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Abstract

An accurate and efficient measurement method is proposed to determine the

individual complex permittivities of two-layer materials. This method is a

transmission-line method using waveguide and provides frequency-dependent

permittivities by measuring only the complex transmission parameters. The sample

under test fills only a part of the waveguide cross-section unlike in the case of

conventional transmission-line method and the precise machining of the sample is not

required. The size of sample is adjusted according to sample loss and permittivity so

that an accurate assessment of high-loss material is affordable. The partial loading of

sample provides further significant advantage in consort with inhomogeneous field

distribution of the waveguide mode. The complex transmission parameter is very

influenced by the position of loaded sample in waveguide. This effect can be used

advantageously to determine simultaneously the unknown complex permittivities of

each layer. This can be realized by using the accurate, efficient and versatile

electromagnetic method instead of simple conventional transmission-line theory. The

method proposed in this paper is based on hybrid electromagnetic method. The method

combines extended spectral domain approach with mode-matching method whose

formulation does not include any approximation for simplicity. In the formulation,

aperture electric fields or magnetic fields are introduced as source quantities and

electromagnetic fields over all regions are related to these source quantities. Numerical

method is developed based on Galerkin’s procedure to obtain the complex transmission

parameters, where source quantities are expressed in terms of basis functions. Thorough

investigation is conducted for various materials loaded at different positions in

waveguide. The numerical computations are accurate and efficient and the present

numerical method has a superiority over conventional methods, such as mode-matching

method and finite element method, for use in material assessment.
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Based on this hybrid electromagnetic analysis, an effective material assessment

algorithm is developed to determine the complex permittivities of each layer of sample.

For the material assessment, complex transmission parameters are measured for two

different locations and/or orientations of the two-layer sample. The material assessment

algorithm uses a bootstrap technique, that is, at first the transmission parameter of one

loaded position is used to optimize the permittivity of one layer, and then with this

optimized permittivity the transmission parameter of the other loaded position is used to

optimize the permittivity of the other layer. These separate processes are repeated

alternately until the differences of the measured and calculated transmission parameters

fall below the tolerance.

Virtual experiments are performed to examine the material assessment

algorithm with various initial values and confirm the robustness of the algorithm. Also a

rapid convergence is observed with only several repetition even when the initial value

largely mismatches from the true value. Virtual experiments demonstrate the accuracy,

versatility, efficiency and robustness of the present method. Virtual experiments also

show that the errors due to the uncertainties during material evaluation such as deviation

in sample location, length and thickness are less influenced.

Real experiments are performed to evaluate the complex permittivities of

two-layer sample at X-band with and without the use of calibration. Actual experiment

shows the practicality and accuracy of the proposed method.
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Chapter 1 Introduction

Microwave technologies have been used widely in communication, radar,

sensor etc., and even recently find new applications such as in driving support system

(self-driving car). These microwave applications use a lot of microwave integrated

circuits and planar antennas. The transmission characteristics of microstrips and

coplanar lines used in microwave integrated circuit, and radiation characteristics

(directivity, gain and operating frequency) of planar antennas are strongly dependent on

the electrical property (permittivity) of printed circuit board. Hence, an accurate

evaluation technique of electrical property becomes ever more important. Also,

microwave technology comes into wider use such as microwave heating [1], food

sterilization [2], atomic power [3], microwave chemistry [4], agricultural [5] and

medical aplications [6]. Materials used in these applications include substantial

microwave losses as opposed to low loss materials in conventional applications such as

communications, radars and sensors. With the rapid expansion of microwave

application, electromagnetic compatibility (EMC) becomes serious problem.

Electromagnetic wave absorber is a typical EMC device which can reduce unnecessary

reflection wave or suppress unnecessary resonance inside the electronic devices. These

devices require the new materials with various (mid-high) losses. The electrical property

of a material with loss is represented by complex permittivity. Therefore, an accurate

assessment of material’s electrical property (permittivity) over wide variety of materials

covering from low loss until high loss materials is necessary.

Many measurement methods have been reported during the past few decades

for the frequency-dependent electromagnetic properties of lossy materials based on the

transmission-line method using waveguides or coaxial lines [7]-[16]. If the

transmission-line is filled completely with a homogeneous sample, the reference-plane
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dependency of the complex reflection parameter, S11, can be eliminated by using the

transmission-line theory and the reference-plane invariant measurement is possible [15],

[16]. However, when the measurement method is based on a simple transmission-line

theory which assumes a single mode of propagation in the guide, the sample has to be

formed precisely to fill up the whole cross-section of the guiding structure [7]-[9]. An

air gap between the guide wall and sample or deformation due to the loading of an

oversized soft sample gives rise to the higher order mode propagation and causes

measurement errors [10]. The transmission-line theory using waveguides is modified to

eliminate these problems; the sample fills only a part of the waveguide cross-section,

and electromagnetic theory is employed to analyze the scattering characteristics of the

partially loaded waveguide [11]-[14]. The materials under test are assumed to be

homogeneous in most of these evaluation methods. The permittivity determination of

inhomogeneous/layered materials has been treated by various methods including

modified sequential quadratic programming and a genetic algorithm [17], the integral

equation and Contrast Source Inversion technique [18], iterative method [19], and

flanged rectangular waveguides technique [20]. The samples are loaded uniformly over

the cross-section in these techniques. In the case of the sample with a lossy and/or high

permittivity layer, the measured amplitude of the transmission parameter, S21, becomes

very weak and causes the degradation of the accuracy of material assessment. As with

single-layered homogeneous samples [11]-[14], partial loading of layered samples in the

waveguide cross-section is advantageous for the evaluation of the samples with a lossy

layer. If the permittivity of only one of layers is to be evaluated [21], the measurement

of the complex S21 or S11 is sufficient to determine the permittivity. However, the

complex S11 as well as S21 are required to determine the individual complex

permittivities of layered sample in the conventional methods. Measurement of complex

S11 is difficult compared to that of complex S21 due to the difficulty of defining the

calibration reference to measure phase measurement of S11.

In this paper, an effective measurement method is proposed for assessment of

the two-layer sample without measuring S11, where the sample is loaded only partially

in the waveguide. The size of sample can be adjusted according to sample loss,

therefore the high precision of machining of sample can be sustained and an accurate
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evaluation of high-loss material is possible. Also partial loading of the sample is used

advantageously to estimate the individual complex permittivities of a two-layer sample.

The field intensity in rectangular waveguide is not homogeneous but has its maximum

at the center of waveguide and decreases to zero at the guide wall, so the different

sample installation leads the different complex transmission even for same sample. The

unknown complex permittivity of each layer can be determined simultaneously by

measuring the complex transmission (scattering) parameters, S21, of two different

locations and/or orientations of the sample and by fitting the measured value to the

calculated value with changing the permittivities. Numerical method which relates the

scattering parameters to the complex permittivities of the sample must be accurate to

evaluate precisely the change in the complex transmission parameters S21 of different

installations of samples. Therefore numerical method should be based on the

electromagnetic field analytical method rather than the simple transmission-line theory.

Also numerical method should be versatile and be applicable to the low- and

high-dielectric constant material of various sizes (thickness and length) with low- to

high-lossses. The method must also enhance the efficiency for the iterative process of

fitting the parameters to the measured data.

The electromagnetic field analytical method used in this evaluation is a hybrid

electromagnetic (EM) method combining the extended spectral domain approach [22],

[23] with the mode matching method [24], and the method is extended to analyze

two-layer sample loaded in the waveguide [25]. In the formulation of the hybrid EM

method, the aperture electric fields have been used as source quantities, and

electromagnetic fields in whole region are expressed by these aperture fields. The

formulation does not include any approximation for simplicity but in mumerical

calculation the aperture fields are expressed in terms of a finite number of basis

functions. More accurate result is expected by increasing the number of basis functions,

but CPU time increases nearly with the square of the number of basis functions. It is

required to investigate the convergence characteristic of the number of basis functions

and to clarify the necessary number of basis functions for satisfactory accuracy.

Aperture magnetic fields are used as source quantities instead of aperture electric fields

and scattering electromagnetic fields are performed. Then the error range of numerical
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computations is established by combining the results by both aperture electric and

magnetic fields.

An effective algorithm is developed based on this accurate EM analysis to

determine the complex permittivities of each layer of sample from measurement of

complex transmission parameters. Virtual experiments are performed using the material

assessment algorithm to investigate the initial value dependence and confirm the

robustness of the algorithm. Also virtual experiments based on the accurate EM analysis

can be used to investigate the sensitivity of material assessment to deviations in sample

location, thickness and width. A measurement system is constructed in the X-band and

real experiments are performed using sample composed of commercially available

materials.

The formulation procedure is explained in chapter II. Chapter III discusses the

numerical procedure and computational accuracy. Chapter IV is devoted to the material

evaluation procedure based on numerical computations. The validity and robustness of

the present method is confirmed by virtual experiments. Actual experimental

verifications are given in chapter V. Finally, conclusions and some comments are

presented.
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Chapter 2 Hybrid Electromagnetic Analytical Theory as a Basis for

Material Evaluation

2.1 Overview of electromagnetic theory

2.2 Analytical model and introduction of source quantities

2.3 Electromagnetic field equations in waveguide regions

2.4 Electromagnetic fields in homogeneous input and output regions

2.5 Electromagnetic fields in inhomogeneous sample holding region

2.6 Integral equations on source quantities

- application of remaining boundary conditions-

2.7 Derivation of scattering parameters

Chapter 2 Hybrid Electromagnetic Analytical Theory as a Basis for

Material Evaluation

2.1 Overview of electromagnetic theory

Fig. 2-1 shows the field intensity of dominant TE10 mode of rectangular

waveguide where the vector of electric field is represented by circular cone. The field

intensity varies greatly in a transverse (x) direction. This inhomogeneous field

distribution is used effectively to evaluate material properties. The different complex

transmission parameters are observed for the same sample loaded in different location in
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the guide (Fig. 2-1). These complex transmission parameters can be used for the

simultaneous determination of the electric and magnetic properties of one-layer sample

[26], [27] or for the simultaneous determination of the electric properties of each layer

of two-layer sample [25] by using a single sample. The determination of material

properties is performed by minimizing the difference between the measured and the

calculated complex transmission parameters obtained by the electromagnetic fields

analysis. Therefore, the accurate and efficient field analytical method is necessary to

evaluate the complex transmission parameters of sample loaded in arbitrary position of

waveguide. There are many theoretical methods which can be applied to analyze the

scattered electromagnetic waves induced by the incident wave. These methods are

primarily classified as pure numerical techniques and semi-analytical techniques.

Commonly-used numerical techniques are finite-difference time domain method

(FDTD) and finite-element method (FEM). The determination of material properties

requires the complex transmission parameters at certain frequencies. FEM affords the

frequency-dependent transmission parameters, while FDTD performs the time domain

analyses and provide only approximate frequency-dependent transmission parameters

through fast Fourier transform (FFT). Also fields are interpolated by the continuous

shape functions in FEM, while they are evaluated only at discrete lattice points in

FDTD. Therefore, FEM solutions are more accurate than those by FDTD. However,

these pure numerical techniques require the discretization of entire analytical region into

a number of lattices or elements, which requires enormous memory and a lot of CPU

time in numerical computation. The workstation with large-capacity memory is required

to obtain accurate complex transmission parameters of sample loaded in waveguide as

will be shown in chapter 3. An efficient numerical method, which can be performed on
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standard PC connected to the network analyzer, is preferable to the material

characterization.

Semi-analytical techniques, such as point-matching [28] and mode-matching

method [29], require theoretical formulation and coding for specific problems, but do

not require fine discretization of the whole analytical region and efficient numerical

computations with light numerical burden. Point-matching method satisfy boundary

conditions between sub-region only at discrete points, while mode-matching method

satisfy continuity conditions over the boundaries and provides more accurate results

than those by point-matching method. However, mode-matching method treats the

larger matrices with number of eigenfunctions, and the number of eigenfunctions has to

Fig. 2-1 Electric field intensity of dominant TE10 mode.



