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ABSTRACT 
 

 

In this dissertation, I focus on improving Smoothed Particles Hydrodynamics 

(SPH) method approach, in order to predict the landslide process with purpose of 

mitigating the hazard. Currently, in numerical simulation of geotechnical problems using 

SPH approach, researchers have to use artificial viscosity to stabilize the model. But it is 

difficult to identify two unknown parameters because these parameters will be different 

for each different problem. In this thesis, a new SPH approach combining viscous 

damping with stress/strain regularisation is proposed for simulation of granular flows. 

This improvement helps to eliminate the need to use artificial viscosity during the 

calculation. The results of numerical model show that beside the good failure kinematic 

simulation of the slope, the forecast of stress distribution during slope demolition is also 

exact. This is a significant step of SPH approach, because in the previous calculation 

results of other researchers, the stress field was so noisy and had low accuracy. 

To verify the improvement of the model, I have made a series of experiments on 

the failure of 2D granular columns, as recorded in detail by a high-speed camera. The 

results of SPH simulation have been compared with the experimental ones in terms of 

both space and time. This is the first time the SPH approach to soil mechanics problem, 

has been verify in both space and time. Based on my experimental results, I analyzed and 

identified a number of empirical formulas of the failure process of 2D granular columns. 

These formulas predict the farthest distance that the granular columns can run out failure 

based on their original dimensions. 

Also in this dissertation, the reduction of landslide possibility is studied both by 

experiment and numerical simulation using the above SPH approach. The experiments, 

relating to two dimensional retaining wall (2D) using rectangular blocks, are also 

recorded in detail by high-speed camera. The results of this experiment show in detail the 

types of failure mechanism of retaining wall system. This is a complete and reliable set 

of data on the box-shaped retaining wall failure mechanism that other researchers can use 

to verify their numerical models. The failure mechanisms of this retaining wall system 

have been accurately simulated by SPH approach. 
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CHAPTER  

1 
 

INTRODUCTION  
 

   
Landslides are a dangerous threat. It may be natural disasters such as landslides of 

mountain, soil – rock, snow ice, etc. and also disasters caused by human. Especially under 

the current effects of global climate change, the natural landslides have been becoming 

more complicated, increased both in number and scale. Recent years, landslides concentrated in 

Asian countries as Vietnam (Tran Thuc et al., 2015), India, China (see Figure 1.1), Japan 

(see Figure 1.2), Afghanistan (see Figure 1.3), etc. 

 

Figure 1.1: Landslide in Quangdong, China 2015 (source from http://mashable.com) 



 

2                                                                                                       Chapter 1: Introduction 

 

 

Figure 1.2: Landslide in Hiroshima, Japan 2014 (source from 

http://www.thetimes.co.uk) 

 

 

Figure 1.3: Landslide in Afghanistan 2014 (source from http://www.theatlantic.com) 
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 There are many reasons that cause landslide, but can be divided into two basic ones 

as follows: 

 The first type is caused by an imbalance of the slope. This kind often happens when 

there are impacts that make change to slope as activities that change the status of slope’s 

foot. In addition, this can occurs due to the impact of external forces such as earthquakes 

or overloaded pressures on slope. In this case, the road landslides caused by over-loaded 

vehicles in mountainous areas are an example. 

 The second one is caused by change in mechanical and physical characteristics of 

the slope itself that lead to imbalance. This type includes phenomena as mountain landslide 

caused by heavy or the long-timed rain or avalanche caused by temperature change, etc. 

 In this thesis, I focus on studying the post-flow failure characteristics. This study can 

help prevent or reduce damages of the first type. The natural and artificial slopes are 

usually structured in debris such as landslide of soil- structured slopes, sliding in the 

storage of tablet drugs or in the storage of agricultural products as corn, rice, etc. So, to 

research this issue, the two-dimensional granular flow is appropriate. 

To study this landslide phenomenon, many researchers have studied the failure 

process of two-dimensional (2D) and three-dimensional (3D) granular-textured slopes. The 

studies are carried out both by experiments in the laboratory and by numerical 

simulation models. Researchers who have studied quasi-2D experiment model (in the 

laboratory and numerical experiment) include Balmforth and Kerswell (2005) used grit, 

fine glass, coarse glass, and polystyrene as granular materials for  experiments with wide 

channels and narrow slots, Lube et al. (2005) used Fine quartz sand, Coarse quartz sand, 

Sugar, Rice as materials for experiment within a channel, Lajeunesse et al. (2005) used 

different diameter Glass beads for experiment in rectangular channel and Trepanier et al. 

(2010) used granular rod piles as a function of particle length/diameter and pile 

height/radius aspect ratio for experiment. The above researchers have found the 

relationship between the initial granular size (the height and width) and the run out-

distance of granular flow. In addition to the quasi-2D experiments, the mechanism of 

granular flow under axisymmetric conditions (i.e., 3D conditions) is often investigated. 

Typical experiments of this type were done by Lube et al. (2004), Lajeunesse et al. (2004), 

Lajeunesse et al. (2005) and most recently Warnett et al. (2014) used a limestone 

particulate with bulk density as material for experiment with different diameter cylinder to 

identify the relation between the initial cylinder size and the run out-distance of granular 

flow.  Researchers who have studied numerical models to simulate include Bui (2007), Bui 
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et al. (2006, 2008a, 2008b, 2009) simulate granular flows by application of Lagrangian 

meshfree particle method (SPH-Smoothed Particle Hydrodynamics) for large deformation 

and failure flows of geo-material using elastic–plastic soil constitutive model, Trepanier 

and Franklin (2010) used SPH method to study granular flows, Staron and Hinch (2005) 

used Discrete Element Methods (DEM) to study the collapse of two-dimensional granular 

columns. Based on the results of numerical experiments, the researchers pointed out the 

relation between granular columns’ initial sizes with the run out-distance of granular flows. 

The studies on the failure of grain columns haven’t been performed by many 

researchers. The studies as published are mainly 3D and quasi-2D. Therefore, in this 

dissertation, I conduct a series of truly two-dimensional (2D) experiments on the failure 

of granular columns in order to study the failure mechanism as well as create a basis for 

testing the numerical model in this case. 

Studies on the failure o f  2D granular columns by numerical model mainly using 

the methods based on the platform o f  grid system such as finite element method (FEM), 

finite difference method (FDM) etc. Recently, some researchers have used the discrete 

element methods (DEMs) to investigate the failure mechanisms of granular flows (Cleary 

and Sawley, 2002; Staron and Hinch, 2005, 2007; Zenit, 2005; Lacaze et al., 2008; 

Krabbenhoft et al., 2012; Girolami et al., 2012; Guo et al., 2014; Utili et al., 2015; Kermani 

et al., 2015), the material point method (MPM) (Kumar et al., 2013; Carter et al., 2014), 

the particle finite element method (PFEM) (Zhang et al., 2014) and the smoothed particle 

hydrodynamic (SPH) method (Bui et al., 2008a; Nguyen et al., 2013) , etc. The SPH has 

recently been developed and applied as an alternative to the previous methods with a lot 

of granular non-grid method’s advantages. 

In this dissertation, I have studied the failure characteristics and mechanisms of 

the truly two-dimensional granular columns and retaining wall system both by experiment 

and numerical simulation for the purpose of mitigating the damages caused by landslides. 

The experimental results are not only allows me to find out the experiment functions but 

also to use these functions to verify my numerical model. 

 In this thesis, The SPH method I choose is Lagrangian particle mesh-free method to 

study the failure mechanism of the granular columns because it is suitable for solving this 

problem. Really, solving this problem by using SPH method helps me overcome some 

difficulties that other methods face. The finite element method (FEM) faces huge difficulties 

in simulating large deformation and flexible behavior of wall blocks (i.e. full rotational and 
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translational motions) in the modular-block retaining wall system (MRWs); At present, the 

discrete element method (DEM) is popular in geotechnical applications. This method can 

be used to simulate the motion mechanism of modular-blocks in the MRWs. But the 

accuracy is low due to the difficulty in selecting parameters for contact laws; The 

discontinuous deformation analysis (DDA) has also been applied to geotechnical 

applications, but is mainly used for rock engineering; Some other mesh-less methods are 

proposed to use as the mesh-less Galerkin element method (EFG), material point method 

(MPM), particle in cell method (PIC), etc. However, they are quite complicated to use 

because they consist of both interpolation points and the background mesh. Moreover, my 

studies on numerical model in this thesis, also inherited the results of SPH method for 

previous simulations of granular flows by Bui et al (2008a). 

 In this thesis, I have also researched on the failure mechanism of MRWs. The studies 

were done both in laboratory experiments and in numerical methods. A series of 

experiments on MRWs’ failure mechanism was done. The results also showed me the 

overall failure mechanisms of MRWs. To get full data for failure simulation of MRWs by 

numerical model, a series of experimental measurements have been done to determine other 

needed parameters. My meshfree SPH model was developed based on results of previous 

researches done by Bui et al. to simulate large deformation and post-failure of the BRW 

systems. 
  

The dissertation is organized as follows: 
 

Chapter 1: Overview of landslide and its problems study based on failure mechanism 

of two-dimensional slope, namely two-dimensional (2D) granular columns by both 

experiments and numerical simulation. This chapter also introduces the 

organizational structure of the dissertation. 

 

Chapter 2: This chapter provides information on my series of experiments 

performed in the laboratory in order to study problems of the destructive mechanism 

of truly two-dimensional granular columns on both hard and soft ground surface. All 

experiments are recorded by a high speed camera. The experimental results show in 

detail the failure mechanism. From the series of experimental data on the failure, I 

have analyzed and found some experiment functions. That can, based on the original 

size of the granular columns, predict the influence area after failure. 
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Chapter 3: In this chapter, I focus on improving the SPH approach to forecast the 

process of landslide. In the SPH approach, I replace the artificial viscosity by 

combining viscous damping with stress/strain regularisation. This new approach 

helps reducing the difficulties in specifying the constants used for artificial viscosity. 

The calculation results show that the improved SPH meshfree approach makes 

prediction exactly not only in 2D-granular- columns failure mechanism but also in 

stress distribution during the failure precess. 

 

Chapter 4: In this chapter, I introduce some studying results in failure mechanism 

of Modular-block retaining wall system through a series of laboratory experiments 

and numerical simulation applying SPH meshfree method. Modular-block retaining 

wall system has been modeled in SPH, allowing the motion simulation of these 

blocks in form of translation and rotation. The interaction between the retaining wall 

and the inside materials have been also modeled and introduced in detail in this 

chapter. The numerical simulation results have been proven with the experiment as 

stated in Chapter 2. 

 

Chapter 5: Present my main conclusions of the SPH improvement to forecast the 

process of landslide. Besides that, I also point out next study plan based on continuing 

the study approach  that have been implemented in the dissertation, in order to apply 

SPH meshfree method to forecast the slope landslide in reality. 

 

List of Publications: Lists the published works of my colleagues and me that relate 

to the content of the dissertation. 
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CHAPTER  

2 
 

EXPERIMENTAL  
INVESTIGATION OF  

LANDSLIDE MECHANISM 
   

 
2.1. INTRODUCTION 

The flow of granular material is commonly observed in engineering applications 

such as the transport of minerals, powder, or cereals and during geophysical events such 

as landslides and debris flow. Understanding the mechanisms of granular flow will help 

to optimize industrial processes and to minimize damage caused by natural disasters. 

Accordingly, many scientists have been interested in studying this problem both 

experimentally and by using numerical simulations under two-dimensional (2D) and 

three-dimensional (3D) conditions.  

In the past, most 2D granular flow experiments have been conducted in narrow 

horizontal flow channels by using 3D materials such as sandy soils or plastic/glass beads. 

Typical examples of this type of quasi-2D experiment include those of Balmforth and 

Kerswell (2005), Lube et al. (2005), Lajeunesse et al. (2005), and Trepanier et al. (2010). 

By using grit, fine glass, coarse glass, and polystyrene as granular materials, Balmforth 

and Kerswell (2005) reported the following relationship between the final run-out 

distance and the initial aspect ratio of the granular column: (𝑑∞ − 𝑑0) 𝑑0⁄ ≃ 𝑎0.9±0.1 for 

wide channels, and (𝑑∞ − 𝑑0) 𝑑0⁄ ≃  𝑎0.65±0.05 or 𝑑∞ 𝑑0⁄ ≃  𝑎0.55±0.05 for narrow slots, 

where 𝑎 =  ℎ0 𝑑0⁄ ;  ℎ0  and 𝑑0  are the initial height and width of the column, 

respectively; ℎ∞  and 𝑑∞  are the maximum final height and width of the column, 

respectively. In similar experiments using fine quartz sand, coarse quartz sand, sugar, and 

rice as granular materials, Lube et al. (2005) concluded that (𝑑∞ − 𝑑0) 𝑑0 = 1.2𝑎⁄  for 

𝑎 < 1.8 and (𝑑∞ − 𝑑0) 𝑑0 = 1.9𝑎2 3⁄⁄  for 𝑎 > 2.8. There was no abrupt break in the 
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curve (𝑑∞ − 𝑑0) 𝑑0⁄ , within the small transitional region of 1.8 < 𝑎 < 2.8 between the 

linear and power-law ranges. Lajeunesse et al. (2005), through a series of granular flow 

experiments using glass beads of diameter 𝑑 = 1.15 mm and 𝑑 = 3 mm as the granular 

materials, suggested that (𝑑∞ − 𝑑0) 𝑑0⁄ ≃ 𝑎 and (𝑑∞ − 𝑑0) 𝑑0⁄ ≃ 𝑎2 3⁄  for 𝑎  3 and 𝑎 

 3, respectively. Trepanier and Franklin (2010) repeated the experiments by Lube et al. 

(2005) and Lajeunesse et al. (2005) but with randomly arranged granular rods. They 

reported that the ratio (𝑑∞ − 𝑑0) 𝑑0⁄  was given by 𝑎1.2±0.1 and 𝑎0.6±0.1 when 𝑎 ˂ (1.1 ±

0.3)  and  (1.1 ± 0.3), respectively.  

In addition to the quasi-2D experiments, the mechanism of granular flow is often 

investigated under axisymmetric conditions (i.e., 3D conditions). Typical experiments of 

this type include those by Lube et al. (2004), Lajeunesse et al. (2004), Lajeunesse et al. 

(2005), and most recently Warnett et al. (2014). Many authors have used the 

experimental results described above to verify their 2D/3D numerical models, which they 

then used to study granular flow scenarios that are difficult to model experimentally. 

Staron and Hinch (2005), Bui (2007), Bui et al. (2006, 2008a, 2008b, 2009), and 

Trepanier and Franklin (2010) are but a number of authors who have adopted this 

approach.  

