
	
  

	
  

	
  

	
  

Terra Preta Nova production for sustainable 
agriculture within the framework of Regional 

Material Flow Management  
	
  

	
  

 
 

Mak Đukan 
51210615 

IMAT 2012 
	
  

Supervised by Masanori Kato and Peter Heck 
	
  

	
  

13.07.2012 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

Dissertation Presented to the Higher Degree Committee Of Ritsumeikan 
Asia Pacific University In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in International Cooperation Policy	
  
	
  



	
   ii	
  

DECLARATION 

 

 

 

 

My name is ĐUKAN, Mak, male, born on 04.12.1985. I hereby solemnly declare that 

I have written myself this APU Research Report IV. All the references or contents 

from other sources have been properly acknowledged. I will take full responsibility 

for any plagiarism that occurs in the original content of this paper. 

 

 

Date: :  

Signature:  

	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

	
  
	
  

	
  



	
   iii	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

To my bellowed family that has always been there with me . . . 
 

 
Mojoj dragoj obitelji, koja je uvijek bila uz mene . . . 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



	
   iv	
  

Acknowledgements	
  	
  
	
  
This is the part where the writer can let off steam and write in an un-academic way. 

After 23000 words I find that as a huge relief.  

 

Two years, a lot of sweat, consultations, research and hours of writing and sitting 

down. . . it has been long since the IMAT program started. I remember sitting in Japan 

and listening to professor Peter Heck lecture on Terra Preta. We watched a video that 

presented Terra Preta and its Amazon origin. This was a turning point in my IMAT 

schooling. My interest for this highly fertile soil grew and I wanted to know more. 

The potential of streamlining waste flows to reproduce terra-preta-like soils grew on 

me as an idea. Finally, after a series of consultations I decided to write this thesis. 

That being said, I would foremost like to thank professor Peter Heck for introducing 

Terra Preta to me. I would also like to thank professor Masanori Kato, who has 

devoted a lot of his attention towards correcting my thesis and giving guidance.  

 

There are many people I could acknowledge that helped me during this program. But 

two people stand out by a long margin and if it weren’t for them I would hardly make 

it through the program. 

 

I would like to give special recognition to Shifani Sood, who listened to me while I 

was down and made me see the positive side of everything. Your patience and 

craziness will never be forgotten.  

 
There are hardly any appropriate words to acknowledge Ranahansa Dasanayake for 

all of this guidance in matters relating to academics and life in general. You have been 

a great source of inspiration and I would like to thank you for this. May you live long!	
  

	
  
Finally I would like to give special thanks to my mom who always found time to 

consult and listen to me. Many merits to my father and brother who have inspired me 

with their global travels to see the world myself.  

	
  
	
  
	
  
	
  
	
  



	
   v	
  

Table	
  of	
  Contents	
  

Abstract	
  .................................................................................................................	
  1	
  

Problem	
  statement	
  ................................................................................................	
  3	
  

Key	
  questions	
  .........................................................................................................	
  4	
  

Sustainability	
  of	
  agriculture	
  ...................................................................................	
  4	
  

Environmental	
  collapses	
  and	
  agriculture	
  ................................................................................................	
  5	
  
Soil	
  salinity	
  in	
  the	
  Fertile	
  Crescent	
  ..............................................................................................................	
  5	
  
Water	
  erosion	
  in	
  Ancient	
  Greece	
  ..................................................................................................................	
  6	
  
Wind	
  erosion	
  in	
  the	
  United	
  States	
  ...............................................................................................................	
  7	
  
Decline	
  of	
  the	
  Aral	
  Sea	
  ......................................................................................................................................	
  8	
  

Agriculture	
  in	
  time	
  of	
  resource	
  scarcity	
  ...................................................................................................	
  9	
  
Arable	
  Land	
  ........................................................................................................................................................	
  10	
  
Nutrients	
  ..............................................................................................................................................................	
  10	
  
Fossil	
  energy	
  ......................................................................................................................................................	
  12	
  

Review	
  of	
  non-­‐conventional	
  agricultural	
  solutions	
  ...............................................	
  13	
  

Increasing	
  nitrogen	
  use	
  efficiency	
  ...........................................................................................................	
  14	
  
Carbon	
  sequestration	
  ....................................................................................................................................	
  14	
  
Increasing	
  water	
  use	
  efficiency	
  .................................................................................................................	
  15	
  

Terra	
  Preta	
  Nova	
  technologies	
  .............................................................................	
  16	
  

Discovery	
  of	
  Terra	
  Preta	
  ..............................................................................................................................	
  17	
  
Terra	
  Preta	
  properties	
  and	
  genesis	
  .........................................................................................................	
  18	
  
Biochar	
  as	
  the	
  backbone	
  of	
  Terra	
  Preta	
  Nova	
  production	
  ............................................................	
  19	
  
Biochar	
  for	
  environmental	
  management	
  ..............................................................................................	
  20	
  
Biochar	
  defined	
  .................................................................................................................................................	
  20	
  
Production	
  process	
  ..........................................................................................................................................	
  21	
  
Multiple	
  benefits	
  of	
  biochar	
  use	
  ................................................................................................................	
  23	
  
Greenhouse	
  gas	
  emission	
  reductions	
  .......................................................................................................	
  25	
  

Biochar	
  effects	
  on	
  soil	
  properties	
  ............................................................................................................	
  26	
  
High	
  specific	
  surface	
  area	
  ............................................................................................................................	
  27	
  
Nutrient	
  retention	
  ...........................................................................................................................................	
  28	
  
Water	
  retention	
  ................................................................................................................................................	
  29	
  
Soil	
  microbial	
  activity	
  ....................................................................................................................................	
  29	
  
Stability	
  of	
  biochar	
  in	
  soil	
  ............................................................................................................................	
  31	
  



	
   vi	
  

Effects	
  of	
  biochar	
  on	
  crop	
  yields	
  ................................................................................................................	
  33	
  

Terra	
  Preta	
  Nova	
  production	
  systems	
  ..................................................................	
  35	
  

Existing	
  Terra	
  Preta	
  Nova	
  and	
  biochar	
  systems	
  ................................................................................	
  36	
  
Feedstock	
  for	
  Terra	
  Preta	
  Nova	
  development	
  ...................................................................................	
  37	
  
Feedstock	
  materials	
  ........................................................................................................................................	
  37	
  

Material	
  Flow	
  Management	
  for	
  Terra	
  Preta	
  Nova	
  ................................................	
  46	
  

MFM	
  methodology	
  ..........................................................................................................................................	
  48	
  
Material	
  Flow	
  Analysis	
  ..................................................................................................................................	
  49	
  
MFM	
  Master	
  Plan	
  .............................................................................................................................................	
  68	
  
MFM	
  Holding	
  .....................................................................................................................................................	
  71	
  

Regional	
  added	
  value	
  creation	
  ..................................................................................................................	
  73	
  

Risks	
  of	
  developing	
  TPN	
  with	
  MFM	
  methodology	
  .................................................	
  75	
  

General	
  risks	
  of	
  the	
  MFM	
  methodology	
  .................................................................................................	
  75	
  
Case	
  study:	
  Republic	
  of	
  Serbia	
  ...................................................................................................................	
  77	
  
Country	
  context	
  ................................................................................................................................................	
  77	
  
Risks	
  for	
  TPN	
  development	
  in	
  Serbia	
  ......................................................................................................	
  78	
  
Discussion	
  ............................................................................................................................................................	
  79	
  

Conclusions	
  ..........................................................................................................	
  82	
  

Appendix	
  1:	
  Biochar	
  in	
  the	
  context	
  of	
  geoengineering	
  strategies	
  ..........................	
  86	
  

Appendix	
  2:	
  Research	
  gaps	
  in	
  biochar	
  soil	
  science	
  ................................................	
  88	
  

Appendix	
  3:	
  Composting	
  and	
  biochar	
  technologies	
  ..............................................	
  89	
  

Bibliography	
  .........................................................................................................	
  98	
  

	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



	
   vii	
  

List	
  of	
  Figures	
  
	
  
Figure	
  1:	
  Problem	
  statement.	
  Source:	
  Author	
  ................................................................................................................	
  3	
  
Figure	
  2:	
  Energy	
  use	
  in	
  intensive	
  agriculture.	
  Source:	
  Pfeiffer	
  (2006)	
  ............................................................	
  13	
  
Figure	
  3:	
  Model	
  of	
  Terra	
  Preta	
  genesis.	
  Source:	
  Glaser	
  &	
  Birk	
  (2012)	
  ............................................................	
  18	
  
Figure	
  4:	
  Optimum	
  biochar	
  properties	
  as	
  a	
  function	
  of	
  processing	
  temperature.	
  Source:	
  Lehmann,	
  

(2007)	
  ...........................................................................................................................................................................................	
  22	
  
Figure	
  5:	
  Comparison	
  of	
  carbon	
  cycling	
  in	
  a	
  biochar-­‐based	
  and	
  normal	
  agricultural	
  system.	
  Source:	
  

Bruun	
  (2011)	
  .............................................................................................................................................................................	
  24	
  
Figure	
  6:	
  Biochar	
  inputs,	
  outputs	
  and	
  impacts.	
  Source:	
  Woolf	
  et	
  al.	
  (2010)	
  .................................................	
  26	
  
Figure	
  7:	
  Macroporosity	
  of	
  a	
  wood-­‐derived	
  biochar	
  produced	
  by	
  "slow	
  pyrolysis".	
  Source:	
  Best	
  

Energies	
  .......................................................................................................................................................................................	
  28	
  
Figure	
  8:	
  Interaction	
  of	
  arbuscular	
  mycorrhiza	
  with	
  a	
  piece	
  of	
  porous	
  wood	
  charcoal.	
  Source:	
  

Ogawa	
  &	
  Okimori	
  (2010)	
  .....................................................................................................................................................	
  30	
  
Figure	
  9:	
  Schematics	
  for	
  biomass	
  or	
  biochar	
  remaining	
  after	
  charring	
  and	
  decomposition	
  in	
  soil.	
  

Source:	
  Lehmann	
  et	
  al.,	
  (2006)	
  ..........................................................................................................................................	
  31	
  
Figure	
  10:	
  Terra	
  Preta	
  Nova	
  feedstock	
  streams.	
  Source:	
  Author	
  .......................................................................	
  37	
  
Figure	
  11:	
  The	
  composting	
  process.	
  Source:	
  Chen	
  et	
  al.	
  (2011)	
  ..........................................................................	
  41	
  
Figure	
  12:	
  Relative	
  carbon	
  balance	
  in	
  percent	
  of	
  initial	
  carbon	
  input	
  based	
  on	
  composting	
  facilities	
  

in	
  Germany.	
  Source:	
  Fischer	
  &	
  Glaser	
  (n.d)	
  ..................................................................................................................	
  43	
  
Figure	
  13:	
  Crop	
  response	
  in	
  relation	
  to	
  different	
  biochar	
  and	
  compost	
  application.	
  Source:	
  	
  Fischer	
  &	
  

Glaser	
  (n.d)	
  .................................................................................................................................................................................	
  45	
  
Figure	
  14:	
  Material	
  Flows	
  for	
  Terra	
  Preta	
  Nova.	
  Source:	
  Fischer	
  &	
  Glaser	
  (n.d)	
  .......................................	
  46	
  
Figure	
  15:	
  MFM	
  Methodology.	
  Source:	
  Developed	
  from	
  Heck	
  (2011)	
  ..............................................................	
  49	
  
Figure	
  16:	
  Interaction	
  of	
  MFA	
  and	
  MFM	
  related	
  concepts.	
  Developed	
  from	
  Avadi	
  (2011)	
  ....................	
  50	
  
Figure	
  17:	
  Material	
  Flow	
  Analysis	
  in	
  the	
  MFM	
  approach.	
  Source:	
  Author	
  ....................................................	
  51	
  
Figure	
  18:	
  STAN	
  user	
  interface.	
  Source:	
  Component	
  One	
  (n.d)	
  ...........................................................................	
  56	
  
Figure	
  19:	
  Layer	
  TPN	
  model	
  in	
  STAN	
  -­‐	
  simplified	
  version.	
  Source:	
  Author	
  ...................................................	
  57	
  
Figure	
  20:	
  Umberto	
  for	
  Carbon	
  Footprint	
  user	
  interface.	
  Source:	
  ifu	
  Hamburg	
  (2012)	
  .........................	
  58	
  
Figure	
  21:	
  Example	
  input/output	
  table	
  in	
  Umberto.	
  Source:	
  	
  ifu	
  Hamburg	
  (2012)	
  ..................................	
  59	
  
Figure	
  22:	
  Power/Interest	
  Grid.	
  Source:	
  (Thompson,	
  2012)	
  ................................................................................	
  66	
  
Figure	
  23:	
  Exemplary	
  regional	
  MFM	
  Master	
  Plan.	
  Source:	
  Author	
  ...................................................................	
  69	
  
Figure	
  24:	
  Levels	
  of	
  regional	
  MFM	
  optimization.	
  Source:	
  Author	
  ......................................................................	
  70	
  
Figure	
  25:	
  MFM	
  Holding	
  in	
  context	
  of	
  regional	
  MFM	
  optimization.	
  Source:	
  Author	
  ................................	
  71	
  
Figure	
  26:	
  Risks	
  associated	
  with	
  developing	
  TPN	
  with	
  MFM	
  methodology.	
  Source:	
  Author	
  .................	
  76	
  
Figure	
  27:	
  a)	
  Turned	
  wind-­‐rows	
  b)	
  Passively	
  aerated	
  wind-­‐rows.	
  Source:	
  a)	
  GroundGrocer,	
  (n.d.)	
  

and	
  Eco	
  City	
  Farms	
  (2011)	
  ..................................................................................................................................................	
  92	
  
Figure	
  28:	
  Rectangular	
  activated	
  bed.	
  Source:	
  (Misra	
  et	
  al.,	
  2003)	
  ..................................................................	
  93	
  
Figure	
  29:	
  BEST	
  Energies	
  slow	
  pyrolysis	
  process.	
  Source:	
  (BEST	
  Energies,	
  n.d.)	
  ........................................	
  96	
  



	
   viii	
  

List	
  of	
  Tables	
  

	
  
Table	
  1:	
  Agriculture	
  induced	
  human	
  diseases	
  in	
  the	
  Aral	
  sea	
  basin:	
  Source:	
  (Shah	
  et	
  al.,	
  2005)	
  ...........	
  9	
  
Table	
  2:	
  Fate	
  of	
  initial	
  feedstock	
  mass	
  between	
  products	
  of	
  pyrolysis	
  processes.	
  Source:	
  Developed	
  

from	
  Sohi	
  et	
  al.	
  (2009)	
  ...........................................................................................................................................................	
  21	
  
Table	
  3:	
  Summary	
  of	
  total	
  elemental	
  composition	
  and	
  pH	
  ranges	
  and	
  means	
  of	
  biochar’s	
  from	
  a	
  

variety	
  of	
  feedstock’s	
  and	
  pyrolysis	
  conditions.	
  Source:	
  Verheijen	
  et	
  al.	
  (2009)	
  ..........................................	
  29	
  
Table	
  4:	
  List	
  of	
  experiments	
  assessing	
  the	
  impact	
  of	
  biochar	
  addition	
  on	
  crop	
  yield.	
  Source:	
  Adopted	
  

from	
  Sohi	
  et	
  al.	
  (2009)	
  ...........................................................................................................................................................	
  34	
  
Table	
  5:	
  Different	
  biochar	
  feedstock	
  according	
  to	
  various	
  quality	
  factors.	
  Source:	
  Adapted	
  from	
  	
  

Lehmann	
  &	
  Joseph,	
  (2009b)	
  ................................................................................................................................................	
  39	
  
Table	
  6:	
  Comparison	
  of	
  Umberto	
  and	
  STAN.	
  Source:	
  Author	
  ...............................................................................	
  60	
  
Table	
  7:	
  Advantages	
  and	
  disadvantages	
  of	
  Umberto	
  and	
  STAN.	
  Source:	
  Author	
  .......................................	
  60	
  
Table	
  8:	
  Regional	
  added	
  value	
  from	
  TPN	
  production.	
  Source:	
  Author	
  ............................................................	
  74	
  
Table	
  9:	
  Risks	
  of	
  developing	
  TPN	
  in	
  Serbia.	
  Source:	
  Author	
  .................................................................................	
  79	
  
Table	
  10:	
  Comparison	
  of	
  geoengineering	
  methods.	
  Source:	
  The	
  Royal	
  Society	
  (2009)	
  ...........................	
  87	
  
Table	
  11:	
  Research	
  gaps	
  of	
  biochar	
  application	
  to	
  soil.	
  Source:	
  Various	
  authors	
  ......................................	
  88	
  
	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



	
   ix	
  

Abbreviations	
  	
  
	
  

TP Terra Preta  
ADE Amazonian Dark Earths 
MFM Material Flow Management 
TPN Terra Preta Nova  
HTT Highest Treatment Temperature  
MBT Mechanical Biological Treatment  
AD Anaerobic Digestion 
CO2 Carbon dioxide  
GHG Greenhouse gas 
FAO Food and Agriculture Organization of the United Nations 
GIZ Die Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH 
N Nitrogen 
P Phosphorus  
K Potassium  
Ca Calcium 
Mg Magnesium 
NUE Nitrogen use efficiency 
N2 Elemental nitrogen 
N2O Nitrous oxide 
SOM Soil organic matter 
CEC Cation Exchange Capacity  
US  United States  
BC Before Christ  
MFA Material Flow Analysis  
LCA Life Cycle Assessment  
CFP Carbon Footprint 
LCI Life cycle inventory  
GDP Gross Domestic Product 
SA Stakeholder analysis  
DCFA Discounted Cash Flow Analysis  
CIA Central Intelligence Agency 
OMSW Organic Municipal Solid Waste  
MSW Municipal Solid Waste 
  
  
	
  

	
  

	
  

	
  

	
  

	
  

	
  



Abstract	
  
 
Terra Preta is a fertile soil originating from the Amazon basin, which is characterized 

by its black color due to high charcoal content, known in the modern literature as 

biochar. Research indicates that adding this highly porous material to soil increases its 

nutrient and water retention and stimulates microbial activity, which typically results 

in higher than normal crop yields. Besides this it increases the carbon sink capacity of 

soil and therefore, potentially reduces atmospheric !"! levels.   

 

Mixing charred biomass with animal and vegetal waste, rich in nutrients, created the 

fertile amazonian dark soils. Findings that Terra Preta (TP) might have been produced 

by indigenous Amazonian indians, implies that it could be reproduced today. Terra 

Preta and biochar are seen as alternatives to increasing crop yieds, reducing synthetic 

fertilizer demand and shifting the paradigms of conventional agriculture.  

 

Reproducing Terra Preta per se would, however, be an impractical task due to the 

great variety of input materials. Organizing production systems that streamline such 

various material flows could be complex and uneconomical. Recreating the exact 

Terra Preta properties is also high unlikely, due to scientific uncertainties in the 

production process.  

 

Terra Preta Nova was therefore defined as a term that describes a soil conditioner 

with terra-preta-like properties, which is produced by mixing biochar with organic 

residues. Examples from Germany indicate that inputs into Terra Preta Nova 

production could range from composted garden waste, slurry from biogas production, 

bacteria and biochar from sewage sludge. Many other variations exist (Figure 14). 

However, most material and energy systems lack such organization and are 

dominated by chaos. Material and energy flows are unorganized and there is no 

cooperation among regional stakeholders.  

 

This thesis investigates developing Terra Preta Nova systems, using the Material 

Flow Management (MFM) methodology. MFM is an integrated resource management 

approach that holistically optimizes material and energy flows. This refers to using 
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technologies that interlink material and energy flows across the economy. Outputs 

from one segment (households, industry etc.) are seen as inputs for others.1 

 

Reasons for shifting from conventional to alternative agricultural systems are given in 

the first part. Resource scarcity and environmental degradation of conventional 

agriculture are presented as the main arguments. This is followed by a review of the 

science on Terra Preta and biochar. Most of the discussion centers on biochar, 

because it is believed to be the backbone of TPs fertility.  