8

be chosen with extreme care avoiding the problem of ‘relative convergence’ [30], which

degrades seriously the versatility of mode-matching method. These conventional

electromagnetic methods are not relevant for proposed material evaluation that requires

high precision, efficiency, and versatility.

An analytical method was proposed by combining extended spectral domain

approach (ESDA) and mode-matching method [24]. In ESDA, the whole analytical

space is divided into finite number of regions, and source quantities are introduced at

the boundaries between regions. Then fields in each region can be treated independently

by resorting to the equivalence theorem of electromagnetic fields [31]. Therefore ESDA

is not suffered from the relative convergence, and fields in each region can be expressed

accurately in terms of sufficient number of eigenfunction. However, conventional

ESDA requires each region to be homogeneous [32] so that eigenfunctions in the region

have orthogonality. Inhomogeneous region, such as waveguide partially-loaded with

sample material, can be included into ESDA by introducing mode-matching scheme and

constructing the bi-orthogonal eigenfunctions in inhomogeneous region. The matrix size

used in the method is the number of basis functions which are used to present the source

quantities, instead of the number of eigenfunctions and is much smaller than that in the

mode-matching method and FEM.

The aperture electric fields have been used as source quantities at boundaries in

ESDA and conventional hybrid method [14], [23]-[25], [27], [32]. These aperture fields

are expressed in terms of basis functions, and highly accurate scattering parameters can

be obtained by increasing the number of basis functions, but the computation time will

increase at the square of the number of basis functions. The criteria are required to
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choose the adequate number of basis functions for accurate computation without an

excessive computation time. If the aperture magnetic fields are introduced as source

quantities instead of the aperture electric fields in conventional methods and

complementary formulation procedure is developed, then a true value will be situated

between the numerical results by the aperture electric and magnetic fields. Values by

both aperture fields would define the error margin of scattering parameters.

In the following, the complementary source quantities, that is aperture electric

and magnetic fields, are used in the hybrid electromagnetic formulations. Formulation

procedure will be explained for the case with aperture magnetic fields and only resultant

formula will be shown for the case with aperture electric fields.
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2.2 Analytical model and introduction of source quantities

Fig. 2-2 shows a two-layer sample with thicknesses 1 2,t t and length sL is

placed in a rectangular waveguide with width a and height b. Each layer of the sample

may be dielectric and/or magnetic material and they may be lossless or lossy. Therefore,

permittivities and permeabilities of the two layers are complex and denoted by 1 2,r r  

and 1 2,r r   , respectively. The dominant TE10 wave is incident upon the sample. The

formulation procedure is explained in the following for the two-layer sample placed

parallel to the sidewalls of waveguide as shown in Fig. 2-2(a) (termed ‘layout A’). The

formulation for the sample placed transverse to the waveguide [termed ‘layout B’: Fig.

2-2(b)] could be developed similarly.

The tangential electric or magnetic fields at interfaces between regions are

introduced as the source quantities to satisfy the continuities of the electric fields or

magnetic fields across the interfaces, respectively. Fig. 2-3(a) shows the aperture

magnetic fields ha(x) and hb(x) at 1z z and 2z z , respectively. The whole

analytical region is divided into 3 regions, (I) the input waveguide region, (II) the

sample holding region 1 2 1 sz z z z L    , and (III) the output waveguide region as

shown in Fig. 2-3(b). Each region can be treated independently by using the equivalence

theorem [31].
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(a) Layout A.

(b) Layout B.

Fig. 2-2 Two-layer sample placed in waveguide.
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(a) (b)

Fig. 2-3 Cross-section of waveguide with two-layer sample. (a) Introduction of aperture

magnetic fields. (b) Partitioned regions.
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2.3 Electromagnetic field equations in waveguide regions

The electromagnetic fields in each region of waveguide are described by

Maxwell’s equation

,j  E H (1-a)

,j H E (1-b)

where  and  are complex permittivity and complex permeability, respectively and

they are 0 and 0 in the air, and 0ri  ( ri is relative permittivity) and 0ri 

( ri is relative permeability) in the sample, respectively.

Only the dominant TE10 wave can propagate in the input waveguide. TE10

wave has yE , xH , and zH components and these fields have no variation in y-axis.

When the dominant TE10 wave is incident upon the sample, the scattered waves

generated are TE modes with yE , xH , and zH with no variation in y-axis. Then the

Maxwell’s equation can be reduced to

,y i xE j H
z


  


 (2-a)

,y i zE j H
x


 


 (2-b)

.x z i yH H j E
z x

 
 

 
 (2-c)
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xH and zH can be expressed in term of yE by eqs. (2-a) and (2-b), and these

relations are substituted into eq. (2-c) to obtain the following partial differential

equation (Helmholtz equation) for yE ,

2 2
2

2 2 0.y y i i yE E E
x z

   
  

 
  (3)

yE has no y-dependence and can be expressed as

     
1

, ,y m m
m

E x z X x E z




  (4)

where  mX x are eigenfunctions which satisfy the boundary conditions at sidewalls of

waveguide and interfaces between sample and air. Other field components are expressed

as

     

   

1

1

1 1,

,

x y m m
mi i

m m
m

H x z E X x E z
j z j z

X x H z

 









  
     








 

 (5-a)

 1( ) ,m m
i

H z E z
j z





 


(5-b)

     
1

1 1, .z y m m
mi i

H x z E X x E z
j x j x 





    
     

 
 

(5-c)

In the following, the formulation technique of electromagnetic fields is

explained using the aperture magnetic fields as source quantities (Fig. 2-3). The aperture

magnetic fields introduced are ha(x) at the boundary between region (I) and region (II),

and hb(x) at the boundary between region (II) and region (III) as shown in Fig. 2-3(a).
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Then electromagnetic fields in each region can be treated independently by resorting to

the equivalence theorem of electromagnetic fields, and they can be expressed by the

aperture magnetic fields easily in the spectral domain.
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2.4 Electromagnetic fields in homogeneous input and output regions

Region (I) and (III) are homogeneous regions, where the fields can be

expanded in the series of eigenfunctions  mX x , that is, simple sinusoidal functions

which satisfy the boundary condition at the waveguide sidewalls at 0x  and a (Fig.

2-4),

    2 sin  ;  1, 2,3,...  .m m
mX x F x x m

a a
    

 
(6)

These eigenfunctions  mF x have the orthogonality,

   
0

.
a

m n mnF x F x dx  (7)

By using these eigenfunctions  mF x , the electromagnetic fields in region (I)  1z z

can be expressed as

           

   

0 1 0 1

0
2

1 1 1 1

1

,

,

I
y

m m
m

j z z j z z
e e

z zme

E x z E F x RE F x

A E F x

 





   

 

 

 (8-a)

           

   

1 1
0 1 0 1

0 0

0
2 0

1 1 1 1

1  .

,I
x

m
m m

m

j z z j z z
e e

z zme

H x z E F x R E F x

A E F x
j

 



 
 








   

 


 

 (8-b)

In above equations, the first term is the incident wave (TE10 wave) with amplitude E0,

the second term is the reflected wave (TE10 wave), and the series sum of third term is

the higher-order scattered waves in the –z direction. R and Am represent the complex
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reflection coefficient and complex amplitude of higher-order scattered waves,

respectively. Since the input and output regions have the same characteristic impedance,

the complex reflection coefficient becomes the scattering parameter, S11. The phase

constant, 1 of TE10 wave is defined as

2
2

1 0 0 a
        
 

. (9)

In the input and output regions, the dominant TE10 mode is only propagating mode, and

all higher-order modes become cutoff modes with a real propagation (attenuation)

constants

2
2

0 0m m
m
a
        

 
2m . (10)

Fig. 2-4 First few eigenfunctions in the input and output waveguide regions.
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The electromagnetic fields in output region [region (III): 2z z ] can be written as

           
0 1 0

2

1 2 2,III
y m m

m

j z z z zme eE x z TE F x D E F x 



     , (11-a)

       

   

1
0 1

0

0
2 0

1 2

2

,

,

III
x

m
m m

m

j z z
e

z zme

H x z T E F x

D E F x
j















 

 

 

 (11-b)

where the first term is the transmitted TE10 wave, and the series sum of second term

represents the higher-order scattered (attenuated) wave in the +z direction. T and Dm

represent the complex transmission coefficient and complex amplitude of higher-order

attenuated wave, respectively.

The unknown amplitude R, T, Am and Dm in eqs. (8) and (11) are expressed in

terms of the aperture magnetic fields (source fields) easily in spectral domain as follows.

The continuity of the magnetic fields at 1 0z z  ,      1,I
x aH x z z h x  , and at

2 0z z  ,      2,III
x bH x z z h x  , are imposed and magnetic field expressions in eq.

(11-b) and eq. (8-b) are substituted as

       1
0 1 0

20 0

1 ,m
m m a

m
R E F x A E F x h x

j


 





    (12-a)

     1
0 1 0

20 0

m
m m b

m
T E F x D E F x h x

j


 





   . (12-b)

These equations are transformed into spectral domain by using the orthogonality of

 mF x shown in eq. (7), and the unknown are determined as (Appendix 1)
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   0
10

1 0

1
a

aR h x F x dx
E


  , (13-a)

   0
0

0

a

m a m
m

jA h x F x dx
E


  , (13-b)

   0
10

1 0

a

bT h x F x dx
E


  , (13-c)

   0
0

0

a

m b m
m

jD h x F x dx
E


  . (13-d)

These coefficients are substituted into eq. (8) and eq. (11), the electromagnetic fields in

region (I) and (III) can be expressed as (Appendix 2)

           10
, , , | ,

aI Iinc
y aE x z E x z Z x z x z h x dx     , (14-a)

           10
, , , | ,

aI Iinc
x m aH x z H x z T x z x z h x dx     , (14-b)

         20
, , | ,

aIII III
y bE x z Z x z x z h x dx    , (14-c)

         20
, , | ,

aIII III
x m bH x z T x z x z h x dx    , (14-d)

where  ,incE x z and  ,incH x z are given as

      0 1 1 1, 2 cosincE x z E F x z z  , (15-a)

      1
0 1 1 1

0

, 2 sinincH x z j E F x z z 


  . (15-b)

   , | ,iZ x z x z  and    , | ,i
mT x z x z  are impedance Green’s functions and

magnetic-transfer Green’s functions, respectively,
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          0
1 1

1
, | , expI

m m m
m m

jZ x z x z F x F x z z 






   , (16-a)

          1 1
1

, | , expI
m m m m

m
T x z x z F x F x z z





   , (16-b)

          0
2 2

1
, | , expIII

m m m
m m

jZ x z x z F x F x z z 






    , (16-c)

          2 2
1

, | , expIII
m m m m

m
T x z x z F x F x z z





    . (16-d)

If the aperture electric fields  ae x and  be x are introduced as source

quantities (shown in Fig. 2-5) instead of aperture magnetic fields  ah x and  bh x ,

and the formulation procedure is developed in complementary way, then the unknown

in eqs. (8-a) and (11-a) are determined as

   10
0

1 1
a

aR e x F x dx
E
  , (17-a)

   
0

0

1 a

m a mA e x F x dx
E
  , (17-b)

   10
0

1 a

bT e x F x dx
E
  , (17-c)

   
0

0

1 a

m b mD e x F x dx
E
  , (17-d)

and the fields in region (I) and (III) can be expressed as

           10
, , , | ,

aI Iinc
y e aE x z E x z T x z x z e x dx     , (18-a)

         (1)
10

, , , | ', '
aI inc

x aH x z H x z Y x z x z e x dx   , (18-b)
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         20
, , | ,

aIII III
y e bE x z T x z x z e x dx    , (18-c)

         20
, , | ', '

aIII III
x bH x z Y x z x z e x dx  , (18-d)

where    , | ,i
eT x z x z  and  ( ) , | ,iY x z x z  are electric-transfer Green’s functions and

admittance Green’s functions, respectively,

          1 1
1

2, | , expI
e m m m

m
T x z x z F x F x z z

a






   , (19-a)

        ( )
1 1

1 0

2, | ', expI m
m m m

m
Y x z x z F x F x z z

j a
 






  , (19-b)

          2 2
1

2, | , expIII
e m m m

m
T x z x z F x F x z z

a






    , (19-c)

        ( )
2 2

1 0

2, | ', expIII m
m m m

m
Y x z x z F x F x z z

j a
 






   . (19-d)

Fig. 2-5 Introduction of aperture electric fields.
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2.5 Electromagnetic fields in inhomogeneous sample holding region

The electromagnetic fields in region (II) are also expressed in terms of the

eigenfunction    m mx xX   as shown in eqs. (4) and (5),

     
1

,y m m
m

x zE x z E




   , (20-a)

 
1

, ( ) ( )x m m
m

H x z x H z




   , (20-b)

 
1( )m m
i

z
dH z E

j dz
 


. (20-c)

However, unlike input and output homogeneous regions [regions (I) and (III)], sample

holding region [region (II)] containing sample and air is inhomogeneous and

electromagnetic fields in the region cannot be expressed by simple sinusoidal functions.