As the literature review above shows, most previous 2D granular flow experiments 

were conducted under quasi-2D conditions. Although such experimental data could be 

used to validate 2D numerical models, they do not reflect true 2D conditions in the 

simulations, in plane strain or plane stress conditions. To overcome this knowledge gap, 

this paper presents the results of a series of column collapse experiments in which 

aluminum rods are used as the granular materials, i.e., a true 2D condition. To our best 

knowledge, a true 2D granular column collapse experiment has not yet been conducted in 

the literature. Herein, we focused on factors that affect the final run-out distance or 

destruction zone of the granular column, including the characteristics of experimental 

materials and type of ground contact surface (hard or soft). Notably, we also examined 

the effect of soil ground quality on the run-out distance and destruction zone of granular 

columns. 
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2.2. EXPERIMENTS 

2.2.1. Experimental Setup  

Figure 2.1 shows a schematic diagram of the initial setup for the true 2D granular 

column collapse experiments, using aluminum rods as soil models. The full design of the 

experimental model setup is shown in Figure 2.1(a). However, owing to the symmetrical 

properties of granular column collapse, only half of the experimental model was 

considered in the real experiment (Figure 2.1(b)), with the vertical axis (OY) being 

replaced by a solid wall. The original height and width of the 2D soil layer are h0 and d0, 

respectively. These parameters, however, were changed during the experiment to 

investigate their effects on the final run-out distance and destruction zone of the granular 

column.  

 

Figure 2.1: Schematic diagram of the experimental model 

 

2.2.2. Material  

Aluminum rods 5 cm in length and with diameters of 1.6 mm and 3.0 mm, mixed at 

a ratio of 3:2 in weight, were used as the model ground to simulate the true 2D granular 

flow experiments (Nakai, 2012). The total unit weight of the model ground after 

construction is 20.4 kN/m3. The soil shear strength parameters of the model ground, 

including elastic modulus, friction angle, and cohesion, are obtained by conducting direct 

shear tests or biaxial tests on the aluminum rods. 

These testing results have been reported by the authors in Bui et al. (2008a, 2008b, 

2014) and summarized in Table 2.1. Prior to the experiment, the aluminum bars were 

thoroughly cleaned and dried before being mixed (Nguyen et al., 2013). This was to 

ensure that the moisture of the model ground was at 0%. 
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Table 2.1: Properties of the 2D soil model  

Name Value Unit 

Density (ρ) 20.4 kN/m3 

Friction angle () 21.9 deg 

Young’s modulus (E) 5.84 MPa 

Poisson’s ratio () 0.3 – 

Dilation angle () 0 deg 

Cohesion (c) 0 kPa  

 

2.2.3. Experimental Procedure 

A series of experiments were performed at different initial column heights (h0) of 

50, 100, 150, and 200 mm. For each of the initial heights, the following granular column 

widths (d0) were considered: 25, 50, 75, 100, 125, 150, 175, and 200 mm. Accordingly, 

48 experiments were conducted in total. Each of the experiments was repeated at least 

twice, with some repeated up to six times.  

 

 

Figure 2.2: Initial setup for the granular collapse experiment with h0 = 100 mm and d0 

= 100 mm 

Figure 2.2 shows the initial setup for the granular column collapse experiments 

with an initial height and width of 100 mm and 100 mm, respectively. In the experiment, 

the granular column was constructed by successively placing the ground model in layers 

of 2.5 cm until the desired initial height was reached. To visualize the failure pattern of 

the ground model, square grids of 2.5 × 2.5 cm were drawn directly on the soil specimens. 

In addition, a gridded board was also attached to the steel frame behind the soil sample to 

allow the visualization of the progressive failure of the granular flow. There was no 

direct contact between the gridded board and granular rods, neither during nor after the 
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experiment. Furthermore, the front side was open to enable clear visualization of the 

granular flow. The above experimental setup represents the true 2D plain-strain 

conditions due the fact that motions of granular bars in the lateral direction (i.e. direction 

perpendicular to the vertical and horizontal plane) have been restricted. We 

acknowledged that some aluminum bar exhibited a non-translational movement in the 

experiment, especially at the flow front during the later stage of the collapse. However, 

these affects are not significant in our experiment. Furthermore, bars that were ejected 

from the flow and underwent independent movement of the collective behavior of the 

flow were not taken into consideration in the evaluation of the final scaling laws in our 

work.  

In each experiment the following steps were repeated: 1) Ensure the model ground 

is clean and dry by washing the soil sample with alcoholic solutions and then drying it 

after each experiment; 2) Construct the granular column according to the required 

experiment dimensions (i.e., initial height and width) and draw square grids (2.5  2.5 

cm) on the soil specimens; 3) Quickly remove the right wall to allow granular soil to 

freely move and collapse (care must be taken to ensure that the aluminum rods do not 

collide with the wall during the collapse process); 4) Record the failure process of the 

granular soil using a high speed camera and measure the final run-out distance and final 

failure pattern. The high-speed camera was a Photron type camera, capable of recording 

500 frames/s at a resolution of 1024512 pixels. 

 

2.3. EXPERIMENTAL OBSERVATION 

Two major failure mechanisms were observed from the serial tests on the hard 

ground contact surface (Figure 2.3). The failure mechanism depended on the initial ratio 

of the initial height (h0) to the initial width (d0); at an initial ratio h0 / d0 > 0.65, the 

granular column collapsed and formed a conical shape on the top surface (Figure 2.3(a)). 

On the other hand, when the initial ratio h0 / d0  0.65, there was an undisturbed zone on 

the top surface of the granular column (Figure 2.3(b)). For tests on the soft ground 

contact surface (made of the aluminum rods) the same failure mechanisms were observed. 

However, the final run-out distance was slightly different from that on the hard ground 

surface. Details of the experimental results are summarized below. 
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Figure 2.3: Typical failure mechanism of granular column collapse obtained from 

experiments 

 

2.3.1. Results on Hard Ground Contact Surface 

For these experiments, I focused on the major failure mechanism of the 2D 

granular column to determine the relationship between the initial soil height and final 

run-out distance of the 2D granular column after the collapse. 

Figures 2.4 and 2.5 show the progressive collapse of the 2D granular column at 

several representative time points for the two typical failure mechanisms corresponding 

to those described in Figure 2.3. The failure mechanism observed in Figure 2.4 

corresponds to that of Figure 2.3(a), with a final conical shape on the top surface, 

whereas that in Figure 2.5 corresponds to the mechanism in Figure 2.3(b) with an 

undisturbed zone. The failure surface, which separates the failure zone from the 

undisturbed zone, is highlighted in these figures by a dashed line. Comparing the results, 

the failure surfaces observed with an initial ratio h0 / d0  0.65 (Figure 2.4) remain 

almost unchanged in shape (i.e., a straight line) from those observed with h0 / d0 < 0.65 

(Figure 2.5). The initial soil height of the former case is markedly that of the latter case, 

mainly owing to the difference in the initial soil volume. 

As for the final run-out distance, the experimental results (Figures 2.6–2.8) show 

that for a  0.65 (a = h0 / d0) the initial and final heights of the soil column were identical 

(i.e., h0 = h). This result is consistent with the quasi-2D experimental data reported by 

Balmforth Kerswell (2005) and Staron and Hinch (2005). In contrast, for a > 0.65, the 

relationships between the coefficient 𝑎  and the ratio (𝑑∞ − 𝑑0) 𝑑0⁄  and between the 

ratios ℎ0 ℎ∞⁄  and 𝑑∞ 𝑑0⁄  were exponential in form. As shown in Figure 2.6, the 

exponential relationship between 𝑎 and the ratio (𝑑∞ − 𝑑0) 𝑑0⁄  changes at a = 1.5, as 

shown in Equation (2.1) below:  
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Figure 2.4: The collapse of the granular column with h0 = 100 mm and d0 = 100 mm 

observed at several times with a high-speed camera 
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Figure 2.5: The failure process of the granular column (h0 = 100 mm and d0 = 200 mm) 

at several times obtained by high-speed camera. 
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Figure 2.6: Relation between the coefficient (𝑑∞ − 𝑑0) 𝑑0⁄  and the coefficient 𝑎 

compiled from the experiment results 

 

 

Figure 2.7: Relation between the coefficient ℎ0 ℎ∞⁄  and the coefficient 𝑎 compiled from 

the experiment results 

 

𝑑∞−𝑑0

𝑑0
≈ {3.25𝑎0.96     𝑎 < 1.5

3.80𝑎0.73    𝑎 ≥ 1.5
                                         (2.1) 

 

The relationship between ℎ0 ℎ∞⁄  and 𝑎 (Figure 2.7) is approximated by using the 

following exponential equation: 
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ℎ0

ℎ∞
 ≈ 1.42𝑎2/3     𝑎 ≥ 0.65                             (2.2) 

 

If the experimental data are separated into two data series, consistent with the 

expression in Equation (2.1), the following exponential equations describe the relation 

between ℎ0 ℎ∞⁄  and 𝑎: 

 

ℎ0

ℎ∞
≈ {1.41𝑎0.69    𝑎 < 1.5

1.47𝑎0.64    𝑎 ≥ 1.5
                                           (2.3) 

 

Similarly, for the ratio 𝑑∞ 𝑑0⁄  (Figure 2.8), the experimental results also show an 

overall exponential relationship between this ratio and coefficient𝑎, which is: 

 

𝑑0

𝑑∞
 ≈ 4.30𝑎0.72   𝑎 ≥ 0.65                                          (2.4) 

 

 

Figure 2.8: Relation between the coefficient 𝑑∞ 𝑑0⁄  and the coefficient 𝑎 compiled from 

the experimental results 

 

If the data are again separated into two series with a = 1.5 as the breaking point, the 

following expressions describe the relationship between the ratio 𝑑∞ 𝑑0⁄  and coefficient a: 

 

                    
𝑑∞

𝑑0
≈ {4.27𝑎0.73    𝑎 < 1.5

4.66𝑎0.65    𝑎 ≥ 1.5
                                      (2.5) 
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2.3.2. Results on Soft Ground Contact Surface 

To investigate the effect of the ground contact surface on the failure mechanism, 

2D granular column collapse experiments were conducted on a soft contact surface. 

These results were compared with those obtained from the experiments conducted on a 

hard contact surface.  

The initial geometric settings and boundary conditions for the current experiment 

are shown in Figures 2.9 and 2.10. We only considered the case with a rectangular 

granular column of h0 = 100 mm and d0 = 200 mm. For the experiment on the soft 

ground surface, the rectangular granular column was placed on a soft ground layer 2.5 

mm in height made of the same type of material as the granular column (i.e., aluminum 

rods), (Figure 2.10). Each experiment was repeated at least six times to confirm the 

failure mechanism. 

 

 

Figure 2.9: Initial experimental setting for hard ground 

 

 

Figure 2.10: Initial experimental setting for soft ground 

 

Figure 2.11 shows the collapsing process of the granular column on the soft contact 

surface at several representative time points. Similar to the results on the hard contact 

surface, granular soils progressed toward the right after removing the retaining wall. The  
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Figure 2.11: The collapsing process of the granular column on soft ground contact 

surface 
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failure surface was almost a straight line from the ground free-surface to the boundary 

between the initial rectangular granular column (100  200 mm) and the soft bed layer 

(i.e., 2.5 mm thickness). Beyond this boundary, the failure surface was bent and formed a 

curved surface inside the granular bed layer. This is similar to what is normally observed 

in a deep-seated landslide failure. 

 

 

Figure 2.12: The final shapes of failure surface and ground free-surface of the granular 

collapse on the hard contact surface 

 

 

Figure 2.13: The shapes of failure surface and ground free-surface of the granular 

collapse on the soft contact surface 

 

The final configurations of the failure surface and ground free-surface observed in 

both experiments are repotted in Figures 2.12 and 2.13. Comparing the results, the failure 
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surface observed on the soft ground contact surface differs from that observed on the 

hard contact surface. For the soft contact surface, part of the kinetic energy from the 

granular column collapse is transferred to and causes destruction of the soft bed layer 

during the collapsing process. In contrast, for the hard contact surface, the transfer of 

kinetic energy to the ground surface is negligible. This explanation is further supported 

by comparing the final run-out distance of the two cases. As shown in Figures 2.12 and 

2.13, the final run-out distance of the granular column on the hard ground contact surface 

was approximately 475 mm, whereas that on the soft ground contact surface was 

approximately 450 mm. 

This difference is presumably due to the dissipation of the kinetic energy (from the 

granular column) into the soft ground surface below. Therefore, I conclude that the 

ground contact surface plays an important role in the final run-out distance of granular 

flow. 

 

2.4. DISCUSSION 

Several research groups have experimentally investigated the failure mechanism of 

2D granular flows. Notable studies include those by Balmforth and Kerswell (2005), 

Lube et al. (2005), Lajeunesse et al. (2005), and Trepanier and Franklin (2010). However, 

in all of these studies, the authors adopted quasi-2D models to perform their experiments. 

In such models, a narrow horizontal channel is typically used with 3D granular materials 

such as sandy soil, rice, or glass beads to simulate 2D granular flows. Because of the 

nature of the model and variety of materials used, the reported experimental results for 

the final run-out distance varied widely across experiments, as summarized below. 

In a series of experiments conducted by Balmforth and Kerswell (2005), the 

authors used grit, fine glass, coarse glass, and polystyrene as the model ground to 

investigate the failure mechanism of 2D granular flow in a narrow horizontal flow 

channel with different widths. They found that the final run-out distance of the 2D 

granular column depends on the width of the flow channel. In particular, they reported 

the following exponential relationships between the ratio (𝑑∞ − 𝑑0) 𝑑0⁄  and the 

coefficient 𝑎: 

 

𝑑∞−𝑑0

𝑑0
= { λ𝑎0.9±0.1 for wide slots     

λ𝑎0.65±0.05 for narrow slots
                (2.6) 
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where λ is a coefficient depending on the internal friction angle of the used materials and 

the friction coefficient of the bed contact surface.  

Lube et al. (2005) also reported experimental results of 2D granular flow by using a 

quasi-2D model on fine quartz sand, coarse quartz sand, sugar, and rice. They found the 

following relationship between (𝑑∞ − 𝑑0) 𝑑0⁄  and 𝑎: 

 

𝑑∞−𝑑0

𝑑0
≈ {

1.2𝑎         𝑎 < 1.8
1.9𝑎2/3    𝑎 > 2.8

                              (2.7) 

 

In contrast to the result reported by Balmforth and Kerswell (2005), a transition 

from a linear to exponential relation occurs in the experiments reported by Lube et al. 

(2005). 

In another series of experiments that investigated the granular column collapse 

mechanism, conducted by Lajeunesse et al. (2005) on glass beads of diameter d = 1.15 

mm and d = 3 mm, a narrow horizontal flow channel of 45 mm in width was used. For 

this series of experiments, the following relationship between (𝑑∞ − 𝑑0) 𝑑0⁄  and 𝑎 was 

found:  

 

                     
𝑑∞−𝑑0

𝑑0
≈ {

𝑎               𝑎 < 3
𝑎2/3         𝑎 > 3

                                    (2.8) 

 

 

Figure 2.14: The experimental results of quasi-2D granular flow reported by previous 

authors and results of our true 2D granular flow experiment 

Current experiment 
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The result is markedly different from that reported by Lube et al. (2005), although 

the transition from a linear to exponential relation is also noted. Most recently, Trepanier 

and Franklin (2010) used granular rods to investigate the failure mechanism of granular 

columns under 3D conditions. They reported the following relationship for the final run-

out distance: 

 

                                
𝑑∞−𝑑0

𝑑0
≈ {

𝑎1.2±0.1          𝑎 < 1.1 ± 0.3
𝑎0.6±0.1          𝑎 > 1.1 ± 0.3

                                  (2.9) 

 

This result is close to that reported by Trepanier and Franklin (2010), but markedly 

different from the results of others (Figure 2.14). Overall, the experimental data from 2D 

granular column collapse experiments that used the quasi-2D granular flow model shared 

the same form of relationship between the ratio (𝑑∞ − 𝑑0) 𝑑0⁄  and the coefficient 𝑎 . 

