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Abstract

Trajectory Tracking Control of an Omnidirectional Mobile Robot

by

REN Chao

Doctor of Philosophy in Department of Robotics

Ritsumeikan University, Biwako-Kusatsu Campus

Professor MA Shugen, Chair

In the past few decades, omnidirectional mobile robots (OMRs) have received growing

attention in the field of wheeled mobile robots because of their high maneuverability. Com-

pared with non-holonomic mobile robots, OMRs, which are holonomic, are able to achieve

translational and rotational motions independently and simultaneously. As a result, they

are quite useful in tight environments, such as hospitals and warehouses.

In this study, we focus on the trajectory tracking control of an omnidirectional mobile

robot based on MY Wheel-II. The omnidirectional wheel mechanisms are divided into two

groups: non-switch wheels and switch wheels, depending on whether the contact radius of

the wheel to the robot geometric center switches. MY Wheel-II is one kind of switch wheels

and the robot prototype is a discontinuous system.

Firstly, a dynamic model is established for our robot prototype, which shows that the

robot is an autonomous switched nonlinear system. Since it is quite difficult to design

control system for autonomous switched nonlinear systems based on switched system control

theory, one current paradigm in literature is to design control systems based on continuous

dynamic models of switched nonlinear systems. Therefore, we firstly derive two continuous

dynamic models, i.e., average dynamic model and nonlinear parameter-varying dynamic

model. Then resolved acceleration control (RAC), is employed to design controllers for our

robot prototype based on the two continuous dynamic models, respectively. Simulations

are conducted to verify and compare the two control systems.
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However, it is shown in the experimental results that the control performances of average

dynamic model based RAC are not satisfied. This is due to the modeling errors in the

average dynamic model, including 1) unmodeled switching dynamics, 2) unmodeled forces,

and 3) parameter uncertainties. Therefore, a trajectory tracking control system design is

then proposed by employing a generalized proportional integral (GPI) observer to improve

the control performances. The main idea is that the above modeling errors as well as

the input-output cross coupling effects are considered as an unknown perturbation input

vector. The perturbation input vector is then online estimated by the GPI observer, and

compensated in the control signal. The closed-loop stability is analyzed. Finally, both

simulations and experiments are conducted to verify and compare the effectiveness of the

proposed control design against average dynamic model based RAC.

To further reduce the model information used in the previous GPI observer based control

design, a passivity-based model free control (MFC) design is proposed, based on a modified

GPI observer. The passivity property is analyzed for our robot prototype based on the

average dynamic model. The control design objective is to design a controller such that

the passivity property of the robot is preserved in the closed-loop system by using the

modified GPI observer. The average contact radius is the only required model information.

Moreover, the closed-loop stability is analyzed. Finally, experimental results and discussions

are presented to compare the above three control designs.
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Chapter 1

Introduction

1.1 Research Background

High mobility of wheeled mobile robots is essential to enlarge their applications. How-

ever, the conventional wheeled mobile robots have nonholonomic constraints, which reduce

their mobility and make the control and motion planning difficult. Omnidirectional Mo-

bile Robots (OMRs), which are holonomic, provide such high mobility that conventional

wheeled mobile robots cannot achieve. OMRs have the ability to move simultaneously and

independently in both translational and rotational motion. Therefore, they are especially

useful in environments congested with static and dynamic obstacles and narrow aisles, such

as hospitals, warehouses, residential homes, and sheltered workshops for disabled people.

In addition, OMRs are also frequently used as mobile bases for mobile robot manipulators

due to their high mobility.

1.1.1 Omnidirectional Wheel Mechanisms

In literature, a variety of omnidirectional wheel mechanisms have been proposed over the

past few decades. Several mechanisms have been designed based on the “universal wheel”

concept, which is an assembly providing a combination of constrained and unconstrained

motion when turning the wheel shaft [1]. The initial universal wheel design was used to
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achieve omnidirectional motions without changing the direction of the wheels, but one

problem of this wheel type is that it suffers from successive shocks when the individual

rollers make contact with ground. Mecanum wheel [2] and Alternate wheel [3, 4], were then

proposed to remedy the gap between the rollers and to provide a more smoother motion on

hard surfaces.

Some mechanisms were designed based on the “orthogonal-wheels” concept, to reduce

the successive shocks and to provide a smooth motion on hard surfaces. Pin and Killough

[6] presented the “orthogonal-wheels” concept and proposed two major wheel assemblies:

Longitudinal orthogonal-wheel assembly and Lateral orthogonal-wheel assembly. In our

previous works, we proposed two novel omnidirectional wheel mechanisms, referred to as

MY wheel [7] and MY wheel-II [8], which are based on sliced ball structure and can be

considered as a natural extension of Longitudinal orthogonal-wheel assembly. Moreover,

Swedish wheel [9] is also similar to the “orthogonal-wheels” concept.

The third group of omnidirectional mechanisms were designed based on “ball wheel”

concept, to realize smooth motion and to improve step-climbing ability. Wada and Asada

[14, 15] proposed a variable footprint mechanism based on a ball wheel structure and applied

it to wheel chairs, but the wheel mechanism was a bit complex. Ishida et al. [16] also

proposed a ball wheel drive mechanism for holonomic omnidirectional vehicle to improve

the step climbing ability of OMRs. Tadakuma et al. [5] proposed an “Omni-ball” mechanism

to realize high step-climbing capability.

(a) (b) (c) (d)

These figures are omitted to protect the copyright. Original sources are listed in the Appendix E.

Figure 1.1: Non-switch wheel mechanisms. (a) Universal wheel [1]. (b) Mecanum wheel [2].

(c) Alternate wheel [3, 4]. (d) Ball wheel [5].
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(a) (b) (c) (d)

These figures are omitted to protect the copyright. 

Original sources are listed in the Appendix E.

This figure is omitted to 

protect the copyright. 

Original source is listed in 

the Appendix E.

Figure 1.2: Switch wheel mechanisms. (a) Longitudinal orthogonal-wheel [6]. (b) MY wheel

[7]. (c) MY wheel-II [8]. (d) Swedish wheel [9].

In addition, in our previous work [17], we divided all of these mechanisms into two

groups: non-switch wheels and switch wheels, depending on whether the contact radius of

the wheel to the robot geometric center switches. Majority of the wheels, such as Universal

wheel [1] , Mecanum wheel [2], Alternate wheel [3] and Ball wheel [5], are of the first group

(see Figure 1.1). The switch wheel mechanisms proposed until now are shown in Figure 1.2.

They are Longitudinal Orthogonal-wheel [6], MY wheel [7], MY wheel-II [8] and Swedish

wheel [9]. The dynamics of the non-switch wheeled OMRs is nonlinear and smooth while

the switch wheeled OMRs are nonlinear and piecewise-smooth dynamical systems. In fact,

switch wheeled OMRs are autonomous switched nonlinear dynamical systems.

1.1.2 Applications

The high manoeuvrability provided by OMRs can be utilized in numerous indoor and

outdoor applications. As already mentioned, they have the ability to easily perform certain

tasks with high efficiency in congested environments with static obstacles, dynamic obstacles

or in narrow spaces. As a result, practical applications of OMRs can be found in various

fields, e.g., industrial field and medical field, etc. The following are a few examples.

Industrial Field

Figure 1.3 (a) shows an omnidirectional mobile platform from KUKA for transportation

tasks, named KMP omniMove. The optical tracking, positioning aids and mechanical guide
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(a) (b)

These pictures are omitted to protect the copyright. Original sources are listed in the Appendix E.

Figure 1.3: (a) KMP omniMove [10]. (b) KMR QUANTEC [11].

elements allow it to achieve a positioning accuracy of up to 1 mm. The KMP omniMove

can move autonomously without risk of collision. Its unrestricted two-dimensional freedom

of motion makes this possible and ensures maximum exibility [10]. In addition, since KMP

omniMove can move autonomously and precisely, the regulation or tracking control plays an

important role in achieving the desired control performances, especially with high payload.

It is well-known that the movable region of mobile manipulators based nonholonomic

mobile system is restricted to the setting of desired trajectory, while omnidirectional mobile

manipulators do not have these constraints. Therefore, omnidirectional mobile manipula-

tors are much more dexterous and the manipulability is greatly improved. Figure 1.3 (b)

shows an omnidirectional mobile manipulator from KUKA, named KMR QUANTEC. Its

omnidirectional wheel technology enables KMR QUANTEC to maneuver safely to the de-

sired position in confined spaces and to achieve a positioning accuracy of 5 mm, no matter

whether it has had to travel 5 or 150 meters to the site of operation [11]. Note that, to real-

ize high precision of machining or operation, it is crucial that the OMR should be precisely

controlled.

Medical Field

The wheelchairs based omnidirectional wheels are highly maneuverable in narrow or

crowded areas such as residences, offices and hospitals. Several kinds of omnidirectional

vehicle have been developed. Two examples of omnidirectional wheelchairs are shown in

Figure 1.4. Recent development has made wheelchairs more intelligent, such as autonomous
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These figures are omitted to protect the copyright. Original sources are listed in the Appendix E.

Figure 1.4: Omnidirectional wheelchairs: (a) OMR developed in University at Hagen [12].

(b) OMR developed in Chiba Institute of Technology [13].

navigation, obstacles avoidance and voice control, etc. It is obvious that the regulation or

tracking control design is indispensable in realizing these functions.

As discussed above, the control system design of OMRs plays a crucial role in these ap-

plications, especially for the industrial applications since high precision is usually required.

1.2 Literature Review

1.2.1 Control of OMRs

The control of OMRs can be divided into kinematic based control and dynamic based

control. Kinematic control of OMRs have been studied in [8, 9, 18, 19, 20, 21, 22, 23, 24]. It

is well known that kinematic control is usually applied when the robot moves in low speed

and low payload, or the control performances are not highly required. However, when

the robot moves with high speed or with high payload, or high control performances are

expected, the dynamic effects have to be taken into consideration to guarantee the control
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performance. Therefore, in this part, we mainly focus on the literature review of dynamic

based control.

Some works are based on feedback linearization control approaches. In [25], a resolved

acceleration controller was designed for an omnidirectional holonomic autonomous plat-

form, which was equipped with three Lateral orthogonal-wheel assemblies. The proposed

controller is based on feedback linearization control approach and thus the control system

performances depend on the accuracy of the robot dynamic model. In [26], the dynamic

model of a three Swedish wheeled OMR is linearized to simplify controller design by using

the kinematic relationship between its body movement and rotation velocities of wheels.

In [27], a cascade control structure was applied for a three wheeled OMR with Universal

wheels. The dynamic model is linearized by feedback of the friction forces, and then linear

model-predictive control was designed based on the linearized dynamics. It should be noted

that the modeling of the friction forces is needed to linearize the dynamic model. In [28],

for a three Swedish wheeled OMR, the control system is also a cascade structure which

consists of an outer-loop (kinematics) controller and an inner-loop (dynamics) controller.

Both the outer-loop controller and inner-loop controller were designed using the trajectory

linearization control method based on a nonlinear robot dynamic model.

In [29], based on a relaxed optimal control problem, the authors proposed an algorithm

to calculate near-optimal minimum time trajectories for a four wheeled omnidirectional

vehicle with Universal wheels. Adaptive control design was studied in [30, 31]. In [30], an

adaptive motion controller was synthesized via the adaptive backstepping approach for a

three Swedish wheeled OMR, by considering parameter variations and uncertainties caused

by friction and payloads. In [31], for a three Swedish wheeled OMR, a switching algorithm

was proposed to exchange of control authority between adaptive linearizing controller and

adaptive sliding-mode controller. However, the parameter tuning may be tedious since

several parameters are to be tuned. Observer based control system design was proposed in

[32]. An output feedback control scheme was proposed based on a generalized proportional

integral (GPI) observer for a three Swedish wheeled OMR. The main idea is that the
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unknown, possibly state-dependent, additive nonlinearities influencing the input-output

tracking error dynamics are modeled as an absolutely bounded, additive, unknown “time-

varying disturbance” input signal. Then GPI observer is then employed to estimate this

“time-varying disturbance” input signal. However, in this paper, the robot is directly

considered as a non-switch wheeled OMR.

1.2.2 Control of Autonomous Switched Nonlinear System

Since our robot prototype is an autonomous switched nonlinear system (see Chapter

2), it is reasonable to consider the control system design based on switched system control

theory. In switched system theory, in spite of the diverse switching mechanisms, the switch-

ing events can be classified into state-dependant versus time-dependant, or autonomous

(uncontrolled) versus controlled. Correspondingly, in literature, the stability analysis and

control design issues of the switched systems are divided into two categories, namely, sys-

tems under arbitrary switching (for autonomous switched systems) and systems under the

constrained switching (for controlled switched systems) [33, 34]. Switch wheeled OMRs

are autonomous switched nonlinear systems, since the switching signal depends on robot

states. However, in literature, great interest has been generated in the control analysis and

synthesis of switched linear systems [35, 36, 37, 38, 39], or controlled switched nonlinear

systems [40, 41, 42, 43], to name a few.

For a switched system to be asymptotically stable under arbitrary switchings, it is cru-

cial to find a common Lyapunov function for all subsystems [34]. However, a common

Lyapunov function is usually difficult to derive for switched nonlinear systems. Therefore,

for autonomous switched nonlinear systems, only stability analysis and set-point stabiliza-

tion were studied in a few papers for some special systems [44, 45, 46, 47, 48], to name a

few. The adaptive neural control and backstepping design were proposed in [44] and [45],

respectively, for a special class of switched nonlinear system under several strict assumption-

s. For example, the switching signals are assumed to have the same persistent dwell time.

In [46], model predictive control algorithm was proposed for switched nonlinear systems
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with average dwell-time switching signals. In [47], stability analysis for a class of switched

nonlinear systems with disturbance input and delay was studied. In [48], global finite-time

stabilization was studied for a class of switched strict-feedback nonlinear systems whose

subsystems have chained integrators with the powers of positive odd rational numbers.

It should be emphasized that the trajectory tracking control design for autonomous

switched nonlinear systems has not yet been studied in switched system theory. The reason

lies in the fact that it is difficult to establish a common Lyapunov function for all subsystems.

1.2.3 Motivation

(a) (b)

Figure 1.5: Robot prototype [8]: (a) MY wheel-II assembly. (b) A robot prototype with

three MY Wheel-II assemblies.

In our lab, we have proposed an omnidirectional wheel mechanism, named MY Wheel-

II, and developed a three wheeled robot prototype. Figure 1.5 shows the MY wheel-II

assembly and robot prototype. As mentioned in Section 1.1.1, MY wheel-II is a switch

wheeled mechanism. According to Section 1.2, all of the previous dynamic modeling and

control designs are for the non-switch wheeled OMRs [25, 27, 29] and Swedish wheeled

OMRs [26, 28, 30, 31, 32].

Although Swedish wheel is one of the switch wheel mechanisms, it is worthy pointing

out that continuous dynamic models (i.e., simplified models) were directly employed in

all of the previous controller design studies by considering it as a non-switch wheel. This
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simplification is reasonable because the distance between the two small wheel parts in

Swedish wheel is usually quite small compared with the wheel contact radius to the robot

geometric center, producing fairly small modeling error (i.e., the switching effects can be

ignored). This may be a good solution for the modeling and control design of Swedish

wheeled OMRs. Nevertheless, the switching effects of the Longitudinal orthogonal wheel,

MY wheel and MY wheel-II can not be ignored because the distance between the two small

wheel parts in each assembly is usually relatively large compared with the contact radius

to the robot geometric center.

On the other hand, since we focus on trajectory tracking control of OMRs in this study,

the trajectory tracking control design for autonomous switched nonlinear systems has not

yet been studied in switched system theory. Therefore, the control system of our robot

prototype cannot be designed based on the current switched system theory. It is no surprise,

therefore, that one current paradigm for dealing with switched systems is continuation. In

this paradigm, it treats the switching dynamics as small unmodeled dynamics (and then

use robust control), slowly-varying (and gain-scheduling), or rare and independent of the

continuous state (jump linear systems) [49]. This motivates us to study the trajectory

tracking control system design for our robot prototype based on continuous dynamic models.

1.3 Outline of This Thesis

The contents of this thesis are organized as follows:

Chapter 2 introduces the robot prototype and a dynamic model including the switch-

ing information. The motion principle of MY wheel mechanism and specifications of the

prototype are presented. The experimental setup in this thesis is also introduced. Then

a dynamic model considering the motor dynamics and the switching is derived. Finally,

analysis of the dynamic properties of our robot prototype is presented in detail.

Chapter 3 presents two continuous dynamic models to facilitate the control design for

the robot prototype, i.e., average dynamic model and nonlinear parameter varying dynamic
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(NLPV) model. Then control systems are designed based on resolved acceleration control

(RAC) using the two continuous dynamic models, respectively. Simulations are conducted

to verify both control systems. Experimental tests are conducted for the average dynamic

model based RAC.