Eigenfunctions in this region can be constructed using mode-matching method. Region

(II) is divided further into four subregions (1)-(4) as shown Fig. 2-6, where 2W and

3W are the widths of the layered sample [corresponding to 1t and 2t in Fig. 2-2(a)],

and 1W and 4W are the widths of airspace on either side of the sample

( 1 2 3 4W W W W a    ). Then, by considering the boundary condition at the sidewalls of

waveguide, the eigenfunctions in these four subregions can be expressed as
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 

 
   

     
   

     
   

  
   

1
1 1

1 1

21 2 1 22 2 1
1 1 2

2 2

31 3 1 2 32 3 1 2
1 2 4

3 3

4
4 4

4 4

sin
0 ,

cos

cos sin
,

cos

cos sin
,

cos

sin
,

cos

m
m

m

m m m m

m
m

m m m m

m

m
m

m

x

x
c x W

W

c x W c x W
W x W W

W

c x W W c x W W
W W x a W

W

x a
c a W x a

W




 


 






 


      
  

        

 
   


(21)

where 1m , 2m , 3m and 4m are the unknown eigenvalues in each subregion, and

1mc , 21mc , 22mc , 31mc , 32mc and 4mc are unknown coefficients. These unknowns are

determined by applying the continuity conditions at boundaries between subregions,

which are expressed in matrix form as (Appendix 3)

1

21

22

31

32

4

m

m

m

m

m

m

c
c
c

A
c
c
c

 
   
   
   
   
   
   
       

0 ,

(22-a)

 

   

   
   

 

   

 

1 1
2 2

2 2
3 3

3 3 4 4

1 2

1 2 2 2

2 3
2 2 2

2 3 3 3

3 3 4
3 3

3 3 4

1tan 0 0 0 0
cos

10 1 tan 0 0
cos

0 0 0 1 tan tan
10 0 0 0

cos
10 tan 0 0

cos

0 0 0 tan

m
m

m
m

m m

m m

m

m m
m m

m

m m m
m

W
W

W
W

W W
A

W

W
W

W







 
 
  

 
 

  
  


  

 
 
 
 
 
 
 
 
  
 
 
 

 
 
 

 
   .

(22-b)
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For these simultaneous equations to have non trivial solution, the determinant of the

coefficient matrix [A] should be zero,

 det 0A  . (23)

The unknown eigenvalues 1m , 2m , 3m and 4m are obtained by solving the

above equation numerically together with the continuity of phase at the boundaries

(Appendix 3)

       2 2 2 22 2 2 2
1 1 1 2 2 2 3 3 3 4 4 4m m m m                      . (24)

Once eigenvalues are obtained, eigenfunctions in each subregions eq. (21) can

be determined. These eigenfunctions do not satisfy ordinary orthogonality eq. (7), but

satisfy the following biorthogonal relation over the entire sample holding region with

the permeabilities in subregions ri as the weight function,

Fig. 2-6 Subregions of sample holding region.
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           

         

1 1 2

1

4

1 2 4

0 0
1 2

3 4

0 .

a W W Wm n m n m n
W

ri r r

a W am n m n
W W a W

r r

x x x x x x

x x x x

dx dx dx

dx dx m n

  

 





 

     
 

   
   

  

 

(25)

The proof of orthogonality  m x is given in Appendix 4. The unknown coefficients

1mc , 21mc , 22mc , 31mc , 32mc and 4mc in eq. (22-a) are the solutions of inhomogeneous

equations [eq. (21)] and could be determined to satisfy the normalization,

  

           1 1 2 4

1 1 2 4

2

0

2 2 2 2

0
1 2 3 4

1

                                 ( )

a m

ri

W W W a W am m m m

W W W a W
r r r r

x

x x x x

dx

dx dx dx dx

m n



   
 

 



   
    





   
.

(26)

Fig. 2-7 shows an example of eigenfunctions of two-layer sample loaded in

waveguide.  Permittivities of each layers are 1 10.0r  and 2 2.0r  , respectively,

and permeabilities are kept to be 1 for both layers. It should be noted that the

eigenfunctions are deformed from sinusoidal functions as electric fields are localized in

the layer with higher permittivity.

By utilizing the biorthogonal relation [eq. (25)] of  m x , the electromagnetic

fields in the inhomogeneous region can be transformed into a spectral domain

(transform domain) as in the homogeneous input and output waveguide regions. Also

Helmholtz equation [eq. (3)], which is a partial differential equation governing
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electromagnetic fields, is transformed into spectral domain and becomes an ordinary

differential equation as

      
2

2 2
2 0m m mz z
d E E
dz

      . (27)

The differential equation is solved in the sample-loaded region 2 1z z z  , and the

general solution of this differential equation can be written by changing variable from

 z to  1z z as

 
  
 

  
 

1 1cosh sinh
cosh sinh

m m
m m m

m s m s

z
z z z z

E P Q
L L

 
 
 

  , (28)

where mP and mQ are unknown coefficients and m is propagation constant in

region (II),

Fig. 2-7 First few eigenfunctions in the sample-loaded region.
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 2 2
m m i i      . (29)

( )mH z is the transform of magnetic field as shown in (20-c) and obtained as

 

  
 

  
 

1 1

1( )

sinh cosh
.

cosh sinh

m m
i

m mm
m m

i m s m s

dH z E z
j dz

z z z z
P Q

j L L



 
  



  
  

  

 



(30)

Unknown coefficients mP and mQ in eqs. (28) and (30) can be determined by

applying the boundary conditions at input 1z z and output 2z z of region (II).

The boundary conditions in space domain (before transformation) are

       (2)
1 1

1
, 0 0x m m a

m
x xH x z z H z h





       at input 1z z , (31-a)

       (2)
2 2

1
, 0 0x m m b

m
x xH x z z H z h





       at output 2z z , (31-b)

and they are transformed by using the biorthogonal relation [eq. (25)] into spectral

domain as

   
 

1 0
0

a m
m a

i

x
xH t z h dx



    , (32-a)

   
 

2 0
0

a m
m b

i

x
xH t z h dx



    . (32-b)

By substituting eq. (30) into above eqs. (32), mP and mQ can be obtained as,
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 
     

 
 

 
0 0

cosh
cosh

sinh
a am si m m

m m s a b
m m s i i

x x
x x

LjP L h dx h dx
L
 

   
  

   
 

 


, (33-a)

   
 

0
sinh

ai m
m m s a

m i

x
x

jQ L h dx
 


 


, (33-b)

where sL is the sample length (Fig. 2-2). Then, by substituting mP and mQ into eqs.

(28) and (30) and making the inverse transformation into space domain, the electric and

magnetic fields in sample holding region [region (II)] can be related to the aperture

magnetic fields as (Appendix 5)

               1 20 0
, , | , , | ,

a aII II IIa b
y

i i

h x h x
E x z Z x z x z dx Z x z x z dx

 
 

       , (34-a)

and

               1 20 0
, , | , , | ,

a aII II IIa b
x m m

i i

h x h x
H x z T x z x z dx T x z x z dx

 
 

      , (34-b)

respectively, where  IIZ and  II
mT are impedance and magnetic-transfer Green’s

functions in region (II), respectively,

   
  
 

   
1

cosh
, | ,

sinh
m sII i

m m
m m m s

x x
L z zjZ x z x z
L


 






 

     
, (35-a)

   
  
 

   
1

sinh
, | ,

sinh
m sII

m m m
m m s

x x
L z z

T x z x z
L










 

     . (35-b)
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When the aperture electric fields  a xe and  b xe are used as source

quantities instead of aperture magnetic fields  a xh and  b xh , the electric and

magnetic fields in region (II) can be expressed as,

               1 20 0
, , | , , | ,

a aII II IIa b
y e e

i i

e x e x
E x z T x z x z dx T x z x z dx

 
 

      , (36-a)

               1 20 0
, , | , , | ,

a aII II IIa b
x

i i

e x e x
H x z Y x z x z dx Y x z x z dx

 
 

       , (36-b)

where  II
eT and  IIY are electric-transfer and admittance Green’s functions in region

(II), respectively

   
  
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. (37-b)
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2.6 Integral equations on source quantities

In sec. 2.3 and sec 2.4, the electromagnetic fields in whole region are expressed

in terms of aperture magnetic or electric fields in sec. 2.4 and 2.5. If an aperture

magnetic fields is introduced at the interface and the tangential magnetic fields of both

side of the interface are equated with the aperture magnetic field, then the continuity of

tangential magnetic fields is certified at the interface as shown in Fig. 2-8. Therefore,

the remaining boundary conditions to be satisfied are the continuity of tangential

electric fields at the interface. Applying these remaining conditions to the field

expressions of eqs. (14-a), (14-c), (34-a), the integral equations on the aperture magnetic

fields can be obtained as

       

           
1 1 10

1 1 1 20 0

, , | ', ' '

' '
, | , , | , ,

a Iinc
a

a aII IIa b

i i

E x z Z x z x z h x dx

h x h x
Z x z x z dx Z x z x z dx

 



     



  (38-a)
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     

2 1 2 20 0

2 20

' '
, | , , | ,

    , | ', ' '.

a aII IIa b

i i
a III

b

h x h x
Z x z x z dx Z x z x z dx

Z x z x z h x dx

 
    



 

 (38-b)

Fig. 2-8 Continuity of tangential magnetic fields.
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When the aperture electric fields  a xe and  b xe are used in the formulation,

the integral equations on the aperture electric fields are obtained as,

     
           

(1)
1 10

1 20 0

, , | ', ' '

, | , ' , | , ' ,

ainc
a

a aII II
a b

H x z Y x z x z e x dx

Y x z x z e x dx Y x z x z e x dx



     


  (39-a)
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                               , | ', ' '.
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a b

a III
b

Y x z x z e x dx Y x z x z e x dx

Y x z x z e x dx

      



 
 (39-b)

These integral equations can be solved by applying Galerkin’s procedure and the

unknown aperture magnetic or electric fields are determined. Numerical procedure

based on the Galerkin’s procedure will be explained in chapter 3.
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2.7 Derivation of scattering parameters

Once aperture magnetic or electric fields are determined, the complex

reflection coefficient R and transmission coefficient T are obtained by eqs. (13) or

(17). When input and output ports are located at 1L and 2L away from the sample

(Fig. 2-9), then the scattering parameters, 11S observed at input port, and 21S at

output port are obtained as

   1 1 1 12 20
11 10

1 0

1
aj L j L
a x

jS Re h x F dx e
E

 


  
   

 
 , (40-a)

       1 1 2 1 1 20
21 10

1 0

aj L L j L L
b x

jS T e h x F dx e
E

 


      , (40-b)

for aperture magnetic fields, and

   1 1 1 12 2
11 10

0

1 1
aj L j L
a xS Re e x F dx e

E
   

   
 
 , (41-a)

       1 1 2 1 1 2
21 10

0

1 aj L L j L L
b xS T e e x F dx e

E
       , (41-b)

for aperture electric fields.