These equations can be generalized as follows: 

 

                                   
𝑑∞−𝑑0

𝑑0
≈ {

λ1𝑎𝛼1        with   𝑎 < 𝑎∗

λ𝑎𝛼          𝑤𝑖𝑡ℎ   𝑎 > 𝑎∗                                   (2.10) 

 

where λ1 and λ are constants that depend on materials used, and other parameters fall 

within the following range: 

                                                    {
0.7 < 𝑎∗ < 3.0
0.6 < 𝛼1 < 1.3

0.59 < 𝛼 < 0.70
                                           (2.11) 

 

By comparing my experimental data to the general Equation (2.10), the following 

parameters are found for true 2D granular flow: 

 

                                                        {
𝑎∗ = 1.5 
𝛼1 = 0.96
𝛼 = 0.73 

                                                  (2.12) 

 

The coefficients 𝑎∗  and 𝛼1  obtained from my experiments fall within the range 

reported by previous authors who used the quasi-2D model. However, the coefficient 𝛼 is 

slightly greater than the values reported by other authors. 
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Figure 2.15: Comparison of the relationship between the ratio ℎ0 ℎ∞⁄  and the coefficient 𝑎 

 

Figure 2.16: Comparison of the relationship between the ratio 𝑑∞ 𝑑0⁄  and the coefficient 𝑎 

 

Figure 2.14 shows a comparison of the experimental results reported by the 

different research groups. The solid line represents our experimental data using the true 

2D granular model, whereas all other dashed lines show results obtained from quasi-2D 

granular models. To plot the result reported by Balmforth and Kerswell (2005), I used 

λ = 3.25  for 𝑎 < 1.5  and λ = 3.8  for a  1.5, which were obtained from our 

experimental data as shown in Equation (1). My experimental data are very close to those 

reported by Balmforth et al. (2005) for a narrow channel of 1cm width. This suggests that 

true 2D granular flow is most closely represented by narrower horizontal flow channels 

when using the quasi-2D approach. However, the data for the true 2D experiment are 

markedly different from those reported by Balmforth and Kerswell (2005) for a wide 

flow channel and from other experimental data reported in the literature. These 

differences can be accounted for by variation of two key reasons across the experiments: 

1) the 3D material used and 2) the flow channel width. In all of the quasi-2D experiments 

My 

My 

Current experiment (2014) 

Current experiment (2014) 
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discussed above, the 3D materials differ widely in the size and shape of the particles. In 

addition, various flow channel widths were adopted in these studies. The wider the flow 

channel, the larger was the deviation from my experiment. 

The empirical relationship between the ratio (𝑑∞ − 𝑑0) 𝑑0⁄  and the coefficient 𝑎 

reported by Balmforth and Kerswell (2005) for narrow flow channel fits our 2D 

experiments data quite well. However, other relationships based on a narrow flow 

channel, such as that between the ratio ℎ0 ℎ∞⁄  or 𝑑∞ 𝑑0⁄  and the coefficient a, were 

markedly different from my data. In particular, Balmforth and Kerswell (2005) reported 

the following empirical equations: 

 

                                               ℎ0 ℎ∞⁄ ≈ λ𝑎0.5                                                    (2.13) 

 

                                           𝑑∞ 𝑑0⁄ ≈ λ𝑎0.55±0.05                                               (2.14) 

 

which represent the power-law dependencies of ℎ0 ℎ∞⁄  and 𝑑∞ 𝑑0⁄  on the initial aspect 

ratio a. The above empirical equations are consistent with our experimental finding on 

the true 2D experimental model as expressed by Equations (2.2) and (2.4), which show 

that the ratios ℎ0 ℎ∞⁄  and 𝑑∞ 𝑑0⁄  are exponential functions of the coefficient a. However, 

the exponential coefficients obtained from true 2D conditions are higher than those 

obtained from quasi-2D conditions. To further illustrate these differences, Equations 

(2.13) and (2.14) are plotted in Figures 2.15 and 2.16, using values of λ obtained from 

my experiment (i.e., λ = 1.42 and λ = 4.30, respectively). My data agree with those of 

Balmforth and Kerswell (2005), in particular for an initial aspect ratio a of less than 1.5. 

For a higher a value, my data deviate from their equations. Therefore, I conclude that the 

quasi-2D experimental model does not fully represent the 2D conditions, even for a very 

narrow horizontal flow channel. Accordingly, care must be taken when validating 2D 

numerical models with quasi-2D experimental data. 

 

2.5. CONCLUSION 

I investigated the failure mechanism of 2D granular flow by using a truly 2D 

granular flow model (i.e., aluminum rods as the soil model). The results were then 

compared with experimental data obtained by other researchers who used a quasi-2D 

granular flow model (i.e., a narrow horizontal flow channel with 3D granular materials). 
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Interestingly, my experimental findings were markedly different from those reported by 

previous authors. I also showed that the quality of the ground contact surface affects the 

destruction zone and final run-out distance of the granular column after collapsing. In 

particular, for the same ratio of initial height to initial width of a rectangular column, the 

final run-out distance of the granular column on a soft ground contact surface was less 

than that on a hard ground contact surface. A deep-seated failure mechanism was 

observed in the experiment on the soft ground contact surface.  

Finally, my thesis provided comprehensive experimental data on the collapsing 

process of a 2D granular column with full details of the material properties. These data 

will serve as a useful resource to test 2D numerical models. 
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CHAPTER  

3 
 

DEVELOPMENT OF  
SPH TO 

PREDICT LANDSLIDES 
   

 
3.1. INTRODUCTION 

Granular flows are commonly found in a large number of natural and industrial 

processes. Thus, the understanding of the mechanisms of granular flows plays an 

important role in predicting and minimizing natural hazards (e.g. landslides, snow 

avalanches, soil liquefaction) and in optimizing industrial processes (e.g. mineral 

processing, ceramic, food processing, pharmaceutical manufacture). Accordingly, the 

study of granular flows has received much attention from many disciplines of science and 

engineering (Herrmann et al. 1998; MiDi 2004; Jop et al. 2006; Pouliquen et al. 2006; 

Forterre & Pouliquen, 2008). In the past decade, a significant number of research works 

on the flow of granular materials have been conducted using both experimental and 

numerical modelling techniques. Among a large number of problems defined, the 

collapse of granular columns on a flat horizontal surface under gravity has been 

extensively studied for several physical aspects of granular flows. Lube et al. (2004) and 

Lajeunesse et al. (2004) were the first to conduct experiments of this type using granular 

columns of cylinders to investigate the mechanisms of granular flow, such as the 

relationship between the initial aspect ratio (the ratio of initial height to initial width) and 

the geometrical properties of the final deposit, and the transient free-surface flow 

occurring during the collapse process. Since then, a large variety of similar problems 

have been studied for the failure and flow mechanisms of granular materials. These 

include: columns collapse in a narrow horizontal flow channel (Lube et al., 2005, 

Balmforth & Kerswell 2005), columns collapse in fluids (Thompson and Huppert 2007, 
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Rondon et al. 2011), columns collapse of wet granular materials (Artoni and Santomaso 

2013), columns collapse on inclined plane (Lacaze et al. 2008, Lube et al. 2011), 

columns collapsed on eroded beds (Mangeney et al. 2010, Farin et al. 2014), and most 

recently true 2D columns collapse, in the form of columns made by steel rods moving 

between two glass walls (Nguyen et al. 2015). In general, the above experimental studies 

have provided a comprehensive understanding on the mechanism of granular flows from 

surface observations. However, they hardly provide sufficient details on the internal 

deformation or the evolution of state variables such as stresses or strains inside the flow, 

which are important for the understanding of flow properties/mechanisms followed by its 

generalisation for practical design purposes. In this sense, numerical approaches can be a 

useful and also less expensive alternative.  

In the view point of numerical modelling, the discrete element methods (DEMs) 

have been extensively used to investigate the mechanisms of granular flows (Cleary and 

Sawley, 2002; Staron and Hinch, 2005, 2007; Zenit, 2005; Lacaze et al., 2008; 

Krabbenhoft et al., 2012; Girolami et al., 2012; Guo et al., 2014; Utili et al., 2015; 

Kermani et al., 2015), and a comprehensive understanding of the flow mechanism (e.g. 

the initiating general shear failure mechanism, the free fall regime, and the scaling laws 

between the final run-out distance and the initial aspect ratio) has been achieved. Because 

the DEMs describe the problem at the particle scale, they are the most suitable method to 

simulate the kinematics of granular flows. However, for a typical practical problem 

involving millions of particles, the required computational resource is very demanding, 

and hence challenging even for a high performance computing server. Therefore, for 

such field applications, continuum approach is a good alternative. 

In the continuum approach, a granular material is assumed to be homogeneous and 

a constitutive model, which relates stresses to strains, is required to describe the 

deformation of the material. This material model is then coupled with differential 

equations describing the motion of the material during flow. Given the characteristics of 

granular flow in landslides or similar processes, a good continuum approach should be 

able to capture/predict both stress/failure (e.g. when it fails) and deformation (e.g. run-

out distance and final deposit), as these features are important for risk mitigation and 

design of protective structures. Despite the success of mesh-based continuum approaches 

in capturing the general behaviour of granular flows and in providing insights of 

evolution of state variables (Kerswell, 2005; Mangeney-Castelnau et al., 2005; Lacaze et 

al., 2008; Crosta et al., 2009 and 2015; Lagree et al., 2011; Holsapple, 2013; Ionescu et al, 
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2015), deformation characteristics such as the final shape of the deposit (e.g. sharp 

tips/tops, curvature profiles) are however not always well described by mesh-based 

continuum approaches since these mechanisms are considered as characteristics of 

discrete behaviours (Crosta et al., 2009; Kermani et al. 2015). 

On the other hand, particle-based continuum approaches such as the material point 

method (MPM) (Kumar et al., 2013; Carter et al., 2014), the particle finite element 

method (PFEM) (Zhang et al., 2014) and the smoothed particle hydrodynamic (SPH) 

method (Bui et al., 2008a; Nguyen et al., 2013) offer better capabilities to capture both 

deformation and failure of granular flows and/or landslides. Among these approaches, 

SPH is the only numerical method that does not require a global background mesh for the 

solution of the governing partial differential equations. Although the standard SPH 

method suffers from a tensile instability issue, which can be overcome using either an 

artificial stress method (Gray et al. 2001, Bui et al. 2008a) or Taylor-Galerkin SPH 

model (Blanc and Pastor 2013), the method has been shown to be able to provide a 

smooth transition between the continuum and discrete behaviours (Morris and Johnson, 

2009) and capture well essential characteristics of granular flow (Bui et al, 2008a). Since 

its invention by Gingold & Monaghan (1977) and Lucy (1977) for astrophysical 

applications, the SPH method has been successfully applied to a vast range of problems, 

including fluid mechanics (Monaghan, 1994; Shao & Lo, 2003; Colagrossi et al., 2003; 

Liu et al. 2004), solid mechanics (Libersky et al., 1993; Randles & Libersky, 1996; Dyka 

et al., 1997; Gray et al., 2001; Rabczuk et al. 2003, Blanc and Pastor 2012), and 

geomechanics (Bui et al. 2006, 2008a, 2008b, 2011a, 2011b, 2013, 2014, Pastor et al., 

2009, Blanc and Pastor 2013, Hiraoka et al. 2013, Nguyen et al. 2013).  

In relation to the present study, the SPH method combined with a granular 

constitutive model was successfully applied to simulate the collapse of granular columns 

(Bui et al., 2008a and 2009; Chen and Qiu, 2012) and showed to be a powerful 

continuum numerical method to simulate the flow behaviour of particulate materials. 

However, the standard SPH method suffers from unphysical stress/pressure oscillations 

that need to be stabilised by an artificial viscosity (Gingold & Monaghan, 1982 and 

1983). This artificial viscosity requires two unknown parameters whose values greatly 

influence the simulation stability as well as the accuracy of numerical results. A rigorous 

method to specify those unknown parameters is yet to be established, and, in most cases, 

the selection of those parameters results from trial-and-error, and depends on the user’s 

experience. Nevertheless, the standard SPH method using artificial viscosity still suffers 
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stress oscillations under large shear deformation (e.g. in post-failure process of granular 

flow) that could both affect the accuracy and reduce the predictive capability of the SPH 

method. 

In this chapter, an attempt is made to improve the overall accuracy and 

performance of the SPH in simulating granular flows by replacing the standard SPH’s 

artificial viscosity with a viscous damping combined with stress/strain regularisations. 

The comprehensive validation of the proposed technique demonstrates that it can 

effectively stabilize SPH simulations i.e. remove the stress oscillations, while providing 

predictions in very good agreement with experimental and numerical results in the 

literature. Furthermore, from the kinematic aspects of the granular flow, the combination 

of viscous damping and stress/strain regularisation technique is equivalent to the standard 

SPH model with artificial viscosity as both approaches result in the same amount of 

kinematic energy dissipation. In what follow, the numerical framework of SPH 

computation for granular flows and the proposed techniques are presented in Section 3.3. 

The performance of the proposed SPH model is demonstrated in Section 3.4. Section 3.5 

describes the validation of the proposed SPH model against experiments and numerical 

results from the literature. Finally, the contribution of this chapter is summarised in 

Section 3.6. 

 

3.2. SPH MESH-FREE PARTICLE METHOD 

The SPH mesh-free particle method has been described in great detail by some 

researchers, such as Liu G.R. and Liu M. B. (2004) in the book "Smoothed Particle 

Hydrodynamics : A mesh-free particle method", and by Bui (2007 ) in his doctoral thesis, 

etc.  So, in this thesis I would like to present briefly on SPH method and its related 

problems to my work in this Chapter and next Chapter. 

 

3.2.1. History of  The SPH Method  

The Smoothed Particle Hydrodynamics (SPH) is a Lagrangian particle method. It 

was invented by Lucy (1977) and Gingold and Monaghan (1977) to solve astrophysical 

problems in three-dimensional open space. Since its invention, the SPH method has been 

extended to various applications such as fluid mechanics (Monaghan, 1994), solid 

mechanics (Libersky et al. 1993) and geomechanics (Bui 2007, Bui et al. 2008a, 2008b, 

2011), etc. 
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3.2.2. Essential Formulation of SPH  

The SPH particle method include two essential formulas for a function and the 

derivative of a function, namely Equations. (3.3) and (3.2) below. 

