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“If scientific analysis were conclusively to demonstrate certain claims in Buddhism

to be false, then we must accept the findings of science and abandon those claims.”

Tenzin Gyatso, The 14th Dalai Lama
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Abstract

Multi-electrode recording is now a common technique to simultaneously collect neu-
ronal spike data of a population of the neurons in a brain region, and thus allows
exploring various underlying functions of the brain. Computational modeling usually
emerges when the parameters of interest can not be directly measured by the exper-
iments. However, the inverse problem of estimating parameters from spike trains is
severely ill-posed due to the huge mismatch in the system complexity between the
brain and the model, and thus needs a stochastic approach to find most likely solutions
among many possible ones. Since the brain typically exhibits complicated dynamics
that is difficult for the model to reproduce, the modeling errors are inevitable. In
the present thesis, we introduce a novel methodology based on the Bayesian infer-
ence framework to overcome that challenging issue. The experimental spike data is
fractioned into short time segments and the model parameters are estimated segment
by segment in the constraint that the segmental estimates are fluctuated around the
neuronal estimates. By relaxing the parameter search, the segmental Bayes has been
hypothesized to compensate the modeling errors and thus improve the estimation
accuracy. The performance evaluation on experimental data indicated that the seg-
mental Bayes outperforms the conventional Bayes and the minimum error method
by minimizing the fitting errors in the feature space. It also had a strong robustness
against non-stationarity of the spike data. To enable its further applications, verifica-
tion of our proposed methods using simulation spike data was conducted. Unlike the
experimental data, it is straightforward to measure the estimation errors because the
true parameter values of the simulation data are known. Superiority of the segmental
Bayes was also confirmed by the simulation data. We thus argue that the segmental
Bayes provides a useful tool in neuroscience to estimate model parameters from spike
trains with complicated dynamics.
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Chapter 1

Introduction

Over the past hundred years, biological research has gained a massive amount of

knowledge about the structure and function of the brain. The core components in

the nervous system are neurons, which are connected to each other to form neural

networks. The neuronal signals consist of short electrical pulses, so-called action

potentials or spikes, which are the elementary unit of signal transmission. The spikes

can be observed by inserting a small electrode close to distinct parts – such as the

soma, the dendrite or the spine – of a neuron. A spike train refers to a sequence

of action potentials discharged by a neuron in regular or irregular patterns. The

number and the timing of spikes are found very important in encoding information.

Nowadays, multiple electrodes have become a standard tool in neuroscience research

that enables simultaneous measurement of a population of neuronal activities in a

brain region. Such measurement data provide important analysis challenges that

must be resolved to understand the brain functions [10].

1.1 Parameter estimation in computational neuro-

science

Because of the progress of theoretical neuroscience as well as the rapid growth of com-

puter technology, computational modeling of the neuronal systems has been greatly
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advanced these days. Highly developed measurement techniques in electrophysiology

as well as in molecular biology enable agreement between experimental measurement

and computational modeling even on a quantitative level [51, 48]. Still, the major

difficulty lies in an imperfect measurement of the neuronal system. Namely, many

of the dynamical variables hidden behind the observables as well as the parameter

values that determine the neuronal circuitry cannot be properly measured. How to

estimate such unknown variables and system parameters from the measured data,

therefore, provides a big challenge in computational neuroscience [34, 57, 42, 55].

Modeling of the brain requires a number of parameters that are difficult to mea-

sure using current technology. Various approaches have been developed to resolve this

“parameter estimation” problem. There are deterministic approaches that find unique

solutions by optimization techniques, including the conjugate gradient, genetic algo-

rithm, simulated annealing, and random search methods [71, 30, 31]. These methods

are only applicable in relatively well-defined environments where the complexity of

the system—such as the hierarchy, granularity, and degrees-of-freedom—is compara-

ble between the model and experiment. Otherwise, parameter estimation problems

become ill-posed. Another deterministic approach uses state and parameter recon-

struction based on rather simplified neural models, such as Hindmarsh-Rose and

FitzHugh-Nagumo models [69, 12]. Stochastic approaches were developed to over-

come these difficulties, e.g., Markov random field model that estimates membrane

resistance from the optical imaging data [33] and stochastic models that estimate

the synaptic conductance from the electrophysiological recording data [6]. Nonlinear

state space modeling has also been applied to estimate hidden dynamical variables

as well as unknown parameters from the optical recording data [68, 45]. These ap-

proaches were also limited to the cases of a small mismatch between the model and

experiment where the system complexity for the two cases was almost comparable.

Up to date, various techniques of parameter estimation have been applied to the

computational modeling of the neural spiking data. The simplest approach is to de-

fine an error function, which measures the dissimilarity, in either timing or the feature

extracted from the spike trains, between the experimental and simulated data, and

20



then to constraint the model parameters by minimizing the error [71, 1]. Alternative

approach is to utilize multiple objective optimization that allows several error func-

tions corresponding to different features of the spike data to be jointly employed and

searches for the optimal trade-offs between them [11]. A state-space modeling has

been also proposed to estimate the model parameters directly from the spike trains

[38, 50, 47, 46]. In practical situations, however, these approaches have a severe lim-

itation, because of (1) non-stationarity of the measured data and (2) imperfectness

of the computational model. In the parameter estimation, it is usually assumed that

the parameter values do not change in time and that the time series measured from

the system is stationary. In many systems, however, it is typically that the parameter

values such as the conductance values change slowly in time due to their plasticity.

For high-dimensional complex systems, non-stationary dynamics such as intermittent

switching among quasi-attractors is observed quite often [21, 25, 66, 67]. Concerning

the model selection, it is usually that the computational model has less complexity

in neuronal circuitry and much less number of neurons compared to the real network

of neurons. The parameters should be therefore estimated under the condition that

the data is non-stationary and that the model is an imperfect representation of the

experiment. These difficulties inevitably cause modeling errors and thus cause in-

accurate solutions of the inverse problem for estimating model parameters from the

spike data.

To deal with such difficulties, this thesis develops a new methodology based on

hierarchical Bayes, which performs Bayesian estimation of the parameters in two

steps. Our idea is to suppose that, in the non-stationary data, the parameter values

can change from one time-segment to another. Accordingly, the spike data are divided

into short time-segments, within which the data can be considered stationary. In the

first step, the parameters are estimated to each time-segment of individual neurons,

allowing the parameter values to be varied in time. This relaxes the condition of the

parameter search. In the second step, a single set of parameter values is estimated

to the entire time-segments of individual neurons with a constrained condition. The

segmental Bayes is equivalent to the method used in the recent studies that introduced
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the system noise in order to reduce the estimation errors due to modeling errors

[24, 20, 3]. To allow segmental fluctuations in the parameter estimates and to merge

the estimates for a single neuron imply to assume noise for parameter estimation

with the constraint to minimize fluctuations within single neurons. We show that

this step-wise procedure is quite effective for non-stationary spiking data even when

the model is imperfect.

1.2 Modeling of the network of inferior olive neurons

As a target system of our computation modeling, we focus on a network of inferior

olive (IO) neurons, which play a central role in the cerebellar learning [44, 2, 23,

27, 28]. It has been widely accepted that the cerebellar learning takes place at the

Purkinje cells (PCs), which output motor commands to the cerebellar nuclei (CN)

while receiving two types of major excitatory inputs: nearly 100,000 parallel fibers

from granule cells and a sole but powerful climbing fiber input from IOs [53, 70].

Whereas the granule cells transmit signals from the sensory system and the cerebral

cortex, the IO neurons were reported to send error signals [14, 32]. When conjointly

activated at the PCs, these two inputs cause a long-term depression (LTD), reducing

the efficacy of the synaptic transmission in the parallel fiber [22]. One of the remaining

issues on the cerebellar learning is the low firing rate of the IO neurons with typically

a single or two spikes per movement. This provides a severe limit for the IO neurons

to precisely transmit the error signals with a high temporal resolution.

Concerning this problem, the network effect of the IO neurons should be taken

into account. As far as the IO neurons are activated in a synchronous manner, en-

semble of IO neurons behaves as a single neuron, which does not help to overcome

the limited capability of the error transmission. However, if the IO neurons oper-

ate asynchronously, the spike timings of each neuron are scattered to increase the

time resolution of the population coding of the error signal. Here, it is natural to

consider that the electrical coupling regulates the level of synchrony between the IO

neurons. If the coupling strength is too strong, it induces coherent IO activities. If
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the coupling is too weak, on the other hand, common input stimuli entrain the IO

cells, resulting again in their coherent activities. In contrast, intermediate strength

of the electrical coupling was found to induce irregular or even chaotic spikes, which

effectively desynchronize the IO activities and thus optimize the population coding

[58, 63, 29]. Since optimal learning is realized with an intermediate coupling strength

that maximizes the level of the chaotic activity, this hypothesis has been termed as

chaotic resonance.

To examine the chaotic resonance hypothesis, it is indispensable to estimate the

coupling strength from the spiking data of the PCs, since its direct measurement is

not possible. Two types of conductance mainly contribute to the electrical coupling

between the IO neurons. The first one is the gap-junctions [62, 40, 41], whereas the

second one is the inhibitory conductance. Recent experiments have suggested that

the coupling strength is adjusted by the release of GABAergic inhibition from deep

cerebellar nuclei (DCN) in a form of glomerulus structure [7]. Indeed, the effect of

the two conductances on the IO neurons have been confirmed by the injection of

GABA blocker picrotoxin (PIX) as well as by the injection of gap-junction blocker

carbenoxolone (CBX). After the PIX injection, the firing rate and the synchrony of

the IO activity were increased, while, conversely, the CBX reduces them [37, 36, 9].

The aim of the present study is to estimate the gap-junctional (gc) and inhibitory

(gi) conductances from spike trains of real neurons under PIX, CBX, and control

(CON) conditions. To deal with the non-stationary data inherent in the spiking ac-

tivity of the PCs, the segmental Bayes was applied for the parameter estimation. Our

methodology was evaluated by studying the effect of the CBX, which should directly

decrease the gap-junctional conductance, and that of the PIX, which should decrease

the inhibitory conductance as a GABA antagonist. Our results indeed showed that

the CBX decreased 10% gc from CON level, whereas PIX reduced 80% of gi. These

results support the hypothesis that inhibitory input from DCN is a reasonable mech-

anism to control oscillatory and synchronous IO activity.
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1.3 Organization of the thesis

Alongside the Introduction, the thesis is organized in other five chapters as follows.

• The methodology of our studies is described in Chapter 2, which contains de-

tailed descriptions of the neuronal network model and the proposed approaches

to estimate two model parameters from spike train data.

• Chapter 3 shows analytic results of the simulation data, which was used to

construct the forward model of the Bayes framework. We confirm that the

simulation model can reliably reproduce the firing dynamics of the experimental

data despite the imperfectness of the model.

• To confirm the usability, validation of those approaches using the simulation

data is developed in Chapter 4. Unlike the experimental data, the underlying

conductance values are known for the simulation data, which are thus suit-

able for the validation purpose. Performance evaluation on the simulation data

strongly confirmed the superiority of the segmental Bayes.

• In Chapter 5, we provide quantitative measurements of the two parameters of

interest for experimental spike data collected in [37, 36, 9]. Three estimation

methods – including the segmental Bayes, the non-segmental Bayes and the

minimum error method – were performed. The segmental Bayes has been shown

to outperform two comparative methods by minimizing the fitting error between

experimental and simulation data in the feature space. It also has a potential to

overcome the highly non-stationary firing dynamics of the experimental data.

• Finally, we summarize the methodology, main findings, important contributions

as well as future works of our studies in Chapter 6.
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Chapter 2

Methodology

Advanced measurement technologies in neuroscience enable the collection of a massive

amount of neuronal data. Nevertheless, exploring the underlying functional mecha-

nisms is a very hard task. For instance, given measured spike trains of a population

of neurons, it is not trivial to understand how the neurons electrically interact with

each other to induce synchronized or irregular firing patterns. Although mathemati-

cal modeling of the brain provides a plausible solution, it usually faces two challenges.

First, the model should be constructed in a way that it is not only consistent with the

anatomy of the neuronal network, but also capable of reproducing the quantitative

dynamics of the brain. Second, an effective method for fitting the simulated spike

data to the experimental data is strongly required. In this chapter, we propose a

novel methodology to resolve those two challenges.