Chapter 4 proposes a trajectory tracking control system based on a generalized propor-

tional integral (GPI) observer for the robot prototype. The GPI observer is employed to

estimate the modeling errors in the average dynamic model, i.e., 1) unmodeled switching

dynamics, 2) unmodeled forces, and 3) parameter uncertainties. Bounded input bounded

output (BIBO) stability is guaranteed in the designed control system. Both simulations

and experimental results are presented to compare the control performances with average

dynamic model based RAC.

Chapter 5 presents a passivity-based model free control (MFC) design by employing a

modified GPI observer. Firstly, the passivity property of our robot prototype is analyzed

based on the average dynamic model. The design objective is to propose a controller such

that the passivity property of the robot is preserved in the closed-loop system by using the

modified GPI observer. Stability property is analyzed based on the average dynamic model.

Finally, experimental tests are conducted to compare with the control designs in previous

chapters and discussions are also presented.

Chapter 6 concludes this thesis and discusses the possible works in the future.
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Chapter 2

Kinematic and Dynamic Model of

the Robot Prototype

In this chapter, we firstly introduce the MY wheel-II mechanism and the configuration

of the robot prototype. The motion principle of MY wheel-II is also stated. Then the

experimental setup is introduced, which is used in all the experiments of this thesis.

In addition, the kinematic model and dynamic model of the robot prototype are derived.

A kinematic model for a switch wheeled OMR based on Longitudinal orthogonal-wheels was

derived in [6]. However, in previous works of dynamic modeling of OMRs, all of dynamic

models are derived for the non-switched OMRs or for Swedish wheeled OMRs by neglecting

the switching effects. The dynamic model derived in this chapter is the first work for

a switch wheeled OMR considering the wheel switching. More importantly, the analysis

of the dynamic model is presented, which reveals the switching properties of our robot

prototype.
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Figure 2.1: MY wheel-II mechanism: (a) Motion principle. (b) End-view.

2.1 Robot Prototype

2.1.1 MY Wheel-II Mechanism

As introduced in Section 1.1.1, various omnidirectional wheel mechanisms and robot

prototypes have been developed in literature. For omnidirectional wheels based on “univer-

sal wheel ” concept, these wheel mechanisms are sensitive to the rubbish on the floor, such

as threads. This is because the small rollers on these wheels may easily get stuck due to

these rubbish. Furthermore, these wheel mechanisms may have poor step climbing ability

[5]. On the other hand, although the ball wheel mechanisms have higher step climbing

ability, the ball wheel mechanisms usually have complex structure or poor payload ability,

such as ball wheel mechanism proposed in [15].

In [8], we have proposed a novel omnidirectional wheel mechanism, referred to as MY

wheel-II, based on “orthogonal-wheels” concept. This kind of wheel mechanism is not only

insensitive to the rubbish on the floor, but also has a high payload ability and high step

climbing ability.

The basic mechanism structure of the MY wheel-II mechanism is shown in Figure 2.1.

The MY wheel-II consists of two balls of equal diameter on a common shaft and both balls
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are sliced into four spherical crowns. Each spherical crown can rotate freely around its axis.

To produce a combined circular profile, the two sets of spherical crowns are mounted at 45◦

from each other. The wheel mechanism has a constrained motion controlled by rotation of

the main shaft, in the direction perpendicular to the shaft. The motion component in the

direction parallel to the shaft is unconstrained, since the spherical crowns can freely rotate.

To realize smooth motion on the ground, the two sets of crowns make alternative contact

with the ground. Whenever the shaft turns 45◦, the contact point with the ground switches

to from one to the other. Therefore, during each turn of the wheel shaft, eight switches

happen. Note that a 1◦ gap exists between two adjacent spherical crowns (shown in Figure

2.1 (b)).

The MY wheel-II mechanism is insensitive to the fragments on the ground, since it can

been seen that the rotation axis of each spherical crown lies inside the spherical crown.

It also has higher step climbing ability due to the sliced ball structure, compared with

other omnidirectional wheel structures, such as Swedish wheel. Moreover, the MY wheel-II

mechanism has a higher payload ability compared with ball wheels such as [15].

2.1.2 Robot Prototype

Figure 2.2 (a) shows the details of the MY wheel-II assembly. One end of the shaft is

connected to the DC motor through a synchronous belt. An absolute encoder is installed

to detect the switching of contact point. A pair of spur gears is employed to transmit the

wheel rotation to the absolute encoder. It should be noted that the absolute encoder is

indispensable for MY wheel-II, since it is used to detect the switching time of each wheel.

Three MY wheel-II assemblies are arranged with a 120◦ interval angle underneath a steel

disk (Figure 2.2 (b)). The specifications of the prototype platform are listed in Table 2.1.

2.1.3 Experimental Setup

The complete schematic of the hardware control system is shown in Figure 2.3. This is

the experimental setup for all of the experiments in this thesis. The sampling time of all the
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Figure 2.2: (a) MY Wheel-II assembly. (b) Prototype platform.

Table 2.1: Specifications of the prototype platform

Body Dimension 620 mm × 190 mm

Weight 40 Kg

Payload 150 Kg

DC Motor Maxon DC Motor 90 W × 3

Radius of Wheel 60 mm

Contact Radius Din=147 mm, Dout=236 mm

experiments is 10 ms, and therefore the experimental setup is appropriate for experiments

and satisfies the basic requirements for the control system verification.

The central controller board and each motor controller board were designed using dsPIC

micro-controllers (dsPIC33FJ128MC804 from Microchip, USA). All of the dsPIC micro-

controllers were programmed to operate at 40 million instructions per second. The three

DC motors (Order number: 323890, Maxon) are identical with gear reduction ratio of 186

and nominal voltage of 24 V. Each motor is installed with an incremental encoder (Or-

der number: 225787, Maxon). The incremental encoder is with 1024 counts per turn. The

H-Bridge drivers of three DC motors are identical (LMD18200 from Texas Instruments, US-

A). As mentioned before, three absolute encoders (MAB2510HS5VSER from MegaMotive,

Germany) are used to detect the switching of contact point with ground.

14



Laptop

Central Controller

Motor Controller 1

CAN Bus

Motor Driver 1

Motor Controller 2 Motor Controller 3

Motor Driver 2 Motor Driver 3

DC Motor 1 DC Motor 2 DC Motor  3Encoders Encoders Encoders

UART

PWM PWM PWM

Voltage Voltage Voltage

Figure 2.3: Schematic of the experimental setup.

A laptop is employed to collect and display the measured data. Communication between

the laptop and the central controller is via UART, which was programmed to operate at a

data transfer rate to 2.5 Mbaud. The communication between the central motor controller

and the three motor controllers is via CAN bus, which was programmed to operate at 1

Mb/s. The central controller calculates the control law and generates the control input (i.e.,

motor voltages) to the three motor controllers. Then each motor controller generates the

corresponding pulse-width modulation (PWM) signal of the control input to each motor

driver. In addition, the information of each absolute encoder and incremental encoder is

collected by the motor controller and then sent to the central controller. Note that the robot

posture is determined using odometry which is commonly used in the tracking control study

of mobile robots [50, 51, 52], to name a few. The robot velocity is obtained using the forward

kinematics. Finally, the designed boards of central controller, motor controller and motor

driver, are shown in Appendix B and C.
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2.2 Kinematic Model and Dynamic Model

2.2.1 Kinematic Model

For the switch wheeled OMRs, kinematic modeling and analysis were studied in [6, 19,

22]. In [6], a kinematic model was derived for a mobile platform with three Longitudinal

orthogonal-wheel assemblies. In this kinematic model, the switching of the contact radius

is considered. That is, the discontinuous contact radius is not constant in this model. One

problem is that the switching of the contact radius results in fluctuations of the motor

angular velocities when calculating the motor velocities using the kinematic model. Thus,

for the same kind of omnidirectional mobile platform in [19], an average wheel contact

radius was used instead of the real contact radius in the inverse kinematic model, to solve

the problem of motor angular velocity fluctuations. In [8] and [22], the kinematic analysis

was studied by adopting an optimal scale factor (OSF) instead of using the average contact

radius and the factors influencing the OSF were discussed.

The details of the kinematic model can be found in [8]. Figure 2.4 shows the two coor-

dinate frames with definitions of the variables necessary in developing the kinematic model.

The world coordinate frame {W} is fixed on the ground and the moving coordinate frame

{M} is assumed to be fixed on the geometric center of the robot. Φ̇ =

[
ϕ̇1 ϕ̇2 ϕ̇3

]T
is the wheel angular velocity vector. ω =

[
ω1 ω2 ω3

]T
is the motor angular rate. θ

denotes the angle between XW− and XM− frame, i.e., the rotational angle of the moving

coordinate frame with respect to the world coordinate frame. Din and Dout are the contact

radius from the geometric center of the robot to the inner and outer contact point with

ground in each wheel assembly, respectively. r is the radius of the wheel. The posture

vector the robot in the world coordinate frame is defined as q =

[
x y θ

]
T

. The robot

velocity expressed in the moving coordinate is VM =

[
Vx Vy θ̇

]T
.

The coordinate transformation matrix from the moving coordinate frame to the world
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Figure 2.4: Coordinate frames of the omnidirectional mobile robot.

coordinate frame is as follows:

W
MR =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 . (2.1)

Then we have:

q̇ = W
MRVM. (2.2)

The kinematic relationship in the moving coordinate can be described as follows [6][25]:

rϕ̇1 = −1
2Vx +

√
3
2 Vy + L1θ̇

rϕ̇2 = −1
2Vx −

√
3
2 Vy + L2θ̇

rϕ̇3 = Vx + L3θ̇

, (2.3)

where Li (i = 1, 2, 3) represent the distance between the geometric center of the robot and

the contact point with ground of each wheel (Figure 2.4) and is given as:

Li =

 Din, if π
8 + nπ

2 < ϕi ≤ 3π
8 + nπ

2

Dout, if − π
8 + nπ

2 < ϕi ≤ π
8 + nπ

2

n = 0,±1,±2, ... (2.4)
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where ϕi is the angular position of the wheel i.

Defining the motor gear reduction ratio n, we have

ω = nΦ̇. (2.5)

Combining (2.1) - (2.5), the inverse kinematic equation of the robot prototype in the

world coordinate can be expressed as follows:

ω = J−1q̇, (2.6)

where J−1 ∈ ℜ3×3 is given by:

J−1 =
n

r


− cos(π3 − θ) cos(π6 + θ) L1

sin(θ − π
6 ) − cos(π6 − θ) L2

cos θ sin θ L3

 ,

where J corresponds to the Jacobian matrix relating the motor velocity vector to the robot

velocity vector.

The forward kinematic equation, used in the odometry positioning method, is as:

q̇ = Jω, (2.7)

where J is given by:

J =
r

n
√
3(L1 + L2 + L3)


J11 J12 J13

J21 J22 J23
√
3

√
3

√
3

 , (2.8)

where

J11 = −2L3 sin(θ +
π
6 )− 2L2 sin θ, J12 = 2L3 sin(θ − π

3 ) + 2L1 sin θ

J13 = 2L1 sin(θ +
π
3 ) + 2L2 sin(

π
3 − θ), J21 = 2L3 sin(

π
6 − θ) + 2L2 cos θ

J22 = −2L3 sin(θ +
π
6 )− 2L1 cos θ, J23 = 2L1 sin(θ − π

6 ) + 2L2 sin(θ +
π
6 ).

It can be seen from (2.4) that the wheel contact radius switches between the inner and

outer contact radius, i.e., between Din and Dout. However, according to (2.6), it can be
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seen that the motor velocity is smooth when the robot moves without rotation. The motor

velocity will have fluctuations due to switching of the contact radius Li when the robot

moves with rotation. In other words, the fluctuations in the motor velocity only appear as

the robot moves with rotational motion, even though the robot is a switch wheeled OMR.

In addition, it should be noted that the switching frequency of the contact radius depends

on the angular velocity of the wheel. In other words, the higher the angular velocity of the

wheel is, the higher the switching frequency of the contact radius is. Therefore, the high

switching frequency of the contact radius leads to severe fluctuations in the motor velocity.

In [24], we conducted the kinematic analysis, which shows that eight possible kinematic

models exist. A predictive kinematic control method was proposed by making use of eight

possible kinematic models. The readers are referred to [24] for more details.

2.2.2 Dynamic Model and Analysis

Dynamic Model

Most of the dynamic models for OMRs were derived in the cartesian space [25, 26, 28,

29, 53, 54]. In [25, 26, 28, 29], dynamic models were derived for OMRs by neglecting the

Viscous friction and Coulomb friction forces with ground as well as the slippage. In [53], a

dynamic model was derived by considering the Viscous friction and Coulomb friction forces.

Three experimental methods of estimation of Viscous friction coefficients and Coulomb

friction coefficients have been proposed. A dynamic model for an OMR, considering slipping

between the wheels and motion surface, as well as friction forces, has been proposed in [54].

In addition, a dynamic model was derived in polar space, neglecting the motor dynamics

[30].

However, for switch wheeled OMRs, the dynamic modeling and analysis taking switching

effects into consideration have not been studied in previous works. We derived and analyzed

a dynamic model for our robot prototype in [17].

The dynamic model is derived based on the following assumptions, which are often
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Figure 2.5: Force analysis.

made in the literature, such as [25, 28]. The wheel contact friction forces in the direction

perpendicular to the traction force are ignored. It is assumed that no slippage exists between

the wheel and the motion surface. The friction forces on the wheel shaft and gear are Viscous

friction. The Coulomb and Viscous friction forces related to the robot motion are neglected.

For the dynamic modeling and parameter estimation considering friction forces related to

the robot motion, we refer readers to [53]. In addition, the motor electric circuit dynamics

is neglected. The two coordinate frames used in the modeling have been shown in Figure

2.4. The nomenclature is defined in Table 2.2.

The dynamic properties of the mobile robot can be described with respect to the moving

coordinate frame as [25][28]:

m(V̇x − Vy θ̇) = Fx

m(V̇y + Vxθ̇) = Fy

Iv θ̈ = MI ,

(2.9)

where MI is the moment of force around the axis of the robot gravity center. Fx, Fy and
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Table 2.2: Nomenclature

World coordinate frame

q =
[
x y θ

]T
Robot position and orientation angle

Moving coordinate frame

VM =
[
Vx Vy θ̇

]T
Robot translational velocity and rotational angular

rate expressed in the moving coordinate frame
Mechanical constants
m Robot mass
Iv Robot moment of inertia around the mass center of the robot
Iw Wheel moment of inertia around the wheel shaft
r Wheel radius
Din Inner contact radius
Dout Outer contact radius
I0 Combined moment of inertia of motor, gear train and wheel

referred to the motor shaft
b0 Combined Viscous friction coefficient of the motor, gear and

wheel shaft
kb Motor back EMF constant
kt Motor torque constant
Ra Motor armature resistance
n Gear reduction ratio

MI can be obtained from Figure 2.5 :

Fx = −1
2T1 − 1

2T2 + T3

Fy =
√
3
2 T1 −

√
3
2 T2

MI = T1L1 + T2L2 + T3L3,

(2.10)

where Li is defined in 2.4. Ti is the traction force of each assembly, i = 1, 2, 3, and is defined

as,

Ti =

 Tia, if π
8 + nπ

2 < ϕi ≤ 3π
8 + nπ

2

Tib, if − π
8 + nπ

2 < ϕi ≤ π
8 + nπ

2

n = 0,±1,±2 . . . ,

and ϕi is the angular position of the wheel shaft, i = 1, 2, 3.

Combining (2.9) and (2.10), the dynamic properties of the mobile robot can be described

with respect to the moving coordinate frame as [25][28]:

M1V̇M +C1VM = B1T, (2.11)

where
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M1 =


m 0 0

0 m 0

0 0 Iv

 , C1 =


0 −mθ̇ 0

mθ̇ 0 0

0 0 0

 ,

B1 =


−1

2 −1
2 1

√
3
2 −

√
3
2 0

L1 L2 L3

 , T =

[
T1 T2 T3

]T
.

The motors dynamics can be described as follows:

I0ω̇ + (b0 +
ktkb
Ra

)ω +
r

n
T =

kt
Ra

u. (2.12)

where ω =

[
ω1 ω2 ω3

]T
, u =

[
u1 u2 u3

]T
. ωi is the motor angular rate, ui is the

applied motor voltage.