 

                                𝐴(𝒓) = ∫ 𝐴(𝒓′)𝑊(|𝒓 − 𝒓′|, ℎ)𝑑𝒓′ + 𝑂(ℎ2)                              (3.1) 

 

                           𝐴(𝒓)  = ∫
𝐴(𝑟′)

𝜌(𝑟′)
𝑊(|𝒓 − 𝒓′|, ℎ)𝜌(𝒓′)𝑑𝑟′ + 𝑂(ℎ2)                             (3.2) 

 

                                         𝐴(𝒓) ≈ ∑
𝑚𝑏

𝜌𝑏
𝐴𝑏𝑊(|𝒓 − 𝒓𝑏|, ℎ)𝑁

𝑏=1                                       (3.3) 

 

                            ∇𝐴(𝒓) =
𝜕

𝜕𝑟
∫

𝐴(𝒓′)

𝜌(𝒓′)
𝑊(|𝒓 − 𝒓′|, ℎ)𝜌(𝒓′)𝑑𝑟′ + 𝑂(ℎ2)                       (3.4) 

 

                                                 ∇𝐴(𝒓)  ≈ ∑ 𝑚𝑏
𝑁
𝑏=1

𝐴𝑏

𝜌𝑏
∇𝑎𝑊𝑎𝑏                                       (3.5) 

 

where A = any variables defined on the spatial coordinate r; W = kernel function which is 

chosen to be the Cubic-Spline function; and h = smoothing length which specifies the 

interpolation area Ω (see Figure 3.1); m = mass of particle; b = the quantity evaluated at 

the position of particle b and 

 

                                       ∇𝑎𝑊𝑎𝑏 ≡
𝑟𝑎𝑏

|𝑟𝑎𝑏|

𝜕𝑊𝑎𝑏

𝜕𝑟𝑎
                                           (3.6) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: The influence domain Ω with a radius of kh 
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The kernel function must be chosen to satisfy at least three conditions. The first 

condition is called the normalized condition 

 

                                                        ∫ 𝑊(𝑟 − 𝑟′, ℎ)𝑑𝑟′ = 1
Ω

                                        (3.7) 

 

The second condition is the delta function property 

 

                                                        lim
ℎ→0

𝑊(𝑟 − 𝑟′, ℎ) = 𝛿(𝑟 − 𝑟′)                               (3.8) 

 

The third condition is the compact support condition 

 

                                           𝑊(𝑟 − 𝑟′, ℎ) = 0    𝑤ℎ𝑒𝑛   |𝑟 − 𝑟′| > 𝑘ℎ                          (3.9) 

 

Following Monaghan and Lattanzio (1985), the kernel Cubic-Spline function 

shows as in Equation (3.10)  
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W dij                          (3.10) 

where αd =1/h, 27/15 h , 32/3 h  in one- dimensional, two- dimensional and three-

dimensional space; h = 1.2dx (dx = dy is the distance between two particles)   and 

k = 2 (in Figure 3.1). 

 

3.3. SPH NUMERICAL FRAMEWORK FOR GRANULAR FLOWS 

In his doctoral thesis, Bui (2007) has introduced the detailed application of the SPH 

method to solve “Elasto- plastic soil constitutive models” problem. Several changing 

techniques and component approximation for equations of soil by SPH method have been 

presented very clearly. Moreover, Bui et al (2008a) have introduced detailed SPH 

algorithms to simulate the granular flow. As introduced in Chapter 1, my thesis inherits 

the previous study results of granular flow by Bui et al. (2008a). So in this part I only 

present a brief algorithm of solving granular flow by SPH method basing on SPH studies 
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by Bui (2007) and Bui et al. (2008a) for my further studies on numerical simulation in 

my dissertation. My new contributions to the SPH method will be detailed in this chapter 

and next chapter. 

 

3.3.1. SPH Governing Equations  

The governing equations for granular materials consist of the continuity and 

momentum equations. The continuity equation describes the change in density of 

granular materials undergoing large deformation, while the momentum equation 

describes the motion of granular materials subjected to external loadings. These two 

equations are written as follows: 

                                                              v
dt

d
                                                  (3.11) 

 

                                                             gσ
v


ρdt

d 1
                                              (3.12) 

 

where v is the vector velocity;  is the density;  is the total stress tensor, taken negative 

for compression; g is the acceleration vector due to gravity; and 
𝑑

𝑑𝑡
 indicates the 

derivative over time.  

Within the SPH framework, the above governing equations are then discretized 

using several SPH particles, each of which has a constant mass and carries field variables 

such as density, stresses and strains. The particles move with their own velocities in the 

updated Lagrangian framework, thus can intrinsically simulate large deformation 

behaviour of granular materials.  

Applying Equation (3.5), the partial differential form of Equations (3.11) and 

(3.12) can be discretized in the SPH framework in the following way (Bui et al. 2008a), 
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where i, j indicates the particle (or material point) under consideration; N is the total 

number of “neighbouring particles” (i.e. those within the support domain Ω of particle i 

showed in Figure 3.1); i and j are the density of particle i and j, respectively; mj is the 

mass of particle j; and W is the kernel function taken to be the cubic-spline function 

(Monaghan & Lattanzio, 1985).  

The above equations can be resolved using the standard Leapfrog integration 

scheme (Liu & Liu, 2004; Bui et al., 2008a) if the stress tensor is known. Thus, it is 

necessary to select a suitable constitutive relation for granular materials, which will be 

described in details in the next section. 

 

3.3.2. Constitutive Model for Granular Materials  

Any existing constitutive model can be implemented in the SPH method for the 

calculation of stress due to the movements of particles calculated from the governing 

differential equations. Although visco-plasticity constitutive models have been showed to 

be highly suitable to simulate the flow behaviour of granular materials (Jop et al. 2006, 

Moriguchi et al. 2009, Lagree et al. 2011, Chauchat and Medale 2014, Minatti and Paris 

2015, Ionescu et al. 2015), classical rate-independent elasto-plasticity constitutive models 

have also been demonstrated to be suitable for the predictions of both failure and flow 

mechanisms of granular materials (Bui et al. 2008a and 2008b, Verghese et al. 2013, 

Carter et al. 2014, Zhang et al. 2015, Solowski and Sloan 2015). In this thesis, an elasto-

plastic constitutive model employing the Drucker-Prager yield criterion is adopted for the 

calculation of stress during the deformation of granular materials. The stress-strain 

relation of this constitutive model is derived based on the assumption that the total strain 

rate which accompanies any change in stress rate can be divided into elastic and plastic 

components: 

 

                                                               pe εεε                                                     (3.15) 

 

where 𝜀̇ is normally composed; 𝜀̇𝑒 is elastic strain rate tensor; 𝜀̇
𝑝

plastic strain rate tensor 

The elastic strain rate is related to the stress rate via the generalized Hooke’s law: 

 

                                                               eεDσ                                                           (3.16) 
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with D being the elastic stiffness matrix.  

The plastic deformation is computed from the plastic potential gp that depends on 

the current stress state: 

                                                           
σ

ε





pp
g

                                                        (3.17) 

 

where 


is the rate of change of the so-called plastic multiplier  dependent on the state 

of stress and gp is the plastic potential function, which specifies the direction to which 

the 

plastic strain develops. If the plastic potential function gp is coincident with the yield 

function f of the material, the flow rule is then called the associated type; otherwise it is 

called the non-associated type. The plastic multiplier  has to satisfy the following 

conditions of the yield criterion (Bui et al. 2008a): 

  = 0 whenever f  < 0 or f  = 0 and df < 0 corresponding to elastic or plastic 

unloading: 

  > 0 whenever f  = 0 and df = 0 corresponding to plastic loading. 

The value of plastic multiplier  can be calculated by using the consistency 

condition, which states that 

 

                                                        𝑑𝑓 =
∂𝑓

𝜕𝜎𝛼𝛽
𝑑𝜎𝛼𝛽 = 0                                           (3.18) 

 

This equation assures that the new stress state  


d   after loading still 

satisfies the yield criterion: 

 

                        𝑓(𝜎𝛼𝛽 + 𝑑𝜎𝛼𝛽) = 𝑓(𝜎𝛼𝛽) + 𝑑𝑓 = 𝑓(𝜎𝛼𝛽)                            (3.19) 

 

Substituting the elastic and plastic strain rate tensors obtained from Equations 

(3.15), Equation (3.16) and Equation (3.17), the total strain rate tensor now can be 

expressed in the form of stress rate tensor as 

 

                                𝜀̇
𝛼𝛽

=
𝑠̇𝛼𝛽

2𝐺
+

1−2𝑣

3𝐸
𝜎̇𝛾𝛾𝛿𝛼𝛽 + 

𝜕𝑔𝑝

𝜕𝜎𝛼𝛽
                               (3.20) 
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The yield function and plastic potential for the Drucker-Prager model used in this 

study are defined as follows, respectively: 

 

                                                         
ckJIf  21                                            (3.21) 

 

                                                           
21 JIg p                                               (3.22) 

 

where I1 and J2 are the first and second invariants of the stress tensor, which are defined 

by the following equations: 

 

                                                       𝐼1 = 𝛿𝑥𝑥 + 𝛿𝑦𝑦 + 𝛿𝑧𝑧                                                    (3.23) 

and 

                                                            𝐽2 =
1

2
𝑠∝𝛽𝑠𝛼𝛽                                                             (3.24) 

 

 and kc are Drucker-Prager constants that are calculated from the Coulomb material 

constants c (cohesion) and  (internal friction). In plane strain, the Drucker-Prager 

constants are computed by, 

 

                                                          





2tan129

tan


                                       (3.25) 

 

                                                          
2tan129

3




c
kc                                           (3.26) 

 

The non-associated plastic flow rule specifies the plastic potential function by, 

 

                                                       𝑔𝑝 =∝ 𝐼1 + √𝐽2 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                           (3.27) 

 

The dilatancy factor   in equation (3.22) can be related to the dilatancy angle  

in a fashion similar to that between   and friction angle   (Bui et al. 2014). 
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The combination of equations (3.15), (3.16) and (3.17) in association with the 

consistency condition, i.e. the stress state must be located on the yield surface during the 

plastic loading, gives: 
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with Dep being the elasto-plastic stiffness tensor.  

When considering a large deformation problem, an invariant stress tensor with 

respect to rigid-body rotation must be applied to the constitutive relation. Accordingly, 

the Jaumann rate which gives an objective measure of the stress rate was adopted for the 

formulation (Libersky et al. 1993, Randles & Libersky 1996, Borja 2013): 

 

                                                      
TJ ωσσωσσ                                                (3.29) 

 

with  being the spin rate tensor.  

Finally, the above stress-strain relation needs to be discretised onto SPH particles. 

The detail descriptions of this approach can be found in Bui et al. (2008a, 2014). Here, I 

only provide the final form of stress-strain relation, which is written in index form as 

follows: 

 

 




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

aaaaaaaaaaaaaa
a sJGKKeG

dt

d
)/(32 2   (3.30) 

 

with  being: 
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where  ,   and  denote Cartesian components x, y, and z with Einstein convention 

applied to repeated indices; e is the deviatoric shear strain-rate tensor;   is the Dirac 

delta function; K and G are the elastic bulk and shear moduli, respectively; 
  and 


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are the Ducker-Prager constants calculated by fitting the Drucker-Prager yield criterion 

with the well-known Mohr-Coulomb yield criterion (Bui et al. 2008a; 2008b; 2013a, 

2013b). The above constitutive model requires six materials parameters, including 

cohesion coefficient (c), friction angle (), dilatancy angle (), Young’s modulus (E), 

Poisson’s ratio (), and bulk density (). The validations of this constitutive model 

within the standard SPH framework have been conducted in previous works (Bui et al. 

2008a; Bui et al. 2011c), in which an excellent agreement between the SPH method and 

the FEM for bearing capacity problems has been achieved; therefore, they will not be 

repeated here. 

 

3.3.3. Standard Approach to Stabilize the SPH Method with Artificial Viscosity 

Similar to finite difference methods, when simulating shock or convection 

dominated flows, the SPH method suffers from numerical instabilities that often result in 

spurious oscillations of both the velocity and pressure fields and may even lead to 

incorrect results or termination of the simulation. In order to suppress this numerical 

instability, a common technique is to add an artificial viscosity term into the momentum 

equation to smear or damp-out undesirable velocity/stress oscillations. In the SPH 

method, the following artificial viscosity (Monaghan & Gingold, 1983) is normally 

adopted: 
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In the above equations,   and  are two unknown constants, which are usually 

taken to be 1 (Monaghan, 1992); x is the vector coordinate of the particle; ha, hb is the 

smoothing length which is taken to be h = 1.2x with x being the initial separation 

between two adjacent particles (at the first time); and c is the speed of sound in granular 

materials, which is computed from the bulk modulus and density as follows: 

 

          aaa Ec /                                                       (3.36) 

 

The artificial viscosity consists of two contributions: one is linearly proportional to 

the divergence of velocity, which produces a shear and bulk viscosity; the other one, 

which is quadratic in the velocity divergence, is substantially analogous to the Von 

Neumann-Richtmyer viscosity and able to handle high Mach number flows (Monaghan, 

1992). The artificial viscosity term is added to the momentum equation as follows: 
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where I is the unit tensor. So far, the use of the artificial viscosity term has become 

essential in most SPH applications. However, the selection of two unknown constants 

  and   could significantly affect the result of SPH simulations and there is no 

rigorous method to define these parameters. In addition, these parameters have no direct 

link to physical material properties.  

 

3.3.4. The SPH Method Without Artificial Viscosity: A New Approach  

As addressed in the preceding section, whilst the SPH method has the advantage of 

simulating large strain plasticity problems, numerical results usually suffer from the well-

known zero-energy mode (Zero energy mode or hourglass mode is essentially a spurious 

deformation mode of a Finite Element Mesh, resulting from the excitation of zero-energy 

degrees of freedom. It typically manifests as a patchwork of zig-zag or hourglass, where 

individual elements are severely deformed, while the overall mesh section is unreformed), 

which results in large stress oscillations that could lead to termination of the SPH 

computational process. The artificial viscosity is usually adopted to smear out the stress 
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oscillations over the integral supporting domain of each SPH particle, thus stabilising the 

SPH model. However, as discussed, the artificial viscosity requires two unknown 

parameters (   and  ) that have no specific link to physical material properties. 

Therefore, its use in SPH simulations is purely based on the numerical stability needs. 

Furthermore, the variation of these parameters could significantly alter the failure 

mechanism of granular materials. Besides, despite its success in the stabilization of the 

dynamic simulations, the use of artificial viscosity in the SPH cannot completely remove 

the oscillation of stresses in granular materials under large shear deformation (Johnson 

G.R., 1996; Bui et al., 2008a). In this chapter, the following two techniques are adopted 

to both replace the artificial viscosity in SPH simulations and improve the accuracy of 

the stress distribution. 

