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Recently, a unique bi-modal micro-structure design, called “harmonic structure”,

to achieve an improved set of strength and ductility which is consisted of

coarse-grained (CG) areas (or “cores”) enclosed in a three-dimensional continuously

connected network of ultra-fine grained (UFG) structure (or “shell”). The

experimental results of an austenitic stainless steel SUS304L has been employed to

compare with multi-scale finite element analysis (FEA) results. In this research, the

harmonic structure result is compared with the same UFG volume fraction

heterogeneous bi-model structure.

In this research, the multi-scale FEA has been raised to find the reason why the

harmonic structure has strength and elongation, simultaneously. The finite element

method (FEM) is a numerical technique for finding approximate solutions to

boundary value problems for partial differential equations. FEM subdivides a large

problem into smaller, simpler, parts, called finite elements. The simple equations

which model these finite elements are then assembled into a larger system of

equations as a large matrix that models the entire problem. However, the normal scale

FEM can not meet the requirement of this research. Nowadays, micro-scale
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mechanical analyses have been on an increasing trend in order to understand the

behavior of modern materials with sophisticated micro-structures. The multi-scale

FEA is applying the micro-scale model to describe the characteristics of macro-scale

object. Periodic boundary condition is the bridge between the micro composition and

the macro object. By using the micro structure model with periodic boundary

condition, the stress and strain distribution of micro structure and the macro

characteristic as stress-strain curve of object can be obtained. In this research, not

only harmonic structure model and random structure model which have the

experimental results but also inverse harmonic structure model and 3D fabric

structure model have been raised to comparison.

Although there are some researches about periodic boundary condition for FEM,

the discussions are almost focused on the mathematics. However, in order to build the

program process successfully, there are some significant and error-prone points in the

programming which are correct in mathematics. In this research, the specific thread to

achieve the periodic boundary condition in ABAQUS has been discussed at great

length. Moreover, a special shape called truncated octahedron (TO) has been applied

as the basement shape in this research. In geometry, the TO is an Archimedean solid.

TO has an especial characteristic as space-filling. For the harmonic structure, the

cell-transitive bitruncated cubic honeycomb can also be seen as the Voronoi

tessellation of the body-centered cubic lattice. The vertexes of the body-centered

cubic lattice have been seen as CG region, while the remaining space has been treated

as UFG region. By this way, arbitrary volume fraction of the UFG region can be

achieved. Moreover, because of efficient space filling, this model can maintain almost

the same thickness as the actual object throughout the shell. The TO can also be used

for random structure, inverse harmonic structure model and 3D fabric structure model.

In this research, the hexahedral mesh has been employed because of the

computational efficiency and precision. However, the hexahedral mesh can not be

briefly built automatically as the tetrahedral mesh. The meshing method has been

discussed specifically in this research.

The FEA results show that there is still some stress and strain localization
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happening in the general random bi-modal micro-structure, while the network

structure of the harmonic structure materials avoids the stress and strain localization

owing to the well-distributed deformation caused by network structure of UFG. From

the comparison between harmonic structure and 3D fabric structure based on

truncated octahedron, it demonstrates that not only the UFG network but also the

uniform of the UFG network is a significant point for achieving the high mechanical

capabilities of harmonic structure.

As a result, thanks to the uniform thickness connected UFG shell region, it can be

obtained that harmonic structure design ensures the co-existence of high strength and

high elongation in the material. The numerical simulation results indicate the

consistency with the experimental results.

In this research, the effect of UFG volume fraction and CG/UFG material

characteristics in harmonic and random structure material has also been discussed. It

can be observed that while the UFG volume is near 50%, the harmonic structure

shows obviously better performance than random structure. While the UFG volume is

near the two terminal endpoints, harmonic structure still expresses well performance.

Application of deformation behavior of harmonic structure based on digital image

correlation (DIC) has been raised to compare with results of multi-scale FEM in this

research. It demonstrates that in DIC results, for harmonic structure, the relatively

strain concentrations happened in the CG regions, while the UFG regions show lower

strain, which keeps in agreement with multi-scale FEM results.

The possibility of harmonic structure multi-scale model with multi layer shell

regions has been discussed in this thesis. By applying body fitted anisotropic layers in

ICEM, FE model for harmonic structure with multi layer shell regions can be

achieved. However, as the model is complicated itself, there are some errors

happening in body fitted anisotropic layers creating process. We found there are some

meshes disappeared in the GUI of ABAQUS. Owing to the complexity of the model,

some meshes become minus volume meshes. After changing the direction of the

meshes, the harmonic structure multi-scale model with multi layer shell regions can

be obtained.
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Chapter 1 

Chapter 1: Introduction 

1.1 Background 

In the pursuit of developing tougher structural metallic materials, the general trend 

has been to focus on grain refinement, especially, the creation of homogeneous 

ultrafine-grained (UFG) micro-structures [1-7]. However, it is extremely difficult to 

simultaneously achieve high strength and high ductility, which are conflicting but 

desirable properties, in materials with homogeneous and UFG structures. However, 

the high strength homogeneous UFG materials always show the shortcoming of poor 

ductility due to plastic instability at the early stage of deformation, which becomes a 

regrettable barrier to the wider spread commercial applications [8-10]. In order to deal 

with the antinomy characteristic of the strength and ductility, researches for enhancing 

the ductility of high-strength UFG materials have been raised. An effectual 

micro-structural possibility solving this problem is to develop a bi-modal grain-size 

distribution, in which the fine grains support strength, while the coarser grains enable 

strain hardening [11-32]. However, in most researches above, there is little attention 

focused on the arrangement of the bi-modal micro-structures, where mere random 

bi-modal micro-structures were applied in. While in some researches, regular 

arrangement bi-modal micro-structure designs have been applied [23,29,30,32-38]. 

Multilayer structure is a widely used design. Daly et al. (2015) raised a distinct 

multilayer NiCo with a modulated grain size distribution [23]. Beyerlein and Mayeur 

(2015) employed a two-phase multilayer Cu-Nb by accumulative roll bonding (ARB) 

[34]. Benafan et al. (2015) brought up a research of thermomechanical behavior and 

micro-structural evolution for a multilayer high temperature shape memory alloy [37]. 

Other multilayer bi-modal micro-structures have been obtained through hot extrusion 

[29,30] and pulsed electrodeposition [32]. To study the assistance of growth twin in 

nano-layered polycrystalline metallic multilayers to their strength, Zhu et al. (2015) 

raised a series of uniaxial tensile modeling of nano-twinned Cu/Ag and Cu/Ni 

multilayers by molecular dynamics method [35]. Whereas the multilayer structure 
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shows directivity, which will bring the limitation of force direction. Non-directional 

design should be developed. Kumar et al. (2015) raised a research of strength and 

ductility optimization of Mg–Y–Nd–Zr alloy by micro-structural design, while an 

obvious partial honey bomb network arrangement was found in high angle annular 

dark field scanning transmission electron microscopy (HAADF-STEM) mode [36]. 

Zhu and Lu (2012) developed a plastic deformation model research for 

nano-structured metals in which coarse grains are embedded in a ultrafine grains 

matrix as a network structure [33]. Chen et al. (2016) applied a fastened 

dumbbell-shaped cross metallic thin-walled round tubes to make a novel self-locked 

energy absorbing system, which showed the benefit of network structure under impact 

loadings [38]. While the network structure exhibits more and more advantage, 

recently, a unique regular arrangement bi-modal micro-structure design—called a 

harmonic structure—has been proposed to successfully improve the relationship 

between strength and ductility [39-40]. The harmonic structure is a unique 

heterogeneous bi-modal structure consisting of coarse-grained (CG) areas (cores) 

enclosed in a three-dimensional continuously connected network of UFG structures 

(shell). The concept of harmonic-structure design has been successfully applied to a 

variety of pure metals and metallic alloys (e.g., Ti, Al, Ni, SUS304L, CCM) [39-54]. 

Ameyama et al. (2009); Fujiwara et al. (2009); Sekiguchi et al. (2010); Ota et al. 

(2015) raised pure Ti harmonic structure [40,43,47]；Ameyama et al. (2009); Fujiwara 

et al. (2009) applied SUS316L stainless steel to produce harmonic structure [40,42]; 

Fujiwara et al. (2009); Vajpai et al. (2015) devoloped Ti-Al-4V alloy harmonic 

structure [42,52]; Sawangrat et al. (2014); Vajpai et al. (2016) employed Co-Cr-Mo 

alloy to manufacture harmonic structure [48,53]；Ota et al. (2014) investigated the 

mechanical properties of pure Ni harmonic structure [45]; Orlov et al. (2013) raised 

pure Cu harmonic structure [44]; Zhang et al. (2014, 2015) made a research of 

SUS304L stainless steel harmonic structure [49,50]. Mechanically milled (MM) is 

used in most of researches above, while a highly active milling process called jet 

milling process is applied in pure Ti and Ti-Al-4V alloy harmonic structure research 

[47]. Compared to traditional MM process, jet milling use highly compressed air or 
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gases to facilitate the collision of fine particles against each other at a very high 

velocity [54]. All these harmonic structure materials demonstrate a desirable 

combination of improved strength and ductility compared to their CG as well as UFG 

counterparts. Dirras et al. (2015) carried out a research about micro-structure 

evolution during direct impact loading of commercial harmonic structure purity 

α-titanium. In the research, tortuous localization bands 25 - 30 μm wide were 

observed whose micro-structural characteristics suggest dynamic recrystallization as a 

consequence of adiabatic heating [55]. Kikuchi et al. (2015) raised an evaluation of 

near-threshold fatigue crack propagation in Ti-6Al-4V Alloy with harmonic structure 

[56]. It showed that the harmonic structure also demonstrated better mechanical 

behavior than the compact prepared from as-received powder in fatigue experiment.  

Table 1.1 demonstrates harmonic-structure materials mechanical capabilities. The 

numerical values represent the comparison of divers metals and alloys with harmonic 

structure and their coarse-grained counterparts prepared from initial powders. From 

Table 1.1, it can be indicated that with the harmonic structure, materials capabilities 

of normalized yield strength and ultimate tensile strength increase compared to 

original coarse-grained materials significantly. From the data of total elongation, it 

can also be shown that many metals and alloys demonstrate improved ductility as 

compared to original coarse-grained materials. A few materials show lower 

elongation than original materials, but harmonic-structure values are very close to 

values of the original materials. Nevertheless, since the area under the stress-strain 

curve is considered as a representation of the toughness of materials, the 

harmonic-structure materials also demonstrate enhanced toughness relative to their 

coarse-grained counterparts. Hence, in consideration of the  distinguished strength 

improvement, the harmonic-structure mechanical capabilities developed relative to 

original coarse-grained materials overall.  

Therefore, these results clearly exhibit that the harmonic-structure design leads to 

enhanced mechanical properties in most of the metals and alloys which indicate that 

the harmonic-structure metallic material would also result in improved performance in 

service.  
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Table 1.1: Harmonic-structure mechanical capabilities relative to original materials.  

Harmonic-Structure material yield stress ultimate tensile 
strength 

total 
elongation 

toughness 

pure Ti 
(Fujiwara et al. (2009)) 

× 1.47 × 1.26 × 0.97 × 1.27 

pure Ti (JM) 
(Ota et al. (2015)) 

× 1.64 × 1.52 × 1.10 × 2.19 

pure Al × 1.22 × 1.25 × 0.81 × 1.45 

pure Cu 
(Orlov et al. (2013)) 

× 1.14 × 1.19 × 1.31 × 1.57 

pure Ni 
(Ota et al. (2014)) 

× 1.21 × 1.20 × 1.05 × 1.25 

pure Fe × 2.00 × 1.31 × 0.83 × 1.17 

Co-Cr-Mo alloy 
(Vajpai et al. (2016)) 

× 1.01 × 1.17 × 1.48 × 1.87 

Ti-6Al-4V alloy 
(Vajpai et al. (2015)) 

× 1.14 × 1.12 × 1.21 × 1.33 

Ti-6Al-4V alloy (JM) 
(Ota et al. (2015)) 

× 1.28 × 1.27 × 0.87 × 1.22 

SUS316L stainless steel 
(Fujiwara et al. (2008)) 

× 2.00 × 1.51 × 1.05 × 1.50 

SUS304L stainless steel × 1.71 × 1.30 × 0.85 × 1.19 

SUS329J1 stainless steel 
(Ota et al. (2014)) 

× 1.35 × 1.20 × 0.97 × 1.25 

SUS430 stainless steel × 1.00 × 1.20 × 0.98 × 1.40 

average × 1.40 × 1.27 × 1.04 × 1.43 

 

Figure 1.1 shows the example of effect of milling time on the mechanical 

properties of harmonic Titanium by representative engineering stress-strain curves. 

From the results of the engineering stress-strain curves, it can be revealed that the 

harmonic structure pure Ti has both higher strength and elongation than initial powder 

[57]. 
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To understand the underlying mechanism behind the response of 

harmonic-structure materials, numerical simulation has been performed based on the 

finite element (FE) analysis of periodic micro-structures.  

The finite element method (FEM) is a numerical technique for finding 

approximate solutions to boundary value problems for partial differential equations. It 

is also referred to as FE analysis. FEM subdivides a large problem into smaller, 

simpler, parts, called finite elements. The simple equations that model these finite 

elements are then assembled into a larger system of equations that models the entire 

problem. FEM then uses variational methods from the calculus of variations to 

approximate a solution by minimizing an associated error function [58].  

By employing the FE analysis of a periodic micro-structure, the deformation of 

the micro-structure and the corresponding macroscopic material response can be 

characterized, which is a viable method to investigate the relationship between the 

deformation mechanism and macroscopic material properties [59-62]. 

Recently, FE analysis has been applied to analyze the mechanical mechanism of 

heterogeneous micro-structures. FE analyses have been applied to composites 

Figure 1.1: Effect of milling time on the mechanical properties of harmonic Titanium: 
         Representative Engineering Stress-Strain Curves [57]. 
         Copyright © 2016 The Japan Institute of Metals and Materials. 
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containing soft-phase particles distributed in a hard-phase matrix [62-67]. Wang et al. 

(2011) carried out the FE analyses of tensile deformation and fracture analysis for 

CuW alloys at the mesoscopic level and found that the hard phase of W showed high 

stress distribution in the tensile test simulation [64]. Yu et al. (2008) investigated the 

thermal properties of the Al/SiCp matrix composite based on FE analysis and found 

that the hard phase still showed high stress distribution in the thermal expansion [63]. 

Some studies have been conducted on complex substances containing hard material 

particles distributed in a soft material network [63,68-70], whereas other studies have 

investigated hard-phase material fibers arrayed in a soft-phase material [59,71-74]. In 

studies that considered stress distribution [63,66,68,69,71-75] , the hard phase always 

showed high stress whereas the soft phase showed low stress. While in some 

researches, FE analysis has also been developed to investigate the random bi-modal 

structure [76] and multilayer structure [77,78]. 

1.2 Objective of dissertation 

In this study, the FE analysis of a periodic micro-structure is carried out to 

demonstrate the multi-scale deformation behavior of harmonic-structure materials. 

The study presents multi-scale comparative structural analyses of two types of 

heterogeneous structural materials: a harmonic-structure material with a network 

structure, and a random-structure material without a network structure. Microscopic 

models of the harmonic- and random-structure materials have been developed in this 

research. Both these models are based on the shape of a truncated octahedron and 

have the same material characteristics as those of CG and UFG structures. The two 

models differ in terms of whether they contain a network structure. The tensile test 

simulation of these two structural models has been performed by applying a periodic 

boundary condition. The mechanical effect of the network structure has also been 

investigated by discussing and comparing the stress and strain distribution results 

obtained using these two models. 
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1.3 Outlet of dissertation 

The present dissertation consists of seven chapters as follows: 

Chapter 2 presents the experimental procedure and software introduction. The 

fabrication of harmonic-structured SUS304L steels by mechanical milling and 

consolidating process. 