 

Terra Preta Nova (TPN) systems are described in the final part, where most of the 

discussion focuses on feedstock requirements. Finally, the thesis describes the MFM 

methodology for developing Terra Preta Nova systems. Risks of applying this 

methodology for TPN development are given at the very end.  

 

Results of this thesis could be used for practical field investigations into producing 

alternative agricultural systems that are based on Terra Preta Nova.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  For	
  instance,	
  when	
  industrial	
  waste	
  heat	
  is	
  used	
  for	
  residential	
  heating	
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Problem	
  statement	
  	
  
	
  
Modern agriculture is not sustainable because it relies on linear resource 

consumption. Material and energy flows in agriculture are consumed and processed 

into low quality waste. This remains unused and in many instances poses disposal and 

environmental problems.  

 

Several drivers of change are stimulating the shift towards sustainable agriculture and 

these are a) resource scarcity b) environmental degradation and c) food security. As 

population continues to increase in the 21st century, and developing economies 

increase their living standards and demand for food, these drivers of change will 

become more alarming.  

	
  

	
  
Figure	
  1:	
  Problem	
  statement.	
  Source:	
  Author	
  

	
  
Sustainable agriculture consumes less fossil energy and recycles waste material and 

energy. These circular systems are decentralized and enjoy greater food security. 

Production of food takes place near the point of consumption making these systems 

less dependent on global food-trade patterns.  

	
  
Terra Preta Nova technologies create circular agricultural systems. The discovery of 

Amazonian dark earths has sparked imagination among many scientists, business 
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people and enthusiasts who together envisage the dark earths and biochar as solutions 

to modern agricultural problems.  

 

Biochar and terra preta created a wave of interest because of their ability to increase 

crop growth in unfertile amazon soils. Their anthropogenic origin suggested they 

could be reproduced on mass scale. Is there ground for such assertions?  

	
  

Key	
  questions	
  	
  
	
  
This thesis intends to answer these questions:  

 
1) Is Terra Preta Nova a viable solution for sustainable agricultural systems?  

2) Could Terra Preta Nova be used on a global level or is it just suitable for 

particular regional conditions?  

3) What are the obstacles of creating Terra Preta Nova systems, using the 

Material Flow Management methodological approach? 

	
  
The thesis will employ desktop research in answering the above stated questions. A 

research summary will be given in the concluding segment.  

Sustainability	
  of	
  agriculture	
  
	
  

Agriculture is creating environmental stress on ecosystems and in some cases leading 

to their collapse. Modern examples that testify this are numerous. Some of the most 

recent cases include the Dust Bowl of central United States and the destruction of the 

Aral Sea ecosystem. Ancient history, however, testifies that this is not only a modern 

problem.  

 

During history humans have mismanaged the land leading to collapses of entire 

civilizations. Soil salinization, due to excessive irrigation, is thought to be one of the 

main reasons for the decline of ancient Mesopotamia. In ancient Greece monoculture 

farming of crops like wheat, created soil erosion problems that depleted land of 

valuable nutrients and decreased steadily food production.  
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This chapter stresses that mismanaging the land, in the sense of employing intensive 

farming techniques, as used today, leads to collapses of ecosystems and civilizations 

alike.  

 

Environmental	
  collapses	
  and	
  agriculture	
  	
  
	
  
Agriculture is both responsible for the rise and decline of numerous societies. 

Through history it has also helped induce collapses of entire ecosystems. This 

segment highlights some well-studied examples.   

 

Soil	
  salinity	
  in	
  the	
  Fertile	
  Crescent	
  	
  
 
Humans have through most of history lived as hunter-gatherers or foragers (Salonius, 

2008). Domestication of plants and animals 13000 years ago, gave early farmers the 

means to begin sedimentary life (Diamond, 2002). Settlements that mastered their 

land had the technological, demographic and economic means to displace hunter-

gatherers. Food surpluses, amassed due to advanced agriculture, enabled the creation 

of large settlements and complex societies. 

 

Hunter-gatherers of the Fertile Crescent in southwest Asia first developed agriculture. 

This is because the area was native to many useful plant and animal species that are 

still in domestication today (Diamond, 2002). The Fertile Crescent, known as the 

cradle of civilization, was home to ancient Mesopotamia, the oldest civilization in 

human history. The area owes its fertility to the rivers Euphrates and Tigris that flow 

from the mountains of East Turkey to the Persian Gulf and carry valuable nutrients 

and water. The rivers also contain large concentrations of salt, originating from the 

sedimentary rocks of the northern mountains.  

 

River water, floods as well as excessive irrigation have increased the amount of salts 

in the areas ground water leading to soil salinity problems. High salt concentrations 

obstruct microbial soil activity and decrease the plants ability to absorb water and 

nutrients. Excessive irrigation exacerbates the problem by increasing the ground water 

table (Jacobsen & Adams, 1958). When the salty ground water increases in level, it 

can reach the root zone of plants. It then raises the osmotic pressure of soil water 
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making it harder for roots to absorb water (Diamond 2006). Increased salt 

concentrations also make the soil less permeable, resulting in decreased yields due to 

less efficient plant uptake of water. 

 

Soil salinity played a major role in the breakup of the Mesopotamian civilization. 

Increases in agricultural production in the Fertile Crescent, lead to more intensive 

irrigation. Water from the great rivers was diverted via constructed water canals. 

Ultimately this practice increased the salinity of soil and salty ground water levels, 

leading to a decrease in crop yields. The water canals themselves did not prove 

efficient, since silt accumulations often disrupted water distribution.  

 

Records show that barley production decreased continuously from 2537 liters per ha 

in 2400 B.C to 897 per ha in 1700 B.C. Surpluses of primary agricultural production 

that once fed the cities of Mesopotamian civilization, decreased gradually over time 

leading to a decline of Mesopotamian complex society. Along with this, Mesopotamia 

lost to Babylon the political and cultural leadership of the region. Many of the great 

Mesopotamian cities demised to villages or mere ruins (Jacobsen & Adams, 1958).  

 

Water	
  erosion	
  in	
  Ancient	
  Greece	
  
 
Ancient Greece faced a different kind of soil problem – erosion due to intensive grain 

cultivation and grazing. Erosion leads to the loss of the most fertile soil layer, know as 

topsoil. Forces of wind and water remove this soil layer, when agricultural fields are 

left exposed or barren. This occurs as a consequence of intensive farming, where 

growing of one single crop, leaves the soil without crop cover for a significant time 

period during the year. The effect is amplified when a field is sloped, because it is 

more prone to water erosion. Plato vividly described soil erosion in ancient Greece: 

 

What now remains of the formerly rich land is like the skeleton of a sick 

man. . . . Formerly, many of the mountains were arable. The plains that 

were full of rich soil are now marshes. Hills that were once covered with 

forests and produced abundant pasture now produce only food for bees. 

Once the land was enriched by yearly rains, which were not lost, as they 

are now, by flowing from the bare land into the sea. The soil was deep, it 
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absorbed and kept the water in loamy soil, and the water that soaked into 

the hills fed springs and running streams everywhere.  

       Taken from Manning (2004) 

 

Losses of topsoil lead the Greeks to adopt commercial crops, like grapes and olives 

that can be growth on thinner soils. Although soil erosion is not directly linked to the 

their demise, it made the Greeks more vulnerable by forcing them to rely on trade for 

food (Hillel, 1991) - an analogy that could directly be linked to today’s globalized 

production and distribution of food.   

 

Wind	
  erosion	
  in	
  the	
  United	
  States	
  
 
North American cultivation of cash crops during colonial times set the stage for 

widespread soil erosion in the United States. During that time Virginia became the 

center for tobacco cultivation. Growing tobacco was profitable because it fetched 

more than six times the price of any other crop and could survive the travel across 

Atlantic.  

 

Tobacco cultivation, on the other hand, strips more then ten times the nitrogen and 

thirty times the phosphorus from soil than do typical food crops. Nitrogen and 

phosphorus are nutrients that are essential for crop growth.  

 

Growing tobacco on its own depleted the land of nutrients after just five years of 

cultivation. Since land was in abundance, the farmers just migrated westwards in 

search of fertile soil (Montgomery, 2007).  

 

Intensive agriculture spread across the United States. Years of this practice lead to 

intensive water and wind erosion, which caused severe dust storms during the 1930‘s. 

This period is commonly known as the Dust Bowl, as the dust storms were so 

powerful that they buried entire human settlements.  
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Decline	
  of	
  the	
  Aral	
  Sea	
  
 
Expansion of irrigated agriculture in the Aral Sea Basin lead to the conversion of 

virgin land into productive agricultural fields. Despite the economic development that 

followed, this devastated the Aral Sea ecosystem and society.  

 

During the Former Soviet Union the economies of the Central Asian states were 

dependent upon the central governments rule. In 1960s officials in Moscow decided 

to make the region the union’s agricultural hub. The main aim was to increase the 

union’s self-sufficiency in cotton and rice production. Towards achieving this aim, 

water was diverted from two main regional rivers, the Amu Darya and Syr Darya, 

through a system of irrigation canals.  

 

Central Asia developed economically and agriculture still has an important role in the 

economies of contemporary Central Asian states. Agriculture accounts for 19% of 

GDP in Kazakhstan and 38% in the Kyrgyz Republic and employs between 20 to 

50% of national labour force in central Asian states (Qadir et al., 2009).  

 

However, intensified agriculture and economic development came at an expense of a 

full-scale environmental crisis that involved a severe drop in water levels, reclining 

shorelines of the Aral Sea, declining soil quality and increasing human diseases and 

economic disarray. 

 

Until 1998, the Aral Sea has lost more than 60% of its area and approximately 80% of 

its volume (Shah et al., 2005). Fisheries that once served as main sources of revenue, 

declined dramatically. Intensive irrigation, on the other hand, caused wide spread soil 

salinization and decreased the fertility of soil. The reclining crop yields incentivized 

farmers to increase the use of fertilizer, herbicides and pesticides in order to maintain 

and expand production. These chemicals found their way back into the rivers, the Aral 

Sea and groundwater. A dramatic increase in human diseases followed and Table 1 

documents this.  
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Table	
  1:	
  Agriculture	
  induced	
  human	
  diseases	
  in	
  the	
  Aral	
  sea	
  basin:	
  Source:	
  (Shah	
  et	
  al.,	
  2005)	
  

Disease Impact 
Typhoid 29-fodl increase 
Viral hepatitis  7-fold increase 
Paratyphoid 4-fold increase 
Hypertonia, heart disease, gastric and duodenal ulcers  Up to 100% 
Increase in premature births  Up to 31% 
Liver cancers  Up to 200% 
Gullet cancers Up to 25% 
Oesophageal cancers Up to 100% 
Cancer in young persons Up to 100% 
Infant mortality (1980-89) Up to 20% 

 
These negative impacts demonstrate how agricultural expansion aimed at increasing 

food production, can lead to devastating feedbacks (Shah et al., 2005). They also 

testify to the devastating power of conventional agriculture to change natural systems.  

	
  

Agriculture	
  in	
  time	
  of	
  resource	
  scarcity	
  	
  
	
  
Intensification of agriculture has been the main driver of crop yield growth since the 

middle of the 20th century (Wood et al., 2005). This mainly included increasing  

yields per hectare of land. Technological breakthroughs of the Green Revolution, a 

period of major agricultural advances, enabled achieving this.  These advances 

include: a) introducing new “miracle varieties” of wheat and rice that yielded more 

grain per unit of total biomass b) artificial fertilizers that allowed greater net primary 

productivity c) massive investment in irrigation infrastructure (Cassman, 1999) d) 

agrochemicals (pesticides, herbicides and insecticides) and e) heavy farm machinery. 

 

These innovations led to an increase in grain production by 250% during the period 

from 1950 to 1984 (Pfeiffer, 2006). New varieties were characterized by shorter time 

between seeding and maturity. While this allowed more harvest per season, artificial 

fertilizers and irrigation enabled farmers to maintain soil productivity.  

 

Agriculture of the Green Revolution is not sustainable because it relies on constant 

inputs of nonrenewable materials and energy. This relates to mineral reserves for 

fertilizer production, fossil fuels and arable land expansion. Extraction and 
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exploitation of these resources is beyond sustainable means. Water is also included in 

this, but is not in the scope of this thesis.   

 

Arable	
  Land	
  
 
Crop production occupies 11% of the globe’s land surface or one third of estimated 

arable land. Greater share of the remaining arable land (90%) is located in Latin 

America and Sub Saharan Africa (FAO, 2003).  

 

However, most of the global increase in food production (80%) was achieved by land 

intensification (greater production per ha) and not arable land expansion (Shah et al., 

2005). Arable land per person actually declined 40%, while average grain yields more 

than doubled (1961/63 – 1997/99). This has come at an expense of decreasing soil 

quality. Estimates indicate that about 80% of the world’s agricultural land suffers 

moderate to severe erosion, while 10% experiences slight erosion (Pimentel, 2006).  

 

In areas with a limited availability of arable land, increases in food production will 

have to be achieved through further agricultural intensification. Unless greater 

efficiency in fertilizer, agrochemicals and water application is achieved, this will lead 

to even greater ecosystems damage. 

 

Nutrients	
  
 
Nutrients are essential for plant growth and the most important ones are phosphorus, 

nitrogen and potassium. Plants absorb these from soil and when they are limited, plant 

growth declines. Modern agriculture supplements the soil nutrients through synthetic 

fertilizer use. However, production of these fertilizers is very resource intensive. 

Phosphorus and potassium are mined and are limited in supply. Nitrogen is on the 

other hand abundant, but obtaining it from air requires using the energy intensive 

Haber Bosch process.   
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Phosphorus	
  	
  
 
Estimates of phosphorus production indicate that by 2033 demand for phosphorus will 

outpace supply, raising concerns about peak phosphorus – an analogy to the theory of 

peak oil (Elser & White, 2010). Demand for phosphorus is predicted to increase by 

50% - 100% by 2050 (Cordell et al., 2009) and this will mainly be driven by a gradual 

change towards diets richer in meat and dairy products (Schröder et al. 2011). An 

additional need for fertilizer P may be triggered by an increase in biofuel production 

(Schröder et al., 2011).  

 

Concerns about phosphorus are also triggered by the uneven distribution of the 

remaining reserves (Vaccari, 2009). Most of the reserves are located in Morocco, 

China and the United States (Cordell et al., 2009), in order of magnitude. Together 

these countries hold 83% of the world’s reserves and account for two thirds of annual 

production (Vaccari, 2009).  

 

As phosphorus reserves continue to decline and food demand continues to increase, 

these countries will yield more geopolitical power. In order to ensure food security, 

other countries will have to resort to technologies that increase the efficiency of 

phosphorus use.  

 

Nitrogen	
  
	
  
Nitrogen is the most widely limiting nutrient in terrestrial ecosystems. Nutrient 

leaching and gaseous emissions limit nitrogen uptake by plants (Lavelle et al., 2005). 

Without synthetic nitrogenous compounds we would not be able to produce roughly 

half of today‘s world food (Smil, 2011).  

 

Pre-industrial agriculture relied on three ways in which to provide N for crops: a) 

recycling of organic waste (mainly crop residues and animal and human waste) b) 

crop rotations including N-fixing legumes and c) planting of leguminous cover crops 

that were then plowed under ground as green manure (Smil, 2002).  
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The Haber Bosch process of ammonia synthesis created the means to substantially 

increase plant-available nitrogen production. Greater food production on a global 

level followed. However, the Haber Bosch process is not sustainable because it fixes 

nitrogen from air by using large amounts of natural gas - a non-renewable resource.  

 

The increased usage of readily available nitrogen in agriculture also created a 

misbalance in the natural nutrient flows. Conventional agriculture is highly inefficient 

in nitrogen application. Nitrogen use efficiencies (NUE) – defined as the percentage 

of fertilizer-N recovered in aboveground plan biomass during the growing season – 

ranges in EU agriculture from just 38% in France and the Netherlands to 42% in 

Germany and 44% in Italy (Smil, 2011). The remaining nitrogen is lost into water 

bodies leading to water degradation, or returns to the atmosphere, either as N!  or N!O 

(Lavelle et al., 2005), the latter being a powerful greenhouse gas. Inefficient use of 

nitrogen fertilizer is also an economic loss and a waste of natural gas, the prime 

feedstock in nitrogen production (Smil, 2011).  

 

Fossil	
  energy	
  
 
Conventional food production has become increasingly dependent on fossil fuel use. 

Innovations of the Green Revolution increased the energy flow to agriculture by an 

average of 50 times its traditional energy input (Pfeiffer, 2006). Consequently, the 

food sector currently accounts for around 30% of world energy consumption and 20% 

of total GHG emissions (FAO, 2011).   

 

Agricultural energy usage is projected to rise due to an a) increase in human 

population by 40% and b) increase in living standards that will stimulate more 

intensive meat and dairy product consumption (Bruinsma, 2009). Most of the increase 

in food production is expected from more intensive cultivation. A breakdown of 

energy usage in intensive farming is given in Figure 1.  
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Figure	
  2:	
  Energy	
  use	
  in	
  intensive	
  agriculture.	
  Source:	
  Pfeiffer	
  (2006) 

 

Review	
  of	
  non-­‐conventional	
  agricultural	
  solutions	
  	
  
 
Non-conventional agricultural solutions can be defined as technological approaches to 

agriculture that aim to maximize resource use efficiency. This segment will present 

solutions other than Terra Preta Nova technologies.  

 

Wood et al (2005) mention in the Millennium Ecosystems Assessment that these are 

the most efficient methods to reduce the impact of conventional agriculture:  

 

1) Increasing nitrogen fertilizers use efficiency 

2) Improving soil quality through carbon sequestration 

3) Irrigation efficiency  

 

Irrigated rice based cropping systems as well as wheat and maize-soybean rotations 

provide food for about half of the human population and account for more than 80% 

of all grains that enter international markets. Meeting future food demand will include 

implementing the above methods in the most productive cultivated systems globally. 

 

Increasing the productivity of these systems is seen as the primary measure to meet 

the growing demand for food. An increase in productivity of global cereal production 
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by just 1%, through one of the above named measures, could lead to savings of 6.7 

million hectares of additional land that would otherwise be required (Wood et al., 

2005).  

 

Increasing	
  nitrogen	
  use	
  efficiency	
  	
  
 
Nitrogen fertilizer use efficiency can be increased by management methods aiming at 

achieving synchrony between N supply and crop nitrogen demand. Successful 

management methods include:  

 

1) Significant reductions in fall applied N-fertilizer with a shift to applications in 

spring or in time of planting 

2) Fragmentation of N-fertilizer application during the entire growing season 

rather than a large single application  

3) Increases in manure application and legume rotations.  

 

However, implementing these management measures is mostly limited by the extent 

of farmer’s education and willingness to modify existing agricultural practices. 

Examples from the US demonstrate that farmer education is one of the primary 

obstacles to increasing nitrogen use efficiency (Cassman et al., 2002).  

 

Carbon	
  sequestration	
  	
  
 
Carbon sequestration, on the other hand, includes adopting methods that increase soil 

organic carbon - carbon associated with soil organic matter. Soil organic matter is 

plant and animal material in various stages of decomposition. The decomposition of 

biomass increases soil carbon, storing it in soil for a given period of time. The end 

product of decomposition is humus – dark or black organic matter that is highly 

resistant to further decomposition.  

 

Soil organic matter affects soil quality by storing and supplying nutrients (nitrogen, 

phosphorus and potassium) and micronutrients. It increases the soil water holding 

capacity, improves soil structure and eliminates diseases and pollution. Crop 

cultivation, harvesting, erosion and natural decomposition decrease over time organic 
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matter in soil (Cooperband, 2002). Soil organic matter is then oxidized and returns to 

the atmosphere as carbon dioxide, completing the short-term carbon cycle.  

 

Soil is in effect a store of carbon and as such can be used to decrease atmospheric 

carbon levels. Methods that aim in doing so reduce the decomposition of soil organic 

carbon or increase the amount of highly stable carbon in soil.   

 

Methods that reduce the decomposition of soil organic carbon include reducing tillage 

intensity, decreasing or ceasing the winter fallow period, using winter crop cover and 

changing from monoculture to rotational cropping (West & Post, 1997).  