The aim of our study is to estimate gap-junctional (gc) and inhibitory (gi) conduc-

tance from the spike data of inferior olive (IO) neurons. Since these two parameters

are at a synapse level, we constructed an IO network model of nine detailed neurons,

each of which consist of three Hodgkin–Huxley-type compartments. Because of the

complexity of the real IO network, we, however, cannot expect that the model can

perfectly reproduce the observed experimental data and there is no simple one-to-

one mapping between the experimental data and the model parameters. Apparently,

the deterministic algorithms that find a unique solution are not well suited to the

parameter estimation problem.
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In [49], we adopted a deterministic approach, so called minimum-error method,

to find optimal parameter values that generate the best simulation results with a

minimum distance in the feature space to the experimental data. The reason why

this deterministic algorithm worked moderately well is because it follows stochastic

characteristics. Experimental data set from different neurons were divided into short

time segments, and the parameters were estimated for each segment. Then, the distri-

bution of the estimated parameter values from all segments and neurons was treated

as a population. This introduces a source of stochastic natures. The minimum-error

method can be interpreted as an extreme case of a class of stochastic Bayesian esti-

mation algorithm where variance of the forward models is assumed infinitely small.

However, assuming an infinitely small variance in the forward models is not theoret-

ically validated and full development of a stochastic Bayesian framework for a broad

range of parameter estimation problems is desirable.

In a recent study [18], we introduced a theoretical framework of Bayesian es-

timation which estimates parameter values for segments using the forward models

generalized to the entire spike data and merges the segmental estimates into a single

estimate for every neuron in the basis of neuronal constraint. This constraint avoids

over-fitting of the forward models to experimental data, reducing the number of Gaus-

sians by three orders of magnitude, and the fitting errors to less than one-third of

those in the minimum-error method with highly non-stationary data.

Figure 2-1: Flowchart of the parameter estimation approaches
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2.1 The simulation network model

2.1.1 The IO model

A conductance-based model of IO neurons, which consists of a soma, dendrite and

spine compartments, was developed in our studies. We extended the model pro-

posed in an earlier study [58] by adding the spine compartment to account for the

electrically coupling between two IO neurons via gap-junctions (Figure 2-2A). The

somatic compartment contains ionic channel conductances for the inward sodium cur-

rent (gNa), the delayed rectifier outward potassium current (gK), the low-threshold

calcium current (gCal), the anomalous inward rectifier current (gh), and the leakage

current (go). The dendritic compartment includes ionic channel conductances for

the high-threshold calcium current (gCah), the calcium-activated potassium current

(gKca), and the leakage current (gd). The spine compartment includes a conductance

for a leakage current (gp). All three classes of compartment receive a total of 260

excitatory (ge) and inhibitory (gi) synaptic conductances driven by Poisson noise

generators. All of the ionic, crosstalk, and synaptic conductances are defined for a

unit surface area of the soma, dendrite, or spine membrane.

The electrophysiological properties of the IO model also depend on the crosstalk

conductances between the soma and dendrite compartments (god/do) and between

the dendrite and spine compartments (gdp/pd) (Figure 2-2B). They are defined per

membrane surface area and therefore depend on neuron morphology: the ratio of the

somatic area to the total surface area (p), and the ratio of the area of the four spines

to the total surface area (q) (cf. Equations (A.9), (A.13), (A.14) and (A.17)).

2.1.2 The network structure

The network model consisted of 3⇥3 array of IO neurons, each of which was mutually

connected to its four neighboring neurons (Figure 2-2C) by a gap junction from one

of its spines to one of its neighbor’s represented by the gap-junctional conductance

(gc) (Figure 2-2B). Several studies have shown that IO neurons covey heterogeneity in
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Figure 2-2: The IO network model
A-C: a schematic diagram of the IO network model consisting of 3⇥3 neurons, each
of which consists of the soma (S), dendrite (D) and spine compartments (SP). The
S, D and SP compartments contain five, three and one ionic channels defined by the
modified Hodgkin-Huxley equations (cf. Equations A.1–A.17, Appendix A) and the
excitatory and inhibitory input conductance (ge and gi). Two neighboring neurons
are coupled via gap junctional conductance (gc) and axial spine conductance (gdp/pd).

their membrane conductance [43, 65, 19]. In our model, most conductance parameters

were shared for the IO neuron population except the maximal conductance of the low

threshold calcium gCal and the coupling strength gc to account for the variability in

the neuronal properties. We assumed comparable variations of gCal and gc, sampling

them from uniform distributions with the maximum deviation set at 5% of the mean.

2.1.3 Simulation of the spike data by the network model

We computed the electrical activity in each compartment of the model with step-wise

variations of the gap-junctional conductance (gc) and the inhibitory conductance (gi).

The other model parameters including the crosstalk conductances were fixed to the

values essentially the same as those used by [58, 49] at the values shown in Table

A.1. The electrical activity in each compartment of the model was simulated with

interactions through a system of ordinary differential equations that determines the

changes of the membrane potential within the somatic, dendritic, and four spine
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compartments.

We simulated the membrane potential time courses of the nine cells with step-

wise changes of the two model parameters, i.e., inhibitory synaptic conductance gi,

and coupling conductance gc were varied in the range of [0–1.5 mS/cm2] and [0–2.0

mS/cm2], respectively, with an increment of 0.05 mS/cm2, whereas the excitatory

conductance ge was fixed at 0.03 mS/cm2. We generated a total of 31 ⇥ 41 = 1271

sets of 5000 s long SIM spike trains. Within these spike trains, the time of each

spike was defined as the time when the change in the somatic membrane potential

exceeded 20 V/s. The numerical integration of the system of ordinary differential

equations was executed by the CVODE package (part of the SUNDIALS package)

with 0.5 ms time steps. For numerically stiff problems like the present IO network

model, CVODE includes backward differentiation formulas.

2.2 Parameter estimation from spike data

Our estimation techniques can be classified as a feature-based approach, in which the

spike data is characterized by multiple features. For the minimum error method, the

model parameter is determined by the closest distance between the experimental and

simulation data in the feature space. For the Bayesian approach, the forward model

is constructed based on feature vectors of the SIM data to estimate the likelihood

distribution and then the posterior probability is inferred follows the Bayes theorem.

In this section, we describe how to characterize spatiotemporal features from the spike

data as well as the construction of the forward model. Next, the Bayesian inference

and the minimum error methods were proposed to estimate two model parameters

from the extracted features. Finally, we briefly compare those two methods in the

view point of probability theory.

2.2.1 Feature extraction from spike data

First of all, the feature vectors were extracted from the spike train data. To deal with

non-stationarity, we divided the spike train of each neuron, for both experimental and

29



simulated data, into 50-second time-segments. For each segment, sixty-eight features

were computed to characterize spatiotemporal dynamics of the IO firing. All features

were evaluated by the mutual information and only top twenty-five informative ones,

which convey highest information about the parameter space, were selected. Principal

component analysis (PCA) was conducted to further reduce the redundancy of those

twenty-five features, and top three principal components, which amount up to 55%

of the data variance, were used for estimating the model parameters.

Spatiotemporal features of the spike data

A total of sixty-eight features – including firing frequency, local variation, auto-

correlation, cross-correlation, minimal distance and spike distance – were extracted

from the spike data. The first three classes of the feature vector (FV) represent

temporal properties, while the last three represent spatial properties of the firing

patterns.

1. The mean firing rate (FR) of spike segments was calculated as the number of

spikes in 1s.

2. The local variation (LV) was calculated as

LV =

1

R� 1

R�1X

r=1

3(Tr+1 � Tr)
2

(Tr+1 + Tr)
2

(2.1)

where Tr(r = 1, 2...R) is the r-th inter-spike interval (ISI) [61].

3. The auto-correlogram for 20 delays (ACG 1-20) ranged from 0-1000ms with a

bin size of 50ms.

ACGx,i(⌧) =

KX

k=1

xi(tk)xi(tk � ⌧) (2.2)

where xi(tk) represents the occurrence of spikes at the k-th time step in i-th

neuron and ⌧ is the time delay.

4. The cross-correlogram for 20 delays (CCG 1-20) corresponding to delays of 0-
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50ms, 50-100ms, . . . 950-1000ms were computed as:

CCGx,i,j(⌧) =

KX

k=1

xi(tk)xj(tk � ⌧) (2.3)

5. The minimal distance [16] (MD1-25) was defined as a normalized distribution

of

s

i,j
l = 1� exp

✓
�2minm |til � t

j
m|

¯

dj

◆
(2.4)

between the l-th spike of neuron i and a spike of neuron j. Here, til is the time of

l-th spike of the neuron i, ¯

dj is the mean ISI of the j-th neuron, and m ranged

from 1 to the total number of spikes of neuron j. If the spike train is generated

by a random process, the distribution will be uniformly distributed between 0

and 1.

6. The spike distance [35] (SD) was defined as

DS =

1

T

Z T

t=0

S(t)dt (2.5)

where S(t) are instantaneous dissimilarity values derived from differences be-

tween the spike times of the two spike trains and T is the recording time. SD is

bounded in the range [0,1] with the value zero obtained for perfectly identical

spike trains.

Feature selection by mutual information

For effective estimation of the parameters, only the main features that contain rich

information on gi and gc were selected according to the mutual information (MI)

between the FV and the conductance values.

We let g = (gi, gc) 2 G as a pair of the conductance parameters and x 2 X denote

one component of the FV. Then, the MI that represents the amount of information
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of G conveyed by x was computed as:

I(G; x) =

X

g2G

P (x, g) log

✓
P (x, g)

P (x)P (g)

◆
=

X

g2G

P (x|g)P (g) log

✓
P (x|g)
P (x)

◆
(2.6)

Here, the conditional distribution P (x|g) was approximated as a histogram of x given

a pair of (gi, gc), the distribution P (x) was assumed to be a histogram of x, and P (g)

was assumed to be a uniform distribution. The sixty-eight FVs were rated by the MI

and top twenty-five FVs were selected for principal component analysis.

Principal component analysis

The principal component analysis (PCA) was conducted as a solution to the following

equation:

(XTX)W = �W (2.7)

where (XTX) is the covariance matrix of the twenty-five features of EXP spike

data X. We used a Statistical Toolbox (MATLAB) to calculate the eigenvector W

and eigenvalues �. The principal component vector Y was computed as the linear

transformation of the feature vector X as follows:

Y = XW (2.8)

The top three principal components of Y were selected according to the highest

eigenvalues (0.27, 0.21 and 0.09) for construction of the forward model.

2.2.2 Forward model

To evaluate the fitting between the experimental and simulation data, we constructed

a forward model as a likelihood function in PCA space using the simulation data. The

likelihood function at each grid point of g = (gi, gc) was approximated by a mixture

of Gaussians:

P (y|g) =
KX

k=1

⇡kN(µk,⌃k) (2.9)
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where N(µ,⌃) is the multivariate Normal (Gaussian) distribution with mean µ and

covariance ⌃. The number of components K, mixing coefficients ⇡k, means µk and

covariance matrices ⌃k of Gaussian mixtures were estimated from the simulated data

for a given parameter set g using the variational Bayes algorithm [8, 56]. The average

number of component K, which was automatically determined by the algorithm, was

8.55. Figure 2-3 shows a scatter plot of the SIM data at (gi, gc) = (0.7, 0.7) and a

mixture of Gaussians that fit SIM data in the 2-dimensional PCA space.

Figure 2-3: An example of the SIM spike data and its fitted mixture of Gaussians
Scatter plot of the SIM spike data at (gi, gc) = (0.7, 0.7) in the 2-dimensional PCA
space (white circles) and a mixture of Gaussians (contour plot) that fit the SIM data
as the likelihood function at that point.

The performance of the fitting was confirmed by comparing the PC scores of SIM

with that predicted by the forward model by the 3-dimensional statistical energy test
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Figure 2-4: Goodness of fit of the forward model to the SIM spike data
A: 3-dimensional pseudo-color representation of the fitting error of the forward model
estimated as the energy test statistics between the predictions of the forward model
and the SIM data plotted for gi and gc. B: statistical significance of the error.

[4]. It is worth noting that minimum energy method is binning-free and thus feasible in

multi-dimensional applications. In general, the match was acceptable (Figure 2-4A),

with the statistical difference being not significant (p > 0.1) for most combinations of

gi and gc, except for few ones (about 2%) where the statistical significance was rather

high (p < 0.03) (Figure 2-4B).