The kinematic relationship with respect to the moving coordinate frame is given by (see

(2.3)):

Φ̇ =
1

r
JMVM , (2.13)

ω = nΦ̇, (2.14)

where Φ̇ =

[
ϕ̇1 ϕ̇2 ϕ̇3

]T
, JM =


−1

2

√
3
2 L1

−1
2 −

√
3
2 L2

1 0 L3

.
From (2.11) - (2.14), we obtain the dynamic model of the mobile robot expressed in the

moving coordinate frame:

M2V̇M +C2VM = B2u, (2.15)

where

M2 =


3
2β0 +m 0 β0(−L1+L2−2L3

2 )

0 3
2β0 +m

√
3
2 β0(L1 − L2)

β0(−L1+L2−2L3

2 )
√
3
2 β0(L1 − L2) β0(L

2
1 + L2

2 + L2
3) + Iv

 ,
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Table 2.3: Contact modes of the three-wheeled mobile robot

L1, L2, L3 Din, Din, Din Din, Din, Dout Din, Dout, Din Din, Dout, Dout

Contact Mode Mode 1 Mode 2 Mode 3 Mode 4

L1, L2, L3 Dout, Din, Din Dout, Din, Dout Dout, Dout, Din Dout, Dout, Dout

Contact Mode Mode 5 Mode 6 Mode 7 Mode 8

C2 =


3
2β1 −mθ̇ β1(−L1+L2−2L3

2 )

mθ̇ 3
2β1

√
3
2 β1(L1 − L2)

β1(−L1+L2−2L3
2 )

√
3
2 β1(L1 − L2) β1(L

2
1 + L2

2 + L2
3)

 ,

B2 = β2


−1

2 −1
2 1

√
3
2 −

√
3
2 0

L1 L2 L3

 ,

β0 =
n2I0
r2

, β1 =
n2

r2
(b0 +

ktkb
Ra

), β2 =
nkt
rRa

.

Finally, the robot dynamic model in the world coordinate frame can be obtained by

combining (2.1), (2.2) and (2.15):

Mq̈+Cq̇ = Bu, (2.16)

where M = M2
W
MRT , C = C2

W
MRT −M2

W
MRTW

M ṘW
MRT , B = B2.

Analysis

As one MY wheel-II assembly has two contact modes with the ground, i.e., inner wheel

contact with contact radius Din and outer wheel contact with contact radius Dout, the

mobile robot with three MY wheel-II assemblies has eight contact modes in total. All of

the contact modes are listed in Table 2.3. Each contact mode corresponds to a smooth
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nonlinear robot dynamical subsystem. Therefore, the robot has eight nonlinear smooth

dynamical subsystems in total and switches between these subsystems, i.e., a switched

nonlinear system. In other words, the dynamic model (2.16) expresses a switched nonlinear

system. On the other hand, the robot dynamic system can also be regarded as a piecewise-

smooth nonlinear dynamical system. The smoothness is lost only at the instantaneous and

discrete switching events. Therefore, the robot dynamical system can also be considered as

continuous-time dynamical system with discrete switch events [34].

As discussed in [28], for a non-switch wheeled OMR, the mobile robot is a linear dynam-

ical system if either the robot does not rotate while in translational motion, or the robot

rotates at a fixed position without translational motion, and the nonlinearity is introduced

when the robot moves with both translational and rotational motion. However, for the

switch wheeled OMR, the robot is a smooth linear system only if the robot moves without

rotation, which can be derived from (2.9) and (2.10). In addition, the robot is a switched

linear system when it rotates at a fixed position without translational motion. When the

robot moves with both translation and rotation simultaneously, the robot is a switched non-

linear system. In other words, although the switch wheeled mobile robot has eight contact

modes in total regardless of whether the robot moves with rotation, the nonlinearity and

switching of the robot dynamics are introduced only when the robot moves with rotation.

For a detailed kinematic analysis of the robot motion with and without robot rotation, we

refer readers to [6].

Moreover, switched systems are a class of hybrid dynamical systems consisting of a

family of subsystems, and a rule (i.e., switching signal) that orchestrates the switching

between them [34]. For the switch wheeled OMRs, as shown in (2.15) and (2.16), the

switching signal is the wheel contact radius, i.e., L =

[
L1 L2 L3

]T
. It is worth pointing

out that the switching signal depends simultaneously on the contact radius of the three

wheels, i.e., the vector L. In other words, the current active subsystem is determined by

the value of L1, L2 and L3. For instance, at one time instant, if the contact radius of the
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three wheels is L =

[
Din Din Din

]T
, it can be seen from Table 2.3 that the current

active subsystem is Contact Mode 1.

As already mentioned in Chapter 1, in spite of the diverse switching mechanisms,

the switching events can be classified into state-dependant versus time-dependant, or au-

tonomous (uncontrolled) versus controlled [34, 49]. As shown in Table 2.3, the contact

mode depends directly on the contact radius Li, i = 1, 2, 3, while the latter depends on

the wheel angular positions (see (2.4)). At any instant of time, the wheel angular position

depends on the robot position, velocity and initial wheel angular positions. Therefore, the

switch wheeled OMRs can be viewed as state-dependant switching systems. On the other

hand, there is no direct control over the switching mechanism that triggers the switching of

the contact modes. Thereby, the switch wheeled OMRs are autonomous switching systems,

since the switching happens when the robot states hit “certain boundaries” [34, 49].

Finally, it is worth pointing out that a three-wheeled OMR based on any one of the

four switch wheels (see Figure 1.2) has only eight contact modes in total, regardless of

the number of switches during each wheel turn. This is because each of the four kinds of

switch wheels switch wheel mechanism has only two contact modes. However, the number

of switches of the wheel contact radius during each wheel turn will influence the switching

frequency of the contact modes. For instance, as shown in Figure 1.2, for wheels of the same

size, the Swedish wheel has the maximum of switches in each turn. Therefore, for the same

robot trajectory, Swedish wheeled OMRs have the largest switching frequency between the

contact modes, compared with other switched wheeled OMRs of the same size.

2.3 Summary

In this chapter, we have introduced the details of the MY wheel-II mechanism and

assembly, such as the mechanical wheel structure and motion principle. The specifications

of the prototype platform have also been introduced. In addition, the hardware control

system has also been introduced in detail, which is the experimental setup for all of the
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experiments in this thesis. Then the forward and inverse kinematic models have been

derived. The forward kinematic model is used in the robot positioning based on odometry

method. A dynamic model considering the motor dynamics and the switching has been

derived. Analysis of the dynamic properties has been presented, which shows that the

robot has eight smooth nonlinear subsystems and is an autonomous switched nonlinear

system. The switching signal is the wheel contact radius, i.e., L =

[
L1 L2 L3

]T
.
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Chapter 3

Resolved Acceleration Control

(RAC)

In Chapter 2, we have analyzed that the robot prototype is an autonomous switched

nonlinear dynamic system. It consists of eight continuous nonlinear dynamic subsystems.

As stated in Section 1.2.2, because of the difficulties in control of switched nonlinear sys-

tems, studies in the literature are focused on stabilization control of some special switched

nonlinear systems. In particular, the trajectory tracking control of autonomous switched

nonlinear system has not yet been studied in switched system theory.

On the other hand, in the control theory, most of the analysis and control synthesis

approaches are based on continuous models. In fact, one current paradigm for dealing with

switched nonlinear system is continuation [49]. That is, to control a switched nonlinear

system, the first step is to derive a continuous model for the switched nonlinear system

and then design controller based on the derived continuous model. The resulting switching

dynamics is considered as unmodeled dynamics or disturbances to the nominal dynamic

model.

As a result, to control our robot prototype, continuous dynamic modeling is expected

for the robot prototype. In this chapter, we firstly present two continuous dynamic models,
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namely average dynamic model and nonlinear parameter varying (NLPV) dynamic model,

to facilitate the model-based control design. Simulations are conducted to compare the

above two dynamic models in terms of modeling accuracy. Note that, since both models

are derived from the switched nonlinear model (2.16), it can only be guaranteed that the

derived two continuous dynamic models approach the switched nonlinear dynamic model

in terms of accuracy, rather than the robot prototype.

Next, based on the derived two continuous dynamic models, a traditional feedback

linearization control method, i.e., resolved acceleration control (RAC), is employed to design

controllers for the robot prototype. Simulations results, comparisons and discussions are

presented. In addition, the performances of the average dynamic model based RAC have

also been verified through experiments.

Finally, it is worthy mentioning that a switched system does not necessarily inherit

the properties of its constituent subsystems. For example, it is possible for the switched

system to get instability by switching between asymptotically stable systems [33]. As a

result, even though the feedback linearization controller is designed for each subsystem and

the asymptotic stability is assured for each subsystem, the stability of the whole switched

nonlinear system cannot be guaranteed.

3.1 Continuous Dynamic Modeling

In this section, we will derive two continuous dynamic models. It is the switching of

the contact radius (discontinuous) that results in the robot prototype a switched nonlinear

system (discontinuous system). Therefore, one continuous model is called average dynamic

model, which is derived using the average contact radius instead of the switching contact

radius while regarding the parameter errors as modeling errors. To further reduce the

modeling errors of the average dynamic model, a new model is derived by replacing the

real discontinuous contact radius in the switched nonlinear dynamic model (2.16) with an

adaptive continuous curve. This dynamic model is called NLPV dynamic model.
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3.1.1 Average Dynamic Model

As shown in (2.15), discontinuity is introduced into the robot dynamics because of the

discontinuous contact radius Li, i = 1, 2, 3. Therefore, a simple way to derive an average

dynamic model is to use the average contact radius La instead of the real contact radius in

the discontinuous dynamic model (2.16); that is,

Li = La =
Dout +Din

2
i = 1, 2, 3.

Define qav =

[
xav yav θav

]T
as the robot posture vector in the average model, then

the average model can be written as:

Mavq̈av +Cavq̇av = Bavu, (3.1)

where

Mav = M2av
W
MRT

av, Cav = C2av
W
MRT

av −M2av
W
MRT

av
W
M Ṙav

W
MRT

av,
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M2av =


3
2β0 +m 0 0

0 3
2β0 +m 0

0 0 3β0L
2
a + Iv

 , C2av =


3
2β1 −mθ̇av 0

mθ̇av
3
2β1 0

0 0 3β1L
2
a

 ,

Bav = β2


−1

2 −1
2 1

√
3
2 −

√
3
2 0

La La La

 , W
MRav =


cos θav − sin θav 0

sin θav cos θav 0

0 0 1

 .

and β0, β1 and β2 are the same as those in (2.15).

The fact that it is easy to derive is a distinct advantage of the average dynamic model

(3.1). The derived average dynamic model is continuous and nonlinear, and does not require

the detection of switching time, abolishing the need of encoder. As the average dynamic

model is derived from the switched nonlinear dynamic model (2.16), its modeling accuracy

depends on whether the switched nonlinear dynamic model is accurate in modeling the

robot prototype.

However, the average dynamic model has large parameter errors compared with switched

nonlinear dynamic model. As shown in Figure 3.1, the real contact radius in the subinterval

(t0, t0 + t1) and (t0 + t1, t0 + T ) is Din and Dout, respectively, whereas the contact radius

in the average dynamic modeling method is La (dotted red line). The resulting error in the

parameter Li is ±(Dout−Din)/2. In addition, this problem becomes much more pronounced

especially when the following condition is violated, producing large modeling errors:

Lm

La
≪ 1, (3.2)

where Lm = Dout−Din
2 . In other words, the real contact radius Li can be considered as

the nominal contact radius La in the average dynamic model with parameter variations. If

the condition (3.2) is not satisfied, it means that the parameter variations are too large.

In this case, the nominal contact radius La in the average dynamic model has large errors

compared with the real contact radius Li, resulting in large modeling errors.
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Moreover, the condition (3.2) is equivalent to the following equation:

γ =
Dout −Din

Din
≪ 1. (3.3)

In other words, to reduce the modeling errors of average dynamic model, the distance

between the two wheel sets (i.e., Dout −Din) of the MY wheel-II should be sufficiently small

compared with the contact radius (i.e., Din or Dout). Equation (3.3) also explains why

Swedish wheels are commonly regarded as non-switch wheels in literature. For a Swedish

wheeled OMR, the distance between the two wheel sets is usually quite small compared the

contact radius. Therefore, the average dynamic modeling approach for Swedish wheeled

OMRs produces very small parameter errors in the contact radius Li. However, for a

switch wheeled OMR with large γ, the average modeling approach results in significant

modeling errors.

3.1.2 Nonlinear Parameter Varying Dynamic Model

Since the average dynamic modeling approach results in large modeling errors if OMRs

are with large γ, such as our robot prototype (γ = 0.61), more accurate continuous modeling

approach is thereby expected. In this subsection, we first analyze the two conditions leading

to the switching of MY wheel-II. Then based on the two switching conditions, we propose

a NLPV model derived from the switched nonlinear dynamic model (3.1).

Switching Conditions

Since each MY wheel-II assembly has two contact radius with the ground, i.e., Din and

Dout, the contact radius switches between the inner contact and outer contact when the

wheel rotates. According to (2.4), we define:

ϕi0 =


ϕin
i0 = ϕi −

π

8
− nπ

2
, if Li = Din,

ϕout
i0 = ϕi +

π

8
− nπ

2
, if Li = Dout,

n = 0,±1,±2 . . . (3.4)

For MY wheel-II, the two conditions resulting in the switching of the contact radius are

given as follows:
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Figure 3.2: Switching condition (i): (a) Top view. (b) End view.

Figure 3.3: Switching condition (ii): (a) Top view. (b) End view.

(i) if the wheel rotates in one direction, i.e., forward or backward, the contact radius

switches whenever the wheel rotates π
4 , i.e., ϕ

in
i0 = π

4 or ϕout
i0 = π

4 (see Figure 3.2).

(ii) if the wheel changes its direction of rotation, the turned angle of the wheel resulting

in the switch depends on the wheel angular position before changing the direction, i.e., ϕin
i0

or ϕout
i0 (0 6 ϕin

i0
, ϕout

i0
< π

4 ) (see Figure 3.3).

Figure 3.2 shows a wheel switching example under condition (i). As shown in Figure

3.2, the wheel switches from the inner wheel contact to the outer wheel contact. It firstly

moves along
⌢
AB with inner wheel contacting with the ground. Then it switches to outer
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wheel contact, and moves along
⌢
CD. It can be obtained that the turned angle of the wheel

resulting in switching of the contact radius is π
4 .

Figure 3.3 shows an example of a wheel switching under condition (ii). As shown in

Figure 3.3, the change of the wheel rotation direction occurs during the inner wheel contact.

It can be seen that during the inner wheel contact, the wheel first moves along
⌢
AB in one

direction. Then it changes the rotation direction and moves along
⌢
BA. In this case, the

turned angle of the wheel resulting in the switching of contact radius is ϕin
i0 .

As discussed previously, it is known that the average dynamic modeling approach pro-

duce an error of ±Lm in the contact radius Li. Therefore, it is reasonable that to derive a

more accurate dynamic model can be achieved by reducing this parameter error ±Lm. To

this end, our efforts are to seek a continuous curve that approaches the real discontinuous

contact radius Din and Dout in the subinterval (t0, t0+ t1) and (t0+ t1, t0+T ), respectively.

Figure 3.1 shows an example using spline curve to approach the real discontinuous contact

radius (see the dashed green line). It is obvious that approximating the real contact radius

Li by the spline curve produces much smaller parameter errors than the average contact

radius La. As a result, in our proposed modeling approach, the real discontinuous contact

radius Li in (2.16) is directly replaced with a continuous curve, such as the spline curve,

resulting in a NLPV model. Note that in this approach, the parameter error of the contact

radius is small regardless of large γ, compared with the average modeling approach. There-

fore, the NLPV model can predict robot behavior much more accurately than the average

dynamic model, regardless of large γ of a switch wheeled OMR.

However, unfortunately, periodic switching of the contact radius Li establishes only

under some special conditions (see Appendix A). In other words, the switching of the

contact radius Li is non-periodic in most cases. A continuous curve that approaches periodic

switching of the contact radius can be simply designed. For non-periodic switching of the

contact radius, the difficulty lies in the fact that the designed continuous curve should

adaptively approach the non-periodic switching of the contact radius. Fortunately, this
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problem can be easily solved based on the derived switching conditions, regardless of periodic

or non-periodic switching of the contact radius.