 

On the other hand, recent years have seen a plethora of research on biochar – charcoal 

produced specifically for soil amendment. Findings of biochar in ancient Terra Preta 

soil indicate to its stability and potential for long term carbon storage. Research has 

also shown that biochar can significantly increase crop yields, due to mechanisms that 

are yet to be scientifically determined and classified. This method will be discussed in 

detail in this thesis.  

 

Increasing	
  water	
  use	
  efficiency	
  	
  
 
Water use efficiency is defined as the ratio of water used by crops and the gross 

quantity extracted for irrigation use. The global average for water efficiency is 43% 

although more arid regions have higher efficiency rates, compared to least water-

constrained countries (Wood et al., 2005). Many technologies have been developed to 

increase water use efficiency. Besides saving water, these also increase yields adding 

to their significance.  

 

Microirrigation systems, such as drip and micro-sprinklers, are among the most 

commonly discussed technologies. These achieve efficiencies in excess of 95%. 

Currently only 0.7% of irrigated farmland worldwide has been subject to 

microirrigation (Wood et al., 2005).  
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There are many other methods that are discussed but in general these pertain to water 

conservation methods, increasing effective rainfall use, careful landscape design using 

shelterbelts and reusing urban wastewater for agriculture.  

 

Terra	
  Preta	
  Nova	
  technologies	
  
 
Amazonian Dark Earths (ADE) or Terra Preta (TP) are soils that contain large stocks 

of stable organic matter and high nutrient levels. Their fertility is much higher than 

the surrounding soils, which is demonstrated through substantially greater crop yields.  

Terra Preta has been a source of intensive scientific interest in the last 10 years. Main 

reason for this is the presumably anthropogenic origin of Terra Preta. Archeological 

findings of pottery on Terra Preta locations suggest that indigenous Indians have 

produced it to amend local unfertile soils. This implied that Terra Preta could be 

generated today and its powerful properties used to tackle present agricultural 

problems.  

 

Reproducing Terra Preta per se would, however, be a very challenging task. This 

would require significant research effort and logistical expertise. Amazonian Dark 

Earths are composed of a multitude of different input materials, which includes 

various residues of animal and vegetal origin. Reasons for the highly positive effects 

of Terra Preta soil on crop yields still haven’t been scientifically determined. High 

black carbon contents or biochar are, however, believed to be the key (Lehmann, 

2009).  

 

Managing a steady stream of these input materials would be impractical (Lehmann, 

2009) and possibly much too expensive. The differing properties of Terra Preta are 

also a reflection of the local hydrological, geological and biological regimes 

(Lehmann, 2009). Using Terra Preta in temperate zones could then yield very 

different results, than using it in tropical areas where it was discovered.  

 

Terra Preta is then rather a theoretical concept than a practical solution. Modern 

discussions should focus on developing Terra Preta Nova technologies (Lehmann, 

2009); the most well known being biochar. Terra Preta Nova per se is a less known 
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concept, but its production would include mixing biochar with composted organic 

waste materials.  

 

Discovery	
  of	
  Terra	
  Preta	
  	
  
 
Terra Preta has been discovered throughout Amazonia and estimations predict it 

occupies 10% of the land area. Patches of Terra Preta are described ranging from less 

than a hectare up to several square kilometers. Most of the findings are along water 

bodies, mainly major rivers (Glaser & Birk, 2012). 

 

Research suspects that Terra Preta was purposefully developed by a complex pre-

Colombian civilization. Accounts of this civilization were made available by the 

explorations of a pre-Colombian Spanish explorer named Francisco de Orellana. His 

reports testify of a civilization that developed along the banks of the Amazon basin 

and that could have numbered in millions. Orellana testifies about armed conflicts 

with the indigenous Indians and describes cities rich in culture and food (Bates, 

2010).  

 

Accounts of this civilization were lost and it is presumed that European diseases 

wiped it out. Archeological findings in the past two centuries have, however, made 

discoveries of large amounts of pottery on grounds where Terra Preta was found. 

Carbon dating of shells found in the pots, demonstrated that they are of very ancient 

origin (Bates, 2010).  

 

Whether Terra Preta was made purposefully or not is still unsure. Although 

implications exist, there is no scientific evidence indicating that forgotten agricultural 

techniques for large scale soil fertility improvement are responsible for Terra Preta 

genesis (Glaser & Birk, 2012). Research rather suggests that its creation and 

discovery was unintentional.  

 

Larger food production, stimulated by the discovery of Terra Preta could have 

triggered population growth in the Amazon region. Population increase then created 

greater organic waste quantities. Managing these wastes could have included mixing 

them into compost-like piles in the ground and adding charcoal from fires. Such 
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management of these materials might have lead to a self-enhancing and self-

organizing process where Terra Preta was produced on a larger scale (Glaser & Birk, 

2012).  

 

Terra	
  Preta	
  properties	
  and	
  genesis	
  
	
  
Terra Preta soils are mostly distinguished by a distinctive black coloration caused by 

elevated concentrations (70 times higher than surrounding soil) of charred biomass 

(Glaser et. al., 2001). This is today known as biochar and is thought to be one of the 

main sources of Terra Preta‘s high fertility. These soils also contain various residues 

of vegetal (ash, leaves and diverse palm fronds, manioc residue, seeds etc.) and 

animal (bones, blood, fat, feces, chelonian carapaces, shells etc.) origin (Kern et al., 

2009). Mixing these organic materials resulted in highly fertile soils rich in stable 

carbon (biochar) and nutrients, especially phosphorus and calcium (Lehmann, 2009). 

These soils also demonstrate a significantly higher cation exchange capacity, base 

saturation and PH values than in the surrounding soils (Steiner et al., 2009). Due to 

differences in input materials, there are many varieties of Terra Preta soil that share 

similar but not equal properties (Lehmann, 2009).  

 

	
  
Figure	
  3:	
  Model	
  of	
  Terra	
  Preta	
  genesis.	
  Source:	
  Glaser	
  &	
  Birk	
  (2012) 
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Creating Amazonian Dark Earths enabled the transformation of infertile Amazon soils 

into productive soils rich in organic carbon. Stability of soil organic matter (SOM) in 

ADE is six times greater than in surrounding soils. This is despite the high weathering 

rates that are 100 times greater than in mid-latitudes (Woods & Denevan, 2009). 

 

Biochar is the primary reason for the high SOM stability and high cation exchange 

capacity (CEC) present in Terra Preta soils (Glaser & Birk, 2012). Biochar in ADE is 

also connected to the soils high nutrient retention and water holding capacity, and is 

associated with high and persistent microbial activity (Woods & Denevan, 2009). 

High stability of biochar in Terra Preta ensures the soils maintain their high fertility 

over a longer time period.   

 

Biochar	
  as	
  the	
  backbone	
  of	
  Terra	
  Preta	
  Nova	
  production	
  
 
Biochar is the only element of the Terra Preta production chain that can be replicated 

on mass scale using modern technologies. Discussions on Terra Preta Nova 

production, therefore, in large extent involve producing biochar and mixing it with 

locally available organic waste material.  

 

Research on biochar, however, is not in agreement regarding its effects on soil 

properties. Biochar can be produced from a multitude of feedstock materials, leading 

to differing effects on soil. Even the positive results are subject to ambiguity and this 

disables drawing general conclusions. The future of Terra Preta Nova, therefore, lies 

in learning, which biochar production pathways (varying in feedstock used, biochar 

production conditions etc.) lead to soil quality improvements and increases in crop 

yields.  

 

Biochar is in most cases discussed in the literature, independently from Terra Preta 

Nova. Research is evolving mainly around its effects on soil properties, plant growth 

and production technologies. This chapter will outline the main conclusions of the 

biochar debate by reviewing the current literature. Gaining a perspective on its 

importance will require first looking at the overall biochar-for-environmental-

management strategy.  
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Biochar	
  for	
  environmental	
  management	
  	
  
 
Biochar has received increasing attention since Lehmann (2007) revealed that its 

production and application to soil can sequester the !"!!"of about a third of annual 

US fossil-fuel emissions (1.6 billion tons of carbon in 2005). Using biochar to amend 

degraded soils could sequester carbon while increasing crop yields. Biochar 

production can also be coupled with renewable energy generation.  

 

The attractiveness of biochar stems from the facts that it provides solutions for some 

of the most pressing environmental issues:  

 

1) Greenhouse gas emission reduction through displacing fossil fuel energy 

generation with renewable energy and long term storage through stabilizing 

carbon in ground  

2) Amelioration of degraded soils and subsequent increase in crop yields per 

hectare  

 
This segment will define biochar and its physical and chemical properties, describe 

the biochar strategy and compare it with other geoengineering proposals. This will be 

followed by an assessment of the most important effects of biochar on altering soil 

properties. 

 

Biochar	
  defined	
  	
  	
  
 
Brownsort et al. (2010) define biochar as a porous carbonaceous solid, which has 

physiochemical properties suitable for the safe and long-term storage of carbon in the 

environment and, potentially, soil improvement.  

 

In simple terms, biochar is the carbon-rich product obtained when biomass, such as 

waste wood, fruit shells etc. is heated in an oxygen-deprived environment. Biochar is 

distinguished from charcoal in that it is mainly produced with the intention of 

applying it to soil.  
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Production	
  process	
  	
  
 
Biochar is produced through thermochemical conversion of organic material in an 

oxygen-depleted environment (Brownsort et al., 2010) - a process called pyrolysis. 

Pyrolyzing biomass yields two main products and these are char and bioenergy in the 

form of bio-oil and syngas. Pyrolysis processes can be modified to increase the 

amount of each product (Table 2). Main variables that are altered are: the heating rate, 

peak temperature and residence time of biomass at peak temperature.  

 

Higher heating rates and temperature and shorter residence time will be applied when 

the primary goal is to produce bioenergy (fast pyrolysis). Heating of biomass releases 

a multitude of gaseous compounds and heat. These products can be captured to 

produce energy carriers such as electricity, bio-oil or hydrogen. When the primary 

goal is to maximize the amount of char produced, lower residence time and slow 

heating rate will be utilized (slow pyrolysis).  

 
	
  Table	
  2:	
  Fate	
  of	
  initial	
  feedstock	
  mass	
  between	
  products	
  of	
  pyrolysis	
  processes.	
  Source:	
  Developed	
  

from	
  Sohi	
  et	
  al.	
  (2009)	
  

Process Liquid 
(bio-oil) 

Solid 
(biochar) 

Gas 
(syngas) 

FAST PYROLYSIS 
Moderate temperature (~500  °∁) 
Short hot vapor residence time (<2s) 

75% 
(25% water) 

12% 
 

13% 

INTERMEDIATE PYROLYSIS 
Low-moderate temperature 
Moderate hot vapor residence time  

50% 
(50% water) 

25% 25% 

SLOW PYROLYSIS  
Low-moderate temperature 
Long residence time  

30% 
(70% water) 

35% 35% 

 
Higher char yields, however, do not imply higher yield of stabilized carbon. The char 

resulting from slow pyrolysis consists of fractions of contrasting recalcitrance - 

fractions of char that are unstable and would be lost quickly when applied to soil. 

Nevertheless, these lost fractions could provide short-term agronomic benefits. Fast 

pyrolysis, on the other hand, produces more stable carbon but in lower quantities 

(Brownsort et al., 2010).  
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Biochar properties will largely depend on the processing conditions and feedstock. 

Depending on the production temperatures, biochar will have differing cation 

exchange capacity, pH level and surface area. Figure 4 shows that the optimum 

properties depend on the temperature of the pyrolysis process. In this particular 

example, shown in Figure 4, the optimum processing temperatures were between 500 

and 550 °∁ (Lehmann, 2007).. The highest surface area, believed to be the most 

important biochar characteristic, was achieved at these temperatures,  

 

High biochar surface area is the product of numerous pores that develop in the 

pyrolysis process. The pores act as a “sponge” for nutrients and water as they retain 

these essential materials in soil. This makes them available to plant roots and leads to 

higher crop yields.  

 

Nutritional value of biochar in soil will largely depend on the biomass feedstock. 

Biochar can be produced from a multitude of biomass sources and these include 

various energy crops, agricultural wastes, compost, manure/animal waste, and kitchen 

waste and sewage sludge. These various materials will result in differing quantities of 

nutrients retained in biochar itself.  For more information on biochar production 

technologies, please refer to Appendix 2.  

 

	
  
Figure	
  4:	
  Optimum	
  biochar	
  properties	
  as	
  a	
  function	
  of	
  processing	
  temperature.	
  Source:	
  Lehmann,	
  

(2007) 
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Multiple	
  benefits	
  of	
  biochar	
  use	
  
 
Biochar application for environmental management yields four complementary goals 

and these are:  

 

1) Soil improvements 

2) Mitigation of climate change 

3) Waste management 

4) Bioenergy production 

 

Soil	
  improvements	
  	
  
 

Soil improvements are derived mainly from changing existing soil properties and this 

includes increasing soil surface area, nutrient and water retention capacity and 

increasing microbial activity. Besides this, biochar is believed to be the most stable 

form of soil organic carbon. In other words, biochar does not mineralize rapidly like 

other soil organic matter but stays in soil for hundreds to thousands of years. Biochar 

soil application, therefore, could lead to atmospheric carbon sequestration.  

 

Mitigation	
  of	
  climate	
  change	
  	
  
 

Soils worldwide contain around twice as much carbon (1500 Gt) as the atmosphere 

(750 Gt), and three times more than the amount in vegetation (560 Gt). Soils therefore 

constitute an enormous reservoir of carbon. Conventional agricultural practices that 

lead to soil erosion (topsoil loss) etc. accelerate the loss of soil carbon by inducing its 

oxidation and release in the form of atmospheric gasses.  

 

Stabilizing biomass in the form of biochar and placing it in soil is a form of 

decreasing the release of carbon from soil to the atmosphere (Bruun, 2011). Carbon is 

locked from the short-term carbon cycle. The result is a reduction in greenhouse 

gasses and associated decrease in the atmospheric warming effect.  

 

Figure 5 compares a normal and biochar based agricultural system. Carbon 

stabilization in soil makes biochar soil conditioning carbon-neutral. Additional energy 
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production during pyrolysis will offset fossil fuel use, making the entire process 

carbon-negative (Lehmann, 2007).  

 

	
  
Figure	
  5:	
  Comparison	
  of	
  carbon	
  cycling	
  in	
  a	
  biochar-­‐based	
  and	
  normal	
  agricultural	
  system.	
  Source:	
  

Bruun	
  (2011)	
  

 

Waste	
  management	
  and	
  bioenergy	
  production	
  
 
Biochar can be generated from waste materials, meaning that its production will 

incentivize the formation of waste management schemes. Waste flows that can be 

used in the process often include organic waste from agricultural or industrial 

production. This includes animal manure, garden waste and materials like paper mill 

wastes. Pyrolyzing these wastes not only leads to biochar and bio-energy production, 

but it also decreases costs associated with conventional waste management schemes.  

 

Other	
  benefits	
  	
  
 

Biochar production from local organic waste would decrease landfill methane 

emissions and energy used in long-distance transport of waste. Pyrolyzing biomass 

like animal manures would also eliminate pathogen problems associated with direct 

manure application to soil (Lehmann & Joseph, 2009). Using animal manure for 
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biochar production would also eliminate bad odors from the manure (International 

Biochar Initiative, 2012).  

	
  

Greenhouse	
  gas	
  emission	
  reductions	
  	
  
	
  
Biochar production is a carbon-negative process, meaning that it leads to an overall 

removal of carbon from the atmosphere (under conditions that bioenergy is 

produced). Figure 6 describes the entire process in more detail, indicating to indirect 

savings in carbon dioxide emissions and other GHG emission avoidance. The 

discussion that follows is based on the study made by Woolf et al. (2010). This is the 

most comprehensive study on biochar GHG emission reductions. According to the 

authors, these are the potential reductions:    

 

1) Higher crop growth derived from global biochar applications would lead to an 

increase in the plant-biomass carbon dioxide uptake 

2) Biochar applications to soils would reduce other soil GHG emissions. This 

mainly relates to decreasing nitrous oxide emissions from nutrient runoff 

caused by soil erosion and over fertilization of land  

3) When biochar is produced from waste feedstock, like animal manure or 

organic waste, methane emissions are reduced as well. These stem from better 

manure management and an overall decrease in landfill emissions 

 

Other indirect benefits of producing biochar also include the avoided emissions of 

transporting waste to landfills etc. ( Lehmann & Joseph, 2009a).  

 

Globally biochar use could offset a maximum of 12% of current anthropogenic 

emissions, but only if certain sustainability criteria are met. These include the 

following:  

 

a) There is no land clearance to provide biomass feedstock  

b) Agricultural land is not used due to negative consequences for food security 

and because it may induce negative land use elsewhere  

c) Extraction rates of agricultural and forestry residues are sufficiently low to 

prevent soil erosion  
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d) Industrially treated waste biomass that poses a risk of contamination is not 

used  

e) Biochar production systems rely on technologies that have low GHG 

emissions compared to low-tech solutions predominant in developing 

countries. These are mainly open kilns for charcoal production that emit large 

amounts of soot and other greenhouse gasses  

f) There is a net primary productivity increase due to positive effects of biochar 

on soil fertility and crop growth  

 

Generating GHG emission reductions through biochar application would necessitate 

meeting all of the above-mentioned criteria. This could prove to be rather challenging, 

which is why the 12% GHG reduction estimate needs to be taken conservatively.   

 

	
  
Figure	
  6:	
  Biochar	
  inputs,	
  outputs	
  and	
  impacts.	
  Source:	
  Woolf	
  et	
  al.	
  (2010) 

 

Biochar	
  effects	
  on	
  soil	
  properties	
  
 
Biochar is mostly distinctive from other soil organic matter in its porous structure and 

resulting large specific surface area. The large surface area of biochar is also 
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associated with its ability to retain more nutrients and water than other soil organic 

matter.  

 

Besides increasing crop yields, greater nutrient and water retention decreases the 

amount of nutrient rich effluent leakage into water bodies. The porous structure of 

biochar apparently enables high microbial activity – an aspect that further enhances 

soil fertility. Biochar application to soil also leads to carbon storage. The 

effectiveness of storing carbon in ground depends on its stability in soil. Radiocarbon 

dating of biochar found in Terra Preta, estimates its age from hundreds to thousands 

of years. These aspects differentiate biochar from other soil amending techniques.  

 

The following paragraphs will present the main effects on soil properties that make 

biochar an appealing soil amending method. 

 

High	
  specific	
  surface	
  area	
  
 
Soil surface area influences all of the essential functions for fertility – this includes 

water, air, nutrient cycling and microbial activity (Downie et al., 2009). Increasing 

soil surface area enables soil particles to retain and supply more nutrients and water 

for plant uptake (University of Hawaii, 2012). Biochar significantly alters soil 

physical properties and in doing so potentially enables better nutrient management 

and increases air and water availability within the soil root zone (Downie et al., 2009). 

 

Biochar is produced by heating feedstock in an oxygen strived environment. Research 

has indicated that biochar’s surface area mostly depends on the highest treatment 

temperature. (HTT) where the surface area increases with increasing the treatment 

temperature (Downie et al., 2009). The feedstock material mostly develops 

micropores that are responsible for biochar’s absorptive capabilities (Rodriguez, 

2010). Macropores on the other hand develop in lesser extent. However, these are 

very important for providing habitat for microorganisms that are in part responsible 

for the positive effects of biochar on soil (Downie et al., 2009).  
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Figure	
  7:	
  Macroporosity	
  of	
  a	
  wood-­‐derived	
  biochar	
  produced	
  by	
  "slow	
  pyrolysis".	
  Source:	
  Best	
  

Energies	
  

	
  

Nutrient	
  retention	
  	
  
	
  
Biochar soil conditioning leads to increased nutrient availability in two basic ways: a) 

directly through the nutrients contained in the biochar structure itself and b) indirectly 

through improving nutrient retention (Chan & Xu, 2009).  

 

Biochar in itself is not a major source of nutrients, although its chemical structure 

largely depends and varies with the feedstock used and processing conditions 

(Amonette & Joseph, 2009).  