2.2.3 The Bayesian method

Our goal is to estimate the parameter g = (gi, gc) from an experimental feature vector

y, thus it can be regarded as an inverse problem. By utilizing the Bayes rule, the

posterior probability P (g|y) is proportional to the product of the likelihood and the

prior probability of a parameter set:

P (g|y) / P (y|g)P (g) (2.10)
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with the likelihood P (y|g) was approximated as in Equation 2.9 and the prior prob-

ability P (g) was uniformly distributed.

The novel point of our proposed framework is an introduction of the commonality

and neuronal constraints. The former constraint was based on the fact that PIX and

CBX selectively reduce gi and gc, respectively. This implies that gc remains unchanged

between the PIX and CON conditions, whereas gi is identical between the CBX and

CON conditions. The commonality constraint thus assumes that PIX and CON data

share the same conductance value for gc in a prior distribution, while CBX and CON

data share the same gi. The latter constraint dealt with the estimation errors caused

by the modeling errors. To minimize such errors, we divided the spike data of each

neuron into small time-segments, applied the Bayesian inference to estimate gi and

gc for every segment, and then merged the segmental estimates into a single estimate

for each neuron.

Figure 2-5: A schematic diagram of the segmental Bayesian inference.

Figure 2-5 illustrates how the Bayes framework incorporates those two constraints

as estimating two model parameters for a representative neuron in the CON and PIX

conditions. Under the assumption of commonality constraints, gc values of PIX and

CON data are drawn from a unique Gaussian distribution N(gc, �
2
2) with the mean
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gc and variance �

2
2, whereas the gi values of those two conditions separately fluctuate

around two Gaussian distributions N(g

CON
i , �

2
1) and N(g

PIX
i , �

2
3). The variations in

the conductance parameters are considered to reflect discrepancies between the sim-

ulation dynamics and the complex dynamics of real neurons. The Bayes estimation

for neurons in the CON and CBX conditions is similar, with the shared gi and inde-

pendent gc values. In the following subsections, we explicitly describe details of the

hierarchical Bayesian framework with the neuronal and commonality constraints.

Bayesian model with the commonality constraint

We let y

CON
(t) and yCON

=

⇥
y

CON
(1), y

CON
(2), . . . , y

CON
(T )

⇤
denote the feature

vector for time segment t and the collection of the segment-wise feature vectors for

the control conditions, respectively. Similarly y

pha
(t) and ypha were defined for the

pharmacological condition, where pha stands for either PIX or CBX. In addition, we

let
h
g

CON
i , g

CON
c , g

pha
i , g

pha
c

i
denote the conductance parameters for a neuron under

the control and pharmacological conditions.

Thus, the likelihood function of the model is

P

⇣
yCON

,ypha
���gCON

i , g

CON
c , g

pha
i , g

pha
c

⌘

= P

�
yCON

��
g

CON
i , g

CON
c

�
P

⇣
ypha

���gphai , g

pha
c

⌘

=

Y

t

P

�
y

CON
(t)

��
g

CON
i , g

CON
c

�
P

⇣
y

pha
(t)

���gphai , g

pha
c

⌘
,

(2.11)

where P (y|gi, gc) is the probability density function constructed from the forward

model. As prior distributions, we assume uniform distributions for gi and gc with

commonality constraints. In the case of pha = PIX, gCON
c = g

PIX
c , thus

P0

⇣
g

CON
i , g

CON
c , g

pha
i , g

pha
c

⌘

= P0

�
g

CON
i , g

PIX
i , g

CON
c

�
�

�
g

CON
c � g

PIX
c

�
/ �

�
g

CON
c � g

PIX
c

�
(2.12)
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where � (gc) is the Dirac delta function. In the case of pha = CBX

P0

⇣
g

CON
i , g

CON
c , g

pha
i , g

pha
c

⌘

= P0

�
g

CON
c , g

CBX
c , g

CON
i

�
�

�
g

CON
i � g

CBX
i

�
/ �

�
g

CON
i � g

CBX
i

�
(2.13)

Equations (2.11), (2.12) or (2.11), (2.13) constituted the neuronal Bayesian model.

Hierarchical Bayesian model with the neuronal and commonality con-

straints

The idea of neuronal constraint can be implemented by expanding the Bayesian model

to a hierarchical one that employs an additional hierarchical prior distribution for

merging the segmental estimates. In this model, each segment data is generated from a

segment-wise conductance parameters
h
g

CON
i (t), g

CON
c (t), g

pha
i (t), g

pha
c (t)

i
which vary

around neuronal conductance parameters
h
g

CON
i , g

CON
c , g

pha
i , g

pha
c

i
.

Thus, the likelihood function became

P

⇣
yCON

,ypha
���gCON

i (1 : T ), g

CON
c (1 : T ), g

pha
i (1 : T ), g

pha
c (1 : T )

⌘

= P

�
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��
g

CON
i (1 : T ), g

CON
c (1 : T )

�
P

⇣
ypha

���gphai (1 : T ), g

pha
c (1 : T )

⌘

=

Y

t

P

�
y
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��
g

CON
i (t), g

CON
c (t)

�
P

⇣
y

pha
(t)

���gphai (t), g

pha
c (t)

⌘ (2.14)

, where gCON
i (1 : T ) =

⇥
g

CON
i (1), g

CON
i (2), . . . , g

CON
i (T )

⇤
are collections of the segment-

wise conductance, and similarly, for g

CON
c (1 : T ), gphai (1 : T ) and g

pha
c (1 : T ).

We assume segment-wise conductance parameters vary around neuronal conduc-

tance parameters following Gaussian distribution with unknown variance parameters.

Thus, the prior distribution became

P

⇣
g

CON
i (1 : T ), g

CON
c (1 : T ), g

pha
i (1 : T ), g
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���gCON
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⌘
(2.15)
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(2.16)

Under the assumption of commonality constraints, gc distributions of PIX and

CON shared the same variance �2, and gi distributions of CBX and CON shared the

unique variance �1 (Equation 2.16). Equations (2.14), (2.15), (2.16) constitute the

segment-wise neuronal Bayesian model, which has hierarchical prior distributions.

Finally the commonality priors as given by (2.12) or (2.13) are assumed in the

hyper-prior distribution. Note that this model is equivalent to the neuronal Bayesian

model (Equations (2.11), (2.12) or (2.11), (2.13)) above when all �1, �2 and �3 are

fixed to zeros.

Inference of conductance parameters and variance parameters

Given the variance parameters, the conductance values can be inferred by computing

the posterior distribution of the hierarchical Bayesian model above. The posterior

distribution for the four conductance parameters for a neuron is given as:

P

⇣
g

CON
i , g

CON
c , g

pha
i , g
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c

���yCON
,ypha

⌘
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i , g
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c

⌘
P0

⇣
g
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i , g

CON
c , g
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i , g
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c

⌘

P

�
yCON

,ypha
� (2.17)

Here, the numerator, the likelihood distribution integrated across all segments, is
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given by:
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⇣
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and the denominator, called the model evidence, is given by:
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In general, these integrals are very difficult to evaluate. However, since in our

problem, the domain of (gi, gc) is discretized with bins of 0.05 and the probability mass

is assumed on the grid points, the integrals appearing in Equations (2.18), (2.19) are

replaced by summation and can be numerically evaluated without difficulty. Here, the

conductance parameters are estimated as the maximizer of the posterior distribution.

Inference of the variance parameters

The variance parameters were adjusted based on the model evidence value P
�
yCON

,ypha
�

for each neuron. We discretized the space of the possible variance parameters with a

bin size of 0.025 and computed the evidence (Equation 2.19) for all the combinations

of �1, �2 and �3, then selected those that maximized the model evidence value.

2.2.4 The minimum error method

As a solution to the inverse problem of estimating gc and gi from test data, we searched

for values of gc and gi, the corresponding training data of which showed the closest
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match (minimum PCA distance) to the test data in the PCA space. The distance

between the two data sets is defined as

distance(y, ŷ) =

vuut
NX

i=1

(yi � ŷi)
2 (2.20)

where y and ŷ represent PCA scores of the training and test data, respectively, and

N = 3 is the number of the selected PCA components.

For the aforementioned commonality constraint, in [49] we developed the “juggling

algorithm” in which the match between the SIM and EXP spike segments was searched

under the constraint that gc and gi remain unaffected by PIX and CBX administra-

tion, respectively. In other words, gc and gi should agree with each other between

CON and PIX conditions and between CON and CBX conditions, respectively.

2.2.5 Differences between those two methods

Here, we briefly explain the main differences in our two proposed approaches in a

view of the probability theory [49, 18]. In the minimum-error method, the parameter

estimation for an experimental spike train in a short time segment was given a best

fit by g = (gi, gc) with which the error between the experimental and simulation

data in PCA space was minimal over all of the generated simulation data. From the

Bayesian viewpoint, this can be interpreted as a maximum likelihood estimation with

the following Gaussian mixture likelihood function P (y|g):

P (y|g) =
N

sX

n=1

1

Ns
N(yn(g), �

2
I) ⇡ C exp

✓
� 1

2�

2
min

n
(y � yn(g))

2

◆
(2.21)

where yn(g) is the n-th simulation sample at (gi, gc), Ns is the total number of

simulation samples (n = 12,600) at (gi, gc) and C is the normalization constant. Here,

the variance �

2 is assumed to be infinitesimally small. This forward model highly

depends on the generated simulation data and tends to over-fit the experimental

data. The average component number K for the Bayes inference was roughly three
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orders of magnitude smaller than that for the minimum-error algorithm (8.55:12,600),

indicating the existence of this over-fitting in the latter case. Thus, the Bayesian

method prevents over-fitting by explicitly estimating the smooth likelihood function

using an optimal number of Gaussian mixtures.

Alternatively, in [49], the commonality constraint was imposed at the condition

level rather than the neuronal level. Specifically, it was assumed that PIX and CON

data share the same gc, whereas CBX and CON data share the same gi across the

whole data set including different animals. In the Bayesian method, we assumed a

more biologically reasonable commonality constraint at the neuronal level: (gi, gc) in

different time segments were common for each neuron and the PIX and CON data

share the same gc, whereas CBX and CON data share the same gi for each neuron.

2.3 Data analysis

2.3.1 Sensitivity analysis of feature vectors

Sensitivity analysis was conducted to evaluate how the FVs sense gi and gc as the

partial differential of FV with respect to the gi and gc, e.g., @FV
@g

i

and @FV
@g

c

. We

constructed a 3-dimensional map for each FV as a function of gi and gc, by normalizing

FV by the peak value. The sensitivity was determined as the mean of the partial

differentials across the entire range of gi or gc.

2.3.2 Non-stationary analysis

We evaluated the non-stationarity of IO firing dynamics by three measures, including

LV (cf. Equation (2.1)), Kolmogorov-Smirnov (KS) distance of the inter-spike inter-

vals (ISIs) to the Poisson model, and the standard deviation of the firing frequency.
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Chapter 3

Results: Analysis of the model

Construction of the simulation model is a very first step in any estimation techniques.

The model is desired to be capable of capturing complicated dynamics of the brain.

However, because of huge differences in the complexity between the model and the

brain, such as the number of neurons as well as the connectivity among them, the

modeling error is inevitable. The question of how to evaluate the complicated firing

dynamics to quantify the fitting of the simulation spike data to the experimental

one is thus critical and challenging. To answer that question, we analyze the spike

data in terms of the feature vectors described in the section 2.2.1, which includes

the following three steps: 1) sixty-eight features were extracted from the spike data,

2) we selected twenty-five features conveyed rich information about the parameter

space, and 3) principal component analysis was conducted for those selected features.

We show that, within such feature space, simulation spike data can perfectly cover

experimental spike data collected from various experiments. Analytic results in this

chapter confirm that our developed simulation model can reliably reproduce the firing

dynamics of IO neurons, and it is thus suitable for the estimation problem.

3.1 Feature estimation of the simulation data

Firstly, we tentatively extracted sixty-eight FVs—including FR, LV, SD, ACGs, CCGs

and MDs—from the simulation spike data. Figure 3-1 shows the feature maps of
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five major features for all combinations of gi and gc. We selected the delay time

for ACG and CCG around their oscillatory peaks, which may represent the time

courses of auto- and cross-interaction within and across the cells (ACG1, 50ms; CCG1,

50ms; etc.). Sensitivity analysis indicated that some FVs (ACG1, FR, LV) were only

sensitive to gi, whereas others (MD2 and CCG1) were sensitive to both gi and gc.