Fig. 2-9 Waveguide with input and output ports.
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Chapter 3 Numerical Procedure and Computational Accuracy

3.1 Numerical procedure based on Galerkin’s method

3.2 Basis functions

3.3 Investigation of numerical precision

Chapter 3 Numerical Procedure and Computational Accuracy

In previous chapter, the hybrid electromagnetic analytical method was

presented by combining extended spectral domain approach (ESDA) and

mode-matching method. This analytical method does not include any approximation for

simplicity and the method is able to evaluate the scattering characteristics of wide

variety of two-layer samples with the high or low permittivities, and high or low losses.

The sample size may be electrically large or small. Electromagnetic fields in whole

region are expressed in terms of aperture magnetic or electric fields in this method.

These unknown aperture fields are determined by applying Galerkin’s procedure to

integral eqs. (38) and (39). In this chapter, a numerical procedure for calculating the

scattering parameters is explained. The validation and accuracy of the numerical

procedure is investigated by using the complementary source fields, which are aperture

magnetic or electric fields.
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3.1 Numerical procedure based on Galerkin’s method

The integral equations on aperture magnetic fields [eq. (38)] or electric fields

[eq. (39)] are solved by Galerkin's method. In the following the numerical procedure is

explained for the integral equations on aperture magnetic fields  ih x

       
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The unknown aperture magnetic fields  ih x are expanded in terms of the

adequate basis functions  rj x as

   
1

,
N

a j j
j

h x a x


 (43-a)

   
1

N

b j j
j

h x b x


 , (43-b)

where ,j ja b are the unknown parameters. After substitution of these aperture fields,

the integral eq. (42) can be expressed as

       
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When eqs. (44-a) and (44-b) are multiplied by  i x and integrated over the aperture

surface (0, a), they can be written as
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1,2, ...., .i N

The above simultaneous equations with 2N unknowns ,j ja b are expressed in matrix

form as

11 12

21 22 0
G G a I
G G b
     

     
    

, (46)

where a ,b and I are N -dimensional vectors with components ja , jb and
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   10
,

a inc
i iI x E x z dx  , (47)

respectively. Matrix elements of mnG are
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The similar simultaneous equations can be derived from the integral equations

on aperture electric fields [eq. (39)]. The integrals in eqs. (38) and (39) are evaluated

analytically and simultaneous equations [eq. (45)] can be solved once the proper basis

functions  i x are selected. The matrix size in this method is the order of the total

number of basis functions as shown in eq. (22-a) which is a few hundred at most, and

the size is much smaller than that of the conventional mode-matching method [29],

whose matrix size is the order of the number of the eigenfunctions. It is required several

thousand eigenfunctions to express the electromagnetic fields as accurately as the

present method.
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3.2 Basis functions

The flexible sub-sectional basis functions are utilized to express the aperture

fields in this work to adapt wide varieties of objects, lossless or lossy materials, loaded

in arbitrary position of waveguide. For example, the aperture magnetic fields of a

two-layer sample in the waveguide can be expressed in terms of rooftop functions

expressed as (Fig. 3-1)

      
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When these rooftop functions are used as basis functions, all integrals included in eq.

(48) are evaluated analytically. Integrals in regions (I) and (III) are    
0
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Fig. 3-1 Rooftop functions used as basis functions.
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3.3 Investigation of numerical precision

In the numerical computation, unknown aperture fields are expressed in terms

of a finite number of basis functions. More accurate result is expected by increasing the

number of basis functions, but CPU time and memory requirement associated with the

computation increase nearly with the square of the number of basis functions. It is

required to investigate the convergence characteristic of the number of basis functions

and to clarify the necessary number of basis functions for satisfactory accuracy.

Convergence test would be easy for problems with exact solutions, but it is not possible

in general to get the exact solution for scattering parameters of sample-loaded

waveguide. Therefore, alternative procedures are utilized for the convergence test in this

work. Two types of numerical computations are performed by dual formulations with

the complementary source quantities, i.e., aperture electric and magnetic fields

explained in chapter 2. The determining equations of aperture magnetic fields [eq. (38)]

include the impedance Green’s functions, while those of aperture electric fields [eq.

(39)] include the admittance Green’s functions. Therefore, the unknown exact value is

expected to locate between the values calculated by these two dual formulations, and

margin of error could be obtained numerically.

First, simple structure is analyzed by the present method in Fig. 3-2(a), where

one-layer sample occupies the whole cross-section of the waveguide. The complex

transmission parameter 21S of the sample with the complex permittivity

8.0 2.0r j   and permeability 2.0 0.7r j   is calculated by using both source

quantities with the number of basis functions up to 1000 to test convergence. Fig. 3-2(b)
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and (c) show the convergence of 21S and 21S  , respectively. The phase of complex

transmission parameter 21S  is evaluated by the phase delay of the complex

transmission parameter of loaded waveguides with respect to the unloaded cases

21 21 21
L US S S      . The rigorous analysis is available by applying the simple

transmission-line theory to this structure and the exact value is also included in the

figure.

If transmission parameter would be real number and could be presented in a

stationary expression, then numerical values of transmission parameter are always

larger or smaller than the exact value. However, the transmission parameter 21S of the

present case is complex number and cannot be presented in a stationary expression, so

the numerical value of its magnitude 21S and phase 21S  do not constitute the upper

and lower bound of true value. Therefore, the calculated values of 21S and 21S 

suffer a big fluctuation for insufficient number of basis functions (N < 10). Especially

the value of 21S computed using the aperture electric fields as source quantities

fluctuates up and down around the exact value [see Fig. 3-2(b)]. However, when the

number of basis functions is increased sufficiently to represent the aperture fields

( 10N  ), the values computed by both source quantities converge monotonously with

the number of basis functions N. 21S and 21S  computed using aperture electric

fields are approaching the exact value from above, while those computed using aperture

magnetic fields are approaching from below, and the exact values are limited between

the values computed by both source quantities. This can be explained as follows. The

complementary aperture electric and magnetic fields are used as source quantities, also

dual formulations are developed for two different aperture fields. Formulation based on
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aperture electric fields leads to the integral equation [eq. (39)] with the kernels formed

by admittance Green’s functions    , | ,iY x z x z  [2], while formulation based on

aperture magnetic fields leads to the integral kernels formed by impedance Green’s

functions    , | , .iZ x z x z  When numerical values are obtained by these dual

approaches, one gives larger and the other gives smaller values than exact value.

The differences of 21S between rigorous solution and the value computed by

present method are less than 65.86 10 % using aperture electric fields with 25N 

and 77.69 10 % using aperture magnetic fields with 25N  , which matches until

eighth digit. The corresponding difference of 21S  is less than 49.88 10 % and

64.02 10 % , respectively, which matches fifth digit. These differences monotonously

decrease until 1000N  , and an excellent convergence (9 digit accuracy) can be

observed. The distributions of aperture electric and magnetic fields are same

(sin x
a
 
 
 

) for the sample which occupies the whole cross-section of the waveguide,

but numerical values using aperture magnetic fields converge faster than those using

aperture electric fields. The difference in convergence comes from the fact that the

scattering fields are TE modes with three field components, yE , xH , and zH , that is

magnetic field has two components ( xH , zH ), while electric field has only one

component ( yE ). When aperture electric fields are used as source quantities and they

are approximated in terms of finite number of basis functions, order of approximation of

electric field is the same as that of aperture electric fields. When aperture magnetic

fields are used as source quantities, only one component of magnetic field xH has the
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same order of approximation as aperture magnetic fields and order of approximation of

the other component zH is improved by variational nature of Galerkin’s procedure.

(a) One-layer sample filling whole cross-section of waveguide.

(b) Convergence of magnitude of complex transmission parameter 21S with number
of basis functions.
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(c) Convergence of phase of complex transmission parameter 21S  with number of
basis functions.

Fig. 3-2 Convergence of complex transmission parameter 21S with number of basis
functions (sample occupies whole cross-section of waveguide). a = 22.86mm,

8.0 2.0 ,r j   2.0 0.7,r j   10.0 mmsL  , f = 10.5 GHz.

Next, numerical computations are performed for one-layer sample that has the

same permittivity and permeability as those in Fig. 3-2 but it occupies only the part of

guide cross-section [Fig. 3-3(a)]. The sample is located at the center of waveguide, and

21S and 21S  are evaluated by varying the number of basis functions N until 1007,

as shown in Fig. 3-3(b), and (c), respectively. The difference of values by both source

quantities decreases uniformly to 52.7 10 % in 21S and 64.2 10 % in 21S  ,

respectively for N = 1007. It is difficult to get the rigorous solution for this case, and the

reference 21S values are computed by a commercial simulator (Murata Software

FEMTET ver. 2014.1.5.51204 64 bit) based on finite element method (FEM) for
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comparison. The accuracy of numerical values by FEM using adaptive mesh refinement

is checked in Fig. 3-4, where the number of mesh is increased until 307,038, memory

capacity bound of workstation [Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20 GHz 64.00

GB]. Calculated 21S and 21S  with the number of mesh 307,038 are adopted as the

reference value and included in Fig. 3-3 (dotted line).

The reference FEM value is located in the range between values by both source

quantities until 551N  and deviate slightly upward from the range (enlarged figure in

Fig. 3-3). The deviation is very small, that is 21S and 21S  by FEM are

51.82 10 % (match until sixth digit) and 41.71 10 % (match until fifth digit)

higher than those by aperture electric fields, respectively. This small deviation is due

mainly to a shortage of mesh division in FEM calculation as shown in Fig. 3-4. The

other reason is the need to introduce the input and output ports in FEM calculation to

limit the analytical model to a small area. In FEM calculations of Fig. 3-4, the ports are

set to be only 50 mm away from the sample because of limitation in computer memory.

Therefore, higher-mode waves generated at sample do not attenuate completely, and

come down to the input and output ports, which causes errors in FEM calculation of

reflection and transmission parameters.

The computation time of 21S is 658 seconds by FEM (the number of mesh

is 307,038) using the workstation Intel(R) Xeon(R), while it is 0.06 seconds by present

method (number of basis functions N is 103) using the small personnel computer

Intel(R) Core i7 @ 3.4 GHz, and 58.88 seconds when N is 1007.
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The hybrid EM analytical method is applicable to wide variety of materials. It

is required to clarify the difference of convergence according to the material

characteristics of loaded sample. Numerical results 21S of non-magnetic dielectric

sample ( 1r  ) and virtual magnetic sample 1r  at the center of waveguide are

shown in Fig. 3-5. When the dielectric sample is loaded, electric fields are concentrated

in the sample and the distribution of aperture electric fields is highly distorted so that

the convergence of numerical values using aperture electric fields becomes slower [Fig.

3-5(a)] than that using aperture magnetic fields. Similarly, when the virtual magnetic

sample is loaded, magnetic fields are concentrated in the sample and the convergence

using aperture magnetic fields becomes slower [Fig. 3-5(b)].

(a) One-layer sample loaded at the center.



46

(b) Convergence of magnitude of complex transmission parameter 21S with number
of basis functions.

(c) Convergence of phase of complex transmission parameter 21S  with number of
basis functions.

Fig. 3-3 Convergence of complex transmission parameter 21S with number of basis
functions of one-layer sample loaded at the center of waveguide. 8.0 2.0,r j  

2.0 0.7,r j   10.0 mm,sL  5.0 mm.t 
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Fig. 3-4 Variation of complex transmission parameter 21S with number of finite
elements in FEM of one-layer sample loaded at the center of waveguide. Dimensions
are the same as those in Fig. 3-3.
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(a) Dielectric sample ( 8.0 0.8, 1.0 0.0r rj j      ).