 

The biochar particle comprises of two main structural fractions, and these are stacked 

crystalline graphene sheets and randomly ordered amorphous aromatic structures. The 

later contain hydrogen, oxygen, nitrogen, phosphorus and sulfur and these are though 

to be of great relevance for the highly heterogenous surface chemistry and reactivity 

of biochar (Verheijen et al., 2009) .   

 

Table 5 summarizes the total elemental composition and pH ranges of biochar’s from 

a variety of feedstock’s and pyrolysis conditions used in various studies. The 
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differences in biochar chemical (and physical) composition imply that each individual 

soil application needs to be preceded by an assessment of biochar properties.  

 
Table	
  3:	
  Summary	
  of	
  total	
  elemental	
  composition	
  and	
  pH	
  ranges	
  and	
  means	
  of	
  biochar’s	
  from	
  a	
  

variety	
  of	
  feedstock’s	
  and	
  pyrolysis	
  conditions.	
  Source:	
  Verheijen	
  et	
  al.	
  (2009)	
  

  pH C 
(!  !"!!) 

N 
(!  !"!!) 

N (!"!!! +
!"!!!) 
(!"  !"!!) 

C:N P 
(!  !"!!) 

Pa 
(!  !"!!) 

K 
(!  !"!!) 

Range From  6.2 172 1.7 0.0 7 0.2 0.015 1.0 
 To 9.6 905 78.2 2.0 500 73.0 11.6 58 
Mean  8.1 543 22.3 - 61 23.7 - 24.3 

 

Water	
  retention	
  
 
Agronomic benefits of biochar are often attributed to improved water retention. Water 

retention in soil is determined by the distribution and connectivity of pores in the soil 

medium. This is largely regulated by soil particle size and structural characteristics of 

soil organic matter.  

 

Biochar is a highly porous material with a great surface area and its application to soil 

increases water retention. The improvements stemming from biochar additions, 

however, depend on the initial soil texture. A draw back is the large volume of 

biochar that needs to be added before it increases soil water retention (Verheijen et 

al., 2009).  

 

Besides the apparent positive effects for plant growth, biochar also purifies runoff 

water from nutrients. The increase in water quality could decrease eutrophication2 

impacts of modern agriculture.   

	
  

Soil	
  microbial	
  activity	
  	
  
	
  
Biochar‘s large internal surface area and its ability to absorb soluble organic matter, 

gasses and inorganic nutrients provide a favorable habitat for microbes to colonize, 

grow and reproduce. These are sheltered by the pores in biochar that protect them 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  Eutrophication refers to algae growth induced by excessive nutrient concentration in water. When this happens, water oxygen 
levels are depleted leading to dying of other water organisms 	
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form predation and desiccation. Biochar pores act as a refuge site for colonizing 

microbes (Figure 8) and provide for many diverse carbon, energy and mineral nutrient 

needs (Thies & Rillig, 2009).   

 

Increased microbial activity favors soil fertility because of the ecosystem services that 

these perform. Soil microorganisms decompose organic matter, cycle and immobilize 

inorganic nutrients, filter and bioremediate soil contaminants, suppress and cause 

plant disease, produce and release GHG, and improve soil porosity, aggregation and 

water infiltration (Thies & Rillig, 2009).  

 

Biochar alters the chemical and physical environment of the soil, which in turn affects 

the behavior and characteristics of soil microorganisms. Differing biochar materials 

will alter the availability of soluble organic matter, mineral nutrients, pH, soil 

aggregation and the activity of extracellular enzymes. This affects the abundance and 

distribution of soil microbes, particularly bacteria, actinomycetes and arbuscular 

mycorrhizal fungi. Bacterial abundance, diversity and activity are mostly influenced 

by moisture, temperature and pH – all of these can be affected by biochar (Rodriguez, 

2010).   

 

	
  
Figure	
  8:	
  Interaction	
  of	
  arbuscular	
  mycorrhiza	
  with	
  a	
  piece	
  of	
  porous	
  wood	
  charcoal.	
  Source:	
  Ogawa	
  

&	
  Okimori	
  (2010)	
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Stability	
  of	
  biochar	
  in	
  soil	
  	
  
 
Biochar is one of the most stable forms of carbon in soil. Unlike other organic matter 

that oxidizes after a short time period, biochar stays stable on a millennial scale. 

Radiocarbon dating of biochar, found in Terra Preta, indicates to an origin dating back 

from 500 up to 7000 years BC (Lehmann et al., 2009).  

 
Stability of biochar in soil is crucial for these reasons (Lehmann et al., 2009):  

 

1) Viability of biochar strategies to mitigate climate change. Retention of carbon 

in a stable form in soil will depend on the rate of biochar oxidation. Longer 

biochar retention times will yield greater benefits in terms of reducing the 

levels of atmospheric carbon dioxide  

2) Length of time biochar exhibits positive effects on soil properties, crop growth 

and water quality. Longer retention in soil will create greater benefits for the 

local environment  

 

	
  
Figure	
  9:	
  Schematics	
  for	
  biomass	
  or	
  biochar	
  remaining	
  after	
  charring	
  and	
  decomposition	
  in	
  soil.	
  

Source:	
  Lehmann	
  et	
  al.,	
  (2006) 

 
Strategies to apply biochar to soil rely on the assumptions described in Figure 9 

(Lehmann et al., 2006).:  

 

1) Adding biomass directly to soil will result in a complete decrease of its carbon 

content over a period of one hundred years 

2) Charring the same biomass will induce a loss of at least 50% of the biomass 

carbon. The other half will be retained in the form of stable biochar residue 
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3) The biomass that is not retained as biochar, but is converted into heat and gas, 

can be used for electricity and bio oil generation 

 
However a great deal of scientific uncertainty exists regarding biochar stability in soil. 

The main areas of concern are given bellow:  

 

1) Biochar is applied to different soil types and environments. Many different 

feedstocks from which it can be produced as well as production processes, 

add to the variability of biochar properties and responses in soils. 

 

2) There are many mechanisms through which biochar can decay or be 

transported in soil. Research indicates that biotic decomposition of biochar 

fractions is the most significant mechanism that contributes to its decay. This 

refers to biochar decomposition by microorganisms (Lehmann et al., 2009). 

On the other hand, soil erosion is the most significant transport mechanism of 

biochar.  

 
The great number of mechanisms by which biochar could decay indicate to the big 

uncertainties associated with using biochar as a strategy to mitigate climate change.  

Applying biochar on a massive scale could generate negative feedbacks if that same 

biochar mineralizes much more quickly than what was initially expected. This event 

could cause a potentially large release of carbon back to the atmosphere. Therefore, 

estimating biochar stability is of great significance for its application to soil.   

 

Estimating	
  biochar	
  stability	
  
 
Currently there is no established methodology that can be used to estimate the 

stability of biochar with great precision. Radiocarbon dating of biochar gives results 

that could be off track in the range of hundreds of years (Lehmann et al., 2009).  

 

Gaps in soil science prevent the full understanding of biochar stability and decay. It 

remains largely unknown why some soil organic matter persists for millennia while 

other decomposes readily (Schmidt et al., 2011).  Likewise, there is no agreed 

methodology for estimating the stability of biochar.  
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Strategies to use biochar for environmental management often cite that biochar is 

stable on a millennial scale. However, these estimates are based on research on Terra 

Preta soils. This differs from research on freshly produced biochar, where some 

results indicate to a significant mass loss in a matter of years (Sohi et al., 2009).  

 
Unknowns related to biochar stability are one of the main reasons why biochar 

environmental management hasn't been applied on a wider scale. Research on biochar 

effects on crop yields is under review as well.  

 

Effects	
  of	
  biochar	
  on	
  crop	
  yields	
  
 
Results of biochar application to soil are subject to variability and there is no clear 

understanding under what climatic conditions and plant species high or low yields can 

be expected.  

 

Sohi et al. (2009) propose three main mechanisms that explain how biochar might 

effect crop production:  

 

1) Direct modification of soil chemistry through its elemental and compositional 

make up  

2) Provision of chemically active surfaces that modify the dynamics of soil 

nutrients or catalyze useful soil reactions  

3) Modification of the physical character of soil in a way that benefits root 

growth and/or nutrient and water retention and acquisition  

 

According to the authors the first mechanism can result in a temporary change in crop 

productivity, and this depends on biochar nutrient content and weathering over time. 

The second and third mechanisms depend on long-term biochar persistence in soil 

and, therefore, their effects might be finite.  

 
Sohi et al. (2009) compile a list of biochar experiments assessing the impact of 

biochar additions on crop yields (Table 4). The compiled studies were made on a 

variety of different soil types and using a multitude of feedstock materials. Most of 

the presented results show that biochar had a positive effect on crop growth.  
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However, the majority of currently published studies are small scale, short term and 

sometimes conducted in pots where environmental fluctuations are removed (Sohi et 

al., 2009). Most of the field trials are conducted in tropical climates, leaving little 

evidence of biochar effects in temperate climates (Brownsort et al., 2010).  

 

Deriving conclusions about the potential effects of biochar on crop growth is 

impossible without further understanding of the soil processes associated with its 

application. Biochar applications in individual regions should be preceded by 

experiments on the effects of biochar on local soils.  

  
Table	
  4:	
  List	
  of	
  experiments	
  assessing	
  the	
  impact	
  of	
  biochar	
  addition	
  on	
  crop	
  yield.	
  Source:	
  Adopted	
  

from	
  Sohi	
  et	
  al.	
  (2009)	
  

Authors  Study outline  Result summary 
Iswaren et al 
(1980) 

Pea, India 0.5 Mgha-1 char increased biomass 
160% 

Iswaren et al. 
(1980) 

Mung bean, India 0.5 Mgha-1 char increased biomass 
122% 

Kishimoto & 
Sugiura (1985) 

Soybean on volcanic ash loam, 
Japan 

0.5 Mgha-1 char increased yield 
151 % 
5 Mgha-1 char decreased yield to 
63% 
15 Mgha-1 char decreased yield to 
29% 

Kishimoto & 
Sugiura (1985) 

Sugi trees on clay loam, Japan 0.5 Mgha-1 wood charcoal 
increased biomass 249% 
0.5 Mgha-1 bark charcoal increased 
biomass 324%  
0.5 Mgha-1 activated charcoal 
increased biomass 244% 

Chidumayo (1994) Bauhinia trees on alfisol/utisol Charcoal increased biomass by 
13% and height by 24% 

Glaser (2002) Cowpea on xanthic ferrasol  67 Mgha-1 char increased biomass 
150%  
135 Mgha-1 char increased biomass 
200% 

Lehman (2003) Soil fertility and nutrient 
retention. Cowpea was planted 
in pots and rice crops in 
lysimeters at the Embrapa 
Amazonia Ocidental, Manus, 
Brazil 

Bio-char additions significantly 
increased biomass production by 38 
to 45% (no yield reported)  

Oguntunde (2004) Comparison of maize yields 
between disused charcoal 
production sites and adjacent 

Grain yield 91% higher and 
biomass yield 44% higher on 
charcoal site than control  
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fields. Kotokosu watershed, 
Ghana  

Yamato (2006) Maize, cowpea and peanut trial 
in area of low soil fertility  

Acacia bark charcoal plus fertilizer 
increased maize and peanut yields 
(but not cowpea)  

Chan (2007)  Pot trial on radish yield in heavy 
soil using commercial green 
waste biochar (three rates) with 
and without N   

100 t ℎ!!! increased yield x3;  
linear increase 10 to 50 t ℎ!!! - but 
no effect without added N  

Rondon (2007) Enhanced biological N-2 
fixation (BNF) by common 
beans through biochar additions. 
Colombia 

Bean yield increased by 46% and 
biomass production by 39% over 
the control at 90 and 60 g kg (-1) 
biochar, respectively  

Steiner (2007)  Four cropping cycles with rice 
and sorghum  

Charcoal amended with chicken 
manure amendments resulted in the 
highest cumulative crop yield (12.4 
Mgha-1) 

Kimetu et al. 
(2008) 

Mitigation of soil degradation 
with biochar. Comparison of 
maize yields in degradation 
gradient cultivated soils in 
Kenya  

Doubling of crop yield in the highly 
degraded soils from about 3 to 6 
t/ha maize grain yield 

 

Terra	
  Preta	
  Nova	
  production	
  systems	
  
	
  
Terra Preta Nova (TPN) is a term describing a soil conditioner that resembles ancient 

Terra Preta in its composition and effects on soil properties. TPN is a product of high-

end waste management, where regional waste resources are employed to the highest 

measure. The feedstock materials that enter the composition of TPN are biochar (any 

feedstock) and composted organic waste.  

 

TPN is mostly a theoretical concept and there are almost no scientific papers 

published on the topic of reproducing ancient Terra Preta soils (exception being Kern 

et al., (2009) and Fischer & Glaser, (n.d.) ). However, some private companies have 

attempted in doing so. This thesis is among the first efforts to document the 

possibilities of producing Terra Preta Nova. The focus of the thesis is on large-scale 

regional production.  

 

Terra Preta Nova production systems are systems in which TPN feedstock is collected 

and used for TPN production. These systems are circular, meaning that they rely on 
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recycling of waste materials. Introducing these systems would require fundamentally 

rethinking conventional economic systems that rely on linear resource use. 

 

The linear approach assumes that at one end of the system there is an unlimited 

supply of energy and raw materials, while at the other the environment has an 

infinitive capacity to absorb pollution and waste. The result of this is resource 

shortage on the one hand and negative environmental impact on the other (Pimbert, 

2012).  

 

Circular systems rely on local waste materials as input feedstock into production 

processes. Terra Preta Nova is a product of circular economic design. Managing such 

systems is more complex than operating a liner system. Instead of disposing of 

material streams in landfills, circular economies streamline them into productive 

purposes.  

 

Existing	
  Terra	
  Preta	
  Nova	
  and	
  biochar	
  systems	
  
 
Germany hosts a demonstration-scale Terra Preta Nova facility that is based on 

established waste management systems. This pilot plant utilizes green waste, dung, 

manure and the solid fraction of the digestate from biogas production. Biochar 

feedstock is not explained in the literature (Palaterra, n.d.). Constant flow of input 

materials into the plant depends on streamlined regional logistics systems. Waste 

management is therefore essential for potential large scale TPN production.  

 

Small-scale systems have also been developed. Terra Preta sanitation refers to 

sanitation systems based on urine diversion and addition of charcoal. Natural 

processes like lacto-fermentation and vermicomposting converts fecal material into 

Terra Preta like soils (Gensch, 2010). 

 

Apart from Germany, attempts to create Terra Preta Nova have been rare. A TPN 

experiment in the Municipality of Tailândia in Brazil has used as feedstock a 

combination of charcoal, sawmill and butchery residues (Kern et al., 2009). This 

experiment utilized the local waste streams from the wood industry that is prevalent in 

the region. 
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Terra Preta Nova systems are not clearly defined in the literature. Often these are 

confused with biochar systems, where biochar was supplemented with some form of 

organic waste. This includes materials like human and animal manure, compost, urine 

etc.  

 

The International Biochar Initiative surveyed biochar projects and yielded 154 

responses from 43 countries. Most of the projects are located in India, Indonesia and 

China. Around one third of the projects mixed organic waste with biochar (Wilson, 

2011). Abiding by the definition of TPN given in the previous segments, these 

projects could be counted as small scale Terra Preta Nova systems.   

 

Feedstock	
  for	
  Terra	
  Preta	
  Nova	
  development	
  
	
  
Creating a viable TPN plant is mostly determined by the availability of local waste 

feedstock materials. These will be examined in more detail in the following segments.  

	
  

Feedstock	
  materials	
  
	
  
Terra Preta Nova proposed in this thesis would mainly comprise of composted 

organic waste and biochar, while materials like ash and urine would be added as 

amendments (Figure 10 and 14). Since biochar and compost are among the most 

important segments, their utilization and feedstock materials will be discussed in 

more detail. Production technologies are presented in Appendix 3.  

 

 
Figure	
  10:	
  Terra	
  Preta	
  Nova	
  feedstock	
  streams.	
  Source:	
  Author 

Terra 
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minerals	
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Biochar	
  	
  
	
  
High quality biochar feedstock is usually a woody waste material, like waste wood or 

coconut shells. Despite their suitability for biochar production, these materials could 

also be used for energy production. Waste wood could for instance be incinerated to 

derive electricity. Biochar feedstock therefore runs into the alternatives-problem.  

 

Lehman and Joseph (2009b) outline the feedstock materials that were used in biochar 

field trials (Table 5). Many of these are, however, suitable for bioenergy production 

and biochar should only be considered as a second option. Green waste is a material 

that is for instance well suited for composting, biogas production etc. Whether or not 

this is used for biochar production, depends on regional energy and materials demand 

analysis.  

 
Large differences exist between the biochar resource base in urban, industrial and 

rural areas and to some extent between developing and developed countries. 

Feedstock materials are also variable in quality. Agricultural and forest residues often 

contain rock and soil that decrease efficiency of biomass conversion or damage 

equipment. Urban and industrial areas often have feedstock contamination problems. 

Many resources coming from these sources are available during the entire year but 

contain heavy metals, sewage sludge being a prime example (Lehmann & Joseph, 

2009b). Industrial sources, like the paper industry, generate large quantities of waste 

that can be utilized for biochar production (Van Zwieten et al., 2010).  

 

Seasonality of feedstock will be of great importance as well. Sources like paper mills 

and sewage sludge provide a steady all-year flow of input materials. Energy crops on 

the other had are available only in harvest periods. Their availability also depends on 

the yields, which vary with climate conditions.  

 

Individual feedstock will also differ in transportation distances. The economics of 

transportation will vary with the moisture content of feedstock and transportation 

type. Input materials with large water content will be more uneconomical to transport. 

Such feedstock will also be more costly to treat. High moisture feedstock will require 

additional drying, before being pyrolyzed for biochar production. Transporting the 
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feedstock with trains and boats will be more economical that truck transport, because 

of the higher energy efficiency (Lehmann & Joseph, 2009b).  

 

Table 7 provides a comprehensive summary of biochar feedstock input. The materials 

are divided based on source (urban, rural and industrial), global region (developed 

and developing countries), moisture content (low, high and medium) and 

transportation (high and low transportation distances).  

 
	
  Table	
  5:	
  Different	
  biochar	
  feedstock	
  according	
  to	
  various	
  quality	
  factors.	
  Source:	
  Adapted	
  from	
  	
  

Lehmann	
  &	
  Joseph,	
  (2009b)	
  

Resource base  Location  Global region  Moisture  Transportation 
Green waste from 
households, parks, gardens 
and construction clearing 

 
U, (R) 

 
DD 

 
L-M 

 
H 

Source separated organic 
waste (animal, grease-trap 
waste) 

 
U 

 
DD 

H L-H 

Waste from wood-and paper-
processing industries  

I.R (DG) DD L-H L-H 

Source-separated commercial 
and industrial waste with low 
heavy-metal contents  

U,I, (R) DG, DD L-H L-H 

Sewage sludge with low 
levels of contaminants  

U,I DG, DD H L 

Residues from food crops  R (DG), DD L L-H 
Manure from confined animal 
operations  

R DD H L-H 

Purpose-grown feedstock  R DD L H 
Forest thinning’s and residues 
of timber production 

R (DG), DD L H 

Residues from food-and crop 
processing facilities  

U,I,R (DG), DD L-H L 

Residues from the clearing of 
land mines 

R DG, DD L L-H 

Notes:  
1. Location where the feedstock is most abundant: R = rural; U = urban 
2. Global region where the feedstock is most abundant: DG = developing; DD = developed countries 
3. H = high moisture content; L = low moisture content 
4. H = high transportation distances; L = low transportation distances, both with and without cogeneration of energy 
5. Brackets indicate low importance 

	
  

Compost	
  	
  
	
  
Compost is a material consisting of degraded organic waste that has been conditioned 

to make it suitable for land application. Organic waste originates from municipal, 
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agricultural and industrial sources. Before being used in agriculture in any form, these 

materials should be composted.  

 

Composting is the biological decomposition and stabilization of organic 

substrates, under conditions that allow development of theomorphic 

temperatures as a result of biologically produced heat, to produce a final 

product that is stable, free of pathogens and plant seeds, and can be 

beneficially applied to land.  