In the following, as an example, a simple spline Lsp
i is designed to adaptively approach

the discontinuous contact radius Li (Figure 3.4). The spline curve is the combination of

sine curve and line segment. Based on the switching conditions (i) and (ii), it is found

that the MY wheel-II turns through a maximum angle of π
4 when the switching of contact

radius happens. This is an essential property of the MY wheel-II mechanism. According

to this property, the key idea of the adaptive curve design is that the ϕin
i0 and ϕout

i0 can be

used as the variables of the sine curve. Note that since the switching of the contact radius

alternates between Din and Dout, it is easy to understand that the period of the sinusoid

curve should be set as π
2 . Finally, the adaptive spline Lsp

i is obtained as follows:

34



Define 0 < λ < 1, and λ is an adjustable parameter,

Lsp
i =


Lsp
i in, if Li = Din

Lsp
i out, if Li = Dout

(3.5)

if Li = Din,

Lsp
i =


La − Lmsin( 2λϕ

in
i0 ), 0 6 ϕin

i0 < λπ
4

Din,
λπ
4 6 ϕin

i0 < (1−λ)π
4

La − Lmcos[ 2λ(ϕ
in
i0 − (1−λ)π

4 )], (1−λ)π
4 6 ϕin

i0 6 π
4

if Li = Dout,

Lsp
i =


La + Lmsin( 2λϕ

out
i0 ), 0 6 ϕout

i0 < λπ
4

Dout,
λπ
4 6 ϕout

i0 < (1−λ)π
4

La + Lmcos[ 2λ(ϕ
out
i0 − (1−λ)π

4 )], (1−λ)π
4 6 ϕout

i0 6 π
4

where La and Lm are the same as those defined in (3.2). Since the spline curve is designed

based on the above two switching conditions, it is able to adaptively approach all of the

contact radius Li, regardless of periodic or non-periodic switching of the contact radius.

Now, a NLPV continuous dynamic model is obtained by directly replacing the real

discontinuous contact radius Li with the continuous spline Lsp
i in the switched nonlinear

dynamic model (2.16), which is as follows:

Msp q̈sp +Csp q̇sp = Bspu, (3.6)

where qsp =

[
xsp ysp θsp

]T
, Msp = Msp

1 (WMRsp)T , Csp = Csp
1 (WMRsp)T −

Csp
1 (WMRsp)TW

MṘsp(WMRsp)T , Bsp = Bsp
1 .
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Msp
1 =



3
2p0 +m 0 p0(−

Lsp
1 +Lsp

2 −2Lsp
3

2 )

0 3
2p0 +m

√
3
2 p0(L

sp
1 − Lsp

2 )

p0(−
Lsp
1 +Lsp

2 −2Lsp
3

2 )
√
3
2 p0(L

sp
1 − Lsp

2 ) p0p3 + Iv


,

Csp
1 =



3
2p1 −mθ̇sp p1(−

Lsp
1 +Lsp

2 −2Lsp
3

2 )

mθ̇sp
3
2p1

√
3
2 p1(L

sp
1 − Lsp

2 )

p1(−
Lsp
1 +Lsp

2 −2Lsp
3

2 )
√
3
2 p1(L

sp
1 − Lsp

2 ) p1p3


,

Bsp
1 = p2



−1
2 −1

2 1

√
3
2 −

√
3
2 0

Lsp
1 Lsp

2 Lsp
3


, W

MRsp =



cos θsp − sin θsp 0

sin θsp cos θsp 0

0 0 1


,

p0 =
n2I0
r2

, p1 =
n2

r2
(b0 +

ktkb
Ra

), p2 =
nkt
rRa

, p3 = (Lsp
1 )2 + (Lsp

2 )2 + (Lsp
3 )2.

Since the derived NLPV model is a smooth nonlinear model, it may then be employed

to design model-based controllers for switch wheeled OMRs. In addition, to implement this

modeling approach in practice, it only requires real-time measurement of the wheel rotation

angle or the absolute wheel angular position. This is can be realized by various encoders,

such as optical encoder or absolute encoder. Note that, the encoders should be well installed

to detect the exact switching time.

Moreover, the bounded differential of Lsp
i , i.e., L̇sp

i (t), is usually required in the control

of NLPV system [55]. It can be seen from (3.5) that the L̇sp
i (t) is bounded. It is worth

pointing out that all of the wheel switching cases, under either switching conditions (i) or

(ii), are included in the designed spline Lsp
i . Note that the above approach is not restricted

to the designed spline curves.
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The above approach is not restricted to the designed spline curves. The discontinuous

contact radius can be approximated by various continuous curves, such as polynomial curves

and other spline curves. These curves can be derived based on the same idea presented

above. That is, the ϕin
i0 and ϕout

i0 must be selected as variables in the curve expressions.

3.1.3 Simulation Verification

In this subsection, open-loop simulations are conducted to verify the effectiveness of the

average dynamic model and the NLPV dynamic model in predicting the behavior of the

switched nonlinear dynamic model. The spline-based NLPV model derived above is used

in the simulations.

The parameter values used in the simulations are as follows: m = 35 kg, Iv = 1.35

kg · m2, r = 0.06 m, Din = 0.147 m, Dout = 0.236 m, I0 = 3.15 × 10−5 kg · m2,

kt = 0.0292N · m/A, kb = 328 rpm/V, n = 186, b0 = 1.5 × 10−4 Nms/rad, Ra =

0.61 Ω. λ is set as 0.1. The initial wheel angular position is set as

[
ϕ1 ϕ2 ϕ3

]T
=[

5.44 (rad) 5.28 (rad) 4.12 (rad)

]T
. The following simulations were implemented in

Matlab/Simulink.

In typical model validations, the responses of different models are compared under the

same control input [56, 57]. Thereby, the three models, namely, the switched nonlinear

dynamic model, average dynamic model and NLPV dynamic model, were supplied with

same control input. To show the effectiveness of the spline Lsp
i in adaptively approaching

the non-periodic switching of the contact radius, the following time-varying control input

u(t) =

[
u1(t) u2(t) u3(t)

]T
(V) is selected:

u1(t) = 10 sin(0.1t),

u2(t) = 10 sin(0.1t),

u3(t) = 20 cos(0.1t).

(3.7)

Figure 3.5 - Figure 3.7 show the simulation results. It is observed from Figure 3.5 (a)

that, the designed spline contact radius is able to adaptively approach the real discontinuous
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Figure 3.5: Open-loop simulation results: (a) Real contact radius Li, average contact radius

La and spline contact radius Lsp
i . (b) Variable ϕ10 (see (3.4)). (c) Variable ϕ20 (see (3.4)).

(d) Variable ϕ30 (see (3.4)).

contact radius even though the discontinuous contact radius is non-periodic. The wheel

rotation angles that results in the switching of the contact radius are shown in Figure 3.5

(b) - (d). Note that all of the three wheels turn in one direction in this simulation. Therefore,

according to switching condition (i), the wheel rotation angle resulting in switching of the

contact radius is π
4 , which is clearly shown in Figure 3.5 (b) - (d).

The robot posture and velocity responses generated by the three models are shown in

Figure 3.6 - Figure 3.7. As seen in Figure 3.6 - Figure 3.7, the responses of the average

dynamic model obviously have large estimation errors against the responses produced by
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Figure 3.6: Open-loop simulation results: (a) Robot trajectory in the xy-plane. (b) Robot

position in x component. (c) Robot position in y component. (d) Robot orientation θ.
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Figure 3.7: Open-loop simulation results: (a) Robot velocity in x component. (b) Robot

velocity in y component. (c) Robot rotational velocity θ̇.
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the switched nonlinear dynamic model. For example, as shown in Figure 3.6, the responses

generated by the average model have a large deviation against the responses of the switched

nonlinear dynamic model, while responses of the NLPV model have a good agreement with

those of the switched nonlinear dynamic model. It should be noted that our robot prototype

has a large value of γ, i.e., γ = 0.61. Therefore, as already analyzed before, the robot con-

figuration does not meet the requirement in (3.3), and thus the average dynamic modeling

approach produces large modeling errors. However, even though the robot prototype has

large value of γ, it is seen that the responses of the proposed NLPV model are in excellent

agreement with the responses produced by the switched nonlinear dynamic model.

To quantitatively compare the average dynamic model and NLPV dynamic model, the

performances are quantified by calculating L2 norm of the response errors [56]. We define

L2 norm of the posture and velocity response errors between average dynamic model and

switched nonlinear dynamic model as follows:

Eav
pos =

√∫ [
(x− xav)

2 + (y − yav)
2 + (θ − θav)

2
]
dt,

Eav
vel =

√∫ [
(ẋ− ẋav)

2 + (ẏ − ẏav)
2 +

(
θ̇ − θ̇av

)2
]
dt.

L2 norm of the posture and velocity response errors between NLPV dynamic model and

switched nonlinear dynamic model is defined as follows:

Esp
pos =

√∫ [
(x− xsp)

2 + (y − ysp)
2 + (θ − θsp)

2
]
dt,

Esp
vel =

√∫ [
(ẋ− ẋsp)

2 + (ẏ − ẏsp)
2 +

(
θ̇ − θ̇sp

)2
]
dt.

It should be mentioned that the L2 norm defined in this paper has no unit. The purpose

of employing L2 norm is to indicate the performance differences between the two models

above. The lower values indicate a closer agreement between average dynamic model or
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NLPV dynamic model and switched nonlinear dynamic model. The calculated results of

the simulations above are as follows: Eav
pos = 46.20, Esp

pos = 0.63, Eav
vel = 28.01, Esp

vel = 1.37.

It can be seen that L2 norm of the posture and velocity errors produced by the spline-based

NLPV model is much less than that produced by the average dynamic model. This means

that the responses produced by the spline-based NLPV model have a much better agreement

with those produced by the switched nonlinear dynamic model. In other words, assuming

that the switched nonlinear dynamic model is the ideal model of the robot prototype, the

NLPV dynamic model is more accurate than the average dynamic model in modeling the

prototype.

As discussed before, the NLPV modeling approach is able to produce much less modeling

errors, even for the robot with large γ, while in this case the average modeling approach

produces large modeling errors. As a result, we conducted simulations by choosing different

value of γ to compare the performance of average dynamic model and NLPV dynamic

model. In the following simulations, the value of Din is kept constant and is set as 0.147 m.

We change the value of (Dout − Din), which in turn changes the value of γ (see (3.3)).

Simulation time was set as 4 s and the same control input (3.7) is used. Simulation results

are shown in Table 3.1. It can be seen that, the NLPV model produces much smaller

L2 norm value than average model, even for the robot with very large γ. As a result, the

proposed NLPV model demonstrates definitely much better performance in approaching the

responses produced by the switched nonlinear dynamic model, compared with the average

dynamic model even though for the robot with large γ.

It should be emphasized that the accuracy of the proposed average dynamic model and

NLPV dynamic model depends on the modeling accuracy of the switched nonlinear dynamic

model (2.16). This is because both the average dynamic model and NLPV dynamic model

are derived from the switched nonlinear dynamic model (2.16). The unmodeled dynamics,

such as the Viscous and Coulomb frictions, dead-zone, parameter uncertainties, etc, are

neglected in the switched nonlinear dynamic model (2.16). Therefore, these modeling errors

are the same for both average dynamic model and NLPV dynamic model. The above
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Table 3.1: Simulation results with different γ

γ 0.54 0.68 0.82 0.95 1.1

Eav
pos 42.49 50.83 58.53 64.49 70.58

Esp
pos 0.78 1.03 1.49 1.32 0.99

Eav
vel 25.97 30.31 34.34 37.26 40.21

Esp
vel 1.27 1.55 1.75 1.76 1.90

γ 1.22 1.36 1.5 1.63 1.77

Eav
pos 75.80 80.58 85.76 89.35 93.98

Esp
pos 1.59 1.36 1.88 1.47 2.23

Eav
vel 42.67 45.02 47.28 48.93 51.01

Esp
vel 2.18 2.23 2.33 2.14 2.51

simulation results only demonstrate that the modeling errors resulting from the switching

of the contact radius in NLPV dynamic model are smaller than the average dynamic model.

The average dynamic model is easy to be obtained and the model is smooth nonlinear.

It also does not require detection of switching of the contact radius and thus the encoders

measuring the wheel angular position are not needed. However, the average dynamic mod-

eling approach leads to large modeling error when (3.3) is not satisfied. On the other hand,

the NLPV modeling approach produces much smaller modeling errors, even though for the

robot with large γ. However, one price is that detection of switching of the contact radius

is needed; that is, the encoders measuring the wheel angular position are indispensable.

In addition, both the modeling approaches can also be applied to other switch wheeled

OMRs. Special attention that should be paid to the NLPV dynamic modeling approach

is that, for different wheel mechanisms, switching conditions will also be different. For

example, for the Longitudinal orthogonal-wheel [6], switching condition (i) should be that

the wheel turned angle resulting in switching of the contact radius is π
2 , rather than

π
4 .
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3.2 RAC Design and Verification

In this section, RAC is employed to design controllers for the robot prototype based on

the average dynamic model and NLPV dynamic model, respectively. Then both controllers

are verified and compared through simulations. We only conduct experiments for average

dynamic model based RAC, since it is simple to be implemented in practice. For our robot

prototype, some difficulties exist in implementing the experiments of NLPV dynamic model

based RAC. For example, the NLPV modeling approach requires exact switching time while

this cannot be achieved for our robot prototype. Finally, discussions on the two model based

control systems are presented.

The tracking control problem is formulated as follows: given a reference trajectory

qd(t) =

[
xd yd θd

]T
, which is bounded and twice continuously differentiable, find a

control input u(t) such that the responses of the robot, q(t) =

[
x y θ

]T
, converges to

qd(t) =

[
xd yd θd

]T
for any initial condition.

3.2.1 RAC Design

Define the tracking error as e = q − qd. The average dynamic model based RAC is

given as follows:

uav = Bav
−1Mav(q̈d −Kdė−Kpe) +Bav

−1Cavq̇, (3.8)

where Mav = M2av
W
MRT , Cav = C2av

W
MRT −M2av

W
MRTW

M ṘW
MRT , M2av and Bav are the

same with those in (3.1). C2av is given as:

C2av =


3
2β1 −mθ̇ 0

mθ̇ 3
2β1 0

0 0 3β1L
2
a

 ,

and β0, β1 and β2 are the same as those in (2.15). Note that in C2av, θ̇ has been used

instead of θ̇av. Besides,
W
MR has been used instead of W

MRav. This is because in simulations

or experiments, the real robot position and velocity are used in the control design.
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The NLPV dynamic model based RAC is given as follows:

uNLPV = Bsp
−1Msp(q̈d −Kdė−Kpe) +Bsp

−1Cspq̇, (3.9)

where Msp = Msp
1

W
MRT ,Csp = Csp

1
W
MRT −Csp

1
W
MRTW

M
ṘW

MRT ,Bsp = Bsp
1 . Msp

1 and Bsp
1 are

the same with those in (3.6).

Csp
1 =



3
2p1 −mθ̇ p1(−

Lsp
1 +Lsp

2 −2Lsp
3

2 )

mθ̇ 3
2p1

√
3
2 p1(L

sp
1 − Lsp

2 )

p1(−
Lsp
1 +Lsp

2 −2Lsp
3

2 )
√
3
2 p1(L

sp
1 − Lsp

2 ) p1p3


,

p0 = n2I0
r2

, p1 = n2

r2
(b0 +

ktkb
Ra

), p2 = nkt
rRa

, p3 = (Lsp
1 )2 + (Lsp

2 )2 + (Lsp
3 )2. Also note that in

Csp
1 , θ̇sp has been changed with θ̇, and W

MR has been used instead of W
MRsp. L

sp
i is derived

from (3.5).

3.2.2 Simulation Verification

In this part, simulations are implemented in Matlab/Simulink, to compare the two model

based controllers (3.8) and (3.9). Three typical trajectories in trajectory tracking control

study of mobile robot are employed, i.e., circle trajectory, square trajectory and lemniscate

trajectory. Note that the selected trajectories are ones that the robot can achieve without

actuator saturation. In other words, further increase in the translational or rotational speed

will cause the actuator saturation problem. Since the path planning problem is out of the

scope of this paper, the robot initial posture of the three tests is set on the initial point of

robot trajectory, to avoid actuator saturation.

The controller gains Kp and Kd for both controllers are set as the same, and are as

follows:
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Kp =


16

16

16

 , Kd =


40

40

40

 . (3.10)

Simulation 1: the robot is commanded to track a circle of 0.8 m radius within 30

s, i.e., xd = 0.8 cos( π
15 t) m; yd = 0.8 sin( π

15 t) m. The robot initial posture is set as[
0.8 (m) 0 (m) 0 (rad)

]T
. In the first 10 s, the robot performs translational motion

without rotation, i.e., θd = 0 rad. After 10 s, the desired robot orientation angle is set as

θd = 0.35(t− 10) rad. Simulation results are shown in Figure 3.8 - Figure 3.9.

In the previous part, it is known that, compared with the switched nonlinear dynamic

model, the modeling errors of the average dynamic model and NLPV dynamic model only

result from the parameter uncertainties in L. It is also known that the modeling errors

of average dynamic model is larger than the NLPV dynamic model. However, as shown

in Figure 3.8 (a)- (c), the performances of both controllers in the first 10 s are almost the

same. After 10 s, the tracking errors of average dynamic model based RAC are much larger

than NLPV dynamic model based RAC.

As discussed in Chapter 2, the switch wheeled OMRs are linear systems when the

robot moves with only translational motion. That is, the switching of the contact radius

does not influence the robot dynamics when the robot performs only translational motion.