(b) Virtual magnetic sample ( 1.0 0.0, 8.0 0.8r rj j      ).

Fig. 3-5 Convergence of transmission parameter 21S of one-layer sample with
different material parameters loaded at the center of waveguide.

10.0 mm,sL  5.0 mm.t 
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Different installation positions of sample are utilized effectively in this

measurement method. Convergence characteristics of 21S and 21S  of the sample

loaded at the sidewall of waveguide are investigated in Figs. 3-6, where 21S and

21S  are evaluated by increasing the number of basis functions N until 1006. For N =

1006, the deviation of 21S and 21S  are less than 57.5 10 % , and an excellent

convergence can be observed. The reference values are obtained by FEM with the

number of mesh varied until 313,625 (1 / 313,625 = 50.319 10 ) as shown in Fig. 3-7.

The deviation of values by both source quantities with FEM of 21S and 21S  are

less than 57.5 10 % , which is very small as shown in Fig. 3-6.

To investigate the material dependency of convergence, non-magnetic

dielectric sample ( 1r  ) and virtual magnetic sample 1r  are loaded at sidewall.

As is the case in the samples loaded at center, the computation using aperture magnetic

fields shows faster convergence for dielectric sample [Fig. 3-8(a)], while the

computation using aperture electric fields shows faster convergence for magnetic

sample [Fig. 3-8(b)].

(a) One-layer sample loaded adjacent to the sidewall.
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(b) Convergence of magnitude of complex transmission parameter 21S with number
of basis functions.

(c) Convergence of phase of complex transmission parameter 21S  with number of
basis functions.

Fig. 3-6 Convergence of complex transmission parameter 21S with number of basis
functions of one-layer sample loaded adjacent to the sidewall of waveguide.
Dimensions are the same as those in Fig. 3-3.
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Fig. 3-7 Variation of complex transmission parameter 21S with number of finite
elements in FEM of one-layer sample loaded adjacent to the sidewall of waveguide.
Dimensions are the same as those in Fig. 3-3.
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(a) Dielectric sample ( 8.0 2.0, 1.0 0.0r rj j      ).

(b) Virtual magnetic sample ( 1.0 0.0, 8.0 2.0r rj j      ).

Fig. 3-8 Convergence of transmission parameter 21S of one-layer sample with
different material parameters loaded adjacent to the sidewall of waveguide.

10.0 mm,sL  5.0 mm.t 
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Finally, numerical computations are performed for two-layer sample. The

sample consists of a material with higher 1 8.0 2.0r j   and a material with lower

2 2.0 0.001r j   . As will be explained later in Chapter 4, the transmission parameters

of the sample loaded at the center [layout B: Fig. 3-9(a)] and loaded adjacent to the wall

[layout X: Fig. 3-10(a)] are measured for determining the permittivities of two-layer

sample. For layout B, the convergence characteristics of 21S and 21S  are

investigated by increasing the number of basis functions N until 1005. An excellent

convergence can be observed as shown in Fig. 3-9, and when N is 1005, the deviation of

21S and 21S  are less than 71.68 10 % . Similarly, for layout X, the convergence

characteristics are investigated by increasing the number of basis functions N until 1164.

Again an excellent convergence can be observed in Fig. 3-10, and the deviation of 21S

and 21S  are less than 91.95 10 % for N = 1164. Similar accuracy and efficiency

of numerical computations are observed for a variety of material of varying size, so this

hybrid electromagnetic analysis is applicable to various material assessment.

(a) Two-layer sample loaded at the center.
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(b) Convergence of magnitude of complex transmission parameter 21S with number
of basis functions.

(c) Convergence of phase of complex transmission parameter 21S  with number of
basis functions.

Fig. 3-9 Convergence of complex transmission parameter 21S with number of basis
functions of two-layer sample loaded at the center of waveguide. 1 8.0 2.0,r j  

2 2.0 0.001,r j   1 5.0 mm,sL t  2 10.0 mm.t 
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(a) Two-layer sample loaded adjacent to the wall.

(b) Convergence of magnitude of complex transmission parameter 21S with number
of basis functions.
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(c) Convergence of phase of complex transmission parameter 21S  with number of
basis functions.

Fig. 3-10 Convergence of complex transmission parameter 21S with number of basis
functions of one-layer sample loaded adjacent to the sidewall of waveguide.

1 8.0 2.0,r j   2 2.0 0.001,r j   1 5.0 mm,sL t  2 10.0 mm.t 



57

Chapter 4 Material Assessment Based on Numerical Analysis

4.1 Preliminary investigation into possibility of material assessment

4.2 Material estimation algorithm and virtual experiment

4.3 Robustness analysis of material estimation

4.4 Error analysis of material estimation

Chapter 4 Material Assessment Based on Numerical Analysis

Based on the hybrid electromagnetic analysis method explained in previous

chapters, a material evaluation procedure is developed in this chapter to determine the

complex permittivities of each layer of two-layer dielectric sample. The

frequency-dependent complex permittivity of single-layer material has been determined

mainly by the transmission-line method using waveguide or coaxial cable [7]-[16],

where only the complex reflection parameter or transmission parameter is measured to

determine the complex permittivity. Magnitude and phase of the complex reflection

parameter or transmission parameter, which means that two real values, are measured to

determine two unknowns, real and imaginary parts of complex permittivity. While to

determine two unknown complex permittivities of two-layer sample (four real unknown

values), it requires to measure two complex numerical values (four real measured

values). They may be measurement values of both complex reflection and transmission
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parameters [Fig. 4-1(a)] [33], or those of the complex transmission parameters of two

set samples with different dimension [Fig. 4-1(b)]. However, accurate measurement of

complex reflection parameter is more difficult than that of complex transmission

parameter. The calibration reference to measure complex reflection parameter is

difficult to define and error in reference plane z causes error in phase of reflection

parameter  (Fig. 4-2). Therefore the phase measurement of complex reflection

parameter is susceptible to position error (Fig. 4-2). Meanwhile when two different

samples are used to determine the material characteristics [Fig. 4-1(b)], an error is

caused by the sample inhomogeneity and also machining error in sample preparation is

superimposed.

A measurement method is expected to determine the complex permittivities of

two-layer sample using only one set of sample without measurement of reflection

parameter. New material evaluation procedure is developed in the following where the

complex transmission parameters are measured for two different locations and/or

orientations of single sample.

First, transmission characteristics are numerically investigated for different

locations and/or orientations of two-layer sample in section 4.1 to determine the best

combination of sample locations and/or orientations. The present method is intended to

realize broadband measurement of complex permittivities. For this purpose, sample

locations which have no drastic changes in complex transmission parameters over the

measured frequency range should be selected. Second, an iterative route searching

algorithm is developed in section 4.2 to determine the complex permittivities of each

layer of two-layer sample. This material assessment uses the measured complex
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transmission parameters of two different locations of sample as shown in Fig. 4-3. The

optimized complex permittivities of each layer are determined so as to minimize the

differences of the measured and calculated transmission parameters for both locations.

The algorithm uses a bootstrap technique, that is, at first one location is used to optimize

the permittivity of one layer [Fig. 4-3(a): first process], and then the other location is

used to optimize the permittivity of the other layer [Fig. 4-3(b): second process]. These

separate processes are repeated alternately until the differences of the measured and

calculated transmission parameters fall below the tolerance. Virtual experiments as well

as real experiments are performed to verify the accuracy, versatility, efficiency and

robustness of the material estimation procedure. In virtual experiments, the measured

complex transmission parameters are generated by using a commercial FEM simulator

for the same structure as real experiment. The iterative route searching algorithm of

permittivities starts with an initial value and the choice of the initial value is important

in this material estimation process. Next, the iterative algorithm is examined

numerically by performing virtual experiments in section 4.3 and robustness of the

method is examined. Section 4.4 will investigate the sensitivity of permittivities to

deviations in sample location, length and thickness.

(a) Measurement method using both complex reflection and transmission parameters.
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(b) Measurement method using two set samples with different dimension.

Fig. 4-1 Measurement method of two-layer sample.

Fig. 4-2 Fluctuation of calibration reference in reflection measurement.
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(a) First process of the iterative algorithm.

(b) Second process of the iterative algorithm.

Fig. 4-3 Iterative algorithm to determine complex permittivities of two-layer sample.
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4.1 Preliminary investigation into possibility of material assessment

Preliminary computations are carried out to investigate feasibility of this

evaluation method and determine the optimum combination of sample positioning. A

two-layer sample with complex permittivities 1r , 2r and widths W1, W2 is placed at

four different layouts in the waveguide as shown in Fig. 4-4, where the dark blue layer

represents higher permittivity layer and the light blue layer represents lower permittivity

layer. In layouts A and B, sample is loaded at center of waveguide but their sample

orientations are different. In layouts X and Z sample is set along the sidewall of

waveguide, and layer with higher permittivity faces the sidewall in layout X, while layer

with lower permittivity faces the sidewall in layout Z. Frequency-dependent

transmission characteristics are calculated for these layouts by the hybrid EM method.

The phase delay of the transmission parameters of loaded waveguides with respect to

the unloaded cases  21 21 21
L US S S     is shown in Fig. 4-4(a) and the amplitude of

the transmission parameters |S21| is shown in Fig. 4-4(b). There exist resonances in

layout A and X, where transmission parameters change significantly and material

assessment may be less accurate. Layout B and Z do not have significant resonance

compared with layout A and X. Layout B and Z are chosen for material assessment of

this sample. In many practical situations, combination of other layouts may be

preferable to avoid resonance. The resonant frequency changes with the permittivity and

length of sample and the resonance can be removed from the measured frequency range

by adjusting the length of sample sL . The sample length sL can be chosen arbitrarily

in the present method as there is no need to fill up the whole cross-section of the

waveguide unlike in the case of conventional measurement method. Also the resonance
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in layouts A and X can be moved by displacing the installation position of sample

slightly.

The transmission parameters of layout B and Z are compared with those by a

commercial FEM simulator (Murata Software FEMTET) and are in excellent agreement

over the operating frequency range of X-band waveguide (Fig. 4-5). It is observed that

the phase delay of layout B is much larger than that of layout Z. The fact that the phase

delay shifts greatly for the different installation locations and/or orientations of the

two-layer sample in the waveguide works better in determination of the real part of

complex permittivity, while a significant change in the magnitude works better in

determination of the imaginary part of complex permittivity.
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(a) Phase delay of S21.

(b) Amplitude of S21.

Fig. 4-4 Transmission characteristics with different layouts of sample. 1 10.0 2.0,r j  

2 2.0 0.001,r j   10.0 mm,sL  1 2 5.0 mm.t t 
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(a) Phase delay of S21.

(b) Amplitude of S21.

Fig. 4-5 Complex transmission parameters of layout B and Z for material assessment.
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4.2 Material estimation algorithm and virtual experiment

An efficient and stable iterative algorithm is used to determine the complex

permittivities of two-layer sample from the measured complex transmission parameters

for two different locations and/or orientations of single sample. The iterative route

searching algorithm is shown in flow diagram of Fig. 4-6, where the difference in

complex transmission parameters of different installation is used advantageously.

An error tolerance specification is set and initial guess is chosen for

permittivities of each layer. Regarding the selection of the initial values, various cases

may be possible in real measurements. For instance, in one measurement case, the

initial value of one of two layers can be predicted or guessed and in the other

measurement cases, initial values of both layers are completely unpredictable. The

initial value dependence of the evaluation process will be investigated in next section.

The estimated values which meet the error tolerance specifications can be

found by alternately performing the following two processes. In the first process, 2r is

fixed at its initial value and S21 is calculated by the hybrid electromagnetic method for

layout B varying only 1r around its initial value to obtain the minimum difference

between the calculated and measured S21. Next, 1r is fixed at its optimal value, and

only 2r is varied to get the minimum difference between the calculated and measured

S21 values for layout Z. These separate processes are repeated alternately until the

minimum differences of the calculated and measured S21 are less than the set tolerance

value both for layout B and Z.