This is probably due to the fact that gi controls the firing in individual cells, while

gc controls the interaction across neurons. The results indicate that FVs convey

variable information concerning gi and gc, and we need to select only those conveying

significant information concerning gi and gc for construction of the forward model,

eliminating those conveying poor information.

Figure 3-1: Maps of five major features for gi and gc

3-dimensional maps of the five representative FVs (ACG1, FR, MD2, LV, CCG1)
plotting the mean of FVs for gi and gc by pseudo-color representation. The color-map
is normalized by the peak values.
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3.2 Mutual information

Next, we performed the mutual information (MI) analysis concerning gi and gc to

select the FVs (Figure 3-2 and Table 3.1). ACG1 conveyed the highest information

(1.76 bits) and FR the next highest (1.41), whereas MD2, LV, and CCG1 conveyed

rather small information (0.89, 0.56 and 0.34 bits, respectively). ACG1 is most in-

formative of gi, because it focused on the first peak of ACG oscillation, and ACG2,

ACG3, ACG4 are less informative because they are off-focused from the first peak. gi

influences the time course of the after-hyperpolarization and rebound depolarization,

acting as the shunting conductance to these membrane potential changes. Therefore,

those focused on the ACG peaks are more informative of gi than the off-focused ones.

Figure 3-2: Mutual information of the sixty-eight FVs
Mutual information concerning gi and gc values plotted in bits for the sixty-eight FVs.
Hatch and downward arrow indicates the twenty-five FVs selected for PCA.

3.3 Principal component analysis

PCA was conducted for a total of 1100 spike segments (ten segments each for the 110

IO neurons), containing 440 segments for 44 neurons sampled in five PIX experiments,

110 segments for 11 IO neurons sampled in two CBX experiments and 550 segments for
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Sensitivity Sensitivity
FV Rank MI gi gc FV Rank MI gi gc

ACG1 1 1.76 +++ n ACG15 14 0.48 + +
FR 2 1.41 +++ n ACG17 15 0.42 + +

ACG6 3 1.06 ++ + MD18 16 0.40 + +
MD2 4 0.89 ++ + ACG20 17 0.38 + +
ACG5 5 0.85 ++ n ACG14 18 0.38 + +
ACG11 6 0.67 + + CCG5 19 0.37 + +
MD1 7 0.65 + + CCG6 20 0.36 + +

ACG10 8 0.62 ++ + CCG1 21 0.34 + +
ACG7 9 0.56 + + MD6 22 0.33 ++ +

LV 10 0.56 +++ + ACG18 23 0.33 + +
MD3 11 0.52 + + MD19 24 0.33 + +

ACG16 12 0.50 + + ACG19 25 0.32 + +
ACG12 13 0.49 + +

Table 3.1: Sensitivity of top ranked twenty-five FVs to changes of gi and gc

List of top twenty-five FVs ranked by mutual information (MI) and its sensitivity to
the changes of gi and gc which indicated by n/+/++/+++ for non/low/medium/high
sensitivity, respectively.

55 IO neurons sampled in seven CON experiments. Then, the FVs of SIM data were

projected into the PCA space for construction of the forward model. We selected top

three PCA axes for the following two reasons. First, eigenvalues were high for the first

two axes (0.27 and 0.21, respectively) and sharply decreased for the third one (0.09),

with the sum of eigenvalues for the top three axes amounting up to 0.57. Second, MI

was accordingly high for the first two axes (1.6 and 1.1 bits, respectively), significantly

reduced for the next axis (0.63) and remained rather low for the remaining axes. These

findings indicate that the top three PCA axes conveyed reliable information on the

gi and gc estimation.

Figure 3-3 indicated that the first two PC components of SIM data mainly con-

veyed information of gi, whereas the third component conveyed information of both

gi and gc. This result suggested that the estimated distribution might differ between

gi and gc. The estimated gi distribution should be sharper than that of gc because of

the good distinguishability of the gi variable.
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Figure 3-3: Maps of top three PC components for gi and gc

3-dimensional maps of the three PCA components plotting the mean of PC scores for
gi and gc by pseudo-color representation. The color-map is normalized by the peak
values.

We also studied the effects of number of FVs for three-dimensional PCA space

as the evidence for Bayesian estimation (8.06⇥ 10

�5 for fifteen FVs, 1.05⇥ 10

�4 for

twenty-five FVs, and 4.88⇥10

�5 for thirty-five FVs), and selected the twenty-five FVs

that exhibited the highest evidence value. They included ACG1, FR, etc., rejecting

ACG2, ACG3, SD, etc. (MI and rating, 0.0001 and 68th, 0.0017 and 67th, and 0.25

and 32nd, respectively). Those FVs were found to convey more than 70% (hatched

area in Figure 3-2) of the gi and gc information (down ward arrow in Figure 3-2).

3.4 Coverage of the SIM data over the EXP data

Finally, we confirm that simulation data can faithfully reproduce the firing dynamics

of experimental data, as shown in the feature space. Bayesian inference requires for

the forward model of SIM data to completely cover the distribution of EXP data,

which was guaranteed by expanding gi and gc ranges for SIM data much wide than

those supposed for EXP. Figures 3-4A-C show that this requirement is satisfied by

mapping SIM (blue symbols) and EXP spike data for PIX, CBX, and CON (red,

green and black symbols) into the 3-dimensional PCA space. We confirmed that SIM

spike data completely cover the distributions of EXP spike data except for a fraction

of PIX data of one animal (red diamonds). Wide distribution of PCA scores for SIM
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data is not due to large variances but because of wider ranges of gi ([0–1.5 mS/cm2])

and gc ([0–2.0 mS/cm2]) for SIM data than those for EXP (SIM and EXP: 3±5.5 and

0±2.6 for PC1, -1.9±3.3 and 0±2.3 for PC2, and -1.2±1.9 and 0±1.4 for PC3).

Figure 3-4: Scatter plots of EXP and SIM spike data in the 3-dimensional PCA space
A-C: 2-dimensional projection views (PC1-PC2; PC1-PC3; PC2-PC3) of the scatter
plots for 440, 550, and 110 spike segments for five, seven, and two animals for the PIX
(red), CON (black), CBX (green) conditions, and over fifteen-million spike segments
for SIM spike data (blue symbols) for 1,271 combinations of gi ([0–1.5 mS/cm2]) and
gc ([0–2.0 mS/cm2]).
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3.5 Discussions

In feature-based estimation techniques, selecting the features is a very difficult task

because of the three following problems. The first problem is to evaluate the com-

plicated dynamics of the EXP data to be able to estimate the goodness of the fit

between the SIM and EXP data. This was resolved by using sixty-eight features

to capture various aspects of neuronal activity. One-third of the FV components

characterize temporal properties, while the rest of the components quantify spatial

properties of the firing patterns. Second, the feature set should be informative on the

model parameters to be estimated. Otherwise, it induces the estimation noise, and

thus impairs the accuracy of the estimation. We resolve this problem by computing

the mutual information of the gi and gc conveyed by each feature. This step has been

shown very effective in retaining rich-information features and eliminating the poor

ones. For instance, the spike distance (SD) [35], which expresses the synchrony of

firing across neurons, seems to be a good candidate. However, we evaluated the SD

for simulation data and found that mutual information of SD is 0.25 bits, which is

significantly smaller than those for MDs (0.9 bits) and CCGs (0.4 bits). Sensitivity

profiles of the SD to gi and gc were also similar to those of MDs and CCGs. The

SD was ranked at 32nd, which is far below the selection criteria for the FVs (only

top twenty-five were selected), we thus ignored the SD in the feature vector. Third,

since all features are derived from a spike pattern, they are highly correlated in such a

way that it would be duplicate information found in another ones. We conducted the

principal component analysis to reduce the redundancy in those features, and finally

selected the top three principal components for constructing the forward models. As

a consequence, we can extract compact but still informative feature vectors from the

spike train data.

There was an additional improvement in construction of the simulation model

compared to our previous study [49], which is the length of the simulation spike

data was significantly extended from 500s to 5,000s. There are two reasons for the

extension. First, we found that the length used for the simulation data in the pre-
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vious study (500s) was insufficient to cover the spatiotemporal dynamics of the IO

spike data, and thus generated 10⇥ longer (e.g, 5,000s) simulation data to ensure

more satisfactory reproduction of the IO firing dynamics (cf. Figure 3-4). Second,

the Bayesian method requires a quite large training data set to infer reliable esti-

mates. Therefore, a total of over fifteen million spike data was generated to construct

the forward model. Altogether, we confirm that the experimental data was reliably

reproduced despite the imperfectness of the model.
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Chapter 4

Results: Validation of the proposed

approaches by simulation data

The inverse problem of estimating model parameters from spike trains needs a stochas-

tic approach to find most likely solutions among many possible ones. Since the brain

exhibits complicated dynamics that is difficult for the model to reproduce, the mod-

eling errors are inevitable. In Chapter 2, we proposed two different approaches: the

Bayesian inference and the minimum-error method. These stochastic approaches are

supposed to reduce the mismatch between the model and the brain, and thus improve

the estimation precision. However, nature of the inverse problem makes it impossible

to verify estimation performance in theirs application to experimental data. Valida-

tion of the previously developed methods is thus desired. Adopting the same task

of estimating two conductance values in the IO network model, in this chapter, we

utilize simulated spike data as the test data. Unlike the experimental data, the under-

lying conductance values are known for the simulation data, which are thus suitable

for validation purpose. We confirmed that both the minimum error and the Bayesian

methods are suitable for resolving the inverse problem despite the imperfectness of the

model, but the segmental Bayes is strongly recommended for highly non-stationary

spike data.
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4.1 Validation of the minimum-error method

In the previous study [49], we developed the minimum-error method to estimate the

two parameters from IO spike data. We found that the simulated neurons did not

perfectly reproduce the firing dynamics, and thus divided the experimental spike data

into short time segments and estimated two model parameters for each time segment

by minimizing the distance between the simulated and experimental spike data. Then,

the distribution of the estimated parameter values from all segments was treated as

a population of estimates. This simple algorithm worked fairly well, as indicated

by the extremely small errors between the experimental and simulation spike data

in the feature space. Here, we perform a simple validation of the minimum-error

method using simulation data. Three representative conductance values that display

qualitatively different firing dynamics were selected to generate the test data. The

results for the test data demonstrated that the minimum-error method is effective for

resolving the inverse problem [17].

4.1.1 Test data sets

For three representative model parameter sets of (gi,gc) = (0.4,1.4) (]1), (1.4,1.4)

(]2), and (1.4,0.4) (]3), we simulated the test spike data for validation. The three

parameter sets were selected for the following two reasons. First, they exhibited

firing dynamics significantly different from each other. Second, they imitate the three

types of experimental conditions, i.e., administration of GABA blocker picrotoxin

(PIX) and gap-junction blocker carbenoxolone (CBX) and their control (CON), in

our previous study [49]. We applied the minimum-error method to estimate gi and gc

from the test spike data and evaluated the estimation accuracy as the absolute error

between the estimated and true parameter values.

4.1.2 Quantitative analysis of test data

Raster plots are drawn in Figure 4-1 for spike trains in 50 s for three representative

neurons in the test data. While neurons under condition ]1 constantly fired at a very
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Figure 4-1: Spike trains of the test data sets
Raster plots in 50s of three representative neurons in the test data sets (]1, red traces,
]2, black traces, and ]3, green traces)

Figure 4-2: Five major features of test spike data
Five major features (FR, LV, ACG1, CCG1, and MD2) extracted from spike data of
9 neurons in the three condition. Each feature was normalized by the averaged value
of the ]1 data
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high frequency (> 1.5 Hz), the firing rates of neurons in the other two data sets were

rather low (< 0.2 Hz). This should be because increasing the inhibitory synaptic

strength gi makes the neurons fire less frequently.

Next, we analyzed the firing dynamics of the test data in terms of the five major

features averaged over nine neurons under the three conditions (]1, ]2, ]3) (Figure 4-

2). For three features (FR, CCG1, and MD2), condition ]1 showed significantly

higher values than for other conditions, whereas the situation was opposite for the

other two features (LV and ACG1). These changes in the features indicate that the

firing dynamics became more frequent and more regular in the individual neurons

and more synchronous across the neurons under condition ]1.