 

3.3.4.1. Viscous Damping 

In the current SPH numerical framework (Bui et al., 2008a), the motion of granular 

materials is described using the fully dynamic equation, i.e. Equation (3.15). In the 

absence of artificial viscosity, SPH particles are subjected to free oscillations due to 

inertial forces. To damp out this oscillation, a linear viscous damping model, which is 

commonly used in dynamic simulations of continua, is adopted. The linear viscous 

damping is modelled as a force antiparallel to velocity of the particle. The damping force 

per unit mass is defined by: 

 

                 vF  dd c                                                       (3.38) 

 

Where v is vector of velocity (it isn’t an absolute velocity); cd is a damping coefficient 

which can be formulated using the same approach proposed by Bui and Fukagawa (2013) 

as follows: 

 

                                                            
2/ hEcd                                                 (3.39) 

 

with  being a non-dimensional damping coefficient that requires calibration for different 

applications. For the simulation of granular flows, such as the flow of granular column 

collapse experiments in this thesis, a constant value of  = 510-5 is recommended. The 

damping coefficient (cd) will be then varied depending on the material properties (i.e. E 
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and ) and the initial spacing between two particles (i.e. h = 1.2x). The effects of the 

viscous damping on SPH simulation results are investigated in Section 3.4 of this chapter, 

in which it will be shown that the energy loss using this approach is comparable with that 

due to the artificial viscosity. However, this approach has more physical meaning 

compared to the artificial viscosity because the damping coefficient is now directly 

linked to material properties. I acknowledge that there is still a need to calibrate a non-

dimensional parameter for the proposed viscous damping model, and this is physically 

similar to the calibration of two parameters for the traditional use of artificial viscosity in 

SPH. However, thanks to the direct link with the material properties, once the non-

dimensional parameter is calibrated for a certain type of material, the proposed damping 

coefficient will purely depend on the material properties as seen in Equation (3.39). The 

viscous damping force is added into the momentum equation as follows: 
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3.3.4.2. Stress/Strain Regularisations 

While the kinematics of SPH simulation is generally realistic, the stress/pressure 

fields of SPH particles undergoing large deformation can exhibit large oscillations. This 

problem is known as the short-length-scale-noise (Monaghan, 2012), and is identified as 

one of the key challenges of the standard SPH method that needs to be addressed in order 

to improve the accuracy of SPH simulations. The problem becomes worse when the 

artificial viscosity is not adopted in SPH simulations, although the viscous damping force 

could slow down the numerical instability process. To overcome the short-length-scale-

noise problem and to stabilise the SPH model without artificial viscosity, this thesis 

suggests regularising the stresses and strains of each SPH particle over its kernel integral 

domain after a certain number of computational cycles. Among different approaches, the 

Moving Least Square (MLS) method (Belytschko et al., 1998; Dilts, 1999) is adopted in 

this thesis. The method is a first order correction that reproduces exactly the linear 

variation of stress and strain fields: 
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where the corrected MLS kernel function in 2D is evaluated as follows: 
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The estimate of coefficients k (xa) in Equation (3.43) requires the solution of a 

(3×3) linear algebraic system of equations for each particle: 
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The performance of the stress/strain regularisations is investigated in Section 3.4 

by applying the above MLS correction every k steps (k = 2, 5, 10 and 15). Numerical 

results suggested that the best result for the final run-out distance and stress field 

predictions could be obtained for k less than or equal to 10 steps. For a larger k value, the 

numerical results can still experience the oscillations of stress due to insufficient 

regularisations. In this computation, k = 5 was recommended taking into consideration 

both the accuracy and computational costs. The comparisons of stress field predicted by 

the proposed SPH model for different k values are presented in the next section. 

 

3.4. PERFORMANCE OF THE PROPOSED APPROACH 

A 2D numerical simulation of granular column collapse is conducted to 

demonstrate the effectiveness of the proposed SPH model. Three test cases are performed 

using the same SPH integration scheme and the material constitutive model, but adopting 

different stabilization techniques. The details of these test cases are summarised as 

follows: Case 1 considers the standard SPH simulation, i.e. solving Equations (3.13) & 

(3.14) without utilising the artificial viscosity; Case 2 repeats the same SPH simulation 

with the artificial viscosity (α = 0.1 and β = 0.0) (Bui et al. 2008a); and Case 3 and 
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Case 4 incorporate the stress/strain regularisations to the standard SPH simulation (see 

Section 3.4.4) in which the number of time steps between two consecutive regularisation 

operations are k = 5 steps. The difference between Case 3 and Case 4 is the inclusion of 

viscous damping: whilst Case 3 does not consider the viscous damping hence using 

Equation (3.14) for the momentum equation, Case 4 introduces the viscous damping with 

the non-dimensional damping coefficient  = 5×10-5 (i.e. the corresponding damping 

coefficient cd = 1.55) in the momentum equation, Equation (3.37). Comparison in terms 

of numerical stability and final stress distribution is then used to evaluate the 

performance of different test cases.  

 

 

Figure 3.2: Initial geometry and boundary conditions 

 

Figure 3.2 shows the initial geometry setting and boundary conditions of a 

rectangular granular column of 20 cm in length and 10cm in height for the three 

numerical tests. The assumed boundary conditions are: fully-fixed at the base and free-

rolling at the vertical wall. The constitutive model described in Section 3.3.2 is used with 

material properties and parameters shown in table 3.1. 

 

Table 3.1: Material parameters for the SPH simulations 

 

Name Value Unit 

Gravity Density (ρ) 26.5 kN/m3 

Friction angle () 22 deg 

Young's module (E) 15 MPa 

Poisson’s ratio () 0.3 - 

Dilation angle () 0 deg 

Cohesion (c) 0 kPa 
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(a) Case 1: No stabilisation 

 

(b) Case 2: Stabilisation by artificial viscosity 

 

(c) Case 3: No stabilisation + MLS (5 steps) 

 

(d) Case 4: Viscous damping + MLS (5 steps) 

Figure 3.3: Simulation of the granular column collapse using different stabilization 

techniques (axes are distances with unit is decimeter) 
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In all SPH simulations, 5,000 SPH particles are used to represent the computational 

domain of the granular material. These particles are arranged in a square lattice with an 

initial separation of 0.2 cm, and thus smoothing length of 0.24cm. In addition, three 

layers of SPH particles are located outside the computational granular domain to 

represent the solid wall. The no-slip boundary condition is enforced at the base to 

simulate the fully-fixed boundary, while the free-slip boundary condition is applied at the 

vertical boundary to mimic the free-rolling boundary condition. Details of the 

implementation of these boundary conditions in SPH can be found in Bui and Fukagawa 

(2013). 

Figure 3.3 shows the comparison of the SPH simulation results from four 

numerical test cases. In the first case, Figure 3.3 (a) without utilising the artificial 

viscosity, the distribution of vertical stress predicted by the SPH standard method 

exhibits large oscillation over the whole computational domain, showing a highly 

unstable SPH solution. The highly fluctuated stress distribution can be observed in the 

lower left corner of the granular column where the material undergoes little or almost no 

deformation during the collapse process. This is physically unreasonable and can be 

attributed to numerical issues due to zero-energy mode in the SPH method. In addition, 

the top left corner of the column exhibits vertical settlement which is unrealistic since 

that region is reported as the undisturbed zone during the collapse of the column (Lube et 

al., 2004 and 2005; Girolami et al., 2012; Carter et al., 2014). This unrealistic settlement 

can be explained from the fact that the unstable SPH solution introduces errors to the 

stress-strain relation which in turn leads to significant errors in the macro behaviour of 

granular materials. 

On the other hand, thanks to the use of the artificial viscosity, the stress distribution 

was significantly improved in Case 2, as shown in Figure 3.3 (b). The noise in the stress 

profile is only observed in the region where the material undergoes large shear 

deformation, while a very smooth stress distribution can be observed in the zone 

experiencing less shear deformation or stationary. The final run-out distance of the 

granular material is found to be significantly less in Case 2 compared to that of Case 1, 

indicating that the artificial viscosity dissipates some kinetic energy of granular flows. In 

fact, the incorporation of the artificial viscosity in the momentum equation will introduce 

viscous shear stresses to the material flow, thus reducing the final run-out distance. It is 

obvious from this simulation that the mechanism of granular flow significantly depends 

on the selection of two unknown parameters in the artificial viscosity and the speed of 
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sound in granular materials as shown in Equation (3.36). For a constant sound speed, the 

larger the value of the two unknown parameters in the artificial viscosity is, the higher 

amount of kinetic energy is dissipated, thus resulting in shorter final run-out distance. 

The stress noise observed in the region where the material suffers large shear 

deformation, as seen in Case 2, is commonly accepted in most SPH simulations. This 

problem is often called the short-length-scale-noise (Monaghan, 2012) and does not 

cause significant error to the overall SPH performance for simulations of granular flows 

as demonstrated in Bui et al (2008a; 2014), thanks to the kernel approximation nature in 

the SPH method. However, the short-length-scale-noise may introduce errors if we try to 

predict stresses at a location where the material experiences large shear deformation. 

Thus, alternative approaches are being investigated to improve the overall performance 

of the SPH method. 

In contrast, as can be seen from the numerical results of Cases 3 and 4, Figure 3.3 

(c) and (d), the stress noise is regularised in the SPH simulation after introducing the 

stress/strain regularisation every 5 steps (k = 5). In both cases, a very smooth stress 

distribution is achieved over the entire the computational domain, even at locations 

where the material experiences large shear deformation. Furthermore, the undisturbed 

zone on the top left corner of the granular column reported in previous studies (Lube et 

al., 2004 and 2005; Girolami et al., 2012; Carter et al., 2014) can be captured using the 

proposed SPH model. Comparing the final run-out distance among four cases, the run-

out distances of Case 2 and Case 4 are comparable, while they are significantly less than 

those of Case 1 and Case 3. The similarity between Case 2 and Case 4 suggests that the 

viscous damping plays an important role in obtaining realistic run-out predictions of 

granular flows in SPH simulations, similar to that of the artificial viscosity; however, 

when combined with the stress/strain regularisation technique, the short-length-scale-

noise does not occur anymore. On the other hand, the comparable result of the final run-

out distance between Case 1 and Case 3 suggests that the stress/strain regularisation does 

not significant affect the overall behaviour of granular flow. In addition, despite suffering 

from the short-length-scale-noise issue, the standard SPH model (Case 1) is still able to 

produce results comparable to that of the regularised model (Case 3), thanks to the kernel 

approximation nature in the SPH method. 

The robustness of the proposed technique is further examined by varying the non-

dimensional damping coefficient in a range of  = 3, 4, 5 and 6×10-5 hence the 

corresponding value for cd is 0.93, 1.24, 1.55 and 1.86. In this investigation, the  
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(a) Final shape of the deposit 

 
(b) Evolution of runout distance 

 
(c) Evolution of dissipated energy 

 
(d) Evolution of potential energy 

Figure 3.4: Influence of the damping coefficient 
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stress/strain regularisation is performed every 5 steps (k = 5), and the obtained results are 

then compared with that of SPH simulations using the artificial viscosity. The final 

shapes of the deposit and the time evolutions of run-out distance in five simulations (i.e. 

artificial viscosity and 4 different damping coefficients) are shown in Figure 3.4 (a) and 

Figure 3.4 (b), respectively. The results are comparable between the standard SPH model 

and the proposed ones using different damping coefficients. As can be see, the increase 

of viscous damping shortens the final run-out distance, while the final shapes are more or 

less similar in all cases. The final run-out distance predicted by the standard SPH model 

using the artificial viscosity is in between those predicted by the proposed SPH model 

with damping coefficient   = 4×10-5 and 6×10-5. 

The comparison of the time evolution of the dissipation energy and the remaining 

potential energy is shown in Figure 3.4 (c) and Figure 3.4 (d), respectively. The 

dissipation energy Ed (t) at a given time is calculated from the initial potential energy E0 

minus the current potential energy Ep (t) and the current kinetic energy Ek (t) as follows 

(Zenit 2005; Utili et al. 2015): 

 

                                             𝐸𝑑(𝑡) = 𝐸0 − 𝐸𝑝(𝑡) − 𝐸𝑘(𝑡)                                           (3.46) 

in which: 

                         𝐸𝑝(𝑡) = ∑ 𝑚𝑖𝑔ℎ𝑖(𝑡)𝑁
𝑖=1      and     𝐸𝑘(𝑡) =

1

2
∑ 𝑚𝑖𝑣𝑖

2(𝑡)𝑁
𝑖=1                  (3.47) 

 

It can be seen from Figure 3.4 (c) that a larger  value (or cd value) leads to smaller 

accumulated energy dissipation (Ed). This can be explained due to the fact that the larger 

the  value, the less the final run-out distance as seen in Figure 3.4 (b), and therefore the 

less potential energy loss. The total energy loss predicted by the standard SPH model 

using the artificial viscosity is very close to those predicted by the proposed SPH model 

with non-dimensional damping coefficients between  = 5×10-5 and  = 6×10-5, as shown 

in Figure 3.4 (d). Therefore, the proposed technique has been shown to be comparable 

with the standard SPH with artificial viscosity in controlling the numerical stability and 

predicting the final run-out distance. However, the most significant advantage of the 

proposed mode is its capability to produce smooth stress profiles, even at the locations of 

large shear deformation. The prediction of smooth stress field is essential for SPH 

simulations of granular materials within the classical plasticity theory because stresses of 

the granular material are updated at each particle every time step. 
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(a) Evolution of runout distance 

 

(b) Vertical stress at final stage of collapse 

Figure 3.5: Effect of stress/strain regularisations on SPH simulations 

 

Finally, the effect of the proposed stress/strain regularisation technique on SPH 

simulation results is investigated by repeating the proposed SPH model with different 

intervals between stress/strain regularisation (i.e. k = 2, 5, 10 and 15), whilst keeping the 

damping coefficient unchanged in all simulations ( = 5×10-5). The time evolutions of the 

run-out distance and the vertical stress profiles predicted at two certain locations of x = 0 

and x = 0.15m at the final stage of granular flow are plotted in Figure 3.5, and 

comparisons is made with the standard SPH model using the artificial viscosity and with 

2 
5 

2 
5 
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the analytical solution for the vertical stresses. The time evolutions of the run-out 

distance of granular flow are almost the same in all simulations, as shown in Figure 3.5 

(a), indicating that the kinematics of granular flow is not significantly affected by the 

proposed stress/strain regularisation technique. On the other hand, the effectiveness of 

the stress/strain regularisation technique is clearly observed when comparing the vertical 

stress profiles for different SPH simulations. For a k value of less than or equal to 5, the 

proposed technique could capture quite well the vertical stress profile predicted using the 

analytical model (i.e.  = z, with   being the specific weight of granular material and z 

being the depth from the free-surface).  

The slight difference between the SPH model and the analytical solution is 

explained due to the fact that the bulk density of granular material in SPH simulations is 

evolved with large deformation, while the analytical solution adopted a constant value of 

 = 26.5kN/m3 (see Table 3.1). On the other hand, as the k value increases, there is not 

enough stress/strain regularisation to stabilise the SPH simulation. As a result, the 

predicted vertical stress deviates from the analytical solution. The scattered stress 

distribution for k = 15 suggests that the SPH solution in such a case still suffers from the 

short-length-scale-noise, despite the fact that the runout distance is not significantly 

affected thanks to the kernel approximation nature in the SPH method. Compared to the 

standard SPH model with artificial viscosity, the proposed SPH model is more accurate 

for a k value of less than or equal to 5. To this end, the stress/strain regularisation 

technique is recommended to be applied every k = 5 computational steps to achieve a 

reasonably accurate solution with acceptable computational cost, while the non-

dimensional damping coefficient () is recommended to be  = 5×10-5. It is note that this 

coefficient may change in a wide range, as shown in Figure 3.4; therefore, it is possible 

to achieve a better fit in term of the runout distance or energy dissipation for a required 

particular prediction. As an alternative approach to the viscous damping model, the 

traditional artificial viscosity has been combined with the stress/strain regularisation 

technique to reproduce simular outcomes. 