Therefore, in the first 10 s, compared with the switched nonlinear dynamic model, no

modeling errors are introduced into the average dynamic model and the NLPV dynamic

model. Therefore, the control performances are ideal and the same for both controllers in

the first 10 s. However, after 10 s, the robot dynamic system turns to a switched nonlinear

system because of the switching of the contact radius. In this case, modeling errors are

introduced to average and NLPV dynamic models due to parameter errors in the contact

radius. It is well known that the control performances of RAC depend on the modeling

accuracy. Since the modeling errors of average dynamic model are larger than the NLPV
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Figure 3.8: Simulation results of average dynamic model based RAC and NLPV dynamic

model based RAC (circle trajectory): (a) Reference trajectory and responses in the xy-

plane. (b) Reference trajectory and responses in the orientation direction. (c) Tracking

errors. (d) Control input u(t).
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Figure 3.9: Simulation results of average dynamic model based RAC and NLPV dynamic

model based RAC (circle trajectory): (a) Reference velocity and responses. (b) Contact

radius of NLPV dynamic model based RAC and the adaptive approaching curves.

dynamic model, the control performances of average dynamic model based RAC are thus

worse than the NLPV dynamic model based RAC.

Figure 3.8 (d) shows the control inputs of both control systems. It is shown that the

control input of the average dynamic model based RAC is smooth, since the switching effects

are neglected in the average dynamic model and thus cannot be compensated in the control

system. On the other hand, the switching of the discontinuous contact radius is approached

by the adaptive continuous curves in the derived NLPV dynamic model. The switching of

the contact radius can be partly compensated by the controller. As a result, fluctuations in

the control inputs appear when the robot moves with rotation. The effects on compensation

of the switching contact radius are also shown in Figure 3.9 (a). Since the NLPV dynamic

model based control can partly compensate the switching effects, the fluctuations in the

robot velocity are reduced compared with those of average dynamic model based RAC.

The switching of the contact radius of NLPV dynamic model based RAC is shown in

Figure 3.9 (b). It can be seen that even though the switching of the contact radius is non-
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periodic, the designed continuous curves can adaptively approach the discontinuous contact

radius of the robot prototype.

Table 3.2: IAE of average dynamic model based and NLPV dynamic model based RAC

Trajectory Circle Square Lemniscate

IAE IAExy(m) IAEθ(rad) IAExy(m) IAEθ(rad) IAExy(m) IAEθ(rad)

Average 0.150 0.370 0.200 0.275 0.226 0.352

NLPV 0.028 0.035 0.066 0.050 0.036 0.077

Simulation 2: in this test, the robot is commanded to track a square trajectory (see

Figure 3.10). The robot initial posture is set as

[
0 (m) 0 (m) 0 (rad)

]T
. The desired

speed of translational motion is set as 0.15 m/s. On the side of AB and CD, the robot

orientation is fixed. On the side of BC, the reference orientation angle is θd = π
15(t−10) rad.

On the side of DA, the reference orientation angle is a sinusoidal curve: θd = π
6 sin(

π
5 (t−30))

rad. Simulation results are shown in Figure 3.10.

Simulation 3: in this test, the reference lemniscate trajectory is set as: xd = 0.5 cos( π
20 t)

m; yd = 0.5 sin( π
10 t) m. The robot initial posture is set as

[
0.5 (m) 0 (m) 0 (rad)

]T
.

In the first 20 s, the robot orientation is fixed, i.e., θd = 0 rad. After 20 s, the desired

orientation angle is θd = π
10(t− 20) rad. Simulation results are shown in Figure 3.11.

We use the integral absolute error (IAE) as the evaluation criterion of control perfor-

mance. The definition is as follows: IAExy =
∫ t
0 (|ex|+ |ey|)dt; IAEθ =

∫ t
0 |et|dt. The IAE

of average dynamic model based and NLPV dynamic model based RAC is shown in Table

3.2. It is seen from simulations of the above three trajectories that IAE of NLPV dynamic

model based RAC is much smaller than that of average dynamic model based RAC. There-

fore, the NLPV dynamic model based RAC has demonstrated much better performances

than the average dynamic model based RAC.
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Figure 3.10: Simulation results of average dynamic model based RAC and NLPV dynamic

model based RAC (square trajectory): (a) Reference trajectory and responses in the xy-

plane. (b) Reference trajectory and responses in the orientation direction. (c) Tracking

errors. (d) Control input u(t).
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Figure 3.11: Simulation results of average dynamic model based RAC and NLPV dynamic

model based RAC (lemniscate trajectory): (a) Reference trajectory and responses in the

xy-plane. (b) Reference trajectory and responses in the orientation direction. (c) Tracking

errors. (d) Control input u(t).
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Figure 3.12: Simulation and experimental results of average dynamic model based RAC

(circle trajectory): (a) Reference trajectory and responses in the xy-plane. (b) Reference

trajectory and responses in the orientation direction. (c) Tracking errors. (d) Control input

u(t).
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Table 3.3: IAE of average dynamic model based RAC

Trajectory Circle Square Leminisatate

IAE IAExy(m) IAEt(rad) IAExy(m) IAEt(rad) IAExy(m) IAEt(rad)

Simulation 0.150 0.370 0.200 0.275 0.226 0.352

Experiment 0.979 1.972 0.800 1.074 0.646 1.360
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Figure 3.13: Simulation and experimental results of average dynamic model based RAC

(circle trajectory): (a) Robot velocity. (b) Measured contact radius in the experiments and

the average contact radius La in the average dynamic model.

3.2.3 Experiments of Average Dynamic Model based RAC

We have mentioned that the average dynamic model based RAC is easy to be imple-

mented in practice. In this part, experiments of the above three trajectories are conducted

to test the performances of average dynamic model based RAC. The experimental setup

has been introduced in Chapter 2. The same controller gains used in the simulations are

used in our experiments. Experimental results are shown in Figure 3.12 - Figure 3.15.

It is shown in Figure 3.12, 3.14 and 3.15 that the experimental results have large tracking

errors than the simulation results. Therefore, the performances of average model based RAC

in experiments are greatly reduced compared with simulation results. The IAE of simulation

and experimental results is shown in Table 3.3. The experimental results in Table 3.3 are
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Figure 3.14: Simulation and experimental results of average dynamic model based RAC

(square trajectory): (a) Reference trajectory and responses in the xy-plane. (b) Reference

trajectory and responses in the orientation direction. (c) Tracking errors. (d) Control input

u(t).
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Figure 3.15: Simulation and experimental results of average dynamic model based RAC

(lemniscate trajectory): (a) Reference trajectory and responses in the xy-plane. (b) Refer-

ence trajectory and responses in the orientation direction. (c) Tracking errors. (d) Control

input u(t).
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the average results of experiments with three times. The original data is shown in Appendix

D.

The poor control performances are caused by modeling errors, which can be classified

into three aspects: 1) unmodeled switching dynamics. In our previous analysis, it is known

that our robot prototype is a switched nonlinear system and has eight smooth nonlinear

dynamic subsystems. However, the average dynamic model is only a smooth dynamic

model. Therefore, the switching dynamics is not modeled. 2) unmodeled forces. For

example, Viscous and Coulomb frictions, dead-zone, etc, are not modeled in all the above

three dynamic models. 3) parameter uncertainties. The robot dynamic parameters, such as,

robot moment of inertia around the mass center Iv, combined Viscous friction coefficient of

the motor, gear and wheel shaft b0, are not accurately estimated and thus have parameter

errors.

It can be seen from Figure 3.13 (a) that, similar to the simulation results, the robot

velocity is smooth when the robot moves with only translational motion. Fluctuations

are introduced when the robot moves with rotational motion. Therefore, the experimental

results consistent with the simulation results as well as the dynamic model analysis. In

addition, the switching signal of the robot prototype, i.e., contact radius L, is show in

Figure 3.13 (b). It is measured by the installed absolute encoders. Figure 3.13 (b) also

shows the average contact radius La used in the average dynamic model. The parameter

errors between the real contact radius and the average contact radius are shown clearly.

3.3 Summary

In this chapter, we have introduced two continuous dynamic models, i.e., average dynam-

ic model and NLPV dynamic model, to facilitate the control design for the robot prototype.

The average dynamic model is derived by using the average contact radius instead of the

switching contact radius. The NLPV dynamic model is derived by using continuous curves

to adaptively approach the switching of contact radius, which may be non-periodic. The
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key point to achieve this is based on the two switching conditions. Simulation results have

shown that the average dynamic model produces much larger modeling errors than NLPV

dynamic model. However, the average dynamic model does not need exact switching signal

and is simple in the practical implementation. The NLPV dynamic model needs the exact

real time switching information to produce the continuous curves. Then RAC has been

employed to design controllers based on the two continuous dynamic models. Experimental

results of the average dynamic model based RAC have shown that the control performances

are not good due to the modeling errors of the average dynamic model.
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Chapter 4

Generalized Proportional Integral

(GPI) Observer based Control

In Chapter 3, we have analyzed that the modeling errors of the average dynamic model

(3.1) are resulted from the following three aspects: 1) unmodeled switching dynamics, 2)

unmodeled forces, 3) parameter uncertainties. It is also shown in the experiments that

good control performances of average dynamic model based RAC cannot be achieved. This

motivates us to improve the performances of average dynamic model based control design

by compensating the above modeling errors.

Generalized proportional integral (GPI) observer is a disturbance observer character-

ized by a high dimensional extension [58], and it thus has a good estimation performance

of fast-varying disturbances, such as the complicated switching dynamics. In addition, G-

PI observers are most naturally applicable to the control of perturbed differentially flat

nonlinear systems with measurable flat outputs [32]. GPI observer based control has been

successfully applied in various practical applications [32, 59, 60, 61, 62, 63, 64], to name a

few.

In this chapter, we present a trajectory tracking controller for the robot prototype

based on GPI observer. The controller is designed and implemented based on the average
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Figure 4.1: Block diagram of GPI observer based control system for the mobile robot.

dynamic model. The main idea is that all of the above modeling errors (such as switching

dynamics, unmodeled forces, parameter uncertainties, etc.), as well as the input-output cross

coupling effects are considered as an unknown time-varying perturbation input vector. The

original switched nonlinear multi-input multi-output (MIMO) system is then approximately

regarded as three decoupled single-input single-output (SISO) double integrators with an

additive perturbation input vector. The perturbation input vector is then online estimated

by the GPI observer, and compensated in the control signal. By GPI observer, the control

design of the robot prototype is approximately reduced to the control design of the resulting

three double integrators. Then simple proportional derivative (PD) control can be applied

to the three double integrators. In addition, it is worth pointing out that only part of the

robot model information is used in the control system design. Finally, both simulations

and experiments are conducted to verify the effectiveness of the proposed control design.

Comparisons with average dynamic model based RAC are also presented.

4.1 Control System Design

In this section, the GPI observer based trajectory tracking control design is presented.

The designed control system is divided into two parts, i.e., controller design and GPI ob-

server design. The block diagram of GPI observer based control system is shown in Figure

4.1.
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4.1.1 Controller Design

In the switched nonlinear dynamic model (2.16), the parameter uncertainties, Viscous

and Coulomb friction and other nonlinearities (e.g., dead-zone and backlash, etc.), are

viewed as unmodeled dynamics and are not included. Therefore, the switched nonlinear

dynamic model (2.16) considering these unmodeled robot dynamics can be rewritten as:

q̈= −M−1(Cq̇+w(t))+(M−1B−M−1
av Bav)u+M−1

av Bavu, (4.1)

where w(t) is a 3×1 unknown vector representing the unmodeled dynamics, such as the un-

modeled friction forces, parameter uncertainties. Mav and Bav are the same as the average

dynamic model (3.1), in which the switching effects are removed. The switching dynamics

in M−1B is left in the term (M−1B−Mav
−1Bav). Therefore, all of the complex switching

dynamics are involved in the unknown term −M−1(Cq̇+w(t))+(M−1B−M−1
av Bav)u.

Considering the reference trajectory qd = [xd yd θd]
T , the desired nominal system can

be derived from (4.1) as:

q̈d= −M−1
d (Cdq̇d +wd(t)) + (M−1

d B−M−1
avdBav)ud +M−1

avdBavud, (4.2)

where Md = M(qd), Mavd = Mav(qd), Cd = C(qd, q̇d), and wd = w(qd, q̇d), ud is the

nominal control input.

Defining tracking error e = q− qd, the tracking error dynamic equation becomes:

ë = q̈− q̈d = M−1
av Bavu−M−1(Cq̇+w(t)) + (M−1B−M−1

av Bav)u−M−1
avdBavud

+M−1
d (Cdq̇d +wd(t))−(M−1

d B−M−1
avdBav)ud.

(4.3)

Defining

f= −M−1(Cq̇+w(t)) +(M−1B−M−1
av Bav)u−M−1

av Bavud

+M−1
d (Cdq̇d +wd(t))−(M−1

d B−M−1
avdBav)ud,

(4.4)

then (4.3) can be written as:

ë=f+M−1
av Bavu, (4.5)
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where f =

[
fx(t) fy(t) fθ(t)

]T
is the unknown time-varying perturbation input vector

in three channals (i.e., x, y and θ). It includes all of the complicated switching dynam-

ics, unmodeled friction forces, parameter uncertainties, as well as the input-output cross

coupling effects. Note that f is a discontinuous vector since the switching dynamics are

involved in it.

Defining f̂ as the estimation of f , we apply the following control law:

u = (M−1
av Bav)

−1(−f̂ + u0). (4.6)

Assuming that f can be well estimated, the tracking error dynamics can be reduced

into three decoupled double integrators in an approximate manner by combining (4.5) and

(4.6):

ë ≈ u0. (4.7)

Since (4.7) is three decoupled double integrators, simple PD control can be applied to

the three channels:

u0 = −Kp(q− qd)−Kd(q̇− q̇d)

= −Kpe−Kdė.

(4.8)

For the sake of simplicity, the same control gains are selected for the three channels in

(4.8):

Kp =


ω2
c

ω2
c

ω2
c

 , Kd =


2ξωc

2ξωc

2ξωc

 ,

where ωc (ωc > 0) is a parameter to place the desired poles of the closed-loop dynamics,

and ξ > 0 is a parameter representing the damping ratio. It is found in our experiments

that with proper selection of parameter ξ, the oscillations in the system responses can be

avoided. The selection of Kp and Kd is to make the characteristic polynomial of each

channel Hurwitz; that is,

χ(s) = s2 + 2ξωc + ω2
c . (4.9)
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Combining (4.6) and (4.8), the control law is:

u = (M−1
av Bav)

−1(−f̂ −Kpe−Kdė). (4.10)

4.1.2 GPI Observer Design

As mentioned above, the above system simplification is based on the assumption that f

can be well estimated. In this subsection, the GPI observer is constructed to estimate the

time-varying perturbation input vector f . Since a discontinuous function can be approximat-

ed by polynomials, splines, etc, it is therefore reasonable to assume that the discontinuous

f can be approximated by continuous functions. Thereby, the following assumption holds.

Assumption: The time-varying perturbation input vector f can be approximated by

a (p− 1)-degree family of Taylor time-polynomial inputs and a residual term; that is,

f(t) ≈
p−1∑
i=0

αit
i + r(t), (4.11)

with αi ∈ R3 being constant coefficients, and the jth time derivatives of the residual term

r(t), i.e., r(j)(t)(j ≥ p), being uniformly absolutely bounded.

Defining e1 = e, e2 = ė and f1 = f , the tracking error dynamics (4.5) can be written as:

ė1 = e2,

ė2 = Mav
−1Bavu+ f1,

ḟ1 = f2,

...

ḟp−1 = fp,

ḟp = r(p)(t).

(4.12)

Define ê1 and ê2 as the estimation of e1 and e2, respectively. Then the GPI observer

can be derived for the error dynamics (4.12) as follows:
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˙̂e1 = ê2 + λp+1ẽ,

˙̂e2 = MavBav
−1u+ f̂1 + λpẽ,

˙̂f1 = f̂2 + λp−1ẽ,

...

˙̂
fp−1 = f̂p + λ1ẽ,

˙̂
fp = λ0ẽ,

(4.13)

where ẽ = e− ê1, λi, i = 0, 1, . . . p+ 1 ∈ R3×3 are the observer gains, f̂i is the estimation

of fi, i = 1, 2, . . . p. p is the order of GPI observer.

The selection of the observer gains λi (i = 0, 1, ..., p+ 1) is to make sure that the poles

of the decoupled observer error dynamics are placed at the desired locations for the three

channels. The characteristic polynomial of the decoupled observer error dynamics is as

follows:

η(s) = sp+2I+ λp+1s
p+1 + · · ·+ λ1s+ λ0, (4.14)

where η(s) ∈ R3.

For the sake of simplicity, all of the poles in the three channels are placed in the same

location; that is,

η(s) = (s+ ωo)
p+2I, (4.15)

where ωo (ωo > 0) is a parameter to specify the desired poles. Then the observer gains can

be easily obtained by comparing (4.14) and (4.15).