4.1.3 Parameter estimation for the test data

We applied the minimum-error method for 50 s spike trains in the test data sets and

separately calculated the accuracy as the absolute difference between the estimated

and true parameter values of gi and gc. Figure 4-3 shows the mean and standard

deviation of the errors in gi and gc estimates for the test data. Errors of gi esti-

mation for all three test data sets were significantly smaller than those of gc, being

approximately 8% and 35% of the parameter range, respectively.

The analysis of variance (ANOVA) indicated that there were significant differences

of the gi and gc errors across both factors: the type of parameters (gi or gc) (p =

1.43 ⇥ 10

�29) and the parameter values among test data sets (p = 5.84 ⇥ 10

�11)

(Table 4.1). These results indicate that the accuracy of the minimum-error method

depends upon both the types and the values of the parameters to be estimated. It

should be noted that the error is relatively large for the gc estimates. Since gc controls

coupling among the neurons, the level of synchrony, such as CCG1, might contain

useful information on the gc value. As indicated by CCG1 in Figure 4-2, the level

of synchrony does not change too much among the three data sets (]1, ]2, ]3). This

might be the reason why the gc estimates were not particularly accurate.
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Figure 4-3: Estimation errors for nine neurons in the test data
Errors of gi (A) and gc (B) estimated by the minimum error method for 50s spike data
of 9 neurons. Asterisks represent the significance level by t-tests across the conditions.
**p < 0.001, ***p < 0.0001.

]1 ]2 ]3

gi 0.05± 0.01 0.12± 0.02 0.22± 0.02

gc 0.37± 0.04 0.48± 0.04 0.75± 0.07

F(]1,]2,]3) 25.54 (p = 5.84⇥ 10

�11)
F(gi,gc) 159.72 (p = 1.43⇥ 10

�29)

Table 4.1: Estimation errors of gi and gc for test data

4.1.4 Dependence of the estimation error on the spike data

length

We further investigated the effect of the spike data length on the estimation accuracy.

The parameters were estimated under different settings of the data length, which was

varied from 50 s to 500 s. These data lengths were comparable to the recording

time of the experimental data in our previous study [49]. Figure 4-4 indicates that

increasing the spike data length enhanced the estimation accuracy for both gi and

gc. The amount of improvement evaluated over 500 s were about 50% for gi esti-

mates (Figure 4-4A) and nearly 30% for gc estimates (Figure 4-4B) compared with

those evaluated over 50 s. This result confirms that the length of 500 s used for the

experimental data in our studies was long enough to obtain reliable estimates.
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Figure 4-4: Dependence of the estimation error on spike data length
Dependence of the estimation errors of gi (A) and gc (B) on the spike data length
which varied from 50s to 500s. Means (solid trace) and standard deviations (error
bars) are of 10 trials.

4.1.5 Conclusions

In this simulation study [17], we attempted to verify the minimum-error method

using simulated spike data as the test data sets. Since the true values of gi and

gc in the test data were known, it was straightforward to evaluate the estimation

errors. Two important results were obtained from our study. First, the accuracy of

the minimum-error method was found to strongly depend on the firing pattern of the

neurons. Synchronous pattern is important to detect changes in gc, whereas irregular

firing pattern is useful in detecting changes in gi. Second, longer spike data can

significantly improve the performance of the estimation. In conclusion, we argue that

the minimum-error method is effective for resolving the ill-posedness of the inverse

problem despite the imperfectness of the model.

4.2 Validation of the segmental Bayes

In Chapter 2, we proposed a stochastic approach to reduce the modeling errors by

allowing the parameter values to be varied in time segments. In this segment-wise
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approach, the parameters were firstly estimated segment by segment. This relaxes the

condition of the parameter search and thus enables to capture the complicated firing

dynamics of experimental spike data. The segmental estimates were then integrated

by a hierarchical Bayesian framework, resulting in a single estimate. As a conse-

quence, the segmental Bayes has been shown to minimize the fitting error between

experimental and simulation data in the feature space.

In this section, we aim to confirm the superiority of the segmental Bayes using

simulation data as the test data. The verification results indicated that the segmental

Bayesian inference minimized estimation errors than the conventional Bayesian infer-

ence or the minimum error method. Robustness of the segmental Bayesian approach

against highly non-stationary dynamics of the spike data was also confirmed. It thus

provides an effective approach to resolve the inverse problem even when the model is

an imperfect representation of the experimental data.

4.2.1 Manipulate non-stationarity for the test data

The basic idea of the segmental Bayes is to deal with non-stationary dynamics of the

experimental spike data. Such non-stationarity arises typically from high-dimensional

spatio-temporal system. Unfortunately, our mathematical model was not complicated

enough to produce such non-stationary dynamics. Figure 4-5 shows the firing rate

extracted from spike trains of representative 13 CON and 9 SIM neurons. While

exhibiting a comparable mean firing frequency (around 1Hz), the SIM neurons tend

to fire periodic and stable in time, as well as there is not much different in firings

among those neurons (standard deviation of the firing frequency across time and

neurons, 0.23 and 0.30, respectively). By contrast, firing frequency of EXP neurons

vary strongly in both time and space (0.28 and 0.68). This result confirms that the

simulation failed to precisely reproduce the non-stationarity of EXP data, and thus

was not suitable for verifying the segmental Bayes.

To overcome the aforementioned issue, we manipulate the test data so that it

imitates the firing dynamics of EXP spike data as follows. Suppose that the test

spike data was selected at a parameter value g = (gi, gc), from which we generate
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Figure 4-5: Firing rate of experimental and simulation neurons
Firing rate averaged over 13 CON (black trace) and 9 SIM (blue trace) neurons.
Shaded area represents standard deviation across those neurons.

500s spike trains. Unlike the simulation of the forward model in which the parameter

value was fixed, the value of g in the simulation of test data was adjusted in every

50s. The adjusting values of g were randomly chosen from the normal (Gaussian)

distribution N(g, �

2
) with the mean g and the variance �

2. Here, � can be regarded

as a parameter to control the level of non-stationarity in the test data. Then, the

PCA scores y of the test data is evaluated as mentioned previously (cf. Methodology

2.2.1). We conventionally define the standard deviation of the first PCA score of y

as the non-stationary level. It is worth noting that simulating non-stationarity in the

test data is independent to the construction of the forward model.

It is very important to investigate the dependence of non-stationary level of the

test data on the parameter �. Figure 4-6 indicates that increasing the variance param-

eter � monotonically enhanced the non-stationarity of the test data. The amount of

improvement evaluated with � = 0.3 (2.77±0.8) and � = 0.5 (3.31±1.01) were about

113% and 155%, respectively, compared to that evaluated with � = 0.1 (1.3± 0.38).

The result specifies that the test data was reliable to elicit advances of the segmental

Bayes in estimating parameter for high non-stationary spike data.
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Figure 4-6: Dependence of non-stationary level on the parameter �
Solid and shaded area, mean and standard deviation over 100 trials at each � in the
range of ([0.1–0.5]).

4.2.2 The estimation error for the test data

For each test data, we applied three different approaches to estimate the parameter

values (gi and gc). They are the segmental Bayes, the non-segmental Bayes and

minimum error method. The test data sets were generated by a random set of 100

parameter values g = (gi, gc) for varied parameter � in the range [0.1–0.5].

Figure 4-7 shows the absolute differences between the estimated and true pa-

rameter values of gi (Figure 4-7A) and gc (Figure 4-7B), independently. Segmental

Bayes outperformed both non-segmental Bayes and minimum error method for gi

and gc estimation for all non-stationarity levels. These results are consistent with

our view that the segmental Bayes minimizes errors in gi and gc estimates because

of the non-stationary firing dynamics. For the two comparative approaches, there

was a tendency that increasing the non-stationary level of the test data decreased the

accuracy of both gi and gc estimation, whereas it was not so for the segmental Bayes

(Figure 4-7B). This finding indicates that segmental Bayes is strongly robust against

the non-stationarity of the spike data.
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Figure 4-7: Estimation errors by three approaches
Estimation errors of gi (A) and gc (B) using the segmental Bayes (Seg, solid trace),
the non-segmental Bayes (NSeg, dashed trace) and minimum error method (MPE,
dotted trace). Error bars are standard deviations across 100 trials.

4.2.3 Robustness of the segmental Bayes

Finally, we tested the superiority of the segmental Bayesian inference over the two

comparative approaches in terms of the combined estimation error (Euclidean dis-

tance between the true and estimated values in the (gi, gc) space). The magnitude

of the estimation error was smaller for the segmental Bayesian inference (Figure 4-

8) than that for non-segmental Bayes and minimum error method across the three

non-stationary levels. The statistical significance of the estimation errors was largest

(p = 4.6⇥ 10

�10 and p = 2.3⇥ 10

�24 by t-tests between Seg-NSeg and Seg-MPE, re-

spectively), moderate (p = 6.9⇥10

�5 and p = 1.3⇥10

�23) and minimum (p = 0.5 and

p = 1.1⇥ 10

�14) for � = 0.5, � = 0.3 and � = 0.1 values, respectively, corresponding

to the level of the non-stationarity of the test data sets. These findings confirm that

segmental Bayesian inference performs much better than the other methods in cases

of highly non-stationary spike data.
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Figure 4-8: Robustness of the segmental Bayesian inference to the non-stationarity
Superiority of segmental Bayesian method (Seg, solid columns) over two other meth-
ods (NSeg, hashed columns and MPE, dotted columns) at three non-stationary levels
of test data sets. The non-stationary level of the test data (blue trace) is from the
results of Figure 4-6. Asterisks represent the significance level by t-tests between
Seg-NSeg and Seg-MPE. ***p < 0.0001.

4.2.4 Conclusions

We attempted to verify the segmental Bayes approach using simulated spike data as

the test data sets. Due to a rather low complexity of the model, the simulation data

used for constructing the forward model is not suitable for the verification purpose.

We thus manipulated the non-stationarity in the test data by adjusting the parameter

values during the simulation. Since the true values of gi and gc were known in the test

data, it was straightforward to evaluate the estimation errors. The two important

findings in our previous study were confirmed from this study. First, segmental Bayes

significantly reduced the estimation errors compared to the two comparative methods.

Second, it was robust to the non-stationarity of the spike data. These results suggest

that segmental Bayes is highly recommended for estimating the model parameters

from spike data of real neurons that usually exhibits highly non-stationary dynamics.

In conclusion, we argue that the segmental Bayesian inference is a useful tool to

resolve the inverse problem even in the presence of the imperfectness of the model.
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Chapter 5

Results: Parameter estimation for

experimental spike data

The present study aims to estimate the conductance of the inferior olive (IO) neurons

from spike train data using the network model simulation, which is confronted by

various mismatch problems in the system complexity between the model and experi-

mental data. The first is the granularity-hierarchy mismatch. The experimental spike

data are generated by the network while the parameters to be estimated exist at the

synapses. The second is the degrees of freedom mismatch. The real IO conveys far

more complicated structures with huge degrees of freedom than those for the model,

the number of IO neurons being at least four orders of magnitude greater than that for

the model. The third mismatch is that IO firing dynamics are highly non-stationary,

showing chaos, oscillations and other non-stationary properties [58], while those of

the model convey rather low non-stationarity. Therefore, we cannot expect that the

network model can perfectly simulate the experimental data.

In Chapter 2, we introduced a novel methodology to resolve the inverse problem

in the presence of the imperfectness of the model. Given the experimental spike train

in three different conditions, we extracted twenty-five features selected from the mu-

tual information calculation, conducted PCA to reduce the redundancy among those

features, and then selected top three PC components for the estimation purpose. In

this chapter, we show the estimations for the experimental data using three differ-
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ent methods: the segmental Bayes, the non-segmental Bayes which conventionally

estimates gi and gc for the entire spike data, and the minimum error method, which

determines the estimates as the closest match in the PCA space. Because of the

nature of the inverse problems, in which the true parameter values are unknown, we

evaluated the performance of these methods by the distance in the PCA space be-

tween the experimental data and the simulation data generated by the corresponding

estimated parameters. The segmental Bayes was found to outperform the two com-

parative methods by minimizing the PCA error. The non-stationarity is coherently

in agreement with the performance of the three methods, being high, medium and

modest for the segmental Bayes, the non-segmental Bayes, and the minimum error

method, respectively. We argue that segmental Bayes is an effective tool to esti-

mate the model parameters from spike data of real neurons which typically exhibit

complicated firing dynamics.