Chapter 3 presents the processing of multi-scale finite element model for 

harmonic structure. In order to describe the repeated units, the period boundary 

condition has been used in this research. The achievement of period boundary 

condition in ABAQUS is described in this chapter. 

Chapter 4 presents the processing of multi-scale finite element model for random 

structure and simulation results comparison between Harmonic Structure and Random 

Structure. In this chapter, the importance of network structure of harmonic structure 

can be observed. 

Chapter 5 demonstrates the Comparative simulations of 4 kinds 50% UFG volume 

fraction bi-model heterogeneous models based on same geometry of truncated 

octahedron. In this chapter, we knew that not only network structure, but also the 

uniform thickness of the network is a significant function to decide the coexistence  

of strength and elongation of harmonic structure. 

Chapter 6 presents the effects of UFG volume fraction and CG/UFG material 

characteristics in harmonic structure material. 

Chapter 7 demonstrates the application of deformation behavior of harmonic 

structure based on Digital Image Correlation. In this chapter, the measuring result of 

DIC for the strain distribution of harmonic structure has been observed and compared 

to the calculated result of FEM. 

Chapter 8 investigates the possibility of harmonic structure multi-scale model with 

multi layer shell region. 
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Chapter 2: Experimental procedure and
FEM software introduction

2.1 Experimental procedure

2.1.1 Harmonic structure material fabrication

In this research, the characteristics of harmonic structure SUS304L grade stainless

steel have been discussed. SUS304L grade stainless steel powder was used for the

fabrication. Stainless steels are an important group of alloys which are widely used in

many fields, from low-end applications, like cooking utensils and furniture. To very

sophisticated ones, such as astronautics vehicles, the employment of stainless steels is

imperative. Figure 2.1 shows the schematic of the fabrication process of

harmonic-structured materials, while Table 2.1 reveals the mechanical milling and

SPS conditions for Harmonic Structure SUS304L. After mechanically milled (MM),

the ultra-fine grains will be achieved in initial coarse grain powders’ boundary. The

SUS304L powder was MM for 180 ks. Mechanical milling was carried out in a

planetary ball mill (P-5, Fritsch [1]) manufactured by Fritsch GmbH in Germany

using SUS304L steel vial and balls (diameter: 10 mm). The milling was carried out

under argon gas atmosphere at room temperature, and the ball-to-powder weight ratio

was maintained at 2:1. The rotation speed is 200 rpm. The mechanically milled

powder was sintered by the spark plasma sintering (SPS) process at 1123 K for 3.6 ks

in vacuum under an applied pressure of 50 MPa. Spark plasma sintering (SPS) is a

newly developed sintering process that combines the use of mechanical pressure and

microscopic electric discharge between the particles. The enhance densification in this

process has been attributed to localized self-heat generation by the discharge,

activation of the particle surfaces, and the high speed of mass and heat transfer during

the sintering process. As a result, samples can rapidly reach full density at relatively

low temperature [2].
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Figure 2.1: Schematic of harmonic-structured materials fabrication process.

Table 2.1: Mechanical milling and SPS conditions for harmonic structure SUS304L.

Mechanical Milling conditions SPS conditions

Temperature Room Temperature Temperature 1173K

Time 180ks, 360ks Hold time 60min

Ball : Powder 2 : 1 Pressure 50MPa

Rotation speed 200rpm Atmosphere Vacuum<0.1MPa

Atmosphere Ar

The microstructure of the SUS304L harmonic-structure material (Figure 2.2(b))

was analyzed by electron backscatter diffraction (EBSD) [4,5]. Electron backscatter

diffraction (EBSD) based on scanning electron microscopy (SEM) is a powerful

technique to automatically and quantitatively measure the grain/subgrain size, local

texture, point-to-point orientations, strain and phase identification. It has been

established that EBSD has a lot of advantages over transmission electron microscopy

(TEM), such as simple sample preparation, automatic scanning and indexing,

ultra-fast speed, large area investigation and a lot of post-processing results derived

from one EBSD scan [3]. The analysis results showed that the average grain sizes of
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the coarse and ultrafine grains were 16.9 and 2.0 μm, respectively. The area fraction

of the ultrafine grain was found to be approximately 20.7%.

Figure 2.2: The microstructure of (a) SUS304L Initial Powder (IP); (b) harmonic structure

SUS304L material, MM 180ks Compact; (c) random structure material,

IP+MM360ks (weight ration=1:1) Compact by EBSD [5].

Copyright © 2014WILEY-VCHVerlag GmbH & Co. KGaA, Weinheim.

2.1.2 General random structure material fabrication

The same SUS304L grade stainless steel powder used for the fabrication of the

harmonic-structure material was used here. First, the SUS304L powder was

mechanically milled (MM) for 360 ks. Then, random-structure powder was

manufactured by mixing the MM 360 ks powder and initial powder (IP) in the weight

ratio of 1:1. The mixed powder was also sintered by the SPS process at 1123 K for 3.6
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ks in vacuum under an applied pressure of 50 MPa. The average grain sizes of the

coarse and ultrafine grains were 19.7 and 1.5 μm, respectively. Figure 2.2(c) shows

the micro-structure of the SUS304L random-structure material obtained by EBSD.

The ultrafine grain fraction was found to be approximately 20.4%, which is close to

the corresponding value for the SUS304L harmonic-structure material.

Tensile experiments were conducted in a universal testing machine (Autograph

AGS-10kND, Shimadzu), under displacement control. The specimens for tensile tests

were manufactured by wire-spark cutting as a gauge length of 3mm and a

cross-section area of 1×1mm2 of a mini I-beam.

Figure 2.3 shows a comparison of the nominal stress–strain curves of the

harmonic and random structures [4,5]. It can be observed that the SUS304L

harmonic- and random-structure materials have almost same strength and that the

harmonic-structure material shows larger elongation than the random-structure

material. FE analyses have been carried out to understand the effect of the network

structure on the mechanical properties.

Figure 2.3: Comparison nominal stress-strain curves of the (1) harmonic structure, (2) random

structure and (3) initial powder for SUS304L.
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2.1.3 Kernel average misorientation results

Kernel average misorientation (KAM) during EBSD analysis can be applied as a

measure of local grain misorientation. KAM quantifies the average misorientation

around a measurement point with respect to a defined set of nearest neighbor points.

In this research, the KAM images are employed as a way of measuring the dislocation

density.

Figure 2.4 shows nominal stress-strain curve of harmonic structure and initial

powder nickel. It clearly demonstrates the same tendency with harmonic structure

SUS304L. Hence, the KAM image of Ni can represent the common performance of

harmonic structure.

Figure 2.4: Comparison nominal stress-strain curves of the Ni (1) harmonic structure and

(2) initial powder.

Figure 2.5 shows the micro-structure EBSD grain boundary images of Ni

Harmonic Structure Compact before tensile test and in 5% strain. It can clearly

demonstrate the connecting network structure of ultrafine grain region. Figure 2.6

shows the KAM images of Ni Harmonic Structure Compact before and after tensile

test deformation corresponding to the EBSD grain boundary images shown in Figure
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2.5. After deformation, the dark region in Figure 2.6 demonstrates the occurrence of

high dislocation density. Besides, the dark region is match along with the shell region

shown in Figure 2.5. The result demonstrates the high dislocation density happens in

ultrafine shell region.

Figure 2.5: The microstructure EBSD grain boundary images of Ni harmonic structure

compact before and after tensile test deformation.

Figure 2.6: The KAM image of Ni harmonic structure compact before and after tensile test

deformation.
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Figure 2.7 reveals the KAM images comparison of Ni (1) initial powder; (2)

random structure and (3) harmonic structure compact in tensile test of = 5%. From

the results, it can be demonstrated that for Ni Initial Powder, dislocation density

distribution shows uniform, while in Ni random structure and harmonic structure, the

high dislocation density shows in ultrafine grain region. It reveals that, in the

beginning of the tensile test, the stress location happens in the ultrafine grain region

no matter in random structure or harmonic structure.

Figure 2.7: The EBSD grain boundary images and KAM images of Ni (1) initial powder;

(2) randomstructure and (3) harmonic structure compact in tensile test of  = 5%.

2.1.4 Phase transition of harmonic structure material

However, the phase transition can also be a measurement tool of mechanical

behavior. Figure 2.8 shows EBSD images and phase distribution of harmonic

Co-Cr-Mo alloy specimen after 0%, 10%, and 20% tensile deformation, respectively

[6]. The images above show the grain boundary of harmonic Co-Cr-Mo alloy as

EBSD images, while the below images reveal the phase distribution. From the results,

it can be revealed that the ɛ-hcp phase increased along with increasing degree of

deformation. Furthermore, ɛ-hcp phase is almost happened in the ultrafine region,
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which reveals the evidence that in the beginning of tensile test, higher stress happens

in ultrafine region for harmonic structure.

Figure 2.8: Distribution of ɛ-hcp phase with increasing plastic strain in the harmonic

structured Co-Cr-Mo alloys:(a), (b) and (c) EBSD grain boundary images

for the 0%, 5% and 20% strain deformation. (d), (e) and (f) corresponding

phase distribution [6].

Copyright © 2015 Elsevier B.V.

2.2 FEM software introduction

2.2.1 ABAQUS CAE

In this research, Solidworks is used to built the model [7], ICEM-CFD is applied

for meshing [8], while ABAQUS CAE is mainly employed to deal with the FEM

problems [9]. In this research, we choose ABAQUS CAE because of the predominant

nonlinear structure analysis from the dominant FEM softwares of ADINA, ANSYS,

ABAQUS and MARC.

23



Chapter 2

ABAQUS FEA (formerly ABAQUS) is a software suite for finite element

analysis and computer-aided engineering, originally released in 1978. The name and

logo of this software are based on the abacus calculation tool. The ABAQUS product

suite consists of five core software products: ABAQUS/CAE; ABAQUS/Standard;

ABAQUS/Explicit; ABAQUS/CFD; ABAQUS /Electromagnetic.

ABAQUS is used in the automotive, aerospace, and industrial products industries.

The product is popular with academic and research institutions due to the wide

material modeling capability, and the program's ability to be customized. ABAQUS

also provides a good collection of multiphysics capabilities, such as coupled

acoustic-structural, piezoelectric, and structural-pore capabilities, making it attractive

for production-level simulations where multiple fields need to be coupled.

ABAQUS was initially designed to address non-linear physical behavior; as a result,

the package has an extensive range of material models such as elastomeric (rubberlike)

material capabilities.

Figure 2.9 shows GUI of ABAQUS. The content is the von Mises Stress

distribution of the collapsed stick by XFEM simulation. The XFEM is a numerical

technique based on the generalized finite element method (GFEM) and the partition of

unity method (PUM). It extends the classical finite element method (FEM) approach

by enriching the solution space for solutions to differential equations with

discontinuous functions. The extended finite element method was developed to ease

difficulties in solving problems with localized features that are not efficiently resolved

by mesh refinement. One of the initial applications was the modeling of fractures in a

material [10]. An ideal uniaxial tensile test was simulated in Figure 2.9.
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Figure 2.9: The graphical user interface (GUI) of ABAQUS.

2.2.2 Other software

Programming languages can be used to create programs to control the behavior of

a machine or to express algorithms.

In this research, programming languages like C Language and Visual Basic have

been used to deal with some mathematical problem to help to build the mesh, to set

the boundary conditions or to do post treatment, while the FEM software themselves

can no deal with the problem or do not have the functions required. A programming

language is a formal constructed language designed to communicate instructions to a

machine, particularly a computer.

In Chapter 4, I used a 3D computer graphics and computer-aided design (CAD)

application software called Rhinoceros [11] to draw the Voronoi models.
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Chapter3: Modeling of harmonic structure 

It is well known that the FEA is usually applied in the research related with the 

evaluation of the reliability and integrity of various structural units under loads. 

However, in order to meet the requirement of the research of heterogeneous materials 

mechanical properties, the multi-scale FEA has been used. Nowadays, 

micro-mechanical analyses have been on an increasing trend in order to understand 

the behavior of modern materials with sophisticated micro-structures. The multi-scale 

FEA is applying the micro-scale model to describe the characteristics of macro-scale 

object. Periodic boundary condition is the bridge between the micro composition and 

the macro object. By using the micro structure model with periodic boundary 

condition, we can get the stress and strain distribution of micro structure and the 

macro characteristic as stress-strain curve of object. In this chapter, the micro scale 

model with periodic boundary condition for harmonic structure is built.   

3.1 Periodic boundary condition 

3.1.1 Periodic boundary condition in mathematics 

The basic idea of using periodic boundary conditions is to assume that a structural 

part at the macro level consists of a number of repeated microscopic units. The 

periodic boundary condition is the bridge that connects the microscopic units with the 

macro object. Allaire (1992) developed a foundation for periodic micro-structures 

based on mathematical homogenization theory to specify the micro/macro-scale 

coupling boundary value problem (BVP) [1]. Using a two-scale FE analysis method, 

Guedes and Kikuchi (1990) and Terada et al. (2003) developed an FE method to solve 

the derived two-scale BVP [2,3]. The mathematical framework of the two-scale BVP 

has a unique feature in that the microscopic BVPs act as constitutive models for the 

macroscopic BVP. By reducing the macroscopic BVP to a macroscopic stress–strain 

27



Chapter 3 

relationship and controlling the macroscopic stress or strain, researchers carried out 

the FE analysis of periodic micro-structures [4-12]. 

To determine the global constitutive law of a material at the macro level, the 

transformation of the corresponding surfaces should be restricted to coupling. This 

restriction leads to parallelism between the corresponding surfaces in the microscopic 

unit. In terms of a mathematical expression, any displacement on one side of a 

representative unit cell (RUC) must be the same as that on the opposite side of the 

RUC plus or minus a constant for structure analysis [6].  

The periodic boundary condition for the heat analysis is not discussed in this 

research. For periodic boundary condition of heat analysis, the displacement for the 

opposite edges of the RUC can not be set, while the heat flux for the opposite edges 

should be same. 

The equation below shows the diagrammatic sketch for 2D periodic boundary 

condition applied in a RUC rectangle for structure analysis [6]. The square’s side - 

length is L. A0 locates at the origin of the coordinate plane. A1 and A2 locate at the 

x-axis and y-axis, separately (Figure 3.1). The points on the opposite sides should 

fulfill the equations below. 

)(),0(),( 01 AA uuyuyLu      (x-direction displacement) 

)()0,(),( 02 AA uuxuLxu      (y-direction displacement)               (Eq.1) 

In the equations, the Aiu  means the displacement of the Ai point. (i=0,1,2) 

After applying the equations above for structure analysis, the origin cube can be 

deformed as the figure 3.2 shows. After deforming, the edges of the cube can not be 

straight, but they should be parallel with matching edges. Hence, by extending the 

same unit one by one, they can constitute a large graph without holes and overlapping 

regions. Parallelism is a significant characteristic in the periodic boundary condition 

of structure analysis. 
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Extending the 2D equations to the 3D model of orthogonality cube with the 

side-length L, the equation can be [5,7]: 

xzyuzyLu  ),,0(),,(           (x-direction displacement) 

yzxuzLxu  ),0,(),,(           (y-direction displacement) 

zyxuLyxu  )0,,(),,(           (z-direction displacement)            (Eq.2) 

Here, ),,( zyxu  represents the displacement vector of the point with the 

coordinate x,y,zrepresents the macroscopic strain tensor. i  (i = x,y,z) is a 

constant representing the i-direction displacement difference for a pair of surfaces. 