 

3.5. APPLICATION TO THE PROBLEM OF GRANULAR FLOWS 

The proposed SPH framework is finally validated with the 2D granular column 

collapse experiment described in Chapter 2. Figure 3.5 shows the initial geometry and 

boundary conditions for the experiment with the initial aspect ratio a (the ratio between 
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the initial height H0 and the initial width L0) of 0.5 and 1.0. In the experiments, 

aluminium rods of 5cm in length were used as the model material to mimic 2D 

conditions. The aluminium rods had diameters of 1.6mm and 3.0mm and mixed with the 

ratio of 3:2 in weight to achieve the total unit weight of 20.4kN/m3 after the mixing. The 

shear strength parameters for the 2D material model, summarised in Table 3.2 were 

previously measured using biaxial tests (Bui et al. 2014). To initiate the flow, the 

supporting wall was quickly removed to allow granular materials to freely collapse. A 

high speed camera was then used to record the collapse process. For further details on 

these experimental series see Chapter 2. 

 

  

(a) Initial aspect ratio a = 0.5 (b) Initial aspect ratio a = 1.0 

Figure 3.6: Initial setting conditions in experiment 

 

Table 3.2: Properties of the 2D material model (aluminium rods) 

 

Name Value Unit 

Gravity Density (ρ) 20.4 kN/m3 

Friction angle () 21.9 deg 

Young's module (E) 5.84 MPa 

Poisson’s ratio () 0.3 - 

Dilatant angle () 0 deg 

Cohesion (c) 0 kPa 

 

In the SPH simulation, a total number of 5,000 and 2,500 SPH particles are used 

to represent the granular column of (2010 cm) and (1010 cm) in the experiments as 

shown in Figure 3.6, respectively. The SPH particles are arranged in a square lattice with 

an initial lattice spacing of 0.2cm and an initial smoothing length of 0.24cm. The 

boundary conditions are assumed to be fully fixed at the bases and the vertical 

Unit: cm

Supporting wall

Granular material

Base
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boundaries. Fixed boundary particles with no-slip boundary condition are then used to 

simulate these boundary conditions (Bui et al. 2008a; 2014). 

Figures 3.7 and 3.8 show the velocity profile of granular flows obtained from the 

new SPH model at several time intervals. The corresponding free-surface of the deposit 

extracted from the experiments (i.e. solid-line in red) and the standard SPH model with 

the artificial viscosity (i.e. dash-line in green) are also superimposed on these Figures to 

validate the performance of the new SPH algorithm. It can be seen that the results 

predicted by the new SPH model are almost identical to those predicted by the standard 

SPH model with artificial viscosity. A minor difference in the time evolution of the run-

out distance between the two SPH models can be attributed to the fact that the energy 

dissipations due to the artificial viscosity and the damping force are different. It is noted 

that the results obtained from the current case study is different from that observed in 

Section 3.3. In particular, the final run-out distance predicted by the standard SPH model 

in the previous section is smaller than that of the new SPH model, unlike the results 

observed in this section, although the same damping coefficient (  = 5×10-5) and the 

artificial viscosity constants (α = 0.1 and β = 0.0) are utilised in both simulations. This 

inconsistency is due to the difference in the material properties that results in different 

sound speeds, and thus introducing different amounts of artificial viscosity into the 

material flow, despite the same artificial viscosity constants used.  

Regarding the time evolution of the velocity field predicted by the new SPH model, 

the flow front experiences an acceleration phase, followed by a deceleration phase before 

full stop at the time t = 0.607 s and t = 0.571 s for a = 0.5 and a = 1.0, respectively. 

Moreover, it can be clearly observed that the interface between the static zone and the 

flowing zone inside the flow regime migrates progressively from the initial failure 

surface toward the free-surface and reaches the free-surface when the flow stops 

completely. These results are consistent with those reported by Girolami et al. (2012) and 

Crosta et al. (2015).  

In comparison with the experiments, both SPH models (i.e. the new SPH model 

and the standard SPH model with artificial viscosity) predict fairly well the time 

evolution of surface deformation of the granular column after collapsing. There is a 

minor difference in the time evolution of the run-out distance between the SPH 

simulations and the experiment. In particular, the SPH simulations slightly over-predict 

the experimental results during the early stages of collapse, but are in very good 

agreement with the experiments in the later stages. This discrepancy can be explained by  
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Figure 3.7: Comparison between the SPH simulation and the experiment for 

the failure progress of the granular column (a = 0.5) 
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Figure 3.8: Comparison between the SPH simulation and the experiment for the failure 

progress of the granular column, a = 1 
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friction on the wall and on the bed in the experiment, which is not yet taken into account 

in the SPH simulations. This friction is not negligible in the early stages of collapse when 

the momentum of moving particles is large, but can be disregarded in the later stages 

when the moving particles slow down. 

 

 

(a) Stationary state 

 

(b) Magnitude of deviatoric plastic strain 

Figure 3.9: Comparison between the SPH simulation and the experiment for the final 

state (a = 0.5) 

 

The difference in the failure mechanism between two typical test cases of a = 0.5 

and 1.0 observed in the experiments can also be captured in the SPH simulations. As 

seen in Figure 3.7 (a = 0.5), the failure mechanism consists of the avalanche of the 

outside column edge, leaving the column inside undisturbed and the final morphology 

takes a form of a truncated cone. On the other hand, for the case of a = 1.0 (Figure 3.8), 

the whole granular column collapses completely, resulting in the final deposit of conical 

shape with the final height smaller than the initial height. In both cases, the granular flow 

is initiated at the front edge of the column and the collapse mechanism is a general shear 

failure (Lacaze et al. 2008).  

Figures 3.9 and 3.10 show the final stage of the granular column collapse: in sub-

Figure (a) the experimental result is given with the dash line representing the boundary of 

the undisturbed zone; in sub-Figure (b) the distribution of the accumulated deviatoric 



 

60                                                     Chapter 3: Development of SPH to Predict Landslide 

 

plastic strain is given and the boundary of the undisturbed zone is identified as the zone 

in which the magnitude of the plastic strain is small. Both the experiment and the SPH 

simulation indicate a similar undisturbed zone which has a width slightly smaller than the 

initial width of the column and an inclination of about 40 degrees.  

 

 

(a) Stationary state 

 

(b) Magnitude of deviatoric plastic strain 

Figure 3.10: Comparison between the SPH simulations and the experiment for the final 

state (a = 1.0) 

 

Finally, the proposed SPH model is validated against numerical and experimental 

data from the literature. Figure 3.11 shows the comparison between the SPH simulations 

and various results obtained from the literature for the scaling laws of the normalised 

height and the normalised run-out distance (i.e. the relation to initial aspect ratio). It can 

be seen that the granular scaling laws for the final height, Figure 3.11 (a), predicted by 

the new SPH model agrees well with those predicted by the DEM (Staron & Hinch, 2005; 

Utili et al. 2015) and by the FEM (Crosta et al. 2009) for initial aspect ratio from 0.3 to 

10. However, when comparing the new SPH model with experiments (Lajeunesse et al. 

2004; Lube et al. 2005), good agreement is only achieved for a < 0.7, while the SPH 

simulations under-predict the scaling laws for final height for a > 0.7. As for the run-out 

distance scaling laws, Figure 3.11 (b), the SPH simulations agree well with some existing 

DEM simulations (Staron and Hinch, 2005; Utili et al. 2015) for a wide range of a. 
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However, comparisons of the final height obtained from the SPH simulations, 

experiments (Lajeunesse et al. 2004; Lube et al. 2005) and the FEM (Crosta et al. 2009) 

show good agreement for a < 0.7, but over-prediction for a > 0.7. 

 

  
(a) Normalised final height (b) Normalised run-out distance 

Figure 3.11: Comparison between the SPH simulations and results from literatures for 

the scaling laws 

 

The similarity in the results between the SPH method and the DEM is expected 

since both simulations assume plane-strain conditions, thus the kinematic of the problem 

is identical. This suggests that the SPH method is capable of capturing the discrete 

behaviour of granular materials. The discrepancy between SPH (this study) or DEM 

(Staron & Hinch, 2005; Utili et al. 2015) results and experimental ones can be due to 

different configurations in two- and three-dimensions. In particular, the three-

dimensional configuration employed in the experiments by Lajeunesse et al. (2004) and 

Lube et al. (2005) is presumably different from the two-dimensional kinematics of the 

DEM simulation by Staron & Hinch (2005), at least when a is large enough (e.g. a > 0.7). 

Due to this difference, the inertia in these three-dimensional cases gradually replaces the 

general shear failure to become the governing mechanism of the granular flow. 

Furthermore, the difference of material properties between the present SPH simulations 

and those experiments also contributed to this discrepancy. 

 

3.6. CONCLUSIONS 

This chapter presents a new SPH approach for simulation of granular materials 

without using the traditional artificial viscosity. The proposed approach adopted a 

stress/strain regularisation procedure based on the Moving Least Square approach in 

combination with a linear viscous damping force commonly used in dynamic simulations 
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of continua. It is employed for the simulations of granular column collapses and results 

compared with experimental and numerical data available in the literature. The results 

show that the proposed technique can both replace the artificial viscosity and give better 

predictions of the flow behaviour of granular materials. Compared to the traditional 

employment of the artificial viscosity in standard SPH simulations, the usage of the 

viscous damping requires the calibration of a single parameter for a given material. 

Furthermore, thanks to the regularisation technique, the short-length-scale-noise, which 

is normally observed in most SPH simulations using the standard SPH approximation 

scheme, is removed and smooth stress distribution is obtained even under large shear 

deformation. The predictions by the new SPH model show good agreement with 

experimental and numerical results. This recommends that the proposed technique could 

be considered as a powerful numerical framework to simulate the flow of granular 

materials. 
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CHAPTER  

4 
 

RETAINING WALL SYSTEM:  
EXPERIMENTS 

AND NUMERICAL SOLUTION 
   

 
4.1. INTRODUCTION 

Modular-block retaining walls (MRW) have been used as an effective method to 

stabilize cuts and fills adjacent to highways, driver-ways, embankment, etc. Because they 

are flexible structures, modular-block retaining walls can tolerate movement and 

settlement without causing crack and damage, particularly under seismic loading 

conditions. Despite of its advantage, very few numerical studies of large deformation of 

the MRW systems were found in the literature. This is because it is very difficult to 

simulate large deformation and flexible behaviour of wall blocks (i.e. full rotational and 

translational motions) in the MRWs system using traditional continuum based numerical 

methods such as finite element method (FEM) which is suffered from grid distortions. 

The Discrete Element Method (DEM) proposed by Cundall & Strack (1979) which is an 

other popular numerical method in geotechnical applications may be applied to simulate 

dynamic behaviour of the modular-block retaining wall blocks in the MRW system. 

However, the DEM suffers from low accuracy in predicting soil behaviour due to the 

difficulty in selecting parameters for contact laws. In addition, the DEM cannot make use 

of advanced soil constitutive models which have been extensively developed in the 

literature. The discontinuous deformation analysis (DDA) method proposed by Shi G.H. 

(1988) has also been applied to geotechnical applications, but is mainly used for rock 

engineering, etc. In order to overcome the above limitations of traditional numerical 

methods, continuum based mesh-free methods such as the mesh-free Galerkin element 

method (EFG) (Belytschko et al., 1994), material point method (MPM) (Sulsky et al., 
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1994), particle in cell method (PIC) (Harlow et al., 1964), etc., could be also applied to 

simulate large deformation of soil. However, these methods are quite time consuming 

and complicated to implement into a computer code as they consist of both interpolation 

points and the background mesh. On the other hand, the smoothed particle 

hydrodynamics (SPH) method, originally proposed by Gingold and Monaghan (1977), 

has been recently developed for solving large deformation and post-failure behavior of 

geomaterials (Bui et al., 2007, 2008, 2011a, 2011b; Blanc and Pastor, 2013; Pastor et al., 

2009) and represents a powerful way to understand and quantify the failure mechanisms 

of soil in such challenging problems.  

In this chapter, taking into consideration the unique advantage of the SPH method, 

it is further extended to simulate large deformation and post-failure of the MRW systems. 

Herein, soil is modelled using the elasto-plastic Drucker-Prager constitutive model (Bui 

et al., 2008) and wall blocks are assumed rigidity with complete degree of rotation. A 

linear contact model which is similar to the penalty contact law is proposed and is 

implemented in the SPH code to simulate interaction between soil and wall blocks, and 

between wall blocks in the MRW systems. The developed model is then applied to 

simulate large deformation of the MRW system and comparing to a two-dimensional 

experiment. Results showed good agreement with the experiment, suggesting that the 

proposed method is a promising approach for further design of modular-block retaining 

wall systems subjected to earthquake. 

 

4.2. EXPERIMENTS 

4.2.1. Materials  

In thoses experiments, I use materials including Alumininum Rods and Aluminium 

Blocks (Modular-block). Each block is named with a specific ID from 1 to 7. The 

parameters of 7 aluminium blocks used in our experiments showed in Table 4.1. In the 

Table 4.1, papameter M is mass of block, L is length dimension of block; W is width of 

block and H is height of block. 

In these experiments I use the same material in chapter 2 with aluminum rods 5 cm 

in length and with diameters of 1.6 mm and 3.0 mm (Figure 4.1) mixed at a ratio of 3:2 

in weight, were used as the model ground to simulate the true 2D granular flow 

experiments (Nakai, 2012). The total unit weight of the mixed material is 20.4 kN/m3.  

Parameters of this soil model showed in Table 4.2. 
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Table 4.1: Parameters of Modular-blocks 
 

ID of Block M (g) L (mm) W(mm) H(mm) 

1 104.028 49.78 31.86 25.01 

2 104.054 49.82 31.86 25.02 

3 104.016 49.81 31.84 25.02 

4 104.053 49.79 31.86 25.01 

5 104.046 49.82 31.86 25.02 

6 104.047 49.79 31.87 25.02 

7 104.047 49.80 31.87 25.02 

Average 104.041 49.80 31.86 25.02 

≃ 104 50 32 25 

 

Table 4.2: Parameters of soil model 
 

Name Value Unit 

Gravity Density (ρ) 20.4 kN/m3 

Friction angle () 21.9 deg 

Young’s modulus (E) 5.84 MPa 

Poisson’s ratio () 0.3 – 

Dilation angle () 0 deg 

Cohesion (c) 0 kPa  

 

 

 

Figure 4.1: Aluminum rods 
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4.2.2. Measuring Friction Coefficients  

In addition to the retaining wall collapse experiments, sliding tests were also 

conducted to measure friction coefficients between the wall blocks, between the soil 

model and the wall block, and between the block and the bottom solid wall. Outline of 

these tests are shown in Figures 4.2, 4.3 and 4.4.  

 

 

 

 

 

 

Figure 4.2: Measuring friction coefficience between retaining wall blocks (  0.31) 

 

 

 

 

 

 

 

Figure 4.3: Measuring friction coefficience between the retaining wall block and model 

ground (  0.38) 

 

 

 

 

 

 

Figure 4.4: Measuring friction coefficience between wall block and the bottom wall 

boundary (  0.40) 

 

Based on these experiments, it was found that the friction () between retaining 

wall blocks is   0.31, between the retaining wall block and model ground is   0.38, 

and between wall block and the bottom wall boundary is   0.40. 