5.1 Experimental data

It is important to note that the Purkinje cell’s complex spikes bear a one-to-one

relationship to IO neuronal spikes, and thus can be used as proxies for IO spike

trains. We used the spike data collected from two picrotoxin (PIX; [37, 36]) and one

carbenoxolone (CBX; [9]) studies. These studies sampled the IO spike as the complex

spikes of Purkinje cells and blocked the inhibitory and gap-junctional conductance

(gi and gc) of IO neuronal circuitry by application of PIX and CBX. PIX and CBX

experiments contained the spike data of 500-second-long samples from 136 and 35

neurons, respectively (Table 5.1).

Figures 5-1 shows the CS spike trains of nine representative PCs (1–9) in the

CBX, CON and PIX conditions. The firing frequency of CS activity became much

more frequent (50% increase) and oscillatory in the PIX than the CON condition

and vice versa (50% decrease) in the CBX condition. Notice also that the firing

dynamics significantly fluctuate: dense at certain times and sparse at others. Such

non-stationary firing dynamics makes it very difficult for the model to reproduce.
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Animal No. EXP condition Neurons Reference
1 CBX 22 [9]
2 CBX 13
3 PIX 16 [37, 36]
4 PIX 25
5 PIX 42
6 PIX 32
7 PIX 21

Table 5.1: Experimental spike data

Figure 5-1: The spike trains in 50s of nine representative EXP neurons in the three
conditions
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5.2 Feature evaluation for experimental spike data

Next, we analyze the firing dynamics of the EXP spike data in terms of the feature

vectors that were selected by calculating the mutual information between each feature

and the parameter space (cf. Table 3.1). Figure 5-2A shows the five major FVs (FR,

LV, ACG1, CCG1 and MD2) averaged for 660 CON (for 440 PIX and 220 CBX

experiments), 220 CBX, and 440 PIX spike segments each for 55 (44 and 11 for PIX

and CBX experiments), 11, and 44 IO unit ensembles, respectively. Three of the

five FVs (FR, CCG1 and MD2) increased in the PIX than in the CON condition,

and vice versa for the CBX condition, whereas LV and ACG1 showed the opposite

change, being lower in the PIX and higher in the CBX condition. The changes in the

FVs elucidate the firing dynamics, which became more frequent in the individual IO

neurons and more synchronous across the IO neuronal ensemble under the PIX than

the CON condition, and showed the opposite changes under the CBX condition.

Figure 5-2: Feature evaluation of the EXP spike data
A: Five major features (FR, LV, ACG1, CCG1 and MD2) extracted from the spike
data of CBX (green columns), CON (black columns) and PIX (red columns) condi-
tions. The color conventions of EXP data are the same in the following figures. B:
scatter plots of EXP data in 2D PCA.

We conducted PCA to obtain a simpler measure of the firing dynamics evaluated

by the twenty-five FVs for CON, PIX, and CBX conditions. The calculation of

eigenvalues indicated that the first two orthogonal components explained a major
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part of the firing dynamics (first and second components, 0.27 and 0.21, respectively)

and sharply decreased for the third one (0.09), with the sum of eigenvalues for the top

three axes amounting up to 0.57. The EXP spike segments for the CON, PIX, and

CBX conditions formed three clusters along the first PCA axis, with an overlap of the

CON and CBX clusters (Figure 5-2B). The analysis of variance (ANOVA), however,

indicated that there was significant difference of the top three PC components across

the three conditions (p = 2.17⇥ 10

�41, Table 5.2).

Condition CBX CON PIX
PC1 4.41±2.21 0.93±1.27 -2.27±1.71
PC2 -0.27±0.98 -0.79±1.24 1.05±2.98
PC3 -0.4±1.46 0.28±0.88 -0.25±1.91

F(CBX-CON-PIX) 96.34 (p = 2.17⇥ 10

�41)

Table 5.2: ANOVA of the top three PC components

Figure 5-3 shows the contribution, defined as the product between the FV values

and the coefficients of the FVs for the twenty-five selected FVs to the first PCA

component. The major contributors to the PCA scores, such as FR, LV, and CCG1

were positive except for LV and MD2, which was negative. This finding is consistent

with the locations of EXP spike segment clusters for CON (middle), PIX (leftmost),

and CBX (rightmost) conditions in Figure 5-2B, and also the changes of the FVs for

those conditions in Figure 5-2A.

5.3 Effect of the neuronal constraint

In this section, we demonstrate how the segmental Bayes incorporates the neuronal

and commonality constraints as estimating the parameters. We found that the EXP

spike data were significantly non-stationary (cf. Figures 5-7B-D), which may cause

errors in the Bayesian estimation of gi and gc. Those errors were minimized by the

segmental Bayes whereby the entire spike data for each IO neuron was fractionated

into ten segments. Bayesian estimation of gi and gc was conducted segment by seg-

ment, under the commonality constraint that the gi estimates agree between CBX
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Figure 5-3: Contribution of the twenty-five features to the first PCA component
Contributions of selected twenty-five feature vectors to the first PCA axis. The mean
and SD were computed for all PIX, CON, and CBX spike segments.

and CON, and the gc estimates between PIX and CON, respectively, and the seg-

mental estimates were finally merged into a single estimate for every neuron under

the neuronal constraint assuming a single gi and gc for each neuron.

Figures 5-4A-D are pseudo-color representation of the posterior probability of gi

and gc estimated for a representative IO neuron by the Bayesian inference under the

commonality and the relaxed neuronal constraint (� = 10, cf. Equation 2.15). The

estimates were diffused broadly for all of the three conditions probably because of the

fluctuations of the segmental estimates. The probability of the gi and gc estimate for

the IO neuron for the three experimental conditions showed broad and overlapping

distributions (Figures 5-4E and F).

By contrast, the gi and gc of the same IO neuron as in Figure 5-4 estimated by

Bayesian inference under the optimized neuronal constraint (� was optimized in the

range of [0.1–0.5]) were sharper, with the peak of (gi, gc) at (0.75, 0.75 mS/cm2) for

CBX, at (0.1, 1.3 mS/cm2) for PIX and at (0.75, 1.25 mS/cm2) and (0.6, 1.3 mS/cm2)

for CON-CBX and CON-PIX, respectively (Figures 5-5A-F).
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Figure 5-4: Segmental Bayesian estimates of gi and gc with relaxed commonality
constraints
A-D, posterior probability of the gi and gc estimate for representative IO neurons
under the relaxed commonality constraint (� = 10, Equation 2.16) for the two exper-
imental (CBX and PIX) and two corresponding control conditions (CON-CBX and
CON-PIX). E and F, the profiles of gi and gc probability of the neurons plotted in
A-D.
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Figure 5-5: Segmental Bayesian estimates of gi and gc with optimized commonality
constraints
A-D and E-F, similar posterior probability plots of gi and gc to those in Figure 5-4
but with the optimized commonality constraints.
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5.4 Estimations by segmental, non-segmental Bayes

and the minimum error method

Next, we compare the estimations of the EXP data by the segmental, non-segmental

Bayes and the minimum error methods. Figures 5-6A and B show the ensemble

distributions of gi and gc estimated by the segmental Bayesian inference for the en-

tire population of IO neurons in comparison with those by the non-segmental Bayes

whereby gi and gc were estimated at once across the entire length of spike data (Fig-

ures 5-6C and D) and the minimum error method (Figures 5-6E and F). The gi and gc

estimates by the segmental Bayes essentially agreed with those by the non-segmental

Bayes with the tendency for the segmental Bayesian inference to give a sharper dis-

tribution than the non-segmental Bayes. The gi value peaked at 0.6–0.7 mS/cm2 for

CBX and CON and at 0.1–0.2 mS/cm2 for PIX (Figures 5-6A and C) and the gc for

PIX and CON was 1.3 mS/cm2. The gc value for CBX was distributed diffusely across

a wide range. We noted that the segmental Bayes gave rather conflicting estimates

of gc between the two animals. In one animal there was a marked leftward shift of

the peak between the CBX and CON conditions (with a reduction of gc, filled area

in Figure 5-6B) and conversely a significant rightward shift in other animal (open

area). The non-segmental Bayesian inference also showed the same results, although

the difference was less clear. The same tendency also found in estimations using the

minimum error method (Figures 5-6F). The reason for this discrepancy between the

two animals is unclear. CBX is a nonspecific blocker of the gap-junctional conduc-

tance and may act on other ionic conductances than the gap-junction, affecting the

gc estimates. The IO units were sampled across many micro-zones of the cerebellum

on which the gap-junctional conductance was dependent, being high and low in the

same and different micro-zones, respectively. This heterogeneity in the gc population

may also be the cause of the discrepancy.

The estimates of gi and gc by the segmental Bayesian inference are in partial

agreement with those of the minimum error method. Those points of agreement

were the gi for CON (0.54±0.18, 0.55±0.11 mS/cm2 for the segmental Bayes and
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Figure 5-6: Estimates for the entire IO neuronal population
A-B: the average gi and gc estimates by the segmental Bayesian inference for the
entire IO neuronal population. C-D: those similar to A and B but by non-segmental
Bayesian inference where the posterior probability was estimated across the entire
spike train of the individual IO neurons. E-F: estimates by the minimum-error
method. Filled and open areas in green in B, D and F represent the estimates for the
two different animals in the CBX condition.

72



the minimum error method), PIX (0.1±0.04, 0.38±0.32 mS/cm2) and CBX condi-

tions (0.65±0.15, 0.56±0.08 mS/cm2), and the gc for the CBX condition (1.24±0.6

and 1.36±0.46 mS/cm2). Those of disagreement were the gc for the CON and PIX

conditions (1.21±0.2 and 1.47±0.43 mS/cm2).

5.5 Robustness of the segmental Bayes

We hypothesize that the segmental Bayes minimizes the errors of gi and gc estimation

because of the failure for the forward model to reproduce the non-stationary dynamics

of IO firing. This hypothesis was tested by comparing the performance of the seg-

mental and non-segmental Bayes in terms of the PCA error rate (the difference in the

PCA scores between the EXP and the corresponding SIM spikes that were generated

by the gi and gc estimated for those EXP spikes). PCA errors for the segmental Bayes

were smaller than the non-segmental Bayes across the three experimental conditions

(F = 14.18, p = 0.0002), the difference being most significant for PIX, less for CON,

and insignificant for CBX (cf. solid and hatched columns Figure 5-7A). Correspond-

ingly, the non-stationarity of the EXP spikes estimated as the Kolmogorov-Smirnov

(KS) difference between the distribution of the inter-spike intervals for the EXP spikes

and that of Poisson and the standard deviations of the firing rate ranked in the same

order as that for the significance of the PCA error difference between the segmental

and non-segmental Bayes, being high, medium and low for the PIX, CON and CBX

conditions (cf. Figures 5-7A with C and D), respectively. These findings are consis-

tent with our view that the segmental Bayes minimizes errors in gi and gc estimates

because of the non-stationary dynamics of IO firing. It is notable that the corre-

sponding SIM spikes rather faithfully reproduced the non-stationarity of the EXP

spikes for the two measures across the three experimental conditions, while they were

significantly smaller for the LV (Figure 5-7B). This finding indicates that the present

simulation failed to precisely reproduce the non-stationarity estimated by the LV.

Finally, we confirmed the superiority of the segmental Bayesian inference over the

minimum error method used in our previous study [49] in terms of the PCA error rate.
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Figure 5-7: Performance of the segmental and non-segmental Bayesian inference and
the minimum PCA error method and the non-stationarity of EXP and SIM spike
data
A: PCA error rates of the gi and gc estimates for the segmental (solid columns, Seg)
and non-segmental (hatched, NSeg) Bayesian inference and the minimum PCA error
method (dotted, MPE) averaged for the entire IO neurons for CBX, CON and PIX
conditions. The colors represent the three experimental conditions and the texture
patterns represent the errors for the three methods of gi and gc estimates. B-D: Non-
stationality of the spike data estimated as the three metrics. B: LV; C: KS distance
of the ISI distribution for the EXP (solid columns) and SIM (blank) spike data from
Poisson distribution; D: standard deviation of the instantaneous firing rate. The
colors represent the three experimental conditions and the texture patterns represent
EXP and SIM data.
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The magnitude of the error rate was smaller for the segmental Bayesian inference

(solid columns in Figure 5-7A) than that for our previous study (dotted columns)

across the three experimental conditions (statistical significance, F = 23.37, p <

0.0001 by ANOVA), and the statistical significance of the error rate was largest (p <

0.0001 by t-test), moderate (p < 0.01) and minimum (p > 0.7) for the PIX, CON and

CBX conditions, respectively, corresponding to the degree of the non-stationarity of

the EXP spikes. It is notable that the average number of mixed Gaussians per (gi, gc)

grid of the forward models was three orders of magnitude smaller in the segmental

Bayes (n = 8.55) than that in our previous study (n = 12,600) and slightly larger

than that for the non-segmental Bayesian inference (n = 2.3), indicating that there

was over- and under-fitting in the previous study and the non-segmental Bayesian

inference, respectively, compared with the segmental Bayesian inference used in the

present study.