Although theoretically speaking, higher order of GPI observer produces better estima-

tion performance of the disturbances, especially fast varying disturbances. However, due

to the fact that GPI observer is a high gain observer, the actuator saturation may happen

because of large disturbances, noises, etc. For a higher order of GPI, it can be seen from

(4.15) that the gains λi will be larger. In our experiments, we found that if p > 3, then

measures have to be taken to avoid actuator saturation. For the sake of simplicity, we set

p = 2 in this paper.
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Then, according to (4.14) and (4.15), the observer gains are given as follows:

λ0 =


ω4
o

ω4
o

ω4
o

 , λ1 =


4ω3

o

4ω3
o

4ω3
o

 ,

λ2 =


6ω2

o

6ω2
o

6ω2
o

 , λ3 =


4ωo

4ωo

4ωo

 .

Finally, since ê2 is the estimation of ė, the robot velocity can be estimated by GPI

observer. Therefore, if in practice the accurate robot velocity cannot be obtained from in-

stalled sensors of the robot, then the controller (4.10) can be written by using the estimated

velocity error as follows:

u = (M−1
av Bav)

−1(−f̂ −Kpe−Kdê2). (4.16)

As seen in the controller (4.16) and GPI observer (4.13), Mav and Bav are the only

required robot model information in the GPI observer based control system design. It

is worthy pointing out that the matrix C in (2.16) is not used in the proposed control

design. Thereby, the involved parameter b0 in C is unnecessary to be known. It should be

noted that the matrix C is usually indispensable in the control of OMR [25, 28], to name a

few. Therefore, only part of the robot model information is needed in the proposed control

design. Moreover, a common rule of thumb to set ωc and ωo is to choose: ωo ≈ (3− 5)ωc.

4.1.3 Stability Analysis

Combining (4.5) and (4.10), the closed-loop error dynamic equation is obtained:

ë+Kdė+Kpe = f̃ , (4.17)

where f̃ = f − f̂ is the estimation error of the time-varying perturbation input f .

Note that the selection of Kp and Kd has resulted in a stable linear perturbed error

dynamic system (4.17). One the other hand, the boundness of f̃ can be guaranteed by the
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designed observer. Therefore, the linear perturbed system (4.17) is bounded-input bounded-

output (BIBO) stability. In addition, the bound of the error in (4.17) is proportional to

the upper bound of f̃ (i.e.,
∥∥∥f̃∥∥∥

∞
), multiplied by the inverse of the absolute value of the

smallest real part of the roots of (4.9) [58].

4.2 Simulation and Experimental Verification

4.2.1 Simulations

In this section, the proposed GPI observer based control system is compared with the

average dynamic model based RAC through simulations. The simulations are implemented

in Matlab/Simulink. The purpose is to verify that the performances of the control system

can be improved by the partly compensation of the switching dynamics. It should be

pointed out that the switching dynamics cannot be completely compensated due to limited

bandwidth of the observer.

The parameter values of the robot prototype used in the simulations have been presented

in Chapter 3. For the GPI observer based control system, the controller parameters and

observer parameters of are set as: ωc = 4 rad/s, ξ = 5, ωo = 16 rad/s. In other words, the

Kp and Kd in (4.8) are set as:

Kp =


16

16

16

 , Kd =


40

40

40

 . (4.18)

For comparison purpose, the controller gains Kp and Kd of average dynamic model

based RAC are set as the same of GPI observer based control system.

As already mentioned, the robot velocity tracking errors can be estimated by GPI

observer, i.e., ê2 is the estimation of ė. Therefore, in our simulations and experiments, the

feedback signal of robot velocity tracking error is obtained from GPI observer. In other

words, only robot position measurements are needed in the GPI observer based control. In
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Figure 4.2: Simulation results of average dynamic model based RAC and GPI observer

based control (circle trajectory): (a) Circle trajectory in the xy-plane: reference trajectory

and responses. (b) Circle trajectory in the orientation direction: reference trajectory and

responses. (c) Tracking errors. (d) Control input u(t).
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Table 4.1: Simulation results: IAE of average dynamic model based RAC and GPI observer

based control

Trajectory Circle Square Lemniscate

IAE IAExy(m) IAEθ(rad) IAExy(m) IAEθ(rad) IAExy(m) IAEθ(rad)

RAC 0.150 0.370 0.200 0.275 0.226 0.352

GPI 0.048 0.064 0.179 0.205 0.115 0.153

addition, since the GPI observer is a high gain observer and the path planning problem is

out of the scope of this paper, the robot initial posture is set as the same with the initial

start point of the robot trajectory, to avoid actuator saturation. The same three typical

trajectories used in Chapter 3, i.e., circle, square and lemniscate trajectory, are employed as

the reference trajectories. Simulation results are shown in Figure 4.2 - Figure 4.6. The IAE

of average dynamic model based RAC and GPI observer based control is shown in Table

4.1.

It is shown in Table 4.1 that, for all the three trajectories, the control performances of

GPI observer based control are better than the average dynamic model based RAC. These

simulations only demonstrate that the control performances of average dynamic model based

RAC can be improved by compensating the switching dynamics with GPI observer. Note

that in our simulations, the “Robot” in Figure 4.1 is replaced by the switched nonlinear

dynamic model (2.16). Therefore, the only differences between the average dynamic model

and the switched nonlinear dynamic model are the unmodeled switching dynamics. The

GPI observer based control in estimating and compensating the unmodeled forces as well

as parameter uncertainties, will be introduced in our experiments.

Figure 4.3 (a) shows that the perturbation input vector f is smooth in the first 10 s and

fluctuations appear when the robot moves with rotation after 10 s. This has been analyzed

in Chapter 3 that the robot is a simple linear system in the first 10 s and is a switched

nonlinear system when the robot moves with rotation. It can also seen that the GPI observer

can well estimate the perturbation input vector f in the first 10 s while cannot well estimate

the sharp changes of f after 10 s. This is because the instantaneous switching events between
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Figure 4.3: Simulation results of GPI observer based control (circle trajectory): (a) Real

perturbation input vector f and its estimation by the GPI observer f̂(t). (b) Real robot

velocity and its estimation by the GPI observer.
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two subsystems happen very fast. The GPI observer cannot accurately estimate the fast-

varying changing dynamics. In other words, the robot switching dynamics can only be

partly compensated by the GPI observer, and thus cannot be completely compensated in

the control signal. It is observed in Figure 4.2 (d) that the control input of GPI observer

based control has fluctuations after 10 s while the control input of average dynamic model

based RAC is smooth. The fluctuations in the control input are introduced due to the

switching dynamics estimated by GPI observer.

Figure 4.3 (b) shows the estimation performance of the robot velocity. It is observed

that, fluctuations in the robot velocity are introduced when the robot moves with rotation.

This is resulted from the fact that the switching dynamics, especially the sharp changes,

cannot be well estimated and completely compensated in the control signal. In addition,

it is also observed that the robot velocity cannot be well estimated by GPI observer when

the robot moves with rotation, since the robot velocity changes fast due to the switching of

the robot dynamics. Due to the estimation errors of the robot velocity by GPI observer, it

is worth noting that the control performances of GPI observer based control can be further

improved by using the real robot velocity in the feedback, instead of the one estimated by

GPI observer.

Even though both average dynamic model based RAC and GPI observer based control

are designed based on continuous dynamic models, the robot prototype itself is a switched

nonlinear system. The switching signals (i.e., contact radius) of both control systems are

shown in Figure 4.4.

4.2.2 Experiments

As already mentioned, two aspects of the modeling errors of the average dynamic model,

i.e., unmodeled forces and parameter uncertainties in practice, are not considered in the

above simulations. In this part, experimental tests of the three trajectories are conducted

to verify the effectiveness of GPI observer based control in estimation and compensation

of these modeling errors, as well as the unmodeled switching dynamics. The experimental
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Figure 4.4: Simulation results of average dynamic model based RAC and GPI observer

based control (circle trajectory): (a) Contact radius of average model based RAC (Li,

i=1,2,3.). (b) Contact radius of the GPI observer based control (Li, i=1,2,3.).

Table 4.2: Experimental results: IAE of average dynamic model based RAC and GPI

observer based control

Trajectory Circle Square Lemniscate

IAE IAExy(m) IAEθ(rad) IAExy(m) IAEθ(rad) IAExy(m) IAEθ(rad)

RAC 0.979 1.972 0.800 1.074 0.646 1.360

GPI 0.103 0.153 0.182 0.192 0.115 0.158

results of average dynamic model based RAC in Chapter 3 are also presented here for

comparisons. The experimental setup and robot dynamic parameters have been introduced

in Chapter 2 and 3, respectively. The control parameters of both control systems, i.e.,

average dynamic model based RAC and GPI observer based control, are set as the same

with those of simulations. Experimental results are shown in Figure 4.7 - Figure 4.10. The

IAE of average dynamic model based RAC and GPI observer based control is shown in Table

4.2. Note that the experimental results in Table 4.2 are the average results of experiments

with three times. The original data is shown in Appendix D.

As shown in Table 4.2, GPI observer based control achieves much better performances

than the average dynamic model based RAC (also see Figure 4.7 (c), Figure 4.9 (c), and
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Figure 4.5: Simulation results of average dynamic model based RAC and GPI observer

based control (square trajectory): (a) Robot trajectory in the xy-plane: reference trajectory

and responses. (b) Robot trajectory in the orientation direction: reference trajectory and

responses. (c) Tracking errors. (d) Control input u(t).
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Figure 4.6: Simulation results of average dynamic model based RAC and GPI observer based

control (lemniscate trajectory): (a) Robot trajectory in the xy-plane: reference trajectory

and responses. (b) Robot trajectory in the orientation direction: reference trajectory and

responses. (c) Tracking errors. (d) Control input u(t).
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Figure 4.7: Experimental results of average dynamic model based RAC and GPI observer

based control (circle trajectory): (a) Circle trajectory in the xy-plane: reference trajectory

and responses. (b) Circle trajectory in the orientation direction: reference trajectory and

responses. (c) Tracking errors. (d) Control input u(t).
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Figure 4.8: Experimental results of GPI observer based control (circle trajectory): (a)

Estimation of perturbation input vector by the GPI observer f̂(t). (b) Measured robot

velocity and its estimation by the GPI observer.

Figure 4.10 (c)). Note the controller and observer parameters are set as the same for the

three trajectories, and thus no retuning is conducted. In the experiments, since GPI observer

based control is designed based on the average dynamic model, the GPI observer thus

estimates the modeling errors of the average dynamic model. In other words, the modeling

errors of average dynamic model, i.e., 1). unmodeled switching dynamics; 2). unmodeled

forces; 3). parameter uncertainties, are estimated by GPI observer and compensated in the

control signal. Therefore, the control performances of GPI observer based control are much

better than average dynamic model based control. The estimated perturbation input f̂(t)

is shown in Figure 4.8 (a). The above modeling errors as well as the input-output cross

coupling effects are contained in f̂(t). It should be reminded that the GPI observer can

only estimate part of the switching dynamics.

In our experiments, the robot velocity is estimated by GPI observer. Therefore, the

designed control system is output feedback control and thus only robot position information

is needed. This is one advantage of GPI observer based control compared with average

dynamic model based RAC, which is state feedback and thus both the robot position and
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Figure 4.9: Experimental results of average dynamic model based RAC and GPI observer

based control (square trajectory): (a) Robot trajectory in the xy-plane: reference trajectory

and responses. (b) Robot trajectory in the orientation direction: reference trajectory and

responses. (c) Tracking errors. (d) Control input u(t).
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Figure 4.10: Experimental results of average dynamic model based RAC and GPI observer

based control (lemniscate trajectory): (a) Robot trajectory in the xy-plane: reference tra-

jectory and responses. (b) Robot trajectory in the orientation direction: reference trajectory

and responses. (c) Tracking errors. (d) Control input u(t).
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velocity information is required. The estimation performance of the robot velocity is shown

in Figure 4.8 (b).

It is shown in Figure 4.7 (c), Figure 4.9 (c), and Figure 4.10 (c), that, when sudden

changes in the robot states occur, larger transient errors are introduced in GPI observer

based control compared with average dynamic model based RAC. This is caused by the

transient response of GPI observer.

In addition, robustness is an important index for the control system design. The com-

parisons of the robustness between average dynamic model based RAC and GPI observer

based control are shown in Chapter 5.

4.3 Summary

In this chapter, based on the average dynamic model derived in Chapter 3, a trajectory

tracking control system based on GPI observer has been designed. The GPI observer is

employed to estimate the modeling errors in the average dynamic model, i.e., 1). unmodeled

switching dynamics; 2). unmodeled forces; and 3). parameter uncertainties. In the GPI

observer based control, all of the above modeling errors, as well as the input-output cross

coupling effects are considered as an unknown time-varying perturbation input vector. This

perturbation input vector is then online estimated by the GPI observer, and compensated

in the control signal. BIBO stability is guaranteed in the designed control system. Both

simulations and experimental results show that the GPI observer based control achieves

better performances than average dynamic model based RAC. It should also be noted that

only part of the model information is needed in the GPI observer based control.
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Chapter 5

Passivity based Model Free

Control (MFC)

In literature, the control of OMRs based on dynamic model has been studied in many

papers [25, 26, 27, 30, 31], to name a few. In Chapter 4, we have proposed a GPI observer

based control design for our robot prototype. Only part of the model information is used.

The coriolis matrix Cav in the average dynamic model (3.1) is not used in the designed

control system. However, in the above dynamic model based control approaches, all or

at least part of the dynamic model information is needed to implement the controller. In

particular, some of these control approaches are somewhat complex in the structure and

require heavy computation or have several parameters to tune. In practical applications, it

is usually expected that the least model information is needed in the control system design

and the tuning parameters are as few as possible, while the control performance can be

satisfied.

On the other hand, passivity is one of the most fundamental properties of robotic

systems [65, 66]. It has been a very powerful concept in many control problems of robotics:

stability analysis [67, 68, 69], teleoperation control [70, 71, 72, 73], flexible robot control

[74, 75, 76, 77], to name a few. However, so far, it has been overlooked for the control

problem of OMRs.
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In [78], a passivity-based complete model free control (MFC) approach is proposed

for robot manipulators by employing a modified GPI observer. In this chapter, inspired

by ideas from [78], a passivity-based trajectory tracking control system is designed for

our robot prototype. Firstly, the passivity property of our robot prototype is analyzed

based on the average dynamic model (3.1). Then a trajectory tracking control system

is designed based on a modified GPI observer. The design objective is to preserve the

passivity property of the robot in the closed-loop system, which is different from the RAC

or GPI observer based control. The resulting control system is almost model free, since both

the robot inertia matrix and coriolis matrix are unnecessary. The required information is

the robot geometrical information only. More specifically, only the average contact radius

(La) is required. As a result, the arduous identification process of dynamic parameters

can be avoided. Stability property is analyzed. Finally, the performances of the proposed

control design are compared and discussed with the previous control designs in Chapter 3

and Chapter 4, i.e., average dynamic model based RAC and GPI observer based control,

through experiments.

5.1 Passivity Analysis

In this chapter, the average dynamic model is used to analyze the passivity properties.

To facilitate the analysis of passivity property, by premultiplying (3.1) by W
MR, we have,

Mq̈+Cq̇+Dq̇ = τ , (5.1)

where τ = Bu, which is considered as the virtual control input in this thesis, and

M =
1

β2



3
2β0 +m 0 0

0 3
2β0 +m 0

0 0 3β0L0
2 + Iv


,C =

1

β2



0 3
2β0θ̇ 0

−3
2β0θ̇ 0 0

0 0 0


,
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D =
1

β2



3
2β1 0 0

0 3
2β1 0

0 0 3β1L0
2


,

B =
1

2



− cos θ −
√
3 sin θ − cos θ +

√
3 sin θ 2 cos θ

− sin θ +
√
3 cos θ − sin θ −

√
3 cos θ 2 sin θ

2L0 2L0 2L0


,

and Dq̇ is the dissipative force, due to the combined Viscous friction of the motor, gear and

wheel shaft, as well as the motor armature resistance. This relates to the loss or dissipation

of energy.

It can be seen that the inertia matrix M is symmetric, positive definite, and both M

and M−1 are uniformly bounded. In addition, the total energy of the open-loop dynamic

system (5.1) is

V (q, q̇) =
1

2
q̇TMq̇. (5.2)

The time derivative of the energy function (5.2) along (5.1) is:

V̇ (q, q̇) = q̇TMq̈

= q̇T (τ −Cq̇−Dq̇)

= q̇Tτ − q̇TCq̇− q̇TDq̇

= q̇Tτ − q̇TDq̇.