 

Block 

Block Fixed 
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α  ≈ 170 

α  ≈ 210 

Block 

α  ≈ 220 

Block 
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4.2.3. Measuring Displacement of Blocks 

4.2.3.1. Experimental Model 

This experimental setup is shown in Figure 4.5. The soil box is fixed during 

conducted time. The overlapping value (Δx) may be changed with each series of 

experiments. 

 

 

 

 

 

 

 

Figure 4.5: The experimental setup 

 

4.2.3.2. The First Series of Experiments  

The experiments in this series is conducted with the overlapping Δx = 15.64 mm (a 

haft of block's wide). This experiments is repeated six times. The experimental results 

shown the position and rotation angle of the blocks after moving on Figure 4.6, and 

position of blocks (nearest left points and farthest right points) on Table 4.3. 

 

 

 

Figure 4.6: Position and rotation angle of the blocks after moving 

 

Table 4.3: Position of blocks (left points and right points) after moving 

Number of Repeat  1 2 3 4 5 6 Average 

Left point 

Block1 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

Block2 45,20 51,97 53,08 41,16 39,17 32,79 43,90 

Block3 94,96 94,89 98,55 81,36 99,95 82,08 91,97 

Right 
point 

Block1 31,00 31,00 31,00 31,00 31,00 31,00 31,00 

Block2 77,58 83,72 82,83 78,98 75,84 71,51 78,41 

Block3 140,89 145,81 131,92 135,56 136,11 122,14 135,41 
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4.2.3.3. The Second Series of Experiments 

The experiments in this series are conducted with the overlapping Δx = 10 mm. As 

the same as the first series, this experiment is repeated six times. The experimental 

results show the position and rotation angle of the blocks after moving on Figure 4.7, and 

position of blocks (nearest left points and farthest right points) on Table 4.4.  

 
 

Figure 4.7: Position and rotation angle of the blocks after moving 

 

Table 4.4: Position of blocks (left points and right points) after moving 

 

Number of Repeat  1 2 3 4 5 6 Average 

Left point 

Block1 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

Block2 48,22 50,00 46,91 47,29 48,27 53,39 49,01 

Block3 114,32 114,07 111,03 104,93 116,32 106,21 111,15 

Right 
point 

Block1 31,00 31,00 31,00 31,00 31,00 31,00 31,00 

Block2 95,15 103,14 98,49 99,15 99,18 103,67 99,80 

Block3 151,40 158,02 146,75 152,16 147,08 153,62 151,51 

 

4.2.3.4. The Third Series of Experiments 

This series of experiments are conducted with the overlapping Δx = 15.64 mm (the 

same the first series). But in this case, the distance between the block ID = 1 with left 

wall was added in the model setup. This experiment is also repeated six times. The 

experimental results show the position and rotation angle of the blocks after moving on 

Figure 4.8, and position of blocks (left points and right points) on Table 4.5. 

 

Table 4.5: Position of blocks (left points and right points) after moving 

Number of Repeat  1 2 3 4 5 6 Average 

Left point 

Block1 50,00 50,00 50,00 50,00 50,00 50,00 50,00 

Block2 92,48 98,86 98,91 99,06 104,42 97,62 98,56 

Block3 166,18 161,03 161,01 163,27 168,03 163,42 163,82 

Right 
point 

Block1 81,00 81,00 81,00 81,00 81,00 81,00 81,00 

Block2 142,67 138,44 145,87 143,14 130,01 142,28 140,40 

Block3 197,43 197,85 199,42 208,11 197,28 202,14 200,37 
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Figure 4.8: Position and rotation angle of the blocks after moving 

 

4.2.4. Post-Failure Behavior of Modular-block Retaining Wall System  

A series of two-dimensional modular-block retaining wall system collapses were 

conducted to investigate the failure mechanism of the MRWs and to verify the proposed 

numerical framework in next sections. Figure 4.9 outlined the initial setting condition of 

the MRWs which consists of six rectangular wall blocks. The size of the model ground is 

15cm in height and 50cm in width at the base. Soil was modelled using aluminum rods of 

1.6mm and 3mm in diameters, 50mm in length, and mixed with the ratio of 3:2 in 

weights. The aluminium wall block is 3.2cm in width, 2.5cm in height, and 5cm in length, 

which is also manufactured from aluminum. In the experiment, the MRWs was 

constructed by successively placing one wall block on the top of the other with many 

value of overlapping (1.2cm, 1.4cm, 1.6cm, 1.8cm, 2.0cm, 2.2cm, 2.4cm, 2.6cm, 2.8cm), 

followed by filling the model ground at each layer. The MRWs was stabilized by a 

stopper stand as show in Figure 4.9 and Figure 4.10. To visualize the failure pattern of 

the model ground after collapse, square grids (2.52.5cm) were drawn on the soil 

specimen. The experiments were initiated by quickly removing the stopper stand and 

digital photos were taken to record the failure process as well as the final configuration of 

the MRWs after collapse. 

Other series of this experiment were conducted on soft ground surface. The setup 

for this experiment is show in Figure 4.11. 
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Figure 4.9: Experimental setup designed 

 

 
 

Figure 4.10: Initial setup of model ground and the retaining wall blocks system 

 

 
 

Figure 4.11: Initial setup of experimental model with soft ground surface 
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A series of experiments were conducted starting from one block and then gradually 

increasing the number of blocks in the BRWs until the retaining wall is collapsed. The 

experimental evidences consistently showed that the MRW system will collapse when 

reaching 4 blocks height (with value of overlapping is 1.2cm). Accordingly, a numerical 

model consisting of six retaining wall blocks and overlapping is 1.2cm will be conducted 

in the next section to verify the proposed numerical framework. A total of six 

experiments were conducted to verify the failure mechanism of the MRWs and the final 

run-out distance of each block in the MRWs.  In all experiments, the failure mechanism 

of the MRW systems was more and less the same as shown in Figure 4.12. The positions 

of blocks after collapse shown in Table 4.6. Figure 4.13 shows failure zone after the 

crash downs of box-shape retaining wall 

 

 
 

Figure 4.12: Typical configurations of the MRW system observed in the experiment after 

collapse 

 

Table 4.6: Positions of blocks (left points and right points) 

Number of Repeat  1 2 3 4 5 6 Average 

Left 
point 

Block1 64,1 61,0 64,4 65,9 66,9 63,0 64,2 

Block2 60,7 58,4 61,3 62,7 63,9 60,1 61,2 

Block3 57,4 56,2 57,8 59,1 60,8 57,2 58,1 

Block4 53,7 53,1 54,7 55,2 56,0 53,8 54,4 

Block5 51,2 49,7 51,0 51,3 53,0 50,8 51,2 

Block6 47,8 47,3 48,1 49,5 50,0 48,0 48,5 

Right 
point 

Block1 67,2 64,1 67,5 69,0 70,0 66,1 67,3 

Block2 64,6 62,3 64,6 66,0 67,1 63,6 64,7 

Block3 61,5 59,7 61,7 63,0 64,0 61,0 61,8 

Block4 57,7 56,8 58,2 59,3 60,0 57,5 58,3 

Block5 55,1 53,6 54,9 55,4 56,8 54,8 55,1 

Block6 52,4 50,4 53,7 52,6 54,0 52,7 52,6 

Failure zone 
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Figure 4.13: Failure zone after crash downs of box-shape retaining wall  

 

 

Figure 4.14: Typical configurations of the MRW system observed in the experiment after 

collapse with soft ground surface 

 

The result of experiment with soft ground surface after collapse is shown in Figure 4.14 

 

4.2.5. Analysis of the Failure Mechanism of MRW System   

A series of experiments were performed using 4 blocks height at different initial of 

overlapping value (1.2cm, 1.4cm, 1.6cn, 1.8cm, 2.0cm, 2.2cm, 2.4cm, 2.6cm, and 2.8cm). 

Accordingly, 9 experiments were conducted in total. Each of the experiments was 

repeated at least twice, with some repeated up to six times. All the experiments were 

recorded by high speed camera. 



 

Chapter 4: Retaining Wall System: Experiments and Numerical Solution                      79 

 

 

 

 

 

 
 

Figure 4.15: Post-failure behavior of modular-block retaining wall system. Case 1 

t = 0 (s) 

t = 0.240 (s) 

t = 0.292 (s) 

t = 0.450 (s) 

t = 0.520 (s) 
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Figure 4.16: Post-failure behavior of modular-block retaining wall system. Case 2 

t = 0 (s) 

t = 1.020 (s) 

t = 1.636 (s) 

t = 1.776 (s) 

t = 2.038 (s) 
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The experimental results show that, there are three case of post-failure behavior of 

modular-block retaining wall system. Case 1: shown on Figure 4.15 with overlappping 

values are 1.2 (cm), 1.4 (cm) and 1.6 (cm); Case 2: shown on Figure 4.16 with 

overlappping values are 2.4 (cm), 2.6 (cm) and 2.8 (cm); Case 3: shown on Figure 4.17 

with overlappping values are 1.8 (cm), 2.0 (cm) and 2.2 (cm). In this case the retaining 

wall systems are not destroyed; 

 

 

 
 

Figure 4.17: Post-failure behavior of modular-block retaining wall system. Case 3 
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4.3. SIMULATION APPROACHES 

4.3.1. Simulation of Soil in SPH Framework  

The SPH mesh-free particle method was presented in Section 3.2 of this thesis. In 

the SPH method, motion of a continuum is modeled using a set of moving particles 

(interpolation points); each assigned a constant mass and “carries” field variables at the 

corresponding location. The continuous fields and their spatial derivatives are taken to be 

interpolated from the surrounding particles by a weighted summation, in which the 

weights diminish with distance according to an assumed kernel function. Details of the 

interpolation procedure and its application to soil can be found in Bui et al. (2008). The 

motion of a continuum can be described through the following equation, 

 

                                          ext
dt

d
fgσ

v
                                          (4.1) 

 

where v is the velocity;  is the density;  is the total stress tensor, where negative is 

assumed for compression; g is the acceleration due to gravity; and fext is the additional 

external force(s). The total stress tensor of soil is normally composed of the effective 

stress (´) and the pore-water pressure (pw), and follows Terzaghi’s concept of effective 

stress. Because the pore-water pressure is not considered, the total stress tensor and the 

effective stress are identical throughout this paper, and can be computed using a 

constitutive model. 

In the SPH framework, Equation (4.1) is often discretized using the following form 

(Bui et al., 2008; Blanc et al., 2013), 
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where  and  denote Cartesian components x, y, z with the Einstein convention applied 

to repeated indices; a is the particle under consideration; a and b are the densities of 

particles a and b respectively; N is the number of “neighbouring particles”, i.e. those in 

the support domain of particle a; mb is the mass of particle b; C is the stabilization term 

(Bui et al., 2011b); W is the smoothing kernel function which is taken to be the cubic 
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Spline function (Monaghan , 1985, 2003); and fext a is the unit external force acting on 

particle a. 

The stress tensor of soil particles in Equation (4.2) can be computed using any soil 

constitutive model developed in the literature. For the purpose of soil-structure 

interaction, the Drucker-Prager model has been chosen with non-associated flow rule, 

which was implemented in the SPH framework by Bui et al. (2008) and shown to be a 

useful soil model for simulating large deformation and post-failure behaviour of 

aluminum rods used in the current paper as model ground. The stress-strain relation of 

this soil model is driven from the assumption of additive decomposition of the total strain 

rate tensor, 

 

                                                           
pe εεε                                          (4.3) 

 

where a raised dot denotes the time derivative; ε  is the total strain rate tensor; eε  is its 

elastic component; and pε  is its plastic component. The elastic component is computed 

using the well-known Hooke’s law; while the plastic component can be calculated using 

the plastic flow rule (Bui et al., 2008), 
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where D is the elastic stiffness matrix,   is the rate of change of plastic multiplier (see 

Section 3.3), and gp is the plastic potential function. 

According to the plasticity theory, the plastic deformation occurs only if the stress 

state reaches the yield surface. Therefore, the plastic deformation will occur only if the 

following yield criterion is satisfied, 

 

                                               021  ckJIf                             (4.6) 
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where I1 and J2 are the first and second invariants of the stress tensor; and  and kc are 

Drucker-Prager constants that are calculated from the Coulomb material constants c 

(cohesion) and  (internal friction). In the plane strain, the Drucker-Prager constants are 

computed by, 
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φ

2tan129

tan


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The non-associated plastic flow rule specifies the plastic potential function by (Bui 

et al., 2011a, 2011b), 

 

                                         constant21  JIg p                              (4.9) 

 

where  is a dilatancy factor that can be related to the dilatancy angle  in a fashion 

similar to that between   and friction angle .  

Substituting Equation (4.9) into Equation (4.5) in association with the consistency 

condition, that is the stress state must be always located on the yield surface f during the 

plastic loading, the stress-strain relation of the current soil model can be written as (Bui 

et al., 2011b), 
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where e is the deviatoric strain-rate tensor; s is the deviatoric shear stress tensor; and 

  is the rate of change of plastic multiplier of particle a (Bui et al., 2011b), 
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where the strain-rate tensor is computed by 

 

                                            aa uu   
2

1
                          (4.12) 

When considering a large deformation problem, a stress rate that is invariant with 

respect to rigid-body rotation must be employed for the constitutive relations. In the 

current study, the Jaumann stress rate is adopted: 
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where   is the spin-rate tensor computed by 
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As a result, the final form of the stress-strain relationship for the current soil model is, 
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Validation of the elasto-plastic Drucker-Prager soil model with SPH has been 

extensively documented in the literature (Bui et al., 2007, 2008, 2011a, 2011b), and 

readers can refer to these references for further details on the validation process. 

 

4.3.2. Motion of Rigid Wall Blocks  

The retaining wall system consists of individual rigid wall blocks, each of which is 

assumed to be a rigid body, has full degrees of freedom and moves in accordance with 

the Newton’s second law. In the computation, the rigid wall block is represented by a set 

of boundary particles placed uniformly around the boundary. These particles interact 

with soil particles as well as with particles which belong to different blocks by a contact 

force model. The technique of replacing moving boundaries by particles was originally 
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proposed by Monaghan et al. (2003) to simulate a floating body in water. This technique 

is adopted in this study to simulate soil-structure interaction with a further improvement 

for simulations of multiple contacts among rigid blocks and blocks and soil. Details of 

the motion of the rigid wall blocks are described below. 

An arbitrary motion of a rigid body can be represented as a superposition of 

translational motion in which all points of the body, including the centre of mass, move 

with the same speed along parallel trajectories, and rotation around the centre of mass. 

Accordingly, the motion of a rigid wall block in the MRW system can be determined by 

specifying the translational motion of the centre of mass and the rotational motion about 

its mass central. The equation of motion of the central mass is given as follows 

(Monaghan et al., 2003), 

 

                                                                     F
V
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dt

d
M                                        (4.16) 

 

where M is the central mass, V is the velocity vector of the central mass, F is total force 

vector acting on the body.  

The equation of rotation about the central mass is, 
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I                                      (4.17) 

 

where I is the inertial moment,  is the angular velocity which is perpendicular to the 

plane of the motion, and T is the total torque about the central mass. 