5.6 Discussions

The goal of the present thesis was to resolve the inverse problem estimating the two

important parameters of the IO network (i.e., gi and gc) by fitting the firing dynamics

of the model network with those of the IO network. The parameter estimation was

confronted with a huge mismatch of the model network with the brain network in the

system complexity such as the granularity, the hierarchy, the degrees of freedom and

the non-stationary dynamics. Consequently, the inverse problem becomes severely ill-

posed [52, 1], and necessitates some stochastic approaches that find the most likely

solution among many possible ones according to various error functions [13].

In [49], we defined the error function as the distance between the experimental

and corresponding simulation spike data in the PCA space (PCA error), constructed

of various feature vectors (FVs) that are derivatives of the ISIs of the experimen-

tal spike data such as the firing rate, the auto- and cross correlation, the minimum

distance (MD), the spike distance (SD), and the local variance (LV), representing

the spatiotemporal firing dynamics and contained strong redundancy. In that study,
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the FVs were determined for short spike segments (50s) to compensate for the non-

stationarity of the experimental spike trains [15, 54], PCA was conducted to remove

the redundancy, and the gi and gc were determined as the ones giving the mini-

mum PCA errors to the experimental spike segments. The minimum error method

can be regarded as the extreme case of Bayesian inference where the forward model

translating the model parameters into the spike features was constructed for each

spike segment. This approach is equivalent to assuming different Gaussians (i.e.,

parameter-spike feature translation mechanisms) for every spike segment of the same

single neuron and may be regarded as over-fitting.

A recent study [18] maintained the segmental approach and corrected the over-

fitting by the hierarchical Bayesian inference that estimated the gi and gc by fitting

Gaussians to every spike segment and merged them into single gi and gc estimate

according to the neuronal constraint that assumes the same gi and gc for a single

neuron (Figures 5-4 and 5-5). This view is supported by the fact that the number

of Gaussians used for construction of the forward model is three orders of magnitude

smaller for the present segmental Bayesian inference than that for the minimum error

method. The segmental Bayes could be regarded as a way to minimize estimation

errors of gi and gc due to the errors of the current forward model to precisely reproduce

the non-stationality of IO firing. Allowance of fluctuations for segmental gi and gc

estimates is equivalent to recent methods [24, 20] to reduce parameter estimation

errors due to modeling errors by assuming system noise.

The overall performance of the segmental Bayesian inference estimated as the PCA

error that is the distance between the experimental and corresponding simulation

spike segments in the PCA space was generally higher across the three experimental

conditions than those for the minimum PCA error method and the non-segmental

Bayesian inference that estimated the gi and gc across the entire spike length (Figure

5-7A). The statistical significance of the difference was high, modest and minimal in

the PIX, CON and CBX conditions, respectively, in correspondence with the non-

stationarity of the IO firing evaluated as the three metrics, including the KS distance

of the ISIs from Poisson distributions, the LV, and the standard deviation of the
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firing rate (Figures 5-7B-D). These findings indicate that segmental Bayesian inference

performs better than the other two methods in cases of highly non-stationary firing

dynamics.

Experimental evidence for the coupling modulation from inhibition from DCN

was previously reported [7]. We found that gi was roughly decreased 80% under PIX

condition. Under simplified assumptions, the effective coupling conductance geff

between two neighboring IO cells was computed from the spine neck conductance

gspine, inhibitory conductance gi and gap-junctional conductance gc as follows [26]

geff = (gspine ⇥ gc)/(gc + gspine + gi) (5.1)

As a result, PIX increased 30% of geff due to inhibition block. That was con-

sistent with previous studies [26, 49] supporting the direct role of inhibition input

in modulation of coupling strength. Since the inhibition originated from DCN, the

strength of the coupling and thus the oscillatory and synchronous activities displayed

by IO cells presumably depends on the modulation of DCN via plastic processes in

the cerebellar cortex and the nuclei. From that viewpoint, the PC-DCN-IO triangle

may act to realize such modulation scheme in two phases of cerebellar learning as

follows. In the early phase, the motor commands are strongly disturbed and far from

desired ones. A strong coupling allows a widespread synchrony among IO activities

and potentially lead to a massive change in the weights of parallel fiber-Purkinje cell

synapses, resulting a fast but coarse learning in the cerebellar cortex. Inversely, in the

late phase of learning, as the motor error is small, the PC activities become weak and

occur in only a restricted group of PCs. The inhibited PCs activate the neurons in

the nuclei and, as a consequence, the excited DCN release strong GABAergic signal

to decrease the coupling between IO cells via shunting inhibition for only fine tunes

in motor commands, resulting a sophisticated learning. In [64], we examined the idea

of adaptive coupling in cerebellar learning and found that such a decrease in coupling

strength can be beneficial for motor learning, since efficient coupling strength depends

upon the magnitude of the error signals.
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Chapter 6

Conclusions

6.1 Summary

Rapid progress in computer science now enables simulations of neuronal networks

with high complexity. Advanced technology in neuroscience enables sampling of a

massive amount of neuronal data from the brain. Combining technologies across

two fields of science to understand the computations in the brain still face severe

difficulties mainly because of the fact that the technologies of both fields are still rather

simplistic compared to a huge complexity of the brain network. It is nevertheless a

big challenge in computational neuroscience to construct a brain model that simulates

brain computations.

Modeling of the brain requires to constraint number of model parameters, which

are typically hand-tuned by experts. This process is time consuming and restrictive.

Estimation of the model parameters directly from the observed neuronal activity

is thus desired. Traditionally, parameter estimation of quantitative model utilizing

experimental data has been investigated in relatively well-defined situations where hi-

erarchy, granularity and degrees-of-freedom of the experimental data, the quantitative

model and the parameters to be estimated are similar. If they are not matched well

with each other, parameter estimation problems are considered impossible to solve, or

at least severely ill-posed. For example, estimating ionic conductance of some active

channels in a compartment model of Purkinje cells while reproducing temporal wave-
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forms of intracellular membrane potential belongs to the former class since the model,

measured data and estimated parameters all belong to a single-cell intracellular level

of hierarchy. However, the current problem to estimate two conductance values of an

IO network of compartment-model neurons based on spike timings of a number of

neurons belongs to the latter class for the following reasons. First, the experimental

data is at a network level while the estimated parameters are at a synapse level and

they are far apart in brain hierarchy. Second, the IO network of compartment-model

neurons are far more complicated and have larger degrees of freedom compared with

the experimental data and estimated parameters. Third, because of the complexity of

the real IO network, we cannot expect that the simple network model can perfectly

reproduce the observed experimental data. Overall, there is no simple one-to-one

mapping between the experimental data and the estimated parameters. Apparently,

a class of estimation algorithms, which are characterized as deterministic methods,

is not well suited to the current problem, and in a broader sense, the latter class of

severely ill-posed estimation problems.

The primary goal of our study is to estimate the two parameters, gap junctional

(gc) and inhibitory (gi) conductance, from the IO spike data sampled under three

experimental conditions (CON, PIX and CBX). We constructed 3⇥3 neuronal net-

work model and simulated firing of IO networks by changing gi and gc by 0.05 steps

for a range of [0–1.5 mS/cm2] and [0–2.0 mS/cm2], respectively. We evaluated the

firing dynamics of EXP and SIM spike data using sixty-eight FVs including firing

frequency, local variation, auto- and cross-correlogram, minimal distance and spike

distance. The FVs were rated by the mutual information that the FVs of SIM spike

data conveyed concerning gi and gc and the top twenty-five FVs were selected for

principal component analysis (PCA). The first three PCA components, which to-

gether account for 55% of the total variance, were extracted for construction of the

forward model of Bayes. We confirmed that the distribution of SIM spike data in

the 3-dimensional PCA space completely covers that of the EXP one. The likelihood

function was estimated as the Gaussian mixture model in PCA space based on the

SIM data.
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The Bayesian approach to estimate gi and gc from the spike data contains the two

theoretical difficulties. The first one was that the IO neuronal cross-talk controlling

the firing dynamics depends on the ratio rather than the individual values of gi

and gc. The second one was that IO firing conveys complicated dynamics that are

difficult to be precisely reproduced by the simulation model. We resolved the first

difficulty by the hierarchical Bayes approach introducing the commonality constraint

that gc estimate for PIX spike data equals to that for CON spike data and that gi

estimate for CBX spike data equals to that for CON spike data. The second difficulty

was resolved by the segmental Bayes approach that finds an estimate for each spike

segment rather than the entire spike data, and finally finds a single estimate with a

Gaussian scatter that fits to the ensemble of the segmental estimates. The variation of

the segmental estimates due to the complicated dynamics of IO firing may be cancelled

out by the Gaussian fitting. We studied the effects of the commonality constraint by

comparing the estimates under the regular and relaxed commonality constraint, and

found that the posterior probability becomes much shaper for the Bayes with the

regular than relaxed commonality constraint. We also investigated the performance

of the segmental, non-segmental Bayes, which finds the estimates once across the

entire spike data, and minimum-error method, which directly finds the closest match

in the feature space, by evaluating the PCA error for every gi and gc estimate of the IO

neurons, as the difference of the PCA scores between the EXP spike from which those

gi and gc were estimated and the SIM spike that were generated from those gi and

gc. They were referred to the non-Poisson and non-stationary dynamics of the EXP

spike data, estimated as LV, KS divergence and STD of the firing rate for PIX, CBX

and CON conditions. PCA errors of the segmental Bayes were consistently smaller

than those of non-segmental Bayes and minimum error method for all of the three

experimental conditions. The statistical significance paralleled with the estimates of

the non-Poisson and non-stationality of firing. The posterior probability of gi and gc

for the entire ensemble of the IO neurons showed that gi was low, medium and high,

and conversely gc was high, medium and low for PIX, CON and CBX conditions,

respectively. These findings are consistent with those of the neuroscience that PIX

81



and CBX depress gi and gc, respectively. More specifically, PIX reduced 80% of

gi whereas CBX decreased 10% gc from CON level, supporting the hypothesis that

inhibitory input from DCN is a control mechanism of the oscillatory and synchronous

IO activity.

To further demonstrate its usability, validation of the previously developed ap-

proaches was conducted. By adopting the same task of estimating two conductance

values in the inferior olive network model, we used simulated spike data as the test

data. In contrast to the experimental data, the simulation data are suitable for the

validation purpose because the true parameter values are known. Performance eval-

uation on the test data confirmed that the segmental Bayesian inference provides

smaller estimation errors than the conventional Bayesian inference or the minimum

error methods. Robustness of the segmental Bayesian approach against highly non-

stationary dynamics of the spike data was also observed. All of these findings indi-

cated that the segmental Bayes with the commonality constraint is useful means to

derive reliable estimates overcoming the difficulty of the complicated firing dynamics

and ill-posed problem.

6.2 Contributions

Modeling is a significant task to understand how the brain works even at different

levels of granularity and computational abstraction. Our studies contribute to the

field of computational modeling by developing an advanced model of the IO neurons,

powerful methods for data analysis that is able to capture the structure of statistical

dependence of IO network activity across neurons and time, and a novel framework

for resolving the parameter estimation despite the imperfectness of the model. Those

three major contributions of the present thesis are specifically described as follows.