This indicates that the displacement of a point in the surface represented by i = 0 

maintains the difference in i  compared to the displacement of the matching point 

in the surface represented by i = L (the other two coordinates except i are the same). 

The constant i  guarantees parallelism for a pair of surfaces. Even in the process of 

Figure 3.1: The parallelism characteristic in the periodic boundary condition of structure  

          analysis. 
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displacement in which the origin plane surfaces may change to curved surfaces, a pair 

of curved surfaces should also be able to maintain parallelism. 

3.1.2 Programming of periodic boundary condition for ABAQUS 

In FE solver ABAQUS, in order to fulfill the equation above, three dummy nodes 

should be considered. These nodes should be matched to three pairs of surfaces. Thus, 

the displacements of the dummy nodes will replace the constants in the equation. 

Figure 3.2 shows the command applied to fulfill the periodic boundary condition 

in ABAQUS, *EQUATION, which belongs to the constraint command [13]. The 

command “EQUATION” contains two lines to describe an add operation which the 

result equals zero. First line is for number of nodes, while the second line describes 

the node number, degree of freedom, value of coefficient, the other node number, its 

degree of freedom, value of coefficient, the next node number and so on. The 

command “EQUATION” can be used for many types for constraint. For example, the 

coupling of degree of freedom (DOF) is choosing one node in the surface as the drive 

node and the remaining nodes in the surface should keep the same displacement in 

normal direction of the surface. In a free FEM soft Front-ISTR, the coupling of DOF 

should be achieved by writing the program. In ABAQUS, there is a command to build 

the coupling of DOF directly. However, there is not a direct command for periodic 

boundary condition for structure analysis. We should employing the “EQUATION” to 

write the periodic boundary condition. 
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In the mathematic theory of the periodic boundary condition, it seems that just 

displacement definition of the matching point of the pair surfaces is required.  

Therefore, in mesh process, the nodes’ coordination of the pair surfaces should be put 

into a one-to-one relationship, respectively. However, in order to build the program 

process successfully, there are three significant and error-prone points in the 

programming. 

First point is the sequence of the equation. In the mathematic theory, x+y=0 and 

y+x=0 have the same meaning. While in the FEM simulation, they are the different 

equations. In FEM constraint command, the parameters are distinguished between 

passive node and initiative node. The nodes in the left three surfaces are the passive 

nodes which are determined by the initiative nodes in the three coordinate surfaces. 

Therefore, the passive node should be the first item in the equation, while the 

initiative node is the second item and the difference value is the third item. For 

example, in coupling of DOF, if the first node in the equation is drive node, the 

analysis will report error because of redefinition. For periodic boundary condition, the 

Figure 3.2: Constraint command used the “EQUATION” to deal with the periodic  

          boundary condition for structure analysis in ABAQUS. 
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order of the equation items is also important. 

Second point is the coordinate deviation of the matching nodes. Although in 

modeling, the rectangular parallelepiped cube is employed for the physical form 

which the outside edges are paralleled to the xyz-axis and while in meshing, the 

nodes’ coordination are supposed to be one-to-one relationship, owing to the decimal 

digits as eight, sometimes there will be the deviation in the coordinate. It means that 

1.00000001 is not equal 1 in mathematics but it should be regarded as the 

corresponding nodes in soft. So the setting of deviation is significant in programming. 

While the coordinate deviation is changed with the model size and the mesh 

refinement, the deviation should be a revisable option as Figure 3.3 shows. The value 

of deviation should be very small, because there is possibility that the neighbor nodes 

are regarded as one node when the value of deviation is large. Hence, a supervisor 

status should be added in this soft. The deviation has been used twice. First time is 

about the statistics of the nodes in the max/ min surfaces. Because the nodes in the 

corresponding surfaces matched one by one, if the numbers of corresponding surfaces 

nodes are different, the calculation is wrong, which should be written in the 

supervisor status. Second time is that each node in surface finds the corresponding 

node in the matching surface. It is necessary to confirm every node in surface is 

matched with the node in the matching surface. The matched nodes in the matching 

surface should be all applied and they can be used only time. I set arrays to describe 

the nodes. Hence, there is a variable (Figure 3.3) in the array to represent the status if 

the node has been used. After these two times check, the inp file for ABAQUS can be 

built. 

With the deviation setting, the inp file can be built and ABAQUS can read the inp 

file successfully. However, error message happened in simulation in ABAQUS. 
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Third point is about the nodes with over constraint freedom. While in the 

mathematic theory, the passive nodes are determined by initiative nodes no matter 

how many times the passive nodes have been multiplicity defined because there is the 

connection relationship in the nodes so the results are same. But in the ABAQUS, it 

will report the error because of the over constraint freedom and the over constraint 

freedom passive nodes would be treated as slave nodes. As a matter of fact that slave 

passive nodes are not just in one passive surface but in the juncture of the passive 

surfaces, so the nodes are used as passive nodes two times or three times. For example, 

if x = 1 and y = 1, then we define that z = x and z = y. In mathematics, there is no 

problem because z = x = y = 1. However, in programming, this is duplicate definition. 

In order to solve this problem, the juncture passive nodes should be treated specially.  

Suppose that, the surfaces on the xy/yz/zx surfaces are the initiative surfaces, the 

left three surfaces are passive surfaces. Figure 3.4 shows the slave juncture passive 

nodes as the blue nodes which should be treated specially, because in the Figure 3.4, 

the displacements of the slave blue nodes have been defined twice or thrice. At the 

same time, the red initiative nodes (closed to origin of the coordinate) have also been 

used twice or thrice. As they are initiative nodes, multiplicity using would not show 

the error, but it is still a repeat definition. 

Figure 3.3: The alterable deviation setting by user in the soft; The status message to make 

          sure the periodic boundary condition setting successfully. 
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The equation chain has been raised to solve this problem. The nodes of vertexes 

and nodes in the edges should be solved, respectively. 

First, the nodes amount of vertexes in a cube is eight. There is equation chain as 

the Figure 3.5 shown which explains the relationship of the vertexes so there is no 

repeat definition. Thanks to this equation chain, every vertex’s displacement has been 

guaranteed to be defined. In Figure 3.5, A0 locates at the origin of the coordinate 

system. A0 is the originally initiative vertex. Other vertexes are connected to A0 by 

the chain as the Figure 3.5 shown. It demonstrates that A0 decides A1, A1 decides A2 

and so on. The words near the blue arrows mean the difference value between the 

initiative node and passive node. As the three dummy nodes defined previously 

demonstrate difference value of three pair surfaces, they also have the direction. For 

example, -y means opposite direction of y , so in the equation, modulus of y  is 

-1. 

Figure 3.4: The nodes used twice and thrice in the periodic boundary condition 

          without distinguishing special nodes. 
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Second step is for the nodes in the juncture edges except the vertexes. It can be 

separated into three groups, x/y/z axis. The blue dots are imaged as the nodes in the 

edges except the vertexes. As the Figure 3.6 shown, the nodes on L0 decide the 

displacement of L1 corresponding nodes. Then L1 nodes decide the L2 nodes and so 

on. Through this way, all the nodes in the edges can be defined.  

 

Figure 3.5: Special treatment for the vertexes of periodic boundary condition. 

Figure 3.6: Special treatment for the nodes on the edges of periodic boundary condition. 
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As the Figure 3.7 shown, because the juncture slave nodes are all handled, then 

the remaining nodes on the matching surfaces can be treated normally. Finally, the 

periodic boundary condition was created, and the displacement of the model can be 

controlled by the three dummy nodes. 

 

Figure 3.8 shows the flow chart of periodic boundary condition program for 

ABAQUS. In this programming, we should notice the different positions of the nodes 

we used, and the validation checking is significant. 

Figure 3.7: Dealing with the remaining nodes in the surfaces. 
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no 

Report error and 
stop program. 

Deal with by normal 
one-to-one correspondence 
relationship 

Deal with the 
vertex as Chapter 3 

If each nodes on the surfaces are 
employed? 

Report error and 
stop program. 

Start to build the periodic boundary condition based on the ICEM inp file 

Make sure the max and min 
value of the coordinates. 

Count and record the nodes in 
the max and min coordinates. 

If the correspondent surfaces have 
the same number of nodes. 

yes 

Create three dummy nodes, make all the nodes in the 
surfaces one-to-one correspondence relationship. 

If the node is on the edge? 

yes 

If the node is vertex? 

no 

yes no 

Deal with the nodes on the 
edges as Chapter 3 

no 

yes 

end 

Figure 3.8: Flow chart of periodic boundary condition program for ABAQUS. 
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After compiling the program for periodic boundary condition and applying it for 

ABAQUS, therefore, the displacement boundary condition can be added in the 

dummy nodes (Figure 3.9).  

 

Another method to set the periodic boundary condition in ABAQUS is using the 

original nodes as the difference value of displacement [14]. As Figure 3.10 shown, 

displacements of node X, Y, Z in the vertex angle are employed as the difference 

values of pair curved surfaces' displacement relative to base node, directly. The origin 

node is fixed as the reference substance node. The remaining steps are as same as the 

periodic boundary condition setting with dummy nodes. However, in the mathematic 

theory, these two methods share the same theory. Nevertheless, in simulation process, 

using the original nodes will make the three original nodes as the driving nodes. It 

will bring a little difference between these three original nodes and other nodes in the 

surfaces. Even though the difference is too little to be mentioned in the plastic region, 

it will bring a visible aberration for the driving nodes in Von Mises Stress distribution 

within elastic region because of young's modulus. Although the strain difference is 

Figure 3.9: The effect of periodic boundary condition in ABAQUS. 

38



Chapter 3 

extremely small, it will still influence Von Mises Stress distribution in elastic region. 

The unique driving nodes will show displacement faster than other nodes in the very 

beginning of the plastic region. Figure 3.11 shows the Von Mises Stress distribution 

within elastic region for the periodic boundary condition with and without dummy 

nodes. For the model using the original nodes as the drive point, it can be clearly 

observed that mainly regions show value as 42 MPa, while the values of vertexes are 

nearly 97 MPa. The value of vertexes show about 131% inaccuracy compared to other 

nodes, while it should be a uniform value due to uniform mechanical properties in 

elastic region. Although in the plastic region, the inaccuracy will be ignored due to the 

large gap between CG and UFG characteristics, the vertexes show incorrect values in 

the elastic region. However, for the model using dummy nodes, the nodes on the 

tensile surfaces show relatively higher value as 44.8 MPa, while the nodes in the 

center show relatively lower value as 44.4MPa. The inaccuracy is about 0.9%. 

Hence, importing the dummy nodes makes the nodes displacements in the pair 

curved surfaces unifying and reduces aberration.  

 

Figure 3.10: Setting the periodic boundary condition in ABAQUS by using the original  

          nodes as the difference value of displacement. 
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3.2 Finite element model for harmonic structure 

3.2.1 Geometry basement: truncated octahedron 

To obtain macroscopic averaged properties from a heterogeneous microstructure, 

the concept of a representative volume element (RVE) has been employed. An RVE 

has been defined as a part extracted from a complete microstructure to homogenize 

the heterogeneity of the microstructure. Especially, a periodic microstructure has been 

defined as an RVE in computational approaches using discretization methods such as 

the FE method in general.  

In geometry, the truncated octahedron (Figure 3.12) is an Archimedean solid. It 

has 14 faces (8 regular hexagonal and 6 square), 36 edges, and 24 vertices. Since each 

of its faces has point symmetry the truncated octahedron is a zonohedron. A truncated 

octahedron is constructed from a regular octahedron with side length 3a by the 

removal of six right square pyramids, one from each point.  

Figure 3.11: Von Mises Stress distribution in early elastic region with and without  

          dummy nodes for periodic boundary condition. 
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In this research, a truncated octahedron is used to constitute the RVE of the 

harmonic-structure model for the FE analyses owing to its efficient space-filling 

characteristic. The arrangement of the truncated octahedron can form a bitruncated 

cubic honeycomb, which can be realized as a body-centered cubic lattice [15-19]. 

Chantarapanich et al. (2012) geometrically evaluated a scaffold library for tissue 

engineering [16]. The evaluation results revealed that the close-cellular scaffold 

included a truncated octahedron, rhombicuboctahedron, and rhombitruncated 

cuboctahedron. In addition, polyhedrons suitable for use as open-cellular scaffold 

libraries included a hexahedron, truncated octahedron, truncated hexahedron, 

cuboctahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. The 

truncated octahedron and other polyhedrons have already been investigated. 

 

Figure 3.13 shows the harmonic-structure material composed of the CG cores and 

UFG shell. Because of efficient space filling, this model can maintain almost the same 

thickness as the actual object throughout the shell. In contrast to this research, a 

sphere is often chosen as the shape of an inclusion in FE models, in which the range 

of the volume fraction is limited. 

Figure 3.12: Method to achieve the truncated octahedrom. 
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3.2.2 Block dividing of harmonic structure model for meshing 

Thanks to the symmetry, 1/8 of the model can be employed in mesh process. In 

this research, the hexahedral mesh has been chosen considering the regular shape of a 

truncated octahedron. The hexahedral mesh is preferred to the tetrahedral mesh in FE 

methods for numerical simulation owing to reduced error and a smaller number of 

elements. However, building hexahedral mesh is more difficult than tetrahedral mesh 

because it is not an automatic process but handy process. Moreover, because 

hexahedral mesh is not generic, in order to obtain the hexahedral mesh, hexahedral 

blocks should be applied [20]. The model is combined by some hexahedral blocks, 

because the model is not a regular shape. A large block for the model is defined. 

Through dividing and distortion, it has become some smaller hexahedral blocks. Then 

the blocks’ vertices, edges, faces should be associated to the model’s points, curves, 

surfaces. Figure shows the blocks of 1/8 harmonic structure model.  

In blocking methods, the most significant thing is to make every block as the 

hexahedron, therefore, the Y-grid, O-grid and C-grid and L-grid method are widely 

applied for meshing (Figure 3.14). Y-grid is often used to deal with the triangular 

prism shape, which is applied to divide a triangular prism into 3 hexahedrons. 

Figure 3.13: Harmonic structure model constituted by truncated octahedron. 
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However, O-grid is often employed to handle cylinder shape, which makes the 

arrangement of blocks as ray and evades the bad mesh quality in the angle of original 

cube. C-grid and L-grid are 3/4 and 1/2 O-grid, respectively. For the specific steps of 

setting blocks for the harmonic structure, first step is to make a 1/8 truncated 

octahedron. Then after mirroring and rotating, two 1/8 truncated octahedron parts 

which are used to be cores have been prepared. After extending the faces of blocks 

and merging the vertexes, the shell region has been established. Finally, the blocks of 

1/8 model have been divided. 

 

 

The block dividing procedure for harmonic structure is shown in Figure 3.15. On 

the whole, in this research, the generalized steps are: first, building one 1/8 core; 

second, building anther 1/8 core by copying and rotating it; third, stretching the shell 

Figure 3.14: Significant block dividing methods. (1) Y-grid; (2) O-grid; (3) C-grid and  

          (4) L-grid. 
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region. Hence, blocks for the 1/8 model (Figure 3.16) can be generated. 

 

 

Figure 3.15: The block dividing procedure for harmonic structure. 