A virtual experiment is performed to investigate the practical use of the above

estimation process. The virtual experiment is constructed as follows. First, the virtual
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measured S21 are generated by setting the permittivities of the sample to 1
p
r and 2

p
r

(preassigned), and evaluate complex transmission parameters of two different sample

layouts by the commercial FEM simulator using the preassigned 1
p
r and 2

p
r .

Hereafter, these complex transmission parameters are regarded as the virtually

measured S21. The permittivities 1r and 2r are treated as unknowns and they are

estimated by using the above process.

Table 4-1 shows the preassigned 1
p
r and 2

p
r of four samples of two-layer

materials and their estimated 1r and 2r which are obtained after five iterations.

Each iterative step consists of the fitting of 1r for layout B and the fitting of 2r for

layout Z. The dimensions of the sample 1, 2, 3 and 4 are same, which are t1 = 5.00 mm,

t2 = 5.00 mm and Ls = 10.00 mm, except for the sample 3 where t2 = 10.00 mm. An

accurate reproduction is observed in the table.
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Fig. 4-6 Iterative procedure for determination of permittivities of two-layer sample 1r

and 2r .
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Table 4-1 Virtual experiments using different two-layer samples.

Preassigned Estimated

Sample 1
Layer 1 5.0 j× 5.0 j×

Layer 2 2.0 j× 2.0 j×

Sample 2
Layer 1 10.0 j 10.0 j

Layer 2 5.0 j× 5.0 j×

Sample 3
Layer 1 10.0 j 10.0 j

Layer 2 2.0 j× 2.0 j×

Sample 4
Layer 1 10.0 j 10.0 j

Layer 2 5.0 j× 5.0 j×
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4.3 Robustness analysis of material estimation

In the above evaluation process, the choice of the initial values (starting

permittivity values) is important. A poor selection of the initial values would lead to

slower convergence and may also give an erroneous value. It is important to investigate

the initial value dependence of the evaluation process. Sample 3 in Table 4-1 is used for

the investigation and material estimation is performed with a great change in initial

values 1
i
r and 2

i
r in Fig. 4-7. The absolute value of initial complex permittivities

1 1
i p
r r   , 2 2

i p
r r   are varied while loss tangents 1 1 1tan / ,r r    2 2 2tan /r r   

are kept constant in Fig. 4-7(a), where 1 ,r  2r  are  the imaginary part of complex

permittivities, and the mark ‘○’ represents the reproduction of permittivities is

available and ‘×’ represents the reproduction is unavailable. Accurate reproduction is

observed in wide range, 1 10.5 1.5i p
r r    and 2 20.4 2.1i p

r r    . Then, the loss

tangent 1 1 1tan / ,r r    2 2 2tan /r r    are varied while absolute values 1 1
i p
r r   ,

2 2
i p
r r   are kept constant in Fig. 4-7(b). When the initial value of loss tangents are in

range 10.0 tan 1.0  and 20.0 tan 0.0190  , the convergence to the preassigned

values can be obtained. The robustness of initial value is confirmed, and a similarly

good convergence is observed for sample 1, 2 and 4 in Table 4-1.

Fig. 4-8 shows the convergent processes of 1r and 2r values which start

with the initial values and approach the preassigned value through iterative steps. The

initial values of both complex permittivities are set to have great difference with

preassigned values in Fig. 4-7(a), that is, the initial 1
i
r is set to be 50% higher ( 11.5 p

r )

or 50% lower ( 10.5 p
r ) than the preassigned value and 2

i
r is set to be 110% higher

( 22.1 p
r ) or 60% lower ( 20.4 p

r ) [red mark in Fig. 4-7(a)]. The preassigned values are
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reconstructed within a tolerance of 1% after 15 steps for all cases. Rapid convergence

even with these poor initial values shows the efficiency of the present method. The

fitting process starts from layout B in material assessment above, but same convergence

can be observed when the fitting process starts from layout Z.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0.1 × × × × × × × × × × × × × × × × ×
0.2 × × × × × × × × × ○ ○ × × × ○ × ×
0.3 × × × ○ × × ○ × ○ ○ ○ ○ ○ ○ ○ ○ ○

0.4 × × × × ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

0.5 × × × × ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

0.6 × ○ × ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

0.7 ○ ○ × ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

0.8 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

0.9 ○ ○ × × ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

1.0 ○ ○ × × ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

1.1 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

1.2 ○ ○ × × ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

1.3 ○ ○ ○ × ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

1.4 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

1.5 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

1.6 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ×
1.7 ○ × ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ×
1.8 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ × ×
1.9 ○ ○ ○ ○ ○ × ○ ○ ○ ○ ○ ○ ○ ○ ○ × ×
2.0 ○ ○ × ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ × ×
2.1 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ × ×
2.2 × × ○ ○ ○ × × × × × × × ○ ○ × × ×

i
2
p

2

r

r






i p
1 1r r  

(a) Change in absolute value of initial complex permittivities with fixed 1tan  and

2tan  .
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.0000 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ×
0.0005 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ×
0.0010 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

0.0015 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ×
0.0020 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ×
0.0025 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

0.0030 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ×
0.0035 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

0.0040 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ×
0.0045 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

0.0050 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ×

0.0170 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ×
0.0175 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

0.0180 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ×
0.0185 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ×
0.0190 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ×
0.0195 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ × ○

2tan

1tan

(b) Change in loss tangents of initial complex permittivities with fixed 1 1
i p
r r   and

2 2
i p
r r   .

Fig. 4-7 Initial value dependence in material assessment.
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(a) Real part of 1r .

(b) Imaginary part of 1r .
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(c) Real part of 2r .

(d) Imaginary part of 2r .

Fig. 4-8 Convergent process of 1r and 2r values during the fitting calculation.
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4.4 Error analysis of material estimation

In this evaluation method, the complex permittivities 1r and 2r of a

two-layer sample are obtained by measuring the complex transmission parameters for

different installation locations and/or orientations of the sample in the waveguide. Thus,

it is required to estimate the errors due to uncertainties in the transverse-position, length

and thickness measurements of the sample. The error analysis of the position is shown

in Fig. 4-9, where the errors are caused by the deviation of the transverse position of the

sample at layout B [Fig. 4-9(a)], while it is assumed that there is no deviation in

position for the sample loaded adjacent to the sidewall (layout X; refer Fig. 4-4). The

relative errors of the real ( 1 1/r r   ) and imaginary ( 1 1/r r   ) parts of the complex

permittivity of the layer with higher loss (with higher tan ) are 45.97 10 %  and

26.55 10 % , respectively, for a 1% deviation in position /  ( 0.23 mm)c a c   , while

2 2/r r   and 2 2/r r   are 36.36 10 %  and 14.87%, respectively. The position

errors of the complex permittivities of each layer are very small except for the

imaginary part of 2r of the low-loss layer ( 3
2 1.0 10r

   ). Fig. 4-10 shows the

relative error of the complex permittivities due to the deviation in sample length. For a

1% deviation in length /  ( 0.10 mm)s s sL L L   , the relative error of 1 1/r r   and

1 1/r r   are 0.39% and 0.41%, respectively, while 2 2/r r   and 2 2/r r   are

22.97 10 %  and 21.33 10 %  , respectively. Fig. 4-11 shows the relative error of the

complex permittivities due to the deviation in sample thickness. The relative error of

1 1/r r   and 1 1/r r   are 1.23% and -0.64%, respectively, while 2 2/r r   and

2 2/r r   are 0.47% and 26.02 10 % , respectively, for a 1% deviation in thickness

1 1/t t ( 1 0.05 mmt  ). The errors of the complex permittivities due to the sample
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length deviation in Fig. 4-10 are smaller than those due to the sample thickness

deviation in Fig. 4-11. This can be explained as follows. The electric field intensity has

its maximum at the center of waveguide and decreases to zero at the sidewall (see Fig.

2-1). Therefore the increase in the sample size in a transverse (x) direction for layout B

has less effect on the transmission parameters than that in the axial (z) direction does.

a

Δc

r2·r1·

(a) Deviation of sample position.

(b) Relative error of 1r .
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(c) Relative error of 2r .

Fig. 4-9 Relative error of the complex permittivities caused by the deviation in position
at 10 GHz. Sample size and permittivities are the same as sample 3 in Table 4-1.

(a) Deviation of sample length.
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(b) Relative error of 1r .

(c) Relative error of 2r .

Fig. 4-10 Relative error of the complex permittivities caused by the deviation in sample
length at 10 GHz. Sample size and permittivities are the same as sample 3 in Table 4-1.
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(a) Deviation of sample thickness.

(b) Relative error of 1r .
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(c) Relative error of 2r .

Fig. 4-11 Relative error of the complex permittivities caused by the deviation in sample
thickness at 10 GHz. Sample size and permittivities are the same as sample 3 in Table
4-1.
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Chapter 5 Measurement Verification

5.1 Sample preparation and measurement setup

5.2 Calibration

5.3 Measured results

5.4 Discussion of applicability of present material assessment

Chapter 5 Measurement Verification

Real experiments are performed in this chapter to verify the material

assessment procedure of the complex permittivities of a two-layer sample. The sample

for measurement is composed of commercially available materials and measurement

system is arranged by using the X-band waveguide and the waveguide to coax adapters

(Section 5.1). Scattering parameters are measured by vector network analyzer (VNA)

and calibration procedure for VNA is discussed in section 5.2. A measured result is

reported in Section 5.3 and applicability of the material assessment procedure is

discussed in section 5.4.
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5.1 Sample preparation and measurement setup

A two-layer sample consisting of a 10.0-mm-thick teflon plate (EIKOH Co.,

LTD) and a commercially available 5.0-mm-thick microwave absorber is prepared

manually as the sample under test (Fig. 5-1). The microwave absorber is a rubber plate

containing carbon powder (TAKECHI Kogyogomu Co., LTD, Product no.: SI-100).

The experimental arrangement for the permittivity measurement is shown in

Fig. 5-2(a) and specifications of experimental instruments are listed in Table 5-1. An

X-band waveguide (type: WR-90; cross-section dimension: 22.86 mm  10.16 mm) is

used as a sample holder, and top board can be detached and screwed tightly so that the

sample can be located precisely [Fig. 5-2(b)]. Waveguide walls are coated with silver

plating and the conductor loss is extremely small that average is -0.291 dB over

frequency range 8 to 12 GHz for waveguide of 10 cm long. Also the effect of this

conductor loss can be removed in this measurement method, which will be explained

later. The cutoff frequencies of the dominant TE10 mode and the first higher-order

(TE20) mode of the empty waveguide are 6.56 and 13.11 GHz, respectively, and only

the dominant TE10 mode propagates between these frequencies in the empty waveguide.

The sample has the same height as the waveguide holder, so it settles in the waveguide

and the measurement can be performed without the support structure. The

sample-holding waveguide is connected to a vector network analyzer (Agilent 8719ET)

via the coaxial-to-waveguide converters and cables. The waveguide is not equipped

with a positioner for setting up the sample correctly, and thus a deviation in the

transverse position is unavoidable. However, the error of the complex permittivities due

to the deviation of the transverse-position is relatively small as shown in Fig. 4-9. To
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determine the material parameters, the differences between S21’s are measured with the

sample loaded and unloaded instead of the values of S21 themselves, so that the position

error in the axial direction is eliminated.

Fig. 5-1 Two-layer sample under test.
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(a) X-band waveguide (WR-90) measurement system.

(b) Two-layer sample located inside sample holder.

Fig. 5-2 Experimental arrangement.

Input Output
WR-90

VNA
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Table 5-1 Specification of experimental instruments.

Description

Vector network analyzer

(VNA)

Mfg.: Agilent Technologies

Product no.: 8719ET

Frequency range : 0.05 to 13.51 GHz

Accuracy : ±10 ppm

Resolution : 1 Hz

Coaxial cable Mfg.: Junkosha Inc.

