0 x0

z0 y0 −x0 0




cosϕ

nxsinϕ

nysinϕ

nzsinϕ

 . (E.11)

When we obtain two baseline vectors s,t, we estimate the parameters (nx, ny, nz),cosϕ,

and sinϕ. Then we derive the rotation matrix in Eq.(5.26) by the estimates.
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