Note that D is symmetric and positive definite and thus q̇TDq̇ > 0. Therefore, accord-

ing to the standard passivity definition [79], (5.1) defines an output strictly passive mapping

from the virtual control input τ to q̇. Note that, the passive mapping from the real control

input u to q̇ cannot be guaranteed.
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1ê

Observer

Figure 5.1: Block diagram of passivity based MFC for the mobile robot.

Remark 1. The matrix D can be rewritten as follows:

D =
nRa

rkt
(b0 +

ktkb
Ra

)



3
2 0 0

0 3
2 0

0 0 3L0
2


.

It can be seen that, the dissipative force Dq̇ is related with the gear reduction ratio and

wheel radius. More specifically, the dissipative force has a positive correlation with the gear

reduction ratio n and a inverse correlation with the wheel radius r.

5.2 Passivity based MFC

5.2.1 Control System Design

The block diagram of passivity based MFC is shown in Figure 5.1.

Assuming that the robot dynamic equation (5.1) is known, the well-known passivity-

based trajectory tracking controller can be obtained as follows [80]:

τ = Mq̈r + (C+D)q̇r −Kds, (5.3)

where e = q − qd, q̇r = q̇d − Λe, s = ė + Λe, Kd and Λ ∈ R3×3 are diagonal positive

definite matrices.
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Then the closed-loop error dynamics can be obtained as follows:

Mṡ+Cs+Ds+Kds = 0, (5.4)

Based on Lyapunov analysis, it is straightforward to obtain that s → 0 as t → ∞, and thus

e → 0, ė → 0 as t → ∞ [80].

By using the controller (5.3), it is intuitively clear that the energy minimum of open-

loop system (5.1), i.e., (q, q̇) = (0, 0), has been shifted to (e, ė) = (0, 0). Note that the total

energy of the open-loop system (5.1) is

H0(q, q̇) =
1

2
q̇TMq̇. (5.5)

The controller (5.3) actually reshapes the original open-loop energy function of (5.5)

into

H1(e, ė) =
1

2
sTMs, (5.6)

which is the total energy of (5.4). This is the well-known energy shaping plus damping

injection ideas of the passivity-based control approach [81]. The first step is an energy

shaping stage where the potential energy of the system is modified in such a way that the

new potential energy function has a global and unique minimum in the desired equilibriums.

Second, a damping injection stage where the dissipation function is modified to ensure global

asymptotic stability.

Now we consider the case that the matrix M, C and D in (5.1) are completely unknown

and only the input matrix B is known. In other words, only the robot geometrical informa-

tion is known. Our objective is to design a controller which results in a closed-loop system

maintaining the same structure of (5.4), which is to maintain the passivity property.

The nominal system can be obtained on the basis of the desired trajectory as follows:

Mq̈d +C(q̇d)q̇d +Dq̇d = τd. (5.7)

Then the open-loop tracking error dynamics can be obtained by (5.1) and (5.7) as

ë = q̈− q̈d = M−1τ +M−1(C(q̇d)q̇d +Dq̇d −C(q̇)q̇−Dq̇− τd) + ξ(t), (5.8)
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where ξ(t) ∈ R3×1 representing the modeling errors of the average dynamic model, including

switching dynamics, ummodeled forces, and parameter uncertainties.

Equation (5.8) can be rewritten as

ë = −Λe+M−1(τ −C(q̇)s−Ds) +M−1(C(q̇d)q̇d +Dq̇d −C(q̇)q̇−Dq̇− τd)

+Λe+M−1(C(q̇) +D)s+ ξ(t)
(5.9)

Define

f = M−1(C(q̇d)q̇d +Dq̇d −C(q̇)q̇−Dq̇− τd) +Λe+M−1(C(q̇) +D)s+ ξ(t),

where f is the time-varying perturbation input vector.

Finally, the open-loop tracking error dynamics can be expressed as

ë = −Λe+M−1(τ −C(q̇)s) + f . (5.10)

Defining w = Mf , we have the following assumption:

Assumption: The time-varying perturbation input vector w can be approximated by

a (p− 1)-degree family of Taylor time-polynomial inputs and a residual term; that is,

w(t) ≈
p−1∑
i=0

αit
i + δ(t), (5.11)

with αi ∈ R3×1 being constant coefficients, and the jth time derivatives of the residual

term δ(t), i.e., δ(j)(t)(j > p), being uniformly absolutely bounded. Thus we have w(p)(t) =

δ(p)(t).

Define e1 = e, e2 = ė and w1 = w. Then the open-loop tracking error dynamics (5.10)

can be rewritten in state space as

ė1 = e2,

ė2 = −Λe+M−1(τ −C(q̇)s−Ds) +M−1w1,

ẇ1 = w2,

...

ẇp−1 = wp,

ẇp = δ
(p)(t),

(5.12)
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Define ê1 and ê2 as the estimation of e1 and e2, respectively. Then a modified GPI

observer can be derived for the error dynamics (5.12) as follows [78]:

˙̂e1 = ê2 −Λê1 + (λp+1 −Λ)ẽ,

˙̂e2 = λpẽ,

˙̂w1 = ŵ2 + λp−1ẽ,

...

˙̂wp−1 = ŵp + λ1ẽ,

˙̂wp = λ0ẽ,

(5.13)

where ẽ = e − ê1, the observer gains λi, i = 0, 1, . . . p + 1 ∈ R3×3 are diagonal positive

definite. ŵi is the estimation of wi, i = 1, 2, . . . p. p is the order of GPI observer.

The selection of λi is to make sure that the poles of the observer error dynamics in three

channels are placed at the desired locations. The characteristic polynomial of the observer

error dynamics is as follows:

η(s) = sp+2I+ λp+1s
p+1 + · · ·+ λ1s+ λ0, (5.14)

where η(t) ∈ R3×1. With proper selection of λi, we have ė ≈ ˙̂e, and w ≈ ŵ1.

For the sake of simplicity, all of the poles in the three channels are placed in the same

location; that is,

η(s) = (s+ ωo)
p+2I, (5.15)

where ωo (ωo > 0) is a parameter to specify the desired poles.

In this thesis, the observer order p is set as 2, and then the observer gains can be easily

obtained by comparing (5.14) and (5.15) as follows:

λ0 =


ω4
o

ω4
o

ω4
o

 , λ1 =


4ω3

o

4ω3
o

4ω3
o

 ,
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λ2 =


6ω2

o

6ω2
o

6ω2
o

 , λ3 =


4ωo

4ωo

4ωo

 .

Then the passivity-based controller for the tracking error dynamics (5.10) is obtained

as [78]:

τ = −Kd( ˙̂e1 +Λe)− ŵ1 = −Kds+Kd
˙̃e− ŵ1, (5.16)

where ˙̃e = ė− ˙̂e1.

Combining (5.10) and (5.16), the closed-loop tracking error dynamic equation is as

Mṡ+Cs+Ds+Kds = Kd
˙̃e+ w̃, (5.17)

where w̃ = w − ŵ1. By following the proof in [78], it can be obtained that ˙̃e and w̃ are

bounded.

Finally, since τ is virtual control input, the real control input of the proposed trajectory

tracking controller is given as follows:

u = B−1(−Kd( ˙̂e1 +Λe)− ŵ1). (5.18)

In the proposed controller (5.18), it is seen that, the only required information of the

robot dynamic model is the matrix B. In other words, only the average contact radius La

should be obtained to implement (5.18). Moreover, since the robot model information is also

not used in the implementation of observer (5.13), the designed whole control system only

requires the average contact radius La. As a result, compared with the RAC in Chapter 3

and GPI observer based control in Chapter 4, the tedious dynamic parameter identification

process can be avoided. In addition, only the position feedback signal is needed without

measurements of the velocity signal.

As already mentioned before, since the robot prototype is a fully-damped dynamic

system, the damping injection may be avoided. This is because the motor gear reduction

ratio of our robot prototype is large (n = 186) and the damping force of the robot itself Dq̇
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is enough. The calculated results of D of our robot prototype is:

D =


144.4

144.4

10.6

 .

In other words, Kd may be set quite small or even zero in practice, and thus the velocity

measurement or estimation ( ˙̂e1) may become unnecessary.

Remark 1. It can be observed that the virtual control input τ and inertia matrix M are

not involved in the modified GPI observer (5.13). This is different with GPI observer in

Chapter 4, wherein both the control input and inertia matrix are indispensable.

5.2.2 Stability Analysis

Defining ψ = Kd
˙̃e+w̃, the closed-loop tracking error dynamic equation can be rewritten

as

Mṡ+Cs+Ds+Kds = ψ, (5.19)

The closed-loop stability of (5.19) can be guaranteed by the following theorem.

Theorem 1 [65] : Let qd be a given twice differentiable function. Consider the closed-loop

tracking error dynamic equation (5.19), s is given by

s = F(s)−1e,

where F(s) is strictly proper, stable and the mapping from −s to ψ is passive, i.e.,∫ T

0
−sTψdt > −µ,

for all T and for some µ > 0. Then e ∈ L3
2 ∩ L3

∞, e is continuous and e → 0 as t → ∞. In

addition, if ψ is bounded, then s → 0 as t → ∞, and consequently, ė → 0.

It can be verified that the mapping from −s to ψ is output strictly passive. As a result,

it can be obtained from Theorem 1 that both e and ė converge to 0 as t → ∞, since

ψ = Kd
˙̃e+ w̃ is bounded.

For the detailed proof of the above theorem, the readers are referred to [65].
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Table 5.1: Experimental results: IAE of average dynamic model based RAC, GPI observer

based control, and passivity based MFC

Trajectory Circle Square Lemniscate

IAE IAExy(m) IAEθ(rad) IAExy(m) IAEθ(rad) IAExy(m) IAEθ(rad)

RAC 0.979 1.972 0.800 1.074 0.646 1.360

GPI 0.103 0.153 0.182 0.192 0.115 0.158

MFC 0.360 0.202 0.551 0.407 0.432 0.177

5.3 Experiments and Discussions

5.3.1 Tracking Performance

In this section, experimental results are shown to compare the tracking performances of

the proposed three control methods in this thesis, i.e., average dynamic model based RAC,

GPI observer based control and passivity based MFC in this chapter. The three typical

trajectories used in the previous chapters are employed as the reference trajectories.

The controller parameters for the average dynamic model based RAC are set as:

Kp =


16

16

16

 , Kd =


40

40

40

 . (5.20)

The controller and observer parameters for the GPI observer based control are set as:

ωc = 4 rad/s, ξ = 5, ωo = 16 rad/s. In other words, the Kp and Kd are set as:

Kp =


16

16

16

 , Kd =


40

40

40

 . (5.21)

The controller and observer parameters of passivity based MFC are set as:

Kd =


1

1

1

 , Λ =


16

16

4

 . (5.22)
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Figure 5.2: Experimental results of average dynamic model based RAC, GPI observer

based control and passivity based MFC (circle trajectory): (a) Circle trajectory in the xy-

plane: reference trajectory and responses. (b) Circle trajectory in the orientation direction:

reference trajectory and responses. (c) Tracking errors. (d) Control input u(t).
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Figure 5.3: Experimental results of passivity based MFC (circle trajectory): (a) Estimation

of perturbation input vector by the GPI observer ŵ. (b) Measured robot velocity and its

estimation by the modified GPI observer.

Note that Kp = KdΛ. The observer gains for the x and y channel are set as ωo = 16 rad/s,

and the observer gain for the rotational channel is set as ωo = 4 rad/s. We reduce the

observer gain for the rotational channel to avoid noises in the control signal. It is found in

our experiments that if the observer gain for the rotational channel is set as ωo = 16 rad/s,

severe noises will be introduced into the control signal.

It is seen that the selection of Kd in the passivity based MFC (5.22) is very small

compared with the other two control methods. In fact, the selection of Kd can be further

smaller. It is known that the effect of Kd is to add damping forces to the control system.

However, the robot prototype itself already has enough damping forces, which is reflected

by Ds in (5.19). Therefore, it works for our robot prototype even though the parameter Kd

is selected very small. In fact, it is shown in our experiments that Kd in (5.22) can be set

as zero. For the average dynamic model based RAC and GPI observer based control, the

parameter Kd should be selected large enough, since the damping forces of the robot itself

Dq̇ are canceled in both controllers. If these two control systems use the same Kd as that
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Figure 5.4: Experimental results of average dynamic model based RAC, GPI observer

based control and passivity based MFC (square trajectory): (a) Square trajectory in the xy-

plane: reference trajectory and responses. (b) Square trajectory in the orientation direction:

reference trajectory and responses. (c) Tracking errors. (d) Control input u(t).

of passivity based MFC, it is found in our experiments that both control systems cannot

work and will have severe oscillations.

Experimental results are shown in Figure 5.2 - Figure 5.5. The IAE of average dynamic

model based RAC, GPI observer based control and passivity based MFC is shown in Table

5.1. Note that for each experiment, we conducted three times and Table 5.1 shows the

90



-0.5 0 0.5

-0.4

-0.2

0

0.2

0.4

0.6

x(m)

y
(m

)

Reference
RAC
GPI
MFC

(a)

0 10 20 30 40
-2

0

2

4

6

8

t(s)

(r
a
d
)

Reference
RAC
GPI
MFC

(b)

-0.05

0

0.05

e
x
(m

)

-0.05

0

0.05

e
y
(m

)

0 10 20 30 40
-0.2

0

0.2

e
(r

a
d
)

t(s)

RAC
GPI
MFC

(c)

-10
0

10
20

u
1
(V

)

-20

0

20
u

2
(V

)

0 10 20 30 40

-20

0

20

u
3
(V

)

t(s)

RAC
GPI
MFC

(d)

Figure 5.5: Experimental results of average dynamic model based RAC, GPI observer based

control and passivity based MFC (lemniscate trajectory): (a) Lemniscate trajectory in the

xy-plane: reference trajectory and responses. (b) Lemniscate trajectory in the orientation

direction: reference trajectory and responses. (c) Tracking errors. (d) Control input u(t).

average results. The original experimental data of the experiments is shown in Appendix

D.

It is shown in the three experimental tests that the IAE of GPI observer based control

is smaller than the other two control methods in both translational and rotational motion.

Therefore, GPI observer based control achieves the best tracking performances. The perfor-

mances of passivity based MFC are a bit lower than GPI observer based control, but much
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better than average dynamic model based RAC. It should be noted that passivity based

RAC does not require any dynamic model information of the robot. The performances of

average dynamic model based RAC can be further improved by improving the accuracy of

the model, such as considering the Coulomb and Viscous friction forces.

However, since GPI observer based control and passivity based MFC are observer based

control, one problem of both control designs is that the transient tracking errors are larger

than average dynamic model based RAC, when sudden changes exist in the position and

velocity of the robot. Especially, passivity based MFC has the largest transient tracking

errors, as shown in Figure 5.4. This is due to the transient responses of the observer, and is

one disadvantage of observer based control approaches compared with average model based

RAC. As a result, the transient tracking errors of GPI observer based control or passivity

based MFC may be reduced by switching observer based control and average dynamic model

based RAC.

Moreover, the estimated disturbance ŵ by the modified GPI observer is shown in Figure

5.3 (a). It is shown in Figure 5.3 (b) that the robot velocity can be well estimated by the

modified GPI observer.

5.3.2 Robustness

Finally, both simulations and experiments are conducted to compare the robustness of

the three control methods above. Since the gear reduction ratio of the motors in our robot

prototype is large (n = 186), a lemniscate trajectory with low speed is selected to show

the robustness in both simulations and experiments. The reference lemniscate trajectory

is set as: xd = 0.4 cos( π
40 t) m; yd = 0.4 sin( π

20 t) m. The robot initial posture is set as[
0.4 (m) 0 (m) 0 (rad)

]T
. In the first 40 s, the robot orientation is fixed, i.e., θd = 0

rad. After 40 s, the desired orientation angle is θd = π
40(t− 40) rad.

Two kinds of simulations are conducted. The first kind of simulation is conducted with-

out introducing disturbances. The other kind is with disturbances, in which the disturbance

is added into the control system after 60 s. The mass and moment of inertia of the robot
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Table 5.2: Simulation results: comparisons of robustness of the three control methods.

IAE IAEWT
xy (m) IAEW

xy(m) Pxy(%) IAEWT
θ (rad) IAEW

θ (rad) Pθ(%)

RAC 0.183 0.289 58.21 0.307 0.411 33.87

GPI 0.054 0.057 5.21 0.083 0.087 4.8

MFC 0.208 0.214 3.23 0.197 0.205 3.81

are changed as 20 times of the original ones, i.e., m = 700 kg, Iv = 27 kg ·m2. In addition,

the parameter b0 is changed as b0 = 2.5 × 10−4 Nms/rad. Simulation results are shown in

Figure 5.6 - Figure 5.8. It is seen that the performances of average dynamic model based

RAC are severely decreased due to the disturbance after 60 s, while the performances of GPI

observer based control and passivity based MFC are maintained almost the same even after

60 s. This is because the disturbances can be estimated by the observer and compensated

in the control signal. Table 5.2 shows the comparisons of robustness of the three control

methods. IAEWT
xy and IAEWT

θ are the IAE of the tracking performance without distur-

bances. IAEW
xy and IAEW

θ are the IAE of the tracking performance with disturbances. We

use Pxy and Pθ to evaluate the robustness of three control methods, which are defined as:

Pxy =
IAEW

xy−IAEWT
xy

IAEWT
xy

and Pθ =
IAEW

θ −IAEWT
θ

IAEWT
θ

, respectively.