Taken form Haug (1993) 

  

Composting essentially stabilizes waste and in doing so it decreases the waste volume 

and eliminates any harmful pathogens and plant seeds.  

 

Under natural conditions, earthworms, nematodes and soil insects break down most of 

organic material into smaller particles, increasing their exposure to microbial 

degradation. When compost is produced for waste management purposes, organic 

waste is broken down into smaller particles mechanically (Chen et. al. 2011). Besides 

this, the degradation process is controlled to maximizes the production of humus and 

minimize the creation of unwanted substances like methane.  

 

Achieving the appropriate carbon to nitrogen ratio is one of the most essential 

elements of composting. This represents the relative proportion of these two elements. 

Organic waste materials differ in the amounts of carbon and nitrogen, which 

necessitates achieving a right compost mix.  

 

Woody materials will mostly have higher amounts of carbon, while residues like grass 

cuttings and leaves have higher nitrogen amounts. The best carbon to nitrogen ratio is 

believed to be between 40:1 and 25:1. For normal functioning, the microorganisms 

also require appropriate moisture (50 to 60% by weight), oxygen availability (>10%), 

pH levels (6.5 to 8.0) and process temperature (55 to 65 !!! ) and particle size (<2.5 

cm) (Chen et. al. 2011). 
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Figure	
  11:	
  The	
  composting	
  process.	
  Source:	
  Chen	
  et	
  al.	
  (2011) 

 

The	
  composting	
  process	
  
 
Composting is a process requiring oxygen and water, where microorganisms harness 

the chemical energy contained in the bonds of the substrates being degraded. Results 

of the process are heat and !"! and humus (carbon skeletons and recalcitrant humic 

substances), which is largely responsible for the soil-amending ability of compost 

(Figure 12). This process consists of three basic stages and these are (Seyedbagheri, 

2010):  

 

1) Initial mesophilic stage – population of microbes increases exponentially 

as these are readily available food sources, contained in the feedstock. This 

increases the temperature of the compost pile from ambient temperature to 

around 40 !!! . 

 

2) Second thermophilic phase – occurs during the second or third week of 

composting when temperatures in the pile reach 60 to  70 !!! . Maintaining 

the process requires constant watering and turning of the pile in order to 

ensure adequate levels of oxygen. This phase continues until most of the 

nutrient and energy-containing materials within the pile have been 

transformed. The high temperatures kill pathogens and weed seeds and 

break down phytotoxic compounds (toxic to plants) (Chen et. al. 2011).  
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3) Final mesophilic phase – composting slows down and the compost 

becomes relatively stable. During this phase, soil microbes recolonize the 

pile and the formation of humic substances increases. The composting 

process stops when the pile reaches ambient temperatures.  

 

Composting leads to the formation of humus and this is a stable substrate, free of 

pathogens and plant seeds, which can be beneficially applied to land for the purpose 

of fertilizing and soil amending.  The main aim of applying compost to ground is 

increasing and maintaining the level of soil organic matter. Soil organic matter 

improves soil water holding capacity, root density and cation exchange capacity. It 

also improves other physical, chemical and biological soil properties that will not be 

discussed in this thesis (Cecil & Jolin, 2005).  

 

Compost	
  feedstock	
  	
  
 
Compost can be made from the following waste streams that differ in nitrogen and 

carbon content (Cecil & Jolin, 2005):  

 

1) Green waste or yard waste – landscape or plant trimmings, leaves and grass. 

This is usually nitrogen rich 

2) Wood waste – includes woody debris, branches, twigs, stumps and sawdust. 

These are carbon rich  

3) Food waste – food material resulting from the processing, storage, preparation, 

cooking, handling or consumption of food. This includes industrial, 

commercial and residential sources. It includes pre-consumer (kitchen 

trimmings) and post-consumer (off the trimmings) waste.  

4) Other organic waste – includes manure, agricultural crop residue and other 

miscellaneous compostable organic materials. Manure is more nitrogen-rich 

and crop-residues are more carbon rich. 
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Carbon	
  use	
  efficiency	
  	
  
 
Due to its positive effects on the physical, chemical and biological soil properties, 

compost contributes to greater and more stable crop yields. However, composting is 

limited in terms of carbon use efficiency and long-term carbon sequestration. Large 

amounts of carbon are lost through oxidation of organic matter. Figure 12 shows that 

the average carbon losses during the rotting process, due to !"! emissions, ranged 

from 35% to 55% (Fischer & Glaser, n.d.). 

 

	
  
Figure	
  12:	
  Relative	
  carbon	
  balance	
  in	
  percent	
  of	
  initial	
  carbon	
  input	
  based	
  on	
  composting	
  facilities	
  

in	
  Germany.	
  Source:	
  Fischer	
  &	
  Glaser	
  (n.d)	
  

	
  

Biochar	
  and	
  compost	
  mixture	
   
 

Note 

This segment is based in the research done by Fischer and Glaser (n.d), a research 

paper on mixing biochar and compost.  

 

Efficiency of carbon use in compost could be enhanced with Terra Preta Nova 

technologies. Adding biochar to compost would increase the amount of stable carbon 

in the mixture. However, the overall amount of organic matter in the mixture will be 

variable and might even decrease. Mixing compost with biochar might induce more 

rapid mineralization of organic matter in the compost. Biochar science refers to this as 

the biochar priming effect.  

 

Fischer and Glaser (n.d) indicate that positive priming effects occurred when biochar 

constituted 1% of the biochar-compost mixture. However, a significantly negative 



	
   44	
  

priming effect occurred when biochar composed 50% of the mix. These results 

indicate that biochar-compost mixtures increase the stable carbon fraction and overall 

organic matter content, when biochar is added in larger amounts. The results are 

based only on one experiment so any generalizations about biochar-compost mixtures 

cannot be made.  

 

 Adding biochar to compost could have the following positive effects on the 

composting process:  

 

1) Biochar surface oxidation enhances the capacity of biochar to chemisorb 

nutrients, minerals and dissolved organic matter. Overall reactivity of biochar 

surfaces increases with composting 

2) Biochar as a bulking agent improves oxygen availability and stimulates 

microbial growth and respiration 

3) Biochar increases moisture retention that will have a positive effect on 

composting 

4) Biochar enhances the rotting process due to its functions as a matrix for the 

involved aerobic microorganisms probably increasing decomposition speed. 

 

Positive effects of biochar application to compost have been demonstrated in a 

greenhouse experiments on sandy and loamy soil in temperate climate conditions 

(Figure 13). Biochar-compost mixtures increased crop yields more than individual 

biochar and biochar-fertilizer applications (10kg of biochar per one tonne of compost 

material). However, best yields were observed when compost was applied 

individually. 
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Figure	
  13:	
  Crop	
  response	
  in	
  relation	
  to	
  different	
  biochar	
  and	
  compost	
  application.	
  Source:	
  	
  Fischer	
  &	
  

Glaser	
  (n.d)	
  

 

Figure 14 shows the material flows that could be considered in making Terra Preta 

Nova. The materials are presented according to availability of individual nutrients and 

degradability. The graph does not include digestate from biogas production. This 

material is rich in nutrients and is usually used in agriculture for fertilization. Using 

digestate for TPN production is welcomed in regions that have great numbers of 

biogas plants and lack of agricultural fields.  

 

Fischer and Glaser (n.d) note that nitrogen rich materials, like leaves, could work to 

promote a rapid rotting process. On the other hand, ligneous carbon rich materials 

could provide a stable organic matter pool with long term benefits for soil 

amelioration, carbon sequestration and humus reproduction. Biochar could serve as a 

medium to retain water and nutrients, guaranteeing long-term positive effect on crop 

yields. Adding clay minerals could additionally enhance cation exchange capacity and 

water holding capacity due to its high adsorption or swelling capacity. 
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Figure	
  14:	
  Material	
  Flows	
  for	
  Terra	
  Preta	
  Nova.	
  Source:	
  Fischer	
  &	
  Glaser	
  (n.d)	
  

 

Material	
  Flow	
  Management	
  for	
  Terra	
  Preta	
  Nova	
  
 
Material Flow Management (MFM) is a resource management approach used to 

design new efficiency strategies needed to manage industrial and urban metabolisms 

in a sustainable way.  

 

Material-Flow Management (MFM) means the goal oriented, responsible, 

integrated and efficient influencing of material systems. The goals are given 

by ecological and economical areas and by observing social aspects.  

        Taken from Hongyan (2005) 

 

The scope of MFM are regions, municipalities and individual companies. These are 

seen as systems where material and energy flows underline normal economic activity. 

Because every material has energy embedded in it – like energy from the Sun in 

biomass – energy and material flows are viewed as a single entity.  
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Material and energy flows in current systems are unorganized. Single parts of a 

system, like household, industry and public buildings, are seen as individual 

subsystems. Each consumes materials and energy and produces low quality waste. 

Modern economic systems treat this waste in the simplest and financially cheapest 

way. Solid waste is transported to a landfill or discarded in nature, while wastewater 

is untreated and discharged in water bodies. Low energy efficiency of the current 

system creates energy losses, while waste heat is not utilized.  

 

Material Flow Management creates circular material and energy flows. Consumed 

materials and energy that would otherwise be treated as waste, are regarded as locally 

generated resources that can be reused. Instead of discharging wastewater into water 

bodies and landfilling solid waste, clean technologies are employed to restore the 

value embedded in these consumed resources. Clean technologies optimize system 

material and energy flows and create regional added value 

 

MFM constantly improves the efficiency of existing systems by using integrated 

technologies. Integrated refers to using diverse technologies that achieve full material 

and energy cycles in the sphere of waste and wastewater management, energy 

production and land management. 

 

MFM measures are based on sound economic analysis. Decisions to invest into clean 

technologies are made after careful financial considerations. But unlike conventional 

decision making, where investment decisions are made strictly taking into account the 

expected financial performance – like time needed for the investment to pay back 

itself or return on investment – MFM investment decisions are also guided by 

regional added value creation.  

 

Regional added value is a term describing any non-monetary value created by an 

investment decision. This refers to job creation, information exchange, local business 

network creation, enhanced environmental quality etc. In economics, cost-benefit 

analysis values these additional project benefits.  

 

Instead of purely seeking projects with best returns on investment, the MFM ventures 

are based on sustainability criteria. Projects that decrease environmental degradation 
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and improve the social livelihood of local communities will have a greater 

attractiveness than the most profitable business ventures.  

 

This segment will describe the MFM methodology and its application for regional 

Terra Preta Nova development. The first segment will focus on the methodology 

itself, while the second segment will investigate the viability of developing TPN using 

this methodology. Main risks of using this methodology will be presented using a 

case study. The findings of this thesis can be used as a framework for developing 

TPN through regional MFM optimization3 strategies.  
 

MFM	
  methodology	
  	
  
 
MFM starts with Material Flow Analysis (MFA) – a detailed analysis of material and 

energy flows on a regional or municipal level. This exercise looks into the 

inefficiencies of the current system and seeks to identify optimization potentials. In 

terms of Terra Preta Nova, this would include looking into organic waste 

accumulation. The MFA evaluates if it makes sense to establish a Terra Preta Nova 

system from a feedstock point of view. This exercise provides the basic data, upon 

which detailed economic and technical analysis can be performed.  

 

Implementing any MFM optimization is dependent on clear political will from the 

local government and participation of the local population. MFM seeks to establish 

cooperation with local decision makers through detailed stakeholder analysis. 

Participation of the local population is assured by appointing local MFM officers in 

charge of the MFM project implementation. Inclusion of the local population is 

further assured through creating a local MFM business unit. The business unit 

facilitates the development of all MFM projects through supervision, marketing, 

financing and capacity building.  

 

The segments bellow will outline the main elements of the MFM methodology 

(Figure 15) in the order of execution. Relevant segments will be discussed in terms of 

developing Terra Preta Nova.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3	
  MFM optimization is defined as measures taken in odred to organize material flows in a higjly efficidnct way. The 
technologies used in the process are capable of revaliung waste streams, in such a way that maximum potential is achieved 	
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Figure	
  15:	
  MFM	
  Methodology.	
  Source:	
  Developed	
  from	
  Heck	
  (2011)	
  

	
  

Material	
  Flow	
  Analysis	
  
 
Material Flow Analysis (MFA) in its technical meaning is a systematic assessment of 

the flows of stocks of materials within a system defined in space and time. MFA 

scans the region or municipality (scope of MFM) in question for optimization 

potentials, such as accumulations of waste in a landfill. When such an accumulation 

of materials is identified in the adequate quality and quantity, MFM optimization can 

be initiated.  

 

MFA connects the sources, the pathways, and the intermediate and final sinks of a 

material. Through balancing inputs and outputs, the flows of waste and environmental 

loading become visible, and their sources can be identified (Brunner & Rechberger, 

2004). This is done based on this simple equation: 
 

Ι =   Ο+   ∆,∆!                                          (1) 

 

In equation (1) the inputs of a system (I) are equal to the outputs (O) and 

accumulation of goods and substances (∆). MFA is used for evaluating the trends of 
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accumulation/depletion of a stock and finding sustainable solutions. In terms of Terra 

Preta Nova, this can include looking at accumulations of organic waste for 

composting or ligneous materials for biochar production.  

 

The MFM methodology expands on this and includes in the MFA a demand side 

analysis and key decision makers identification. Demand side analysis identifies if 

there is demand for the products of optimizing material and energy flows. This can 

include looking into potential markets for Terra Preta Nova. Identifying key decision 

makers, on the other hand, maps out individuals and institutions with which MFM 

optimization has to seek cooperation. The results of this analysis are a deeper 

understanding of regional material flow systems, limitations, inefficiencies, real costs 

and potentials.  

 

MFA is closely linked to Life Cycle Assessment (LCA) but there are major 

differences. MFA is based on creating a balance between inputs and outputs of 

materials flowing in a system4. On the other hand, the main goal of LCA is to 

determine the environmental impact of an activity (production of a good) by 

presenting its ecological footprint. The interaction of these concepts is given in figure 

16.  

 

	
  
Figure	
  16:	
  Interaction	
  of	
  MFA	
  and	
  MFM	
  related	
  concepts.	
  Developed	
  from	
  Avadi	
  (2011)	
  

	
  

	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4	
  MFM expands on this and includes the demand side anlysis and key decision makers analysis	
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Regional MFM is seen in the context of MFA, LCA and CFP. In effect, the MFA is 

like an inventory of material and energy flows that can be used to calculate the carbon 

footprint with an LCA. 

	
  

Figure 17 presents the steps of MFM methodology in conducting the Material Flow 

Analysis. Conventional thinking about MFA, discuses this method only in terms of 

the first three steps, where the main result is a diagram showing the material flows. 

Results of drawing a material and energy system in MFA software are used to make 

recommendations for optimizing the material and energy flows of a system.  

 

Material Flow Management applies a more practical approach, which is why demand 

side analysis and key person analysis are included.  

 

	
  
Figure	
  17:	
  Material	
  Flow	
  Analysis	
  in	
  the	
  MFM	
  approach.	
  Source:	
  Author	
  

 
The goals of the MFA within the MFM methodology are: 

 

1. Study the current system 

a. Material and energy flows 

b. Demand for resources like electricity, heat, synthetic fertilizer etc. 

c. Identify key decision makers 
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2. Study optimization potentials 

a. Locate opportunities to optimize the system 

b. Define clean technologies that can be used 

c. Identify the potential results (possible amount of energy produced from 
biogas etc.) 

 

MFA	
  for	
  Terra	
  Preta	
  Nova	
  
 
The following paragraphs will describe the MFA process in more detail and will link 

this to Terra Preta Nova development.  

 

Determine	
  aim	
  and	
  scope	
  of	
  study	
  	
  
	
  
Defining an aim narrows down the entire MFA. Instead of looking at all material and 

energy flows within a system, an MFA can focus on just the flows that are relevant 

for the project in question. A scope follows directly from the aim. This refers to the 

boundaries of the study. Having a well-defined scope assures that the analysis will not 

grow beyond manageable means.  

 

TPN: The aim of an MFA for Terra Preta Nova would be to identify all material 

flows that are usable as feedstock. It is recommended to take a political region as the 

main scope of the study. Setting such a boundary facilitates data collection. This is 

because most of the statistical data is compiled for political regions. Moreover, the 

political approval to conduct MFM optimization would have to be obtained only from 

the selected region.   

	
  

Data	
  collection	
  
	
  
Data can be collected using the following methods: 

 

1) On site visits 

2) Interviews  

3) Questionnaires  

4) Official statistical data  

5) Internet search for similar case studies 
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6) Consultation with experts 
 
TPN: Having the aim and the scope of the study defined, it is easier to determine the 

data that needs to be collected. In terms of Terra Preta Nova development, the main 

interest would be to see if there is sufficient feedstock for production. The materials 

that constitute the object of investigation would include organic waste rich in nitrogen 

and carbon.  

 

The feedstock would have to be evaluated according to its quality, quantity and 

source. In some instances there might be enough waste, but its location makes it 

uneconomical to transport and process into Terra Preta Nova. The economics of 

extracting a certain waste stream would in large extent depend on the existing 

logistical infrastructure. Regions with well established waste collection and 

management schemes would find it easier to collect the feedstock.  

 

The result of the data collection will be used in the following step, where the collected 

data is inserted into a computer program that makes it easier to visualize the material 

and energy flows.  
 

Software	
  modeling	
  	
  
	
  
The data collected in the previous step is analyzed and sorted using software 

applications. These are used mainly to support and facilitate procedures and 

calculations that would otherwise be time consuming (Brunner & Rechberger, 2005).  

 

Software applications are not a must in conducting the MFA. The Institute for 

Applied Material Flow Management, a leader in the field of practical MFA, often 

does not use any software applications. However, using these has several advantages:  

 

1) Information is presented in an easily understandable way using diagrams. 

These clearly show the quantities and directions of material and energy flows 

in a system 
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2) Using MFA software gives the studies a scientific value. The software’s are 

accepted in the scientific community as a method to communicate MFA 

results 

3) Presenting the MFA results with standardized diagrams enables comparison of 

results from multiple studies 

 
There are several criteria that define the value of using an MFA software (these are 

not exclusive). The criteria take into account that individuals with inadequate 

experience in MFA might use the software. These criteria are the following (Brunner 

& Rechberger, 2005):   

 

1) Documentation – there is comprehensive documentation that is easily 

available, comprehendible and easy to understand. This must involve an 

installation guide, a user manual with examples of MFA models (and guidance 

on how to make them) and on-line help.  

2) User friendliness – the user interface is easy to understand and intuitive. The 

programs can be used in widely present operation programs such as Windows 

and are available in local languages.  

3) Support and maintenance – there is a support network to aide users and this 

is available at any time. Product maintenance is guaranteed by the software 

producer 

4) Stability – the program is stable and reliable. There are no crashes of the 

program and the bugs have been fixed 

5) Cost benefit – the price is reasonable in relation to the benefits of using the 

software. There is a free test version available 

6) Calculation speed and accuracy – the program generates accurate 

calculations within an acceptable time span  

 

Some of the most commonly used software for Material Flow Analysis are STAN - 

Substance flow analysis and Umberto for Carbon Footprint. MFA modeling in these 

programs will be described in more detail in Appendix  
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STAN	
  -­‐	
  Substance	
  flow	
  analysis	
  	
  
	
  
STAN is a MFA software that was developed by Technical University of Vienna for 

application in waste and wastewater management. It enables the user to graphically 

model a system of substance and good flows within a predefined system and time 

period. STAN is for instance used in tracking the sources, flows and sinks of 

phosphorus in rural and urban settings (Moore et al., 2011).  

 

Substance is defined as any chemical element or compound of uniform units. All 

substances are characterized by a unique and identical constitution and are 

homogenous. For instance, drinking water is not a substance itself. Instead, it is 

composed of substances like pure water, calcium and many trace elements. On the 

other hand, goods are defined as economic entities of matter with a positive or 

negative value. These are drinking water, fuel, solid waste, sewage etc. 

(ComponentOne LCC, n.d.). 

 

STAN presents the flows of goods and substances in Sankey diagram format. Sankey 

diagrams are a specific type of flow diagram, in which the width of the arrows is 

shown proportionally to the flow quantity. They are typically used to visualize energy 

and material transfers between processes within a system. STAN user interface with 

such a diagram is shown in Figure 18.  