In the computation, the rectangular block is represented by the set of boundary 

particles that are equi-spaced around the boundary. Denoting the force vector acting on 

each boundary particle i located on the moving block is fi, Equation (4.16) and Equation 

(4.17) can be rewritten, respectively, as follows, 
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where ri and R are vector coordinates of boundary particle and central mass, respectively. 

The rigid body boundary particles move as a part of the rigid body, thus the change on 

position of boundary particle i is given by, 
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The force fi acting on a boundary particle on the rigid body is due to the 

surrounding soil particles or boundary particles that belong to different rigid bodies. This 

force can be calculated using any suitable contact model. 

 

4.3.3. Contact Force Model 

The contact force model developed in this study is based on the concept of using a 

spring-damper system to simulate interaction between two solid objects. The method is 

similar to that used in the Discrete Element Method, originally proposed by Cundall & 

Strack (1979) to simulate granular materials; however, it will be the first time this 

approach is adopted in the SPH framework to simulate soil-structure interaction. In the 

model, a force-displacement law is calculated by allowing two rigid objects to overlap 

each other. Linear contact law is assumed for force-displacement relationships, although 

any other constitutive relations such as Hertz & Mindlin contact theories (Tusji et 

al.1992; Bui et al. 2009) can be applied. The outline of the proposed algorithm is shown 

in Figure 4.18. Soil particles (stress points) are labeled by subscript index a; while those 

particles used to represent the solid boundary are labeled by i. The initial distances 

between soil particles and between solid particles are denoted by ha and hi, respectively. 

The value of ha and hi changes depending on the side discretization of the problem 

domain and parametric studies have been conducted to identify a suitable mesh-size to be 

adoped in this study. Based on the above assumption, the radial force acting between two 

particles can be calculated using the following equation, 

 

                                     









aiia

aiia

n

ainn

n

ain

ia
dhh

dhhck

20

2vδ
f                            (4.21) 



 

88                      Chapter 4: Retaining Wall System: Experiments and Numerical Solution 

 

 

where n

aik  is the radial stiffness; n is the allowable overlapping distance between two 

particles; cn is the radial damping coefficient; n

aiv  is the relative radial velocity vector 

between particle a and particle i; ha and hi are the initial separation between soil particles 

and between boundary particles, respectively, and ha = hi is assumed in this study; and dai 

is the distance between particles a and i.  

 

Figure 4.18: Contact model between soil and retaining wall blocks and between blocks 

 

The overlapping distance and radial damping coefficient can be calculated using 

the following relationships, 
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where aim  is the effective mass of soil and solid particles, which is calculated by                   

                                                          2/)( iaai mmm                                             (4.24) 

The contact force in the shear direction which is perpendicular to the radial 

direction can be calculated in the same manner, 
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where s

aik  is the shear stiffness which is taken similar to n

aik (Cundall & Strack, 1979); s 

is the relative shear displacement between the two particles; cs is the shear damping 

coefficient; s

aiv  is the relative shear velocity vector between particle a and particle i. The 

relative shear displacement and shear damping coefficient are, 

                                                               dts

ais  vδ                                     (4.26) 
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The current shear force must satisfy Coulomb’s friction law which implies that the 

shear force must not exceed the maximum resisting force, 
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where  is the friction coefficient. The above contact model consists of five parameters: 

stiffnesses in the normal and shear direction, damping coefficient and friction coefficient. 

Following the approach proposed by Cundall & Strack (1979), the shear stiffness is taken 

similar to the normal one; the damping coefficients are specified based on Equations 

(2.23) and (2.27) with the mass being calculated as the production of the initial particle 

volume to density. The normal stiffness and friction coefficient are only parameters need 

to be calibrated. For instance, the friction coefficient can be specified from direct shear 

test between two blocks or between blocks ad soils; while the normal stiffness should be 

calibrated from a dropping experiment, in which a block is brought to a certain high and 

dropped under gravity and numerical is conducted to obtain the same bouncing solution. 

The damping coefficient can be also adjusted from this test. These forces are finally 

added to Equation (4.2), Equation (4.18) and Equation (4.19) to progress the motion of 

soil and wall block. 

 

4.4. SIMULATION OF BLOCK RETAINING WALL COLLAPSE USING SPH 

The model test shown in Figure 4.9 was simulated using 11,304 SPH particles 

arranged in a rectangular lattice with an initial separation of 0.25cm. Rigid blocks were 

created by placing boundary particles uniformly around the boundary at a constant 
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distance. In order to simulate the smooth surface, half of particle spacing was chosen for 

the rigid body boundary particles. Model ground parameters including elastic modulus E 

= 5.84MPa, Poisson’s ratio  = 0.3, friction angle  = 21.9o, dilatant angle  = 0o, and 

cohesion c = 0kPa were taken similar to those measured by Umezaki et al. (Umezaki  et 

al., 2005). The unit weight of the ground model is s = 20.4kN/m3. In addition to the 

ground parameters, parameters for the linear contact model needed to be specified. In this 

work, the radial and shear stiffness were assumed to be mNkk s

ai

n

ai /109 , which is 

commonly accepted in DEM simulations (Bui et al. 2009). We noted that our numerical 

results are not sensitive to the stiffness coefficient of higher than 109N/s. The friction 

coefficients between the ground model and the block, between the rigid blocks, and 

between the block and the bases of the wall boundary were taken similar to those 

measured in the sliding tests as explained in the experimental section, in which the 

friction coefficient between wall blocks is taken to be 0.31, between retaining wall blocks 

and soils is 0.38 and between wall block and the bottom boundary is 0.40 The boundary 

conditions for the model ground are restrained with a roller boundary at the lateral 

boundaries and fixed in both directions at the base (Bui et al.,  2008). 

Figure 4.19 shows the comparison between the experiment and the computation for 

the final configuration of the MRW system after collapse. It can be seen that the 

computed result could predict fairly well the behavior of all rigid blocks observed in the 

experiment after the MRW system was collapsed. The good agreement between 

experiment and simulation can be attributed to the fact that the complete degrees-of-

freedom of the rigid wall was taken into consideration in the simulation and large 

deformation and post-failure behavior of soil could be simulated well in the current SPH 

framework. 
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Figure 4.19: Comparison between the SPH simulation and the experiment for the final 

configuration of the MRW system. 

 

Comparing the final run-out distance of each block, for instance Block No.1, it can 

be seen that the final position (right edge) of Block No.1 in the simulation is 

approximately 68.3cm from the left-most solid boundary. This result is in fairly good 

agreement with that observed in experiment which was approximately 66.2cm. This 

suggests that the proposed numerical framework could be applied to simulate the soil-

structure interaction in the MRW system. However, further refinement of the contact 

model should be considered to provide a more theoretical sound framework to specify the 

parameters for the contact model. 

 

4.5. CONCLUSION 

This chapter presents my research on post- failure of MRWs using both laboratory 

experiments (in section 4.2) and the numerical simulation by using SPH method (in 

section 3). Series of experimental on post- failure of MRWs was implemented with the 
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different heights of MRW (The heights are 3, 4, 5 and 6 modular-blocks). With each 

height of MRW, there are experiments with the overlapping values between modular-

blocks are 12, 16, 18, 20, 22, 24, 26 and 28 mm in turn. Each experiment is repeated six 

times. Most the experimental results are recorded by high speed camera. So the results of 

my experimental would be a good data to verify numerical models and used to compare 

with experimental results of other authors. The experimental results also show that the 

retaining wall’s slope (depending on the overlapping value) has a great influence on its 

stability and destruction mechanisms. Specifically, with the height of 4 modular - blocks, 

the experimental results show that the retaining wall’s stability depends on its slope. 

Furthermore, this slope also affects the MRWs’ destruction mechanism because the slope 

of retaining wall directly affects the friction force between its blocks as well as lateral 

earth pressure on the retaining wall. To establish a complete set of data for verifying 

numerical models, apart from experiments on post- failure of MRWs I have done another 

series of experiments to determine the friction, bocks jumping coefficient as well as done 

experiments on motion of the blocks as described in Section 4.2. 

Also in this chapter, the first SPH method approach for simulation of large 

deformation and post-failure of MRW is presented. It was shown that the proposed 

method provides good agreement with the experimental results. One of the key 

advantages of the proposed method is that the complete degrees-of-freedom of the 

retaining wall blocks, which could not be simulated using traditional numerical 

approaches such as finite element method, can now be simulated in the proposed 

numerical framework. 

The results of numerical simulation correctly reflect the final result of the MRWs’ 

destruction. In the future, I will continue improving this model to simulate correctly the 

destruction mechanism of MRWs both in space and time as the shown experimental 

results of 4 modular – blocks height. The purpose of this study is to develop the SPH 

numerical model to study and optimize the different MRWs helping the design of anti-

landslides MRWs. Moreover, in order to broaden the application of the proposed 

numerical approach in geotechnical engineering, generalized contact model is necessary. 
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CHAPTER  

5 
 

CONCLUSIONS  
AND  

FUTURE WORKS 
   

 
5.1. CONCLUSIONS 

This dissertation deeply studies the mechanism of the landslide process and the 

failure of the anti-landslide blocked retaining system. The studies were conducted by 

both experimental and numerical simulation methods. 

The series of experiments were performed and analyzed to find experimental 

functions. They were also used to verify our developed and renovated numerical model. 

The calculation results of renovated mesh-free SPH method truly reflect the failure 

mechanisms of the slope and retaining wall system. This shows that the numerical model 

has a high reliability. 

The dissertation presents some new research results. These results are mainly 

focused on the following three basic contents: 

 The dissertation has conducted a series of experiments on the failure of 2D granular 

columns and block retaining wall system. The process of experimental 

implementation is recorded by high speed camera. This is a good source of data 

allowing other researchers to compare with their results or verify their numerical 

models. Based on the results of experiments, the dissertation has found 

experimental functions. The difference between the functions in my dissertation 

and by other researchers is that mine is built based on truely two-dimensional 

experiments while the others are built on the quasi two-dimensional simulation 

experiments. The results have been published in the Journal of Chemical 

Engineering of Japan. 
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 The dissertation has improved the SPH approach for calculating and forecasting the 

landslide process. Artificial viscosity  used to stabilize the numerical model in the 

SPH approach is replaced by a combining viscous damping with stress/strain 

regularisation that is proposed for simulations of granular flows. This improvement 

helps to reduce the difficulties in choosing the unknown parameters when using 

artificial viscosity. The renovated SPH approach can correctly predict not only the 

failure mechanism, but also the failure process of slope. The renovated SPH 

approach has also overcame quite well the interference of stress field that has in 

previous calculations. The renovated SPH model has been published in Landslide. 

 

 This dissertation also deeply studies the failure mechanism of the MRWs by    

experiment  model and  numerical  simulation.  The experimental results show its 

characteristics. The SPH numerical model in this dissertation also recommends the 

interactive mechanism between soil and rigid body. This interaction mechanism 

allows simulating the movement of rigid body in both transitive and rotational 

movements. This is a new point of the thesis. Part of research results in this chapter 

have been published in the International Journal of GEOMATE. 

My thesis has achieved some research results on landslide problem. They are the 

post- flow failure of debris flow and failure mechanism of MRWs. But research in the 

thesis remains restricted due to no consideration to the effect of pore-water pressure 

during the post -flow failure. The numerical simulation for MRWs just assessed post- 

flow failure by only failure mechanism of MRWs. To simulate correctly many failure 

mechanisms as the experimental results of MRWs both in space and time, I need to 

continue working on it in the near future.  

 

5.2. FUTURE WORKS 

5.2.1. Numerical Experiments  

My experiments on the failure of 2D granular columns and the MRWs are 

performed many times in the laboratory. I have also determined the experimental 

functions. However, experiments in the laboratory takes time and cost to perform, not 

mention to many cases that can’t perform experimentally or have inaccurate results due 

to influence of many factors. Therefore next time, I will use the numerical model to do 

some series of numerical experiments. By this way, I hope to find out correct experiment 

functions for any size of 2D granular columns. Moreover, with this approach we can 
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conduct experiments with different materials. From the numerical experiment results, it’s 

highly possible that a new form of suitable empirical functions can be identified for a 

different material. 

Figures 5.1 and 5.2 shows the results of numerical experiments using the improved 

SPH model to simulate granular flow with different internal friction angle of material.  

 

Figure 5.1: Results of Numerical Experiment 

 

Figure 5.2: Results of Numerical Experiment 



 

98                                                                     Chapter 5: Conclusions and Future Works 

 

5.2.2. Extent to study 3D problems  

 

Figure 5.3: Scene of some landslides 

 

The 2D experiment results presented in this thesis will be a useful database for 

other researchers to verify their 2D numerical models under the plain-strain conditions. 

This is an important step in computational developments to justify an appropriate use of a 

computational model for geotechnical applications. On the other hand, for real life 

applications, validations with 3D data field data are required. As per, validations of the 

proposed SPH framework for granular flows are further needed to be conducted under 

the 3D field conditions. We can easily see from Figure 5.3 that granular flows in 

landslide events often tend to expand in the later stage of the the run-out process. The 

expansion at the toe of granular flows will reduce the run-out distance of granular flows. 

Furthermore, materials in the real life are often wet materials. Thus, further developments 

of the proposed SPH framework considering pore-fluid coupling will be undertaken to 

improve the predictive capability of the SPH model for real life applications. In addition, 

3D experiments using wet materials will also need to be conducted to validate the 

proposed SPH framework at the laboratory scale, before applying the method to larger 

scales. 

In the near future, we will also study the failure mechanism of 3D modular-block 

retaining wall system (MRWs) by numerical simulation using the prosed SPH method. 

Therefore, 3D laboratory experiments of MRWs will be conducted to validate the 

proposed numerical method.  

 

 



 

Chapter 5: Conclusions and Future Works                                                                     99 

5.2.3. Application of High Performance Computing Techniques  

Currently, due to the limitation of computer capacity for calculating big problems, 

the simulation by mesh-free SPH approach takes lot of time. Therefore, in the near future, 

besides continuing to improve the existing numerical model, I will study and apply some 

high-performance computing techniques to speed up the computing of the model and 

take advantage of computer resources. 

The methods of high performance computing today can typically include MPI 

(Message Passing Interface), OpenMP (Open Multi-Processing) and GPUs (Graphics 

Processing Units). In which MPI is the computing method based on distributed memory 

platform, which is used to exploit the potential of computer systems connected together 

via high speed LAN. OpenMP is a calculating method based on shared memory platform. 

The advantage of OpenMP is to take full advantage of multi-core technology of current 

microprocessors. However it can also be restricted to compute on a mainboard. In recent 

years, a new computing technique based on GPUs graphics technology platform has been 

applied much in engineering. This technology has an advantage with an ability of good 

computing despite of its low cost. 

Currently, OpenMP technology is used extensively in softwares running on a 

personal computer or workstation. The super-computers of large computing centers often 

combines two or all three methods as listed above. 

To increase computing performance of SPH approach I will apply two methods as 

OpenMP and GPUs. The two computing techniques are set in the form of option for 

users to choose from. In case the high performed graphic card computer is equipped, the 

GPUs method is activated. In contrast, the OpenMP method will be activated. 
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