It can be seen from Table 5.2 that, the performances of the average dynamic model

based RAC have a large decrease compared with the other two control methods. Therefore,

the robustness of GPI observer based control and passivity based MFC is much better

than that of average dynamic model based RAC. It is also observed that the robustness of

passivity based MFC is a bit better than that of GPI observer based control. This may be

due to the fact that the equivalent gains of passivity based MFC of the closed-loop system

are much higher than those of GPI observer based control. More specifically, although the

proportional gain Kp is set as the same for both control methods (see (5.21) and (5.22)),

it can be calculated that the equivalent gains of passivity based MFC of the closed-loop

system is much higher than those of GPI observer based control.

In addition, experimental tests are conducted to compare the robustness of the three

control methods. The same reference trajectory used in the simulations is employed in
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Figure 5.6: Simulation results of robustness of average dynamic model based RAC: (a)

Tracking errors with and without disturbance, respectively. (b) Control input u(t) with

and without disturbance, respectively.
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Figure 5.7: Simulation results of robustness of GPI observer based control: (a) Tracking

errors with and without disturbance, respectively. (b) Control input u(t) with and without

disturbance, respectively.

experiments. We installed a chair on the robot prototype (see Figure 5.9). After 60s, the

disturbance is introduced into the system by adding a people (weight: 67 Kg) on the chair.

Therefore, the robot mass, moment of inertia, and friction forces are changed. In addition,
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Figure 5.8: Simulation results of robustness of passivity based MFC: (a) Tracking errors with

and without disturbance, respectively. (b) Control input u(t) with and without disturbance,

respectively.

Table 5.3: Experimental results: comparisons of robustness of the three control methods.

IAE IAEWT
xy (m) IAEW

xy(m) Pxy(%) IAEWT
θ (rad) IAEW

θ (rad) Pθ(%)

RAC 0.786 1.174 49.29 0.989 1.340 35.40

GPI 0.070 0.077 9.81 0.091 0.114 26.49

MFC 0.230 0.243 5.50 0.101 0.125 24.25

the experiments are conducted on a rubber floor, to increase the friction forces which are

also disturbances to the control system (see Figure 5.9). Experimental results are shown in

Figure 5.10 - Figure 5.12. The comparisons of the experimental results are shown in Table

5.3, which is the average of the experimental results. We conducted each experiment for

three times, and the original data is shown in Appendix D.

From Figure 5.10 - Figure 5.12, it can be seen that the control performances of average

dynamic model based RAC have large deviations after disturbance is introduced, compared

with the performances without disturbance. However, for GPI observer based control and

passivity based MFC, the performances have a little bit change after the introduction of

disturbance. It is seen from Table 5.3 that, the robustness of passivity based MFC is the
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Figure 5.9: Experimental setup of the robust tests.
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Figure 5.10: Experimental results of robustness of average dynamic model based RAC: (a)

Tracking errors with and without disturbance, respectively. (b) Control input u(t) with

and without disturbance, respectively.
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Figure 5.11: Experimental results of robustness of GPI observer based control: (a) Tracking

errors with and without disturbance, respectively. (b) Control input u(t) with and without

disturbance, respectively.
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Figure 5.12: Experimental results of robustness of passivity based MFC: (a) Tracking er-

rors with and without disturbance, respectively. (b) Control input u(t) with and without

disturbance, respectively.

best and the robustness of average dynamic model based RAC is the worst. GPI observer

based control achieves a bit lower robust performances compared with passivity based MFC.

Therefore, the experimental results have a good agreement with simulation results.
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5.3.3 Discussions

In this part, comparisons of the three control methods are briefly summarized and

discussed from the following five aspects:

(1) Control performances. The GPI observer based control in Chapter 4 achieves the

best control performances among the three control approaches. The performances of pas-

sivity based MFC are a bit lower than GPI observer based control. This may be due to the

fact that the estimation performance of modified GPI observer in Chapter 5 is lower than

the GPI observer in Chapter 4. Average dynamic model based RAC achieves the worst

performances. However, the control performances of average dynamic model based RAC

can be improved by using a more accurate dynamic model.

One problem of both GPI observer based control and passivity based MFC is that,

the transient tracking errors are larger than average dynamic model based RAC, when

sudden changes exist in the position and velocity of the robot. This is due to the transient

response of the observer. Note that the transient tracking errors of passivity based MFC

are more severe than GPI observer based control. Moreover, the transient tracking errors of

GPI observer based control or passivity based MFC may be reduced by switching observer

based control and average dynamic model based RAC.

(2) Robustness. Passivity based MFC achieves the best robust performances. The

robust performances of GPI observer based control are a bit lower than passivity based

MFC. Average dynamic model based RAC achieves the lowest robust performances, since

the disturbances cannot be estimated and compensated in real time.

(3) Model information. The passivity based MFC only needs one parameter, i.e., average

contact radius of the robot. It does not need the robot dynamic information, and thus the

dynamic model is not required. For the GPI observer based control, part of the dynamic

model information is needed, i.e., Mav and Bav (see (3.1)). It also does not require the

exact value of Mav and Bav , since the errors can be also considered as disturbances and can
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be estimated in the GPI observer. However, average dynamic model based RAC requires

complete model information to guarantee its control performances.

(4) Feedback signal. Both the GPI observer based control and passivity based MFC

only require the robot position in the feedback, since the robot velocity can be estimated by

both observers. Therefore, these two control methods are output feedback control systems.

On the other hand, average dynamic model based RAC requires both robot position and

velocity measurements, which is a state feedback control system.

(5) Parameter tuning. In our experimental tests, all of the above three control methods

are easy to be tuned. For average dynamic model based RAC, it is the same as parameter

tuning of a second order SISO system. For GPI observer based control, the controller gain

ωc and observer gain ωo are usually chosen as ω0 = (3 ∼ 5)ωc. Therefore, the parameter

tuning can start from a small ωc and then increase it step by step. For the passivity

based MFC, the parameter can be tuned with only PD feedback control firstly, i..e, without

modified GPI observer. When the parameter is well tuned with PD feedback control, then

the parameter can be tuned by adding the modified GPI observer. However, since passivity

based MFC results in a coupled closed-loop system, the parameter tuning may become

somewhat difficult if the coupling term has significant effects.

5.4 Summary

In this chapter, a passivity based MFC design has been proposed by employing a modi-

fied GPI observer. Firstly, the passivity property of our robot prototype has been analyzed

based on the average dynamic model (3.1). It is shown in analysis that the robot prototype

itself has enough damping forces. The damping forces are proportional to the gear reduc-

tion ratio of the motor. Different from the feedback linearization control approaches, the

passivity-based MFC design is to preserve the passivity property of the robot in the closed-

loop system. In the proposed control design, the required information is only the average

contact radius (La). Stability property has been analyzed based on the average dynamic
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model. In the parameter tuning of passivity based MFC, it is found that the controller

works well even for quite small Kd, thanks to the damping forces of the robot itself.

Finally, experimental tests have been conducted to compare with the control designs

in previous chapters. Discussions about the three control designs have also been presented

from the following five points, i.e., (1) control performances, (2) robustness, (3) model

information, (4) feedback signal and (5) parameter tuning.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, the trajectory tracking control system design has been studied for a robot

prototype with MY wheel-II. MY wheel-II is a switch wheel mechanism. Three trajectory

tracking control system design methods, i.e., continuous dynamic model based RAC, GPI

observer based control and passivity based MFC, have been proposed. Dynamic modeling

and analysis have been conducted. It shows that our robot prototype is an autonomous

switched nonlinear system, which consists of eight nonlinear smooth subsystems.

Firstly, continuous dynamic model based RAC has been studied. To facilitate the control

system design, we have derived two continuous dynamic models, i.e., average dynamic

model and NLPV dynamic model. The average dynamic model does not need the switching

signal while the NLPV dynamic model requires the exact switching information. RAC has

been employed to design controllers based on both continuous dynamic models. We only

conducted average dynamic model based RAC in the experiments.

Then, GPI observer based control has been proposed based on the average dynamic

model, to compensate the modeling errors of average dynamic model and to improve the

control performances. In this approach, all of the modeling errors (such as switching dy-

namics, unmodeled forces, parameter uncertainties, etc.), as well as the input-output cross
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coupling effects are considered as an unknown time-varying perturbation input vector. It

is then online estimated by the GPI observer and compensated in the control signal. BIBO

stability is guaranteed for the closed-loop system.

To further reduce the model information used in the GPI observer based control, a

passivity based MFC has proposed based on a modified GPI observer. The objective is to

design a controller such that the passivity property of the robot is preserved in the closed-

loop system by using the modified GPI observer. The robot geometrical information is the

only required model information. Moreover, stability analysis has been conducted based on

the average dynamic model. Finally, experiments of the above three control designs have

been conducted to compare their control performances and robustness, which can be briefly

summarized as follows:

(1) Control performances. The GPI observer based control in Chapter 4 achieves the

best control performances among the three control approaches. The performances of pas-

sivity based MFC are a bit lower than GPI observer based control. Average dynamic model

based RAC achieves the worst performances.

One problem of both GPI observer based control and passivity based MFC is that, the

transient tracking errors are larger than average dynamic model based RAC, when sudden

changes exist in the position and velocity of the robot. The transient tracking errors of

GPI observer based control or passivity based MFC may be reduced by switching observer

based control and average dynamic model based RAC.

(2) Robustness. Passivity based MFC achieves the best robust performances. The

robust performances of GPI observer based control are a bit lower than passivity based

MFC. Average dynamic model based RAC achieves the lowest robust performances, since

the disturbances cannot be estimated and compensated in real time.

(3) Model information. The passivity based MFC only needs the average contact radius

of the robot. For the GPI observer based control, part of the dynamic model information

is needed. Average dynamic model based RAC requires complete model information.
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(4) Feedback signal. Both the GPI observer based control and passivity based MFC

only require the robot position in the feedback while average dynamic model based RAC

requires both robot position and velocity measurements.

(5) Parameter tuning. In our experimental tests, all of the above three control methods

are easy to be tuned. There are three parameters to be tuned in both GPI observer based

control and passivity based MFC, respectively. Only two control parameters are in the

average dynamic model based RAC. However, since passivity based MFC results in a coupled

closed-loop system, the parameter tuning may become somewhat difficult if the coupling

term has significant effects.

6.2 Future Work

To further improve the control performances, many works are necessary to be conducted.

For example:

• A more accurate dynamic model should be derived including the Viscous and Coulomb

frictions, to improve the performances of continuous dynamic model based RAC.

• Even though the GPI observer based control achieves the best performances, the

transient tracking errors are large when the robot suffers from sudden changes in the

robot state. However, the transient tracking errors of average dynamic model based

RAC are small. Therefore, switching control may be studied by combining the two

control approaches.
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Appendix A

Conditions on the Periodic

Switching of Contact Radius

Since the switching of the contact radius is alternate, the switching periodicity is worth

investigating. The wheel angular speed ϕ̇i can be written as:

ϕ̇i =

 ϕ̇in
i , if Li = Din, i = 1, 2, 3.

ϕ̇out
i , if Li = Dout, i = 1, 2, 3.

We define t1 and t2 as the holding time for the inner wheel contact and outer wheel con-

tact, respectively (see Figure 3.1). Then we have the following theorem based on the two

switching conditions:

Theorem 1 : For the given constants t1, t2, the switching of the contact radius is periodic

with period T = t1 + t2, if the wheel angular velocity ϕ̇i satisfies:

(a) For the switching condition (i),

∫ t0+t1
t0

ϕ̇in
i dt = ±π

4 , if Li = Din, i = 1, 2, 3.

∫ t0+T
t0+t1

ϕ̇out
i dt = ±π

4 , if Li = Dout, i = 1, 2, 3.
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(b) For the switching condition (ii),

∫ t0+t1
t0

ϕ̇in
i dt = 0, if Li = Din, i = 1, 2, 3.

∫ t0+T
t0+t1

ϕ̇out
i dt = 0, if Li = Dout, i = 1, 2, 3.
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Appendix B

Control Board Design

In our design, the central control board and motor control board are same. The motor

control board with CAN communication module shown in Figure 2.3 was developed in our

lab, which is depicted in Figure B.1.

Figure B.1: Central control board developed in our lab.
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Appendix C

Motor Driver Board Design

The three DC motor driver boards were designed and developed in our lab. Figure

C.1 shows one developed motor driver board, which is rated for a maximum motor supply

voltage of 55V with up to 3A continuous current output.

Figure C.1: Motor driver board developed in our lab.
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Appendix D

Original Experimental Data

D.1 Original Data of Average Dynamic Model based RAC

D.1.1 Tracking Performance

Table D.1: Tracking performances: IAE of average dynamic model based RAC

Trajectory Circle Square Lemniscate

IAE IAExy(m) IAEθ(rad) IAExy(m) IAEθ(rad) IAExy(m) IAEθ(rad)

Experiment 1 0.9118 1.7184 0.7378 1.0814 0.7229 1.8505

Experiment 2 0.9488 2.1064 0.8420 1.1521 0.6104 1.0497

Experiment 3 1.0776 2.0922 0.8194 0.9882 0.6048 1.1804

Average 0.9794 1.9723 0.7997 1.0739 0.6460 1.3602
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Table D.2: Robustness: IAE of average dynamic model based RAC

IAE IAEWT
xy (m) IAEW

xy(m) Pxy(%) IAEWT
θ (rad) IAEW

θ (rad) Pθ(%)

Experiment 1 0.7137 1.1744 64.55 0.9901 1.4174 43.16

Experiment 2 0.8108 1.1543 42.37 1.0743 1.2117 12.8

Experiment 3 0.8340 1.1922 42.95 0.9036 1.3895 53.78

Average 0.7862 1.1736 49.29 0.9893 1.3395 35.40

Table D.3: Tracking performances: IAE of GPI observer based control

Trajectory Circle Square Lemniscate

IAE IAExy(m) IAEθ(rad) IAExy(m) IAEθ(rad) IAExy(m) IAEθ(rad)

Experiment 1 0.1095 0.1301 0.1796 0.2041 0.1153 0.1687

Experiment 2 0.0980 0.1540 0.1818 0.1897 0.1170 0.1467

Experiment 3 0.1028 0.1744 0.1855 0.1829 0.1123 0.1586

Average 0.1034 0.1528 0.1823 0.1922 0.1149 0.1580

Table D.4: Robustness: IAE of GPI observer based control

IAE IAEWT
xy (m) IAEW

xy(m) Pxy(%) IAEWT
θ (rad) IAEW

θ (rad) Pθ(%)

Experiment 1 0.0695 0.0753 8.35 0.0909 0.1228 35.09

Experiment 2 0.0695 0.0736 5.90 0.0943 0.1096 16.22

Experiment 3 0.0699 0.0805 15.16 0.0862 0.1109 28.65

Average 0.0696 0.0765 9.81 0.0905 0.1144 26.49
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D.1.2 Robustness

D.2 Original Data of GPI Observer based Control

D.2.1 Tracking Performance

D.2.2 Robustness

D.3 Original Data of Passivity based MFC

D.3.1 Tracking Performance

Table D.5: Tracking performances: IAE of passivity based MFC

Trajectory Circle Square Lemniscate

IAE IAExy(m) IAEθ(rad) IAExy(m) IAEθ(rad) IAExy(m) IAEθ(rad)

Experiment 1 0.3597 0.1979 0.5558 0.4088 0.4346 0.1716

Experiment 2 0.3722 0.2010 0.5552 0.4154 0.4242 0.1828

Experiment 3 0.3477 0.2056 0.5418 0.3955 0.4382 0.1764

Average 0.3599 0.2015 0.5509 0.4066 0.4323 0.1769

D.3.2 Robustness

Table D.6: Robustness: IAE of passivity based MFC

IAE IAEWT
xy (m) IAEW

xy(m) Pxy(%) IAEWT
θ (rad) IAEW

θ (rad) Pθ(%)

Experiment 1 0.2289 0.2368 3.45 0.1027 0.1176 14.51

Experiment 2 0.2249 0.2440 8.49 0.0989 0.1250 26.39

Experiment 3 0.2371 0.2481 4.64 0.1007 0.1330 32.08

Average 0.2303 0.2430 5.50 0.1008 0.1252 24.25
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