44



Chapter 3 

 

Figure 3.17 shows the mesh for the harmonic structure SUS304L. Because the 

volume shell fraction of the harmonic structure material is just 20.7%, it makes the 

shell very thin where will become a sensitive regions. In order to adapting the 

accuracy, mesh refinement should be carried out.  

 

Figure 3.17: Multi-scale FEM mesh of harmonic structure SUS304L, MM 180ks  

          Compact. 

Figure 3.16: Blocks for the 1/8 model. 
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3.3 Material characteristics of CG and UFG based on  

Hall-Petch rule 

An isotropic elastoplastic constitutive model based on Hooke’s elasticity and Von 

Mises-type plasticity has been employed for the CG and UFG phases in this study. 

The isotropic hardening is employed in the setting for the plastic characteristics for 

CG and UFG phases. The same elastic constants of SUS304L are used: i.e., Young’s 

modulus of 194,020 MPa and Poisson’s ratio of 0.25. The user-defined material model 

(UMAT) has not been employed in this research. Hence, plastic deformation gradient 

(dfgrd) has not been defined. 

For plasticity, the relationship between the equivalent stress and plastic strain 

should be determined. In the present work, the average grain size of the existing 

homogeneous CG SUS304L material is 35.0 μm. Qu et al. (2008) investigated the 

mechanical properties of homogeneous UFG SUS304L material with grain size of 1.0 

μm [21]. Furthermore, the grain sizes of the CG and UFG materials of the SUS304L 

harmonic structure are measured to be 17.6 and 2.0 μm, respectively, by EBSD. The 

known yield stress values of the existing homogeneous CG SUS304L material and 

homogeneous UFG SUS304L material are 251 and 652 MPa, respectively. Therefore, 

using the Hall–Petch relationship (Eq.2, Figure 3.18) [22,23], the yield stress values 

of the CG and UFG materials of the SUS304L harmonic structure can be calculated to 

be 284 and 530 MPa, respectively. 

 

                                                                              

                                           (Eq.3) 

 

Where σ is the yield stress, σ0 is the lattice friction stress required to move individual 

dislocations, k is a constant, and d is the grain size. For the MM 180 ks SUS304L 

harmonic-structure material, σ0 is 169 MPa and k is 483 MPa·μm0.5. 

d
k 1

0 
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In this research, not just the yield stress but also the stress–strain curve of the CG 

and UFG materials is required for the simulation. To imitate the stress–strain curve of 

the UFG and CG materials in the harmonic structure, the yield stress is calculated by 

the Hall–Petch relationship (Eq.2), and the shape of the stress–strain curve is 

maintained according to the nature of the nearby yield stress material. In Figure 3.18, 

the top and bottom dashed curves are the true stress–strain curves for the experimental 

homogeneous UFG and CG data, respectively. By the parallel shifting of the true 

stress–strain curves, the estimated true stress–strain curves (solid curves) of the UFG 

and CG materials of the SUS304L harmonic structure are obtained. These estimated 

curves are used for the FE analyses. 

After material characteristics have been set, simulation parameters should be 

settled. In this research, the general state structure simulation has been chosen. Figure 

Figure 3.18: The estimated s-s curve of CG and UFG based on Hall-Petch rule. 
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3.19 shows the parameters of the harmonic structure finite element analysis. In this 

research, because not dynamic structure simulation which is often chosen to solve 

impact problem but just static structure simulation has been applied in this research, it 

has been validated that the result always keep same no matter how time period option 

changed. Hence, in order to guarantee the convergence, the time period option can be 

more while rising the time period will extend the simulation duration. 
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Chapter 4: Modeling of random 
structure and simulation 
results comparison with 
harmonic structure 

4.1 Random structure's FEM model for comparative 

simulation 

4.1.1 Block dividing of random structure model for meshing 

For traditional composite material field, in order to toughen homogeneous 

material, a common method is introducing high strength particles in the high 

elongation matrix. It is known that rigid nanofillers can improve the fracture 

toughness, stiffness, and even strength of the material. Common structure of the 

composite is bi-model random structure. Moreover, the bi-model structure is widely 

acknowledged that the UFG phase supports the strength while the CG phase supports 

the elongation. However, the discussions for structure and arrangement are always 

ignored in the previous researches [1-18]. In this research, the objective experiment 

results of HS and random structure show that, the structure and arrangement have 

affected the macro deformation properties. In order to find out the mechanism which 

brings the different mechanical deformation properties between harmonic structure 

and general random structure, the FEM model for random structure has been raised. 

In some researches, Voronoi tessellation is often employed to describe the random 

structure [19-27]. In mathematics, a Voronoi diagram is a partitioning of a plane into 

regions based on distance to points in a specific subset of the plane. That set of points 

(called seeds, sites, or generators) is specified beforehand, and for each seed there is a 

corresponding region consisting of all points closer to that seed than to any other. 

These regions are called Voronoi cells. The Voronoi diagram of a set of points is dual 

to its Delaunay triangulation [28]. As Figure 4.1 shown, I drew a 2D Voronoi picture 
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by Rhinoceros [29]. I drew a 3D Voronoi sketch map by soft of Rhinoceros as Figure 

4.2 shown. 

Figure 4.1: 2D Voronoi picture drawn by software of Rhinoceros. 

53



Chapter 4 

 
Nevertheless, for the Voronoi model, the volume fraction of UFG can not be 

determined, precisely. Because every cell of the Voronoi model has different volume, 

we can not use the percentage of the grains’ numbers to describe the volume fraction 

of UFG. Moreover, the periodic boundary condition can not be applied in the Voronoi 

model according to the definition of the periodic boundary condition described in 

Chapter 3, which the nodes on the opposite sides should be one-one correspondence. 

For the Voronoi model, after thrice mirroring, the model will meet the requirement 

that the nodes on the opposite sides one-one correspondence. However, the plane of 

symmetry will be particularly conspicuous because it is the only regular part in the 

irregular model. Hence, the same volume cell model should be built to solve this 

problem.  

In order to compare with harmonic structure, the base shape of random structure 

Figure 4.2: 3D Voronoi model drawn by software of Rhinoceros. 
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should also be truncated octahedron. Random structure model can be regarded as 

space-filling truncated octahedron without shell region. 

4.1.2 Random materials setting 

The RVE should also be applied to the comparative simulation of a random 

structure. As shown in Figure 4.3 (1), the space-filling truncated octahedron can also 

be employed for the random-structure model. One quarter of the truncated octahedron 

is split into 12 parts, which have the same shape and volume. By mirroring and 

arraying the unit model, the entire RVE, which has 54 truncated octahedrons, is 

obtained. The entire model contains 2,592 individual parts. The contrasting feature of 

the random structure is the unordered arrangement of the CG and UFG structures. By 

defining the different parts with different material characteristics randomly, a random 

distribution structure can be modeled.  

The mainly block dividing procedure for random structure is shown in Figure 4.3. 

The main point of random structure block dividing is to produce little units with same 

shape and volume as Figure 4.4 shown. First step is to build a 1/8 truncated 

octahedron as same as harmonic structure. However, there is difference between 

harmonic structure model and random structure model. For random structure, 1/8 

truncated octahedron should has several same individual triangular prism parts but 

harmonic structure doesn't have. Harmonic structure model mesh can pay more 

attention to the direction compatibility between tensile test direction and mesh 

direction. While in random structure, the direction compatibility is secondary. The 

most significant factor of random structure block dividing is guaranteeing the oneness 

of parts. Hence, 6 same triangular prisms are built. After Y-grid dividing for these 6 

triangular prisms, every triangular prism is divided into 3 little hexahedron blocks. 
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Figure 4.3: The mainly block dividing procedure for random structure. 

Figure 4.4: General random model block dividing based on truncated octahedron. 
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However, in meshing software ANSYS-ICEM, if we directly mirror and array the 

unit model, there will be not 2,592 individual parts in the model. There will only be 

just 12 individual parts, because the meshes which are mirrored or arrayed will have 

the same characteristics with the origin meshes. In order to obtain the individual parts, 

the ABAQUS mesh file ‘.inp’ should be modified directly. 

ABAQUS mesh file is composed by nodes’ coordinates and elements messages. 

We must make the programs to deal with the mirroring and arraying of the meshes. 

Figure 4.5 shows the inp file of ABAQUS. The basic part for the mesh message is 

about the nodes and the elements and groups of elements prepared for material 

definition. “Node” means the node’s number and coordinates of x/y/z. “Element” 

means the element’s number and the nodes which constitute the mesh. “Elset” sets the 

element groups. “Solid Section” connects the element group with the material. Hence, 

for the mirroring and arraying, these four key points should be added new items, 

while the remaining commands of the inp file keep intact. 

 
In this research, I choose VB to make these two programs. For arraying (Figure 

4.6), the main step is to calculate the length of the model. The coordinates of new 

nodes should be the origin coordinates of origin nodes plus length of the model. The 

Figure 4.5: Inp file for ABAQUS. 
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new elements constituted by new nodes should be added in the file. For y direction, 

the modified node numbers and element numbers made by x direction arraying are the 

basement data. For z direction, the modified node numbers and element numbers 

made by x/y direction arraying are included in the basement data. The new element 

groups just use the original material. Modifying “Solid Section”, the material can be 

defined. Making an arraying program is relatively easier compared to mirroring. 

 

For mirroring, the orders of the nodes and the elements should be paid attention to. 

After programming, I found the mirrored meshes disappeared in the ABAQUS, 

however they are displayed in ICEM. The reason is that the mirrored meshes become 

minus meshes, because the orders of the nodes are clockwise according to using the 

nodes number directly. For one hexahedron mesh, there are eight nodes. The 

clockwise can be changed into inverse hour by exchanging the second node with the 

fourth node, the sixth node with the eighth node. This time, the mirrored meshes are 

displayed in ABAQUS (Figure 4.8). Even the model is prepared for random structure, 

the order for setting the material blocks should be paid attention to, which helps to 

identify the location of the blocks. After mirroring and arraying the meshes, there are 

duplicated nodes. The duplicated nodes can be merged in ABAQUS. 

Figure 4.6: Array the mesh. 
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By controlling the percentage of the parts that constitute the UFG material of the 

random-structure model, the UFG volume fraction of the random-structure model is 

made equal to the UFG volume fraction of the harmonic-structure model shown in 

Figure 4.9. Thus, the structural effect can be distinguished. In this research, the UFG 

Figure 4.8: Mirror the mesh. 

Figure 4.7: Inverse hour order of nodes for mesh. 
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volume fraction of the harmonic-structure model is 20.7%. The number of individual 

parts in the entire random-structure model is 2,592; therefore, 20.7% of 2,592 equals 

537. Thus, 537 individual parts should be stochastically defined as the UFG material 

and the remaining 2,055 individual parts should be defined as the CG material. As 

shown in Figure 4.9, by defining the material of the units, an RVE of the 

random-structure model can be built. The light gray parts are the CG regions, whereas 

the dark gray parts represent the UFG regions. 

 

4.2 Simulation results comparison between harmonic  

structure and random structure 

4.2.1 True stress-strain curves 

Figure 4.10 shows the true stress-strain curve of the SUS304L material. The 

dashed line and dotted line correspond to the estimated curve of SUS304L harmonic 

and random structure materials, respectively, while the solid line shows the 

experimental data of SUS304L harmonic structure material. By comparing the true 

stress-strain curve of the estimated results of multi-scale FEA to the experimental 

Figure 4.9: Constructing the SUS304L general random structure mesh, IP+MM360ks 

         (weight ration=1:1) compact. 
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result, the superposition of the shape of these curves can be obtained, ensuring the 

validity of the multi-scale FEA model.  

 

4.2.2 Stress & strain contour distribution 

Figure 4.11(a) shows the Von Mises Stress distribution of the harmonic structure 

model and the general random structure model. The results demonstrate that the 

highest Mises stress value of the harmonic structure model is 740MPa, while the 

highest Mises stress value of the general random structure model is 760MPa. The 

common point of these two figures is the main degree of Von Mises Stress distributed 

on the UFG (ultra fine grain) parts. However, the results indicate that the general 

random structure still shows lots of stress location parts, while the stress distribution 

of the harmonic structure model demonstrates uniformity comparatively.   

Figure 4.11(b) shows the max. principal plastic strain distribution of the harmonic 

structure model and the general random structure model. For the strain distribution, 

max. principal plastic strain and plastic equivalent strain can both be employed to 

Figure 4.10: Simulation and experiment's true s-s curves comparison of SUS304L material. 
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describe the strain distribution. However, as this research is about the Uniaxial Tensile 

Test problem, because the tensile direction is single axle, both max. principal plastic 

strain and plastic equivalent strain are applicable. Moreover, I have used these two 

ways to observe the strain distribution maps, and there is hardly any difference 

between these two methods’ results. The value label is the auto label of the harmonic 

structure result. The light grey part of the label is in order to express the highest value 

of the random structure result. The highest strain value of the harmonic structure 

model is 0.146, while the highest strain value of the general random model is 0.22. It 

demonstrates there are still some strain localizations happening in the random 

structure. For the general random structure model, while expressing strain hardening 

through the process of deforming, it will show higher distortion resistance earlier than 

the harmonic structure model. Hence, the general random structure model will witness 

show plastic instability phenomenon earlier, consequently expressing cracks earlier. 

Moreover, from the strain distribution, UFG phase and CG phase in harmonic 

structure can be distinguished very clearly. Comparatively speaking, for harmonic 

structure strain distribution, high value regions represent CG phase, low value regions 

represent UFG phase, respectively. However, for random structure strain distribution, 

it is difficult to distinguish UFG phase and CG phase from contour distribution. Some 

CG regions demonstrate strain localization, while some UFG region also show strain 

localization. It indicates that, in random structure, CG phase will not assist UFG phase 

supporting strain, while in harmonic structure, CG phase undertakes some strain 

which UFG phase ought to take. CG phase protects the fragile UFG phase. 
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4.2.3 Histograms of the stress and strain distribution frequency 
 

In order to confirm the disparity of the stress and strain distribution for these two 

types of structure models, the histograms of the stress and strain distribution have 

been applied. The data in Gauss quadrature integral points and the meshes’ volume 

were utilized. For the strain and stress distributions, the horizontal axis represents the 

strain or Mises Stress [MPa], while the vertical axis represents volume fraction in the 

whole model within the scope of stress and strain. In ABAQUS, the valid point for 

calculation is Gauss quadrature integral point which is inside of mesh but not the node 

Figure 4.11: (a) Von Mises Stress and (b) max. principal plastic strain distribution of  

          harmonic and random structures. 
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of the mesh. In order to avoid the cognitive errors of material duplication definition of 

the node in the boundary of the two different material characteristics meshes, the 

Gauss quadrature integral point inside the mesh has been employed. Moreover, as the 

parameter called averaging threshold in ABAQUS changed, the contour distribution 

will be changed, because the parameter decides the contour continuity of the adjacent 

meshes. However, the result of Gauss quadrature integral point is exact value which is 

used in calculation, while the results of the node and the remaining parts of the mesh 

are derivation values. Hence, in the histograms, the data of Gauss quadrature integral 

points are employed. In this research, because the hexahedral mesh has been applied, 

there are 8 Gauss quadrature integral points in one mesh in order to match along with 

8 nodes. Because every mesh's volume is different from other meshes', for the 

accuracy of the histogram result, the mesh's volume should be added into the 

calculation instead of merely calculating for mesh numbers. Hence, the occupancy of 

one mesh in whole model can be calculated, while occupancy of one Gauss 

quadrature integral point accounts for 1/8 of this mesh's occupancy. Hence, file for 

data in Gauss quadrature integral points and file for meshes' volume should be dealt 

with together. For harmonic structure, even for the whole model, there are just three 

parts in whole model, two for cores, and one for shell. Therefore, the needless parts 

which are the introductions for the data can be deleted by hand. While for random 

structure, there are 2592 individual parts and not only one working condition is 

simulated, thus, extracting the data by hand is unrealistic. In this research, I made 

programs to extract and calculate the data. Hence, the frequency of the stress/strain 

distribution can be observed, intuitively. 