 
Modeling in STAN is preceded with aim and scope determination as well as data 

collection. After conducting these steps, a graphical model of the analyzed system can 

be constructed. This model consists of processes, flows, system boundaries and text 

fields.  

 

Each flows is defined with data that was previously collected. Mass flows and stocks, 

volume flows and stocks, concentrations and transfer coefficients are imported into 

each flow connecting two processes. A transfer coefficient defines the percentage of a 

substance or good in an overall mass flow (% of phosphorus in wastewater flow).  
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Figure	
  18:	
  STAN	
  user	
  interface.	
  Source:	
  Component	
  One	
  (n.d)	
  

 
TPN: STAN can simultaneously track multiple substance or good flows within a 

system. The same graphical model, consisting of processes and flows, can have 

multiple variations, depending on the flows that the user wants to present. These 

different variations of the same model are called layers.  

 

Modeling Terra Preta Nova in STAN would require having multiple layers. Each 

layer would present one material flow. Directions and quantities of the material flows 

would be presented for the processes that were defined for the system.  

 

This system would be defined in space and time by a predetermined border. The 

model could be calculated for a time period of one year. Multiple years could be 

modeled at the same time and this allows tracking the historical trends in material 

flows.  

 

A simplified version of a Terra Preta Nova model is given in Figure 19. The figure 

emphasizes that each MFA model, developed in STAN, has multiple layers of 

material flows. These are examined for the same model – same processes (segments) 

of a system. 
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Figure	
  19:	
  Layer	
  TPN	
  model	
  in	
  STAN	
  -­‐	
  simplified	
  version.	
  Source:	
  Author	
  

	
  

Umberto	
  for	
  Carbon	
  Footprint	
  	
  
	
  
Umberto for Carbon Footprint is a program primarily developed for calculating the 

carbon footprint of a product (LCA). The GHG emissions are calculated according to 

a pre defined functional unit. For instance, LCA could calculate the GHG emissions 

of 1t of Terra Preta Nova. The ecological footprint and other environmental indicators 

are scaled to this functional unit.  

 

Since the MFA is like an inventory of material and energy flows, used to calculate the 

carbon footprint with an LCA, using Umberto will yield both an MFA and LCA.  

 

Umberto uses graphical modeling of the life cycle of the product and allows 

analyzing, assessing and visualizing the emissions of greenhouse gases (GHGs) that 

contribute to climate change. Apart from GHG emissions as well as material and 

energy flows of systems, Umberto can calculate other environmental impact 

categories such as eutrophication, ozone depletion, ecotoxicity, or abiotic resources 

depletion.  

 
Umberto relies on the ecoinvent database, where the users can find Life Cycle 

Inventory (LCI) data with more than 4000 LCI datasets in the areas of agriculture, 
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energy supply, transport, biofuels etc. This mainly relates to !"!!"emissions related 

to the production of individual materials (1kg of plastics) or performing a process 

(transport of 1kg of plastic via lorry etc.).  

 

	
  
Figure	
  20:	
  Umberto	
  for	
  Carbon	
  Footprint	
  user	
  interface.	
  Source:	
  ifu	
  Hamburg	
  (2012)	
  

 
TPN:  Umberto does not function on the basis of layers, which is the case with 

STAN. Each process in Umberto (segment of the system, like composting in TPN 

systems) has a defined set of input and output materials. This is shown in Figure 21, 

on the example of flour production (ifu Hamburg, 2012).  

 

Material and energy flows are tracked jointly. Sankey diagrams in Umberto cannot 

separate between the materials; instead the flows are aggregated and shown as a total..  

 

Using Umberto for MFA in Terra Preta Nova systems would enable the user to 

calculate the ecological footprint of TPN and compare it to a system without it. 

Carbon savings could be a basis for claiming carbon credits and these could be used 

to finance the TPN investment. 
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Figure	
  21:	
  Example	
  input/output	
  table	
  in	
  Umberto.	
  Source:	
  	
  ifu	
  Hamburg	
  (2012)	
  

 

Comparison	
  of	
  Umberto	
  for	
  Carbon	
  Footprint	
  and	
  STAN	
  
 
Umberto and STAN both have advantages and disadvantages and their usefulness will 

depend on the primary aim of the research project.  

 

STAN is a simpler program and more straightforward than Umberto. It primarily 

balances the material flows in a system. The user can easy see the amounts and types 

of flows as well as determine the accumulations of materials.  

 

On the other hand, Umberto does not allow the user to see the accumulation of 

materials. Instead its main benefits are in its ability to show the flows of GHG 

emissions. Umberto requires more detailed data input and, as a result, there is a higher 

chance of making an error. When this occurs the user needs to manually trace the 

error and fix it before the calculation can be completed.  

 

Fixing such errors is often time consuming and STAN avoids this with data 

reconciliation. The program equalizes the input and output amounts to create a mass 

balance. Another major advantage of STAN is in its cost benefit. While one copy of 

Umberto costs around 10000 EUR, STAN is free of charge. This also explains why 

private companies mainly use Umberto, while public institutions and research 

organizations are the most frequent users of STAN.  

 

Characteristics of both programs are outlined in Table 6, while Table 7 presents their 

main advantages and disadvantages. Choice of the program will depend on the final 

aim of the project, level of computer literacy of the users, project budget etc.  
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  Table	
  6:	
  Comparison	
  of	
  Umberto	
  and	
  STAN.	
  Source:	
  Author	
  

 
Software/developed by 

 

 
Description 

UMBERTO  
Ifu Hamburg  
www.umberto.de 
 

• Modeling on the basis of material flow 
networks 

• Variety in application, high flexibility 
• Management of comprehensive data bases 
• Company-related (Process optimization, 

Material efficiency) and product-related (Life 
Cycle Assessment) 

• Calculates GHG emissions and other 
environmental impacts (eutrophication, 
ecotoxicity etc.) 

• Presentation of results in Sankey diagrams  
• Calculates cumulative energy and material 

flows 
STAN 
Technical University of Vienna, Austria 
www.iwa.tuwien.ac.at 

• Freeware, specifically developed for 
application of MFA in waste and waste water 
management  

• Import/export with Excel data bases  
• Purely based on input/output calculation 
• Enables tracking flows of multiple 

substances/materials at the same time  
• Tracks flows in time period 
• Presentation of results in Sankey diagrams 
• Calculates individual flows of goods and 

substances  
 

	
  Table	
  7:	
  Advantages	
  and	
  disadvantages	
  of	
  Umberto	
  and	
  STAN.	
  Source:	
  Author	
  

STAN UMBERTO 
 

Advantages 
 

• Developed for MFA in waste management  
• Free of charge  
• Simple and purely for input/output flows 
• Training programs available at TU Vienna  

 
 

• Calculation of Life Cycle Assessments, but 
could also be used for MFA 

• Draws data on material carbon footprint from 
extensive databases  

• Can calculate cost flows  
• Calculates in great detail  
• Great support network 
• Frequently available training programs 
• Good user manual and practice examples 
 

Disadvantages 
 

• Calculating GHG emissions and energy flows 
is more difficult 

• Data gathering for all materials. Is not 
supported with a materials database (like 
Umberto)  

• Help desk is poor  
• Training programs not available frequently 
• Basic user manual with no practice examples  

• High cost of program and low cost benefit if 
used only for MFA 

• Great detail creates high complexity 
• Calculations often yield errors 
• Solving errors time consuming 
•  
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Demand	
  side	
  analysis	
  	
  
 
MFM technologies will only be implemented successfully if there is demand for the 

services they produce. In the case of TPN production, this includes researching if 

there is market potential and demand for organic fertilizer/soil conditioner. Demand 

side analysis, therefore, involves market research and demand estimation.  

 

In economics demand refers to quantities of goods that consumers are willing and 

able to purchase at various prices during a given period of time. There is a distinction 

between the willingness and ability of consumers to buy a good. While a consumer 

can be willing to buy an item, she or he might not be able to afford it. For instance, 

many consumers would be willing to but a BMW but they do not have the money. In 

demand side analysis, research is only interested in effective demand - the goods that 

the consumers are both willing and able to purchase (Mote et. al., 2003).  

 

Demand for each good is determined with a demand function. This sets out the 

variables, which are believed to have an influence on the demand for any product. 

The demand function can be written as:  

 

!" = !(!",!",!",!",!,!,!",!,!,!, 0)             (2) 

 

Products differ in the variables that affect their demand. But the most common ones 

are given in equation (2) and these are (Mote et. al., 2003):  

 

1) !" - Price of the product: the higher the price the lower the demand, and the 

lower the price the higher the demand. This inverse relationship between price 

and quantity consumers will buy is called the law of demand.  

 

2) !" - Price of complements: complements are goods like hot dogs and hotdog 

buns. If the price of hotdog buns increases, the price of hotdogs will increase 

as well leading to a decreased demand for hotdogs. Complements are, 

therefore, goods that have a direct relationship with one another in terms of 

price movement and demand response.  
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3) !" - Price of substitute: substitutes are goods that substitute each other 

(consumers can obtain the same utility by purchasing either good A or B). 

When the price of a good A increases the demand for good B will increase as 

well. When the price of a Taxi Service A increased, the demand for Taxi 

Service B will increase in response.  

 

4) !" - Disposable income: this relates to the amount of money available to 

people for spending. The greater the level of disposable income, the more 

people can afford to buy and the higher the demand for a product.  

 

5) ! - Tastes: Demand for an individual product will be determined by the tastes 

of consumers. Over time tastes may change considerably and this incorporates 

many factors. For instance, increasing environmental degradation might 

increase the demand of consumers for better environmental services.  

 

6) ! - Advertising: This represents the level of own product advertising as well 

as complementary and substitute good advertising. The higher the level of 

own advertising of a good, the higher the demand, other things being equal.  

 

7) !" - Availability of credit: Credit will have importance when we consider 

buying goods that have high upfront costs. This can, for instance, relate to 

technological investments, like biogas plants etc. The easier it is to obtain 

credit, the higher the demand for a product. 

 

8) ! - Rate of interest: Credit will be more affordable if the rate of interest is 

lower. That being said, lower the rate of interest, higher the demand for a 

good.  

 

9) ! - Expectations: This mainly includes expectations about price and income 

changes. If the consumers expect the price of a good to increase in the future, 

they will stock up on that good now. Income levels have similar effects. When 

consumers expect their incomes to increase in the future, they will buy more 

goods.  
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10) !- Number of potential customers: Every product can expect to have a certain 

share of a market. Knowing the number of potential customers will depend on 

market research.  

 

11) 0  - Unexpected variables 	
  

 
Demand can be assessed in two basic ways (Mote et. al., 2003):  

 

1) Quantitative analysis – Regression analysis is the main form of quantitative 

analysis. This is a statistical method that determines the effects of a series of 

independent variables on one depended variable. For instance, the effects of a 

price of a product on the quantity consumed. This method can, for instance, be 

used to determine the demand for electricity in relation to a number of 

variables such as available income, GDP growth, population growth etc.  

 
2) Qualitative or marketing analysis  

 

a. Expert opinion – Insights of individuals closely connected to an 

industry can be of great value in forecasting. One of the most well 

known methods in assessing expert opinion is the Delphi technique.  

 

Delphi technique 

Multiple experts in the given field are asked to produce an estimate of future demand 

in terms of percentage increase/decrease. After the first series of estimates, the experts 

are presented with all the results. In most cases, the experts produce differing 

estimates. After the experts have reviewed each other’s results, they are asked to 

make new estimation. The expectation is that the experts will revise their estimates 

once they have been influenced by the estimates of their peers. This will continue 

until the experts reach an agreement regarding future demand estimates.  

 
b. Survey – Quality of obtained results will largely depend on the 

precision and meaningfulness of the questions that were asked. This 
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method does not always leads to the most precise estimates and has to 

be complemented with other methods.  

 

c. Market Experiments – Surveys produce results, which might not 

transfer to actual action from the side of a consumer. Consumers do 

not necessarily do what they say they are going to do. Market 

experiments test a product in a selected market. The product is 

evaluated in terms of consumer perception etc.  

 
TPN: Variables that effect the demand for TPN will differ depending on regional and 

country conditions. Developed countries have a higher GDP per capita and overall 

level of development. This will of course facilitate the development of TPN, in terms 

of higher disposable income, educational level and awareness of environmental 

problems etc. These relevant variables from equation (2) might effect TPN 

development:  

 

1) !" - Higher the price of TPN, lower the demand and lower the price of TPN, 

higher the demand.  

 

2) !" - Compost and biochar are complements of TPN (direct input materials). 

Demand for TPN will therefore largely be a reflection of the price of these two 

input streams.  

 

3) !" - Synthetic fertilizer is the main substitute to Terra Preta Nova. Price 

developments of synthetic fertilizer depend on many variables among which 

the most important ones are global population increase, increased global 

consumption of phosphate and potassium etc. (Huang, 2009).  

 

4) !" -  Regions with higher disposable income are more likely to have a greater 

demand for TPN. This is because individuals will have a higher ability to 

finance the investment into TPN production facilities and logistical network 

for feedstock collection (directly or indirectly through taxation etc.) 
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5) ! - Educational campaigns might have the greatest overall weight in terms on 

TPN advertising and marketing. TPN contains charred material – some 

schemes even envisage charring sewage sludge into biochar. People might be 

skeptical regarding using these materials in their gardens and fields. Even 

organic waste contained in compost, might be a source of resistance. This is 

why education is crucial 

 

6) !" - TPN is a high-end technology that still has not achieved market potential. 

Starting a TPN production facility will require credits lines with favorable 

interest rates. Investments by venture capitalists might be of use in jump-

starting TPN production.  

	
  

7) ! - The number of potential customers for TPN will be higher in developed 

agricultural regions with higher awareness of environmental problems on the 

local level (water quality, soil organic carbon content etc.) and global level 

(climate change induced by GHG emissions etc.) 

 

Stakeholder	
  analysis	
  
 
Stakeholder analysis (SA) determines the individuals or organizations that need to be 

considered during project planning and implementation, and who can have a positive 

or negative effect on the final outcome of the project.  

 

A stakeholder can be defined as and individual or group who has a vested interest in 

the project area and who can potentially be affected by project activities and have 

something to gain or loose if conditions change or stay the same (Golder & Gawler, 

2005). The goal of SA is to identify the direction, relationship and extent of influence 

of multiple stakeholders relevant for the project success.  

 

Benefits of using stakeholder analysis are (Thompson, 2012):  

 

1) Opinions of the most powerful stakeholders can be used to shape a project in 

its early stage. This makes it more likely that they will support the project but 

also improve its quality.  
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2) Gaining support from powerful stakeholders can help the project win more 

resources  

3) Early and frequent communication with stakeholders can ensure that they 

understand the intentions of the project and are in agreement with them 

4) Anticipation of people‘s reactions to the project  

 
Stakeholder analysis can be performed in many ways, but most methodologies have 

these features in common (Thompson, 2012): 

 

1) Identifying key stakeholders by brainstorming, with the project group, who the 

main stakeholders are.  

2) Prioritize the stakeholders by mapping them on a Power/Interest Grid (Figure 

22). This places the identified stakeholders in the context of the project. The 

grid tells the project managers in what way should individual stakeholders be 

managed. The ones with a high interest and power should be managed closely, 

while the ones with only low power and interest should only be monitored. 

Knowing this will help the project guide efforts towards securing support of 

the most important decision makers. 

3) Understand key stakeholder by analyzing their importance, through desktop 

analysis, interviews, expert consultation etc.  

 

	
  
Figure	
  22:	
  Power/Interest	
  Grid.	
  Source:	
  (Thompson,	
  2012)	
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Potentials	
  analysis	
  
 
After detailed supply and demand considerations, undertaken in the previous steps, 

MFM defines possible optimization potentials. This relates to choosing the projects 

will the highest probability of having positive economic and technical feasibility. This 

appraisal is based on the conclusions made in the MFA. The selected projects are 

analyzed in more detail in steps following the MFA – technical and economic 

feasibility studies.  

 

Economic	
  and	
  Technical	
  Feasibility	
  	
  
 

Economic	
  feasibility	
  
 
Economic feasibility mainly examines whether the projects achieve economic 

profitability and what is the time in which they repay the initial investment. Economic 

profitability is defined with financial indicators such as:   

 

1) Net present value 

2) Internal rate of return  

3) Payback period 

 

These indicators are calculated using Discounted Cash Flow Analysis (DCFA) - a 

method that compares all envisaged cash flows from a project. This includes both 

positive and negative cash flows that are examined for a future time frame (most 

studies look at a 20 year time period).  

 

DCFA is based on assumptions about future cash flows. This being the case, many of 

these assumptions might not materialize themselves. For instance, DCFA might 

assume the revenues of a venture will increase 5% each year. This might change due 

to a number of factors, such as macroeconomic (in) stability. For these reasons, the 

results of DCFA are tested using Sensitivity analysis.  

 

Sensitivity analysis tests the sensitivity of projects profitability to sudden changes in 

the project cash flows. Cash flows can change due to a number of reasons including 

interest rate changes, product price changes etc. Through changing the variables that 
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contribute to positive or negative cash flows, the projects overall sensitivity to 

changing circumstances can be evaluated. Variables that affect the project the most 

can be singled out, enabling the project managers to focus their attention to those 

factors.  

 

Technical	
  feasibility	
  
 
Environmental problems require various technological solutions. Not every 

technology is applicable to each problem. Technical feasibility examines if a 

proposed technological solution is practical, applicable and available. In other words 

it answers these questions:  

 

1) Is the proposed technology or solution practical? 

2) What kind of technology do we need?  

3) Is the required technology available? 

 

TPN: This thesis proposes developing Terra Preta Nova from biochar, composted 

organic waste and other amendments like urine and ash. Compost and biochar are the 

main elements of this feedstock mix, without which TPN systems would not be 

possible. Compost and biochar production technologies are examined in Appendix 2, 

in line with the above stated questions. Due to lack of data, the thesis does not discuss 

the actual feedstock mixing and processing into Terra Preta Nova.  

	
  

MFM	
  Master	
  Plan	
  	
  
	
  
The MFM master plan refers to a strategy for conducting MFM optimization, through 

implementing a series of technologies that improve material and energy flows in a 

region and have been identified as economically and technically viable.  

 

Regional MFM optimization is here defined as any MFM measure that leads to the 

improvement of regional material and energy flows, in such a way that sustainable 

benefits are created. Usually this involves integrating technologies that combine waste 

management and water management with energy production, agriculture and land 



	
   69	
  

management. Figure 23 shows exemplary projects that could constitute the outcomes 

of regional MFM optimization.  

 

 

	
  
Figure	
  23:	
  Exemplary	
  regional	
  MFM	
  Master	
  Plan.	
  Source:	
  Author 

 

Levels	
  of	
  MFM	
  optimization	
  	
  
 
Terra Preta Nova is a product of high-end regional material flow management. 

Development of TPN as described in this thesis could then be achieved only if more 

basic MFM optimization measures are conducted first (Figure 24). However, there are 

exemptions to this:  

 

1) Grassroots movements can develop simple Terra Preta Nova technologies that 

do not require high-end regional MFM optimization. These are for instance 

Terra Preta Toilets, where biochar is mixed with human urine and feces  

 
In regions with undeveloped waste and wastewater management, material flows are in 

the state of chaos. Organic waste is being discarded in uncontrolled landfills, while 

wastewater is discharged in nature. Germany is the most developed country in the 
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world when it comes to waste management and its progress from chaos to integrated 

material flows (still in the process of transitioning) lasted from the end of second 

word war until today. Terra Preta Nova is developed in just one pilot plant, indicating 

how complicated it is to integrate material flows in such high-end ways. This 

however, does not mean that developing countries will need the same time period to 

integrate their material flows. What was done in Germany was experimental and this 

process and know how can be implemented faster in other countries.  