Product no.: MX122

Characteristic impedance: 49.5 Ω

Outer diameter: 6.5 mm

Inner diameter: 3.5 mm

Length: 1000 mm

Coaxial-to-waveguide
converters

Mfg.: Pasternack Enterprises, Inc.

Product no.: PE9804

Frequency range: 8.2 to 12.4 GHz

Connector impedance: 50 Ω

Dimension: 25.4 × 41.4 × 41.4 mm
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5.2 Calibration

Scattering parameters can be measured by using vector network analyzer

(VNA). However, accuracy of measurement is strongly dependent on the VNA

calibration procedure. The most common of VNA calibrations is short-open-load-thru

(SOLT) calibration algorithm, and it removes the systematic errors that may be

produced by imperfections in the VNA and mismatch between VNA and input and

output ports. In SOLT calibration, short, open and load standards shown in Fig. 5-3(a) is

connected to the reference plane one by one and measured using VNA [Fig. 5-3(b)].

Then, two reference planes are connected using thru standard [Fig. 5-3(c)]. This

calibration is susceptible to error since it involves many handling routines and also the

calibration standards need to be well defined. Calibration-independent or less dependent

technique is preferable to accurate and easy material measurements. The present

material assessment procedure does not use the absolute value of S21 but use the

difference between the loaded and unloaded transmission parameter S21 and it cancels

out or reduces the error included in the uncalibrated measured S21‘s. Also, the use of the

differences of S21 mitigates systematic errors caused by conductor loss on the

waveguide-wall and the transition between the coaxial cable and waveguide.
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(a) Calibration standards.

(b) Measurement of short, open and load standards.

(c) Measurement of thru standards.

Fig. 5-3 SOLT calibration.

Short Open Load Thru

Reference
plane
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5.3 Measured results

The frequency dependencies of complex transmission parameters of two-layer

sample placed in the waveguide are measured for layouts B and X as shown in Fig. 5-4.

151 frequency points are measured spanning 9-12 GHz with steps of 0.02 GHz. No

significance resonant is observed over broad frequency for both measured phase delay

and amplitude of complex transmission parameter. These measured complex parameters

are used to determine the complex permittivities of each layer of the sample by resorting

to the material evaluation procedure explained in Fig. 4-6. The frequency dependencies

of the complex permittivities 1r and 2r of each layer are shown in Fig. 5-5 (solid

line). Total computational time to estimate the permittivities over frequency 9 to 12

GHz with 151 frequency points is 57496.63 secs. The sample is not cut into layers but

the complex permittivities 1r and 2r of two-layer sample are evaluated

simultaneously in the present method. For comparison, the sample is cut into layers, and

1r and 2r of each layer are measured separately as one-layer dielectric sample. The

measured results are included in Fig. 5-5(a) (‘×’ mark). A good agreement is observed

between the measured results over the frequency range except for 2r  , as expected

from the virtual experiments in Figs. 4-9 – 4-11. The resolution limit observed in the

characterization of low-loss materials is a common drawback of transmission-line

techniques using coaxial cable, waveguide, and striplines. The complex permittivities

1r and 2r of each layer are also measured by using the resonant method

(mono-frequency method) [34], [35], and the results are included in Fig. 5-5(a) (‘●’

mark). In conventional resonant method, it is difficult to evaluate the lossy sample

precisely. In [34], sample is loaded partially in resonator similar to the present method,
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and the evaluation of lossy material is available by resonant method but the

measurement is limited to only single-layer material at one frequency. This is another

confirmation of accuracy of the present method.

The principle of the present method is calibration-independent as explained in

section 5.2. The material assessment is performed using uncalibrated and calibrated

complex transmission parameters, and both results are in good agreement though slight

differences exist in the higher frequencies as shown in Fig. 5-5(b).
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(a) Phase delay of complex transmission parameter.

(b) Amplitude of complex transmission parameter.

Fig. 5-4 Measured complex transmission parameter of a two-layer sample loaded in the
waveguide.
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(a) Comparison with values of divided sample. Two-layer sample is divided into
homogeneous layers and each layer is measured separately by the resonant method.
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(b) Comparison of calibrated and uncalibrated measured permittivities.

Fig. 5-5 Frequency dependencies of measured permittivities.
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5.4 Discussion of applicability of present material assessment

The material evaluation is based on the accurate electromagnetic formulation

procedure explained. It does not include any approximation for simplicity as explained

in chapter 2 and is able to evaluate the scattering characteristics of wide variety of

two-layer samples of electrically large or small with the high or low permittivities, and

high or low losses. The usefulness and versatility of the present method is investigated

numerically in Figs. 5-6 and 5-7. Fig. 5-6 shows the scattering characteristics of the

two-layer sample whose size and permittivities are the same as sample 3 in Table 4-1,

except for the complex permittivity of layer 2, 2r , which is changed from lossless

( tan 0  ) to highly lossy ( tan 2  ) cases. When the layer with high loss is placed

near the center of waveguide, the amplitude of the complex transmission parameter

becomes very weak (|S21| < -40 dB) and reduces the accuracy of the evaluation results

(solid line in Fig. 5-6). This can be solved by using layout Z turning over the sample

and placing the layer with higher loss next to the waveguide sidewall as shown in Fig.

5-6. S21 is affected more by 1r and influenced less by 2r of highly lossy layer 2 for

this layout (dotted line). 2r can be assessed mainly by using the complex transmission

parameter S21 for layout B (broken line).

If both layers of the sample are very thin and placed next to the waveguide

sidewall (layout X), where the electric field is weakest, then the difference between the

loaded and unloaded complex transmission parameter S21 is too small to perform the

accurate material evaluation. However, close contact to the sidewall is not necessarily

required in the material evaluation, but the sample is placed parallel to the guide wall

leaving an appropriate space between the sample and sidewall. Fig. 5-7 shows the phase
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delay of S21 between the loaded and unloaded waveguide  21 21 21
L US S S     for the

sample with very thin layers changing the space between the sample and sidewall, D1.

When the sample is placed next to the waveguide sidewall (D1 = 0 mm),  21S  is

negligibly small, but it becomes appreciable with increase in space D1.

Fig. 5-6 Amplitude of scattering parameters of a sample with lossy layers.

 1 210.0 2.0 , 2.0 1 tanr rj j       , f = 10 GHz.
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Fig. 5-7 Phase delay of scattering parameters of a sample with thin layers.

1 23.8, 9.6,r r    t = 20.0 mm, a = 22.86 mm, f = 10 GHz.
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Chapter 6 Conclusions

A frequency-dependent measurement method has been proposed to determine

the individual complex permittivities of a two-layer lossy sample accurately and

efficiently. In this method, the sample fills only a part of the waveguide cross-section

and thus precise machining of the sample is not required. Unknown complex

permittivities of a two-layer sample are evaluated by measuring transmission parameters

for two different locations and/or orientations of the sample in the waveguide

cross-section.

The inhomogeneous field distribution of the waveguide mode is utilized

advantageously and only the transmission parameter, S21, is measured for the material

evaluation. The complex reflection parameter, S11, which is more difficult to measure, is

not required in this evaluation method. The proposed method is used to characterize

samples with a high-loss layer, as the partial loading of lossy samples makes the

measured S21 at adequate level.

This material estimation is based on the accurate and numerically efficient

hybrid electromagnetic method. Analytical formulation of this method has adopted the

aperture electric fields as source quantities but the aperture magnetic fields are

introduced and dual electromagnetic formulation is developed in this work. Any

approximation is not included in these formulation procedures, the precision of solution
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can be systematically improved as the number of basis functions which express the

source quantities. The values using the complementary source quantities approach the

limiting value from above and below for a wide variety of materials with various size

and layout of samples. This results can be used to limit the error range of the numerical

computations. The computed value with a sufficient number of basis functions is

compared with rigorous solution when available and if not, it is compared with FEM,

and good agreement is observed in all structures. The matrix size used to calculate the

transmission parameters is much smaller than those in FEM and the conventional

mode-matching method. The high-precision and numerically efficient hybrid

electromagnetic method is suitable to versatile material assessment.

A material evaluation algorithm is developed based on the hybrid

electromagnetic analysis method. The procedure uses an efficient and stable iterative

algorithm to determine the complex permittivities of two-layer sample from the

measured complex transmission parameters for two different locations and/or

orientations of single sample.

The proposed material evaluation algorithm is verified by virtual and actual

experiments. Various materials are tested in virtual experiment to evaluate the

permittivities and the prescribed complex permittivities of tested materials are

reconstructed accurately by the material evaluation algorithm revealing high accuracy

and versatility of the present method. Also various initial values are tested in virtual

experiment and accurate reproduction is observed even with a significant mismatch

initial value confirming the robustness of the material evaluation algorithm. The

iterative procedure to obtain the complex permittivities shows a rapid convergence with
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only several repetition even when the initial value largely mismatches from the true

value. Virtual experiments demonstrate the accuracy, versatility, efficiency and

robustness of the present method. Virtual experiments also clarify the errors due to the

uncertainties during material evaluation such as deviation in sample location, length and

thickness and show that these errors are less affected in the present measurement

method.

The real measurement is performed for two-layer sample. The sample

including a high-loss layer is prepared and the complex permittivities are measured over

X-band frequencies. The measurement shows the accuracy of the present and also

demonstrates that the present method is calibration-independent.



99

References
[1] J. Zhong, S. Liang, Q. Xiong, Y. Yuan, and C. Zeng, “A State Space Representation for

One-Dimensional Microwave Heating Temperature Model,” SICE Annual Conference,

Hokkaido University, Sapporo, Japan, 2014, pp. 1366-1371.

[2] H. Zhang, A. K. Datta, I. A. Taub, C. Doona, "Electromagnetics, Heat Transfer, and

Thermokinetics in Microwave Sterilization," AlChE J., vol. 47, no. 9, Sep. 2001, pp.

1957-1968.

[3] M. Kinoshita, K. Shimaoka, and K. Komiyama, “Atomic microwave power standard based on

the Rabi frequency,” IEEE Trans. Instrum. Meas., vol. 60, no. 7, Jul. 2011, pp. 2696–2701.

[4] J. T.Senise and L. A. Jermolovicius, “Microwave chemistry – a fertile field for scientific

research and industrial applications”, J. Microwaves, Optoelectronics and Electromagnetic

Applications, vol 3, Sep. 2003, pp. 97-112.

[5] A. W. Kraszewski and S. O. Nelson, “Application of microwave techniques in agricultural

research,” in Proc. SBMO/IEEE MTT-S Int. Microw. Optoelectron. Conf., vol. 1, Athens, GA,

1995, pp. 117–126.

[6] F. Sterzer, “Microwave medical devices,” IEEE Microw. Mag., vol. 3, no. 1, Mar. 2002, pp.

65–70.

[7] A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time

domain techniques,” IEEE Trans. Instrum. Meas., vol. IM-19, no. 4, Nov. 1970, pp. 377-382.

[8] W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at

microwave frequencies,” Proc. IEEE, vol. 62, no. 1, Jan. 1974, pp. 33-36.

[9] U. C. Hasar, “A new calibration-independent method for complex permittivity extraction of

solid dielectric materials,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, Dec. 2008,

pp. 788-790.

[10] K. S. Champlin and G. H. Glover, “ ‘Gap effect’ in measurement of large permittivities,”

IEEE Trans. Microwave Theory Techn., vol. 14, Aug. 1966, pp. 397–398.

[11] J. M. Catalá-Civera, A. J. Canós, F. L. Peñaranda-Foix, and E. R. Davó, “Accurate

determination of the complex permittivity of materials with transmission reflection

measurements in partially filled rectangular waveguides,” IEEE Trans. Microwave Theory

Techn., vol. 51, no. 1, Jan. 2003, pp. 16-24.

[12] A. Nishikata, “A swept-frequency measurement of complex permittivity and complex

permeability of a columnar specimen inserted in a rectangular waveguide,” IEEE Trans.