For the data expression, on a linear scale, the lower value is always ignored 

compared to the higher value; therefore, in this research, instead of a simple linear 

scale, a probability scale is used to describe the vertical axis of the volume fraction. 

The probability scale represents the inverse of a cumulative Gaussian distribution. 

Plotting a cumulative Gaussian distribution produces a sigmoid-shaped curve which 

comes from the function called norminv. This curve, when displayed on a probability 

scale, appears as a straight line. Because probabilities are expressed as percentages, 
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all values must fall between 0 and 100. The probability scale range is from 0.0001 to 

99.999. The probability scale specializes in displaying the frequency problem exactly 

as required in this research. In contrast to the linear scale, the probability scale 

emphasizes the lower value while also showing the higher value well.  

 
From the strain histogram figure of CG, UFG (Figure 4.12 a,b), it can be observed 

that: The harmonic structure results distribute intensively, with the highest value at 

0.148, while the general random structure results distribute dispersedly, with the 

highest value at 0.176. It demonstrates that in random structure, without the 

connection of the UFG phase, the CG phase deforms willfully. The highest value 

strain domains in random structure would be the weak parts as the deforming 

continuing. Furthermore, the strain distributes wider range in random structure than 

the harmonic structure. It signified the narrow CG phase strain distributes more 

(a) (b) 

Figure 4.12: Strain frequency histogram: (a) CG; (b) UFG; 

  Stress frequency histogram: (c) CG; (d) UFG. 

(c) (d) 
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uniform deformation in harmonic structure. Owing to the connection of UFG phase in 

harmonic structure, the non-uniform structure can lead to uniform deforming. 

However, in the histogram figure for CG, it can be seen that the peak of the general 

random model is 0.117, while the peak of the harmonic structure model is 0.124. 

Compared with the general random model, the peak of the harmonic structure model 

moved to the higher value in CG area. The result demonstrates that in the harmonic 

structure model the course grain phase undertakes the major strain. While in the 

general random model, the course grain phase doesn't show the elongation function 

enough. Moreover, in the histogram figure of UFG, it can be shown that the peak of 

the general random model happens close to 0.09, while the peak of the harmonic 

structure model happens near 0.07. The results reveal that in harmonic structure 

material, the UFG phase suffers less strain than in general random structure material. 

It means that the CG phase in harmonic structure material suffers more strain and 

carries enormous importance of elongation improvement. 

From the Von Mises Stress histogram figure of CG, UFG (Figure 4.12 c,d), it can 

be demonstrated that for CG phase, the harmonic structure results distribute 

intensively as the strain results show, with the highest value at 523MPa, as the general 

random structure results distribute dispersedly, with the highest value at 550MPa. The 

results also demonstrate that the general random structure still shows stress 

localization. 

4.3 Conclusions 

In this chapter, random structure FEM model has been raised to compare with 

Harmonic structure. The results show that in the random micro-structure, stress and 

strain localization occurred, whereas in the harmonic-structure materials, the network 

structure of the UFG phase prevented stress and strain localization. Especially in 

strain distribution of random structure, the difference between CG phase and UFG 

phase is hardly shown at all. It indicates that, for random structure, UFG phase should 

undertake the strain as the CG phase takes. In contrast, in harmonic structure, CG 
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phase assists to undertake some strain which UFG phase ought to support, which 

prevents the strain localization happening in the UFG phase. Hence, compared to the 

random micro-structure, the harmonic-structure materials exhibit better mechanical 

performance. Owing to the connection of the UFG phase in the harmonic structure, a 

non-uniform structure is formed, leading to uniform deformation. 
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Chapter 5: Comparative simulations of 4 
kinds 50% UFG volume fraction 
bi-modal heterogeneous models 

5.1 4 kinds of 50% UFG volume fraction models based on 

same geometry of truncated octahedron 
 

50% UFG volume fraction is a special balance status for bi-model which 

constituted by half UFG region and CG region. Via exchanging the material of shell 

region and cores region of harmonic structure, the inverse harmonic structure model 

can be built. In Chapter 4, we compared the harmonic structure with general random 

structure. We found that comparing with irregular random structure, harmonic 

structure with network structure can achieve higher mechanism capabilities. In this 

chapter, we choose different kinds of 50% UFG volume fraction models to compare 

with each other to discuss if there are other structural factors for harmonic structure 

deciding the mechanism characteristics. 

Figure 5.1 shows 4 kinds of 50% UFG volume fraction models based on truncated 

octahedron. The light gray parts are the CG regions, whereas the dark gray parts 

represent the UFG regions. These 4 kinds of 50% UFG volume fraction models are 

(1) harmonic structure (HS); (2) inverse harmonic structure (inv. HS); (3) random 

structure; (4) 3D fabric structure. Thanks to the space-filling function of truncated 

octahedron, the foundation shapes of these four models are all truncated octahedron 

what makes the comparison feasible.  
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Traditionally, in the field of composite materials, homogeneous materials are 

toughened by introducing high-strength particles in the matrix. It is known that rigid 

nanofillers can improve the fracture toughness, stiffness, and even strength of a 

material (Wang et al. (2013)); the inverse harmonic structure is often used to represent 

this improvement. The inv. HS (Figure 5.1 (2)) with a high-elongation shell and 

high-strength cores has been widely used for improving material strength, and its 

composition is opposite to that of a HS (Figure 5.1 (1)). 

The Figure 5.1 (3) shows the random structure model for 50% UFG volume 

fraction model. Random structure model is built in Chapter 4. As there are 2,592 

individual units in the random structure model, therefore, 50% of 2,592 equals 1,296. 

Hence, 1,296 individual parts should be stochastically defined as the UFG material 

and the remaining 1,296 individual parts should be defined as the CG material. 

The fabric structure has been validated as the high mechanical performance [5-11]. 

In this research, the fabric structure model based on truncated octahedron has been 

used. Figure 5.1 (4) shows the 3D fabric structure model with 50% UFG volume 

fraction. As the periodic boundary has been employed, the CG region and UFG region 

Figure 5.1: 4 kinds of 50% UFG volume fraction models based on truncated octahedron.  

         (1) HS; (2) inv. HS; (3) random structure; (4) 3D fabric structure.  
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are both connected as the 3D network, respectively. Because the 3D fabric model 

showed in figure is based on truncated octahedron, in order to make the model 

structure composition clear to understand, regular cubic 3D perfect fabric model 

illustration based on cube (Figure 5.2) has been built to compare with 3D fabric 

structure from truncated octahedron. From the regular cubic 3D perfect fabric model 

illustration, it can be observed that the model has two same cross banding fabric 

structures. These two cross banding fabric constitutes constitute space filling structure 

with connection, collaboratively. Then the 3D fabric structure model based on 

truncated octahedron is constituted in the same way, while the cross banding fabric 

structure is not as perfect as the shape of cube.  

 

In order to understand the difference in the mechanisms of the HS, inv. HS, 

random structure and 3D fabric structure model. Multi-scale FEM simulations for 

these four models have been raised. The grain sizes of the CG and UFG materials are 

set as 17.6 and 2.0 μm, respectively, as same as the SUS304L harmonic structure. The 

strain obtained from the tensile test simulation is 12%. 

Figure 5.2: 3D fabric structure based on truncated octahedron and 3D fabric structure based 

on cube. 
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5.2 Results 

5.2.1 True stress-strain curves 

Figure 5.3 shows the true stress-strain curves of these four models. Except the 

orange and purple lines which represent ultrafine grain and coarse grain, the left four 

curves which represent four models show almost superposition as the previous 

conclusion that the strength is almost equal while the volume shell fraction and grain 

sizes are the same, which is in keeping with the experiment results of HS and random 

structure, for SUS304L structure. The results demonstrate that there is no relationship 

between yield strength and bi-modal structures no matter the bi-modal structures have 

any constitution. 

 

 
 

Figure 5.3: True s-s curves comparison of 4 kinds of 50% UFG volume fraction models 

by multi-scale FEM. 
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5.2.2 Stress & strain contour distribution 

Figure 5.4 shows the Von Mises Stress distribution of these four models. The 

results demonstrate that the highest Von Mises Stress value of the harmonic structure 

model is 750 MPa, while the highest Von Mises Stress value of the inv. HS is 771 

MPa, the general random structure model is 789 MPa and the 3D fabric structure is 

793 MPa. The common point of these two figures is the main degree of Von Mises 

Stress distributed on the UFG (ultra fine grain) parts. However, the results indicate 

that the other 3 models still show lots of stress localization parts, especially the 

random structure and 3D fabric structure, while the stress distribution of the harmonic 

structure model demonstrates uniformity comparatively.   

 

Figure 5.5 shows the max. principal plastic strain distribution for the 4 kinds of 

models. The values in the legend are the actual values obtained from the 

Figure 5.4: Von Mises Stress distribution of 4 models. (1) HS; (2) inv. HS; (3) random  

structure; (4) 3D fabric structure. 
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harmonic-structure results. The maximum value in the light gray part (i.e., 0.249) 

represents the highest value obtained from the inv. HS results, whereas the maximum 

value in the red part (i.e., 0.155) represents the highest value obtained from the 

harmonic-structure results. Note that even though the maximum value (i.e., 0.155) is 

set as the highest value of the harmonic structure, the software ABAQUS 

automatically shows the region in which the value exceeds 0.155 as the light gray part. 

The above results indicate that some strain localization still occurs in the other 3 

models except HS. When expressing strain hardening through the process of 

deformation, the other 3 kinds of models will show higher distortion resistance earlier 

than the HS model. Thus, the other 3 kinds of models will exhibit plastic instability 

earlier and will consequently express cracks earlier. Within the 3 kinds of models, 

compared to the random structure and 3D fabric structure, the inv. HS shows 

significant difference. 

 

Figure 5.5: Max. principal plastic strain distribution of 4 models. (1) HS; (2) inv. HS; 

         (3) Random structure; (4) 3D fabric Structure. 

76



Chapter 5 

 

For the comparison of HS and inv. HS, as Figure 5.4 and 5.5 shown, the Von 

Mises Stress and max. principal plastic strain distribution of HS model and inv. HS 

model. The highest stress and strain value of the HS model are 750MPa and 0.155, 

while the highest stress value of the inv. HS model are 771MPa and 0.257. The results 

indicate that without the connection of the UFG phase, the inv. HS demonstrate the 

strain localizations obviously. Without the connection of the UFG phase, the CG 

phase is forced to undertake more deformation. However, the strain localization of 

inverse harmonic structure may lead to crack. 

From Figure 5.6 to Figure 5.9, the figures demonstrate transition process of Von 

Mises Stress and max. principal plastic strain distribution along with the deformation 

for these four kinds of materials. All of the four models have the same tendency that 

higher stress appears in UFG regions, while mainly strain appears in CG regions. 
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Figure 5.6: Von Mises Stress and max. principal plastic strain distribution along with the 

deformation for harmonic structure material.  
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Figure 5.7: Von Mises Stress and max. principal plastic strain distribution along with the  

deformation for inverse harmonic structure material.  
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Figure 5.8: Von Mises Stress and max. principal plastic strain distribution along with the 

deformation for random structure material.  
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5.2.3 Histogram for strain distribution frequency of 4 kinds  

models 
To confirm the disparity between the strain distributions for these four types of 

structure models, the histograms of strain distribution are obtained. The data in Gauss 

Figure 5.9: Von Mises Stress and max. principal plastic strain distribution along with the 

deformation for 3d fabric structure material.  

81



Chapter 5 

quadrature integral point and the elements’ volume were utilized. For the strain 

distributions, the horizontal axis represents the maximum principal strain, whereas the 

vertical axis represents the volume fraction in the entire model within the scope of the 

strain. In this result discussion, linear scale and probability scale are both employed 

for expressing the vertical axis. Linear scale is used to represent the tendency of the 

whole frequency. Probability scale is applied to represent the strain localization 

regions because the lower value is always ignored compared to the higher value with 

linear scale.  

Figure 5.10 (1) shows the histogram of CG region strain distribution via linear 

scale vertical axis. Data represent HS, inv. HS, random structure and 3D fabric 

structure from the top down, respectively. Through the result, it can be observed that 

the strain of the HS is concentrated on 0.14, while the other three models show 

dispersing. The most dispersed model is inv. HS. 

Figure 5.10 (3) shows the histogram of CG region strain distribution via 

probability scale vertical axis. However, the width of the whole bars represents the 

strain distribution uniformity level of the material. The strain distribution 

demonstrates more uniform while the width is narrower. Via the result, it can be 

observed that the HS demonstrates the most uniform strain while the inv. HS shows 

the most non-uniform. The highest value of HS' model Gauss quadrature integral 

point strain is 0.156, while inv. HS is 0.254, the random structure is 0.220, the 3D 

fabric structure is 0.209. It demonstrates that while other three models are showing 

strain localization in CG region, the HS strain shows well distribution. 

Figure 5.10 (2) shows the histogram of UFG region strain distribution via linear 

scale vertical axis. The lowest peak is shown in inv. HS model near 0.07. The HS 

shows the second lowest strain peak near 0.09. The random structure and 3D fabric 

structure shows the strain peak around 0.10. From the result, it can be perceived that 

the UFG region of inv. HS is most well-protected among the four models, while the 

UFG region in random structure and 3D fabric structure is almost hardly protected by 

CG region.  

Figure 5.10 (4) demonstrates the histogram of UFG region strain distribution via 
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probability scale vertical axis. Although the inv. HS shows the lowest peak among the 

four models, the highest value of HS is 0.14 which is the lowest among the four 

highest values. It can be demonstrates that the HS strain shows well distribution in 

UFG region, while the other three models are showing strain localization. However, 

among these four models, in inv. HS, the width of the whole bars is narrowest, which 

indicates that the inv. HS UFG region strain distribution uniformity level is highest. 

The reason the inv. HS shows well strain distribution in UFG region is that the inv. 

HS is constituted by a high-elongation network CG shell and high-strength UFG cores, 

which means that the UFG region is well-protected by CG network.  

 

Figure 5.10: Histograms for frequency of max. principal plastic strain: (1) CG region via  

linear scale vertical axis; (2) UFG region via linear scale vertical axis; 

(3) CG region via probability scale vertical axis; (4) UFG region via 

probability scale vertical axis. 
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Figure 5.11: Frequency distribution of max. principal plastic strain by circle area of CG region. 
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Figure 5.13 demonstrates the histograms for Frequency of max. principal plastic 

strain of whole region. Figure 5.13 (1) shows the linear scale vertical axis. It can be 

clearly observed that there are obvious two peaks happened in the HS and inv. HS, 

while the random structure and 3D fabric structure show nearly one peak. The 

appearance of two peaks reveals that for HS and inv.HS, the UFG phase suffers less 

Figure 5.12: Frequency distribution of max. principal plastic strain by circle area of 

UFG region. 
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strain, while the CG phase suffers more strain. It reveals the obvious division of labor 

that high elongation CG region suffers some strain which should be provided by low 

elongation UFG region originally. The UFG region is protected by CG region in HS 

and inv. HS. However, for random structure and 3D fabric structure based on 

truncated octahedron, there are hardly differences between CG and UFG regions in 

suffering strain. UFG region in random structure and 3D fabric structure may be the 

weak parts in where the plastic instability happened. Figure 5.10 (2) demonstrates the 

probability scale vertical axis for Frequency of max. principal plastic strain. The 

narrowest distribution range happens in HS. It reveals that the strain of HS shows 

uniformity in spite of bi-model structure. Moreover, the highest value of HS is 

smallest in these four kinds of models. While inv. HS shows the widest distribution 

range and highest max value in these four kinds of models. Although the UFG region 

is protected by the CG network in inv. HS, CG region will show the cracks early 

because CG region deforms without restraint.  