 

 
Figure	
  24:	
  Levels	
  of	
  regional	
  MFM	
  optimization.	
  Source:	
  Author	
  

	
  
Countries with undeveloped material and energy flows, can actually achieve the same 

level of progress in a much shorter time frame. Instead of developing old technologies 

first – like landfilling – and replacing them later with MFM technologies – like MBT 

or AD – they can install these high-end technologies right away. This is also called 

technological leapfrogging and it is possible when there exists a knowledge base. 

Waste management improvements in developed countries have built up the 

knowledge and expertise. These can now be transferred to less developed countries, in 

terms of waste and wastewater management.  
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MFM	
  Holding	
  
	
  
The MFM Holding is a regional organization, created with the aim of streamlining the 

regional MFM optimization process (Figure 25). Using MFA and economic and 

technical feasibility studies, described in the previous segments, the MFM 

methodology has identified the projects that can be feasibly implemented. After the 

projects have been approved politically, from local or national governing bodies, the 

MFM optimization can commence in practice.  

 

The MFM Holding aids in developing the selected projects, through providing a set of 

services. These include project management, capacity building, investment 

promotion, marketing, public relations etc.  

 

Moreover, the holding assigns responsible personnel for each project made up of 

people from the local community. These can for instance be employees in a 

municipality that show interest in the projects, or anyone local skilled to manage a 

project. These individuals would are trained in managing such projects and external 

consultants would do this. Doing so transfers knowledge towards the local community 

and creates long-term social benefits.  

 

	
  
Figure	
  25:	
  MFM	
  Holding	
  in	
  context	
  of	
  regional	
  MFM	
  optimization.	
  Source:	
  Author	
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The local community would ideally install the MFM technologies. These people 

would have to be trained in their maintenance and technicalities, creating additional 

skills transfer. An external consultant with expertise in regional MFM planning would 

head the entire MFM optimization process. After the initial projects have been 

completed, the MFM holding would seek new optimization potentials and monitor the 

existing implemented technologies.  

	
  
TPN: The previous segments have shown that Terra Preta Nova is a product of high-

end regional MFM optimization. This means that its development would be preceded 

with projects that optimize regional waste management. The MFM Holding would be 

in charge of the entire regional optimization process. Here are the most relevant 

benefits it could provide towards developing TPN:  

 

1) Capacity building  

a. Upskilling of local labour: education on waste management and TPN 

related jobs  

b. Awareness raising: education of the general population on the benefits 

of developing alternative agriculture and using TPN and importance of 

waste separation 

 

2) Investment promotion – TPN as a regional showcase that could attract 

investment in TPN development or other activities in the region 

 

3) Marketing – developing a market for TPN, through regional advertising 

targeted at focus groups such as gardeners, farmers etc. This could also 

include TPN demonstration activities, such as tours through the TPN 

production facility. TPN effectiveness in stimulating plant growth could be 

demonstrated by comparing existing field trials, where the yield effects of 

TPN are compared to the yield effects of synthetic fertilizer etc.  

 

4) Cooperation – aligning the interests of local and national government bodies 

with regional stakeholders 
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Regional	
  added	
  value	
  creation	
  	
  
 
Terra Preta Nova production is a complex system that relies on linking multiple 

circular material flows. Regional value added creation is among the greatest benefits 

of creating such systems.  

 

Added value is a term describing all monetary and non-monetary benefits stemming 

from applying MFM measures. This includes job creation, new business 

opportunities, regional marketing value, increase in the quality of the environment, 

knowledge transfer etc. 

 

TPN production would generate the highest value added when produced from local 

waste materials. Monetary value is in such instances added to waste and it becomes a 

resource. Under these conditions, the economics of waste management improve. 

Local stakeholders have an incentive to engage in waste management and overall 

material flows become more organized. Bioenergy is another value added that 

develops with Terra Preta Nova production. This renewable energy source could be 

obtained as a byproduct of biochar production; under the condition that proper 

technology is employed.  

 

The full list of potential value added from developing TPN is given in Table 8.  
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  Table	
  8:	
  Regional	
  added	
  value	
  from	
  TPN	
  production.	
  Source:	
  Author	
  

	
  
	
  

Environmental 
 

• Soil improvements similar to biochar application 
o Increase in nutrient and water retention, microbial activity and organic matter 

content 
o Decrease of nutrient runoff from croplands  
o Positive effects on cation exchange capacity and pH 

• Decrease in landfilling of organic waste, which has the following benefits 
o Reduced GHG emissions. Organic waste decomposition emits methane gas, 

that has a 21 times greater warming potential than carbon dioxide 
o Decrease in bad odors that affect local living conditions 
o *Decrease of leachate emissions, which can contain heavy metals and reach 

water bodies. Consuming water that has been contaminated with leachate 
increases the rate of cancer and birth defects (Health Protection Agency, 
2011).  
* This depends on the type of landfill  

Economic 
 

• Revaluation of local waste streams would create incentives to develop waste 
management systems 

o Waste becomes a commodity  
o Increase in economic activity due to organized waste management 
o Local job creation for waste management logistics  

• Bioenergy development from biochar production 
o Decrease in fossil fuel imports decreases the amount of income being spent 

on imported energy 
• Organic agriculture development 

o Potential for new product placement on market 
o Substitution of mineral fertilizer use  

• Technology transfer and development of a local skills base for operating and 
maintaining the waste management and bioenergy technologies 
 

Social 
 

• Involvement of local communities in waste collection 
• Awareness raising of environmental issues associated with waste impact on the 

environment, sustainable agriculture issues and energy production from sustainable 
sources  
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Risks	
  of	
  developing	
  TPN	
  with	
  MFM	
  methodology	
  
	
  
The MFM methodology is not a “copy-paste” method that could be used anywhere, in 

the manner it was described in this thesis. Each region is unique, in the sense that it 

has distinctive material and energy flows, different stakeholder relations and legal as 

well as institutional structure.  

 

Developing Terra Preta Nova might come across a number of obstacles that would 

require adjusting the MFM methodology. TPN is a high-end product of material flows 

management, and its development would require creating an entire infrastructure of 

waste (and wastewater) management (large scale systems). There are numerous 

variables that could go wrong, which largely depend on the level of economic and 

social development of the region in question. This segment will outline the risks 

associated with developing TPN within the administrative borders of the Republic of 

Serbia.  

 

The scope of the case study is defined on a country level because the author does not 

have any region specific data. Serbia is chosen as a case study due to availability of 

data5.  

 

General	
  risks	
  of	
  the	
  MFM	
  methodology	
  	
  
 
Risk is not evenly distributed along the MFM optimization process. This thesis has 

ranked the risks according to strength and in relation to developing TPN in Serbia. 

The ranking was done based on literature review. The individual segments of the 

MFM methodology are colored differently, signifying the risk levels (Figure 26). The 

thesis assumes that the MFM optimization is performed by a consultant, development 

organization, research institute, government body and alike.  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5	
  The author is at the period of writing placed with the German Development Cooperation in Belgrade, 
working on a project dealing with municipal waste and wastewater management in Serbia.	
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Figure	
  26:	
  Risks	
  associated	
  with	
  developing	
  TPN	
  with	
  MFM	
  methodology.	
  Source:	
  Author	
  

	
  

The methodology can be divided into three main phases. These can be applied to 

projects other than developing TPN. The phases are:  

 

1) Selling phase (middle to high risk): MFM systems consists of individuals and 

organizations that have become accustomed to the status quo. The status quo 

is the linear resource management system, where high quality resources and 

energy are processed, turned into waste that is then discarded. Developing a 

circular economy requires rearranging the thinking and functioning of the 

conventional linear system. The main decision makers/stakeholders in any 

region are municipality heads, members of the municipality assemblies and 

prominent business people. These have the power and influence to move the 

system - consisting of people, businesses, institutions etc. – towards accepting 

the idea of circular economy. Selling, in the marketing meaning of the word, 

the MFM approach to them is crucial in MFM optimization. In practice this 

consists of these steps:  

 

a. MFA: preliminary study that shows the region has potential in terms of 

creating resources from waste flows, lowering energy consumption etc.  
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b.  Political approval: the results of MFA are presented to the main 

stakeholders that approve a more detailed study. The political head 

gives (or does not) the approval to continue with MFM optimization. 

Considering the influence other stakeholders have on the political 

head, getting them to believe in MFM is crucial 

 

c. Detailed MFA: described in previous segments. This yields a list of 

feasible optimization potentials.  

 
2) Planning phase (low risk): This phase involves detailed planning and analysis. 

The building blocks of this phase are the results of the MFA. The most 

promising projects are studied in detail and included in the regional master 

plan. Regional MFM officers are named and they help streamline the process. 

This phase involves mainly intellectual work of the MFM Consultant and 

communication between the MFM officers and stakeholders. Creation of a 

stakeholder network (formal or informal) strengthens the process further.  

 
3) Ending phase (high risk): the previous phases, starting with the MFA and 

ending with an elaborated Master plan, could have taken several years to 

conduct. Considering this, there are high chances that the MFM optimization 

process overlaps with local elections. Chances of having the Master plan 

rejected by the new government are high. This considerably increases the risks 

associated with this last phase.  

 

Case	
  study:	
  Republic	
  of	
  Serbia	
  
	
  

Country	
  context	
  	
  
 
Serbia is a transitional economy and is among the least developed countries in 

Europe. The Republic of Serbia is located in South-Eastern Europe in the heart of the 

Balkan Peninsula. Northern Serbia is mainly flat, while central parts are highlands. 

Going to the south, the hills gradually turn into mountains.  
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The total population is around 7.5 million inhabitants, where 57% of the population 

lives in urban areas. The ethnic composition of Serbia is diverse, which is a result of 

the countries turbulent past. Majority of the population is comprised of Serbs, but 

there are 37 other ethnic minorities, among which the Roma comprise a major share.  

 

Serbia is mostly a market economy, although the state sector remains large. The 

economy relies on manufacturing and export (CIA, 2012). Some of the greatest 

economic sectors are the processing industry, metallurgical and chemical industry etc. 

The most significant agricultural areas are in Vojvodina, where cattle, sheep and pig 

farming dominates (GIZ, 2012a).  

 

GDP growth in 2011 was 2.0%, following a modest increase in 2010 and 3.5% 

contraction in 2009. High unemployment and stagnant household income are ongoing 

political and economic problems (CIA, 2012). Budget environmental protection 

spending amounted to only 0.35% of GDP in 2008. The National Investment Plan 

allocated only 5.6 million EUR6 for environmental protection in 2008, out of which 

3.3 million EUR (60%) was allocated for regional waste management activities (GIZ, 

2012a).  

 

Risks	
  for	
  TPN	
  development	
  in	
  Serbia	
  
	
  
The risks of developing TPN in Serbia can be divided into two basic groups:  

 

1) Show-stoppers: circumstances that would stop the TPN development process 

in tracks  

2) Controllable risks: circumstances that hinder the MFM optimization process, 

but can be managed 

 

This list of risks is shown in Table 9. 

 
 
 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6	
  Historican exchange rate for 1st July 2008	
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  Table	
  9:	
  Risks	
  of	
  developing	
  TPN	
  in	
  Serbia.	
  Source:	
  Author	
  

 
Show-stoppers 

 
R1: Regional feedstock material not adequate or too expensive to obtain 
R2: The political head does not give approval for further research in the 
selling phase 
R3: Results of detailed MFA show that TPN is not economically and/or 
technically viable 
R4: The political head that gave the go-ahead in the selling phase is 
replaced and the new leader does not approve of the master plan and MFM 
approach in general  
R5: Financing stops or the price of financing increases considerably  
R6: TPN does not demonstrate positive benefits for plant growth 

 
Controllable risks  

 
R7: Length of MFM optimization process 
R8: Inadequate local skills base required to run the MFM Holding 
R9: Technical problems with implementation of MFM technologies 

 

Discussion	
  
 
This segment discusses the risks presented in Table 9. Many of the above named risks 

are self-explanatory and will not be included in this discussion.  

 

R1:	
  Regional	
  feedstock	
  material	
  not	
  adequate	
  or	
  too	
  expensive	
  to	
  obtain	
  
 
Waste quantities and qualities are the least problem of developing TPN in Serbia. The 

biggest obstacle is in the lack of proper waste management practices and 

infrastructure. Considering this, MFA might indicate that organizing feedstock 

collection to produce Terra Preta Nova is too costly. Exceptions do exist but are very 

rare – source separation of organic municipal solid waste (OMSW) is conducted only 

in the city of Čačak, where a portion of the municipal solid waste is separated into 

“dry” and “wet” fractions. The wet fraction is composed of biodegradable waste, 

while everything else is being classified as dry (GIZ, 2012a).  

 

Here are general conclusions about waste potentials for developing TPN in Serbia. 

Background information, graphs and diagrams can be found in Appendix 4.  
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Organic	
  Municipal	
  Solid	
  Waste	
  	
  
 

Ø Main use: compost for Terra Preta Nova 

Ø Alterative use: incineration, anaerobic digestion (AD) for biogas production 

and landfilling.  

Ø Info: biodegradable waste composes some 40% of MSW while garden waste 

makes around 12%. Serbia produces 3.7 million tons of organic waste per 

year. There are currently 164 official registered landfills and over 4000 

unregulated landfills across the country. Waste collection systems exist but 

lack proper machinery. It was assessed that collection of 60% of municipal 

waste in Serbia is organized. Urban areas are much more organized than rural 

areas that receive significantly less waste collection coverage (GIZ, 2012a). 

 

Forest	
  waste	
  	
  
 

Ø Main use: biochar for TPN 

Ø Alternative use: incineration and natural decomposition  

Ø Info: Unutilized parts of the tree after cutting include a) bark b) thin branches 

and c) stumps. These amount to about 42% of the total tree volume. According 

to present statistical data, this generates 1,1 million m3 of wood waste (Energy 

Saving Group, n.d.). Forest in the north part of the country, located in plains, 

are easier to access and almost 100% of waste wood can be recovered. But 

forests in mountainous regions in the south have very steep slopes and less 

developed infrastructure. Collecting waste wood in these regions would be 

very challenging 

	
  

Wood	
  waste	
  in	
  wood	
  processing	
  industry	
  

	
  

Ø Main use: biochar for TPN 

Ø Alternative use: incineration, wood pallet production and landfilling   

Ø Info: The wood processing industry produces three main types of wastes in 

different sizes: a) bark b) coarse waste (from cutting round wood) and c) fine 

waste (wood chips, sawdust, and wood dust). In 2006 wood wastes in 
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sawmills amounted to 480 000 m3. Most sawmills have a small installed 

capacity. Assuming that small sawmills process about 50% of all wood 

material, the waste quantities would be as follows (Energy Saving Group, 

n.d.): 

  

o Wood chips – 68 000 m3 

o Sawdust – 30 000 m3 

o Coarse wood waste – 91 000 m3 

o Bark – 51 000 m3 

	
  

Sludge	
  from	
  wastewater	
  treatment	
  	
  
 

Ø Main use: biochar or compost for TPN 

Ø Alternative use: incineration, cement production, anaerobic digestion for 

biogas, soil amender (if no heavy metals in material) and landfilling  

Ø Info: Only half of the households in Serbia are connected to a public sewage 

system (1.3 million connections) and barely 15 percent of wastewater is 

treated (51 million !!and mostly only to primary standards) (GIZ, 2012b). 

According to available data, there is no activated sludge treatment in Serbia. 

There are plans to develop facilities in the future.  

 

Agricultural	
  waste	
  	
  
	
  

Ø Main use: compost for TPN 

Ø Alternative use: anaerobic digestion for biogas and landfilling. This largely 

depends on the type of agricultural waste.  

Ø Info: there are no reliable data sources on this issue  

 

R6:	
  TPN	
  does	
  not	
  demonstrate	
  positive	
  benefits	
  for	
  plant	
  growth	
  
	
  
Using TPN could run in the risk of failing to benefit soil quality and plant growth. 

Here are the main reasons behind this risk:  
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1) The effects of Terra Preta Nova on soil quality and plant growth have not been 

determined. Effects of biochar applications alone, an area that has been 

investigated in much greater extent than TPN, still remain unknown. 

2) There are multiple combinations of feedstock materials that could be used in 

producing TPN. The great variability in these mixtures, does not allow for any 

generalizations on TPN effects on soil and plant growth.  

 

Failure to generate positive effects on plant growth would create an aversion towards 

TPN from users.  Conducting field trials that would test the best mixtures could 

minimize this risk. 	
  

	
  

Conclusions	
  
	
  
Modern agriculture relies on consuming finite resources and in doing so creates 

environmental degradation and food insecurity.  

 

Agriculture has been both a source of rise and decline of societies during history. 

Ancient Mesopotamia and Greece provide historic examples of the negative 

implications of intensive farming.  

 

Soil salinization in the Fertile Crescent, caused in part by intensive irrigation, was 

among the main causes of the decline of the Mesopotamian civilization. Steady 

declines in barley production, which correlated with the demise of Mesopotamian 

power, document this.  

 

Historical records also speak of intensive soil erosion in Ancient Greece, that lead to a 

decrease in local wheat production. This is certainly not the main reason for the 

demise of the Greek civilization. But it made the Greeks more vulnerable by forcing 

them to rely on trade for food.  

 

Modern history testifies to the Dust Bowl in US and decline of the Aral Sea. Both of 

these examples confirm the destructive forces of modern agriculture. Intensive 

cultivation in the US depleted topsoil and induced desertification. The effects of this 
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were clearly visible, when dust storms buried entire human settlements. On the other 

hand, the declining shorelines of the Aral Sea and a staggering increase in human 

illness (Table 1), demonstrate to the destruction caused by intensive Soviet farming.  

 

Learning from these examples enables future generations to develop sustainable 

agricultural systems. These are characterized by circular material and energy flows, 

which are based on reusing local waste streams.  

 

Terra Preta Nova is a product of circular flow design. Composted organic waste from 

municipalities and agriculture is combined with charred woody feedstock or biochar, 

to create a terra-preta-like soil amender. This replicates Amazonian dark earths that 

are composed of large amounts of charred material (70 times higher than surrounding 

soil) and residues of vegetal and animal origin. Findings of pottery on the grounds of 

terra preta incline that this fertile land might have been produced purposefully by an 

ancient Amazonian civilization.  

 

The implication that this primitive society (in comparison to todays modern 

technologies) could have developed sustainable agriculture in otherwise infertile 

Amazonian soil implies that terra preta could be replicated in modern times and used 

to improve degraded land. This created a plethora of research on biochar and TP. The 

large majority of studies have focused on biochar, because this is considered to be the 

key to TPs fertility. Biochar is likely responsible for the high nutrient retention and 

water holding capacities of Terra Preta. This along with increased microbial activity 

gives biochar unique properties.  

 

Field trials on biochar have produced variable results, mostly but not exclusively 

indicating to positive plant responses. Biochar soil science is highly complex because 

it involves multiple feedstock, production processes and soil application measures. 

Uniform conclusions about biochar effects on soil properties and plant growth do not 

exist. This lack of scientific certainty disables biochar to be applied on a wider scale.  

 

Other major areas of uncertainly include biochar stability in soil and effects on other 

soil organic matter (priming effect). Biochar found in Terra Preta is of ancient origin, 

indicating to its resistance to mineralization. The high stability of biochar arguments 
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that charring biomass could help stabilize carbon in ground and reduce atmospheric 

GHG levels. Studies indicate that biochar soil conditioning could sequester 12% of 

current anthropogenic GHG emissions. But modern biochar is produced in conditions 

different from those in ancient Amazonia. Field trials show variable results in regards 

to its stability in soil. Using biochar for environmental management on a global scale 

could backfire, leading to a rapid return of large amount of GHG to the atmosphere.  

 

What are the implications of this for Terra Preta Nova?  

 

The scientific uncertainty around biochar, and biochar mixing with compost, could 

hinder the development of Terra Preta Nova. Field trials on the effects of biochar on 

compost are limited. The variety of compost and biochar feedstock, as well as the 

numerous permutations of the two, could create thousands of versions of Terra Preta 

Nova version globally. While some versions, might be successful in restoring and 

increasing soil fertility, other might fail and even induce economic and social losses 

to the local community. Before developing Terra Preta Nova on a wider scale, science 

should classify the safe feedstock combinations.  