• Most importantly, we successfully developed a stochastic approach based on the

Bayesian inference to resolve the inverse problem of estimating model param-

eters from spike trains with complicated firing dynamics. There are obviously

several reasons for the system mismatch between the brain and the model,
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such as the degree-of-freedoms, the granularity-hierarchy as well as the non-

stationarity. This huge mismatch inevitably results in modeling errors. To

compensate those errors, the segmental Bayes allows segmental fluctuations in

the parameter estimates and merges the estimates for a single neuron with the

neuronal constraint. It has been shown to significantly reduce the estimation er-

rors in both experimental and simulation data, and also has a strong robustness

against the non-stationarity of the spike data. We thus argue that the segmental

Bayes is a useful tool to evaluate parameters of interest for neuroscience from

experimental spike train data.

• Second, the network model consisting of nine compartmental-detailed neurons

developed in our study is the most realistic model of inferior olive neurons to

date. To the best of our knowledge, there has yet to be an IO model with spines.

The model allows us to investigate the origin of IO firing dynamics even at the

synapse level, specifically, how the interactions between gap-junctional (gc) and

inhibitory (gi) synaptic signals shape IO spiking patterns.

• Third, we also proposed a plausible procedure to characterize important features

of the spike data. The spatiotemporal firing dynamics of the spike data were

evaluated using a set of sixty-eight features. The mutual information of the fea-

ture vectors and the parameter space was conducted to retain rich-information

features and eliminate poor-information ones. The principal component anal-

ysis was also applied to further remove the redundancy among those features.

This three-step procedure allows us to extract compact but still informative

feature vectors of the spike data.

As a final remark, we note that many of the techniques developed in this work

are not limited to the narrow context of inverse problems. For instance, it has been

shown that the stochasticity in the parameter space may have an effect to compen-

sate for the modeling errors, because the fluctuations in the parameter space can

be translated into those in any observation space (e.g., ion channel currents, mem-

brane potentials, spike trains, etc.) by simple mathematical transformation [24, 20].
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Thus, the segment-wise methodology can be applied to effectively constraint model

parameters to the experimental data collected by various electrophysiological tech-

niques, such as the multiple electrode arrays, optical recording using various dyes,

and optogenetic techniques [51, 48]. Alternatively, the simulation model constructed

in our study can be utilized to study the synchronization of the network of coupled

neurons, in which the electrical coupling via gap junctions determines the oscillatory

and synchronous neuronal activities [5, 72]. Our proposed procedure to extract the

spatio-temporal features of the multiple neural spike train data can be also applied

to identify spike events in spike sorting or other spike pattern classification methods

[39, 60]. Therefore, although the framework was developed to motivate the parameter

estimation, its usability is likely to transcend beyond that specific problem.

6.3 Future works

Many attempts have been made to create accurate computer models of distinct parts

of the brain. Still, the difference between predictions of the models and the brain

observables is usually inevitable due to practical challenges. For instance, despite its

most advanced structure, the IO network model in our studies consists of nine neurons,

which are three orders of magnitude smaller than in real IO network. Indeed, we only

constrained two parameters of interest and fixed other parameters as simulating the

spike data. The degrees of freedom of the model are thus far smaller than that

of the brain. One of our future tasks is to develop a more sophisticated model to

bridge the gap in the system complexity between the brain and the model. Among

several available approaches, increasing the number of simulated neurons and adding

new features that characterize the neuronal firing dynamics seem to be plausible and

efficient.

The second option of our future works arises from the fact that the experimen-

tal data of IO neurons used in our previous studies possess two severe limits: the

number of recorded neurons was quite small and its neural network structure was

unknown. Those limitations intensely cause restrictions of exploring neuronal in-
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teractions among IO cells within or across cerebellar micro-zones. Here, different

micro-zones correspond to various functional modules of the cerebellum. To tackle

this issue, we aimed to utilize other experimental data sets which were collected by

a state-of-the-art recording technique, namely, two-photon imaging. The two-photon

imaging can track, in vivo, Calcium concentration activities of hundreds of Purkinje

cells in different cerebellar micro-zones, and provides plentiful neural information for

our analysis of IO firing. The next task is thus to extend our previous studies based

on newly available two-photon data, more specifically, to estimate the gap-junctional

conductance under different conditions and/or different anatomical loci. Furthermore,

computational modeling of cerebellar learning and control based on these estimations

will be a pioneering work in this research field.
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Appendix A

Compartmental model of Inferior

olive neurons

The membrane potential of the soma, dendrite, and spine compartments (Vo, Vd and

Vp) was calculated by

soma:

Cm
dVo

dt

= �
X

INa + IK + ICal + Ih + Ilo + Ido + Isynapse (A.1)

dendrite:

Cm
dVd

dt

= �
X

ICaH + IKCa + Iod + Ild +

4X

i=1

Ipd + Isynapse (A.2)

spine:

Cm
dVp

dt

= �
X

IC + Ilp + Idp + Isynapse (A.3)

A.1 Soma compartment

The structures of the soma compartment exactly followed those of [59]. The change

of somatic membrane potential Vo, which is proportional to the sum of INa, IK , ICal,

Ih, Ilo, Ido, and Isynapse that consists of Ie and Ii, as follows

87



soma:

Cm
dVo

dt

= �
X

INa + IK + ICal + Ih + Ilo + Ido + Isynapse

where Cm is the membrane capacitance 1microF/cm2, and INa, IK , ICal, Ih, Ido, and

Isynapse are the currents across ionic conductances gNa, gK , gCal, gh, go, ge and gi. The

parameter values used in the simulation are summarized in Table A.1. INa is given

by the Hodgkin-Huxley type inward sodium current as

INa = gNam
3
1h(Vo � VNa)

m1(Vo) =
↵m(Vo)

↵m(Vo) + �m(Vo)

↵m(Vo) =
0.1(Vo + 41)

1� exp

⇥
�V

o

+41
10

⇤
�m(Vo) = 9.0 exp


�Vo + 66

20

�

h1(Vo) =
↵h(Vo)

↵h(Vo) + �h(Vo)
⌧h(Vo) =

170

↵h(Vo) + �h(Vo)

↵h(Vo) = 5.0 exp


�Vo + 60

15

�
�h(Vo) =

Vo + 50

1� exp

⇥
�V

o

+50
10

⇤

(A.4)

Outward delayed rectifier potassium current IK is described by

IK = gKn
4
(Vo � VK)

n1(Vo) =
↵n(Vo)

↵n(Vo) + �n(Vo)
⌧n(Vo) =

5

↵n(Vo) + �n(Vo)

↵n(Vo) =
Vo + 41

1� exp

⇥
�V

o

+41
10

⇤
�n(Vo) = 12.5 exp


�Vo + 51

80

�
(A.5)

Low-threshold calcium inward current ICal is described by

ICal = gCalk
3
l(Vo � VCa)

k1(Vo) =
1

1 + exp

⇥
�V

o

+61
4.2

⇤
⌧k(Vo) = 1.0

l1(Vo) =
1

1� exp

⇥
V
o

+85.5
8.5

⇤
⌧l(Vo) =

20 exp

⇥
V
o

+160
30

⇤

1 + exp

⇥
V
o

+84
7.3

⇤
+ 35

(A.6)
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Anomalous inward rectifier current Ih is described by

Ih = ghq(Vo � Vh)

q1(Vo) =
1

1 + exp

⇥
�V

o

+75
5.5

⇤
⌧q(Vo) =

1

exp(�0.086Vo � 14.6) + exp(0.07Vo � 1.87)

(A.7)

Leakage current Ilo is described by

Ilo = go(Vo � Vl) (A.8)

Current Ido flowing from the dendritic compartment to the somatic compartment is

given by

Ido = gdo(Vo � Vd) =

✓
G

soma,dendrite

p

· s
◆
(Vo � Vd) (A.9)

Here, Gsoma,dendrite is the actual soma-dendritic inter-compartmental conductance in

mS. s is the total surface area of a single neuron. The value of Gsoma,dendrite is given

in Table A.1.

A.2 Dendritic compartment

The structure of the dendritic compartment was the same as Schweighofer’s model

except that the gap junction was moved to the spine compartment, and its membrane

potential (Vd) obeys the following differential equation:

Cm
dVd

dt

= �
X

ICaH + IKCa + Iod + Ild +

4X

i=1

Ipd + Isynapse

High-threshold inward calcium current ICah through gCah is given by

ICah = gCahr
2
(Vd � VCa)

r1(Vd) =
↵r(Vd)

↵r(Vd) + �r(Vd)
⌧r(Vd) =

1

↵r(Vd) + �r(Vd)

↵r(Vd) =
1.6

1 + exp

⇥
�V

d

�5
13.9

⇤
�r(Vd) =

0.02(Vd + 8.5)

exp

⇥
V
d

+8.5
5

⇤
� 1

(A.10)
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Outward calcium-dependent potassium current IKCa through gKCa is given by

IKCa = gKCar
2
(Vd � VK)

s1([Ca

2+
]) =

↵s([Ca

2+
])

↵s([Ca

2+
]) + �s([Ca

2+
])

⌧s([Ca

2+
]) =

1

↵s([Ca

2+
]) + �s([Ca

2+
])

↵s([Ca

2+
]) = min 0.00002[Ca

2+
], 0.01 �s([Ca

2+
]) = 0.015

ds

dt

=

s1([Ca

2+
]� s)

⌧s([Ca

2+
])

d[Ca

2+
]

dt

= ICah � 0.02[Ca

2+
]

(A.11)

Leakage current Ild through gd is given by

Ild = gd(Vd � Vl) (A.12)

The inter-compartmental current flowing from the somatic compartment to dendritic

compartment Iod is given by

Iod = god(Vd � Vo) =

✓
G

soma,dendrite

1� p� q

· s
◆
(Vd � Vo) (A.13)

where p is the ratio of the somatic area to the total surface area and q is the ratio of the

total of the four spine surface area to the total surface area. The inter-compartmental

current flowing from the i-th (i = 1, 2, 3, 4) spine compartment to dendritic compart-

ment Ipd is given by

[Ipd]i = gpd (Vd � [Vp]i) =

✓
G

dendrite,spine

1� p� q

· s
◆
(Vd � [Vp]i) (A.14)

A.3 Spine compartment

The spine compartment is added in our IO neuron model. In the spine compartment,

the IO neurons lie next to each other and are coupled by IC as follows:

Cm
dVp

dt

= �
X

IC + Ilp + Idp + Isynapse

90



The current flowing into other cells through electrical coupling IC is given by

[IC ]i = gc ([Vp]i � Vp
next

) (A.15)

Leakage current Ilp is described by

[Ilp]i = gp ([Vp]i � Vl) (A.16)

The inter-compartmental current flowing from one of the spine compartments to

dendritic compartment Idp is given by

[Idp]i = gdp ([Vp]i � Vd) =

✓
G

dendrite,spine

0.25q

· s
◆
([Vp]i � Vd) (A.17)

A.4 Synaptic Inputs

All of the soma, dendritic, and spine compartments receive the excitatory and in-

hibitory synaptic inputs driven by the Poisson spike generators of the mean firing

rate 10 Hz. The number of excitatory and inhibitory synapses are 10, 80, and 10 for

the soma, dendrite, and spine compartments, respectively, driven by Poisson process

spike generators defined as

Isyn(t) =

X

l

gsyn(t� tl)(V � Esyn)

gsyn(t) =

8
<

:
0

gsynm · t · e1�t/tpeak

(A.18)

where tl is the time of the l-th spike time, Esyn = �10mV or �75mV , and gsyn = ge

or gi for the inhibitory and excitatory synapses, respectively. The hyperpolarizing

constant current of Schweighofer’s model was replaced by the inhibitory synaptic

inputs in our model.
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A.5 Parameters of the compartmental model

Parameter Value References
gNa 70.0 mS/cm

2 [59]
gK 18.0 mS/cm

2 [59]
gCal 2.0 mS/cm

2 [58]
gh 0.15 mS/cm

2 [58]
gs 0.015 mS/cm

2 [59]
gCah 4.0 mS/cm

2 [59]
gKCa 35.0 mS/cm

2 [59]
gd 0.015 mS/cm

2 [59]
gp 0.015 mS/cm

2 [59]
ge 0.03 mS/cm

2 [58]
G

soma,dendrite
/S 0.13 mS/cm

2 [59]
G

dendrite,spine
/S 0.1 mS/cm

2
gsd = 0.1� 3 in [59], gdp  gsd

VNa 55mV [59]
VK �75mV [59]
VCa 120mV [59]
Vh �43mV [59]
Vl 10mV [59]
p 0.14 The ratio of the somatic area
q 0.05 to total surface area 0.1-0.4

Table A.1: Simulation parameters of the compartmental model
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