Wang et al. (2013) raised a 2D FEM simulation to describe nanocomposite 

failure for epoxy resin with silicon dioxide [2] as Figure 5.14 shown. It is a common 

example for the traditional compound that introducing hard phase particle contents 

into matrix to toughen the original homogeneous material. The research reveals the 

possible scene of tensile test failure part for high strength UFG particle contents 

filling in high elongation CG matrix. It shows that the UFG particle contents may 

separate from the CG matrix perpendicular to the tensile test direction. As Figure 5.5 

(2) shown, the highest strain happens in the CG region perpendicular to the tensile test 

direction as same as the Figure 5.14 shown, which shows the research of 

nanocomposite failure for epoxy resin with silicon dioxide. This phenomenon will 

make the connection parts between UFG particles and CG matrix decreasing as that 

just two peak points for each one UFG particle. It will lead to the stress localization 

happened in the two peak points connecting the UFG particle and CG matrix for each 

one UFG particle. Hence, although introducing the hard phase contents in soft phase 

matrix is a common sense to increasing the strength of material, and it has already 

been widely used. Compared to HS, structure of inv. HS shows obvious weakness 
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because there is no UFG network structure to restrict the deformation of CG region. 

Because the elongation of UFG can not keep up with the large deformation happened 

in a few CG regions. Therefore, the high strain happens in CG region will influence 

the adjacent UFG region which will bring the high strain happening in the adjacent 

UFG region and at last tear the adjacent CG and UFG regions because of the strain 

localization. It can be observed that the connected UFG region plays a significant role 

in holding high elongation as the bi-modal structure. 

 

Figure 5.13: Histograms for frequency of max. principal plastic strain of whole region:  

(1) via linear scale vertical axis; (2) via probability scale vertical axis. 
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5.3 Discussions 

5.3.1 Irregular and non-uniform network structure happened 

in random structure 
From the results, a question is raised why the 3D fabric structure with both UFG 

and CG network structures doesn't show well performance. If the excellent 

mechanical performance of HS is just owing to network of UFG region, then the 3D 

fabric structure should show more superior performance thanks to both UFG and CG 

network. However, the fact is the 3D fabric structure just show a little better 

performance than random structure but worse than HS or inv. HS. Hence, the random 

structure should be got a better view. Figure 5.15 shows the CG region and UFG 

region of random structure, respectively. From the Figure 5.15, it can be perceived 

that although the UFG and CG region distributes randomly, but there is hardly 

individual UFG and CG region. Whatever the connection is tight or loose, the UFG 

Figure 5.14: Nanocomposite failure for epoxy resin with hard phase particle contents [2].  

Copyright © 2013 Zhenqing Wang et al. 
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and CG has been connected by itself chaotically. Put another way, it means that in 

random structure, UFG and CG region can be treated as a type of chaos and 

un-regular network structure.  

 
Since in random structure, UFG and CG region can be treated as a type of chaos 

and un-regular network structure. Thus, what is the difference between these network 

structures in HS and random structure? Figure 5.16 shows the 2D sketch-map of the 

network structures’ connection. For these two models, percentages of black blocks are 

both 50%. While the widths of every black block in HS network structure are nearly 

same, widths of black blocks in random structure are varied. In random structure, 

through widths of some black blocks are thick, in order to make the UFG volume 

fraction as 50% as HS, some others are very thin as shown in Figure 5.17. However, it 

is well known that strain and stress localization always happened in the weak region. 

Hence, no matter how the thick blocks exist, the thin blocks will become the 

weakness of the whole material. It raised the assumption that not only the network 

structure but also the thickness here and there of the network decides the mechanical 

performance. Hence, the random structure shows bad mechanical performance, while 

the thickness of the network in HS is almost keeping in same value because the shell 

Figure 5.15: CG region meshes for random structure and UFG region meshes for random  

structure. 
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is manufactured by MM. After MM, the shape of MM powders has become polygon 

near sphere. Via gravity and pressure, the powders will array automatically with 

contact area as large as possible. Hence, it will lead to the result that the thickness of 

the shell keeps in almost same value. 

 

 

Figure 5.16: The connection network structure for regular HS and irregular random structure. 

Figure 5.17: The weakness parts for the network structure of random structure. 
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5.3.2 The perfect 3D fabric model based on geometry of cube 

For the FEM result of 3D fabric structure strain distribution, it can be observed 

that the strain localization is happened in the connection of CG region. The 

connection of CG region is the thinnest part of the CG network structure. Because the 

models are based on truncated octahedron, the thickness of the network is varied. 

Hence, perfect 3D fabric structure finite element analysis has been raised to validate 

the assumption as Figure 5.18 shown. Perfect 3D fabric structure is the model with 

here and there same thickness which is different from the 3D fabric structure based on 

truncated octahedron. The result demonstrates a uniform strain distribution. Although, 

there is hardly difference between UFG and CG region, moreover, only from the point 

of CG region, strain is almost uniform here and there. Strain localization is hardly 

shown in the perfect 3D fabric structure. The result is in keeping with the general 

knowledge that the perfect 3D fabric structure shows well mechanical performance,   

and it is better than the 4 kinds of models which we have discussed earlier. The result 

shows expectancy which should happened in the 3D fabric model based on truncated 

octahedron. Hence, the difference between these two kinds of 3D fabric models is 

significant. However, we found the difference is the uniformity of the connection 

regions. Consequently, it educed another reason why the HS can demonstrate well 

mechanical performance, which is the homogeneous thickness of the network.  
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Moreover, in HS, not only deformation but also shifting is happened in UFG 

region (shell region). It will help the UFG region to decrease the stain. As the Figure 

5.19 shows, there are two conventional diagrams for deformation and shifting, 

respectively. For the general deformation in the left side, in order to move the black 

object from the pink pane into the purple pane, in the horizontal tensile direction, the 

black object will be stretched. Principal strain of the black object is 30% as the large 

pane deforming into the small pane. However, for the pure shifting in the right side, 

the black object just moves from large pane into small pane but not deforms. Principal 

strain of the black object is 0%. The mechanism of shifting is that the black object has 

angularity between object itself and tensile direction, while in track of shifting there 

are no resistance. For HS, as the network structure, most part of UFG region is 

slanting relative to tensile direction. Moreover, because remaining parts are CG 

regions, it will lead to the result that in track of UFG region shifting there are less 

resistance than whole object made by UFG material. Hence, same shifting happens in 

Figure 5.18: Multi-scale FEM model for perfect 3D fabric structure with uniform thickness 

network; Max. principal strain distribution by  = 12%. 
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UFG region instead of general deformation, which will help the fragile UFG region to 

defer wrecking process. It will increase the elongation ability of the whole model. 

Therefore, not only increasing the strength but also ductility, the homogeneous 

thickness network UFG structure is merit to promote the mechanics properties. 

 

5.4 Conclusions 

1. In this chapter, 4 kinds of 50% UFG volume fraction FEM models based on 

truncated octahedron have been raised to compare with each other. The results 

show that all the models show same strength. It indicates that bi-modal 

materials keep same strength with the same UFG volume fraction and same 

CG/UFG material characteristics. 

2. Harmonic Structure (HS) exhibited better mechanical performance than other 

three models. Owing to the connection of the UFG phase in the harmonic 

structure, a non-uniform structure was formed, leading to uniform deformation, 

Figure 5.10: The difference between general deformation and shifting. 
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while other models still showed strain localizations. 

3. The simulation results for the HS and inv. HS were compared in this chapter. 

The results indicated that in contrast to HS, without the connection of the UFG 

phase, the inv. HS clearly experienced strain localization. Without the 

connection of the UFG phase, the CG phase was forced to undergo more 

deformation. However, the strain localization of the inv. HS may lead to crack 

formation, causing these parts to become the weakest regions in the inv. HS 

material. Hence, the results indicated that with regard to ductility, the HS 

performed better than the inv. HS. 

4. In order to understand if the network structure is the unique characteristic which 

gives the HS high strength and high elongation, the structure with 3D fabric has 

been employed in this research. The 3D fabric structure doesn't show expected 

well mechanical performance because it doesn't have uniform thickness 

network. It reveals that no matter how many thick regions exist, the thinnest 

regions of the network will become the shortcomings of the material. Hence, 

not only the network structure itself, but uniform thickness of network is also 

significant for ductility increasing. 
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Chapter 6: Effect of UFG volume fraction 
and CG/UFG material 
characteristics in harmonic 
structure material 

6.1 Effect of shell volume fraction in harmonic structure 

material 

6.1.1 FEA models with 5 kinds of UFG volume fraction for  

harmonic structure and random structure 
For the harmonic structure, change of UFG volume fraction will decide the 

thickness of the network. In order to understand the effect of the thickness of the 

network, different UFG volume fraction simulations for harmonic structure have been 

raised in this part.  

For this discussion, 5 kinds of UFG volume fraction have been employed--20%/ 

43%/ 50%/ 57%/ 70% (Figure 6.1). This five numbers are not regular integral number 

as 30/ 40/ 50 et al. since meshing step for harmonic structure is complex and 

consuming time. Hence, harmonic structure models with these UFG volume fractions 

are produced to match along with harmonic structure experiments. This simulation is 

to reveal the strain distribution tendency with UFG volume fraction change. At the 

same time, random structure models with same UFG volume fractions have been 

raised to compare with the harmonic structure. Figure 6.1 shows the HS and random 

structure models. Green parts represent UFG regions, while the white parts represent 

CG regions.   
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Figure 6.2 shows the true stress-strain curve of these bi-modal structure models. 

Via the results, it can be observed that the yield strength of the bi-modal structure 

increased with the UFG volume fraction. While with the same UFG shell fraction, the 

HS and random structure show almost the same yield stress. It can be observed that 

there are relationships between strength and UFG volume fraction. The value of yield 

stress is raised with the increment of the UFG volume fraction. 

Figure 6.1: Multi-scale FEM models for different UFG volume fractions for harmonic 

structure and random structure. 
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6.1.2 Stress and strain contour distribution 

For the Von Mises Stress distribution of these models (Figure 6.3), it is clearly 

observed that main degree of stress happens in UFG region both in HS model and 

random model. From the different color regions of the stress distribution, the UFG 

region and CG region can be distinguished obviously both in HS model and random 

structure model as the red and yellow regions represent UFG regions while the blue 

regions represent CG regions. Meanwhile, for HS models, it can be clearly observed 

that Von Mises Stress value of the CG region increase with the increment of UFG 

volume fraction. Because there is a corresponding relation between stress and strain, it 

means that, the average CG regions’ strain value of the 70% UFG volume fraction 

model is larger than the average CG regions’ strain value of the 20% UFG volume 

fraction model.  

Figure 6.2: Multi-scale FEM results of true strain-stress curves with different UFG volume 

fraction for harmonic structure and random structure. 
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For the max. principal plastic strain distribution of these models (Figure 6.4), 

there are obvious differences between HS model and random structure model. For HS, 

it distinctly shows that CG regions show higher strain relative to UFG regions. 

Moreover, as the UFG volume fraction increasing, the CG regions show higher strain 

in HS models tally with Von Mises Stress results (Figure 6.3). In contrast, it is 

impossible to differentiate different UFG shell fraction random structure models, 

because all the random structure models show almost same phenomenon. There are a 

few strain localization happening in the random structure models and the remaining 

parts in the model show almost same strain. Moreover, the mainly strain localization 

show in CG regions while some strain localization still show in UFG regions in 

random structure. Not just CG regions suffer high strain but UFG regions should also 

suffer parts of high strain.  

 

Figure 6.3: Von Mises Stress distribution of the harmonic structure and random structure 

for different UFG volume fractions. 
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6.1.3 Histograms for strain distribution 

Figure 6.5 demonstrates strain frequency histogram of CG region: (a) linear 

vertical scale; (b) probability vertical scale. The red bars reveal the results of 

harmonic structure. Meanwhile the black bars reveal the results of random structure. 

From the Figure 6.5 (a), the peaks of random structure models are almost in the same 

position which is near 0.12, meanwhile, the peaks of harmonic structure models show 

obviously movement. Although when the UFG volume fraction is 20%, the peak of 

plastic strain frequency of harmonic structure is 0.12. While the UFG volume fraction 

is 70%, the peak of plastic strain frequency of harmonic structure is near 0.15. Along 

with the UFG volume fraction increasing, peak of plastic strain frequency shift to the 

right obviously. In the case of 20% UFG fraction, CG regions occupy most regions in 

the whole model. Hence, the peak of the CG regions is near the whole strain 0.12 

which is as regular result. However, in the case of 70% UFG fraction, the peak values 

of harmonic structure and random structure show large difference. It demonstrates 

that although the CG volume fraction decrease, the CG regions in harmonic structure 

suffers much strain which the UFG regions should suffered originally, while the CG 

regions in random structure almost don’t help to share this part of strain. As Figure 

Figure 6.4: Max. principal plastic strain distribution of the harmonic structure and random 

structure for different UFG volume fractions. 
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6.5 (b) shown, no matter from 20% to 70% UFG volume fraction, distributions of 

plastic strain frequency in harmonic structure are narrower than frequency in random 

structure. Especially the random structure results appear in the high strain territory, 

except of the model with 20% UFG volume fraction, other models show highest strain 

near 0.2. Nevertheless, the highest value for harmonic structure is just near 0.17. The 

respectively uniform strain distribution which appears in harmonic structure 

demonstrates the harmonic structure can show uniform deformation even if harmonic 

structure is a type of heterogeneous bi-modal structure. 

 

Figure 6.5: Strain frequency histogram of CG region: (a) linear scale; (b) probability scale. 

(a) 

(b) 
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Figure 6.6 reveals strain frequency histogram of UFG region: (a) linear vertical 

scale; (b) probability vertical scale. It is same with CG region histogram that the red 

bars reveal the results of harmonic structure. Meanwhile, the black bars reveal the 

results of random structure. In Figure 6.6(a), the peaks of random structure models are 

almost in the same position which is near 0.1, which is relatively immobilized to 

harmonic structure. Along with the UFG volume fraction decreasing, peak of plastic 

strain frequency shifts to the left obviously. Although in the case of 70% UFG fraction, 

when UFG regions occupy most regions in the whole model, the peak of harmonic 

structure shows near 0.1, which is a little left relatively to random structure. In the 

case of 20% UFG fraction, the peak of harmonic structure is just 0.075. From the 

results in Figure 6.5 and 6.6, it can be revealed that, in harmonic structure, CG regions 

suffer more strain and UFG regions suffer less strain than CG regions and UFG 

regions in random structure, respectively. 
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6.2 Effect of CG/UFG material characteristics in harmonic 

structure material 

6.2.1 FEA models with different CG/UFG material characteristics 
Effect of CG/UFG material characteristics in harmonic structure material will be 

discussed in this part. Via changing CG/UFG material characteristics, it can be 

observed that how the gap of the CG/UFG material changed the material mechanical 

(a) 

(b) 

Figure 6.6: Strain frequency histogram of UFG region: (a) linear scale; (b) probability scale. 
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performance. At the same time, random structure models with same CG/UFG material 

characteristics have been raised to compare with the harmonic structure (Figure 6.7). 