 

Individual companies are already experimenting with feedstock’s for Terra Preta 

Nova. A German holding is producing TPN from green waste, dung, manure and the 

solid fraction of the digestate from biogas production. The company has by far only 

developed a pilot plant. Reasons why their products are not marketed are unknown 

due to lack of data.  

 

Developing Terra Preta Nova on a regional level would be highly complex. This 

would require a steady stream of input materials, meaning that waste management 

systems would have to be in place. Terra Preta Nova is a product of high-end material 

flow management (Figure 24).  

	
  
Material Flow Management is a holistic resource management approach that 

optimizes material and energy flows across the economic sector. This includes 

integrating technologies that process low quality waste from households, industries, 

agriculture etc. into high quality resources. Developing Terra Preta Nova with the 

Material Flow Management methodology would facilitate the complexity involved.  
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MFM analyzes material and energy flows in a system through Material Flow 

Analysis. Quantities, qualities and directions of the flows are documented and 

displayed in Sankey diagram format. This enables decision makers to identify the 

most relevant optimization potentials and employ appropriate technologies.  

 

Following this, MFM creates regional stakeholder networks to facilitate the process. 

Detailed economic and technical feasibility studies, analyze the most relevant 

projects. These are included in a regional Master plan that is developed with the aid of 

a newly established MFM Holding.  

	
  
The MFM methodology suffers from several risks that might hinder Terra Preta Nova 

development (Table 9). This thesis has examined these on a case study. Serbia was 

chosen because of data availability. The biggest risk lies in getting and maintaining 

the political approval for MFM optimization projects from local decision makers. 

Other major risks include the potential danger of TPN failing to demonstrate positive 

effects on crop growth and soil properties.  

 

People in general are highly skeptical of new things, so developing Terra Preta Nova 

in Serbia would require an intensive education campaign.  

 

In conclusion, here is a summary of the answers to the key questions raised by this 

thesis: 	
  

 

Q1: Is Terra Preta Nova a viable solution for sustainable agricultural systems?  

 

A1: Terra Preta Nova is viable solution under the condition that its effects on crop 

growth and soil properties are examined before widespread application. Since each 

region would produce TPN from different feedstock materials, individual trials have 

to be conducted.  

 

Biochar and biochar-compost mixtures have demonstrated positive results for crop 

growth in most cases. But negative results of biochar field trials exit and soil science 

is not in agreement regarding their cause. Biochar and TPN have not been tested 
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enough in order to generalize about the potential impacts on crop growth. Regarding 

environmental impacts, TPN could reduce the negative effect of agriculture, through 

greater nutrient retention, substitution of synthetic fertilizer, decrease in GHG 

emissions, improved soil quality, decentralization of food systems etc.   

 

Q2: Could Terra Preta Nova be used on a global level or is it just suitable for 

particular regional conditions?  

 

A2: Terra Preta Nova could be produced from various streams of input materials. 

TPN would therefore differ across regions in composition, which would create 

variable results in crop growth. Moreover, regions differ in soil properties and climate 

conditions making potential TPN effects even more variable. TPN is therefore not a 

global solution. Instead it should be applied regionally, where proper conditions exist 

– both for its production and application.  

 

Besides TPN, there are many other alternative agricultural solutions. Developing 

sustainable agriculture globally would require using all of these technologies in 

combination, depending on local circumstances. Terra Preta Nova is therefore, just 

one solution among many possible options. 

 

Q3: What are the obstacles of creating Terra Preta Nova systems?   

 

A3: The main obstacles are in gaining the political approval for regional TPN 

development and MFM optimization from the local decision makers. Other major 

risks include demonstrating positive effects on crops and soil and securing a steady 

supply of waste feedstock. 

	
  

Appendix	
  1:	
  Biochar	
  in	
  the	
  context	
  of	
  geoengineering	
  
strategies	
  
	
  
Biochar application on a global scale classifies as a geoengineering method and as 

such can be compared to other similar solutions. The Royal Society (2009) examines 

the know geoengineering methods and compares them according to their costs, 
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potential to remove carbon dioxide, general interference with ecosystems, social 

acceptability and ease of governance. The methods against which biochar is compared 

are presented in Table 10. Biochar has been rated rather low in comparison to some 

other methods. This is mainly because of these reasons:  

 

1. The effects of adding large amounts of biochar to soil are still subject to 

uncertainty. Biochar can be produced from many different feedstock and 

various pyrolysis conditions leading to differing biochar qualities and effects 

on crop growth (Biofuelwatch, 2011). Effects of biochar application to soil 

will also largely depend on local soil and climate conditions. Most 

importantly, the stability of biochar in soil is not uniform as some biochar 

experiments indicated to a low residence time (Biofuelwatch, 2011). The 

sequestered carbon through biochar soil application could then be oxidized 

rather quickly leading to !"! returns to the atmosphere.  

2. Low plant productivity, which poses a limitation in feedstock supply and 

consequently the overall amount of biochar produce 

3. Conflicts over land use with food production. Massive biochar production and 

application could trigger its price to increase, or at least be higher than the 

price of food that would be produced on the same plot of land. Sustainable 

biochar production would then be possible only from waste materials.  

 
	
  Table	
  10:	
  Comparison	
  of	
  geoengineering	
  methods.	
  Source:	
  The	
  Royal	
  Society	
  (2009)	
  

Geoengineering method Description 
Land use management Afforestation and deforestation of land 
Bio-energy with carbon sequestration Using carbon capture and storage technologies to 

reduce !"! emissions arising from biofuel use. 
For instance, capturing and storing !"! form 
wood combustion.  

Enhanced weathering of carbonate and silicate 
rock  

Accelerating the rate at which silicate and 
carbonate rock react with atmospheric !"!  

!"! removal from ambient air Adsorption of !"! to solids, highly alkaline 
solutions and moderately alkaline solutions with a 
catalyst  

Ocean fertilization  Enhancing the rate at which surface ocean !"! is 
transported into the deep ocean, through means of 
the ocean biological pump. This involves 
fertilizing the ocean with nutrients that enhance 
surface algae growth (fixers of !"! that 
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decompose and sink into ocean depths) 
Surface albedo  Making the surface brighter so as to increase the 

reflection of solar radiation 
Cloud albedo enhancement  Whitening clouds over parts of the ocean  
Stratospheric aerosols  Releasing particles into the stratosphere with the 

objective of scattering sunlight back to space 
Space based methods Reducing the amount of solar radiation reaching 

the Earth by positioning sun-shields in space to 
reflect of deflect the solar radiation 

 
Looking at biochar as a strategy to alleviate global warming, in comparison with other 

geoengineering methods, places it into perspective. But what lacks in the Royal 

Society report is that it looks at each method as if its application would exclude the 

use of other methods. While biochar production may not pose a global solution, it 

could prove very effective when adopted in local settings. 

	
  

Appendix	
  2:	
  Research	
  gaps	
  in	
  biochar	
  soil	
  science	
  	
  
 

Research on biochar effects on soil is still in its infancy. Table 11 presents the current 

research gaps that need to be addressed. Unknowns related to biochar effects on soil 

indicate that its wider application would, at the present level of knowledge, pose risks 

concerning the local environment. Strategies to implement biochar soil conditioning 

would need to adopt a risk-based approach, where potential negative effects of 

biochar are evaluated beforehand.  

 
	
  Table	
  11:	
  Research	
  gaps	
  of	
  biochar	
  application	
  to	
  soil.	
  Source:	
  Various	
  authors	
  

Research gap Explanation  
Chemical and physical properties of biochar  Biochar will differ in properties depending on the 

choice of feedstock and production process 
condition - mainly temperature and time (Sohi et 
al., 2009)  

Stability in soil Biochar found in Terra Preta has been dated to be 
thousands of years old, resisting the rapid 
mineralization common to organic matter in 
tropic environments (Lehmann, 2007). But 
biochar from modern pyrolysis processes might 
be different to the one found on Terra Preta. Field 
trials need to establish the longevity of modern 
biochar in soils. 

Effects on crop productivity Different biophysical interactions and processes 
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that occur when biochar is applied to soil are not 
well understood. Large number of studies has 
shown positive effects on crop productivity, while 
these are some that have shown negative effects. 
Models that enable extrapolation of biochar 
effects on soil are required (Sohi et al., 2009) 

Safety of use in soil  The feedstock used may contain toxic elements 
(heavy metals). These will remain in the ash 
content of biochar. Care must be taken in the 
feedstock selection and the operation of the 
thermochemical conversion to ensure that the 
risks to the environment and human health are 
minimal and properly assessed (Brownsort et al., 
2010).  

Effects of biochar on interaction with soil 
microbial communities 

Biochar is believed to increase soil microbial 
activity. Reasons behind this are still not 
understood precisely (Sohi et al., 2009).  

Cation exchange capacity (CEC) Applications of fresh biochar have been shown to 
increase CEC. But the processes that are 
instrumental in developing CEC over time are still 
not well understood (Sohi et al., 2009).  

Water holding capacity  Studies indicate that biochar leads to better water 
holding capacity. There is little research evidence 
that indicates the reasons for this (Sohi et al., 
2009).     

Damage to soils  Research is mostly focusing on positive effects of 
large-scale biochar application. There might be 
some subtle negative effects on soil that have not 
been recognized (Brownsort et al., 2010). 

Loss of soil organic matter (SOM) One study found that charcoal additions to forest 
humus induced a loss in soil organic matter 
(Wardle et al., 2008). Studies of SOM in Terra 
Preta, on the other hand, found that charcoal 
induced its stability over millennial time ranges 
(Brownsort et al., 2010).   

Loss of biochar due to erosion  Biochar can be lost from ground due to erosion. 
These processes complicate the calculations of 
biochar stability in soil. Further research in this is 
needed (Sohi et al., 2009).  

	
  

Appendix	
  3:	
  Composting	
  and	
  biochar	
  technologies	
  
	
   

This appendix discusses composting and biochar production technologies in more 

detail and in line with the questions proposed in the Technical feasibility segment of 

the MFM methodology for TPN section.  
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Composting	
  

	
  

Is the proposed technology or solution practical? 

	
  

Composting reduces the volume of organic waste to more or less 50% its initial size. 

In doing so it reduces the energy required to transport the organic waste to 

agricultural fields. Moreover, it relies on natural processes, mainly aerobic 

decomposition, to eliminate pathogens and unwanted plant seeds.  

 

Potentially, pest problem can occur (such as seagulls, rats, flies). Plant pathogens are 

easily spread if any of compost material is infected. This is often the case with the 

biodegradable fraction of municipal solid waste.  

 

According to data from UNEP, composting is a waste management option with the 

highest number of failed facilities worldwide. The problems most often cited in the 

literature include: high operation and management costs, high transportation costs, 

low understanding of the composting process and the competitiveness of chemical 

fertilizers (Institute for Applied Material Flow Management, 2010).   

 

What kind of technology do we need? 

 

Composting can be divided in two categories, depending on the nature of the 

feedstock decomposition process (Misra et al. 2003): 

 

1) Anaerobic: decomposition occurs in absence or limited availability of oxygen. 

Under these conditions, anaerobic microorganisms dominate and produce 

methane, organic acids and other substances. Many of these substances have 

strong odors and some of them are toxic to plants. Since anaerobic composting 

occurs at low temperatures, pathogens and weed seeds in the compost are not 

killed. This disables the use of the compost pile for agriculture 
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2) Aerobic: decomposition occurs in ample presence of oxygen and aerobic 

microorganisms break down organic matter and produce carbon dioxide, 

ammonia, water, heat and humus.   

	
  

Aerobic composting is the type that every farmer strives for. However, anaerobic 

processes can occur if the feedstock is not managed properly (inadequate frequency of 

turning, aeration etc.)  

 

Composting technologies can be divided into small scale and large scale. Small scale 

is applied in undeveloped rural settings or home applications. This thesis discusses 

Terra Preta Nova in terms of large-scale production, which is why small scale 

composting will not be discussed any further.    

 

Composting techniques, irrespective of size, share these features: 

 

1) Pile size – piles that are too big will develop anaerobic zones in the middle, 

slowing down the composting process. Small piles will however lose heat too 

quickly and may not achieve temperatures that kill off pathogens and weed 

seeds. Using porous materials will allow having piles of greater size, because 

the oxygen can penetrate the center of the pile more easily 

2) Ventilation – multiple methods are available but the main point is in having 

the pile vented at right frequencies and quantities in order to optimize heat 

production, decomposition rates etc.  

3) Turning – the pile has to be turned with the right frequency in order to avoid 

anaerobic zones in the middle and optimize aeration 

4) Inoculation – compost piles are sometimes inoculated with microorganisms, 

like fungi, in order to enhance microbial activity  

5) Supplemental nutrition – synthetic fertilizer is sometimes added in order to 

modify the C:N ratio 

6) Shredding – this increases the surface area available for microbial action and 

provides better aeration 

 

Here are the large scale composting technologies that are in use today (Misra et al. 

2003): 
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Wind-row composting – consists of placing feedstock in long narrow piles called 

wind-rows that are ventilated either by turning the feedstock on a regular basis or 

through piping systems that deliver the air without the need for turning  

 

1) Turned wind-rows – the rows are turned using specialized machinery, which 

reduces the time and labour involved. Turning ensures that the feedstock is 

receiving enough air, enabling the decomposition process to continue steadily. 

This method takes three to nine weeks to produce compost, depending on the 

nature of the material and the frequency of turning 

 

	
  
Figure	
  27:	
  a)	
  Turned	
  wind-­‐rows	
  b)	
  Passively	
  aerated	
  wind-­‐rows.	
  Source:	
  a)	
  GroundGrocer,	
  (n.d.)	
  and	
  

Eco	
  City	
  Farms	
  (2011) 

 
2) Passively aerated wind-rows – air is supplied to the wind-rows through perforated 

pipes embedded in each wind row and this eliminates the need for turning. Air 

flows through the pipes and moves up the wind row, due to the chimney effect 

created by rising of the heat in the wind row pile: Since the feedstock is not mixed 

during the composting process, it has to be mixed thoroughly before being placed 

in the pile.  

 

3) Aerated static pile – this method extends on the passively aerated technique by 

using a blower to supply the air to the composting pile. Using the blower provides 

direct control of the process and allows larger piles.  
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In vessel composting – the composting material is confined within a building, 

container or vessel. These techniques rely on a variety of forced aeration and 

mechanical turning techniques to accelerate the composting process.  

 

1) Bin composting – feedstock is placed in bins consisting of concrete walls, with 

or without a roof. This method includes some means of forced aeration in the 

floor of the bin and little or no turning of the materials. The bins allow higher 

stacking of materials and better use of floor space than freestanding piles.  

 

2) Rectangular agitated beds – the composting takes place between walls that 

form rows. A compost turning machine moves along the long rows and turns 

the composting material. The feedstock is aerated with a set of aeration pipes 

and an aeration plenum on the floor of the rows.  In addition to this, blowers 

are used. For reasons of protection from weather, the beds are placed in 

greenhouses or in warmer climates roofs cover them.  

 

	
  
Figure	
  28:	
  Rectangular	
  activated	
  bed.	
  Source:	
  (Misra	
  et	
  al.,	
  2003)	
  

	
  
3) Rotating drum – a horizontal rotary drum mixes, aerates and moves the 

material through the system. A drum of about 3.35 m in diameter and 36m 

long has a daily capacity of 50 tons with residence time of three days. Air is 

supplied through the discharge end of the drum and the material is aerated 
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while being rotated. The material nearest to the discharge point receives cool 

air, the material in the middle warmer air that keeps the degradation process 

going and the material at the very beginning receives the hottest air to initiate 

the composting process. The air is warmed as it passes through the drum, due 

to the heat emitted from the composting material.  

 

4) Silo and transportable container – these methods will not be explained in more 

detail as they are used less frequently 

 

Vermicomposting – this refers to the use of earthworms for composting organic 

residues. Earthworms consume any organic material and they consume their own 

body weight per day. Through consuming the feedstock, the worms excrete substrates 

rich in nitrate, available forms of P, K, Ca and Mg. Worm activity promotes growth of 

bacteria and actinomycetes, which are a specific group of bacteria responsible for 

decomposition of organic matter at elevated temperatures.  

	
  

Is the required technology available? 

 

Composting technologies are widely available and have been applied both in 

developed and developing countries. The above-described technologies are for large 

scale composting and will mainly be used in developed countries. They require more 

complicated logistics and machinery that may not be available in undeveloped 

regions. This thesis does not have the information about which of these systems is the 

most suitable for Terra Preta Nova production.  

 

Pyrolysis	
  for	
  biochar	
  

	
  

Is the proposed technology or solution practical? 

	
  

Biochar can be produced from waste materials, such as waste wood, coconut shells 

etc. This reduces the amount of waste to be landfilled. Modern systems can be 

adjusted to produce bioenergy from the off gasses and heat produced during pyrolysis. 

These are often make use of this energy for the purpose of heating the feedstock.  
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Pyrolysis technology for biochar is, however, still in the development phase. 

Improvements in the areas of its energy efficiency, pollution reduction, recovery of 

co-products, control of operating condition and feedstock flexibility need to be made 

(Brown, 2009).  

	
  

What kind of technology do we need? 

	
  

Biochar is produced from pyrolysis, the process of heating carbon bearing solid 

material under oxygen starved conditions. Char and charcoal are both produced in the 

same conditions, but not for the purpose of soil application, as is the case with 

biochar. Much of the knowledge about biochar production comes from what is known 

on producing char and charcoal.  

 

Charcoal can be produced using various types of kilns and in many cases these do not 

have any control over the exhaust emission produced by the process. Modern biochar 

technologies can regulate the charring conditions in order to minimize the pollution. 

Moreover, the processing conditions can be regulated and monitored with the purpose 

of producing biochar with specific characteristics. The pyrolysis process could be 

adjusted to maximize the biochar surface area. But given the differences in feedstock 

used, there is no “one size fits all” solution.  

 

Here are the biochar technologies that could be used for large-scale production 

(Brown, 2009):  

 

1) The drum pyrolyser – moves biomass through an externally heated, horizontal, 

cylindrical shell using paddles. The drum is intentionally sealed of so not air 

can enter. The feed material is first dried and fed into the drum. As the 

material passes through the drum, it reacts to produce an off-gas (syngas), 

which is continuously removed from the kiln and utilized for its energy value. 

This system was developed by BEST energies and a fully operational 

demonstration plant has the capacity to take 300kg/h of biomass (BEST 

Energies, n.d.) 
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Figure	
  29:	
  BEST	
  Energies	
  slow	
  pyrolysis	
  process.	
  Source:	
  (BEST	
  Energies,	
  n.d.) 

2) Rotary kilns – these are similar to the drum pyrolyser because they as well 

employ an externally heated cylindrical shell. However, this is rotated at an 

angle to the horizontal, enabling gravity to move the biomass down the length 

of the kiln. The advantage over the drum pyrolyser is the absence of moving 

parts in the interior.  

 

3) Screw pyrolyser – moves biomass through a tubular reactor by the action of 

rotating screw. While these are also externally heated, they can be adjusted to 

use a heat carrier instead, such as sand. This is mixed with the biomass as it 

passes through the screw.  

4) The Flash Carbonizer – biochar production through the ignition of flash fire at 

elevated pressure. The reported fixed carbon yields are 100% of the theoretical 

limit in as little as 20 to 30 minutes.  

 

5) Wood gas stoves – these are designed for efficient domestic cooking with 

wood in developing world. These stoves improve wood combustion by 

gasifying the wood into gas that is subsequently burned in a controlled manner 

(Roth, 2011). The carbon remaining at the end of biomass devolatilization can 

be burned in the stove to provide additional heat, but it can also be recovered 
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as biochar with yields of 20 to 25% by weight (Brown, 2009). The amount 

produced per batch is in the range of 150g, which disables any use in 

agriculture. But if this stove would be used by thousands of households in a 

region, the biochar collected could make significant amounts. 	
  

	
  

Is the required technology available? 

 

Technologies for biochar production exist but they are not widely available. Most of 

the examples presented in the literature are demonstration scale, while there are some 

examples of larger biochar production. Review of the German literature, a leader in 

MFM, would have to determine the extent of actual production facilities in Germany. 

For further reference please consult the International Biochar Initiative7.  
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  http://www.biochar-international.org/technology/production	
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