Microwave Theory Techn., vol. 55, no. 7, July 2007, pp. 1554-1567.

[13] S. Yoshikado and I. Taniguchi, “Microwave complex conductivity of a square post in

rectangular waveguide,” IEEE Trans. Microwave Theory Techn., vol. 37, no. 6, Jun. 1989, pp.

984–992.



100

[14] H. Miyagawa, T. Sawai, K. Wakino, Y. D. Lin, and T. Kitazawa, “Simultaneous Determination

of Complex Permittivity and Permeability of Columnar Materials with Arbitrarily Shaped

Cross-Section,” IEEE Trans. Microwave Theory Techn., vol. 57, no. 9, Aug 2009, pp.

2249-2256.

[15] J. Baker-Jarvis, M. D. Janezic, B. F. Riddle, R. T. Johnk, P. Kabos, C. L. Holloway, R. G.

Geyer, and C. A. Grosvenor, “Measuring the permittivity and permeability of lossy materials:

Solids, liquids, metals, building materials and negative-index materials,” National Institute of

Standards and Technology, Boulder, CO, Tech. Note 1536, 2004.

[16] J. Baker-Jarvis, “Transmission/reflection and short-circuit line permittivity measurements,”

National Institute of Standards and Technology, Boulder, CO, Tech. Note 1341; 1990.

[17] D. L. Faircloth, M. E. Baginski, and S. M. Wentworth, “Complex Permittivity and

Permeability Extraction for Multilayered Samples Using S-Parameter Waveguide

Measurements,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 3, Mar. 2006, pp.

1201-1209.

[18] F. Akleman, “Reconstruction of complex permittivity of a longitudinally inhomogeneous

material loaded in a rectangular waveguide,” IEEE Microw. Wireless Compon. Lett., vol. 18,

no. 3, Mar. 2008, pp. 158–160.

[19] E. Kılıç, U. Siart and T. F. Eibert, “Regularized 1-D Dielectric Profile Inversion in a Uniform

Metallic Waveguide by Measurement and Simulation,” IEEE Trans. Microw. Theory Techn.,

vol. 60, no. 5, May 2012, pp. 1437-1443.

[20] M. W. Hyde and M. J. Havrilla, “Electromagnetic characterization of two-layer dielectrics

using two flanged rectangular waveguides,” in IEEE Instrumentation and Measurement

Technology Conf. Proc., May 2008, pp. 1648 - 1652.

[21] P. Queffelec, V. Laur, A. Chevalier, J.-M. Le Floch, D. Passerieux, D. Cros, V. Madrangeas, A.

Le Febvrier, S. Députier, M. Guilloux-Viry, G. Houzet, T. Lacrevaz, C. Bermond and B.

Fléchet, “Intercomparison of permittivity measurement techniques for ferroelectric thin

layer,” J. Appl. Phys., vol. 115, no. 2, 2014, pp. 024103-1 - 024103-9.

[22] T. Kitazawa, “Nonreciprocity of phase constants, characteristics impedances, and conductor

losses in planar transmission lines with layered anisotropic media,” IEEE Trans. Microw.

Theory Tech., vol. 43, no. 2, Feb. 1995, pp. 445–451.

[23] T. Kitazawa, Y. Hayashi, and M. Suzuki, “Analysis of the dispersion characteristics of slot

line with thick metal coating,” IEEE Trans. Microw. Theory Tech., vol. MTT-28, no. 4, Apr.

1980, pp. 387–392.

[24] T. Shiraishi, T. Nishikawa, K. Wakino, and T. Kitazawa, “An efficient analysis of lossless and

lossy discontinuities in waveguide using hybrid numerical method,” IEICE Trans. Electron.,

vol. E86-C, no. 11, Nov. 2003, pp. 2184–2190.



101

[25] M. S. B. A. Karim, Y. Konishi, K. Harafuji, and T. Kitazawa, “Determination of complex

permittivities of layered materials using waveguide measurements,” IEEE Trans. Microwave

Theory Techn., vol. 62, no. 9, Sep. 2014, pp. 2140-2148.

[26] M. S. B. A. Karim and T. Kitazawa, “Determination of material parameters based on hybrid

numerical methods using complementary source quantities,” IEICE Trans. Electron., vol.

J98-C, no. 12, Dec. 2015, pp. 356 - 365.

[27] M. S. B. A. Karim, Y. Konishi, and T. Kitazawa, “Robustness analysis of simultaneous

determination method of complex permittivity and permeability,” in IEEE NEMO 2014 Proc.,

Italy, May 2014, pp. 171-174.

[28] S. Gaál, E. Lörincz, P. I. Ritcher, M. Barabás, “Assessment of the point matching method for

waves in uniaxially anisotropic materials,” Optics Communications, vol. 155, Oct. 1998, pp.

368-375.

[29] H. Esteban, S. Cogollos, A. Vidal, V. E. Boria, and M. Ferrando, “A new hybrid

mode-matching method for the analysis of inductive obstacles and discontinuities,” in Proc.

IEEE AP-S Int. Symp., vol. 2, Jul. 1999, pp. 966-969.

[30] C-K. C. Tzuang, C-D. Chen, and S-T. Peng, “Full-wave analysis of lossy quasi-planar

transmission line incorporating the metal modes,” IEEE Trans. Microw. Theory Tech., vol.

MTT-38, Dec. 1990, pp. 1792-1799.

[31] R. F. Harrington, Time-Harmonic Electromagnetic Fields, New York, NY, USA: IEEE Press,

ch. 3, sec. 3-5, 2001, pp. 106-110.

[32] M. S. B. A. Karim, T. Kitazawa, K. Wakino, H. H. Su and C-W. Kuo, “Design of rectangular

cavity by extended spectral domain approach,” in PIERS 2012 Proc., Kuala Lumpur, Mar.

2012, p. 676.

[33] M. D. Deshpande and K. Dudley, “Estimation of complex permittivity of composite

multilayer material at microwave frequency using waveguide measurements,” NASA Langley

Research Center, Hampton, VA, USA, NASA Technical Memorandum 212398, 2003.

[34] M. Kinoshita, H. Kinouchi, M. S. B. A. Karim, K. Wakino, T. Kitazawa, “A method of

evaluating high-permittivity and lossy materials using a cylindrical cavity based on hybrid

electromagnetic theory,” J. Appl. Phys., vol. 51, no. 9, 2012, pp. 09LF03-1 - 09LF03-5.

[35] N. Nakao, Y. Morishita, K. Wakino, T. Kitazawa, S. Imai, K. Taguchi, T. Kashiwa, M. Suzuki,

K. Fujii, “An adaptive evaluation method of material with complex permittivity in a

cylindrical cavity,” International Symposium on Antennas and Propagation, Macau, 2010, pp.

1025-1028.



102

Appendix

Appendix 1 Derivation of amplitudes R, T, Am and Dm

Eqs. (8) and (11) are modal expansions of electromagnetic field with

amplitudes R, T, Am and Dm . These amplitudes R, T, Am and Dm are derived from eq.

(12-a) as follows.

       1
0 1 0

20 0

1 m
m m a

m
R E F x A E F x h x

j


 





    (A-1)

By multiplying both sides of eq. (A-1) with  1F x and integrating it over 0 x a  ,

         

   

1
0 1 1 0 10 0

20 0

10

1

                                .

a am
m m

m

a

a

R E F x F x dx A E F x F x dx
j

h x F x dx


 





  



 

 (A-2)

Then by applying the orthogonality of  mF x shown in eq. (7),

     1
0 10

0

1
a

aR E h x F x dx


    . (A-3)

R can be obtained as

   0
10

1 0

1.
a

aR h x F x dx
E


  (A-4)

T, Am and Dm can be derived from eqs. 13(b)-13(d) by using similar procedure.
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Appendix 2 Derivation of eq. (14)

Amplitudes R, T, Am and Dm of modal expansions of electromagnetic fields

[eqs. (8) and (11)] are derived in Appendix 1. Electromagnetic field are expressed in

terms of aperture fields by substituting these amplitudes R, T, Am and Dm into eqs. (8)

and (11). Integral variable x in eq. (13) is denoted as 'x to distinguish it from

variable x in eqs. (8) and (11) in the substitution. As an example,    ,I
yE x z in eq. (8-a)

can be rewritten as

           

       
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m m a
m m

a Iin
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j z z j z z
e e

j z z
e

z zme

E x z E F x E F x

E F x F x h x dx
E

jE F x F x h x dx
E

E x z Z x z x z h x dx

 















   

 

 

 

 
  
 
 

  
 

   





 (A-5)

Other electromagnetic fields can be derived similarly [eqs. 14(b)-14(d)].
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Appendix 3 Derivation of determinantal equation of eigenvalues [eq.

(22)] and continuity of phase at the boundaries

Electromagnetic fields in region (II) are expressed in terms of eigenfunctions

 m x as [see eq. (20)]

     
1

,,y m m
m

x zE x z E




   (A-6)

     
1

1 1, ,z y m m
mi i

H x z E x E z
j x j x 





    
     

 
 

(A-7)
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(A-8)

where 1 21 22 31 32 4, , , ,m m m m m mc c c c c and c are unknown coefficients and 1m , 2m , 3m

and 4m are unknown eigenvalues. The eigenvalue equations are derived from the

continuity conditions at the interfaces between the subregions. By applying the

boundary condition of  ,yE x z and  ,zH x z at x = W1, then

 
   
 
   

1 1 21
1

1 1 2 2

1 1
1 21

1 1 2 2

sin
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sin 1 0,
cos cos

m m
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m m
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m m

W cc
W W

W
c c

W W


 


 



  (A-9)

and
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 
   

 

1 11 1 2 22

1 1 1 2 2 2

1 1 2 22

1 2 2 2

cos 1
cos cos

1 0.
cos

mm m m m

m m

m m m m

m

Wc c
W W

c c
W

 
   

 
  



  (A-10)

These equations are corresponding to the first and fourth row of eq. (22), respectively.

By applying the boundary condition of  ,yE x z and  ,zH x z at 1 2x W W  and

4x a W  , other elements in matrix [A] of eq. (22) can be obtained.

Propagation constant along the z-direction in subregion i with  ,i i  and

eigenvalue im can be written as

 2 2
im im i i      . (A-11)

Electromagnetic fields in all subregion have to propagate coincidentally along the

z-direction, then

       2 2 2 22 2 2 2
1 1 1 2 2 2 3 3 3 4 4 4 .m m m m                      (A-12)
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Appendix 4 Orthogonality and normalization of eigenfunction  m x .

It is proved in the following that eigenfunctions  m x in sample holding

region satisfy bi-orthogonal relation with the permeabilities in subregions ri as the

weight function

     
0

0
a m n

ri

x
dx m n


 

 
x . (A-13)

Eigenfunctions (A-8) are substituted into the left hand of above equation as
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The integrals in (A-14) are performed easily as
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(A-15)

where mnc are coefficients of eigenfunctions in each subregions and they are related by

the boundary conditions between subregions as

     
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and eigen values in each subregions im satisfy the phase continuity across subregions

       2 2 2 22 2 2 2
1 1 1 2 2 2 3 3 3 4 4 4 .m m m m                      (A-17)

(A-15) vanishes to zero after substitution of (A-16) and (A-17).



108

When m n , eq. (A-3) is not zero.
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 . (A-18)

The value of integral can be unity by determining the coefficients of eigenfunctions

mnc as follows
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(A-19)

All coefficients can be expressed in terms of 1mc as
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(A-20)

The above relations are substituted into (A-19) to determine 1mc .
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Appendix 5 Derivation of eq. (34)

Transformed fields in region (II) are given as [eqs. (28) and (30)]
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Coefficients mP and mQ are obtained in eq. (33), and they are substituted into eqs.

(A-21) and (A-22), then
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These transformed fields are transformed inversely by substituting above equations into

eqs. (20-a) and (20-b), and electromagnetic fields in region (II) are expressed in terms of

aperture magnetic fields as
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