In this research, a UFG volume fraction of 53% harmonic structure model has been 

applied. The CG material characteristics of every model are kept in the same value, 

while the UFG material characteristics changed. As the grain size of CG material is 

2/4/10/20 times of UFG grain size. Then, the immovable yield stress of CG material is 

274 MPa, at the same time, yield stress of UFG is 314/371/484/611 MPa, respectively.  

 
Figure 6.8 shows the multi-scale FEM results of true strain-stress curves with 

different CG/UFG material characteristics for harmonic structure and random 

structure. While within the same ratio of CG/UFG material characteristics, the 

harmonic structure and random structure reveal almost the same yield stress. 

Figure 6.7: Harmonic and random structure multi-scale FEM model with same UFG volume 

fraction of 53%. 
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6.2.2 Stress and strain distribution 

Figure 6.9 shows the Von Mises Stress distribution of these models. From the 

result, it can be observed that as the gap of CG and UFG grain size enlarging, the von 

Mises Stress disparities shown between CG and UFG regions increase both for 

harmonic structure and random structure. Nevertheless, although the CG material 

characteristics are same for all the models, the Von Mises Stress values shown in CG 

regions still grow with the gap enlarging of CG and UFG grain size. The Von Mises 

Stress shown in CG regions is affected by the material characteristics of adjacent UFG 

regions. 

Figure 6.8: Multi-scale FEM results of true strain-stress curves with different CG/UFG 

material characteristics for harmonic structure and random structure. 
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Figure 6.10 shows the max. principal plastic strain distribution of these models. 

From the results, it can be observed that as the gap of CG and UFG grain size 

enlarging, strain distribution disparities appear. However, when the model is an ideal 

homogeneous model, it will show uniform strain. Hence, while the gap of CG and 

UFG material characteristics is small, the result of harmonic structure is closed to 

random structure. Nevertheless, when the gap of CG and UFG material characteristics 

is large, harmonic structure and random structure show disparity in strain distribution 

which is described in Chapter 4. Random structure shows some strain localizations 

and the remaining parts can not be distinguished if the parts are UFG regions or CG 

regions. 

Figure 6.9: Von Mises Stress distribution with different CG/UFG material characteristics in 

same volume UFG fraction of 53%. 
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6.2.3 Comparison of max stress/strain values of these bi-modal 

harmonic and random structures 
To find out the discipline of CG/UFG material characteristics’ change, the 

comparison of max stress/strain values has been raised. Figure 6.11 (a) shows the max. 

Von Mises Stress values of these models. As the gap between the CG and UFG 

material characteristics enlarging, the value of max stress gets higher. It can be 

observed that the max value of random structure is always higher than HS which is in 

the same CG/UFG material characteristics with random structure. While the CG and 

UFG grain sizes are same--the material is equal to homogeneous material, the values 

of the two models' max stress are same. However, as CG and UFG grain sizes' 

distance enlarging, the gap of the HS and random structure max stress values gets 

larger. It can be noticed that without network structure of harmonic structure, the 

general random structure will show the plastic instability early. Moreover, Figure 6.11 

(b) shows the max. principal plastic strain values of these models. In the plastic 

Figure 6.10: Max. principal plastic strain distribution with different CG/UFG material 

characteristics in same volume UFG fraction of 53%. 
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deformation region, the stress-strain curve is flatter relative to elastic deformation 

region. Therefore, the stress value changes a little as the strain value changes a lot in 

the plastic deformation region. Hence, compared to the Von Mises Stress value, the 

principal plastic strain value represents the disparity of HS and general random 

structure more clearly. From the result of the max. principal plastic strain values of 

these models, it can be noticed that when grain size of CG material is 20 times of 

UFG grain size, the strain value difference between HS and general random structure 

is significantly huge---as the max value of HS is 0.174, while the max value of 

random structure is 0.337. The max strain value of random structure is almost 2 times 

as much as the max strain value of HS. Although the amount of strain localization 

regions is little, severe strain localization regions in the random structure will lead to 

crack easily. With deformation restraint by the regular uniform thickness network 

shell, the strain localization is evaded in harmonic structure. CG regions (cores) in 

harmonic structure keep uniform deformation as the homogeneous material.  
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6.3 Conclusions 

In this chapter, effects of UFG volume fraction and CG/UFG material 

characteristics in harmonic structure material have been discussed.  

1. For the effect of UFG volume fraction transition, 5 kinds of UFG volume 

fraction have been employed--20%/ 43%/ 50%/ 57%/ 70%. In the middle of the 

volume fraction as the UFG volume fraction and CG volume fraction are nearly 

equal to each other, the preponderance of harmonic structure is extremely 

obvious that the peak of strain of CG region of harmonic structure shows 

Figure 6.11: Max value for the Von Mises Stress and max. principal plastic strain for  

harmonic structure and random structure with different CG/UFG material  

characteristics in same volume UFG fraction of 53%. 

(a) 

(b) 
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higher while the max value of strain of harmonic structure is lower compared to 

random structure model. Moreover, in the edge of the volume fraction as the 

UFG volume fraction is just 20%, although the advantage of harmonic structure 

is not as clear as the 50% UFG volume fraction model shown, harmonic 

structure model still shows better mechanical performance than random 

structure. The better mechanical performance reveals in that in CG region, the 

random structure models always show strain localization while the harmonic 

structure models avoid the strain localization. Moreover, for 20% UFG volume 

fraction models, the peak of strain frequency in UFG region of harmonic 

structure show lower value than random structure, and for 70% UFG volume 

fraction models, the peak of strain frequency in CG region of harmonic 

structure show higher value than random structure. These results demonstrate 

that, in harmonic structure the CG region undertakes more strain than the CG 

region in random structure. Hence it reveals that the UFG region in harmonic 

structure is protected by CG region through bearing less strain, while the UFG 

region has to undertake same strain with CG region in random structure.  

2. For the effect of CG/UFG material characteristics in harmonic and random 

structure material, harmonic and random structure models with grain size of 

CG material 2/4/10/20 times of UFG grain size have been employed to 

compare. From the max value comparisons of Von Mises Stress and max. 

principal plastic strain for harmonic structure and random structure with 

different CG/UFG material characteristics in same volume UFG fraction of 

53%, it can be demonstrated that while the ratio of CG grain size and UFG 

grain size is low, harmonic and random structure models both approach to 

homogeneous CG material, the difference between harmonic and random 

structure is slight. However, with the increase of the ratio of CG grain size and 

UFG grain size, harmonic structure model reveals better mechanical 

performance than random structure, the superior of harmonic structure is more 

obvious. 
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Chapter 7: Application of deformation  
behavior of harmonic structure  
based on digital image correlation 

7.1 Introduction of digital image correlation 

In engineering practice, strain measuring can be performed in various ways and in 

general the techniques can be divided into contact measuring and non-contact 

measuring. Digital image correlation (DIC) is an effectual optical method which 

applies tracking and image registration techniques for accurate 2D measurements of 

changes in images due to its high accuracy and ease of use [1-16]. In a DIC analysis, 

the displacement and strain distribution of a test specimen can be obtained by 

correlation comparison between two high contrast digital images taken from before 

and after deformation states. The two high contrast digital images are compared by 

the data of luminance difference which can be quantified as similar degree. The 

images can be divided into many neat little regions. The two regions with the same 

coordinates and neighboring coordinates in the two images will be compared. As the 

similar degree is higher than a setting value by user, the two regions in the two images 

can be treated as same regions. The use of image correlation is at pixel level or even 

can be at the subpixel level [13].  

The DIC analysis is often used to measure deformation (engineering), 

displacement, strain, and optical flow, and it is widely applied in many areas of 

science and engineering. DIC techniques have been increasing in popularity, 

especially in micro- and nano-scale mechanical testing applications due to its relative 

ease of implementation and use. Driven by the recent advances in materials and 

biological research, there is a growing requirement for mensurable deformation 

analysis at the microscale. 
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7.2 Circumspect parts for use of tensile test specimen photos 

for DIC 
In this research, a without post treatment DIC soft programmed by Kyoto 

university Tsuji lab is employed to measure harmonic structure deformation during 

tensile test. This DIC soft can export the observing point's coordinates of before and 

after deformation. SUS304L 100h MM harmonic structure and SUS304L initial 

powder have been employed to compare in this research. For the digital image 

correlation, marks are significant for location. In this research, the grain boundaries 

have been employed as marks.  

Because the DIC soft should compare two photos before and after stretching by 

luminance difference in many little regions which are always set to 25 × 25. While the 

real object deformation step length is too large, the result of DIC will be imprecision. 

It means that if the center of a grid deforms above 5 pixels, then the soft can not 

distinguish the grid after deformation. Then the soft will just pick a coordinate wide 

of the mark. Moreover, the error will extend to the whole line of grids. Hence, the 

result is that the calculation will stop after these error grids. In order to deal with this 

problem, the multiple steps can be employed. In order to get the clear photos for the 

DIC soft, two significant steps should be raised, first is mark on the surface; second is 

step length. 

First, the marks should be set in surface of the tensile test specimen to help to 

recognize by soft. There is no need to observe the whole grain boundaries, because 

the whole aciding specimen for OM (optical microscope) will bring the fragile surface 

for the tensile test specimen. However, in order to obtain the strain distinctions 

between CG and UFG, in this research, the light aciding has been employed to 

observe the boundary of the UFG and CG regions. Afterwards, it will still bring a 

little influence to the tensile test.  

Second, the length of step should be small, thus the soft can recognize the same 

grids. We chose to process the tensile test by 5% of length firstly. Because the aciding, 

the specimen become fragile, after second time of stretching the specimen become 
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collapse. Then we choose to process the tensile test by each time 3% of length. As a 

result, there are obvious cracks happened the tensile test specimen after three times 

3% stretching. It is inescapability, and the surfaces of the specimens have become 

concavo convex after stretching. The specimen can not be polished again, because 

after polishing, the distinguishing feature identified by the soft will disappear. The 

OM can not focus on the whole surface simultaneously. Hence, the 6% strain 

stretching is employed in this research. 

For this DIC soft, the calculation principle is that calculation is from upper left 

first grid. Because the soft can just find the grid which move within 5 pixels but the 

totting-up deformation for the whole object will surpass 5 pixels as the grids in the 

right part, it will be error until the soft scans to right part. For the DIC soft, it can not 

modify error automatically. The error will continue to neighbor grid and then next 

grid, and after about five error grids finally it will lead to the stop of the calculation. 

In order to deal with this problem, each calculation for the grid is based on the left 

grid, except for the far left grid. For example, if the first grid (named: a) moved left 4 

pixels after deformation, and the next grid (named: b) is based on the new coordinate 

and moved left 3 pixels after deformation. For the b grid, the real moved distance is 7 

pixels. For this soft with the upper limit deformation of 5 pixels, the b grid can not be 

calculated precisely. Hence, instead of being calculated based on the origin grid 

before deformation, calculation based on the previous grid relatively has been 

employed. This method will help to disperse the deformation to each grid and reduce 

the amount of calculation. However, for the large scale object, there are still problems. 

After tensile test, a slight unevenness will happen in the surface, even if the 

unevenness is hard to be observed by eyes, it will affect the focus of the OM. In the 

high magnification of OM, the unevenness surface will not show clear because the 

focal lengths here and there are different. Hence, whole object will be separated to 

several parts to take photo. The before and after deformation photos will be taken by 

each part that between the neighbor parts there is overlapping region. After taking 

photos for each region, the results will be jogged together by “Adobe Photoshop” 

software. Because the boundary of CG and UFG is clear to observe, the extra marks 
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are not needed. The boundary of CG and UFG can be the mark to take the photos. I 

took 3 lines, 6 rows photos which conclude totally 18 pieces of photos to make one 

whole photo. Figure 7.1(1) shows manufacture of the photo in whole strain with  = 

0%. It can be observed that there are overlapping regions between neighbor parts, and 

it will help to jog together the photos. The photos in whole strain with  = 3% (Figure 

7.1 (2)) and  = 6% (Figure 7.1 (3)) will be set with same way. However, as the totally 

strain is 6% which the status is fixed in the tensile test machine, the totally strain 

contains elastic strain and plastic strain in it. Because the photos are taken by OM that 

the specimen has been pulled down from the tensile test machine, there will be only 

plastic strain displayed in the specimen. In this research, the specimen has been tested 

for two times with each time 3% totally strain. It reveals that, the elastic strain has 

been added for two times. Hence, the plastic strain for the whole specimen will be a 

little less than 6%.  
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However, if lapse happens in some grids, the previous calculation will be repealed 

at all. Moreover, after each tensile test, the specimen will be unloaded from the tensile 

test machine and cleaned again by ultrasonic cleaner. Sometimes, a small quantity of 

little cuts happens inevitably. The cuts happened after deformation will bring 

difficulty for the soft to notice the same region before and after deformation. Hence, 

the calculation should be separated to several regions.  

Figure 7.1: Pieced together tensile test photos of SUS304L 360h MM specimen by OM 

(optical microscope). (1)  = 0%; (2)  = 3%; (3)  = 6%. 
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Figure 7.3: Divide the whole calculation region into small regions, due to decreasing the 

possibilities of mistakes. 

Figure 7.2: Make sure the initial point of calculation fixing the same positions. 
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For this research, the 7 rows as 7 regions of photos for a whole harmonic structure 

tensile test specimen have been applied. For each region, in order to guarantee the 

position of upper left grid before and after deformation, the photo of after deformation 

should be moved to fix it. I used the ruler tool in the Photoshop to fix position. I used 

direction keys in keyboard to move the photo of after deformation. By this way, each 

step represents one pixel. The amount of movement should be recorded, and the data 

can be restored to the original state in the whole final calculation. The amount of 

movement should be added in the after deformation data. 

 

7.3 Programming for post treatment  

After simulated by the DIC soft, the coordinates’ data of center of the grids before 

and after deformation have been written as excel file. I created a VB program in this 

research to make the results visualization. This post treatment soft has contained two 

functions: first, displaying the displacement; second, the strain distribution.  

For the displaying of the displacement, the target is to draw the arrow shape. It is 

easy to draw a line to connect the center of grid before and after deformation with 

command of “line (x1,y1)-(x2,y2)”. The arrowhead can be drawn by using the line 

Figure 7.4: Adjust the position of the photo after deformation to make sure the the initial 

point of calculation fixing the same positions. 
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command to draw two little lines. For the DIC soft result, there is a parameter called 

similar degree to describe the similarity before and after deformation. Hence, while 

drawing the displacement result, the Schwellenwert should be set in the post treatment 

soft that the data below it will not be shown in the result. The Schwellenwert can be 

set as 0.7. However, the data of similarity are just for reference. We can confirm that 

the DIC soft will stop calculating after five or more low similar degree data 

happening.  

For the strain distribution, the region between two center points of grids will be 

the effective region for the strain. Because the photo is taken landscape orientation as 

the direction of tensile test. The ratio of landscape distances of the neighbor center 

points of grids before and after deformation will be the strain. In order to reach 

transparent display. Command of “AlphaBlend” has been employed. The function 

“AlphaBlend” is written as AlphaBlend (HDC hdcDest, int nXOriginDest, int 

nYOriginDest, int nWidthDest, int hHeightDest, HDC hdcSrc, int nXOriginSrc, int 

nYOriginSrc, int nWidthSrc, int nHeightSrc, BLENDFUNCTION blendFunction). 

We can use “AlphaBlend” to make some existed figures translucent. It is used to make 

the label and show the strain distribution and the original OM photo simultaneously. 

Hence, as shown in Figure 7.5, I prepared some pure color figures for label owing to 

the convenience. These pure color figures can be built by command before the 

“AlphaBlend” command also.  

For the displaying of strain distribution, the foremost rows may have some 

problems while the grid in first row sometimes shows inaccuracy. It will influence the 

whole data. Hence, parameter should be added which describe from which row the 

results can be shown. Figure 7.7 shows the example for pure Ti. In order to analysis 

the strain distribution happened in the harmonic structure specimen, the transparency 

level should be adjusted. 
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As shown in Figure 7.4, because the positions of the photos after deformation 

have been adjusted to make sure the initial points of calculation fixing the same 

positions, before integrating the csv files, we should modify the coordinates of after 

deformation photos in the csv files. We can modify the csv files in excel itself. After 

modifying the coordinates data in the csv files, the whole files should be integrated 

into one file. I applied VB to make a program to integrate the files. The program 

concludes three parameters which users should set: each line with how many files; 

how many lines; how many cycles the calculation has run. 

Because the original csv file pretermits the parameter for the number of 

calculation of the before deformation data as 0, the parameter has been added one per 

cycle. It can be used to record the cycle. 

 

Figure 7.5: Due to command “AlphaBlend”, prepare color figures for label. 
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7.4 Results 

Figure 7.8 shows the displacement distribution of the uniaxial tensile test result of 

Figure 7.7: Strain distribution for the whole part. 

Figure 7.6: Integrate small regions files into the final file. 

120



Chapter 7 

SUS304L 100h MM specimen in= 6%. The yellow arrows represent the 

displacement. Because the totally strain is just 6% which is too small to see, the 

distribution result is two times of real result. Owing to the calculation principle of 

DIC soft, the top left corners before and after deformation should be matched together. 

Hence, the lengths of the arrows become from short to long with the horizontal axis. 

If we don’t want the arrows to show disequilibrium that the left side shows too short 

while right side shows too long, we can change the data in the csv file by adding a 

constant value in the whole data after deformation. 

 

Figure 7.9 represents the strain distribution of the uniaxial tensile test result of 

SUS304L 100h MM specimen in= 6%. I applied 18 pieces of photos to constitute 

the whole stretching regions of the I-shape specimen. From the result shown in Figure 

7.9, it can be clearly observed that although the strain value ranges from 0 to 30%, the 

whole distribution is relatively uniform. For the general homogeneous specimen 

tensile test result, the strain distribution will show radioactive from a center line. 

However, for harmonic structure, instead of a center line, the tendency of strain 

distribution is dispersal. It can be clearly observed that many relatively strain 

concentrations happened in the CG regions, while the UFG regions show lower strain. 

Meanwhile, many relatively high strain regions appear in the center parts of the CG 

regions. The DIC result is in keeping with the multi-scale FEM result discussed in 

Chapter 4. The high elongation but low strength CG regions suffer more strain to ease 

the burden of the high strength but low elongation UFG regions.  

Figure 7.8: Displacement of the tensile test SUS304L 360h MM specimen.  = 6%. 
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Figure 7.10 demonstrates the strain distribution comparison between SUS304L 

initial powder (IP) and harmonic structure specimens of uni-axial tensile test with 

total strain of 5%. These two specimens are just be stretched for one time which is 

different from the two times test discussed above. These two specimens use just one 

piece of photo, hence, the calculation region is smaller than the test discussed above. 

The figures on the left side are photos for IP, while the figures on the right side 

show photos for harmonic structure. For the IP specimen, there are some holes in the 

sintered compact. After tensile test, the strain locations happened near the holes. For 

the IP specimen, the max strain value is as high as 0.24, and the max value appears in 

just two places in the calculation region. As a general homogeneous object, the strain 

distribution is radioactive from a center point. In contrast with IP, for the harmonic 

structure, the max strain value is just 0.081. Although the calculation region for 

harmonic structure is as small as the IP, it can still be observed that the max strain 

value of 0.081 appears in many districts for the harmonic structure. Meanwhile, the 

most relatively high strain regions are in the centers of the CG regions. With the 

network structure of the UFG region, the original CG regions are separated into many 

small regions. The extension of the strain locations appeared in general IP specimen 

has been interdicted by the network structure of UFG phase. While the strain 

distribution happened in one CG core has been restricted by the ambient UFG phase, 

because of the fixed total deformation of the specimen, relatively high strain will 

Figure 7.9: Strain distribution of the uniaxial tensile test SUS304L 360h MM specimen.  

 = 6%. 
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appear in other CG cores. The majority strain has been shared by many CG cores 

which will lead to the relatively lower strain in each CG core compared to the strain 

localization happened in general homogeneous specimen. Hence, the strain 

localization which has happened in IP will not appear in harmonic structure. The 

harmonic structure specimen demonstrates the relatively uniform deformation as the 

periodic boundary condition multi-scale FEM results shown. The multi-scale FEA 

model for harmonic structure can be validated. 

Figure 7.11 shows the morphology of Ni initial powder and harmonic structure 

tensile elongated specimens. From the data of reduction of area, it can be clearly 

revealed that for the harmonic structure specimen (square shape), the cross-sectional 

area shrinkage curve is a patelliform. This result indicates that the harmonic structure 

demonstrates uniform deformation without any remarkable necking formation. In 

contrast, for the initial powder specimen, there is no “plate-like” region in the 

cross-sectional area shrinkage curve, and strain localization is observed near the end 

point. It can be predicted the strain localization happens in the pore regions. These 

results demonstrate that the harmonic structure design promotes uniformity of 

deformation compared with structure of IP, thus leading to suppressed strain 

localization and relatively higher tensile ductility. Thereby, these experimental results 

have a good agreement with the FEM results. 
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 Figure 7.10: Strain distribution comparison between SUS304L IP and HS specimens. 
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Chapter 8: The feasibility of harmonic 
structure multi-scale model 
with multi-layer shell region 

8.1 The solid foundation of harmonic structure material with 

multi-layer shell region 
As the definition harmonic structure, the harmonic structure is a unique 

heterogeneous bi-modal structure consisting of coarse-grained areas (cores) enclosed 

in a three-dimensional continuously connected network of UFG structures (shell). 

While in some situations, there will be an intermediate layer between shell regions 

and core regions, which has the midterm grain size and midterm characteristics 

between UFG area and CG area. Ota et al. (2014) shows a harmonic structure with 

multi layer shell region. It has been observed a grain size gradient of the shell region 

in harmonic S329J1 which has been recognized as mid-shell and outer-shell [1]. 

However, this outer-shell is not with the intermediate grain size between UFG and CG 

phases but is consisted of both UFG and CG mix phases. Nevertheless, the 

characteristic of this region can be recognized between homogeneous UFG and CG 

materials. 

In this chapter, the realizability of multi-scale FEA with multi layer shell region 

has been investigated. 

8.2 Body fitted anisotropic layers in ICEM 

Body fitted anisotropic meshes have been employed in this research as the 

intermediate layer meshes instead of dividing new blocks for intermediate layer. Body 

fitted anisotropic meshes have always been applied in computational fluid dynamics 

(CFD) problems [2-15]. In fluid problems, hydraulic resistance happened in the 

region near the wall is a major factor affecting of the calculation accuracy. Hence, 

there is demand to refine the meshes near the wall. The number of body fitted 
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anisotropic layers is often more than four generally. However, considering the mesh 

size balance, there is no need to divide so many layers.  

In ICEM software, there are two methods to divide body fitted anisotropic meshes: 

controlling the number and arrangement of nodes in the blocks’ edges for hexahedron 

mesh; using prism meshing parameters. For the first method, there is no way to 

distinguish the meshes’ serial number for every layer. It means that the shell region 

can not be divided into multi layers. In contrast, with the second method, the new 

prism meshes will show large serial numbers relative to origin meshes although the 

new meshes share same material properties and same unit sets with origin meshes. 

Because the truncated octahedron based model has complicated shape, there are many 

blocks in the origin models. Hence, the new prism meshes will distribute on the basis 

of blocks, dispersedly. However, the large serial numbers are conspicuous. The large 

serial numbers meshes can be picked as a new group. Then we should set the new 

group with a new material. Importing the inp file into ABAQUS, the different colors 

based on materials will indicate if the shell region is divided into layers. Because 

picking the large serial numbers meshes is feasible but trivial and taking time, in this 

research, only 1/8 unit has been employed. After clearance for the 1/8 unit, the mirror 

step which has been shown in chapter 4 can be applied to build the whole unit.  

In order to divide the body fitted anisotropic meshes, we can apply the function 

called prism mesh. Because the body fitted anisotropic meshes are divided from 

original meshes, before generating prism meshes, there should be the basement 

meshes already. For pure CFD simulation, the boundary of fluid is usually wall. 

Hence, the fluid can be one block group overall. However, for dividing the 

intermediate layer, there are two types of materials already, hence there are two block 

groups. Before applying the prism mesh, the interior surfaces shared by two block 

groups should be chosen as individual parts which are prepared for prism meshes 

setting.  

Figure 8.1 shows an example of setting the prism mesh parameters. To generate 

one layer intermediate mesh, the block which will conclude the body fitted 

anisotropic meshes should be chosen first. Then the prepared surfaces should be 
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selected with the height 1, height ratio 1, num layers 2. Comparing the mesh in the 

left and the right, it can be clearly observed that in the blue meshes, a new layer of 

meshes appear.  

 

 

As shown in Figure 8.2, in the inp file, the large serial numbers mesh elements 

with the number above 200 can be clearly distinguished from the normal serial 

numbers mesh elements with the double figures numbers. The large serial numbers 

mesh elements are the new generation body fitted anisotropic layer meshes. We can 

modify the inp file by creating a new command “*ELEMENT”, which makes a new 

group for the elements. Then we should cut and paste the large serial numbers mesh 

Figure 8.1: Body fitted anisotropic layer meshes generation in ICEM. 
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elements massages into the new element group. Endue the new element group with a 

new material characteristic. Afterwards, in ABAQUS, the result can be shown as the 

Figure 8.2. The red mesh elements are the intermediate layer meshes modified from 

new generation body fitted anisotropic layer meshes. Hence, the intermediate layer 

meshes can be generated by this way. 

 

 

As shown in Figure 8.3, when the body fitted anisotropic layer function is used 

twice, the mesh elements with large serial numbers have a discipline. The numbers of 

the two times body fitted anisotropic layer meshes are not continuous. It can be 

observed that the number from 245 directly to 255. It is an obvious watershed to 

distinguish the two times body fitted anisotropic layer meshes. By setting the two 

times body fitted anisotropic layer meshes with different materials. In ABAQUS, it 

can be shown with materials’ color (Figure 8.3), one layer is red, while one layer is 

blue. However, Figure 8.3 shows a very simple model. While the origin model 

without body fitted anisotropic layer meshes is complicated, the original mesh 

numbers are not continuous. Meanwhile, the amount of the meshes is very large. It is 

difficult to distinguish two times body fitted anisotropic layer meshes. Even just for 

Figure 8.2: Distinguish the new generation body fitted anisotropic layer meshes by serial 

numbers of nodes. 
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one time body fitted anisotropic layer meshes in 1/8 harmonic structure model, 

because the original model is complicated, the new generated body fitted anisotropic 

layer meshes are distributed by many parts into the original meshes in the inp file. 

Fortunately, the new generated body fitted anisotropic layer meshes are still with the 

large serial numbers compared to the original meshes. By picking all the large serial 

numbers meshes into a new element group. The rudiment step of generating harmonic 

structure material model with multi layer shell regions can be achieved. In order to 

make sure all the new generated body fitted anisotropic layer meshes are concluded to 

the new group, it can be observed by ABAQUS using different colors to describe the 

different materials. 

 

 

8.3 Dealing with the wrong sequence node serial number meshes 
However, as the model is complicated itself, there are some errors happening in 

the 1/8 unit without predicting. As shown in Figure 8.4, in ABAQUS, some meshes 

seem to be missed which should be displayed. However, the similar error happened in 

making mirror program in Chapter 4 which aims to use mirror to build random 

structure model. The reason is the wrong order of the node serial number. The 

disappeared meshes are with minus volume. In ABAQUS, just inverse hour direction 

Figure 8.3: Generate body fitted anisotropic layer twice. 
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can be acknowledged. While one mesh has 8 nodes, the number 2 should be 

exchanged with number 4, the number 6 should be exchanged with number 8. For 

simple shape blocks, the new prism meshes can be generated smoothly and with no 

error. But the model for harmonic structure is truncated octahedron which has 

complicated shape, it will make the block dividing difficult and finally bring up a 

complicated combination of blocks. As the new prism meshes generated automatically, 

the reaction in complexity is opposite direction of some meshes. The opposite 

direction meshes should be found one by one, and the nodes’ order should be 

modified. After modifying the nodes’ order with wrong directions, the 1/8 unit can be 

mirrored by x-, y-, z-axis, respectively. Then, the model for the harmonic structure 

multi-scale model with multi-layer shell regions can be built as Figure 8.5 shown. The 

color of mesh shown in Figure 8.5 is displayed by material, respectively. The green, 

red, white parts represent three types of materials. The interface layer has one layer of 

meshes which are red in this research.  

By applying two times body fitted anisotropic layer function, the interface layer 

can have two layers of meshes. However, there will be more disappeared meshes with 

minus volume. Even in the 1/8 model, there are two parts of the intermediate mesh. 

For the one time body fitted anisotropic layer function in Figure 8.4, there are 135 

meshes for one side intermediate mesh in 1/8 model. Hence, there are 270 meshes for 

the new generating intermediate mesh in 1/8 model even it is just one layer of mesh. 
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Figure 8.4: Some body fitted anisotropic layer meshes disappeared in ABAQUS. 

Figure 8.5: Harmonic structure multi-scale model with multi layer shell region. 
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8.4 Simulation results 

Figure 8.6 demonstrates the Von Mises Stress and max. principal plastic strain 

distribution of the harmonic structure with mono-layer shell and with multi-layer shell. 

For the Von Mises Stress, it can be observed that except of the original low stress CG 

region and high stress UFG region, there is one intermediate value stress region 

between CG region and UFG region. For the max. principal plastic strain distribution, 

there is no obvious boundary between UFG region and intermediate layer. It 

demonstrates that the intermediate layer and UFG region both show low strain, while 

the CG region shows relatively higher strain. 

 

Figure 8.6: Von Mises Stress and max. principal strain distribution for harmonic structure 

with mono-layer shell and multi-layer shell. 
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8.5 Conclusions 

In this chapter, the feasibility of building harmonic structure multi-scale model 

with multi-layer shell region has been discussed. Thanks to Body fitted anisotropic 

layers function in ICEM, which is widely used in computational fluid dynamics 

problems, the intermediate region can be obtained. However, the complexity of the 

original harmonic structure material model leaded to a problem in which some minus 

volume meshes appear. By amending the order of minus volume meshes’ nodes, the 

problem can be solved. Hence, the model for the harmonic structure with intermediate 

shell region was completed. For the comparison of the harmonic structure models 

with mono-layer shell and multi-layer shell, it can be clearly observed that, the value 

for Von Mises Stress of the outer shell regions is between the values of core and inter 

shell regions. At the same time, intermediate layer and UFG region both show low 

strain, while the CG region shows relatively higher strain.  
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